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Abstract. In this paper, we examine in detail the kinematic model of an autonomous
mobile robot system consisting of a chain of steerable cars and passive trailers, connected
together with rigid bars. We define the state space and kinematic equations of the system,
modeling the pair of wheels on each axle as able to roll but not slip. We then investigate
how this system of kinematic equations may be converted into a multi-input chained form.
The advantages of the chained form are that many methods are available for the open-loop
steering of such systems as well as for point-stabilization.

In order to convert the system to this multi-input chained form, we use dynamic state
feedback. We draw some motivation from the very simple example of a kinematic unicycle
and the relationships of the angular velocities therein, and we show how the dynamic state
feedback that we use corresponds to adding, in front of the steerable cars, a chain of virtual
axles which diverges from the original chain of trailers.

We briefly discuss how some of the methods which have been proposed for steering and
stabilizing two-input chained form systems can be generalized to multi-chained systems. For
concreteness, we also present two different example systems: a Are truck (three axles) and
a five-axle, two-steering system. Simulation results for a parallel-parking maneuver for the
five-axle system are included in the form of margin movies.
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MULTI-STEERING TRAILER SYSTEM

1. Introduction

In this paper we consider and solve the motion planning problem for a car-like
mobile robot pulling a combination of n passive trailers and m —1 car-like robots.
Thecontrols available to the system are the velocity (throttle)ofthe lead carand the
steering velocities of all m car-like robots. Wereferto the system as a multi-steering
n-trailer system. It can be thought of as a generalization of an n-trailer system,
in which the only two controls available were the driving and steering velocities of
the lead car. The motion planning problem for the single-steering n-trailer system
was considered and solved by us in [20, 24]. Mobile robot systems of this kind are
of interest in practical applications; part of the motivation for this work came from
our work on the fire truck [5, 23] (the fire truck is an example of a system with
three axles and two steering wheels, corresponding to the driver in the front and
tiller in the rear). Also, we have been told anecdotally about the construction of
such n-trailer systems with multi-steering for use in nuclear environments [6] and
also for baggage handling in new airports [10]. In all of these applications it is felt
that the multi-steering systems will be more maneuverable than a single-steering
system.

Such systems can be modeled as having one constraint on each axle; namely, that
the wheels are allowed to roU but not to slip; this constraint is nonholonomic or
nonintegrable and will not reduce the reachable configuration space of the mobile
robot. As in our earlier work we have not been explicit in taking into account the
existence of differentials in systems of this kind which results in the two wheels of
a single axle moving through different amounts in the course of a turn [1].

The present system appears at first glance to be a straightforward extension of
the systems we considered in [5, 20, 23, 24], but our main motivation in writing
this paper is to show how much richer and more complex the current system is in
its structure. The strategy we will use for motion planning is to first convert the
kinematic equations into a multi-chained form. The transformation of the system
into chained form, however, requires dynamic state feedback. Motivated by the
physical structure ofthe constraints involved in this particularproblem, the dynamic
state feedback that we use consists of adding virtual axles to each of the steerable
cars in the system. The resulting extended system can be put into chained form.
This chainedform, which wasintroduced in [16] and used in our earlier work on the
single-steering n-trailersystem in [20, 24], enables us to use a variety ofsteering and
stabilization techniques that we have developed in previous work. A partic^arly
intriguing aspect of this work is its connection with an emerging body of literature
in differentially flat systems by Fliess and his co-workers [8, 19]. In their work
they have shown that chained form systems are a special case of what are known
as differentially flat systems; the bottoms of the chains in the chained form play
the role of flat outputs. For the two input case, it was pointed out by Martin [13]
and Murray [15] that, modulo somewhat different regularity conditions, chained
forms are equivalent to flat systems for the type of drift-free systems that arise in
nonholonomic motion planning. The results of the current paper appear to indicate
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that this is not true for more than two inputs without allowing for the possibility
of dynamic state feedback. As such this provides a valuable counterpoint to the
results of Gardner and Shadwick [9] and our own results in [4].

The outline of our paper is as follows: in Section 2, wedevelop a kinematic model
of the multi-steering n-trailer system with the rolling without slipping constraints
on each of the axles. In Section 3, we discuss the choice of coordinates for con
version to chained form and include the motivation for the dynamic state feedback
corresponding to the addition of virtual axles. We explicitly show the change of
variables required to put the extended system consisting of both real and virtual
axles in chained form. In Section 4, we collect methods for steering and stabi
lization of the chained form systems associated with the extended multi-steering
system. Section 5 contains two examples, one of which is the fire truck, worked out
to demonstrate the methods of Sections 2-4. The transformation to chained form
for the fire truck presented in Section 5 is different from that proposed in [5, 23]
since it involves the use of a virtual axle for steering the rear axle. The question
of when dynamic state feedback is absolutely necessary for this class of systems is
thus an open one. Section 6 contains some concluding remarks.

2. The System Model

We consider a multi-steering trailer system, i.e. a system of n (passive) trailers
and m (steerable) cars linked together by rigid bars. A sketch of such a system is
given in Figure 1. Weassumeeach body (trailer or car) has only one axle, since, as
we haveshown in [24], a two-axle car is equivalent (under coordinatetransformation
and state feedback) to a one-axle car towing one trailer.

2.1. Configuration Space. The active or steering axles are numbered from front
to back, starting with 1 and going up to m, and the passive axles are numbered
similarly from 1 to n. There are a total of n + m axles in the system. The angle
of each passive axle with respect to the horizontal wiU be represented by where
i € {1,..., n} is the axle number and i € {1,..., m} is the number of the steering
wheel most directly in front of that axle. We will c^ each steerable axle together
with the passive axles directly behind it a steering train.

The steerable axles may be interspersed among the passive axles in any fashion.
We will denote the indices of the passive axles which are directly in front of the
steerable axles by Wi,...,Um-i- By convention, we will assume that the first axle
is steerable, and we define no = 0. The superscripts that we use associate the set of
passive trailers behind each active car with that car. The angle of the first axle with
respect to the horizontal is denoted by B* there are ni passive trailers in the first
steering train, their angles will be denoted ^},... The axle directly behind
the first steering train is steerable, and its an^e with respect to the horizontal will
be the superscript representing that it is in the second steering train. The
(passive) axles behind the second steering wheel will be denoted
the angle of the third steering wheel will be and so forth. For convenience
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0m
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first steering tram

second steering tram

steering tram

Figure 1. A multi-trailer system with n (passive) trailers and m
(active) steering wheels.

of notation we will define = n, although in general the last axle wiU not be
steerable. If the last axle is steerable, then we will have Um-i = Um'

This system as defined is a very general system, and includes the following as
special cases:

(1) the standard n trailer system of [12, 16, 20, 24] corresponds to m = 1.
(2) the fire truck of [5, 23] corresponds to m = 2, no = ni = 1.

