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Abstract

We present heuristic algorithms for finding a minimum BDD size cover of an incompletely
specified function, assuming the variable ordering is fixed. In some algorithms based on BDDs,
incompletely specified functions arise for which any coverof the function will suffice. Choosing a
coverwhich has a small BDD representation may yield significant performance gains. We present
a systematic study of this problem, establishing a unified framework for heuristic algorithms,
proving optimality in some cases, and presenting experimental results.

1 Introduction

The problem addressed is, given an incompletely specified Boolean function ?, find a cover for T
whose reduced ordered binary decision diagram [2] (hereafter, BDD) representation is minimum.
T is described by a pair of completely specified Boolean functions / and c, such that any cover
of T must contain / • c and must be contained by / + c. The usual interpretation is that we care
about the value of / where c is true, and we don't care where c is false.

To make these notions concrete, consider Figure 1. Figures la and lb show the BDDs for / and
c, respectively. Figure lc shows the binary decision tree for /. The left and right branches are the
0 and 1 branches, respectively. The leaves enclosed by a square indicate those points where c = 0:
that is, where we don't care about the value of /. Finally, Figure Id shows a suboptimal solution
to this problem, and Figures le and If show two minimum solutions.

Coudert et al. posed this problem in the context of checking the equivalence of two finite state
machines (FSMs) [4]. The checkis done by a breadth-first traversal of the state space of the product
machine. At each iteration, the states on the frontier of the search are explored. Since there is no
harm in re-exploring states that have already been reached, the goal is to choose a set of states
S that includes the frontier states U and is included in the reached states R. The characteristic

function for S should have a small BDD representation. In this case, we take / = U and c = U + R.

Another application is the representation of an FSM using BDDs. We represent the transition
relation T C Q x S x Q, where Q is the set of states and S the set of inputs, by the BDD for
the characteristic function of T. Typically, only the behavior and structure of the FSM among
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Figure 1: An instance of the problem: a) BDD for /, b) BDD for c, c) binary decision tree for
/, annotated with don't care points (leaves enclosed by squares), d) suboptimum solution, e) an
optimum solution, f) an optimum solution (left branch is 0, right branch is 1).

the states reachable from the initial states are of interest. Under this scenario, transitions from
unreachable states are don't cares and can be used to simplify the BDD for T.

Other applications are found where circuit realizations are related to the structure of BDDs. In
particular, some FPGA mapping algorithms work from a BDD representation to map circuits to
multiplexer-based FPGAs [8]. For an incompletely specified circuit, heuristicaJly minimizing the
BDD can lead to a smaller implementation. Another application is in mapping Boolean functions to
differential cascode voltage switch (DCVS) trees [6]. Because of the structural similarity of BDDs
and DCVS circuits, minimizing the BDD leads to a smaller implementation.

Two heuristics have been reported for solving this problem: the restrict operator [4] and the
constrain operator [3] (also known as the generalized cofactor [10]).1 In this paper we present a
general framework for heuristic solutions to finding minimum BDD size covers for incompletely
specified functions. Our heuristics are based on the concept of making two BDD nodes equal by
assigning values to some of their don't care (DC) points. We call this operation matching. We
present a hierarchy of matching criteria, depending on how much don't care information is required
to match two functions.

The compactness of BDDs derives from two rules: merging, which shares equal functions, and
deletion, which deletes a parent wtih equal children. We present algorithms to exploit these rules.
Specifically, one set of algorithms matches various functions in the same level of a BDD, hence
sharing more subfunctions. A second set matches siblings in order to delete parents.

*It is worth noting that the constrain operator has a special property which permits an image computation of a
vector of functions to be reduced to a range computation on the vector. This property arises because constrain uses
the don't care points in a very restricted fashion. For this study, we are not interested in such properties: any cover
of a given incompletely specified function is a candidate solution to this problem.



We view DC assignments as using degrees of freedom. At every point, several competing options
may exist on how to use the DCs. We present scheduling algorithms which attempt to use the DC
points in an optimal fashion.

The main contributions of this paper are:

1. We define a general framework to relate various heuristic solutions to the problem. The
framework consists of matching criteria and the choice of functions to be matched.

2. We view each heuristic as a transformation which uses some of the DC freedom. Traditionally,
only one heuristic is used during the optimization process. We have uncoupled the choice
of transformations from the choice of where and when they should be applied. We present
a schedule that uses different heuristics at different points in the optimization process. For
example, we try to match siblings before matching arbitrary functions. Also, we first apply
a restricted matching criterion before applying a more general criterion.

3. We prove several optimality results. Among the significant ones: constrain is optimum when
the care set is a cube; and, for a certain matching criterion, matching functions at a given
level is optimum with respect to the number of nodes below that level.

In Section 2 we define some terms and give a precise statement of the problem. Section 3
presents two classes of heuristic minimizers, and a method to combine them using scheduling.
Experimental results are given in Section 4 and concluding remarks in Section 5.

2 Problem Statement

Let B = {0,1}, and xi,..., xn be the variables of the space Bn. All functions considered are defined
on xi,...,xn.

Definition 1 A literal is a variable in its true or complement form (e.g. xt- or x7). A cube is a
conjunction of a set of literals (e.g. 2:2X4X5). The cojactorof / by the literal a, denoted by /a, is /
evaluated at x,- = 0 if a = x7, or / evaluated at xt- = 1 if a = x,\

We refer the reader to [1] for the definition of reduced ordered binary decision diagrams (BDD).
A binary decision tree for a function is the full binary decision tree, before any reductions are
applied. Two rules are applied to a binary decision tree to yield a BDD: merging, which shares
two subfunctions that represent the same function, and deletion,which removes a node with equal
children.

