

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

CIRCUIT DELAY MODELS AND THEIR

EXACT COMPUTATION USING TIMED

BOOLEAN FUNCTIONS

by

William K. C. Lam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/6

19 January 1993

CIRCUIT DELAY MODELS AND THEIR

EXACT COMPUTATION USING TIMED

BOOLEAN FUNCTIONS

by

William K. C. Lam, RobertK. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/6

19 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CIRCUIT DELAY MODELS AND THEIR

EXACT COMPUTATION USING TIMED

BOOLEAN FUNCTIONS

by

William K. C. Lam, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/6

19 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Circuit Delay Models and Their Exact Computation Using Timed
Boolean Functions *

William K.C. Lam Robert K. Brayton Alberto L. Sangiovanni-Vincentelli
Department of EECS, University of California, Berkeley

Abstract

In this paper, we introduce a new circuit delay model, delay by sequences of vectors, which
captures the essence ofviability andfloating delays. Then,we classify delays ofcircuits according
to both the delay models of the gates making up the circuits and the family of inputs to the
circuits. In this classification, we give sufficient conditions under which floating delayis the same
as delay by sequences of vectors; these sufficient conditionsare true for most practical circuits.
This implies that the assumption of arbitrary node values used in the floating delay model is
not too conservative. Thus, delay by sequences of vectors (hence, viability and floating delays),
transition delay, and cycle time delay have coherent definitions under the same framework.

Next, we study the problem of computing the exact circuit delays under both bounded and
unbounded gate delay models, for some of which onlyupper bounds are known. By using a new
formulation technique, called Timed Boolean Function, we formulate the problem ofcomputing
the exact delays as a mixed Boolean linear programming problem for which we give efficient
algorithmsto compute the exact delays of combinational circuits for transition delay and delay
by sequences of vectors.

The algorithms consider a subset of paths at one time and only the paths potentially re
sponsible for the delay of a circuit are considered. Moreover, the core computation of the
algorithms are composed of two computationally efficient algorithms: linear programming and
BDD manipulations.

We next compute floating (or viability) delays with the bounded gate delay model and show
that delays by sequences of vectors and floating (or viability) delays are invariant under both
bounded and unbounded gate delay models. Finally, we address the effect of gate delay lower
bounds on delays of circuits. We demonstrate the effectiveness of the method by giving exact
delay results for all ISCAS benchmark circuits (except C6188).

'This project is supported by Fannie and John Hertz Foundation and SRC under contract 92-DC-008, whose
supports are gratefully acknowledged.

1 INTRODUCTION 2

1 Introduction

Research for high performance systems inevitably invokes the problem of delay computation. The
pioneering work in [MB89] pointed out pitfalls in static timing analysis and took the innovative
approach of computing delays of circuits that observe the so-called monotonic speed-up property:
speeding up gate delays in a circuit never slows down the delay of the circuit. Since then there
has been much research on delay computation. There are two major types of delay models for
combinational circuits. The first type consists of viability delay [MB89] and floating delay [CD90],
the second type, transition delay [CD90], [DKM92]. In the first type of delay, node values in a
circuit are assumed to be arbitrary before they are determined by an input vector; and the delay of
the circuit is the earliest settling time under the input vector. The gate delay model for this type
of delay is implicitly the unbounded delay model, i.e. a gate's delay can vary from an upper bound
to zero; thus, viability or floating delays under the more general bounded gate delay model (i.e.
a gate's delay varies within an interval) have not been studied. On the other hand, for transition
delay, a second input vector is applied to a circuit after the circuit has settled under the first
vector. The delay of the circuit is the arrival time of the last output transition referenced to the
input transition. In this type of delay, gates in a circuit can have either bounded or unbounded delay
model. Although transition delay, or 2-vector delay, may not be appropriate for some applications,
e.g. asynchronous circuits, in which inputs are not just pairs of vectors, it is a good estimate for
cycle times of finite state machines under some conditions, [DKM92], [LBSV92b].

These two types of circuit delay model are not coherent. While transition delays explicitly
consider a specific family of input, namely, pairs of vectors, viability and floating delays do not,
but assume arbitrary node values. Further, the viability and floating delays are commonly used as
upper bounds for cycle times of finite state machines, even thought it is not obvious (no known
published results) whether these upper bounds are valid for cycle times. Because viability and
floating delays assume implicitly "last input vectors", which may be ambiguous in the cycle time
scenario. In fact, short paths in a finite state machine should be considered in using viability and
floating delays as upper bounds for cycle times. In this paper, we classify models of circuit delays
by both the delay models of the gates in the circuits and the families of input waveforms to the
circuits. With this classification, the essence of viability and floating delays is captured by "delay
by sequences of vectors". So, under this classification the two types of circuit delay models can be
regarded as delays under two different families of input. And viability and floating delays with the
bounded gate delay model can be studied with the same methodology as transition delay with the
bounded gate delay model. Furthermore, cycle times for finite state machines can also be regarded
as a class of delay in this classification with the input family being periodic signals.

Once the meaning of delay is clarified, we investigate the problem of computing exact delays,
not just relatively tight upper bounds. Since viability or floating delays with the bounded gate
delay model have not been studied, it is not known whether the existing computational techniques
[MB89], [CD90] [DKM91] provide the exact delays in this case. The computation for transition
delay with the bounded gate delay model in [DKM92] give only upper bounds.

Since computing the exact delays of circuits involve not only logical functionalities but also
topological constraints (i.e. bounds on gate delays) of the circuits, an effective representation

2 WHAT IS DELAY? 3

mechanism should integrate functionality and timing information to elucidate their interactions.
In this paper, we propose an algebraic representation, called Timed Boolean Functions. With this
representation, a circuit's logic and timing, hence all its timing behaviors, are captured with simple
equations. Therefore, all timing properties ofthecircuit can be verified via algebraic operations on
the Timed Boolean Functions.

With TBF's, we formulate the problem of exact delay computation as a mixed Boolean linear
programming problem1, for which we present algorithms to compute the exact transition delays
and delays by sequences of vectors.

2 What is delay?

Before discussing delay computation, we clarify the meaning ofdelay; how should we define delay
so that the definition will reflect our intuitive conception of delay? A common conception is that
the delay ofa circuit should bethe time ofthelatest output transition (referenced to thelast input
transition) over all possible input signals and gate delay variations within the specifications. There
are two drawbacks to this definition. First, a last input transition is assumed; this assumption
may not hold in situations like finite state machines in which the inputs to combinational circuits
are periodic. Second, this definition may be too pessimistic by assuming all possible input signals
in situations where input signals have a regular pattern, e.g. next state signals to the combina
tional circuits in finite state machines are periodic, whereas it may be reasonable in asynchronous
applications.