The angles of the axles alone will not suffice to express the state of the system;
we also need to know the angles of the rigid bars that connect each of the steerable
axles to the axle in front ofit. We denote by tfp the absolute angle (with respect to
the horizontal) of the bar connecting the (j +1)" steered axle to the last axle ofthe
j* steering train (which may be either steered or passive). This can be considered
to be the angle ofthe bar connecting the {j -f-1)»' steering train to the j*'* steering
train.

Additionally, the Cartesian position of the system is needed in the definition of
the state. The (a:,y) position ofany one of the axles, along with all of the angles
described above, will determine the state of the system. For reasons which will be
explained in the sequel, we will choose the x and y positions of the last axle as state
variables.

Therefore, the configuration of a trailer system consisting of n trailers and m cars
with steering is completely given by

«= [«i. •••. .C„.,. •••-C. y. i]'' € (5')"+'"-' X .
2.2. Kinematic Equations. There are many different ways to construct a kine
matic model for this sort of system. The most direct way is as follows: the differen-

aar-ti-ir-i
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tial form constraints representing the non-slipping of the wheels could be written in
terms of the state variables, and then the input vector fields would be constructed
as the right null space of these constraints. Dualizing the n -1- m constraints (onefor
each axle) in a configuration space of n + 2m+ 1 state variables, we get a control
systemwith m-Hl inputs. The obvious choice for m of theseinputs is the angular ve
locities of the m steering wheels, and the remaininginput can be chosen as the linear
velocity of the first car. The input vector fields for the steering inputs are constant
vector fields ofthe form [0 •••0 10•••0]'' with the 1in the (no +1)'*, (ni+ 2)"'',...,
(^im-i + locations respectively. The driving vector field takes on a much more
complex form which would take a good deal of organization and bookkeeping to
derive in its general form just from looking at the form constraints.

For this reason, we have chosen to construct the kinematic model somewhat
differently. Although we will eventually consider the linear velocity of the front car
as one of our inputs, we will find it convenient to define the kinematic equations in
terms of the linear velocity of the last body. The projections of this velocity onto
the horizontal and vertical directions will be the derivatives of the state variables x
and y respectively. We can then proceed towards the front of the train, recursively
defining the velocities of each body in terms of the linear and angular velocities of
the bodies behind it in the train. This procedure defines all the derivatives of the
angles of the passive axles as well as the derivatives of the hitch angles. All that
remains are the derivatives of the steering angles, and these we define to be the
inputs.

As noted above, we will start at the rear of the train and let the linear velocity of
the last body be denoted (recall that the angle of the last body is ). Then
the derivatives of x and y are the projections of this velocity onto the horizontal
and vertical directions,

y = sinCC,
X = costf^ .

Define vj to be the the linear velocity of the axle with angle ^. We can now write
down the relationships between the linear and angular velocities of adjacent bodies.
There are two cases to consider, corresponding to the rear body being a passive
trailer or an active car.

We consider the case of a passive trailer first; refer to Figure 2 for clarification.
Although this figure has been drawn for two passive trailers, we will note here that
these calculations are still valid when the front body (i —1) has an active steering
wheel.

The linear velocity of body i - 1 can be broken into its two perpendicular com
ponents: one is in the direction of the linear velocity of body i, and the other is
along the direction of the angular velocity of body i. The two linear velocities are
related by the cosine of the angle between them,

vi =cos(Ci-^)vf-i,
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bodyi-J
(passive or acdve)

bodyi
(passive)

Figure 2. Showing the velocity relationships between adjacent bod
ies when the rear body is a passive trailer.

and the projection of the angtdar velocity is by the sine of the difference angle,

(1)

The relationship (1) gives the kinematic equations for the angles of the passive
trailers, ffj.

Things are only slightly more complicated when the rear body is an active car
instead of a passive trailer. Refer to Figure 3 for a diagram of the case where the
rear body has an active steering wheel.

Projecting onto the line connecting the two bodies, we can find the relationship
between the two linear velocities,

- ^) = '

that is, both velocities are multiplied by the cosine of the angle between the velocity
vector and the connecting bar.

Now, because the velocity of the rear body, is no longer perpendicular to
the angular velocity vector , this linear velocity wiU also contribute to the

angular velocity ^. Adding up the contributions of the two linear velocities, we
obtain the relationship

= sin(^f - 4^)vi+' - - 4>)v'„. . (2)

The relationship (2) for j 6 {1,... ,m —1} defines the kinematics of the hitch
angles.

All that remains to be determinedare the derivatives of the steeringwheel angles.
Since these variables are free, that is they are not constrained by the kinematics,
we can consider them to be controlled by the inputs.
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/

last body ofthe
jih steering train
(pasave or active)

first body of the
0*i)tt steeringtrain

-j (active)

Figure 3. Showing the velocity relationships between two bodies
when the rear body is an active car.

Combiningall of these equations, we find the complete kinematic model of a trailer
system consisting of n trailers and m cars with steering to be

J € {1,... ,m}

^ j €{1,... + 1,... ,ny}

^ J € {1,... ,m- 1}

i = cosC„C .

where we repeat the two velocity relationships here for reference,

vj = cos(tff., - «()»/.„ +

<' = sec(<lif - ^•) cos(«i, - , i € {1,..., m- 1} .

(3)

(4)

The inputs are the angular velocities of the steering axles, ... ,a>'"}, and the
linear velocity of the first car, uj.

3. Conversion to Multi-Input Chained Form

Now that we have the kinematic behavior of the multi-steering system, we will
show how these equations can be converted to multi-input chained form. The ra
tionale for this conversion is that once the equations are in this chained form, there
are many methods available for either steering or stabilizing the system (some of
these methods are discussed in Section 4).
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3.1. Multi-input Chained Form. For definiteness in what foUows, we indicate
the form of a multi-input chained form system:

ij =
i} = zlu°

'r>i + l
— ..1

;2 _ ,2,
'1Zt = Z^U^

'f»3 + l

im _
^0

_

'1

Zn = U

Z'" =

=

(5)

We call this a "chained" form system because the derivative of each state depends
on the state directly above it in a chained fashion. This particular chained form
is reminiscent of Brunovsky normal form, especially when the input is set to 1.
However, we emphasize that chained forms are bilinear in the input and state vari
ables and not linear. Furthermore they are drift-free.

The state equations in each chain in (5) are multiplied by we call this the
generating input. A more general chained form [16] can have more than onegener
ating input, and thus multiple chains leading down from each input. In this paper,
we wiU only be interested in this particular chained form (5) which has a single
generator.