Our BDD package is based on [1] and employs output complement pointers to reduce storage
requirements. A fixed variable ordering of xi -< X2 -< ... -< xn, where xi is the topmost variable,
is used for all BDDs. We use / to refer to both the function and its BDD representation. Level i
refers to those nodes of a BDD rooted at x,-.



Definition 2 The size of the BDD /, denoted by |/|, is the number of nodes in the BDD, including
the constant (terminal) node.

[/, c] denotes an incompletely specified function, where / • c is the onset, f •c the offset, and c
the don't care set. When not ambiguous, [/, c] is simply called a function.

Definition 3 g is a cover of [/, c] if / •c C g C / -f- c. [/i, ci] is an i-cover ("i" for incompletely
specified) of [/2, c2] if any cover of [/i, ci] is a cover of [/2, c2].

We will see later that when two incompletely specified functions are matched, they are replaced
by their common i-cover. Now we formally state the problem that is addressed.

Definition 4 The exact BDD minimization (EBM) problem is to find a cover g of [/, c] such
that \g\ is minimum among all covers of [/,c], under a fixed variable ordering. The corresponding
decision problem for EBM is:
INSTANCE: BDDs for functions /, c, positive integer N < \f\.
QUESTION: Is there a cover g for [/, c] such that \g\ < JV?

Proposition 5 The decision problem for EBM is in NP.

Proof Guess a BDD structure for g that has fewer than N nodes. If/-cC<jrC/ + c, then g is a
cover with less than N nodes. The containment checks can be done in time and space 0(|/| •\c\ •\g\),
and thus in time and space polynomial in the size of the input. •

The exact complexity of EBM is unknown. Finally, note that the problem of finding a cover
with a minimum BDD size for the interval of functions (/m,/M)> can be reduced to an instance
[/, c] of EBM by taking c = fm + 7a7 and fm C / C fM.

3 Heuristic Minimization Algorithms

3.1 Framework

The general idea is to apply transformations to [/, c] by selectively assigning values to don't cares
until all have been used. A common aspect is the notion of "matching" a pair of functions [fj,Cj]
and [/*, Ck] by finding a common i-cover. When one exists, we say the two functions match. The
care function of the common i-cover contains Cj and c*; thus, the size of the DC set monotonically
decreases. Various constraints, or matchingcriteria, are defined according to which don't cares are
used in finding a common i-cover.

All our heuristic algorithms iteratively apply three steps until the don't cares are exhausted:



Criterion Reflexive Symmetric Transitive
osdm

osm

tsm

no no yes

yes no yes

yes yes no

Table 1: Properties of the matching criteria.

1. Choose a matching criterion.

2. Choose a set S of incompletely specified subfunctions of [/, c].

3. Minimize the number of incompletely specified functions needed to i-cover the functions in
S. Replace each function in S with its appropriate i-cover to yield a new function [/',c'].

The matching criteria are discussed in Section 3.1.1. The choice at Step 2 defines two classes of
heuristics. If we restrict S to the two children of a given node, then Step 3 simply tries to replace
these by a single function. This class of heuristics is described in Section 3.2. On the other hand,
if we choose a subset of functions below level i, which are pointed to from level i or above, then we
have an optimization problem in Step 3. This class of heuristics is described in Section 3.3.

3.1.1 Matching Criteria

We have experimented with three matching criteria, which are defined below.

Definition 6 Let [/i,ci] and [/2,C2] be incompletely specified functions.

1. One-sided DC match: [/i,ci] osdm [/2,C2] iff c\ = 0. That is, one function is matched to
another iff the first function has don't cares at all of its points.

2. One-sided match: [/i,cj osm [/2,C2] iff f\ © /2 Q ci and c\ 3 C2". That is, one function is
matched to another iff we can make the two equal by assigning DCs of only the first function,
and the DC set of the first contains the DC set of the other.

3. Two-sided match: [f\, c{\ tsm [/2, C2] iff /1 ©h Q cT +^2- That is, two functions are matched
iff we can make the two equal by assigning DCs from both functions.

Each matching criterion is a relation between incompletely specified functions. Table 1 lists
some properties of these relations that are used in the sequel.

It is easy to prove for each criterion above, that if the matching definition is satisfied, then a
common i-cover exists. If [/i,ci] matches [/2,C2], we want to find a common i-cover with maximal
don't care part. In other words, if a DC point need not be assigned to make the match, we leave
it unassigned. Thus, when a match is made, we produce the following:



1. osdm : 1/2,02]

2. osm : 1/2,02]

3. tsm : [(fici + /2c2), (ca + c2)]

There is a strength hierarchy implied by the above numbering, since

(c1 = 0)=^(/ie/2CcT)=^(/1©/2CcT+cI), then

{[fi,ci] osdm [/2,c2]) =*• ([/i,ci] osm [/2,c2]) =» ([/i,ca] fm [/2,c2]).

Since / is itself a cover of [/,c], it would be nice to have a single algorithm for solving EBM
which never returns a result larger than |/|. However, we show that any non-optimal algorithm,
based on the above matching criteria, cannot have this property.

Proposition 7 Let alg be any algorithm for solving EBM which is not sensitive to the value of /
where c = 0, for a given instance [/,c]. Then there exists an instance [/,,c/] where alg returns a
result larger than |/'| iff there exists an instance where alg is not optimum.

