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Abstract

Embedded controllers for reactive real-time applications are implemented as mized software-
hardware systems. In [CGH* 93], a formal specification model called Co-design Finite State
Machine (CFSM) is introduced. In this paper we present a methodology for partitioning and
automalic synthesis of software-hardware sysiems specified with CFSMs. CFSM networks are
partitioned into software and hardware domains. Interfaces between hardware and/or software
partitions are defined. An implementation of the entire system is autometically generated and
optimization techniques are applied o both softwere and hardware. To reduce the complezity of
the design and the represeniation, library modules can be predefined and reused. An example
from the automotive indusiry is used to demonstrate the method.



1 Introduction

Embedded controllers are used more and more frequently in the design of electronic systems as the
increasing complexity of the applications requires the development of software to implement more

sophisticated functions. Since timing requirements may not be met by the software, part of the
design has to be implemented in hardware.

As pointed out in [CSV92] Hardware-Software systems design is still in its infancy as a recognized
discipline, although it has been common practice in industrial systems design for decades. In
addition, the range of systems which require the joint design of hardware and software is so wide
that it is difficult to think of design methods that can serve in such a wide array of applications.
Therefore, we concentrate on the field of Reactive Real-Time Systems. Within this field, we can
recognize several critical aspects that are found in the process of designing an embedded system.

1. Need for natural specification: we want to be able to concentrate on specifying a function
or a part of a system in the most natural possible way without being distracted by implementa-
tion concerns. Sometimes, engineers are so familiar with a time-honored implementation that the
implementation itself becomes part of the specification. Hence, when a new technology becomes
available they cannot take advantage of the opportunity because they do not know how to specify
the problem in a non-implementation biased way.

2. Need for easy partitioning: we want to be able to explore a wide range of implementation
solutions, and choose the one that best suits us in terms of cost, performance, manufacturability,
and so on. Too often, the partitioning is done as part of the specification. That is, the initial
system description is given in terms of what the software is supposed to do and what the circuitry
surrounding the micro-P is going to provide. This can be acceptable when upgrading some old
project without changing an established technology, but it is obviously not ideal when a totally
new system has to be devised.

3. Need for software and hardware synthesis: since system implementation issues, in
particular circuit design and test, software coding and debugging, are the most time-consuming
activities and the main sources of errors, we want to trade off the optimality of a hand-made
implementation for rapid turnaround and reliability.

4. Need for optimization: after partitioning, we want to optimize the proposed implemen-
tation. This step can only be performed if the behavior is expressed using a formal representation
compatible with some optimization algorithm.

5. Need for validation: we want to validate both the model before partitioning and implemen-
tation, and the system after implementation. The importance of this step is often underestimated
especially when designing “small” systems. Designers today seem more concerned with “getting
something done” as soon as possible regardless of whether this something is what they really want.

To address the points listed above, we propose to use a non-committed behavioral internal
representation based on Co-Design Finite State Machines, or CFSMs [CGH*93]. By a synthesis



point of view, the most desirable characteristic of CFSMs is that they can model a significant class
of both hardware circuits and software programs. Therefore, they can be used as a representation
of a system’s behavior rather than of a circuit’s or a program’s.

The main points of our approach, which has been introduced in [CSV92], are:

1. An array of formal languages, each of which is mapped into a neutral FSM based Intermediate
Format (IF'), is used to specify different parts of a system.

2. The IF represents a network of CFSMs and is organized in a way that makes partitioning
easy.

3. The IF has semantics in terms of both a hardware representation format and of a generic
software architecture to allow for automated synthesis.

4. Optimization can be performed on both the IF, and on the synthesized code and circuit.
5. Validation consists of two tasks:

(a) specification verification to verify that the specification satisfies a set of user-defined
properties, and design verification to verify that an abstracted representation of an
implementation satisfies a set of user-defined properties.

(b) implementation verification to check whether the behavior of the implementation is
consistent enough with that of the specification.

Validation can be done by means of simulation or formal verification.

The CFSM model (like most FSM-based models) is not meant to be used directly by designers,
due to its relatively low level (almost “bitwise”) view of the world. Designers will conceivably write
their specifications using a higher level language, for example ESTEREL ([BCG91]), StateCharts
([DH89)), Formal Data Flow Diagrams ([FGet al.86]) or a subset of VHDL ([Bak93]), that will by
directly translated into CFSMs. This translation task is made easier by the formal definition of the
model.

The basic idea is to use a network of interacting CFSMs, that communicate through very low-
level primitives: events. The notions of “time” and “event” that we use are different from the
perfectly synchronous model used, e.g., by ESTEREL. We use a discrete model of time, where each
CFSM takes a non-zero unbounded time to perform its task (at least before an implementation is
chosen). This model is quite realistic for synchronous systems and lends itself to efficient formal
verification techniques (e.g. [Kur90], [Bur92}).

Events directly implement a synchronous protocol ((CKN86]) between communicating partners.
The receiver waits for the sender to emit the event (which is essential to avoid reading the wrong
information), but the sender can proceed after emitting the event without the need to wait. An
implicit one-place buffer between the sender and each receiver saves the event until it is detected
(or overwritten). This approach has two advantages: it lends itself to a very efficient hardware



implementation with synchronous circuits, and can be used very easily to construct the full hand-

shake (required, e.g., by a CSP channel or by asynchronous circuits) where the sender waits for the
receiver to acknowledge reception of the event.

The notion of communication between CFSMs used by our proposed model implies that the
sender does not “remove” the event immediately after emitting it, but only when it emits another
one. An event is present and can be detected not only at the time of its emission, but until
it is either detected or “overwritten” by another event of the same type. So the event can be
correctly received even with the rather unpredictable detection time that is associated with a
software implementation. Correct reception is ensured as long as either the sender data rate is

lower than the receiver’s processing ability, or the designer explicitly introduces a full handshake
between the two.

1.1 Overview of the co-design methodology

The design process starts when the designer inputs the system behavior description using one
(or more, if different components require different styles) of the high-level languages that can be
mapped into a network of CFSMs. We represent CFSM networks by a specific IF called Software
Hardware Intermediate FormaT, or SHIFT (see Section 2.1).

Some formal properties of the specification, namely those that do not depend on the time
required to perform each operation, can be verified at this very early stage using, e.g., model
checking for temporal logic ((CLM91]) or language containment ([Kur90]) techniques, using a formal
transformation from CFSMs to standard non-deterministic FSMs (denoted by “VIF” in Figure 1).

The second step is design partitioning, i.e. the choice of a software or hardware implementa-
tion for each component of the system specification. A key point of our approach is that the IF
specification is totally implementation independent, and this makes it possible for the designers
to experiment with a number of implementation options. Obviously, this flexibility of design can
best be taken advantage of in a scenario in which the designer is also allowed to evaluate a possible
implementation “on the fly”. In this regard. the use of hardware emulation machines in addition
to traditional micro-controller emulators is essential in order to exploit the full potential of our
method.

The choice of a particular partitioning can be done by hand or by using automated techniques.
Automated techniques may be based on I/O data rate requirements ([GIM92]) or on simula-
tion/profiling data ([EH92]). This paper does not address directly the automated partitioning
problem, but describes a framework where algorithms to solve it can be easily and transparently
embedded.

It is important to remark that, by defining the communication between partitions on discrete
event emission and detection, we provide a mechanism that can help to specify delay-insensitive
partitions. For example, a hand-shaking mechanism can be easily specified in terms of discrete
event exchange. In any case, we do not guarantee by any means that the partitions will actually be
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delay-insensitive. The validity of the system description is not ensured by construction but rather
through explicit validation of the system model (i.e. verification and simulation.)

A major issue related to partitioning is how to interface CFSMs that belong to different im-

plementation domains. In Section 6 we describe how a given partitioning affects the way the
implementation is synthesized.

The third step is to implement each CFSM in the chosen style. The synthesis algorithms we

propose are based on restrictions which are common to the design of most industrial embedded
" control systems:

¢ Each hardware partition is implemented as a fully synchronous circuit.

e Each software partition is implemented as a C stand-alone program embedded in one or more
micro-controllers.

o All partitions have the same clock.

Hardware implementation is rather straightforward. After mapping a SHIFT specification di-
rectly into a netlist representation format, we use the sis sequential synthesis system ([SSLt+92,
SSM*92]) developed at U.C. Berkeley. Note that our unbounded non-zero discrete delay model
also allows for pipelined implementations of the very same specification, of course if the designer
provides some adequate means for synchronization between components with different degrees of
pipelining.

The CFSM delay model plays a key role in making the software implementation possible. Writ-
ing a procedure that computes the next state and the output function given some input data and
present state information is trivial. But this procedure will be scheduled to run at an almost
unpredictable point in time and will perform its task requiring a number of clock cycles that is
very hard to control. This type of behavior naturally leads to our definition of events as having
a duration, until detected or overwritten, and to non-zero (but bounded) reaction times. Each
CFSM is translated into a C function that is activated at the arrival of one (or more) event the
CFSM is waiting for. The function computes the next state and, possibly, emits further events.
This simplifies drastically the requirements on the real-time operating system that must coordinate
the operation of the software components and implement the interface between different software
components and between software and hardware (as described in Section 6).

The paper is organized as follows: Section 2 recall the CFSM theory thoroughly introduced
in [CGH*93], Section 3 describes the technique used to partition a system design, Section 4 de-
scribes the algorithms used to synthesize the hardware and software implementations, Section 5
describes how we handle system complexity, Section 6 describes how heterogeneous implementation
domains are interfaced, Section 7 discusses the issue of software optimization, Section 8 discusses
the issue of system validation, Section 9 shows an example of automated synthesis of a system
from the automotive industry, and finally Section 10 draws some conclusions and outlines future
developments of the project.



2 Background

In [CGH*93), we thoroughly introduced the theoretical foundation of our approach to Hardware-
software Co-Design. Here, we briefly recall the main points.

The basic observable entities that define the behavior of the system that we want to model are
events. Sequences of events are called traces, and the behavior of the system is defined as the set of
traces that can be observed when it interacts with the environment. The system itself and possibly
its environment will be modeled using a set of CFSMs that produce those traces.

An event is defined as triple e = (ep, €, €;). It is identified by its name ey, or in other terms by
the “communication port” on which it occurs. The event is associated with a value e, on a finite
set of possible values ey. A particular instance of an event is identified by its time of occurrence
e;. Some events may not have an “interesting” value.

A timed trace is an ordered finite or infinite sequence of events, with monotonically non-
decreasing times of occurrence, such that no two events with the same name are simultaneous
(i.e. each “communication port” can carry only one value at a time).

A network of Co-design Finite State Machines (CFSMs) is a finite object that generates a set
of timed traces by its evolution in time.

ACFSM C = (I,E,O,R,F) is basically composed of a set of input events I (each with its
associated set of values), a set of output events O (each with its associated set of values and
possibly with an initial value in R), and a transition relation F' describing how the CFSM reacts
to input events by causing output events to occur. Each transition is triggered by the input events
with the appropriate values and emits the output events with the appropriate values. The reaction
time is unbounded non-zero. The state of the CFSM is constituted by the set of those events that
are at the same time input and output for it. The non-zero reaction time provides the “storage”
capability that is required to implement the concept of state.

As a general rule, there is no need to specify a “self-loop” for a CFSM (i.e. a transition from
a state to itself), because the “default” behavior is to remain in the present state as long as no
events that can cause a transition arrive. A notable exception is the case described above, where
without the self-loop specification the definition of “priorities” between events would not have been
possible.

A Co-design Finite State Machine is like a “classical” FSM (from now on just FSM) because
both transform a set of inputs into a set of outputs by using only a finite amount of internal
state. However, a CFSM has no implied “synchronous” hypothesis. The standard definition of
interaction between FSMs, based on the concept of product machine, assumes that all the FSMs
change state exactly at the same time. This can be very different from the actual behavior of a
mixed hardware/software system, in which software components can take hundred of clock cycles.