Chained form systems were first introduced in [16] as a class of systems inspired
from [2] to which one could convert a number of interesting examples, including a
car and a car with one trailer, and for which it was easy to derive steering control
laws. Some sufficient conditions for converting two-input drift-free systems into
chained form were presented in [16]. In later work [5] in the context of steering
the fire truck (a three-input system with no drift), we gave sufficient conditions for
converting a multi-input system into a multi-input chained form. Necessary and
sufficient conditions for converting two-input systems into chained form were given
in [15], where a connection was made between the chained form and its dual in the
terminology of one-forms, called the Goursat normal form. In [24] we applied these
results to show transformations to convert the system of a car with n trailers into
the two-input chained form. The calctdations in this context were simplified by the
use of a coordinatization of the state space of the car with n trailers introduced by
[20].

In fact, the techniques of Sordalen were a way of systematically converting
systems of n trailers into chained form by noticing that the trajectory of the
{x^y) position of the last trailer determines the evolution of all the state vari
ables of the system. From the form of the multi-input chained form equation (5),
it is clear that the trajectories of the states at the bottoms of each chain, that is
^oW.4.+iW.-
the relationships

will determine the trajectories ofall the states through

4 = ^+i/iS j € {l,..., 77i}, i G{0,..., Uj}. (6)

amr-if-ii-i



TILBURY, S0RDALEN, BUSHNELL, SASTRY

Figure 4. The N-trailer system, with a steering wheel at the front
of the chain.

The technique that we use in this paper to convert the multi-steering trailer
system into chained form is now straightforward to explain. We use our physical
intuition about the system to identify those states which determine the trajectories
of the system. These states become the bottoms of the chains of integrators in the
chained form, as mentioned above, and the rest of the coordinate transformation is
found through differentiation (equation 6). We then verify that the transformation
found in this manner is a local diffeomorphism and therefore a valid change of
coordinates. We know of no generalization to the Goursat normal form for multi-
input systems which would give necessary and sufficient conditions for converting
into multi-input chained form using dynamic state feedback.

In related work (see [8, 19]) the idea that certain variables determine the entire
state of the system has been formalized in a more general setting, and these system
variables have been referred to as flat outputs. The formal definition of fiatness is
given in the language of differential algebra and will not be discussed here. Instead,
we will mention the definition [19] that a set of outputs y = A(a:, u) is called flat
for the system x = /(a;,u) if all of the system variables (states and inputs) are
differential functions of the outputs y\ that is x and u are meromorphicfunctions of
the outputs y and finitely many of their derivatives. Equivalently, the fiat outputs
are outputs with respect to which the system has no zero dynamics [11]. A system
is called differentially flat if a set of fiat outputs can be found. Moreover, there
may be many choices for the flat outputs. The multi-input chained form of (5)
is differentially fiat with flat outputs Zq, although chained form
systems with more than one generator are not in general flat.

3.2. The Single-steering and Multi-steering N-trailer Examples. By way
of example, consider the systemof n trailers with only onesteering wheel (assumed
to be at the front of the chain). It can be easily seen that the trajectory of the x
and y positions of the midpoint of the last axle will determine the entire system
trajectory. Indeed from looking at Figure 4, it can be noted that the ratio of the
derivatives of these two quantities will give the tangent of the body angleof the last
trailer:

tan^n ~ ilnlZfi.
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The midpoint of the second-to-last trailer axle can now be expressed as a function
of the midpoint of the last axle and the angle of the last trailer using the hitch
relationship:

Xn-l = X„-^LnCOS0n

Vn-i = j/„ + X„sin^„,

and knowing these two quantities as functions of time wUl allow the angle of the
second-to-last trailer to be found

tan^„_i =

This iterative procedure wiU determine aU of the state variables of the system up
to and including the angle of the steering wheel. The steering input can then be
found as the derivative of the steering angle Oq, and the driving input as the linear
velocity of the first trailer, u = Xq cos^o + yosin^o-

We use a similar argument to show that for the multi-steering system of Figure 1,
the (x, y) position of the last trailer along with all the hitch angles
between steering trains wiU determine the entire state of the system. Consider
the last steering train: using the technique described above for the n-trailer single-
steering case, we can find all the angles of the trailers up to and including that of the
last (or m*'*) steering wheel. However, the hitch angle ahead of this steering
wheel is a free variable in the sense that it will not be determined by anything
behind it. This is the reason that its evolution as a function of time is needed to

specify the entire state of the system. The knowledge of the hitch angle 0"*"^ will
allow us to find the Cartesian coordinates of the midpoint of the last axle of the
second-to-last steering train, and we use this information to find the angles of all
the axles in this steering train, and so forth until we get to the front of the entire
chain.

We will show that if we choose these states x,0^... as the bottoms of
the chains in a multi-input chained form, and define the rest of the states in the
chained form through equation (6), we will need to augment the state by dynamic
feedback so that the derivatives of the steering inputs do not appear in the coor
dinate transformation. The states that we add have the physical interpretation of
virtual axles in front of the steering wheels, diverging from the original chain of
trailers. The inputs to this extended system are the steering velocities of the front
car in each virtual chain. The number of virtual axles that need to be added in
front of each steering wheel is equal to the number of passive axles that are located
in front of it in the actual system.

We note here that another possible choice for the states at the bottoms of the
chains are the y' values of the midpoints of the axles in front of each of the steering
wheels. The resulting chained form is the same, with the same number of states
added through dynamic extension. The coordinate transformation required to put
the system into the chained form, however, will be different.

ggac-ir-i
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Figure 5. The unlcycle model. The robot is allowed to drive for
wards or backwards and to spin about its center axis.

3.3. Extending the System with ^Virtual** Trailers. The kinematic equa
tions for the multi-trailer system, as derived in Section 2, are drift-free and afiine
in the input, and can be written in the form

X= C?(a:) u .

Extending the system with dynamic state feedback corresponds to adding states z,
a new input i/, and defining a feedback for u

z = oc{XyZ,i/)

u = /?(a;, z)-I-7(a:, z) v .

However, to keep the resulting system drift-free and afiine in the inputs, we wiU
require that

a(x,z,i/) =o(ar,2) v
fi{x,z) =0 .

As mentioned above, the states z that we add through dynamic feedback will be
interpreted physically as the angles of "virtual" axles in front of the steering wheels,
diverging from the chain of trailers. The new input v will correspond to the driving
velocity together with the steering velocities of the virtual cars, and the feedback
on u will be defined such that the actual steerable cars are controUed through the
chain of virtual trailers.

For some insight into this formulation of virtual axles, consider the well-known
example of a unlcycle, sketched in Figure 5. This is also the model of the Hilare
family of mobile robots at LAAS, Toulouse. The body is allowed to drive either
forwards or backwards and to spin about its axis.

The kinematic model takes as inputs the linear velocity v and the angular velocity
u of the body,

X = cosB V

y= sin0 v ^7^
0 = Uf .