Therefore, the delay of a circuit depends not only on the delays of gatesin the circuit but also
the nature of the input signals. ^In previous research, the effect of input signals on the delay of
a circuit is not clearly distinguished; hence, delays computed assuming arbitrary inputs are only
estimates for specific applications. For instance, floating delays are used as estimates for cycle
times offinite state machines. Here we propose to classify the delay of a circuit according to the
types of input signals as well as the delay model of the gates in the circuit. In an asynchronous
environment, input signals to a circuit may be trains of pulses with arbitrary separations between
pulses; then the delay ofthe circuit should be the latest output transition over all input sequences
of pulses. That is, we consider sensitization by sequences of pulses. As will be seen later, this
definition of delay is equivalent to the floating delay in the literature for most practical conditions.
For input signals being a pair of vectors, we call the arrival time of the lastest output transition
the transition delay [DKM92] or 2-vector delay. This delay is useful for estimating the cycle times
of finite state machines, [DKM92], [LBSV92b]. Finally, when the input signals are sequences of
periodic vectors, we call the delay of the combinational circuit its cycle time delay, in accordance
with customary use of the term "cycle time".

2.1 Formalization of Delay Models

We would like to generalize the notion of delay models so that the notions of gate delay models
and of circuit delays become coherent. First, consider delay models for single simple gates, e.g.

We note that this is different than mixed (0-1) integer programming

2 WHAT IS DELAY? 4

AND, OR, INVERTER. From our previous discussion on input waveforms, it is easy to see that
for single simple gates the delays with inputs being a sequence of vectors or a pair of vectors are
the same; hence, delays of simples gate are well understood without referring to input excitations.
Due to manufacturing variations, the delays of simple gates are usually specified by intervals, e.g.
[dmtntdmax], or distribution functions. Therefore, the delay models of simple gates are well defined
with [dm%n, dmax] or distribution functions. In this paper we only discuss the first type of delay
model.

The delay models of circuits or complex gates can be derived recursively from the same notion
of gate delay models. A circuit is a connection of gates (or sub-circuits) with well defined delay
models. The delay model of the circuit depends on the circuit topology, delay models of the gates
in the circuit, and the family of inputs to the circuit.

Definition 1 1. Let circuit C be a connection of gates with delay model Mg. andJ, the family
of inputs to C (assume that circuitC has already settled before the applications of X). Then,
the circuit delay model is: [Dmin{C,Mg> %)> Dmax{C, Mg, X)} for interval type, Dmin is the
earliest arrival time of the last output transition and Dmax, the latest arrival time of the last
output transition.

2. Forle {w~,a;+,2,P}, where u~ symbolizes sequences of vectors applied at t < 0 with the
last vectoratt = 0, lj+, sequences of vectors applied att>0 with the first vector att = 0, 2,
a pair of vectors, and P, periodic sequences of vectors, we define the following models.

• Dmax(C, Mg, lj~): the latest arrival time of the last output transition, when a sequence
of arbitrary number of vectors of arbitrary intervals between vectors is applied to the
inputs att < 0, and the last vector is applied at t = 0. Dmin(C, Mg, w~) is the same
as Dmax(C, Mg, w~) except it is the earliest arrival time of the last output transition.

• Dmax(C, Mg, o>+): the latest arrival time of the first output transition, when a sequence
of arbitrary number of vectors of arbitrary intervals between vectors is applied to the
inputs att>0, and the first vector is applied att = 0. Dmin(C, Mg, a>+) is the same
as Dmax(C, Mg, u>+) except it is the earliest arrival time of the first output transition.

• Dmax(C, Mg, 2); the latest arrival time of the last output transition, when a pair of
vectors are applied with the first vector applied at t = -co, the second vector, att = 0.
Dmtn(C, Mg, 2) is the earliest arrival time of the first output transition under the same
setting.

• Dmax(Cy Mg, P): minimum cycle time of an FSM. This will be defined more precisely
in another paper. For now Dm,n(C, Mg, P): not defined.

3. The gate delay models considered are: Mge {[dfin,d^a%[dfax,dfax],[Q,d^ax]}, commonly
referred as bounded, fixed, unbounded delay models, respectively.

In this paperonly Dmax{C, Mg, X),Xe {2,u>~} is of interest in computing the delay of a circuit;
hence, it will be referred to simply as the delay of circuit, and written as D(Mg, J), if the circuit
in discussion is understood.

3 EXACT DELAY COMPUTATION: FUNCTIONAL AND TOPOLOGICAL FEASIBILITY 5

3 Exact Delay Computation: Functional and Topological Feasi
bility

Computing the exact delays of a circuit consists of two basic steps. First, choose input vectors to
sensitize the longest sensitizable path. This step deals with the logic functionality of the circuit.
Second, choose gate delay assignments within bounds so that the sensitization is realizable and
path lengths are maximized if realizable. This step deals with topological constraints of the circuit.
The above two steps are iterated until the longest sensitizable and realizable path(s) are found.

Previous methods for computing delays involve the first step only and assume all sensitizable
paths are realizable. Thus, only upper bounds on delays are provided.

The following example illustrates the two basic steps for computing the exact 2-vector delay.

PI. [5.6]

Figure 1: Example for Delay Computation

Example 1 Referring to Figure 1, the delays of the gates are shown in the intervals. To find
the delay for a falling input transition, we start with Pi. If Pi propagates the last falling output
transition, then the values of the side inputs at the AND gate should be non-controlling, implying
the sensitization condition that at the time the buffer on Pi switches the buffer on P3 must still
maintain the first input vector, which is 1, while the inverter maintains the second input vector so
that the inverter's output is 1. Thus, |P3| > |J\| and \P2\ < \Pi\. Now, we need to check whether
the sensitization is realizable, namely, whether |P3| > |Pi| and \P2\ < |Pi| are feasible. It is easy to
see that |P3| > |Pi| and \P2\ < |Pi| are not feasible for the bounds given, thus, Pi is not the longest
sensitizable and realizable path for falling transition. This process continues with other paths until
the longest sensitizable and realizable path is found.

In order to deal with the complexity of exact delay computation, a systematic and implicit
method should be devised to manage functional and topological computations. To achieve this,
we introduce a new formulation machinism, Timed Boolean Functions (TBF's), to characterize
circuits.

4 Timed Boolean Function

Definition 2 1. A waveform space Wis a collection of mappings f: R>-+ {0,1}.

2. A Timed Boolean Function (TBF) is defined recursively as follows.

• The identity function F (i.e. F(v) = v, v € W), is a TBF.

• IfG: Wni ~ W,andH : Wn* ^W are TBF's, then, G,G-H,G + H are also TBF's.

4 TIMED BOOLEAN FUNCTION

Example 2 Let x, ye Wbe the waveforms shown in Figure 2(a) and 2(b); then the TBF/(a, b)(t)
a(t —1)© b(t + 1) represents the waveform shown in Figure 2(c) if a=x, b=y.

xn

TO

1
1
1
1

1 1 1 •
jw

1
rc-i)

1
1
1
1

ICO

!
YB»Q

ra-QXM

-\

'«*!> i i
1 1
1 1
1 1 1 i

i i

Figure 2: Representing Waveforms by TBF

4.1 Modeling Timing Behavior with TBFs

Before representing a circuit by a TBF, each component of the circuit needs to be modeled by a
TBF.

Here, we only illustrate through examples the modeling process for some commonly encountered
gates.

