Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPLICIT GENERATION OF COMPATIBLES
FOR EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/60

3 August 1993

IMPLICIT GENERATION OF COMPATIBLES
FOR EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/60

3 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

IMPLICIT GENERATION OF COMPATIBLES
FOR EXACT STATE MINIMIZATION

by

Timothy Kam, Tiziano Villa, Robert Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M93/60

3 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Implicit Generation of Compatibles for Exact State Minimization

Timothy Kam Tiziano Villa Robert Brayton Alberto Sangiovanni-Vincentelli

Abstract

Implicit computations of the solution set of optimization problems arising in logic synthesis hold the
promise of enlarging the size of input instances that can be solved exactly. The state minimization problem
for incompletely specified machines is an important step for sequential circuit optimization. The problem is
NP-hard and hence most techniques are heuristic. An exact algorithm consists of two steps: generation of
sets of compatibles, and solving a binate covering problem. This paper presents implicit computations to
obtain the sets of compatibles required for an exact state minimization of incompletely specified finite state
machines (ISFSM’s). Sets of maximal compatibles, compatibles, prime compatibles and implied class sets are
all represented and manipulated implicitly by means of BDD’s that realize the characteristic functions of the sets.
We have demonstrated with experiments from a variety of benchmarks that implicit techniques allow to handle
examples exhibiting a number of compatibles up to 2!2%, an achievement outside the scope of programs based
on explicit enumeration [9]. We have shown in practice that ISFMS’s with a very large number of compatibles
may be produced as intermediate steps of logic synthesis algorithms, for instance in the case of asynchronous
synthesis [13]. This shows that the proposed approach has not only a theoretical interest, but also practical
relevance for current logic synthesis applications. A recasting of the final binate covering step as an implicit
computation is under progress.

1 Introduction

Seminal work by researchers at Bull [5] and improvements at UC Berkeley [23] produced powerful technigues for
implicit enumeration of subsets of states of a Finite State Machine (FSM). These techniques are based on the idea to
operate on large sets of states by their characteristic functions represented by Binary Decision Diagrams (BDD’s).
In many cases of practical interest these sets have a regular structure that translates into small-sized BDD’s. Once
the related BDD’s can be constructed, the most common Boolean operations on them (including satisfiability)
have low complexity, and this makes feasible to carry on computations unaffordable in the traditional case where
all states must be explicitly represented. Of course it may be the case that the BDD cannot be constructed, because
of the intrinsic structure of the function to represent or because a good ordering of the variables is not found.

More recent work at Bull [6, 15] has shown how implicants, primes and essential primes of a two-valued or
multi-valued function can also be computed implicitly. Reported experiments show a suite of examples where all
primes could be computed, whereas explicit techniques implemented in ESPRESSO [2] failed to do so.

Therefore it is important to investigate how far these techniques based on implicit computations can be pushed
to solve the core problems of logic synthesis and verification. When exact solutions are sought, explicit techniques
run easily out of steam because too many elements of the solution space must be enumerated. It appears that
implicit techniques offer the most realistic hope to increase the size of problems that can be solved exactly.
This paper on exact state minimization of FSM’s is a first step on the application of implicit techniques to solve
optimization problems in the area of sequential synthesis.

State minimization of FSM’s is a well-known problem [11]. State minimization of completely specified FSM’s
(CSFSM’s) has a complexity subquadratic in the number of states [10]. This makes it an easy problem when
the starting point is a two-level description of an FSM, because the number of states is usually less than a few
hundred. The problem becomes difficult to manage when the starting point is an encoded sequential circuit with a

large number of latches (in the hundreds). In that case the traditional method would be required to extract a state
transition graph from the encoded network and then apply state minimization to it. But when latches are more
than a dozen, the number of reachable states may be so huge to make state extraction and/or state minimization
unfeasible. Recently it has been shown [16, 14] how to bypass the extraction step and compute equivalence
classes of states implicitly. Equivalence classes are basically all that is needed to minimize a completely specified
state machine. A compatible projection operator uniquely encodes each equivalence class by selecting a unique
representative of the class to which a given state belongs. This implicit technique allows state minimization of
sequential networks outside the domain of traditional techniques.