Proof (•£=) Let [/, c] be an instance where alg is not optimum. Let alg(f,c) = g, and suppose a
minimum cover for [/, c] is /. Now, create a new instance [/, c] where / = / on the care points.
Since alg is insensitive to the value on the don't care points, then alg(f,c) = g. Since \g\ > |/|,
then [/, c] is an instance where alg increases the size.

(=>) If alg increases the size, then it is not optimum. •

Of course, in practice we can compare the size of the result with the original /, and return the
smaller of the two. Such an "algorithm" does not contradict the proposition since it is implicitly
sensitive to the values of / on the don't care points.

In the special case 0 ^ c C /, all the algorithms find the minimum solution, which is just g = 1.
This follows since we always assign a don't care point the value of a care point, which in this case
is always 1. Similarly, when c C /, the 0 function is returned.

3.2 Matching Siblings

The heuristics based on matching "siblings" are motivated by the constrainand restrictoperators.
For a given subfunction [fj,Cj] of [f,c], rooted at level i, we say that [fj-E, Cj-E] and [fjJT,CjJT]
are siblings, where fjJE is fj evaluated at x,- = 0 and fjJT is fj evaluated at xt- = 1 (likewise for
Cj). The intuition behind these heuristics is that if two siblings can be matched, then both the
parent node and one child node can be eliminated.

The heuristics simultaneously traverse / and cin a depth-firstfashion, applyinga givenmatching
criterion to the children of each node visited. In the case that one sibling matches the other, we



can eliminate the parent node by returning the result of recursing on the i-cover of [fj-E, Cj-E]
and [fjJT,CjJT]. In the case where the siblings don't match, we recurse on each child, and return a
node rooted at x,- and pointing to the results of the two recursions. Thus far, we have experimented
with using only a single matching criterion throughout the traversal. However, one can imagine
applying different criterion depending on the context.

Since BDDs with complemented output pointers are used, if two siblings cannot be matched
in their uncomplemented forms, then it would seem beneficial to try matching one sibling to the
complement of the other sibling. In this case, the parent node remains, but we need recurse on only
one incompletely specified function.

The other condition for which we test is inspired by the restrict operator: if fj is independent
of Xi (i.e. fj-E = fj-T), then we keep it so by not attempting to match the children. This is
accomplished by returning the result of recursing on the function [fj, CjJS + CjJT]. The intuition
behind this rule, called no-new-vars, is that it seems detrimental to introduce a new variable into
the support of fj. However, this is not always the case [7]: let / be a function independent of x
with a "large" BDD, and let c = xf + x f. Then, by introducing x into the support, a cover for
[/, c] of size two results, namely, the function x.

It is never beneficial to introduce a variable which is in neither the support of / nor c. All of
our algorithms guarantee that this never happens.

Thus, there are three parameters in our generic, top-down approach to matching siblings: 1) a
matching criterion, 2) a match-complement flag, and 3) a no-new-vars flag. Different combinations
of these parameters give rise to the heuristics listed in Table 2. Two of the heuristics are simply
constrain and restrict. There are four heuristics listed which are not unique: since checking for a
complement match has no effect on osdm, 3 and 4 are the same as 1 and 2, respectively; and since
no-new-vars has no effect on tsm, 10 and 12 are the same as 9 and 11, respectively.

Pseudo-code for the generic top-down approach is presented in Figure 2. The first call to
bdd.getJ>ranches returns the then and else branches of / if fid —topid. Otherwise, (when / is
independent of topid) it just returns / for both branches. The calls to bdd.getJ>ranches keep the
traversals through / and c in lock-step by splitting / and c only when their top variables are topid.
The function isjmatch takes as input the matching criterion, the complement flag, and a pair of
incompletely specified functions. If a match can be made (for osdm and osm, it tries in both
directions), then it returns the i-cover.

It is easy to find small counter-examples to show that none of these heuristics are optimal. We
give a few here. To specify a function, the values of the function on the leaves of the binary decision
tree are listed from left to right, as suggested by Figure lc. A don't care value for an incompletely
specified function is indicated by d. For each example, we give the instance of the problem, the
solution found by the heuristic, and a minimum solution, in that order.

1. constrain: (dl 01), (11 01), (01 01).

2. osm-td: (dl 01 Id 01), (01 01 11 01), (11 01 11 01).

3. tsm-td: (Id dl dO Od), (10 01 10 01), (11 11 00 00).



Matching match- no-new- Name/
Criterion compl vars Comment

1 osdm no no constrain

2 osdm no yes restrict

3 osdm yes no same as 1

4 osdm yes yes same as 2

5 osm no no osmjtd

6 osm no yes osm.nv

7 osm yes no osm~cp

8 osm yes yes osmJbt

9 tsm no no tsmjtd

10 tsm no yes same as 9

11 tsm yes no tsm.cp
12 tsm yes yes same as 11

Table 2: Heuristics based on matching siblings.

In addition, these examples demonstrate that for some heuristics, one heuristic is not always better
than another. In particular, comparing constrain, osm.td and tsmjtd, both osmjtd and tsmjtd find
a minimum in example 1, constrain and tsmJ,d in example 2, and constrain and osmjtd in example
3.

In the special case where c is a cube, all the algorithms do find a minimum solution. The
intuition behind this is that for two subfunctions [/j,cj] and [fkt^k] rooted at a given level, when c
is a cube, then either Cj or c* is zero, or Cj = c^. In the first case, if the care function of a function
is zero, then that function will be "eliminated" entirely. In the latter case, if there exists a common
cover for the two functions, implying they agree on the care points, then a common cover will be
found, even though both subfunctions are minimized separately.