XI Tl

X2

X3
T3

XI

XI

tt>

TtfeJ

Tm4
Tfe3

(b)

T=0

Figure 3: Modeling With TBF

1. Gates characterized by a single delay for each input-output pair. The complex gate shown
in Figure 3(a) has three inputs; input X{ has a delay rt- to the output. This gate is modeled
with the TBF:

y(t) = xi(t - ri) + x2(t - t2) + x3(t - r3).

5 FORMULATION FOR EXACT DELAY COMPUTATION 7

2. Buffers with different rising and falling delays. Let rr and tj be the rising and falling delays,
respectively. lirT > tj, then the buffer can be modeled as:

y(t) = x(t-Tr)'x(t-rj).

and if rr <tj, the buffer can be modeled as:

y(t) = x(t - Tr) + x(t - Tf).

3. Gates with different rising and falling delays for each input-output pair. Rising (falling)
delay is the delay when the output is rising (falling). Each input is modeled by a buffer with
different rising and falling delays; the "functional block" assumes zero delay. The overall TBF
for the gate isobtained through the usual functional composition. An example of an OR gate
is shown in Figure 3(b). Input 1 has a rising delay of 1 and a falling delay of 2, while input
2 has a rising delay of 4 and a falling delay of 3. The buffer modeling input 1 is

i(-l)-Mi(*-2)

and input 2 is

x2{t - 4) •x2(t - 3).

Therefore, the OR gate is

xi(t - 1)+ a?i(* - 2)+ x2(t - 4) •x2(t - 3).

A common problem in digital circuit design is pulse shrinkage or dilation. Pulse shrinkage
(dilation) effects occur when a pulse passes through a chain of gates with unequal rising and
falling delays; the pulse width becomes narrower (wider) at the end of the chain. With the
above modeling technique, this effect is captured.

Once each gate of a circuit is modeled, the TBF for each node in terms of primary inputs can
be obtained by composing the gate model's TBF with the TBF's of the fanins of that gate. When
the TBF of a circuit output is found, the circuit's behavior at any time can be calculated from the
TBF. Suppose f(t,xi,....,xn>du...idm) is the TBF of an output of a circuit, where a?i,...,a;n are
the primary inputs, and du..., dm are the delays of gates in the circuit. The value of the output at
t = k is given by f(k1xu....,xn,du...1dm).

5 Formulation for Exact Delay Computation

With TBF's, exact delay computation can be formulated nicely as amixed Boolean linear program
ming problem. The delay of a circuit is the maximum arrival time of the last output transition over
all gate delay assignments and afamily ofinput vectors. Mathematically, let /(*, xu—, xni du...,dm)
be a TBF of the circuit, where a?i, ...,xn are the primary inputs, rft- is the ith gate's delay variable
whose range is [dfin,d^ax]. At t = oo, all nodes in the circuit have settled down to their steady
statevalues; hence the function /(oo, x1,..., xn, du..., dm) is the steady state function of the circuit,

5 FORMULATION FOR EXACT DELAY COMPUTATION 8

and is equal to the static logical function. If the last output transition of a circuit occurs at t = v,
then the output value of the circuit at t = v+ is equal to the value of the circuit's static logical func
tion, and the output value at t = v~ is not equal to this, but is equal to /(v~,xi, ...,a„, d\, ...,dm).
Therefore, the time of the last output transition is the maximum t such that:

/(*» xu —> £n, di,..., dm) ^ /(oo, a?!,..., xn,di,..., dm)

With bounds on gate delays, the exact delay computation of a circuit can be formulated as a mixed
Boolean linear programming problem as follows.

Delay = max t

/(*,xi,...,xn,di,...,dm) ^ /(oo,a;i,...,a;n,di,...,dm)
dfin< di <dfax

The above formulation applies for both 2-vector delay as well as delay by sequences of vectors.
The semantics of this mixed Boolean linear programming is illustrated by the following example.

Figure 4: Example for Mixed Boolean Linear Programming

Example 3 Refer to Figure 4- Assume the input signals are a pair of vectors switching simulta
neously att = 0. Let (a(0~),6(0~)) be the vector applied from -oo to 0, (a, 6), the vector applied
att = 0. The TBF of the circuit is:

f{ty a, 6,di, d2) - a(t - d2) + a(t -d\- d2)b(t -d\- d2)

The static logical function is:
/(oo, a, 6,di, d2) = a + ab = a

The ranges of the gate delay variables are [1,2]. The TBF variables can take on either the input
vector applied before time 0 or after time 0. For example, TBF variable a(t - d2) equals to a(0~) if
t < d2 or equals to a ift>d2. Any assignment of TBF variables to their respective before or after
values x(0~) or x induces an associated linear programming problem. For instance, the Boolean
assignment to the TBF variables:

a(t —d2) = a
a(t - di - d2) = a(0~)
b\t-di-d2) = 6(0")

6 SOLVING MIXED BOOLEAN LINEAR PROGRAMMING FOR 2-VECTOR DELAY 9

induces following linear programming problem:

maxi

t - d2 > 0
t - di - d2 < 0

1 < di < 2

l<d2 < 2

The maximum is t = 4. For this Boolean assignment, the TBF becomes

a + a(0-)&((T)

which is not equal to the static function a. Since the longest topological path length is also 4, the
maximum t from the linear programming is indeed the delay of the circuit. Therefore, finding the
delay of a circuit is equivalent to finding a Boolean assignment to TBF variables such the induced
linear program gives the maximum t and the TBF function evaluated at the assignment is not equal
to the static logical function.

6 Solving Mixed Boolean Linear Programming for 2-vector De
lay

We assume the pair of vectors (a;(0~), «(0+)), (or (s(0~), x) for short) is applied to input x at t = 0.
Notation: The term £,- dj is the sum of gate delays along the zth path. We denote J2i dj by fct-,

called a time constant, and J2i dfax by k^ax, and £t- dfin by k?in. The longest topological length
is denoted by L.

The idea in solving the mixed Boolean linear programming problem is to vary t from L. At each
point t, the functional inequality /(t,Xi,...,xn,di,...,<*,„) ^ /(oo,xi,...,a:n,di,...,dm) is checked.
If this functional inequality holds and the associated linear program is feasible, the delay of the
circuit is lower bounded by the solution of the linear program. Otherwise, t is decreased further.
The details of this search are discussed below.

6.1 Valuation of TBF variables

The argument of a TBF variable is a function of t and some dt's. For instance, the argument of
the TBF variable x(t —k) is t —k. In this paper, the arguments of all TBF variables are of this
form, k = J} d,-, is the sum of gate delays along a path, and has minimum and maximum values
of kmin = £df,n and kmax = Erfrax» respectively. For a specific value of t, we call the valuation
of x(t - k) positive if t > kmax because x(t - k) evaluates to x(0+), or simply x. Similarly, the
valuation is negative If t < kmin because x(t - k) evaluates to z(0~). If kmin < t < kmax, the
valuation can be either x(0+) or x(0~), depending on delay assignments to dt-. In this case, we call
the valuation, delay dependent.