Since the system is drift-free, the relative degree of any choice of outputs will be
equal to one (the input appears directly in every state equation). In the sequel,
when considering the multi-steering trailer system, we will be interested in finding
the relative degree of the states with respect to the steering inputs. Here we only
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Figure 6. A unicycle with a "virtual" extension, interpreted as
another axle added in front of the original robot.

note that the relative degree of the body angle Bwith respect to the steering input
is equal to one.

Consider the dynamic feedback

^ — OL
(jj = tan(^ —0) V.

The extended system now satisfies the equations

X = cos 0 V

y = sin ^ V

6 = tan(V' —B)v

ijj = a .

(8)

The added state ip has an attractive physical interpretation of being the angle of
another axle added in front of the original steering wheel, and the new input a is
the steering velocity of this "virtual" wheel. This is represented in Figure 6. In
addition, we see that the relative degree of the body angle $ with respect to the
(virtual) steering input is now equal to two.

The linear velocity at the front axle can be denoted by u/, and it is related to
the linear velocity of the rear wheel by the cosine of the angle between them,

V= cos(V' -9) Vj .

Thus, an equivalent way to write the equations (8) would be

X = cos 9 V

y = sin ^ u

9 = sin(V' —9) Vf

^ = a .

Remark. We note here that any valid trajectory 7 = of the system (8)
can be projected down, via the standard projection tt : x (5^)^ 11^x5^
to give a valid trajectory 7r(7) = C = y, of (7). Also, for any trajectory C of
(7) for which 9{t) is andfor which ^ = 0 whenever x = y = 0, there exists a
trajectory 7 such that 7r(7) = Trajectories where the unicycle spins about its axis

nmr-inn
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without moving either forwards or backwards cannot be achieved with the extended
model.

This is the motivation for our dynamic state feedback that adds virtual axles to
the system. Each virtual axle that we add in front of a steering wheel increases by
one the relative degree of its hitch angle with respect to the steering input at the
hitch.

3.4* Virtual Extension for the hdulti-Steering System. We now describe in
detail how the kinematic model (3) is locally converted to a multi-input chained
form using djmamic state feedback and a coordinate transformation.

As we described in Section 3.1, we will choose the states at the bottoms of the
chains to be ,<^"*"^,2/. Consider the front-most hitch angle this will
become the state at the bottom of the first chain, or 2^,+!. Its relative degree
with respect to the first steering input is equal to ni -j- 2, or one more than the
number of axles in the first steering train. We will need to differentiate a total
of Til -f 2 times in order to define all the states in the first chain by equation (6).
However, since depends on all the angles behind it in the trailer system according
to equation (3), the relative degree of with respect to any of the other steering
inputs wUl be equal to two.

We do not waut the derivatives of these inputs to appear in our coordinate trans
formation, so we wiU increase the relative degree of with respect to the other
steering inputs by adding Ui virtual axles in front of each steering axle ^ . ^ for
j € {2,..., m}. The virtual inputs we temporarily denote by the angular ve
locities of the axles at the front of each virtual chain.

If we now move to consider the second hitch angle which will be the state at the
bottom of the second chain, we can find its relative degree with respect to the new
virtual input cD^, which is equal to 712 + 2, or one more than the number of passive
axles in the second (extended) steering train. By our construction, the derivative
of <f>^ will not depend on the first steering input (recall that we have defined
everything in terms of the velocity of the last trailer). The relative degree of (fy^
with respect to the other virtual steering inputs w®,... ,u>'" is equal to ni -1-2. Thus
we must add 712 - 7ii more virtual axles in front ofeach steering wheel ..., 6^^ ^
so that the derivativesof the virtual steering inputs will not appear in the coordinate
transformation. Again, we temporarily denote the derivatives of the axles at the
front of each new virtual chain as the virtual inputs d;^,...

We continue similarly for and when we have finished, we will
have added Uj virtual axles in front of the steering wheel, as we have sketched
in Figure 7. We note that now there are the same number of passive axles between
an axle $1 on the chain and any (virtual) steering wheel, and that this is the same
as the number of passive axles between the axle 0( and the front steering wheel
9^. After we have added these virtual axles, each steering train (except the first)
is considered to be augmented by the virtual axles that appear in front of it. The

steering train now contains nj axles, of which only Uj - nj^i are real (physical).
The only axles which we can consider as steerable in this formulation are the first
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m

mth virtual extension m

first virtual extension

ni-l

first steering train

m-1

second steering train

mth steering train

Figure 7. The multi-steering system, showing the virtual axles that
must be added to convert the system into multi-input chained form.
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axles ofeach virtual extension, or ^ for j £ {1,..., m}.
The state variables that we have introduced, which correspond to the angles of

these virtual trailers, we denote by 0{ for j 6 {2,..., m}, i € {0,..., -1}. We
define their derivatives as if they were actual axles,

^ = i€{2,...,m}
• • 1 • • •

^ ^ i€ {2,...,m}, ,

where XJ is an arbitrarily chosen positive parameter (usually chosen to be equal
to one for simplicity). The velocities of the virtual axles are defined in the same
manner as the velocities of the real axles (4),

vi = cos(Ci 3 € {1,... ,m}, i £ {1,... , (10)

where the velocities ^of the actual steering wheels were also given in (4).
We will denote the new (fictitious) inputs as /y, j £ {1,... ,m}, where as a

notational convenience we wiU denote := since no virtual axles need be

added in front of the first car. These inputs represent the angular velocity of
the front car in each virtual extension. In effect, we no longer directly control the
angular velocities of the steering wheels which are in the middle of the chain, they
are controlled indirectly through this virtual steering train. Therefore the states in
our extended system wiU be functions of the (true) inputs and their derivatives.
The true kinematic inputs are of course the derivatives of the actual steering
angles,

= ^,-1 = sin(^._,_i - j €{2,... ,m}. (11)

The complete configuration space of the extended system can now be defined as

q =

where N = is the number of passive axles, both real and virtual, in the
extended system.

We now assume that the configuration of the system with the dynamic feedback
is in a subset D of the extended configuration space, defined as the set where all of
the relative angles between adjacent axles and hitches are less than 7r/2,

D = {q^ (5')"+""-' XR' : < w/2,
|«i+' - ^1 < »/2,

lCJ<T/2 }.