Theorem 8 Let [/, c] be an incompletely specified function where c is a cube. Then constrain
produces a minimum solution to EBM.

Proof By Proposition 7, we only need to show that the size of the BDD is never increased. The
key is that for each node in the BDD for /, at most one node can be created in the result.

Consider the algorithm in Figure 2 when it is specialized to the case of constrain and c a cube.
Since no-new-vars and compl are FALSE, the conditions at 2 and 4 will never be true. Since c is
a cube, then if c depends on topid, a match will always be found at condition 3 because one child
will be don't care. If c is independent of topid, line 5 will be executed, where topid will be fid.

Hence, the only points where nodes can be created are lines 1 and 5. In both cases, nodes are
created at locations in the binary decision tree where a node exists in the corresponding location
in /. To complete the proof, we need to show that a shared node does not become "unshared".
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function generic_td(mcrtn, compl, no_new_vars, /, c) {
assert (c ^ 0);

1 if (c = 1 or is_constant(/)) return /;
if (cacheJookup(/, c, &ret)) return ret;

fid - get.varJd(/); eld = get.varJd(c); topid = MIN(/Jd, eld);
bdd_get.branches(/, kfJT, kf-E, topid);
bdd_get_branches(c, iicJT, SccE, topid);

2 if ((/ is independent of eld) and (no_new_vars = TRUE)) {
/* keep / independent of eld */

ret —generic.td(mcrtn, compl, no_new_vars, /, (cJT + c-E));
3 } else if (is_match(mcrtn, FALSE, fJT, cJT, f-E, c_£, knew.f, knewjc)) {

/* matched siblings without complement */
ret —generic_td(mcrtn, compl, no_new_vars, new.f,new.c);

4 } else if (compl and is_match(mcrtn, TRUE, /_T, cJT, f-E, c_E,&neiy_/, &neiy_c)) {
/* matched siblings with complement */

temp = generic_td(mcrtn, compl, no_new_vars, new.f, new-c);
ret = topid •temp + topid •temp;

} else {
/* no match can be made */

tempjT = generic_td(mcrtn, compl, no_new.vars, fJT,cJT);
temp-E = generic_td(mcrtn, compl, no_new_vars, fJS}c.E);

}
ret = topid • tempjT + topid •temp-E;

cache_insert(/, c, ret);
return ret;

Figure 2: The generic algorithm for matching siblings in a top-down fashion.

Consider a node in / with multiple incoming pointers. We must argue that node creation occurs
at most once for such a node. The key observation is that all the non-zero care functions for this
node, associated with the different incoming pointers, are the same since c is a cube. Thus, in each
non-zero instance, the subfunction is optimized in exactly the same manner, whether node creation
occurs at lines 1 or 5. In fact, the result is found in the cache on subsequent calls. Thus, whatever
sharing occurred before, still occurs, function. •

The theorem for the other heuristics can be argued similarly. As a side note, Touati, et al. [10]
showed that constrain just reduces to the Shannon cofactor when c is a cube.



3.3 Minimizing at a Level

The heuristics based on matching siblings take a local approach by just trying to match siblings.
In this section a more global approach is taken, trying to match as many functions as possible at
a given level in the BDD.

The basic procedure is to first choose a level i at which to apply minimization. The second
step is to choose a set of incompletely specified functions below level i. For this set, a "matching
graph" is constructed according to a selected matching criterion, indicating which functions can be
matched. The graph is "solved" to yield a set of i-covers for the functions. Finally, the original /
and c are updated with the new subfunctions. This procedure is called "minimizing at level i"; the
individual steps are detailed in the following subsections.

3.3.1 Choosing Functions to be Examined

In minimizing at level i, we try to minimize the number of nodes pointed to from level i or above.
This is done by matching subfunctions [fj,Cj], such that both fj and Cj are pointed to from level i
or above. Such subfunctions are gathered by traversing the BDDs for / and c in depth-first order,
terminating the recursion whenever a pair of nodes both below level i are reached. Only unique
pairs are added to the set.

Since this set may grow very large, we propose two methods to limit the size. The first simply
limits the size of the set. When the limit is reached, the resulting set is processed. Then the
traversal is continued, building a new set. An advantage to this method is that subfunctions which
are nearby in the BDD will be grouped together, enhancing the possibility of reduction.

The second method is to add only subfunctions [fj, Cj] such that fj is rooted at level *+1. This
effectively minimizes the number of nodes at level i +1. These two methods are orthogonal and can
be combined. In our current implementation, we do not limit the size of the set, preferring to trade
runtime for quality. The largest set encountered so far had size 513, for a BDD with approximately
5000 nodes.

A major expense in this procedure is performing a complete traversal of the BDD down to level
t, every time a different level is selected for optimization. However, if i is simply incremented at
each step, it may be possible to make the traversal incremental.

3.3.2 Matching A Set of Functions

The previous step produces a set of incompletely specified functions. The next step is to match as
many as possible to reduce the final BDD size.

Definition 9 Given a set of incompletely specified functions S and a matching criteria mat, the
function matching minimization (FMM)problem using mat is to finda minimum set ofincompletely
specified functions R, such that for each function in S there exists an i-cover in R. Furthermore,
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it must be possible to obtain each function [/, c] in R by performing matchings using mat among
the functions in S that are i-covered by [f,c].

For each matching criterion a matching graph is defined. We then show how to process the graph
to solve FMM. First, we look at osm.

Definition 10 The directed matching graph (DMG) for the distinct functions [/i, ci],..., [/r, cr] is
a directed graph with r vertices, and with a directed edge from vertex j to k iff [fj, Cj] osm [fk, cj.