7 COMPUTATIONAL ISSUES 10

6.2 Searching for the maximum t

To find the maximum t of the mixed Boolean linear programming, we divide the search domain
[0, L] into intervals with the points {k^ax}. Consider an interval [a, 6] = [k^ax, kfax] containing no
k™ax but possibly some k™n. For the TBF variable x(t - kq) and such an interval [a,6], only the
following three cases can happen: 1) k™n > 6, 2) k™ax < a, 3) k™in € [a, b]. For case 1),x(t - kq)
evaluates to x(0~), or negative, whenever t 6 [a,6]. For case 2), x(t-kq) evaluates to a:, or positive,
whenever t 6 [«,&]• For case 3), valuation of x(t - kq) is delay dependent at t = 6". Therefore,
all the possible TBF valuations for t e [a, 6] are included in the TBF valuations at t = 6". Hence,
the TBF of a circuit is equal to its static function for t € [a,6] if and only if the TBF is equal to
its static function at t = b". That is, instead of examining all the points in any such interval not
containing any fcj10*, we only need to examine the end of the interval at 6~.

At the initial search value t = X, the valuations of all TBF variables are positive; hence, the
TBF function is equal to its static logical function. Then t is decreased into the next search interval.
To compare the TBF of the circuit to its static function, the phase (positive or negative) of a delay
dependent valuation must be resolved. Each resolution induces a linear constraint; for instance,
choosing a positive phase induces the inequality t > £dt\ Naively, each resolution of any delay
dependent valuations should be tried, and the resolved TBF compared with its static function. If
they are unequal and the induced constraints are feasible, the maximum t of the associated linear
programming problem (using the induced constraints and the delay bounds) for this instance of
resolution is a candidate for the delay of the circuit. The delay of the circuit is the maximum of
the candidate delays of all the resolutions. In a later section, a technique using BDD's to implicitly
enumerate the resolutions is presented. If, for every resolution, either the TBF's of the circuit
is equal to its static function or the resolution is not feasible, then the last output transition of
the circuit can not happen in the interval. Therefore, t is decreased to the next interval, and the
equality and feasibility checking processes are repeated.

7 Computational Issues

Here, we discuss efficient techniques to represent TBF's by multi-level networks and to enumerate
implicitly TBF resolutions using BDD's.

7.1 TBF Networks

Explicitly representing TBF's results in substantial memory usage. Thus, a TBF for a circuit is
represented by a multi-level network constructed from the original network of the circuit. The
original network can be regarded as a representation of a TBF with TBF variables of only positive
valuation, i.e. TBF evaluated at t = L. A TBF network at an arbitrary t is just a generalization of
this view. In a TBF network, paths are partitioned into three groups, the positive group consisting
of paths whose maximum lengths are less than t, the negative group whose minimum lengths are
greater than t, and the delay dependent group where t lies between the paths' maxima and minima.
Recalling the relationship between paths and TBF variables, the positive group of paths correspond
to the TBF variables with positive valuations. Analogously for negative and delay dependent paths.

7 COMPUTATIONAL ISSUES 11

In the negative group, a path that was connected to primary input x is now connected to a new
primary input x(0~). Similarly in the delay dependent group, a path that was connected to primary
input x is now connected to a new primary input a;*. Primary inputs for paths in the positive group
remain the same.

The exact construction of the TBF network from the original one is similar to that of an
independent work in [MSS+91]. In general, gates are duplicated to separate paths through the
circuit into three groups corresponding to positive, negative, and delay dependent valuations.

Figure 5: TBF Network

Example 4 Refer to Figure 5. Figure 5(a) is the original network. Each gate's maximum delay is
1 and minimum delay is 0.9. Att = 2.8, path {gl-g2 —gZ-gb} is negative, because its minimum
length is 3.6. Paths {gl - g2- gb,g2 —g3 - g5} are delay dependent, because t lies between their
respective minima and maxima. The other paths are positive. The TBF network at t = 2.8 is
shown in Figure 5(b). It is easy to check that the network in Figure 5(b) represents the TBFof the
original network at t = 2.8.

Once a TBF network is constructed to represent a TBF of a circuit at t, BDD for the TBF
network is compared with the BDD of the original circuit. However, before the BDD for the TBF
network can be constructed, the delay dependent inputs, e.g. A* and B* in example 5, must be
resolved.

7.2 Delay Dependence Resolution

For a TBF with n delay dependent valuations, there are 2n instances resolutions; For instance, the
TBF f(t, x(0+), s(0~), x*) has delay dependent valuation a:*, and thetwo resolutions are x* = x(0+)
and x* = x(0~). Hence, for large rc, it is infeasible to try each resolution independently. Here, we
present a technique of using BDD's to implicitly enumerate all resolutions. The idea is to modify
the TBF's so that the new TBF's select the resolutions automatically. This is achieved by replacing
each delay dependent valuation, say x*, with sxx(0+) + sxx(0~). Then, if the resolvent sx is 1, the
resolution x(0+) is selected, otherwise, x(0~) is selected. With this replacement, the example TBF

8 FLOATING DELAY AND DELAY BY SEQUENCES OF VECTORS 12

becomes

/(*, x(0+), ar(O-), x*) = /(*, x(0+), z((T), sxx(0+) + sxx(0~))
This modified TBF is then compared with its static function by comparing their BDD's. If

they are not equal, the exclusive-OR of their BDD's is computed. Now for each cube of the XOR
BDD, the feasibility of the cubes of resolution variables are checked. If a resolvent sx has a literal
of 1 in the cube, this means the positive resolution, i.e. x(0+), was selected, hence it induces the
constraint t - £dt- > 0. A literal of 0 induces t - £d; < 0. A literal of 2 means either positive or
negative resolution can be selected, i.e i-£ d; is either > 0 or < 0, hence, no constraint is induced.
From experiments with ISCAS benchmarks, this enumeration technique proves to be very efficient.

7.3 Algorithm for Computing Exact 2-vector Delays

Let f(t) be a TBF of a circuit, ijft's, the time constants. The 2-vector delay of the circuit can be
found as follows.

Sort K^ax in descending order.
Delay_found=0;
while(!Delay_found){

t=next K?™;
Evaluate TBF /(*);
for each TBF variable x(t —k){

x(t - fc) -• x(O-) if kmin > t;
x(t -k)-+ s(0+) if kmax < t;
x(t -k)-+ sxx(0+) + sxx(0~) if kmax > t > kmin;

}
if (/(*) + /(«)){

if(3 cubes in BDD(f(t)) ©BDD(f'(oo)) feasible)
Delay_found=l;
Delay= maximum of linear

programming over all feasible cubes.

}
}

}

Theabove algorithm for computing theexact 2-vector delay using the bounded gatedelay model
has been implemented and the results are shown in section 12.

8 Floating Delay and Delay by Sequences of Vectors

The viability and floating delays assume the unbounded gate delay model, thus, it is not known
how theses delays will beaffected by lower bounds on gate delays. In this section, we relate floating
delay to delay by sequences of vectors and show that for most practical circuits, delay by sequences

8 FLOATING DELAY AND DELAY BY SEQUENCES OF VECTORS 13

of vectors, viability, and floating delay are the exact delays under both bounded and unbounded
gate delay models.