The kinematic equations are well-defined on this set.
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3.5. The Kinematics of the Extended System. In an effort to write the kine
matic model in a compact form and also to show the triangular structure of the
coordinate transformation, the following vectors are introduced:

er = i«r (12)

To help clarify this notation, we will describe these vectors in detail. In general
terms, the superscripts (j) of the vectors refer to the steering train for j 6
{!,... ,m}. The subscripts (t) refer to the tails of the steering train starting from
the trailer (which is real if i > Uj^i and virtual if 0 < i < nj-i). Thus, we have:

• The vector , for j € {1,..., m -1}, i 6 {0,..., tIj}, refers to the angles of
the axles in the steering train behind (and including) the level of the
axle. We have found it convenient to also include the hitch angle (fP behind
the j"' steering train. Thus, in particular, the vector 0^ contains the angles
of all the axles, both virtual and real, in the steering train. Recall that
0Q is the angle of the virtual steering axle for the train (except when
j = 1, in which case it is the real steering axle). The vector contains
ail the angles of only the real axles in the steering train, including the
angle of the (true) j*'* steering axle,

• The vector fij"»for i € {0,..., n^}, refers to the anglesof the axlesin the m"*
steering train behind (and including) the level of the t'* axle. Since there is
no hitch angle behind the last steering train, we have included the position
y of the midpoint of the last axle for symmetry with the other vectors .
Recall from Section 3.1 that the y position and the hitch angles (fP will be
the bottoms of the chains in the multi-input chained form equations.

• The vector ^ groups all of the angles of the steering trains from j to m for
the axles from i to the end of the j** train nj. For example, contains
only angles of axles in the last steering train, from axle i to the rearmost
axle of the train. The vector ^ contains all of the angles of all the axles,
both real and virtual, in the entire extended system.

We now will derive an extended kinematic model in the subset D. To this end
we introduce the new fictitious input v as the linear velocity in the x direction of
the last body in the last steering train. This will become the generating input u°
in the multi-input chained form of equation (5),

V = cos 91 (13)
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The linear velocities of the other bodies v( can then be expressed as multiples of
this generating velocity v, where we combine here the definitions (4), (10), (13):

= secC,"
vi-i= (14)

We wish to eliminate the use of this recursive notation and write all the linear
velocities as some function of the states and the generating input v:

vj = 5f (ffi )v .
The linear velocity at a wheel will depend on all the difference angles behind
it, Although the vector ^ contains more angles than this, we
write the velocity vf as a function of ^ . From looking at the equations (14), it can
be shown that the function 5i(^ ) will have the form:

j) = sectf!

m-l f

ni=j I

n sec(^fc -
L il;=t

ni+j-1

r=ni

sec(«^, -< '̂)cos(tf^+^ -< '̂)l»
(15)

and we note that this function is smooth in D.

We would now like to write the derivative of the states in a compact form,

for some function which we will define. We start by looking back at the deriva
tives of the angles Oj, which have the same form for both actual (3) and virtual (9)
axles.

We define the function fj to be the derivative of divided by the velocity u.

(16)

for j € {l,...,m}, i € {l,...,n,}. We now define the functions fi.+i to be
the derivatives of the hitch angles, ^ , divided by the velocity v. Recall that the
equation for the kinematics of <f> was given in (3)

Lifij+i

•[sm(»if - ^•)®i+' - sm(«^. - ,1^)4.],
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so that the functions are

1 [tan(tfi« - 0') - tan(tfi. - ^)) cos(«i+' - .^X'(Qi+(}7)

for i € {1,... ,m —1}. The final function that we define here is the derivative of
the y coordinate of the last trailer. From (3) we can see that equating y = fn^+i
wlU give:

/r.«(Q:j = tanC (18)

The kinematic model (3) with the dynamic feedback (9) can then be rewritten
locally in the following manner:

^ = /^» i€{l,...,m}
^ = //(Si-i) V, j e {1,... ,m},i€ {1,... ,71;}
^ = /n,+i(&,) u, j € {1,... ,m- 1}

X = V .

By way of notation, we define

£ = [//.•••./Ui]
Hi = [£,£^',•••,£")'•

(19)

SO that the local kinematic model with dynamic feedback (19) can now be written
compactly as

^ = /^. j€{l,...,m}
fil = £l(Qi) V

X = V .

(20)

3.6. Conversion to Multi-input Chained Form. We are now interested in
finding a coordinate transformation to a multi-input chained form. As we stated
before, the bottoms of the chains for the multi-input chained form will be the states
X,<^\...,y, and the other coordinates wiU be found through differentiation.

The first chain has only one coordinate,

4 = ®. (21)
whose derivative will act asourgenerator (remember we used asour generating input
V= cos^^^ujj*^ = x). The m*'* chain will be the longest, and its last coordinate is
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the other Cartesian coordinate,

^n„+i — y '

The other chains have the hitch angles at the bottom,

<+i=^» j € {1,... ,m-1}, (22)
and the remaining coordinates are found through the relationship (6).

This can be written more specifically as follows. Recalling that the derivatives of
,.., y, were defined as for i = 1,..., m, we can see that

»,

and so the second-to-last coordinate in each chain will be

4, = /i,+,(ei,) • (23)
The general form of the new coordinates is

zf-i = fij+i> i €{1,..., m}, I € {1,..., Uj] (24)
where denotes the Lie derivative of the function h along the vector JF. We note
here that each coordinate jsf is a function of the state variables ^ .

The input transformation is defined by taking the derivatives of the first states
in the chains for y G{1,..., m}

= V (26)

where ^ is defined such that

Si =
i j

and is found from (12) and (20).

Theorem 1. Let the coordinates i € {0,..., m}, i G{0,..., -1-1}, be given
by (21)-(24) and the inputs u\ j G {0,... ,m}, be given by (25)-(26). Then the
following equations are satisfied:

iS = ij = ij _ ^2 ... = w

^i,+i = 'iy
i2 —. A|0
^na+l —

^n„+l

(5)

= Z
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Proof. The chained form follows directly from the definitions of the coordinates and
input transformation along with the local kinematic model (20).

To show that this coordinate transformation is a local diffeomorphism we wiU
exhibit its triangular structure and the nonsingularity of the Jacobian at the origin.

Let the state of the entire system (including the extension) be

q — ]

where we have partitioned the states as follows:

= X

q' = ^ =

The dimension of the state space is easily seen to be 1-|- (ni -H 2)+ •••+ {rim + 2) =
N -I- 2m + 1, as before.

The newstates z we will partition in an analogous way, 2: = [2:°, •••, z"^] where

We note here that not only do q and z have the same dimension, but q^ and z^ also
have equivalent dimensions (equal to nj + 2 for j ^ 0 and 1 for j = 0).

The Jacobian of the coordinate transformation,

J- —
dq

is block-upper triangular and the elements on the diagonal are nonzero on the open
set D of interest. This wOl be shown most easily by considering J block-by-block.

dzi

Since zf is a function of ^, it is a function only of ,9^+^,... ,5"*. This implies
that the blocks = 0 whenever j > k\ i.e. all blocks below the diagonal of J are
zero.

We will now show that each diagonal block j- is upper-triangular with nonzero
diagonal entries. Since the first block is only one-by-one, we will consider it first.
By definition zj = x = thus Jq.o = 1 which is nonzero.