Proposition 11 Let H be the DMG for a set S of incompletely specified functions. Assume H has
m vertices, k of which are sink vertices (i.e. vertices with no outgoing edges). Then, a minimum
solution to the FMM problem using osm has k functions.

Proof First note that H is acyclic. This follows since osm is transitive, and if [/i,ci] osm [/2,C2]
and [/2,C2] osm [/i,cj, then the two incompletely specified functions are equal, i.e. they have the
same values on their care points, and have the same don't care functions. However, by definition
of DMG, the incompletely specified functions must be distinct.

Choose the k functions corresponding to the sink vertices, to be in the set R. These are the
functions that cannot be matched to any other functions in S. Now, any function in S can be
matched to one of the functions in this set, since osm is transitive. Furthermore, if two different
functions match a third function, then by definition of osm, the third function is a common i-cover
for the two functions. There cannot be any smaller set than R, since the functions in R cannot be
matched to any other function in S. •

We can solve FMM for osm by simply performing a depth-first search on the DMG and gathering
the functions at the sink vertices as the i-covers. Note that Definition 10 and Proposition 11 carry
over when the matching criterion is osdm; we do not discuss this case further.

Since an osm match uses don't cares from only one of the functions, we can prove that applying
minimization at level i using osm does not lose the optimum solution below level i. By this, we
mean that there exists an assignment to the remaining DC points such that the number of nodes
below level i is equal to the number of nodes below level i in some minimum solution. The intuition
behind this is that when [fj,Cj] is matched to [fk,Ck] using osm, [fj,Cj] need not be implemented,
while the full freedom for [/fc, cjt] is preserved. The caveat is that applying osm at level i may lose
the optimum solution in the superstructure at and above level i.

Definition 12 Let Ni(g) be the number of nodes below level i in the BDD for g, and Ni[f,c] be
the minimum of Ni(g) over all covers g of [/, c].

Theorem 13 Assume that a set of osm matchings is performed at level i for function [/, c], re
sulting in [/'jC*]. Then, there is a cover g' of [Ac7] such that Ni(g') = Ni[f,c].
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Proof Let g be a cover of [f,c] such that Ni(g) = Ni[f,c]. Consider the subfunctions of [f,c]
pointed to from at or above level t remaining after the osm matches are made. Since, we have not
used any of the DCs of these functions (because we have done only osm matchings), we still have
the same freedom for these functions that we originally had. We could just assign these DCs as
they are assigned in g. The conclusion follows after noticing that there are no extra BDD nodes
for the nodes that have already been matched. •

If minimization is applied near the top, then the number of nodes in the superstructure is small.
Hence, this result implies that applying osm near the top will keep us near the optimum solution.
As a corollary, we have the following.

Corollary 14 osm matching at level 1 does not lose the optimum solution.

Proof There are only 2 functions pointed to from level 1. If a match is made between these
functions, then there are no nodes in the superstructure (i.e. level 1) after matching. Hence, by
the theorem, the optimality is not lost. If a match is not made, then no don't cares are assigned,
so the original freedom remains. •

For the tsm case we proceed in a fashion similar to osm, except that since the matching graph
is undirected, solving FMM is not as straightforward.

Definition 15 The undirected matching graph (UMG) for the functions [/i,cj,...,[/r,cr] is an
undirected graph with r vertices, and with an edge between vertex j and k iff [/j,cj] tsm [/jt,Cfc].

Lemma 16 The functions [/i,ci],...,[/r,cr] have a common cover iff [fj,Cj] tsm [A,cjt] for all
l<j,fc< r.

Proof («£=) Let m € Bn. We need to show that a cover exists for each function such that each
of these covers has the same value on m. Assume to the contrary: then there exist [fj,Cj] and
[fk,Ck] such that Cj(m) = Ck(m) = 1 and fj(m) ^ /t(7n); but, this contradicts the assumption that
[fj,Cj]tsm[fk,ck].

(=*-) If they have a common cover, then they match pairwise. •

FMM using tsm can be reduced to the graph-theoretic problem of covering the vertices of a
graph with a minimum number of cliques.

Theorem 17 Let H be the UMG for a set S of incompletely specified functions. Then a minimum
clique cover for H is a minimum solution to FMM using tsm.

Proof Assume that a minimum clique cover for H is given and is of size K. By Lemma 16, all
the functions of a clique have a common cover. For each clique, produce an i-cover by matching all
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the functions in the clique. The set of i-covers produced in this manner yields a solution to FMM
using tsm of size K.

To prove that a minimum solution to FMM using tsm has size of at least K, suppose there is
a solution of size less than K. By Lemma 16, for each set of matched functions in such a solution,
we can create a clique. The set of these cliques covers H, and hence is a clique cover of size less
that K, a contradiction. •

Since the clique partitioning problem is NP-complete [5], heuristics are used. The following
algorithm returns a clique cover of an undirected graph.

1. Start with some uncovered vertex v. Let cur.set = v.

2. For each outgoing edge (u, w) of cutset, where w is not in curset, check whether w has an
edge to all the vertices in cur.set. If it does, add w to cur.set. If there are no such edges, go
back to step 1, reporting cur.set as a clique.

We implemented this algorithm for our experiments. In addition, we propose two optimizations to
find larger cliques containing matches of "nearby" functions.

1. Assume vertex v is in a 2-clique and a 10-clique. If the vertex corresponding to the 2-clique is
visited first, then the 10-clique is missed. To avoid such situations, the vertices are processed
in decreasing order of the number of outgoing edges, i.e. the vertices with more outgoing
edges are processed first.