The floating delay [CD90], as well as viability delay, is essentially path sensitization by a single
vector with the condition that the logical values at the nodes in the circuit are assumed unknown
until the input vector has propagated. Unknown node values are assumed because input vectors
preceding the sensitization vector may cause the node values to be arbitrary.

The setting for delay by sequences of vectors is: each gate's delay may vary between a lower and
an upper bound, the delay is the latest arrival time of the last output transition, when a sequence
of an arbitrary number of vectors with arbitrary intervals between vectors is applied to the inputs
and the last vector is applied at t = 0.

Arbitrary input sequences can actually happen in practical situations but whether nodes in a
circuit can take on arbitrary values is not obvious. A natural question is then: is floating delay
too conservative for practical circuits, or how do delay by sequences of vectors and floating delay
compare?

To compare the floating delay with the delay by sequences of vectors, we observe that floating
delay is always greater or equal to delay by sequences of vectors, because of the assumption of
arbitrary values at nodes. Therefore, if for each path sensitizable under the floating delay model
there exists a sequence of vectors such that the path propagates the last output transition, then
floating delay is equal to delay by sequences of vectors. Whether floating delay is equal to delay
by sequences of vectors depends on the gate delay models involved, because there exist circuits
with gates of fixed delays such that their delays by sequences of vectors are less than their floating
delays. An example is shown below.

>H>-

Figure 6: Circuit Illustrating Floating Delay not Equal to Delay by Sequences of Vectors

Example 5 Referring to Figure 6, the delay for each gate is a fixed constant 1. Node b and node
c always have opposite values; hence, the delay by sequences of vectors is 0. However, the floating
delay is 2. Practical gates may not have the identical delays; they may differ by a small amount.
Then, the output of the circuit in Figure 6 can only be glitches of width equal to the delay difference
between the inverter and the buffer, assuming zero inertial delays on all gates. But practical gates
on the other hand have finite inertial delays; so the narrow glitches will not appear at the output.
Thus, small variation in gate delays may be rendered as fixed constants by finite inertial delays.
Therefore, for circuits with well controlled delays, floating delays may be larger than delays by
sequences of vectors. However, in this paper, we will not discuss the effect of inertial delays.

Since practical circuits do not have fixed gate delays due to variations in the manufacturing
process, then, will variable gate delays constitute equivalence of floating delay and delay by se
quences of vectors? To resolve this, we examine whether a sensitizable path under the floating

8 FLOATING DELAY AND DELAY BY SEQUENCES OF VECTORS 14

delay model propagates the last input transition under some sequence of vectors. If such a path
propagates the last transition, the side inputs on each gate along the path must be initialized by
the sequence of vectors such that at the moment the transition arrives a gate all its side inputs
take on non-controlling values.

Without loss of generality, we assume the last vectors of all sequences of vectors are applied at
t = 0 in the following discussion.

Definition 3 1. Let g be a gate on a given path t, irg the partial path ofir that ends at g, and
its a side path of g. The side path relative arrival time at g for ir3 is \ng\ —\tts\, where \ir\ is
the length of path tt.

2. A gate in a circuit is said to propagate a transition from a fanin if a transition at the fanin
causes a transition at the gate's output and there is no transition at other fanins at the time
of the transition at the fanin.

3. A path is said to propagate a transition if a transition can propagate through all the gates on
the path.

Theorem 1 Let ir be a sensitizable path in the floating delay model. If all relative arrival times
for side paths ofir from the same primary input are different, i.e. the side paths originating from
the same primary input and reconvening to a gate on w have different relative arrival times, then
there exists an input sequence such that w propagates the last output transition.

Proof. See Appendix.
The condition on side path relative arrival times in the above Theorem can be guaranteed by

the following topological condition on a circuit: every gate in the circuit has variable delay, i.e.
dm,n ^ dmox, and no two distinct paths have the same set of gates, (this condition can always be
alleviated by adding a buffer of variable delay at a lead). If this condition is met, gate delays can
be chosen to meet the requirement of side path relative arrival times. This fact is stated in the
following Lemma.

Lemma 1 If every gate in a circuit has variable delay and no two distinctpaths have the same set
of gates, then for any path ir there exists a gate delay assignment d*, where d* € [df"ax —e,dfax]
for infinitesimal e, such that all relative arrival times for side paths of n from the same primary
input are different.

Proof. See Appendix.
Therefore from Theorem 1 and Lemma 1, we know that for most practical circuits, floating

delay is equal to delay by sequences of vectors:

Theorem 2 If every gate in a circuit has variable delay andno two distinct paths having the same
set of gates, then, floating delay = D([dm,n,dmo:c],u;~).

Proof. See Appendix.
If gates with fixed delays are allowed, then D([dmin,dmax],u~) < floating delay.

9 EXACT DELAY BY SEQUENCES OF VECTORS 15

9 Exact Delay by Sequences of Vectors

We have shown that delays by sequences ofvectors, and floating (or viability) delays give the exact
delays if a circuit has variable gate delays and no two distinct paths consist of the same set of
gates. There are efficient algorithms computing the viability delays [MSS+91] and floating delays
[DKM92]. Even though, we present an algorithm to compute the delay by sequences ofvectors to
illustrate the use ofTBF's and that the computations of the 2-vector delay and delay by sequences
of vectors can be done under the same framework with TBF's.

To compute theexact delay by sequences ofvectors, we examine how the algorithm for 2-vector
computation can be modified. Since there is no restriction on the sequence ofvectors before t = 0,
there can be a vector at any time before time 0. Thus, the only difference in computing the delay
by sequences of vectors and the delay by a pair of vectors is when t < J^d?10*; then x{t - £dt)
evaluates to the input vector at time t - £ dt- instead ofdelay dependent or negative.

The following discussion on computing the exact delay by sequences of vectors is organized as
follows. Recall that there are two steps in delay computation: finding a feasible delay assignment
(topological constraint) and checking whether this delay assignment sensitizes the longest sensitiz
able path (functional constraint). We first give a feasible delay assignment, then a search algorithm
under this delay assignment, and show that once the search algorithm detects anoutput transition,
i.e. the TBF is not equal to its static function, the delay assignment produces the delay of the
circuit.

9.1 Satisfying Topological Constraints

The exact delay by sequences of vectors of a circuit is the worst delay over all possible delay
assignments. We will show that the following delay assignment is the worst assignment. Consider
the delay assignment such that dfax - d, < 6, where 6 is an infinitesimally small number and that
for each primary input x all &t's in {k{: 3x(t-ki)} are different. Inother words, for this assignment,
all paths starting at primary input x have different lengths but within coftheir maximum lengths,
where e is some fixed multiple of S. The existence of such a delay assignment is warranted by
Lemma 3 in the Appendix.

9.2 Searching Algorithm for Delay

Again we divide the search domain [0,Z] into intervals separated by the points {fc?10*}. Under the
delay assignment of section 9.1 , all fct's are within € of k?ax's which are upper bounds of some
intervals. Let f{t) be the TBF of the circuit and /(oo) its static function.