As a practical example, suppose that we want to specify a simple safety function of an auto-
mobile: the alarm that beeps when the seat belt is not fastened. A typical specification given to a
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Figure 2: CFSM Specification of a simple system

designer would be:

Example 1 Five seconds after the key is turned on, if the belt has not been fastened, an alarm will
beep for ten seconds or until the key is turned off.

This example will be used in the following sections of this paper.

The input events of the system are: *BELT, with values ON and OFF, *KEY, with values ON and
OFF (from now on, names preceded by “*” will denote event names). The output event of the
system is *ALARM, with values ON and OFF. Internal events (i.e. events exchanged by the system
components) represent the starting of the timer and the fact that 5 or 10 seconds elapsed. They
are: *START, without “interesting” values, and *END with values 5 and 10. A valid timed trace of
the system, i.e. a possible sequences of events, can be expressed in tabular form, e.g.:

01 6 7 9 10

*BELT ON
*KEY ON
*ALARM ON OFF
*START € €
*END 5

This trace describes a driver who does not fasten his seat belt. The alarm, triggered by the
timer expiring after 6 seconds, is turned on at time 7. The driver fastens his seat belt at time 9
and the alarm is turned off after 2 seconds.

A CFSM describing the desired event /reaction pattern for the seat belt example is represented
in Figure 2 (“+” denotes the logic or condition, while “=>" separates input and output events of a
given transition).

The formal description of the same CFSM C, = ([}, E4,04, Ry, F}) is as follows:



Example 2

o I = {(*KEY, {ON, OFF}), (*BELT, {ON, OFF}), (*END, {5, 10}), (31, {OFF, WAIT, ALARM})}.
e E; = {(*KEY, {ON, OFF}), (*BELT, {ON, OFF}), (*END, {5, 10})}.

o O; = {(*START, {€}), (*ALARM, {ON, OFF}), (s3, {OFF, WALT, ALARM})}.

o R; = {(s1,0FF)}.

o F, = {({(*KEY, ON), (s1, 0FF), } = {(s1, WAIT), (*START, ¢)}),
({(*KEY, ON), (*BELT, ON), (51, 0FF), } = {(s1,0FF), }),
({(*KEY, OFF), (31, WAIT)} = {(s1, 0FF)}),

({(*BELT7 ON)? (31, WAIT)} = {(81’ DFF)})a

({(+END, 5), (51, WAIT)} = {(s1, ALARM), (*ALARMN, ON)}),
({(*END, 10), (1, ALARM)} = {(s1, OFF), (*ALARM, OFF)}),
({(*BELT, ON), (51, ALARM)} = {(sy, OFF), (*ALARM, OFF)}),
({(*KEY, OFF), (s1, ALARM)} = {(s;, OFF), (*ALARM, OFF)})}

Each CFSM describes a component of the system to be modeled. The whole system is described
as a network N of interacting CFSMs; that is, a set of CFSMs such that no two different ones
have an output event name in common. Hierarchy can be used (as will be shown in Section 2.1) to
bridle complexity, but the formal definition is given here, without loss of generality, in terms of a
flat view.

To define the set of legal traces produced by a CFSM network, we give a set of conditions
ensuring that the transitions of each CFSM are “atomic”. That is, all output events of a given
transition must be emitted before the next transition can occur. This means that for each timed
trace for each CFSM we can find an ordered sequence of pairs (¢o, 7o), (¢1,71), (€2, 72), . . . such that:

e each (c;, ;) identifies events of T' that are the cause and the result respectively the i-th
transition of C, and :

e every output event has a cause.

We also have the notion of mazimality of the sets causing each transition to allow the transition
relation to test for the absence of a particular event at a certain time, and give priorities to the
reactions to simultaneously present events. Recall that an event is “absent” for a CFSM at a point
in time either if it has not yet been emitted since time 0 or if it is a triggering event and it has
been used for a previous transition of the same CFSM.

A CFSM network does not enforce fairness, because this would have imposed too tight con-
straints on the software implementation. Input events belonging to a timed trace might legally
cause infinitely often a transition of a CFSM, and yet this transition may never occur or may never
produce a reaction. We only force all the output events for a transition to be emitted if one of



them is emitted. However, fairness is imposed to the type of software implementation we propose
through the use of a fair software scheduler.

As explained in [CGH*93], we need to map CFSMs into FSMs for synthesis and validation. A
CFSM event is mapped in the FSM world as:

e one binary signal that encodes the event occurrence.

¢ a bundle of n signals that encode the event value. (Obviously, logok < n where k is the
number of values that the event value can take. n can be 0 if & is 0).

Given a CFSM C we can derive a network of FSMs A'F whose behavior is the same, in the sense
that they interact with the “rest of the world” in the same way, composed of:

1. One “main” completely specified FSM F = (I*,0%, X%, RF , F¥ ) such that its transition
relation is modified in order to include “self-loop” transitions that express the fact that,

when no trigger event occurs, no output events are emitted and no state/output event value
is changed.

2. For each input signal pair #iy,%, of F corresponding to an input event of C there is an FSM
such that its inputs are the “external” pair of signals xil,,i], corresponding to *iy,i,, its
outputs are the “internal” pair of signals *i,, 5, and its set of states and non-deterministic
transition relation define the (possibly non-deterministic) delay with which the signals %i,, i,

follow the external corresponding ones.

3. For each output signal there a FSM somewhat similar to those used for input signals that
governs the transmission of the output signal pairs of F to the external world.

Notice that, the output FSM being a Moore machine, the whole network N is a Moore machine.

In [CGH*93], we have shown formally the behavioral equivalence between a CFSM network
and an FSM network.

This interpretation of a CFSM network NC as an FSM network A% is extremely useful for
synthesis. It ensures consistency between a SHIFT specification and an array of implementation
options that differ largely in terms of timing behavior. These software and hardware implementa-
tions propose are correct in the sense that the set of their timed traces is contained in that of N7,
and hence of M. That is, for a CFSM network N described in SHIFT we can derive a hardware
and a software implementations I, and I, such that the set of timed traces of N7 includes that of
I, and that of Ij,. However, in general the sets of timed traces of I, and I, are not equal.

This containment will be ensured by the fact that:

o For a hardware implementation, the input FSMs are reduced only to the so state and the
output FSMs delay by exactly one cycle each event.

10



e For a software implementation, input event buffers that are set whenever an event is sensed
from the outside world (possibly overwriting the old value) and output event buffers that are
transmitted to the outside world whenever a transition is completed, implement the input-
output FSMs. The buffers should not be changed while the C function implementing the
transition relation is executing, thus ensuring the correct sequencing of input events and
output reactions.

11



2.1 CFSM Intermediate Format

We can describe a CFSM network using a specific representation format, called Software-Hardware
Intermediate Format (SHIFT), that we use to exchange CFSM descriptions across tools in the form
of files. A complete specification of the SHIFT language has been given in [CGH*93]. Figure 3
shows how the simple seat belt example described in Figure 2 and Example 2 can be specified using
SHIFT.

The example shows how the SHIFT specification of a system is organized into a three-layer
hierarchy. At the top (layer 0, or Inter-partition and interfaces description), we only have .subckts
representing partitions as black boxes; no .names constructs are allowed. FEach partition is a
.model at layer 0. Inside each of them (layer 1, or Partition description) we can have reactive
transformations (i.e. CFSMs) and sub-systems. Some elements of a partition may be elementary
components that specify pure combinational functions (layer 2, or Functional description) referred
to in the reactive CFSM description. Layer 0 is always a flat description, whereas layers 1 and 2 can
be organized into a homogeneous hierarchy. Figure 5 depicts how a SHIFT specification (shown in
Figure 4) is organized.

Most of the time, it will be the case that a SHIFT hierarchy is not complete, as in Example 3:
there the model INC_4 is missing. These aspects will be addressed in Section 5.

12



# level 0 - inter partition interfaces

.model system

.inputs #BELT BELT #KEY KEY

.outputs *ALARM ALARM

.nv BELT 2 ON OFF

.nv END 2 § 10

.mv KEY 2 ON OFF

.mv ALARM 2 ON OFF

.subckt belt bl *BELT=#BELT BELT=BELT #END=+END END=END \
*KEY=*KEY KEY=KEY *START=#START *ALARM=*ALARM ALARM=ALARM
.subckt timer t *START=*START *END=+END END=END

.end

# level 1 - this is a partition

.model belt

.inputs *BELT BELT *END END *KEY KEY

.outputs *START *ALARM ALARM

.nv BELT 2 ON OFF

.mv END 2 § 10

.mv KEY 2 ON OFF

.mv ALARM 2 ON OFF

.mv s1 3 OFF WAIT ALARM

.names s1 *«KEY KEY *END END *BELT BELT => sl *START *ALARM ALARM

OFF 1 ON - - 0 - WAIT 1 0 -
OFF - - - - 1 ON OFF 0 0 -
WAIT 1 OFF - - - - OFF 0 0 -
WAIT - - - - 1 ON OFF 0 0 -
WAIT - - 1 5 - - ALARM 0 1 ON
ALARM 1 OFF - - - - OFF 0 1 OFF
ALARM - - 1 10 - - OFF 0 1 OFF
ALARM - - - - 1 ON OFF 0 1 OFF

.end

# level 1 - this is a partition
.model timer

.inputs *START

.outputs *END END

.mv END 2 5 10

.mv N 16

.mv N_PLUS_1 16

.names *TICK »START N_PLUS_1 => N *END END
- 1 - 0 0 -
1 0 - (N_PLUS_1) 0 -
1 0 5 5 1 5
1 0 10 0 1 10

-names *TICK *START => *TICK

-1 1

1- 1

.subckt INC_4 i1 a=N i=N_PLUS_1 c=cc

.end

Figure 3: SHIFT Specification of the seat belt example

13



# Top layer - Inter-partition description

.model top

.inputs *x

.outputs *y

.mv v 8

.subckt one _1 #a=#*x b=v *c=xe
.subckt two _2 *a=%e b=v *c=xy
.end # top

# Layer 1 - Partition description

.model one
.inputs *a b
.outputs *c

.nvb 8

.names *a f f_minus_1 => *p £
1-- 0 (f_minus_1)

100 1N

.subckt three _1_1 #*e=*p u=b *y=%c
.subckt DECR _1_DECR i=f o=f_minus_1
.end # one

.model three

.inputs *p u

.outputs *y

.nvu 8

.mv g 8

.names *p u u_minus_1 => »y g

1-- 0 (u_minus_1)

100 1K

.subckt DECR _1_1_DECR i=u o=u_minus_1
.end # three

.model two

DR Y

.end # two

# Layer 2 - Functional description

.model DECR
.inputs i
.outputs o
.mv aa 8
.mv bb 8

co e

.subckt FOO DECR_FOO_1 i=aa o=bb
.end # DECR

.model FOO
.inputs i
.outputs o

vesn e

.end # FOO 14

Ficure 4: Exampole of Hierarchical SHIFT Soecification
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3 System Partitioning

The general embedded system architecture that we envision is shown in Figure 6. The figure
describes a system with three partitions, one software (implying one micro-controller) and two
hardware (implying two integrated circuits). Each partition is synthesized separately.

e Partition 1 implements two CFSMs, exchanging event e; internally (from CFSM 1 to CFSM
2) and events e;, ez, e3 and eg externally. Le. event e; is sent (broadcast) to CFSMs 2 and 7,
event e; is sent to CFSM 5, the value (only) of event e3 is sent to CFSM 3, and event eg is
sent to CFSMs 3 and 5.

o Partition 2 implements only CFSM 7, that receives events e; and ey.

e Partition 3 runs on a micro-controller with a simple Operating System (mainly a scheduler
and a hardware interface handler) and four CFSMs. These CFSMs logically communicate
with each other and with the hardware CFSMs using events. In practice the events are
implemented using the OS interprocess communication facilities and its device drivers for
the micro-controller ports (Sections 4.2 and 6 describe the interface mechanism implementing
events more in detail). For example, ports 1, 3, and 5 of the micro-controller are dedicated
to a single event each, while ports 2 and 4 are shared by events e3 and eg, and eg and e
respectively. Ports 1, 2, and 3 are real I/O ports of the micro-controller, whereas ports 4 and
5 are virtual ports used for intra-partition inter-task communication (see Section 6.)