2. Functions that are siblings (or near-siblings) may match, but may be placed in different
cliques, depending on the order in which vertices are visited when constructing the cliques.
It generally seems beneficial to make such local matches where possible. To encourage such
matches to be selected, we assign a weight to each match indicating the distance between
two functions. For a subfunction g, let x\ denote the value on X{ used to reach g. Then the
distance between two functions g and h rooted at level k is defined as2:

Jfc-i

dist(g,h)=Y,\xi-xi\2k'~i~1

This sumis over i such that neither x\ nor x^ is d (a don't care). For example, if g and h are
siblings, then dist(g,h) = 1. Or, if the path to g is 1000(210 and the path to h is IdOllll,
then dist(g, h) = 9.

In building a clique, we would like to choose edges with smaller weights. To do this, the
outgoing edges of cur.set are processed in ascending order of weights. Now, the edges with
smaller weights have greater chance of being selected.

For our experiments, we have implemented one heuristic from the class of heuristics based on
matching at levels. This heuristic, optJv, visits the levels in increasing order, and uses tsm to
match functions.

2Based on the distance measure defined in [10].
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3.4 Scheduling

Our heuristics fall into two distinct classes, sibling matching and matching at a level. However,
better results might be achieved by schedulingthe basic transformations outlined in Sections 3.2 and
3.3. The idea is to apply safer transformations first. These have less possibility of losing the optimal
solution, and consume less don't care information. Then, potentially more powerful, but less safe,
transformations are used. We propose the following schedule, whose theoretical justification derives
from the fact that osm can only lose the optimal solution in the superstructure.

Apply the following top-down, with initiaLlevel = 0:

1. Consider the window of initiaLlevel through initiaLlevel + window-size, where window-size is
a given parameter.

2. Apply osm on siblings top-down in the window.

3. Apply tsm on siblings top-down in the window.

4. Apply osm on levels top-down in the window.

5. Apply tsm on levels top-down in the window.

6. If the number of remaining levels is less than stop-to-down, a given parameter, call a bottom-
up minimizer, and stop. Otherwise, let initiaLlevel = initiaLlevel + window-size.

At each iteration, only the functions in a given window are considered. The idea is that if a
match can be made using tsm in higher levels at the expense of losing osm matches in the lower
levels, we may save BDD nodes. As we progress down the BDD, we cannot save many nodes by
making matches at higher levels; so, it may be advantageous to apply a bottom-up minimizer to
assign the rest of the DCs.

We can trade runtime for quality by choosing which optimizers to apply. Applying minimization
at a level is generally expensive, so steps 4 and 5 should be skipped if runtime is a concern.
Experimental verification of what values work well for window-size and stop.to.down remains.

4 Experiments

4.1 Purpose

The purpose is to measure the relative quality of the heuristics, and to compare the absolute size
of the results to / to see how much reduction we can expect. The experiments are not intended to
measure the impact of minimization on applications using the heuristics—this we leave for future
research.
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4.1.1 Overview

We tested the heuristics on the problem of checking equivalence between two FSMs. Specifically, the
SIS [9] command verify_fsm -m product checks equivalence using the approach described in [10],
and makes heavy use of BDD minimization. In this application, minimization on a function [/, c]
is currently performed using constrain. For the experiments, we intercept each call to constrain,
apply all heuristics to [/, c], measuring their runtimes and resulting sizes, and then return the result
of constrain to verify_f sm. Actually, some of the calls to constrain assume the special property of
constrain mentioned in Section 1, so it would be incorrect to return any cover of [/, c]. However,
since the impact of minimization on the application is not being measured, each call can be treated
as an instance of EBM.

Measuring runtimes is a delicate issue since the BDD package caches the results of earlier
computations. Thus, when two heuristics make similar transformations on a particular example,
the second heuristic can take advantage of the cached computations from the first, leading to
reduced runtime. To avoid this, we invoke the BDD garbage collector, before each heuristic is
called, to flush the caches of computations from earlier heuristics.

Theorem 8 can be exploited to calculate a lower bound on the size of a minimum solution to an
instance [/, c] of EBM. Let p be a cube of c. Constrain finds a minimum solution to the instance
[IiV], which we denote by fp. Since / •p C / •c and / + c C f + p, then fp is at least as small as
any cover of [f,c]. By applying constrain on many such cubes p and noting the largest size seen, a
lower bound can be obtained to measure the absolute quality of the heuristics.

Cubes of c can be generated by traversing its BDD in a depth-first order, returning a cube each
time the constant 1 is reached. A large number of cubes may be found this way, so the lower bound
computation is limited to the first 1000 cubes. Another approach would be to look for large cubes
(ones with few literals) by finding short paths from the root of c to the constant 1.

It is worth noting that if fp is a cover of [/,c], then it is a minimum solution. This suggests
another heuristic: apply constrain to each cube in a subset of cubes of c; if a cover is found,
then stop; if the set is exhausted, then apply some other heuristic. This approach has an obvious
limitation: the function (dO Id) shows that there does not always exist a cube p of c such that fp
is a coverof [/, c] (with either cube of c, fp is a constant function).