We will now consider the other diagonal blocks, Jjj, and we note first of all that
the lower-right entry in each block is equal to 1, since by definition

^j+l =
(P i € {1,... ,m-1}

y j = m .={

C3C3J^2^2C3
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To calculate the next diagonalentry, wenote that zi^., which was defined in equation
(23), is a function of and the dependence on . = ^ . is through a tangent
function. Therefore,

^I - '̂) Je{1,...,m- 1}

where the function sj is the velocity function defined in (15) and is nonzero in D.
The other diagonal entries are found similarly. Since eaxdi z/ is a function ofonly

Qj., and depends on Oj = qj through a tangent function, each diagonal element of
the Jacobian matrix will be a product of secants and cosines of difference angles
and will be nonzero on D (indeed it will be equal to one at the origin).

The input transformation can also be seen to be nonsingular. If we define £ to
be the vector of the virtual inputs,

and u to be the vector of the transformed inputs,

3i= [uS--- ,u"'],

then we can look at the Jacobian matrix of this transformation,

p

d£ '

We claim that this matrix is upper-triangular as well, and that its diagonalelements
are nonzero.

Each of the inputs for j 6 {1,..., m} depends only on the derivatives of the
states and so Jj ^ = 0 whenever j > k. The diagonal entries are equal to

du^ _
dfp ^ dei^dg

by (25), and this is the same as one of the diagonal entries of J above, and is nonzero
by the same argument. •

4. Steering Chained Form Systems

Once a system is in multi-input chained form, many different algorithms can be
used to steer it. We briefly describe three methods in this section; all three of them
were presented in [16, 23, 24] for steering two-input systems in chained form. The
basic idea behind each of the three methods is to parameterize the input space
with at least as many parameters as there are states, integrate the chained form
equations symbolically, and finally, solve for the input parameters in terms of the
desired initial and final states.

We also mention various approaches for feedback stabilization of chained form
systems. Although most of the work in these areas have concentrated on two-input
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systems, the decoupled form of the multi-input chained form system will allow the
techniques to be generalized in a straightforward manner.

In this section we will not deal with any particular system of trailers or nonlinear
equations, but only with the multi-chained form equation of (5):

Zq = U" Zn = V}
Zt = Z^U

'ni+l

Z'o =
= ziii

'na+l

zT - z'A*u^

im _

^n„+l -

(5)

The problem that we consider in this section is given a system of equations in the
above form, and a desired initial and final state, find inputs {u*(t) : t 6 [0,r), i =
0,..., m} which will steer the system from the initial state to the final state.

4.1. Steering with Polynomial Inputs. One approach to the point-to-point
steering problem is to hold the first input constant and identically equal to one
over the entire trajectory. The time needed to steer is then determined from the
change in the Zq coordinate,

T = (ziy-(zif. (27)

We choose the parameters for the remaining inputs as coefficients of a Taylor poly
nomial.

v} — flo + + •••
= 6o + + . • . +

u*" = i/Q + Uit +...-)-

(28)

with the number of parameters on each input chosen to be equal to the number
of states in its chain. The chained form equations can be integrated symbolically
and the input parameters ., t/j can be found in terms of the initial and final
states. This is a fairly simple procedure since all of the equations that need to be
solved are linear. A symbolic manipulation program can be used quite readily to
do this.

Of course, if the time needed for steering is zero from equation (27), then this
method will not work. This case corresponds in the physical system to the "parallel-
parking" direction, or no change in the x coordinate. The easiest way to remedy
this situation is to first choose an intermediate point and then plan the path in two
pieces.

aar-imt-i
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4.2. Steering with Piecewise Constant Inputs. This steering method was
originally inspired by multirate digital control [14], but is most easily understood
in terms of motion planning simply as piecewise constant inputs. The first input

is chosen to be constant over the entire trajectory. This choice will ensure the
linearity of the equations that need to be solved for the other input parameters, as
well as generate "nice" trajectories (since this input is related to the driving input
of the multi-trailer system, a constant will usually transform to a uni-directional
velocity, or equivalently no backups).

The other inputs are chosen to be piecewise constant, and to ensure that the
resulting equations have a solution, each input should have at least as many switches
as there are states in its chain. There will need to be the largest number of switches
on the input since it will always have the longest chain.

The time for the trajectory can be chosen arbitrarily as T. As stated before, the
first input is chosen to be constant over the entire trajectory,

u°(<) = uj for t € [0, r)

where the magnitude of the first input is chosen such that the first chained form
state wiU go from its initial to its final position over the time period.

«c = [(^sy - («s)'i IT. (29)

The other inputs are chosen to be piecewise constant. Let the switching times be
chosen as

0 = <0 < < ... < = T ,

where we need Uj -}- 2 switching times for each input since there are Uj -j- 2 states in
the chain. There are many different methods available for choosing these times.
We will most commonly choose them so that for the input, which has the most
switching times, the holding times will be equal. We then choose the switching
times for the other inputs to be some subset of the switching times for the
input. The y** input will be of the form:

= foTte[tk,tk+i) •

When the chained form equations are integrated using these input values, the final
state can be expressed in terms of the inputs and the initial state as

4
4

4j+i j

(T) = A^K,z'(0))

where the matrices A-' axe assured to be nonsingular whenever the first input Up is
nonzero [14].

Similarly to the previous section, if the first input does come out to be zero from
equation (29), then a slight modification of this method is necessary. A multirate
input can also be added on using at least two time periods, or an intermediate
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point can be chosen and the path can be planned in two steps. This case corresponds
in the physical system to the parallel-parking direction.

We note here that the inputs weare choosing to be piecewise constant are not the
velocities of the steering wheels, but the chained form inputs, which are nonlinear
functions of the states and the virtual inputs (except in the case of the front-most
steering input).

4.3. Steering with Sinusoidal Inputs. A method for steering multi-chained
systems with sinusoids was proposed in [5]. This method is step-by-step and uses
one step to steer each level of the chain (although the states of all chains at the
same level can be steered simultaneously). Since the longest chain in our dehnition
is length n„, -1- 2, this is the number of steps that will be needed.

The algorithm is sketched as follows:

Step 0; Steer the top-level coordinates, [z^, j = 0,... ,m} by choosing
constant values for ... , u"* on the time interval [0,T),

Step 1: Steer the coordinates at the first level down by choosing a sinusoid
on and out-of-phase sinusoids on u-',

= a sin ut

= /3cos ut

= 7 cos ut

VT = u COS ut

over a time period [T,2T), with appropriate choice of a, ..., z/ so that at
time 2r, the states {zj, j = 1,... ,m}, have achieved their desired final
values.