It is useful to remind that when we talk of micro-controller we mean a single-chip computer that
includes a CPU, a ROM, a RAM, possibly a EEPROM, and a set of peripherals such as digital 1/0
ports and A/D converters. In general, in order to keep the cost of the device low, the size of the
RAM is very small, and the number of I/O port is limited. For example, a typical micro-controller
such as the Motorola MC68HC11K4 has 24K byte ROM, 768 byte RAM, 40 digital I/O lines, plus
other devices as PWM outputs, a 16-bit timer system, etc. The I/O ports are generally memory
mapped. Thus, the software program of a micro-controller interacts with the external world by
reading and writing memory registers.

Another and possibly more general approach is to work with a micro-processor instead of a
micro-controller. In that case we would have a bus and shared memory architecture. The commu-
nication between the P and its environment is made more flexible but this type of solution tends
to be significantly more expensive both in terms of development cost and product cost and should
only be considered in the case of very big production volumes.

The partitioning process takes as input a SHIFT specification and outputs a SHIFT specification
in which each .model partition (i.e. each .model of the layer 0) is labeled as HW or SW. In addition,
a mixed hardware-software interfacing mechanism is automatically synthesized (see Section 6) and
passed on to the automated synthesis process.
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4 Automated Synthesis of SHIFT Specifications

The partitioning process returns a SHIFT specification in which each partition (i.e. a .model of
layer 0) is labeled as HW or SW. Each HW model is translated into a hardware description format;
each SW model is translated into an embedded C program. The syntax of SHIFT is suited for
easy translation into synchronous hardware and into a specific software architecture. We specify
precisely the semantics of SHIFT in terms of a hardware description format and of a software
architecture. The range of hardware and software implementations we can produce may not be the
widest possible. But our main concerns in this phase are to ensure the generality of the behavioral
specification and the consistency of the derived implementation.

4.1 Hardware Synthesis

In the case of hardware synthesis, we map SHIFT into a hardware description format: a pure
synchronous interpretation of BLIF-MV ([BCH*91]). BLIF-MV is basically a network of single-
output multi-valued functions of multi-valued variables, possibly with latched outputs 1. Hence,
we project each .names onto each of its output components and obtain a set of single-output tables
from each SHIFT table. We also latch the output of every function (with the exclusion of library
modules described in Section 5) to implement the minimum delay of one time unit required by
the CFSM semantics. The result of this translation is a network of synchronous interacting Moore
FSMs whose behavior (set of traces) is contained in the behavior of the SHIFT specification?.

A circuit implementing the safety belt example is specified in BLIF-MV (excluding model
.timer) as follows:

Example 3

.model system

.inputs *BELT BELT *KEY KEY

.outputs *ALARM ALARM

.mv BELT 2 ON OFF

.mv END 2 5 10

.mv KEY 2 ON OFF

.mv ALARM 2 ON OFF

.subckt belt bl *BELT=+#BELT BELT=BELT *END=*END END=END \
*KEY=+#KEY KEY=KEY *START=xSTART *ALARM=%ALARM ALARM=ALARM
.subckt timer t *START=*START *END=END END=END

.end

.model belt

1BLIF-MYV is still under development. The syntax used in this paper is therefore subject to change
2This is compatible with the S/R model proposed by Kurshan ([Kur90]), that is also based on Moore machines.
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.inputs *BELT BELT *END END *KEY KEY
.outputs *START *ALARM ALARM

.mv BELT 2 ON OFF

.mv END 2 5 10

.mv KEY 2 ON OFF
.mv ALARM 2 ON OFF
.mv s1 3 OFF WAIT ALARM
.names s1 *KEY KEY

OFF
OFF
WAIT
WAIT
WAIT

= =

ON

OFF

ALARM 1 OFF
ALARM - -
ALARM - -
.names s1 *KEY KEY

OFF
OFF
OFF
OFF
WAIT

ALARM - -
.names si

OFF
WAIT
HAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM
ALARM

I = = = O

O OO OO OO I I R MEPKEFOOOO O

ON
ON
OFF

10

[ B |

o
1 oo,

o n

10

10
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(¢ 20 ¢ T¢I | )

0

I = 1 =

1

0
1

*KEY KEY

I = = O 1

I = = O 1

I P = OB = O |

*END END *BELT BELT _sl

- WAIT

ON OFF

- OFF

ON OFF

-  ALARM

- OFF

- OFF

ON OFF

*END END *BELT BELT _*START

[}
0O O OO r O

*END END *BELT BELT _*ALARM

ON
OFF

!
1 OO+ | P OOKE I B OO

OFF

ON
OFF

P ORr OO OO
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ALARM 10N O0- 0- O
ALARM 1 ON O - 1ON 1
ALARM 1 ON 0 - 1O0FF O
ALARM 1 0N 15 0- O
ALARM 1 ON 15 10N 1
ALARM 1 ON 15 1 OFF O
ALARM 1 ON 1 10 - - 1
ALARM 1 OFF - - - - 1

.names sl *KEY KEY *END END *BELT BELT ALARM
OFF 10N -- O0- -

OFF -- -- 10ON -
WAIT 1 OFF - - - - -
WAIT - - -- 10N -
WAIT - - 1 - - ON
ALARM 1 OFF - - - -  OFF
ALARM - - 1 10 - - OFF
ALARM - - - - 1 ON OFF

.latch _*START *START
.latch _*ALARM *ALARM
.latch _si1 s1

.end

.model timer

.inputs *START

.outputs *END END

.mv END 2 § 10

.mv N 16

.mv N_PLUS_1 16

.names *TICK *START N_PLUS_1 N
-1- 0

10 - (N_PLUS_1)

1058 5

10100

.names *TICK *START N_PLUS_1 _+*END

o
(o 2 |
o )

O = R T O S T
OO0 OO OO OO O
W 00 N O 0> WN =

I ©O OO0 O O O

O O OO
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10
11
12
13
14
15
.names *TICK *START N_PLUS_1 END
-1-_

10-~- -

105 5

1010 10

.names *TICK *START _*TICK

000

011

1 -1

.subckt INC_4 il a=N i=N_PLUS_1 c=cc
.latch _*END *END

.latch _*TICK *TICK

.end

[ T N
» OO0 OO OO
0O 00O OO0 I

Notice that latches and new transitions specifying “self-loop” transitions have been introduced.
As explained in [CGH*93), this is necessary to transform the reactive syntax of CFSMs into the
purely synchronous syntax of BLIF-MV.

In the case of hardware synthesis the modeling of delay is very simple. Events are sensed
immediately and reacted within the minimum delay. That is, every state is associated with the set
of events that are present in that state, and the reaction to an event is present in the immediate
successor of the state associated to the triggering event. No non-deterministic delay is possible.

The following table that shows a particular possible path of behavior of this BLIF-MV imple-
mentation (only some signals are shown):

KEY_ON A

START.TIME . . . . 1 . . . . ¢ o o v v v v v v v v v ..
STATE 00001111122222200000000
END_5_S B T

ALARM_ON O L

END_10_S S

ALARM OFF . . . . . . . . . . ..o 0000,
n === 012345670123456780

Finally, we need to translate the BLIF-MV description into a circuit. To do this we translate
BLIF-MV into BLIF, and pass the BLIF description to a logic synthesis tool like U.C. Berkeley’s
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SIS ([SSL*92, SSM*92]) by which we produce the final implementation. The transformation of
BLIF-MV is pretty straightforward. A multi-valued signal denoting the presence of an event is
implemented by a single wire, that is at value 1 when the event is present and at 0 otherwise.
Note that if such a wire stays at 1 for n clock cycles, this denotes n occurrences of the event, so
there is no overhead associated with event detection in hardware (unlike most other communication
paradigms used originally for software specifications, such as channels). A signal denoting the value
of an event is implemented by a bundle of wires encoding the values.

The only significant issues are: how to resolve the possible non-determinism of BLIF-MV and
how to encode multi-valued variables. Currently, we have developed a BLIF-MV to BLIF translator
that accepts only deterministic BLIF-MV descriptions and applies the “natural” encoding implied
by interpreting each value in a .mv <name> <val_1> ... <val_n> statement as an integer. Pro-
grams such as NOVA [Vil86], MUSTANG [DMNSV88] or JEDI [LN89] can be used (via sis) to do
the encoding so that the logic implementing the FSM is minimized. As a further optimization, we
can also use multiplexer and bus allocation techniques from high-level synthesis to minimize the
consumption of expensive inter-partition communication resources (i.e. I/O pins).

4.2 Software Synthesis

In the case of software, we map the SHIFT specification of a partition into a software structure that
includes a number of procedure and a simple operating system. To ensure portability across micro-
controllers, we only consider producing a self-contained block of C code that should be compiled
and used virtually on any processor.

The customized OS for each micro-controller consists of a scheduler and drivers for the virtual
1/0 ports, hence it is extremely small and imposes little overhead. It is also easily portable to new
micro-controllers.

In order to correctly implement the CFSM behavior the OS must satisfy the following con-
straints:

1. Each transition of a task must be performed “atomically”, i.e. the values of the input event
buffers for that task must not change once it has been started.

2. “Consumed” trigger events must be reset before a task is invoked again.

3. Output events from a task must be all transferred to the interfaces (described more in detail
in Section 6) by setting the signal or variable denoting the event presence only after the
corresponding value has been updated.

As explained in Section 3, a micro-controller generally communicates with the external world
via memory mapped I/O ports. The software program of a micro-controller interacts with the
external world by reading and writing memory registers. In our approach, we generalize this idea
in order to make the inter-task and the inter-processor communication as similar as possible. The
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communication mechanism between a task and the external world (other tasks or external devices)
is based on the use of Virtual I/O ports. A virtual I/O port is a memory location that both software
tasks and the OS use to circulate events. In the case of communication with an external device,
such a location will correspond to a real I/O port. In the case of inter-task communication, it will
be just a regular r/w memory register that some tasks can write to and some tasks can read from.

Each event is associated with a bit of a virtual port. If the bit is set, the event has occurred
and the value of the event, if any, is to be found in another memory location. Once an event
has been detected by the OS it is copied to the input buffers of all tasks that are semsitive to
it. Event emission and detection are performed by macros that use ROM tables created by the
software synthesis program that specify which port and which bits are associated to an event. The
emit(event) call writes an output event directly to the port. The occurred(event,InpBuff)
call checks a task’s private input buffer. The assign_events_to_proc_buffs() procedure checks
virtual I/O ports and flushes ports after writing events to each task’s input buffer, according to
the sensitivity information stored in a ROM table.

The simple scheduling mechanism is as follows: all process buffers are checked in turn. If a
buffer is not empty (i.e. the process is enabled) the corresponding software process is invoked.
The acyclic structure of the code and the simple structure of the scheduler ensure liveness (i.e
an enabled task will be eventually invoked) and fair scheduling of every process (i.e. all enabled
tasks will be invoked infinitely often). These are two essential properties of every sound concurrent
software system as explained in [BAPMS83].