For such an interval [a, 6], we want to determine whether f(t) ^ /(oo) for t € [a, 6]. As
t varies from b to a, TBF variables in f(t) evaluate accordingly. For instance, TBF variable
x(t - ki) = x(0+), if t > ki, and x(t - ki) becomes a new Boolean variable representing the input
vector at time t if t < ki. In order to have f(t) ^ /(oo) for t € [a,6], the /(*) with the greatest
flexibility should be chosen. This is the one where t creates the most new Boolean variables. Since
all ki e [a, b] are within cof bby this particular delay assignment, i.e. b>ki> b-efoi all ki € [a, b],
then at t = b- c all TBF variables with ki e [a, 6] become new Boolean variables; thus, all these

9 EXACT DELAY BY SEQUENCES OF VECTORS 16

TBF variables with the same primary input become distinct new Boolean variables, because all
their fct's are numerically different under the delay assignment. In summary, at t = b- e, all TBF
variables with ki € [a,6] become distinct new Boolean variables; hence, this delay assignment is
a worst case delay assignment. Therefore, for interval [a, 6] only the point t = b- e needs to be
examined.

At each t, wecheck f(t) ^ /(oo). Once this holds in an interval, [a,b], t is maximized to obtain
an upper bound of delay. However, the value of t is only € less than the maximum possible value
and e can be arbitrarily small. Therefore, the maximum t is 6.

9.3 Satisfying Functional Constraints

To show that 6 is the exact delay, wedemonstrate an input sequence that indeed invokes an output
transition at 6 - c. Compute /(& - c) ©/(oo) and let v be a Boolean vertex of f(b - e) © /(oo).
Construct the input sequence to the primary input x as follows. For each TBF variable x{t- A:;),
create a pulse of arbitrarily narrow width centered at 6 - €- ki and of value equal to the literal of
the TBF variable in v. Apply this input sequence to the circuit. It is easy to see that the output of
the circuit at t = b—€ is not equal to its static value, because the output of the circuit at t = b—c
is /(& - c), which is not equal to /(oo). Therefore, there is an output transition at t = 6- e. Since
6- € is the first time it invokes an output transition, it is the delay.

It is interesting to see that the above discussion holds for any values of lower bounds on gate
delays; therefore, the delay by sequences of vectors is the same for all lower bounds not equal to
upper bounds. Formally,

Theorem 3 // in circuit C there are no two distinct paths consisting of the same set ofgates, then

. D(C,[dminrdma%u>-) = Z?(C,[0,dmaa?],u;-),V dfin < dfax.

Unlike delays by sequences of vectors which may be smaller for circuits with gates of fixed
delays (see Example 5),floating delays are thesame whether thecircuits have fixed or variable gate
delays.

Theorem 4 The floating delay (which is the same as the viability delay [MB89]) is invariant under
fixed (worst case), unbounded, and bounded gate delay models

Proof. See Appendix.

9.4 Algorithm for Computing Exact Delays by Sequences of Vectors

Assume every gate in a circuit has variable delay and no two distinct paths having the same set of
gates. Let f{t) be a TBF of a circuit, K{% time constants. The delay by sequences of vectors for
this circuit can be found as follows.

Sort K*1** in descending order.
do{

*=next K?ax',

10 EFFECTS OF GATE DELAY LOWER BOUNDS 17

Evaluate TBF /(*);
for each TBF variable x(t - k),{

x(t -k)-> z(0+), if kmax < t;
x(t - k) -*• new Boolean variable YXi if kmax > i;

}
}while(/(t) =/(oo))
Delay=t.

10 Effects of Gate Delay Lower Bounds

As seen in the previous section, lower bounds on gate delays have no effect on floating delays and
delay by sequences of vectors. When will lower bounds of gate delays have an effect on 2-vector
delays? As stated below, whether lower bounds of gate delays impact 2-vector delays depends on
the relative magnitudes of the 2-vector delays and lower bounds.

Theorem 5 In a circuit, if all lower bounds of all paths' lengths are less than the circuit's 2-
vector delay, then further decreasing the lower bounds of the gate delays of the circuit willnot speed
up the circuit. Symbolically, for a circuit C with gate delay model [df*,'n,dflaar], if max{k^in) <
D(Ci[aTiniaTa%2), then £>(C,[dJ",n,dpaa;],2) = D{C,[xfn,d?ax]i2)1Vxfn < d?in.

Proof. See Appendix.
If max(k?in) > X>(C,[d?"'n, d?a% 2), then,

D(Cy[d?inia?a%2) < D{C\[xm™,d?a%2\\l x?™ < <*?"'"

It is commonthat gates' lowerbounds are somepercentagesof their upper bounds. In this case,
it is easy see whether precision of a manufacturing process has an impact on the 2-vector delays
of circuits. Let dmm = / • dmax. Then, the range of / in which lower bounds have no effect on
2-vector delay is:

D(C,[0,dr%2)
1 L

where D(C,[Q,dfax),2) is the 2-vector delay on unbounded gate delay model, and L is the longest
topological path length. The aboveinequality has the interpretation that if a manufacturingprocess
does not have the precision to achieve the threshold value, / < D&*i0**fMXh2) t̂nen a iess precise
manufacturing process will fabricate circuits with the same 2-vector delays. In addition, since
£>(C,[0,dJ"ax],2) is only valid for estimating cycle time [LBSV92b] when > \, / < 0.5 is not
worthwhile.

11 An Example: 4-bit Ripple Bypass Adder

In this example, we find the carry output delay (2-vector) of a 4-bit ripple bypass adder, and
illustrate how TBF's can be expressed implicitly with circuits. A 4-bit ripple bypass adder is

11 AN EXAMPLE: 4-BIT RIPPLE BYPASS ADDER 18

shown in Figure 7. The ranges of gate delays are shown in parenthesis next to the gates. Gate go
models the delay from the previous stage. The sum bits are ignored.

Al Bl A2 B2 A3 B) M «

AOttMICCJ-l>*B!C0-l)

"i r
At Bi

Figure 7: 4-bit Ripple Bypass Adder

1. The longest topological path length is 40, contributed by the gates 00,01,02,03,04,05- We
divide the search domain [0,40] into intervals by the points {fcf*ax}. The fcj"aar's are 40, 24,
20,... Thus, the first two intervals are [24,40] and [20,24].

2. In the first interval [24,40], we evaluate the TBF at t = 40". From the circuit, only the path
0o - g\ - 02 - gz - 9a - 05 is evaluated to be delay dependent; all other paths have positive
valuations. Thus, the input of the path 00 - 0i - 02 - 03 - 04 - 05 that was connected to c0 is
now connected to eg, which denotes delay dependent valuation. The TBF network at t = 40"
is shown in Figure8.

—>

CO*

Figure 8: TBF Networks for 4-bit Carry Byass Adder, t = 40"

BDD's are built for the TBF network and the original circuit. The result is that both circuits
have the same functionality. Thus, the search moves to the next interval [20,24].