Step ki {k = 2,..., 7i„, -h 1). Steer the coordinates at the k*^ level from
the top. If n,- < /: < n,+i, then only chains i -H 1,..., m will be affected.
Again, we will choose a single frequency sinusoid on the first input, but
now we choose multiple frequency sinusoids on the other inputs:

= a sin ut

= 0

= 0

,«+i —= ^ cos kut

cos kut

over a time period [kT, {k-|- l)r), with appropriate choice of C, •••, so
that at time fcT", the states {zj, j = i -f 1,..., m}, are at their desired
final values.
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We note that after each step the states closer to the top of the chain than
level k will have returned to their values after the previous step (ib —1).
The states lowerin the chain than levelk willmove as a result of the inputs
at step k by some amount; we disregard these because we steer those states
to their desired final values in subsequent iterations.

Although this method works perfectly well, and the magnitudes of the sinusoids
are simple to solvefor, the algorithm can be tedious in practice because of the many
steps that are needed. The trajectories that are generated consist of many segments
and do not always follow a very direct path between the start and goal.

Therefore, we also propose an "all-at-once" sinusoids method which is an exten
sion of that detailed in [24] for the two input single chain case. We only use one
step, and we put all of the necessary frequencies into the inputs.

u° = Qo + a sinut

= 00 +0lCO8Ut-\-•" +(3n,+iCos{ni + l)ut

= 1/0 + cosUt-\ + COS(Tlm + .

The input parameters are found in the same manner as in the other methods. The
chained form equations are integrated symbolically, evaluated at time T, and the
parameters are solved for as a function of the initial and final states.

The main drawback to this approach is that there will be some interference be
tween the levels (although not between chains) and solving for the input parameters
will require solving nonlinear algebraic equations. In the simple cases that we have
explored, this has not been a problem for a symbolic manipulator.

When this method is implemented on a multi-steering trailer system, the first
input, which always goes through one period, will transform back to the driving
input, which will usually change direction (at least one backup). This seems to
work well when parallel-parking type maneuvers are desired. The free parameter a
can be adjusted to change the distance that the trailer system drives forward before
it backs up.

4.4. Stabilization for Multi-input Chained Form Systems. We now briefly
discuss some methods from the literature for stabilization of chained form systems.
These systems are open-loop controllable, as shown above by the various point-
to-point steering algorithms, but are not stabilizable by pure smooth static-state
feedback [3]. Bearing this result in mind, various researchers have tried to stabilize
such systems by time-varying or non-smooth state feedback.

Many of the algorithms for point stabilization require the system to be in chained
form. For two-input systems, a class of smooth, time-varying control laws for local
and global asjrmptotic stabilization to a point [22]. This procedure was extended
in [25] to locally asymptotically stabilizing the origin of (m -|- l)-input, m-chain,
single-generator chained form systems. This method consists of taking the chained
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form system and converting it into power form, which has the structure (for the
three-input case):

Xi = Vi Vi

h
2/3

= V2

X1V2

\x\v2

V2

Z2

- Vz

Zk =

XiVz

\x\vz

1 k-2

(fe-2)

The control laws, which are time-varying functions of the state, wiU stabilize the
system in power form.

Many of the other results which have been presented in the literature for two-
input chained form systems could also be extended to multi-input single-generator
chained form systems in a straightforward manner. Thus we will briefly describe
some of these results to give the reader an idea of the possibilities available for
stabilizing a system once it has been converted into chained form.

In [17], a non-smooth, time-varying feedback control law achieving local exponen
tial convergence to a neighborhood of the origin for two-input chained form systems
was presented. A method for globally stabilizing about the origin with exponential
convergence rates was proposed in [21] for a two-input, single-chain chained form
system. The feedback control laws were developed for the system in chained form
instead of power form. And finally, [18] presents a constructive approach for deriv
ing a time-varying smooth feedback control law which can be applied to globally
uniformly asymptotically stabilize chained form systems to the origin.

5. Examples of Multi-Steering Trailer Systems

Some examples of systems that fit into the class of multi-steering n-trailer but
havebeenexamined in previous papersinclude the n-trailersystemwithonesteering
wheel (see, for example, [20]) and the fire truck system [5] which has three axles and
two steering wheels. To illustrate the procedure that we presented in this paper for
converting multi-steering trailer systems into chained form, we will follow through
the algorithm given in Section 3 for two example systems.

5.1. Fire Truck Example. Although the fire truck example has been examined
extensively in previous work, we wiU also consider it in terms of the algorithm
described in this paper, since the formulation is somewhat different than in [5].
In that paper, the bottoms of the chains in the multi-input chained form were
chosen to be the (x, y) position of the passive axle along with the angle of the
trailer (see Figure 8). Because of the relative simplicity of the three-axle system,
that choice allowed us to put the kinematic equations into multi-input chained
form without using dynamic state feedback. The fire truck fits into the class of
multi-steering trailer systems, thus we can also convert the kinematic equations
into multi-input chained form using a virtual extension (and a different choice of

aaarif-i
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Figure 8. A sketch of the fire truck system showing the virtual
extension that is added in front of the rear steering wheel. These
vehicles are equipped with a long ladder on the trailer and are used
by fire departments in large cities in the United States. The extra
steering wheel at the rear of the trailer is used for improved maneu
verability on narrow city streets.

states at the bottoms of the chains). Although this extension is not necessary
for this particular system, we know of no systematic procedure for transforming a
general multi-steering trailer system into multi-input chained form without using
the sort of virtual extension that we propose in this paper.

The kinematic equations for the fire truck can be obtained from equation (3):

7 (30)
- sin(«{ - »}]

y = sin$1 vf

X= cos $1 vl

where from equation (4) the velocities are related by

v} = 8ec(^} - (^^)cos(fff - Vl
uj = sec(^J - ^}) v} .

The system has two steering trains, the first has length two and the second has
length one. Since there is one passive axle in front of the second steering train, we
will augment this train by the addition of one virtual axle as described in Section
3.4. The angle of this virtual axle is denoted A sketch of the extended system
is shown in Figure 8.
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The kinematics of the second steering axle 9\ are thus altered. Weno longer steer
it directly, but through the virtual steering wheel. Instead of we will have:

^1 =^ tan(^o "• ^1)^1
where the velocity uj is the linear velocity of the steering axle. The virtual input
will be the angular velocity of the virtual steering wheel,

The generating input for the multi-input chained form is the linear velocity of the
last body in the horizontal direction,

V = cos Uj

and we can then hnd the velocities of all the other bodies in terms of this quantity
from equation (14).

The bottoms of the chains in the multi-input chained form are the (a:,y) coor
dinates of the rear axle and the hitch angle 0^, and the rest of the coordinates are
found through differentiation according to equation (6),

0 ^
Zn = X zi =

zt =

,1 ^

<!>'

m\) =

2 ^
4 =

2 ^
4 =

2 ^
Zn =

y

/Ka?) = ii/v

(the chains are written upside down here to show the order in which the coordinates
are calculated: starting at the bottom). The resulting equations are in multi-chained
form:

.1iS = ti° 'A -
= W

i} = zju®
= z}u°

— ,.2
ZS = u

zj = z^v,
z? = ztv,2„0

where the input := v is defined as the velocity of the last trailer in the horizontal
direction, and the other two inputs and are defined as the derivatives of Zq
and zj, respectively.