We consider each CFSM as a software concurrent process or task. A task is acyclic, without
iteration. Each time it is activated it performs at most one (possibly none if no triggering event is
present) transition of the CFSM. Each line of the .names table is thus interpreted as a condition
— action statement. Each input event to a CFSM is saved, until it is either consumed or over-
written, in an event buffer that is private to each software task. Assignments are implemented in
a straightforward fashion. For example, the following SHIFT specification

.names a *xX X %z => b *y
-1K - 0 1
A0O-1 (x)0
BOo-1 (x) 0

is mapped in C as

void
foo(b)
int b; /* process inp_event buffer */
{
if (1) {
if (occurred(ci,b)) {
if (x == K) {
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b = 0;

emit(y);
}
}
}
else
if (a==14) {
if (occurred(c2,b)) {
b = x;
}
}
}
else
if (a == B) {
if (occurred(c2,b)) {
b = x;
}
}
}

This straightforward translation produces an implementation that can be quite inefficient in
terms of code size and speed. For example, the fragment above can be reduced to

void
foo(b)
int b; /* process inp_event buffer */
{
if (occurred(ci,b)) {
if (x == K) {
b =0;
emit(y);
}
}
else

if ((a == 4) |l (a == B))
if (occurred(c2,b)) {
b = x;
}
}
}

by realizing that a constant value does not need to be tested and that a set of condition that
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produce the same action can be collapsed. The issue of software optimization is covered in Section 7.

Other features of the software synthesis method can be found in the following example that
represents a software implementation of the CFSM described in Figure 2:

Example 4

typedef void (*foop_.t)(); /*foop_t = pointer to a function returning void#/

/* process names */
#define _p_belt_nl O

#define N_PROCS 1 /* number of processes */
foop_t proc[N_PROCS]; /* array of pointers to functions */
int inp_event[N_PROCS]; /* array of function input buffers (in order)*/

/* event IDs */
#define _e_KEY
#define _e_BELT
#define _e_END
#define _e_START
#define _e_ALARM

W N O

/* physical address of i/o ports */
#define IO_PORT_A ADDR_A
#define IO_PORT_B ADDR_B
#define IO_PORT_C ADDR_C

/* each "column" specifies INP_port and bit in the port for an inp event */
/* 0 key 1 belt 2 end 3 start 4 alarm */
int *event_io_port[] = { IO_PORT_A, IO_PORT_A, IO_PORT_B, IO_PORT_C, IO_PORT.C };
int event_io_bit[] = { 0x01, 0x02, 0x04, 0x01, 0x08 };

/* each "row" specifies an event/proc/bit relation. i.e. the "event" can
sensed by the "proc" by polling the "bit" */
int event_sens_tabl[] = { _e_KEY, _p_belt_ni, 0x01,
-e_BELT, _p.belt_n1, 0x02,
-o_END, _p_belt_ni, 0x04
};

#define N_E_P_REL 3 /% size of event/proc relation = rows/3 of event_sens_tablk/

/* constants that define which bit of a process’ inp buff carry an event */
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/* the ..._1 means event must be 1, ...._0 event must be O */
/* used by "occurred" zero one */
int _c_belt_ni_c1[2] = { 0x02, 0x01 }; /* !BELT * KEY */
int _c_belt._ni_c2[2] = { 0x00, 0x02 }; /% BELT %/
int _c_belt_ni1_c3[2] = { 0x00, 0x01 }; /* KEY %/
int _c_belt_ni_c4[2] = { 0x00, 0x02 }; /* BELT %/
int _c_belt_ni_c5[2] = { 0x00, 0x04 }; /% END =*/
int _c_belt_ni_c6[2] = { 0x00, 0x01 }; /% KEY «/
int _c_belt_ni_c7[2] = { 0x00, 0x04 }; /% END =*/
int _c_belt_n1_c8[2] = { 0x00, 0x02 }; /% BELT */

/*general macros*/

/* returns != 0 if event is found in io_port */
#define got_inp_event(event) (event_io_bit[event] & *event_io_port[event])

/* set a bit in PROCs inp_event buffer */
#define put_inp_event(pos) (inp_event[event_sens_tabl[pos+1]] = \
inp_event[event_sens_tabl[pos+1]] | event_sens_tabl[pos+2])

/* see section "interfaces" */
void
acknowledge_events() {};

/* check io_ports to find events */
void
assign_events_to_proc_buffs()

{

int n, pos, event;

for (n=0; n<N_E_P_REL; n++) {
pos = n * 3;
event = event_sens_tabl[pos];
if (got_inp_event(event)) {

put_inp_event(pos);

}

}

(void) acknowledge_events();

}

/* check inp_event buffer */

#define ZEROES O

#define ONES i

#define occurred(cond, e) (((cond[ZEROES] & e) == 0x0) && \
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(cond[ONES] == (cond[ONES] & e)))

/* set io_port or internal port */
#define emit(event) (*event_io_port[event] = \
*event_io_port[event] | event_io_bit[event])

/*Initialize processes’ vars*/

typedef enum { OFF, ON } type_1i_t;

typedef enum { s5, s10 } type_2_t;

typedef enum { OFF, WAIT, ALARM } type_3_t;

static type_.1_t _v_KEY = OFF;
static type_i_t _v_BELT = OFF;
static type_1_t _v_ALARM = OFF;
static type_2_t _v_END = 0;
static type_2_t _v_si = 0;

/* processes from SHIFT spec */

void
_t_belt_ni(e)
int e; /¥ process’ inp_event buffer */

{

if (_v_s1 == OFF) {
if (occurred(_c_belt_ni_ci,e)) {
if (_v_KEY == 0ON) {
_v_sl = WAIT;
emit(_e_START);
}
}
else
if (occurred(_c_belt_ni_c2,e)) {
if (_v_BELT == ON) {
-v_sl = OFF;
}

}
else
if (_v_s1 == WAIT) {

if (occurred(_c_belt_ni_c3,e)) {
if (_v_KEY == OFF) {
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-v_sl = QOFF;
}
}
else
if (occurred(_c_belt_ni_c4,e)) {
if (_v_BELT == ON) {
-v_sl = OFF;
}
}
else
if (occurred(_c_belt_nl1_c5,e)) {
if (_v_END == s5) {
.v_sl = ALARM;
_V_ALARM = 0ON;
emit(_e_ALARM);

}

else
if (_v_s1 == ALARM) {
if (occurred(_c_belt_ni_c6,e)) {
if (_v_KEY == ON) {
_v_sl = OFF;
_V_ALARM = OFF;
emit(_e_ALARM);
}
}
else
if (occurred(_c_belt_ni_c7,e)) {
if (_v_END == s10) {
-v_sl = OFF;
_V_ALARM = OFF;
emit(_e_ALARM);
}
}
else
if (occurred(_c_belt_ni_c8,e)) {
if (_v_BELT == ON) {
_v_sl = OFF;
_V_ALARM = OFF;
emit(_e_ALARM) ;

28



/* Initialize processes */
void
init_procs()
{
int p;

for (p=0; p<N_PROCS; p++) {
inp_event[p] = 0x0;
}

proc[_p_belt_ni] = *_t_belt_ni;

/*main scheduler*/
main()
{

int p;

init_procs();
for(;;) {
assign_events_to_proc_buffs();
for(p=0; p<N_PROCS; p++) {
if(inp_event[p]!=0) {
(proc[pl) (inp_event[pl);
inp_event([p] = 0;

}

In the example, the following conventions are applied:

o Eveént values are prefixed by _v_, like in
static type_i_t _v_BELT = OFF;

o Process identifiers are prefixed by _p., like in
#define _p_belt_1 0

o The actual code of software procedures are prefixed by _t_, like in
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void _t_belt_ni(e) int e;

1 stands for task 1. In general we have a task for each .names table (but some further
optimization can also be applied, as explained in section 7).

¢ Event identifiers are prefixed by _e_, like in
#define _e KEY 1

e Event pattern names are prefixed by _c_, like in
int _c.beltni ci[2] = { 0x02, 0x01 };

which represents the first pattern (c1) of the first task (n1) of model belt. The pair of values
above indicates which events must NOT be present (bits at 0) and which events must be
present (bits at 1) for the pattern to be detected. The line above represents the pattern
------ 01, or *KEY=1 and *BELT=0. The constants _.c_<name>n<i>_c<j> are generated by
the software synthesis program. If no optimization is performed, each of those constant
pairs represents a pattern of events corresponding to a line in a .names table of a SHIFT
specification.

o The tables event_io_port and event._io_bit store the information regarding which port and
which port bit need to be polled by the OS to detect the event. The table event_sens_tabl
is a global sensitivity list that, for each event, lists the tasks that can sense it and how the
event is encoded in the task’s input buffer. Notice that the same input event does not have
to, and in general cannot, be mapped in the same bit of each task’s input buffer.

An interesting example of synthesized software for a multiple-task application is shown in sec-
tion 9.

As far as the coding style is concerned, we do not claim this software is easily readable or elegant.
Style is not first priority in real-time software. Besides, this code is automatically generated from
the SHIFT format and is not meant to be read by the user. Optimization is done on the SHIFT
format; validation is done on the VIF format.

This scheme lends itself both to polling and interrupt implementations of event detection, as
an active task can be suspended and resumed at any time.

An interrupt-based implementation is similar to the polling-based one showed in the above
example. The interrupt handler that receives input events from other partitions updates the buffers
of the relevant tasks exactly as in the polling case. Note that there may be a problem due to an
excessive number of interrupts preventing any task from being executed. This problem must be
handled by the system designer and it is an interesting application for formal verification.

It is important to understand the timing behavior of such a software implementation, and how
it fits in our model of delay. The following table gives a qualitative demonstration of a particular
possible path of behavior of this software implementation (only some signals are shown). By
comparing it with the similar table given for hardware we notice that state changes do not happen
right after the event that triggers them, and the output events are emitted some cycles after the
state has been set. Also the value of an event is set before the event is actually emitted.
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*KEY . . . 1 . . . . . . . . . . . .

KEY . . . ON . . . . . . . . . . . .
*START_TIME . . . . . . . 1 . . . . . . . .
STATE OFF OFF OFF OFF OFF WALIT WAIT WAIT WAIT WAIT WAIT ALARM ALARM ALARM ALARM ALARM
*=END . . . . . . . . . 1 . . . . . .

END . . . . . . . . . 5 . . . . . .
*ALARM . . . . . . . . . . . . . 1 . .
ALARM . . . . . . . . . . . . . . . ON

The model of delay for an interrupt-based task is identical to one for the polling case. The
sensing of the current interrupt is delayed because a task detects its input events some cycles after
the interrupt occurs.
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5 Coping with Algorithmic Complexity: Pre-built Blocks

Although general in terms of expressiveness, SHIFT is not specifically designed for specifying
arithmetics or complex algorithms, but only for control-dominated applications. The idea is that
a SHIFT function specifies the reactive part of the behavior, whereas the details of the algorithms
associated with the actions invoked can be specified by standard pre-built functions. Libraries are
made available that provide standard components (like adders, counters, etc.) already optimized
and mapped in SHIFT, BLIF-MV, and C code. In our environment, a library is a directory in
which SHIFT (.shift) files, BLIF-MV (.blifmv) files, and C (.c) source files are stored.

For example, suppose we are synthesizing the belt example as hardware. The model INC_4
is specified in .subckt statement but it is missing from the input SHIFT file. In this case, the
hardware synthesis process looks it up in a library. Since a SHIFT specification is organized into
a three-layer hierarchy if a missing model is called from a level of layer 0 or 1, the hardware
synthesis program looks in the specified library for a SHIFT model description which is included
and synthesized. If it is called from a level of layer 2, the hardware synthesis program looks for a
BLIF-MV model description which is copied to the output file as is. In the library there is also a
INC_4.c file. This is used in a similar way in the case of software synthesis. This is quite similar to
using library files in software design.

Figure 5 shows a library BLIF-MV description of a 4-bit incrementor. Note that in this ex-
ample multi-valued variables are explicitly bit-encoded. This corresponds to the definition of an
“interface” block between the symbolic world of BLIF.MV and the binary world where addition
is defined. In principle, a multi-valued mapping associating each symbolic value with its succes-
sor could have been defined, thus implying the use of a symbol encoding program (such as, e.g.,
NOVA [Vil86], MUSTANG [DMNSV88] or JEDI [LN89]). Using encoding/decoding and a binary
adder correspond to an optimized hand implementation of the very same behavior. In “life-size”
design, it is impractical to list explicitly encodings in a BLIF-MV file. For this reason, we reserve
the names _enc* and _dec* where * replaces an actual suffix, for predefined encoding methods.
That is, when the BLIF-MV to BLIF translator program runs into a .model _enc_foo, it calls an
encoding procedure identified by the name foo, and disregards the actual content of the model.