To some extent, the degree of minimization possible is correlated inversely with the size of the
onset of c. Indeed, when c = 1, no minimization is possible, and when c = 0, a solution of size
one exists. However, between these extremes, this correlation may be weak. For example, if / is
already a minimum cover of [f,c], then regardless of the size of the onset of c, no minimization is
possible. On the other hand, if c C /, then regardless of the size of the onset of c, a result with one
node exists. Nonetheless, it is insightful to analyze our data based on the size of the onset of c. The
number we compute for this, consetsize, is the percentage of the number of onset points in c to the
size of the Boolean space over the union of the variable supports of / and c (i.e. sup(f) Usup(c)).
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4.1.2 Detailed Description

In addition to the nine heuristics mentioned in Section 3 (eight sibling-match heuristics and one
level-match heuristic), we tested four other "heuristics". Three of them are f.and-c and f-or.nc
(which just compute the bounds / •c and / + c), and f-orig (which is simply / itself). The fourth
is min, which is the best result found over all the heuristics; all comparisons are made relative to
min.

We ran verify_f sm, comparing a machine to itself, on the following benchmarks: s344, s386,
s510, s641, s820, s953, sl238, sl488, scf, styr, tbk, multl6b, cbp.32.4, minmax5, and tic. We
aggregate the data over all the benchmarks to better understand the average performance of the
heuristics (since there always exist an instance where one heuristic will perform better than another,
it does not make sense to compare individual instances). We filtered out all calls where c is a cube
or where c is contained in / or /, since most heuristics find a minimum in these cases.3

We accumulate the results of the heuristics into different buckets, depending on the size of
/. For each order of magnitude, we have a different bucket (i.e. 0-9, 10-99, etc.). Furthermore,
within each of these buckets, we subdivide the data based on consetsize into three sub-buckets:
< 5%, 5%-95%, > 95%. For our experiments using verify_fsm, we had no entries in the 5%-95%
sub-buckets. We plan to investigate if this is inherent in checking for machine equivalence.

All calls (2704) < 5 % calls (2532]1 > 95 % calls (172)
Heur. Total %of Run Rank Total %of Run Rank Total %of Run Rank

Name Size min time Size min time Size min time

low_bd 17260 29 63K - 13188 51 62K - 4072 12 780 -

min 60415 100 0 - 25645 100 0 - 34770 100 0 -

osm-bt 65067 108 292 1 27261 106 254 1 37806 109 38 2

tsm_cp 66563 110 2059 2 28757 112 2017 5 37806 109 42 2

osm_nv 67198 111 308 3 27319 106 276 2 39879 115 32 5

restr 67707 112 239 4 27828 108 229 3 39879 115 10 5

tsm.td 68524 113 2134 5 28645 112 2099 4 39879 115 35 5
optJv 92101 152 5940 6 57331 224 3654 6 34770 100 2285 1

osm-cp 112430 186 949 7 74624 291 908 7 37806 109 40 2

const 114503 189 1077 8 74624 291 1067 7 39879 115 10 5
osm_td 114503 189 936 8 74624 291 902 7 39879 115 34 5

f-orig 479514 794 0 10 422735 1648 0 10 56779 163 0 12

Land-c 2034640 3368 637 11 1994761 7778 631 11 39879 115 6 10
Lor_nc 2051088 3395 638 12 1994761 7778 633 12 56327 162 5 11

Table 3: Totals over all examples; over exampleswhere c-onsetsize < 5%; and over examples where
c-onseLsize > 95%.

The heuristics opt.lv, f.ancLc and f.or.nc are not guaranteed to find the minimum when c is a cube.
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4.2 Discussion

Table 3 lists the primary set of results of our experiments. The first column lists the heuristic
names4 sorted in order of column two. For each heuristic, column 2 gives the cumulative sizes of
the results over all calls (2704 calls). Column 3 gives the percentage of the corresponding entry
in column 2 to the total size for min given in the second row of column 2. Column 4 gives the
cumulative runtimes in seconds on a DECstation 5000/125, with 32 megabytes of physical memory.
Finally, column 5 gives the rank order of the heuristics based on the cumulative sizes of column 2.
The second set of columns gives the same data over all calls where conseLsize < 5% (2532 calls),
and the third set where c.onseLsize > 95% (172 calls).

First, some general remarks. The f.and-C and f.or.nc heuristics perform badly and will not be
discussed further. The lower bound computation shows that over all the calls, our min is only 3.4
times greater than the lower bound. It is not known how tight this bound is. However, there is
reason to believe it can be increased by examining more cubes, and bigger cubes. In particular,
when we increased the limit of cubes enumerated from 10 to 1000, this percentage increased from
24 to 29.

Over all the calls, we see a sizable reduction in the size of /: roughly a factor of 8, from 480K
nodes to just 60K (for min). The reduction is understandably much greater when c.onsetsize is
small, and hence when there is more room for optimization (in this case a factor of 16, while only
a factor of 2 for large onsets). The reduction observed suggests that BDD minimization can be
expected to have a considerable impact on the performance of applications employing minimization.

The runtimes can be interpreted as follows. The heuristic optJv is easily the most costly. The
current implementation requires the BDD to be traversed from the root to level i each time i is
changed. It may be possible to avoid this cost. Among the heuristics which match siblings, the
runtime is determined by the complexity of the matching test and of the computation to compute
the common i-cover. The tsm heuristics are the most complex in both regards.

The data over all calls in the first set of columns is dominated by the instances where c.onsetsize
< 5%, and hence the first two set of columns are qualitatively the same. Hence, we focus on
analyzing the last two sets of columns.