12 EXPERIMENTAL RESULTS 19

CO*

Al Bl A2 B2 A3 B3 A4 B4

Figure 9: TBF Networks for 4-bit Carry Byass Adder, t = 24"

For t = 24", both paths go-gi -02-03-04-05 and 00-05 evaluate to be delay dependent,
while all others evaluate positive. The TBF network for t = 24" is shown in Figure9. By
comparing the BDD's for this TBF network and the original network, this TBF network is
not equal to the original circuit. Then the XOR BDD is computed; a cube of this XOR BDD
is cq = l,co(0") = 0, and Ai©£,- = 1. The induced linear programming problem is:

t

t

2<

2<

max/

<

<

00

9i

00 + 05

00 + 01 + 02 + 03 + 04 + 05
<20

<4,i=l,...,5

The maximum value is 24, which is also the upper bound of the search interval. Therefore
the 2-vector delay of this 4-bit carry bypass adder is 24.

12 Experimental Results

We implemented the algorithms for computing the exact 2-vector delays and delays by a sequence
of vectors. The implemented codes can use as upper bounds results from other heuristic delay
computation programs, and start computing exact delays from there. The experimental data
shown below did not use any heuristic upper bound program as a front-end. In the final version of
this paper, we will use the efficient program in [MSS+91] to find delay bounds and then proceed
from the bounds to exact delays. With this addition, we expect the CPU times to improve by a
factor of about 10 to 100.

The following ISCAS benchmarks were run on a DECstation 5000 (38 mips) with a standard
sis script and then mapped to the mcnc library. The actual delay values used are the ones given in
the library. The minimum gate delay is assumed to be 90% of the maximum gate delay.

13 CONCLUSION 20

Circuit Inputs Outputs Approx. Gates Top. length Exact 2-vector Delay CPU time (sec)
C432 36 7 160 39 37.3 2868.28

C499 41 32 202 28.9 28.9 231.85

C880 60 26 383 32.8 32.8 4.45

C1355 41 32 546 28.9 28.9 423.76

C1908 33 25 880 41.1 27.2 12140f
C2670 233 140 1193 36.5 36.5 2.69

C3540 50 22 1669 53.1 51.2 1247.31

C5315 178 123 2307 51.6 45.9 717.43

C6288 32 32 2406 140 fail to build bdd.

C7552 207 108 3512 59.8 59.8 4.04

fUpper bound, out of memory in building XOR BDD; exact delay will be given in the final version.

Circuit Inputs Outputs Approx. Gates Top. length Exact Delay by seq. vec. CPU time (sec)
C432 36 7 160 39.0 37.3 1815.6

C499 41 32 202 28.9 28.9 191.6

C880 60 26 383 32.8 32.8 3.73

C1355 41 32 546 28.9 28.9 376

C1908 33 25 880 41.1 27.2 12140

C2670 233 140 1193 36.5 36.5 1.84

C3540 50 22 1669 53.1 51.2 592.8

C5315 178 123 2307 51.6 45.9 455.6

C6288 32 32 2406 140 memory out
C7552 207 108 3512 59.8 59.8 2.92

As can be seen the delays by sequences of vectors or floating delays and delays by a pairof vectors
are the same for all the IS CAS benchmarks.

13 Conclusion

In this paper, we introduced a new circuit delay model, delay by sequences of vectors, which
captures the essence of viability and floating delays. Then, we classified delays of circuits according
to both the delay models of the gates making up the circuits and the family of inputs to the
circuits. In this classification, we gave sufficient conditions under which floating delay is the same
as delay by sequences of vectors; these sufficient conditions aretrue for most practical circuits. This
implies that the assumption of arbitrary node values used in the floating delay model is not too
conservative. Thus, delay by sequences of vectors (hence, viability and floating delays), transition
delay, and cycle time delay have coherent definitions under the same framework.

Next, we studied the problem of computing the exact circuit delays under both bounded and
unbounded gate delay models for which previous research gives only upper bounds.

13 CONCLUSION 21

By using a new formulation technique, called Timed Boolean Function, we formulated the
problem of computing the exact delays as a mixed Boolean linear programming problem for which
we gave efficient algorithms to compute the exact delays of combinational circuits for transition
delay and delay by sequences of vectors.

The algorithms consider asubset of paths atone time and only the paths potentially responsible
for thedelay ofacircuit are considered. Moreover, the core computation ofthe algorithms are com
posed of twocomputationally efficient algorithms: linear programming and BDD manipulations.

We next showed that delays by sequences of vectors, as well as floating delays and viability
delays are invariant under both bounded and unbounded gate delay models. Finally, we addressed
the effect of gate lower bounds on delays of circuits. We demonstrated the effectiveness of the
method by giving exact delay results for all ISCAS benchmark circuits (except C6188).

REFERENCES 22

References

[CD90] H. C. Chen and D. H. Du. Path sensitization in critical path problem. 1990 ACM
Workshop on Timing Issues in the Specification andSynthesis of DigitalSystems, 1990.

[DKM91] S. Devadas, K. Keutzer, and S. Malik. Delay computation in combinational logic
circuits: Theory and algorithms. IEEE/ACM International Conference on Computer-
Aided Design, Nov. 1991.

[DKM92] S. Devadas, K. Keutzer, andS. Malik. Certified timing verification and transition delay
of a logic circuit. Proc. of the 29th Design Automation Conference, June, 1992.

[HPS91] S. Huang, T. Parng, and J. Shyu. A new approach to solving false path problem
in timing analysis. IEEE/ACMInternational Conference on Computer-Aided Design,
Nov. 1991.

[LBSV92a] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Exact delay computation with
timed boolean function. UC Berkeley ERL memorandum: UCB/ERL M92/57, May
1992.

[LBSV92b] W. Lam, R. Brayton, and A. Sangiovanni-Vincentelli. Minimum cycle time of syn
chronous circuit with bounded delays. UC Berkeley ERL memorandum: UCB/ERL
M92/56, May 1992.

[MB89] P. McGeer and R. Brayton. Provably correct critical paths. The Proceedings of the
Decennial Caltech VLSI Conference, 1989.

[MSS+91] P. McGeer, A. Saldanha, P. Stephan, R. Brayton, and A. Sangiovanni-Vince ntelli.
Timing analysis and delay-fault test generation using path recursive functions. IEEE
International Conference on Computer-Aided Design, pages 180-183,Nov. 1991.

14 Appendix

Proof for theorem 1. Because tt is sensitizable in the floating delay model, there exists an input
vector v = (..., i^,...), where v* is the primary input of7r, such that for each gateon 7r thefollowings
are true. 1) If all fanins have non-controlling values under v, 7r is the last to be ofnon-controlling
value. 2) If there is a controlling value at a fanin of the gate under v, then it is the first to be of
controlling value, [CD90].