.model INC_4

.inputs a

.outputs i ¢

.mv a 16

.mv i 16

.subckt _enc_int e0 x=a yO=y0 yi=yl y2=y2 y3=y3

.subckt INC_4_BIT i0 aO=y0 al=yl a2=y2 a3=y3 i0=i0 i1=il i2=i2 i3=i3 c=c
.subckt _dec_int dO x0=i0 x1=i1 x2=i2 x3=i3 y=i

.end

.model INC_4_BIT
.inputs a0 al a2 a3
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.outputs i0 i1 i2 i3 ¢

.names ccC

1

.subckt INC_1_BIT i0 a=a0 cO=cc i=i0 cl=c0
.subckt INC_1_BIT il a=al c0=cO i=ii cl=cil
.subckt INC_1_BIT i2 a=a2 cO=cl i=i2 cl=c2
.subckt INC_1_BIT i3 a=a3 c0=c2 i=i3 cl=c

.end

.model INC_1_BIT
.inputs a c0
.outputs i cl
.names a c0 i
000

011

101

110

.names a cO ci
000

010

100

111

.end

Library modules for both software and hardware implementation are likely to use heavily “el-
ementary” blocks like the adder and incrementor described above. In order to relieve as much as
possible the designer from the burden of keeping track of delays, such blocks are defined as “com-
binational” logic blocks. They are distinguished from standard reactive modules by a values-only
interface, without events. So the CFSM event-based delay model obviously cannot be meaning-
fully applied to them. The time a library module consumes will be accounted for by the reactive
transformation of a CFSM that uses it.

In the hardware case, combinational modules do not contain feedback or .latch constructs,
and the clock period is chosen long enough to allow propagation through them.

In the software case, functional descriptions consist of fragments of code (macros of functions)
in which only combinational operations are allowed, i.e. no explicit assignments are used. For
example, the software module corresponding to the hardware component in Figure 5 is just

#define INC_4(x) (int4_t) x+1;
Such combinational software modules are inserted in the appropriate if then else branch of

the procedure implementing the calling module, and the software timing analysis tool can handle
them just like state change statements or emit procedure calls.
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Figure 7: Interface between heterogeneous domains

6 Interfacing Implementation Domains

The communication among partitions is based on discrete event exchange. Since event emission and
detection are implemented differently in each implementation domain, an interfacing mechanism is
needed. We concentrate on the synchronizing aspect of the event communication mechanism, since
the event value is generally easy to store (e.g. a latch or a memory location).

We want partitions to be unaware of what their neighbors are like. The way each partition will
emit and detect events is fixed and depends only on the partition’s implementation. Interfaces are
automatically synthesized in order to translate the sender partition’s representation of an event into
the receiver partition’s representation of it. The representation of events in each implementation
domain is defined by the types of implementation we synthesize defined in section 4:

¢ In hardware an event type is represented as a wire. A hardware partition detects the occur-
rence of an input event whenever an input wire is found high; an output event is emitted by
setting an output wire for a single clock tick.

e In software, a task detects the occurrence of an input event whenever it polls its input buffer
and finds it non-zero (occurred(event,InpBuff) != 0); an output event is emitted by writ-
ing a value to virtual port (performed by emit(event)).

Because of the different nature of implementation domains, conceptually we can think of an
interface mechanism as a three-layer block (see figure 7.) This idea is expressed more formally by
Borriello in [Bor88]. Within the sender’s domain, block A translates the event into the representa-
tion of the channel’s domain. Block B within the channel domain actually gets the event across.
Block C transforms the event into the sender’s representation. In practice, interfaces can come
in the form of cooperating mixed hardware-software solutions. The hardware part of an interface
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is put at the border between partitions just as another piece of hardware. The software part is
embedded in the RT/OS and the interrupt handler.

The specific interfaces we are presenting here have been defined under the assumption that the
hardware process is always able to sense the incoming event whereas the software process may not,
with the exception of events carried by interrupt lines. Therefore, an event directed to hardware is
simply sent, whereas an event sent to software must be saved until it is captured.

These interfacing mechanisms have been chosen for their simplicity so that as little as possible
is added to the pure behavioral specification of the system as it is provided by the designer. As
explained in section 1, they do not guarantee that all events will be correctly sent and received.

We do not claim these interfaces are optimal or minimal. However, they are simple and consis-
tent with the model of behavior defined in our theory. In our approach, we only need to deal with
the event exchange primitive. Any other more sophisticated mechanism can be built on top, and
in terms, of this primitive.

Here we are considering two types of domain: synchronous hardware and software embedded
in a micro-controller. Considering that more than one software process can share a CPU, and that
an event can be fed to an interrupt line of a micro-controller, seven types of interfaces must be
considered:

1. Hardware to hardware. Events are represented as signals. Since the hardware we synthe-
size is perfectly synchronous, no delay is involved. Thus, a simple wire is good enough.

2. Software to hardware. We need to generate a 1-clock signal. A mixed hardware software
mechanism is required. First, a bit of a virtual port is set by emit(e). Second, the sender’s
scheduler sends a pulse over an output port and resets the virtual port Third, the pulse
is transformed into a 1-clock pulse by an hardware circuit that outputs it to the hardware
receiver.

3. Hardware to non-interrupt software. We need to transform a 1-clock pulse into a value
of a bit of an input port of a processor. The presence of the event must be saved until it is
copied into the receiver’s input buffer. A mixed hardware software mechanism can do the job.
The pulse from the hardware sender is stored by an interface sequential circuit that keeps it
until the receiver’s scheduler, after reading it, resets it. Then, the receiver’s scheduler sets
the input buffers of the tasks which are sensitive to this event.

4. Software to non-interrupt software on separate processors. We need to set the value
of an input buffer of another processor. As above, the presence of the event must be saved
until it is copied into the receiver’s input buffer. We want to keep the two processes, receiver
and sender, decoupled. That is, the sender should not wait for the receiver to acknowledge.
A mixed hardware software mechanism can do the job. First, a bit of a virtual port is set
by emit(e). Second, the sender’s scheduler sends a pulse over an output port and resets the
virtual port. The hardware part and the reception software behave just like type 3.
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5. Software to non-interrupt software on the same processor. We need to set the value
of input buffers within the same processor. A pure software solution is required. First, the
value of a virtual port is set by emit(e). Second, the scheduler sets the input buffers of the
tasks sensitive to this event and resets the bit of the virtual port.

6. Software to interrupt software on separate processors. We need to send a pulse to
an output pert. As far as sending the signal over the line is concerned, this case is subsumed
by type 2. Here, though, the interrupt handler is awakened by the incoming edge, sets the
input buffers of the receiver tasks, and runs until no input buffer is found set.

7. Hardware to interrupt software. We need to get a pulse across. The hardware sender
needs no special handling. The software receiver behaves as in type 6.

These interfacing mechanisms can be modeled as synchronous FSMs. Figure 8 shows the FSMs
corresponding to the hardware parts described above, along with circuits implementing them and
timing diagrams that demonstrate how events propagate through the circuit.

The hardware part of interfaces is synthesized in the form of BLIF-MV code. Each interface is
a sub-circuits inserted properly to the output of the hardware synthesis procedure.

An important point is that these interfaces are modeled as depth-1 buffers. We do not consider
generalizing this approach to depth-n FIFO buffers. Instead we think that such a solution can be
specified by the designer at the high level description of the system. In other words, we do not
want to add queues or other specific features to a system specification unless explicitly specified by
the designer.

In general, we may have a situation in which the number of interface lines exceeds the number
of I/O ports of the micro-controller. In that case, the designer can explicitly model reactive multi-
plexors and demultiplexors in the initial design (i.e. in the SHIFT specification) and assign them
to the hardware domain when we do the partitioning. This task can also be automated.

An alternative technique is that all input events are carried by an interrupt line of the micro-
controller, and the type of event is encoded by a n-bit data that is input to a set of input ports.
This simplifies the event detection mechanism but requires some circuitry overhead to multiplex
and route to the input port the value associated to the last occurred event.
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7 Software Optimization

A class of useful optimizations for software implementations is the collapsing of multiple .names
tables into a single one as well as the checking of input don’t cares.

In SHIFT each .model may be made up of a set of .names tables. Each .names table is synthesized
as a software task. This technique represents a technology mapping step from the specification
level (SHIFT) to a particular implementation style (C code). However, as in logic synthesis, an
optimization step can be useful to improve some parameters of the target implementation. As far
as software is concerned, the goal is to reduce code size and to speed up execution time. It is
worthwhile noting that the optimization step is not always necessary as in real-time systems the
goal is not to design something which is as fast as possible but something which meets the timing
constraints. Same considerations can apply to code size reduction.

Let us suppose we are given a particular application in which code size is a strong constraint. In
this case, synthesizing each .names table separately may not be convenient because we cannot
benefit from statements which are shared by different tasks. Let us look at a very simple example:

.model foo
.inputs X
.outputs Y Z
mv Y212
.names X => Y
o] 1

1 2

.end

.names X => 2
o] 1

.end

We can directly apply the technology mapping step and implement each .names table as a task.
The first .names table is implemented by the following task (for the sake of clarity a pseudo-C code
is used):

task1(X) {
if(X==0) Y := 1;
if(X==1) Y := 2;
}

The second .names table is implemented as follows:

task2(X) {
if(X==0) Z := 1;
}
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However, if we collapse the two tasks into a single task we can exploit the common statement
if (X==0) and get a smaller code size:

task(X)

{

if (X==0)

{

Y:=1; Z :=1;

}

if(X==1) Y := 2;
}

Besides collapsing of different .names tables there is another class of optimizations based on
the detection of input don’t cares. For example, suppose to have a model as follows:

.model foo
.inputs X Y Z
.outputs K

.names X Y Z => K
011 1

111 i

.end

where X is binary variable. Obviously, the value of K does not depend on the value of X, so the
table, after the optimization step, can be implemented by the following task:

task(Y,Z2)

{

if(Y==1 and Z==1) K := 1;
}

The input part of a row of a .names table is a cube. In fact, it’s an and of (in general) multi-
valued variables. Hence, the basic idea to reduce the code size is to benefit from cubes which are
common to different .names tables as well as cubes which are contained in other ones in the same
.names table. As it will be explained later in this chapter, the optimization step is equivalent to
the minimization of a set of multi-valued boolean functions. We will use Espresso-mv([RSV87]) to
do such minimization.

7.1 Software Primitives and Size of a Task

Since the goal of our technique is to reduce the code size of the synthesized software we define both
the objects the technology mapping is based on and the way to measure the size of the synthesized
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software with respect to those objects. We use four software objects: the test statement, imple-
mented by the if (predicate), the data value assignment, the emit(event) statement which
implements event emission, and occurred(pattern,event) which is used in the if predicate for
checking if the event event is contained in the pattern of events pattern. In general, the predicate
of the if statement is in the sum~-of-product form.

The measure of code size of a software implementation is an estimate because we cannot make
any strong assumption about the results produced by the optimized compiler used to produce the
assembly code from C code. Moreover, we are not concerning about any particular compiler. Since
the structure of the software implementation is very simple and regular (a task is a sequence of if
statements, assignments and event emission statements) we compute the size of a task by adding
three contributions:

e the number of if statements
¢ the number of emit statements

o the number of data value assignments

Then, given different tasks the total code size is given by the sum of the task sizes.

As the optimization step can reduce both the number of if statements and the number of data
value assignments and the number of event emission statements, this is a meaningful measure
of code size reduction. In the first example, the size of taski is 4, the size of task? is 2, the total
size is 6, and the size of the reduced task task is 5.