Once we have the system in chained form, we can steer it from point to point or
stabilize it to a point using one of the methods presented in Section 4. The controls

and that result from whichever method was chosen can be transformed
back into the original coordinates to give the inputs v, and the virtual input
p^. The actual input can be calculated from the virtual input p^ and the state
trajectory.

5.2. Another Example. We will also go through an example here of a five-axle
system with two steering wheels. The system is depicted in Figure 9. In effect,
this system is a fire truck with two passive trailers. We note that with these extra
trailers, the (x,y) position of the first passive axle, along with the trailer angle
will no longer define the entire state of the system. Although it is possible that
this system could be converted to multi-input chained form without using dynamic

aaaan
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Figure 9. The five-axle, two-steering system showing the virtual
extension which is added in front of the second steering wheel. Such a
system could be envisioned as being used in a nuclear power plant or
in a mining area where maneuverability around narrow passageways
in danger zones is of utmost importance.

feedback, such a transformation has not been found. The virtual extension allows
us to define a relatively simple transformation into multi-input chained form for
any multi-steering trailer system, and once the system is in this chained form, it
can be steered or stabilized using one of the methods outlined in Section 4. A
parallel-parking maneuver for the system shown in Figure 9 is shown in the margin
movies of this paper. More details on the generation of that trajectory will be given
in Section 5.3; first, we will present the conversion to chained form.

The kinematic equations for this system can be written down from equation (3)

el = u'

el = u^

i sin(^^ - d|) vl

^1 - - (l>^) u}]

y = sin$1 vl

X = COS

(31)
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where the velocities are related by equation (4)

V? = sec( n - »i) «i
vj = sec(tfj ^2
v} = sec(^} —<^^)cos(^J —<f>^)
tjJ = sec(^J - ^}) u{

The system consists of two steering trains, the first has length two and the second
has length three. We will need to add one virtual axle to the second steering train
since there is one passive axle in front of its steering car; see Figure 9.

This new state corresponding to the angle of the virtual axle is denoted as
and the kinematics of 01 must be changed to represent that the angular velocity
of the second steering wheel is no longer controlled directly by the input but
indirectly through the virtual steering wheel

$1 = tan(^2 - $1) vl

and the input wiU now control the virtual steering velocity 0^,

"0 — P •

When needed, the real input can be calculated as the derivative of the angle 0^,

= tan(^J ^1)

where vf is the velocity of the actual steering wheel 0^ as was detailed in Section 3.
The generating input in the multi-input chained form is

V—cos 0l V

which is the linear velocity of the last trailer in the horizontal direction. We can
now calculate the velocities of all the other bodies in terms of this quantity from
equation (14). For the coordinate transformation to chained form, as described in
Section 3, the bottoms of the chains will be the (2;, y) position of the end of the last
trailer and the angle 4>^ of the hitch connected to the second steering wheel. Tofind
the other coordinates in the chained form we differentiate, for example:

4 = 4/4 •
The complete coordinate transformation is too complicated to include here but may
be obtained from the first author via electronic mail. We wiU show the structure of
the coordinates:

0 ^
zX = x 1 ^

4 =
1 ^

4 =
1 ^4 =

imi)=
= 4/^

*4
2 ^

=

= y

z? =

zt =

ZA =

fKQl) = if/v

^nfi =
LpiL^fl = zl/v

= zlfv ,
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and for this particular system, we have the resulting multi-input chained form:

iS=:u' ij = ij
zf = Z^u"

zi = z}u° zl = Z?U°'2 ~ -^1 "• ^2

zl = z|u®
z\ = z|u°

5.3. A Parallel-Parking Trajectory. Oncethe kinematicequations are in multi-
input chained form, we can steer the system by one of the algorithms discussed in
Section 4. As an illustration, we will discuss how we achieved the parallel parking
maneuver shown in the margins of this paper for the five-axle, two-steering system
described in Section 5.2. The system parameters we have chosen to be n = 3
(three passive axles), m = 2 (two steering wheels), and the lengths of the hitches
as £} = X2 = Z3 = 5, and L\ = 3.

We want to steer the system from an initial point of (x, y) = (0,20) to a final
point of (x, y) = (0,0), where (x, y) are the coordinates of the midpoint of the last
axle, and all of the body angles aligned with the horizontal axis in both the initial
and final configurations. We will use the polynomial inputs in the chained form
equations to plan the trajectory.

As noted in Section 4.1, polynomial inputs are not immediately suited to this type
of trajectory since the time needed to steer the system, computed from equation
(27), would come out to be zero and the algorithm would fail. Therefore we have
planned the trajectoryin twosteps, choosing an intermediate point (x, y) = (30,10).
The virtual angles we chose equal to zero in both the initial and final states, and
the virtual hitch length we chose as I/f = 1. The procedure is first to transform
the initial and final states into the chained form coordinates. Using the polynomial
inputs methods discussed in Section 4.1, the chained form inputs needed to steer
the system are found. These inputs can then be transformed back to the original
coordinates to find the virtual inputs, and the real inputs can finally be calculated
using the relationship (11).

The simulation was performed on the system in the chained form coordinates,
then the inverse coordinate transformation was used on the simulation data to
obtain the trajectory in the original coordinates. A movie animation was made of
this trajectory; scenes from this movie are shown in the margins of the paper. The
path taken by the virtual axle is not shown.

6. Summary

We have presented in this paper a systematic method for convert the kinematic
model of a multi-trailer system with n passive trailers and m steerable cars into a
multi-input chained form. The advantages of having the system in a multi-input
chained form are that many algorithms exist for both steering and stabilizing sys
tems in chained form.

We defined a multi-steering trailer system, and computed its kinematic equations
using the constraint that the wheels are allowed to roll but not slip. We then
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detailed a procedure to transform these equations into a multi-input chain form.
The method that we proposed involved adding virtual axles to the system in a form
of dynamic state feedback. We motivated the "virtual" extension that we proposed
by examining the connections between the kinematic models of a unicycle and a
unicycle with one trailer.

Three steering methods for multi-input chained form systems were discussed
briefly to show the many different algorithms available. Additionally, various stabi
lization methods for multi-input chained form systems were mentioned. Finally, two
example systems were presented to show the details of the procedure for convert
ing to multi-input chained form. A simulation of a parallel parking maneuver for
a flve-axle two-steering vehicle was described and clips from the movie animation
were shown in the margins of this paper.
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