Now construct an input sequence of vectors for tt to propagate the last output transition as
follows. Let the last vector applied at t = 0 be v, and the vector applied before t = 0 be v' =
(...,v^,...). The remaining vectors are constructed so that as the input transition at x, v^ -* v^
arrives at a gate on 7r, all the side inputs take on non-controlling values. Consider gate g on 7r. If
the value -k at g is non-controlling, then all side inputs to g must have settled to non-controlling
values, because in this case it is the last to benon-controlling under v. So, the transition propagates
through g. If the value x at g is controlling, then the side inputs to g that have settled must settle

14 APPENDIX 23

to be non-controlling, because in this case t is the first to be controlling. For those unsettled side
inputs, construct the input sequence so that these side inputs take on non-controlling values at the
time of transition at 7r5, which is t = \wg\. The functions of these unsettled side inputs are the
TBF's at t = \vg\. A TBF variable in these TBF's has the form x(t - \na\), where ira is a side path
ofg ending at the side input. At t = \vg\, the value ofx(t- \va\) is x(\7rg\ - \tt3\), which is the value
of input at t = |7rs| - |7rs|, which is the side path relative arrival time. Thus, if \vg\ - |7rs| > 0 the
value of x(t— \xa\) is the value of v at primary input x, i.e. the TBF variable has settled;otherwise,
it is the input value at t = |7r5| - |7ra|. Since these side inputs have not settled, the supports of their
TBF's contain TBF variables that have not settled. Since all side paths from the same primary
input have different relative arrival times, all unsettled TBF variables can be regarded as different
Boolean variables. So, no two unsettled TBF variables are the same. Thus, we can find a Boolean
assignment to the unsettled TBF variables such that the TBF's of the unsettled side inputs take on
non-controlling values. If x(t —\irs\) has Boolean assignment 1, add a pulse of infinitesimal width
centering at t = \irg\ —\ir8\ with the value of the pulse equal to 1. We add such a pulse for each
TBF variable x(t —\ira\) and repeat for other primary inputs. Similarly for assignment of 0.

Now, suppose the constructed waveforms are input to the primary inputs; at t = \xg\, x(t—\ira\)
takes the value of its Boolean assignment; hence, the value of the side input is non-controlling at
t = \irg\. Therefore, when a transition arrives at g, all unsettled side inputs are non-controlling,
permitting the transition to propagate through.

For other gates on tt, we just add more pulses to the existing waveforms. This process can be
done without creating conflicting pulses on the same primary input at the same point on the time
axis, because relative arrival times for all side paths from the same primary input are different
along w, namely all |tt5| —\ira\ are different for all g on ir and all 7rfl's from the same primary input.

Therefore, the input transition vv —• vv propagates along 7r. Since this path is the last to be
non-controlling if all settled fanins are non-controlling and the first to be controlling if somefanins
are controlling, this transition is the last transition at the output. •

Proof for lemma 1. Consider \icg\ —|7ra|'s for the side paths from the same primary input,
where \irg\ = £d,- is the partial path length ending at gate g on it, and \ira\ = ^d,- is that of a
side path at g. Finding the required delay assignment is equivalent to finding an assignment on
dt's such that all \ng\ - |xs|'s are different.

Wefirst show that no two \irg\ —|7r8|'s havethe sameset of dt's, and then construct the required
delay assignment. Consider two \irg\ - |7ra|'s at the same gate, namely, \irg\ - \ir3l\ and \iTg\ - |7ra2|.
They do not have the same set of dt's because the two distinct paths ir3l and ir82 do not have the
same set ofgates, hence, d's. Consider two |7r |̂ - |7ra|'s at different gates on tt, namely, \t3i \—\irSl \
an<^ h"0aI ~ 1**21* ^et gate 02 be after gateg\. Then, any dt- between g\ and g2 is in 7rfl2 but not
in irgi and wai, because the side path 7rai never extends beyond g\. Since 7r32 is a side path of 7r52,
there is a dt- between g\ and g2 that is in 7r52 but not in 7r52. Then, this dt- is in |7r52| - |7r,2| but not
in \irgi\ —\nai\. Hence, they do not have the same set of di.

Denote \irg\ - \7Ca\ by £a •dt-, a G{1,-1}. Then, by lemma 2, the desired assignment can be
constructed. •

Lemma 2 IfallJ^a- di} where a G{1,-1} and di < d?ax, have different sets of di's, then there
exists an assignment d* on di's with d* G [d?ax - €,dj"ax], e is infinitesimal such that all^a- di

14 APPENDIX 24

evaluate differently.

Proof. Construct an assignment on d,-'s so that all J2a' ^i's evaluate differently. This construction
modifies an initial assignment iteratively; after each iteration, more £ a ' ^t's evaluate differently.
This procedure stops when all JZa • dt's evaluate differently. Start with the initial assignment
di = df10* and assume there are at least two £ a • d,'s evaluating to the same value; let them be
$1 and «2. Since s\ is not the same as s2, there is a dx that is in si but not in 52 (or vice versa).
Let 6 be the minimum of |5t- —5j|,V5; -^ Sj. Modify the delay assignment by decreasing dx by an
amount of """j ,e'. It is easy to see that now 5i and 52 do not evaluate the same, and £a •d,'s
that evaluated differently evaluate differently under this modified assignment, because each ^a-di
can decrease by no more than the minimum separation between neighboring J2a ' ^*,s- Continue
modifying the delay assignment until all £ a •d,'s evaluate differently. •

Lemma 3 // every gate in a circuit has variable delay and no two distinct paths have the same set
of gates, then there exists a gate delay assignment d* with d* € [dmax —€,dmax] e is infinitesimal
such that all paths from any primary input to all nodes have different lengths.

Proof. Since no two distinct paths have the same set of gates, hence, d,'s, the assignment can be
obtained by lemma 2. •

Proof for theorem 2. Let ic be a sensitizable path in the floating delay model in a circuit.
Then the floating delay of this circuit is the maximum of |tt|, i.e. when dt- = d™ax. If the circuit
meets the condition in theorem 2, lemma 1 guarantees a delay assignment such that the side path
arrival time (with respect to tt) requirement in theorem 1 is satisfied. Then, theorem 1 assures the
existence of an input sequence that propagates the last output transition. Therefore the delay by
sequences of vectors is equal to the length of tt under this assignment. Since this delay assignment
d* can be made arbitrarily close to dmox, the length of tt under this delay assignment is arbitrarily
close to the maximum of |jr|. •

Proof for theorem 5. Inthesearch for D(C,[x?in, d^ax], 2), thesearch region is [D{C,[dfin, d?ax], 2), i];
hence, none of kfin is involved because all of k?in are less than D(C,[dfin,dfax],2). Therefore,
further decreasing fcf"n, has no effect on the search process. •

Proof for theorem 4. Let Z?/([dmox,dmaa?]),D/([0,dmox]),JD/([dm,'n,dTnaa?]) denote the float
ing delay under fixed worst case, unbounded, and bounded delay models, respectively. It is easy
to see that JD/([dmaa;,dmaa;]) < Df([dmin,dmax]) < D/([0,dmoa;]) because the set of circuits under
a delay model is a subset of the set of circuits under the succeeding model. In [CD90], it is shown
that Df([dmax, dmax]) = D;([Q, dmax]). •

	Copyright notice 1993
	ERL-93-6