7.2 Basic Assumptions

We implement a task by using if statements. For example, given two tasks:

task1(X,Y)
{
if(X==1 and Y==0) Z := 1;
}
task2(X)
{
if(X==1) W := 1;
}

We can combine them in a single one:

task(X,Y)
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{
if(X==1 and Y==0) Z := 1;
if(X==1) W := 1;

}

This is a correct composition of the two tasks because the input-output behavior of the task
task is exactly the same as that of taskl and task2. In order to make sure that we synthesize
correct implementation we require .names tables to be deterministic. Non-determinism which is
allowed in our methodology at the specification level ((CGH*93]) must be resolved by the designer
before the synthesis step.

A .names table is non-deterministic if given two rows with the same input part, there exists at
least a variable (either trigger event or data value) such that the correspondent values are different.
More formally:

Definition 1 Let C = (I, E,O, R, F) be a CFSM specified by the .names table N = (1,0, S) where
I is the set of input event variables, O is the set of output event variables, S is the set of rows of
values of the table. Then, N is non-deterministic if there ezist two rows ry = (ix,0x), r; = (i, 0;),
Tk, € S, k # j, where ik, i; are cubes (possibly in the multi-valued logic sense) such that i;Ni; # §
, Ok,0; are set of output values and there exists at least an output value o, € 0; N o; for the same
output event variable o € O.

For example, the table below is non-deterministic because the cube XYZ is contained in the cube
YZ, and H takes values 2 and 1 for the same input pattern X=1, Y=1, Z=1:

.names X YZ => H

111 2
-11 1
.end

This .names table is implemented by the following task:

task(X,Y,Z)

{

if(X==1 and Y==1 and Z==1) H := 2;
if(Y==1 and Z==1) H := 1;

}

However, there’s a problem because H is assigned two different values for the same input pattern.

Depending on the order in which the .names table rows are implemented H will be assigned either
1 or 2. Given a deterministic .names table this situation will never happen.
Yet, having deterministic .names table is not enough when composing tasks. However, since in
the CFSM model we don’t allow two different CFSMs to have two outputs in common ([CGH*93])
any composed task will be correct. In fact, it’s never the case the same variable is assigned two
different values for the same input pattern.
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7.3 Software Optimization Technique

The problem of reducing the code size is equivalent to the problem of minimizing a set of multi-
valued boolean functions. We use Espresso-mv for the minimization. The technique is based on
four steps:

collapsing the .names tables in a single one

mapping the resulting .names table into a Espresso-mv input table

run Espresso-mv on the input table

synthesize the software implementation from the minimized table

In the first step, we create two new sets of input event variables and output event variables and

then a new table by composing the original ones. We use a new symbol U which represents the
unknown action. Formally:

Definition 2 Given two CFSMs Cy = (I1, E1,01, Ry, Fy) and C, = (I3, E3,09, Ry, Fy) specified
by two .names tables Ny = (I, 01, 81) and Ny = (13,02, S2) such that |S1| = m and |S2| = n then,
the collapsed .names table N = (1,0, 5) is defined by:

o I=LUlL, O0=0,U0,

o S such that |S| = m + n is a set of rows r; = (i;,0;) where:
i; = (v',v") where v/, v" are rows of input event values such that if v’ is a row of input event
values of Sy then each value in v" will be '—' and if v" is a row of input event values of S,
then each value in v' will be '-/';
0; = (w',w") where w’, w" are rows of output event values such that if w' is a row of input
event values of 51 then each value in w"” will be U and if w” is a row of input event values of
So then each value in w' will be U.

Let us see an example: we are given two .names tables Ny = (13,04, S1) and Ny = (3,04, 5,)
where I} = {X,Y,Z}, [, = {Y,Z}, 0, = {H,K}, 05 = {G,J}, |51| = |S2| = 2. The new table is
N =(I,0,5) where I = {X,Y,Z},0 = {G,H,J,K},and |S| = |$1| + |$2| = 4.

.names X Y Z => HK

510 11
410 11
.end

.names Y Z => G J

10 16
01 72
.end
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By collapsing the two tables we obtain the following table:

.names X YZ => HK G J
5§10 11070
410 1100

-10 UU16s6
-01 UU72
.end

For example, in the third row r3 = (i3, 03), i3 = (v',v") where v'=- and v"=10 because v" is
the first row of input events of S3, 03 = (w’, w”) where w'=UU and w"”=16 because w” is the first
row of input events of S;. Notice that we used a new symbol U which represents the unknown
action. We don’t put either a zero or a don’t care because we don’t want the resulting table to
be non-deterministic. For example, in the third row (which comes from the second table) H and K
variables take value U. In fact, for input 510 both the first row and the third row are satisfied: if
H in the third row were equal to 0 then for the same input the output H would be both equal to
1 and 0. Since Espresso needs a deterministic input we will map the U symbol in the appropriate
way.

As a second step we map the collapsed table into an Espresso input table according to the following
rules:

e any input multi-valued variable is an input multi-valued variable in 1-hot-encoding
e any input binary variable is an input binary variable

e all the output variables are mapped to a single 1-hot-encoding output multi-valued variable
which takes values on the Cartesian product of the values of the former multi-valued variables

¢ any U symbol is an empty multi-valued literal (a sequence of all 0’s).
There are several observations about these rules:

e since we want to express and of input event variables we need as many variables as the input
variables in the single SHIFT table

o as for the outputs, the interpretation is different: in fact, each value represents the fact that
either an event is emitted or not or a pure data value is assigned to a variable, so we only
need one multi-valued variable

Let us see how the collapsed table is mapped into an Espresso input table: let the range of X be
{1,2,3,4,5}, the range of G be {1,2,3,4,5,6,7}, and the range of J be {1,2,3,4,5,6}; as a consequence,
we need 5 bits to encode X, 7 bits to encode G, and 6 bits to encode J. Y, Z, H, and K are binary

variables. As for the input part, no encoding is needed for the binary variables. As for the output,
we encode each binary variable by using two bits.
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.mv 4 2 § 17

by z

.label var=2 x1 x2 x3 x4 x5

.label var=3 hO hil kO k1 g1 g2 g3 g4 g5 g6 g7 j1 j2 j3 j4 j5 jé
1 0 00001 | 01 01 0000000 000000

1 0 00010 | 01 01 0000000 000000

1 0 11111 | 00 00 1000000 000001

01 11111 | 00 00 0000001 010000

.end

The table above shows the way the collapsed table is mapped to a set of multi-valued boolean
functions. The set is defined by the multi-valued output variable: each column defines a different
multi-valued boolean function, 1’s denoting the minterms in on-set.

To see the third step let us go back to our first example:

.model foo
.inputs X
.outputs Y Z
mvY212
.names X => Y
0 1

1 2

.end

.names X => Z
0 1

.end

First, we have to collapse the two .names tables. The resulting table is as follows:

.names X =>Y Z
01U
120U
0U1
.end

Then, we map the table to an Espresso input table: let the range of X be {0,1}, the range of Y
be {1,2}, the range of Z be {0,1}.

.mv 214
.ib x
.label var=1 y1 y2 z0 z1
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0 1000
1 0100
0 0001
.end

Then, we run Espresso which returns the following result:

.ib x

A1

.04

.ob y1 y2 20 z1
.p 2

1 0100

0 1001

.e

which can be implemented as a single task:

task(X)
{
if(X==1) Y := 2;
if (X==0)
{
Y:=1; Z = 1;
}
}

7.4 Example

In conclusion, the following example shows the effectiveness of our technique. We are given three
.names tables. The first one represents the next-state function of an automaton, the other ones
specify the output functions. Notice that if we implemented each .names table separately we would
get three tasks, 42 if statements, and 43 output statements (either event emission or data value
assignment). By using our technique we get a task with 14 if statements and 23 output statements.

.model joystick

.inputs DIRECTION *DIRECTION BUTTON RESET
.outputs UP DOWN LEFT RIGHT FIRE STOP

.mv DIRECTION 0123

.mv STATE 2 3 4

.r state 2
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.names STATE DIRECTION *DIRECTION *BUTTON *RESET => STATE

2 01 01 2

21101 2

2 21 01 2
2 31 01 2

2
2
2

i 01 2

0 0 1 3

0 1 0 4

2 01 0 0 4
2 11 0 0 4
2 21 0 0 4
2 31 0 0 4

2

1 0 0 4

2
2
2
2
2

3 01 0

3

1 0

1

3 210

3 310

3

1 0

.names STATE DIRECTION *DIRECTION *BUTTON *RESET => *UP *DOWN *LEFT

2 01 0 1

0

1
0
0
1
0
0

1
0
0

2 11 01
2 21 01

0

2 01t 0 O
211 00
2 21 00

3 010

1
0
0

1
0

0
0

3110
3 210

.names STATE DIRECTION *DIRECTION *BUTTON *RESET => *RIGHT *FIRE *STOP

1
0
0
0
0
0
0

o]
0

2 01 0 1
211 0 1
2 21 0 1
2 310 1

0
1
0
0
0
1

1 01
0 0 1
0 1 0

2
2
2

0

1
0

2 31 00
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)
1w
1 -
1O
- 1
O =
o O
- O

.end

Here is the single collapsed .names table:

.mv 6 3 3 4 15

.ib direction button reset

.label var=3 st2 st3 st4

.label var=4 direction0 directionl direction2 direction3

.label var=5 st2 st3 st4 up0 upl downO downl left0 leftl rightO rightil
fire0 firel stop0 stopl

- 11 100 1111 | 100 00 00 00 00 00 00
101 100 1000 | 100 00 00 0O 00 00 00
101 100 0100 | 100 00 00 GO 00 00 00
1 01 100 0010 | 100 00 00 OO 0O 00 00
1 01 100 0001 | 100 00 00 OO OO0 00 00
101 100 1111 | 100 00 00 00 00 00 00
001 100 1111 | 010 00 00 00 00 00 00
010 100 1111 | 001 00 00 00 00 0O 00
100 100 1000 | 001 00 00 00 00 00 00
1 0 0 100 0100 | 001 00 00 00 00 00 00
100 100 0010 | 001 00 00 00 00 00 0O
1 00 100 0001 | 001 00 00 00 00 00 OO
100 100 1111 | 001 00 00 00 00 00 0O
- 1 - 010 1111 | 100 00 00 00 00 00 00
1 0 - 010 1000 | 100 00 00 00 00 00 00
10 - 010 0100 | 100 00 00 00 00 00 00
10 - 010 0010 | 100 00 00 00 00 00 00
1 0 - 010 0001 | 100 00O 00 00 00 00 00
1 0- 010 1111 | 100 00 00 00 00 00 00
- - 1001 1111 | 100 00 00 00 00 00 00
101 100 1000 | 000 01 00 00 00 00 00
101 100 0100 | 000 10 01 10 00 00 00
101 100 0010 | 000 10 10 01 00 00 00
100 100 1000 | 000 01 10 10 00 00 00
100 100 0100 | 000 10 01 10 00 00 00
100 100 0010 | 000 10 10 01 00 00 00
10 - 010 1000 | 000 01 10 10 00 00 00
10 - 010 0100 | 000 10 01 10 00 00 00
10 - 010 0010 | 000 10 10 01 00 00 00
- 11 100 1111 | 000 00 00 00 10 01 01
101 100 1000 | 000 00 00 00 10 10 01
101 100 0100 | 000 00 00 00 10 10 01
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101 100 0010 | 000 00 00 00 10 10 O1
101 100 0001 | 000 00 00 00 01 10 O1
101 100 1111 | 000 00 00 00 10 10 01
001 100 1111 | 000 00 00 00 10 10 01
010 100 1111 | 000 00 00 00 10 01 10
100 100 0001 | 000 00 00 00 01 10 10
-1 - 010 1111 | 000 00 00 00 10 01 10
1 0 - 010 0001 | 000 00 00 00 01 10 10
- -1 001 1111 | 000 00 00 00 10 10 01

.end
Espresso returns:

.ib direction button reset

.mv 6 33 4 15

.ob st2 st3 st4 up0 upl downO downl leftO leftl rightO rightl fire0 firel stopO stopl
.label var=3 st2 st3 st4

.label var=4 directionO directionl direction2 direction3

.p 16

100 100 1000
100 100 0001

000 00 10 10 00 00 0O
000 00 00 00 00 10 10

10- 100 1000 | 000 01 00 00 00 0O 00
10- 100 0001 | 000 00 00 00 01 00 00
.10- 010 1000 | 100 01 10 10 00 00 00
10- 110 0100 | 000 10 01 10 00 00 0O
10- 110 0010 | 000 10 10 01 00 00 00
10- 010 0001 | 100 00 00 00 01 10 10

1-- 010 0110 | 100 00 00 00 00 00 00
100 100 1111 | 001 00 00 00 00 OO 00

I
I
!
I
I
|
|
|
010 100 1111 | 001 00 00 00 10 01 10
|
I
001 100 1111 | 010 00 00 00 10 10 01
I
|
|
I

-11 100 1111 | 100 00 00 00 10 01 01
101 100 1111 | 100 00 00 00 10 10 Ot
--1 001 1111 | 100 00 00 00 10 10 01
-1- 010 1111 | 100 00 00 00 10 01 10

Each row represents an if statement. As far as input multi-valued variables are concerned, the
don’t care is represented by 1111. In that case, we don’t include those variables in the predicate of
the if statement. As for outputs, we emit the event if the corresponding variable has value 1. The
first row is not synthesized because the 1-hot-encoding value of the output variable corresponds to
*down=0, *left=0. Same considerations apply to the second row. In the remaining rows, there is
at least an event to emit or a data value to assign so we synthesize them.
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8 System Validation

System validation is needed to ensure 1) correctness of an implementation with respect to spec-
ification and 2) correctness with respect to some user-defined property. The former, sometime
called implementation verification, is accomplished by construction in [CGH*93] for implementa-
tions of CFSM specifications. The latter can be divided into specification verification and design
verification. Specification verification is done when the property to be validated is implementation-
independent. Design verification is done when implementation-dependent parameters are used.
These tasks are performed mostly by prototyping and simulation. Prototyping is clearly expensive
in turn-around time, and, in addition, cannot be performed until most of the detailed design is
completed. Simulation is expensive in terms of CPU time. For complex systems, only relatively
few input patterns can be tried, thus reducing power of simulation in exposing errors in design.
Formal verification is a technique that allows for proving mathematically that a certain specifica-
tion is met by an implementation or that some formally specified properties are true for the design.
This technique is obviously very powerful; however, its computational complexity is very high. We
believe that formal verification can be a useful tool for early error detection. In fact, our formal
model for HW/SW systems has been driven partially by the desire of carrying out validation using
formal verification techniques.

8.1 Formal Verification

Several approaches have been proposed for formal verification. The one that, in our opinion, is
most suited for the task at hand is based on finite state machines. If the properties are described by
automata, then formal verification corresponds to the language containment problem. If the proper-
ties are expressed as statements in a logic language, such as Computation Tree Logic (CTL)[EC82],
then the verification problem is called model checking.

The first step in formal verification is to define a time model of the system. In [CGH*93],
the behavior in time of a SHIFT specification is formally defined. A CFSM C is represented by
the corresponding FSM network A/* which is composed of a “main” completely specified FSM F,
input FSMs, and output FSMs. The behavior specified by N'Z is an abstracted specification of
the system’s real behavior in the sense of Kurshan [Kur90]. The non-determinism in the input and
output FSMs reflects unbounded delay. For the network of CFSMs N, there is a corresponding
model M of network of V¥ Any implementation I of A€ is contained in M, or I C M. An example
of verification is to verify that a given sequence of transitions o, an undesirable behavior, is not
consistent with M. If o € M, then 0 € I, since I C M.

We can use CTL formula [BCMD90] to express properties. To cast this model checking problem
into a language containment problem, we will only need to convert the CTL formula into a task
automata. With CTL, the property “Alarm will not be on forever” in our seat belt example, can
be expressed as

AG(ALARM_ON — AF(ALARM _OFF))
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where, given a predicate f

¢ AGf means for every path, at every node on the path f holds

¢ AFf means for every path, there exists a state on the path at which f holds.

e — is the implication.

Path is defined as a sequence of states and is used to represent possible behavior or computations
of the transition system[CBG*+92]. This CTL formula literally describes the behavior, “It is always

true that ALARM_ON is true implies that for all path there exists a state where ALARM_OFF is
true.”

Note that the property is expressed in terms of paths and states of an FSM. Most successful
verification systems visit the states of the system using Binary Decision Diagram (BDD) based
implicit techniques.

A “real” example of the use of formal verification technique is as follows: In a digital dashboard
designed at a company in the automotive industry, an oil level probe device controlled by software
could malfunction if kept powered for over 20 minutes. The enabling signal comes in the form of a
square wave of 50ms period. The controlling algorithm can be abruptly stopped when the engine is
started. In that case, the probe should be disabled. As it turned out, the designer overlooked that
bit of information, and the probe was not explicitly disabled. The result is that the probe either
remains enabled or disabled depends on the phase of the wave. The prototype of the system passed
all tests. When the malfunction was discovered, it took an entire day of attempts to reproduce the
faulty behavior. In our methodology, the following formula

AG(KEY_.ON — (AG ~PROBE.ON))

where AG,— is the same as defined before, could have been used to describe the desired
property. A qualitative model checker (i.e. one that does not handle timing explicitly) could have
exposed the error early in the design stage. However, we must stress that formal verification is still
a research topic and not widely used in practical cases. This is due to two main causes: 1) Result
is related to the way in which properties are expressed and system described. 2) Computational
complexity. In fact, the possibility of an explosion in the size of the internal representation in a
formal verification tool such as COSPAN [HK87] is a major obstacle to the extensive application of
formal verification techniques to real industrial designs. Reduction techniques are being proposed
to cope with this problem. Automatic techniques have been proposed to reduce the complexity of
CTL model checking [CSSVB92, BSV92]. Non-automatic techniques that make use of abstraction,
like the one proposed by Kurshan [Kur90] to verify w-regular properties and the one proposed by
Grumberg et al [DLG92] to perform model checking using the restricted temporal logic CTL*, seem
powerful. However, their effectiveness depends heavily on the designer’s ingenuity. For a complete
example of qualitative real-time formal verification within our methodology, see [CSV92].

Implementation-dependent design verification is very important if all or parts of the system have
been through the entire design process. It should be clear that the behavior of M is an abstraction
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of the real time behavior of a system. Between this and the behavior of a given implementation
I, there is a number of intermediate FSMs M’, M 2 M’ D I, which can be used for system
verification. Such an M’ can be obtained by composing M with more precise and less abstracted
implementation-specific components such as Timing Descriptors T which capture information about
what the delays may be in a given implementation. That is, using transition relations, we can build
a M' = M -T where T restricts the non-determinism of M [Kur90]. The FSM specified by M’ can
be used as an input to a formal verification algorithm. The composition with timing descriptors is
not different from what Alur et al. proposed [ACD90].

A non-trivial problem is how to derive the timing descriptor of a transformation. The informa-
tion needed must be provided by the synthesis process. This is trivial for hardware, in which there
is always a 1-clock delay. For software, it may be desirable to be able to compute the maximum
run time, the minimum, the average, or give a probability distribution.

For our seat belt example, we want to figure out if, according to our description, the seat belt
will never start buzzing from 15 seconds after the key has been turned on. In TCTL [ACH*92]
notation, this becomes:

AG(KEY_ON — AF(515,(AG ~ALARM_ON))

where AF(55),f means for every path, there exists a state on the path at which f holds after
15 seconds.

When precise timing information has to be taken into account, the complexity of formal verifi-
cation grows. For example, let’s assume that the seat belt alarm be implemented with a hardware
timer and with software for control. For the hardware timer, we can replace the main, input and
output FSMs with a verification timer/counter abstraction. The system has a total of 9 verification
timers (5 for software input, 3 for software output, 1 for hardware). The verification timers associ-
ated with input and output FSMs are used to restrict non-determinism as previously discussed. It
is a consequence of the composition of N¥ with the implementation-dependent timing descriptor.
There are also over 2000 system states (i.e. Cartesian product of the state spaces of the FSMs).
Moreover, the based clock of the system will be in the range of microseconds for typical micro-
controller, while for the hardware timer we need to count 5 and 10 seconds. Immediately we see a
state-explosion problem.

As an experiment, we formulate this seat belt design into a network of N as in[CGH*93]. We
then use iterative method for quantitative real-time verification as proposed in [BSV92] to verify
the property “Alarm will not be on forever” as described earlier. The verification is allowed to
run overnight on a DEC Alpha machine and only intermediate result is obtained. The size of the
representation simply grows too large for the verification algorithm to reach its conclusion. Before
the algorithm is terminated, BDD node count have grown in excess of 180,000. Other reduction
techniques are being investigated to reduce the complexity of real-time model checking, as discussed
in [Kur90, CDHWT92, HNSY92].
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8.2 Simulation

Simulation should be used whenever the complexity of the system makes formal verification in-
feasible. Since the system is inherently discrete, the number of distinct traces of the system with
bounded delay given by timing descriptors will be finite. It is then possible to simulate all non-
deterministic paths. In general, only a few “corner” cases chosen by designer need to be simulated.

It is interesting to see how formal verification and simulation can be used together in a comple-
mentary fashion. In an early phase of the design, a more abstracted model of the system, or even
just models of single components, can be used to formally verify whether an unwanted situation
can occur. If formal verification shows that this can happen (for example, a “bad” state can indeed
be reached in the abstracted model), the designer will then turn to simulation. Simulation will be
done on a more detailed model of the system. Those paths that were involved in the failed formal
verification will be tried. The reason for simulating the failed path is to make sure the failure is
real. Since our model for verification is quite abstracted, it contains many behavior that is not

part of the implementation behavior. Simulation done on a more detailed model can identify these
“false path”.
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Figure 9: A car Dashboard

9 An Example: a Car Dashboard

The example we propose is a subsystem of a car dashboard. The functions considered here are the
odometer and the speedometer. The system is structured as follows: a proximity sensor placed
near the wheel shaft detects the passing of an indentation. At each passage a pulse is sent to the
dashboard. There are usually four indentations on the shaft, so that each pulse represents 1/4 of a
wheel round. The dashboard senses the pulses from the wheel and displays the current speed and
the total amount of miles run. Such a system, shown in figure 9, has to:

1. Measure the instantaneous speed by counting wheel pulses in a given time interval. The
length of the time interval is chosen so that the number of pulses counted in one interval gives
the speed in the desired unit, like km/h.

2. Filter the speed value to improve resolution. The instantaneous speed is added to the previous
average speed and the total is divided by two.

3. Drive a PWM signal proportionally to the value of the filtered speed. The angular position
of the speed gauge is proportional to the saturation of the PWM period. For example, a 1/2
duty cycle puts the gauge at half scale.

4. Accumulate speed pulses. Every K pulses refresh the odometer display.

Let v be the speed, and f the frequency of the wheel pulses. v is given by
v[km/h] = K x f[s71]

where K is a unit conversion constant. To avoid computing K x f, we want to measure a
frequency g in unit such that the value of ¢ equals the corresponding speed in km/h. If Iis a
constant that gives the pulse/meter ratio of the wheel, we can measure the speed in Km/h by
counting the pulses within an time interval of t = I/3.6.
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Figure 10: Dashboard flow-chart

Figure 10 depicts a data-flow diagram of the system. Structured Analysis [PM85] notation is
used. Dashed arrows represent pure events. Solid lines represent data flows. Rectangles represent
memories. Ellipses represent transformations.