When consetsize < 5%, there is much freedom for optimization - in some sense, too much.
Matches are easily found; the difficulty is in determining which matches to make. For optJv, the
conjecture is that it cannot distinguish the good matches from the bad matches, and hence performs
poorly. It is possible that the optimizations for constructing cliques suggested in Section 3.3.2 will
alleviate this. Among the sibling-match heuristics, those that have no-new-vars turned off seem
to make matches that unnecessarily introduce new variables, thus limiting the scope for reduction.
Hence, we observe that the heuristics with no-new-vars turned on take the top five spots. Those
with no-new-vars turned offtake the bottom three spots (disregarding f.andLc, f.or.nc, and f.orig).

When consetsize > 95%, the scenario is much different. Now matchings are hard to find, and
any extra effort made to find matchings is rewarded. Since optJv takes a global approach to finding

4restr is restrict, and const is constrain.
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Heur. Lorig const restr osm.bt tsm.td opt_lv
Lorig 0.0 26.9 0.6 0.4 5.3 37.8

const 57.5 0.0 5.4 4.7 15.2 58.4

restr 62.5 32.7 0.0 0.3 17.2 64.5

osm_bt 62.5 33.9 4.3 0.0 18.2 65.0

tsm-td 72.9 39.1 20.6 18.9 0.0 64.7

optJv 46.3 26.1 11.0 10.3 2.6 0.0

min 74.3 41.9 24.2 21.9 22.4 66.4

Table 4: Head-to-head comparisons, over all examples.

20.00 40JOO «0j00 «0j00

wtthfc%o!min

Figure 3: Plot showing what percentage of calls to a heuristics are within which percentage of the
heuristic min.

matchings, it is not surprising that it is never out-performed in this category. The sibling-match
heuristics fall into 2 categories: those that check for complement matches, and those that do not.
Since checking for complement matches increases the likelihood of finding a match, the category
that checks for complement matches performs about 6% better than the category which does not.

Considering all three sets of data, the matching criterion does not seem to have much effect
on the results. It is possible that the / and c functions are generally such that when one type of
match can be made, then usually all three types (osdm, osm, and tsm) of matches can be made.
This would explain the similarity in results.

The above analysis tracks well with the size of /, and hence we do not show the data broken
down by the size of /. In all the calls, |/| is less than 10K.

Another way of analyzing the data is provided by Table 4. In this table, entry (i,j) gives the
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percentage over all calls in which heuristic i finds a strictly smaller result that heuristic j. We show
only a representative subset of the heuristics. For example, (1,2) tells us that constrainincreased the
size of / 26.9% of the time. Column 6 tells us that optJv is routinely bettered by other heuristics.
However, this data is dominated by the case when consetsize < 5%; in the corresponding table
for consetsize > 95%, this column is all zeroes, which means that it is always the best. Entry
(7,4) tells us that min bettered osm.btonly 21.9% of the time. Another way of saying this is that
osrrLbt was the smallest among all the heuristics 78.1% of the time.

This table reveals a few more pieces of information. The sum of entries (itj) and (j,i) tell us
how much "orthogonality" there is between heuristics i and j: the greater the sum, the more the
orthogonality. For example, the sum for constr and tsm.td is 54.3%. Also, note that tsm.td betters
osm.bt slightly more often than the converse case, even though osm.bt was the best overall. Finally,
the row for low.bd (although not shown here) tells us that all of the heuristics in Table 4 (except
for f.orig) achieve the lower bound 26.2% of the time.

A final method of analyzing the data is provided in Figure 3. Data is shown for five representa
tive heuristics, which in ascending order of y-intercept are: f.orig, optJv, constr, restr, and tsm.td.
The data point highlighted by the black dot is "read" as follows: on 76% of all the calls to con
strain, constrain was within 40% of the smallest result found. This gives a measure of how robust
a heuristic is: if a curve is high in the graph, then even when a heuristic does not find the smallest
result, it is not too far off. By definition, all the curves increase monotonically toward 100%. The
y-intercept of a curve indicates how often a heuristic finds the smallest result. We see that the
classes represented by restr and tsm.td consistently perform about 20% better than constrain in
this respect. Over all the data, optJv performs poorly; again, however, in the corresponding graph
for consetsize > 95%, the curve for opt.lv is pegged at 100%.

Overall, osm.bt is preferred, since it combines good minimization with small runtimes. The
restr heuristic is a close competitor.

It seems clear that a heuristic which combines the strong points of the level-match and sibling-
match heuristics would be robust and would yield good results. In particular, we would like such a
heuristic to consider many functions for possible matching, but favor matchings of nearby functions.
The proposals that we have put forth in the body regarding scheduling and building cliques are a
step in this direction.

5 Conclusion

In this paper, we presented a general framework for heuristic solutions to the BDD minimization
problem, which is an important problem having many applications. In particular, we defined three
matching criteria of differing levels of strength. We give two methods for choosing functions as
matching candidates: siblings and functions at level i. We defined the general function matching
problem and described exact solutions to the problem for the three matching criteria.

We proved that the sibling-match heuristics are optimal when c is a cube. Based on this, we
formulated a technique to compute a lower bound on the size of the result. Also, we proved that
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applying minimization at level i using the osm match is optimal with respect to the number of
nodes below level i.

Finally, a thorough set of experiments was done to characterize the relative power of the heuris
tics, and their absolute power in minimizing a function. For the FSM equivalence application on
a standard set of benchmarks, on average, we were able to find a cover one-eighth the size of the
original input. Also, we observed a distinct difference in the heuristics based on the size of the
onset of the care function: when it is small, those heuristics that avoid introducing new variables
work best; when it is large, those heuristics which examine many possible matches work best. We
suggest combining the merits of both of these classes of heuristics to achieve a robust heuristic that
finds small covers. The best heuristic overall is osm.bt, with restrict a close second.
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