A SHIFT specification of the system is as follows:

.model dashboard

.inputs *reset *WheelTick *TimeUp *tick

.outputs PWMSignal OdoValue

.mv OdoValue 999999

.mv PWMSignal 2 L H

.mv PulseCount 999999

.mv SpeedI 256

.mv SpeedF 256

.subckt AcqSpeed 1 *reset=*reset *e=*xWheelTick y=Speedl

.subckt StackFilter 2 *reset=*reset *e=*TimeUp x=Speedl y=SpeedF

.names PWMDriver 3  *reset=*reset *e=*tick x=SpeedF y=PWMSignal
.subckt OdoAcq 4 *reset=xreset *e=xWheelTick y=PulseCount

.subckt OdoDisplay § *reset=*reset x=PulseCount y=0doValue

.end

.model AcgSpeed

.inputs *reset *e

.outputs y

.mv y 256

.names *reset *e y_INC => y
1--0
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.mv _y 256
.names y $reset $e y_INC _y

-1-- 0

-01- (y.INC)

-00- (y

.subckt INC_8 1 a=y i=y_INC c=cc
.latch .y y

.end

.model StackFilter
.inputs $reset $e x
.outputs y

.mv x 256

.mv y 512

mv _y 512

.mv x_INTERNAL 256
.mv _x_INTERNAL 256
.mv x_y_FILTER 256
.mv x_PLUS_y 512
.names x_INTERNAL $reset $e x _x_INTERNAL

-1--  (x)

-01- 0O

-00 - (x_INTERNAL)

.names y $reset $e x_y_FILTER _y
-1-- 0

-01- (x.y.FILTER)

-00- ()

.subckt DIV2_9_8 1 a=x_PLUS_y d=x_y_FILTER

.subckt ADDER_8_9 2 a=x_INTERNAL b=y s=x_PLUS_y c=cc
.latch _x_INTERNAL x_INTERNAL

.latch _y y

.end

.model OdoAcq
.inputs $reset $e

.outputs y

.mv y 999999

.mv _y 999999

.names y $reset $e y_INC _y
-1-- 0

-01- (y_INC)

-00- (¥

.subckt INC_17 1 a=y i=y_INC
.latch _y y

.end
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.model OdoDisplay

.inputs $reset x

.outputs y

.mv X 999999

.mv y 999999

.mv _y 999999

.mv x_y_DIFF_OK 2 Y N

.mv x_DIFF_y 999999

.mv CONST 999999

.names const

3000

.names y $reset $always x x_y_DIFF_OK _y
-1---0

01-Y (x)

-01-N ()

-00-- (y)

.names $reset $always _$always

1- 1

-1 1

00 O

.subckt SUB_17 1 a=x b=y d=x_DIFF_y
.subckt GTE_12 2 a=x_DIFF_y b=const g=x_y_DIFF_OK
.latch .y y

.latch _$always $always

.end

.model PWMDriver

.inputs $reset $e x
.outputs y

.mvy2LH

.mv .y 2L H

.mv x 256

.mv n 256

.mv _n 256

.mv k 256

.names n X k

0 - (x)

.names y $tick n n_EQ_k _y
-100 L

-1-1 H

-110 (W

-0-- (N

.names n $reset $e n_INC _n
-1--0

58



- 01 - (n_INC)

=00 - (n)

.subckt EQ_8 1 a=n b=k e=n_EQ_k
.subckt INC_8 2 a=n b=n_INC c=cc
.latch _y ¥y

.latch _.nn

.end

A software implementation is shown below.

/* version 1.0 (6 apr 93) */

file : ‘‘SWLIB.h”?
[k ok sk ksl sk kR kR ok Rk sk ko AR KRR KRR KKK [
#define INC_8(x) (int8)x+1;

#define INC_32(x) (int32)x+1;

[kttt kR kR sk ok sk A ok kR R R KRR KRR KK

file : ‘‘qdb.c’’
[k ok ok ok sk ok K sk ks sk Rk ok sk ok Rk Rk sk ks Rk kR ok

/* version 1.0 (apr/93)*/
#include SWLIB.h
#define ADDR_A <io port addr. >

#define ADDR_B <io port addr.
#define ADDR_C <io port addr. >

v

#define IN_PORT_A ADDR_A
#define IN_PORT_B ADDR_B
#define IN_PORT_C ADDR.C

typedef char int8;

typedef short inti6;

typedef long int32;

typedef void (*foop.t)(); /*foop_t = pointer to a function returning void/
#define N_PROCS 5 /* number of processes */

/* process names */

#define _p_AcqSpeed_1 0

#define _p_StackFilter_1 1
#define _p_PWMDriver_.1 2
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#define _p_0OdoAcqg_1 3
#define _p_OdoDisplay_.1 4

foop_t proc[N_PROCS]; /* array of pointers to functions */
int inp_event [N_PROCS]; /* array of function input buffers (in order)#*/

/* event id’s */

#define _e_reset o]
#define _e_WheelTick 1
#define _e_TimelUp 2

#define _e_tick 3

/* io_port[event_id] : addr where event is to be read */

/* io_bit [event_id] : bit of I0_port carries the event

/* event_sens_tabl[n] : event, process that is sensitive to event,

n is the index of the event/proc relation element */

/* each "column" specifies INP_port and bit in the port for an inp event */

/* Teset WheelTick TimeUp tick */
int *event_io_port[] = { IN_PORT_A, IN_PORT_A, IN_PORT_B, IN_PORT_C };
int event_io_bit[] = { 0x01, 0x02, 0x04, 0x08 };

#define N_E_P_REL 9 /# size of event/proc relation = rows/3 of event_sens_tabl*/

int event_sens_tabl[] = { _e_reset, _p_AcqSpeed_1, 0x01,
-e_reset, _p.StackFilter_1, 0x01,
-e_reset, _p_PWMDriver_1, 0x01,
-e_reset, _p.0doAcqg_1, 0x04,
-e_reset, _p._0OdoDisplay_1, 0x01,

-e_WheelTick, _p.AcqSpeed_1, 0x02,
-o_WheelTick, _p_OdoAcq_1, 0x08,

-0_TimeUp, _p_AcqSpeed_1, 0x04,
-e_TimeUp, _p_StackFilter_1, 0x02,

-e_tick, _p_PWMDriver_1, 0x02,

};
/* constants that define which bit of a process’ inp buff carry an event */
/* the ..._1 means event must be 1, ...._0 event must be 0 x/
/* used by "occurred" zero one */

int _c_AcqSpeed_ni_c1[2] = { 0x00, 0x01 }; /% reset */
int _c_AcqSpeed_ni_c2[2] = { 0x01, 0x04 }; /* !reset * TimeUp */
int _c_AcqSpeed_n1_c3[2] = { 0x05, 0x02 }; /* !'reset * !TimeUp * WheelTick */
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int _c_OdoAcq_ni_ci[2] = { 0x00, 0x04 }; /* reset */
int _c_0doAcq._ni_c2[2] = { 0x04, 0x08 }; /* !reset * WheelTick */

/* returns != 0 if event is found in io_port */
#define got_inp_event(event) (event_io_bit[event] & *event_io_port[event])

/* set a bit in proc’s inp_event buffer */
#define put_inp_event(pos) (inp_event[event_sens_tabl[pos+1]] = \
inp_event[event_sens_tabl[pos+1]] | event_sens_tabl[pos+2])

/* Reset latched events : see section "interfaces" */
void
acknowledge_events() {

oooooooooo

3

/* check io_ports to find events */
void

assign_events_to_proc_buffs()

{

int n, pos, event;

for (n=0; n<N_E_P_REL; n++) {
pos = n * 3;
event = event_sens_tabl[pos];
if (got_.inp_event(event)) {

put_inp_event(pos);

}

}

(void) acknowledge_events();

}

/* check inp_event buffer */

#define ZEROES O

#define ONES 1

#define occurred(cond, e) (((cond[ZEROES] & e) == 0x0) \
&& (cond[ONES] == (cond[ONES] & e)))

/* set io_port or internal port */

#define emit(event) (*event_io_port[event] = \
*event_io_port[event] | event_io_bit[event])
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/*Initialize processes’ vars#/
static int8 _v_Speedl = 0;
static int8 _v_s =0
static int32 _v_PulseCount

n
o

/* processes from SHIFT spec */

void
_t_AcqSpeed_1(e)
int e; /* process’ inp_event buffer */

{
if (1) {
if (occurred(_c_AcqSpeed_ni_cil,e)) {
_v_s = 0;
_v_Speedl = 0;
}
else if (occurred(_c_AcgSpeed_ni_c2,e)) {
_v_SpeedIl = _v_s; /* problem!!! how to decide the order 7 */
_v_s = 0;
}
else if (occurred(_c_AcqSpeed_nl_c3,e)) {
.v_s = INC_8(_v_s);
_v_Speedl = _v_SpeedI;
}
}
}
void

_t_StackFilter_1(e)
int e; /* process’ inp_event buffer */

void
_t_PWMDriver_1(e)
int e; /* process’ inp_event buffer */

void
_t_OdoDisplay_1(e)
int e; /* process’ inp_event buffer */

4
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void
_t_0doAcq_1(e)
int e; /% process’ inp_event buffer */
{
if (1) {
if (occurred(_c_0OdoAcq_ni_ci,e)) {
_v_PulseCount = 0;
}
else if (_c_0doAcq._nl_c2,e) {
_v_PulseCount = INC_32(_v_PulseCount);

}

/* Initialize processes */
void
init_procs()
{
int p;

for (p=0; p<N_PROCS; p++) {
inp_event[p] = 0x0;
}

proc[_p_AcqSpeed_1]
proc[_p_StackFilter_i]
proc[_p_PWMDriver_1]
proc[_p_0OdoAcq_1]
proc[_p_0OdoDisplay_1]

*_t_AcqSpeed._1;
*_t_StackFilter_1;
*_t_PWMDriver_1;
*_t_0OdoAcq_1;
*_t_0doDisplay_1;

/*main scheduler*/
main()

{

int p;
init_procs();

for(;;) {
assign_events_to_proc_buffs();
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for(p=0; p<N_PROCS; p++) {
if(inp_event [p]!=0) {
(proclpl) (inp_event[pl);
inp_event[p] = 0;
}
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10 Conclusions and Future Work

This paper introduced a methodology for partitioning and synthesis of hardware-software systems
specified with CFSMs. This methodology satisfies the fundamental requirements outlined in Sec-
tion 1:

1. Natural specification. Our methodology utilizes a formal specification model called CFSM,
that is well suited to model control-dominated systems ((CGH*93]).

2. Easy partitioning. Since both hardware and software have the same CFSM representation at
the specification level, we do not have to commit ourselves to a particular mix of software-
hardware implementation. In Section 3, we defined the interfaces that are necessary for
communication between partitions. These interfaces make flexible interactive partitioning
possible, and constitute the framework for automatic partitioning algorithm.

3. Software and hardware synthesis. We have demonstrated hardware synthesis for a particular
hardware structure, namely synchronous hardware with latched output. We also outlined a
method for software synthesis of CFSMs using simple if-then-else construct. A simple “fair”
scheduler is also discussed.

4. Optimization. We have shown a software optimization technique for reducing the code size.

5. Validation. The FSM model derived from a CFSM is compatible with the input format of
many formal verification algorithms. We have shown how a simple hardware-software system
can be modeled and how a simple property may be verified with a particular verification
algorithm.

In the future, we are planning to investigate the possibility of an automatic constraint driven
partitioning algorithm for hardware-software systems. We also will look at the implementation of
an interrupt based scheduler. As far as the optimization part is concerned, we will investigate the
issue of reducing software execution time. On the validation front, we need to find a suitable level of
abstraction for implemented systems that is simple enough for existing verification algorithms, yet
detailed enough to reflect the true behavior of the implemented system. We also want to explore
the possibility to adopt formal verification methods for a CFSM specification that do not require
a cumbersome and expensive translation into equivalent FSMs. We will also concentrate our effort
to assess the potential of the method on some ”life-size” example from the automotive industry.
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