State minimization of incompletely specified FSM’s (ISFSM’s) instead has been shown to be an NP-hard
problem [18]. Therefore even for problems represented with two-level descriptions involving a hundred states,
an exact algorithm may consume too much memory and time. Moreover, it has been recently reported ([12]) that
even examples with very few states generated during the synthesis of asynchronous circuits may fail to complete
(or require days of CPU time) when run with a state-of-art exact state minimizer as STAMINA [9]. Therefore it is of
practical importance to revisit exact state minimization of ISFSM’s and address the issue of representing implicitly
the solution space.

We underline that besides the intrinsic interest of state minimization and its variants for sequential synthesis,
the implicit techniques reported in this paper can be applied to other problems of logic synthesis and combinatorial
optimization. For instance the implicit computation of maximal compatibles given here can be easily converted
into an implicit computation of prime encoding-dichotomies (see [22]). Therefore the computational methods
described here contribute to build a body of implicit techniques whose scope goes much beyond a specific
application.

In this paper we address the problem of computing sets of compatibles for the exact state minimization of
ISFSM'’s. We show how to compute sets of maximal compatibles, compatibles and prime compatibles with implicit
techniques and demonstrate that in this way it is possible to handle examples exhibiting a number of compatibles
up to 21200, an achievement outside the scope of programs based on explicit enumeration [9). We indicate also
where such examples arise in practice. The final step of an implicit exact state minimization procedure, i.e. solving
a binate table covering problem [21], will be presented in a separate paper.

The remainder of the paper is organized as follows. In Section 2 an introduction to classical exact algorithms for
state minimization of ISFSM’s is given. Section 3 introduces representations of FSM’s based on Binary Decision
Diagrams (BDD’s) [4, 1], that are the starting point of the implicit algorithms presented in Section 5. Section 4
presents a theory of representation and manipulation of sets and sets of sets. Alternative implicit algorithms are
explored in Section 7. A discussion of more subtle aspects of the implementation of the presented algorithms is
given in Section 8. Results on a variety of benchmarks are reported and discussed in Section 9. Conclusions and
future work are summarized in Section 10.

2 Classical Algorithm

Most of the terminology used in this report is common parlance of the logic synthesis community [11, 2, 3].

2.1 Finite State Machines

A Finite-State Machine is represented by its State Transition Graph (STG) or equivalently, by its State Transition
Table (STT). A STG is denoted by a sextuple {I,0, §, 5,6, A}, where I and O are the sets of inputs and outputs,
S is the set of states and /.S is the set of initial states. & (next state function) is a mapping from I X S to S that
given an input and a present state defines a next state. A (output function) is a mapping from I x S to O that given
an input and a present state defines an output. An STG where the next-state and output for every possible transition
from every state are defined corresponds to a completely specified machine. Anincompletely specified machine

is one where at least one of the functions 6 and A are partially defined, i.e. there is at least one pair (7, s) on whlch
cither the next state function or the output function (or both) are not defined.

An STT is a tabular representation of the FSM. Each row of the table corresponds to a single edge in the STG.
Conventionally, the leftmost columns in the table correspond to the primary inputs and the rightmost columns
to the primary outputs. The column following the primary inputs is the present-state column and the column
following that is the next-state column,

2.2 Compatibles, Prime Compatibles and Minimum Closed Covers

In this subsection we will revise briefly the basic definitions and procedures for exact state minimization of
ISFSM'’s, as presented in the original papers and standard textbooks [17, 8, 11].

Definition 2.1 An input sequence is admissible for a starting state of a machine if no unspecified next state is
encountered, except possibly at the final step.

Definition 2.2 States s; and s; are compatible iff they never generate different specified outputs for any admissible
input sequence.

Definition 2.3 States s; and s; are output incompatible iff Jix such that A(i, si) # A(ik, 3;)

Definition 2.4 States s; and s; are incompatible iff they are not compatible. States s; and s; are incompatible iff
si and s; are output incompatible, or 3ty such that states 6(ix, s;) and 6(ix, s;) are incompatible.

The set of all pairs of incompatible states can be computed as follows:
1. Compute output incompatible pairs.

2. Add any pair of states (s;, s;) if 3i such that (8(¢x, s;), 6(ix, 3;)) is a previously determined incompatible
pair of states.

3. Repeat 2. until no new pairs can be added to the incompatible state pairs set.
Definition 2.5 A set of states is compatible (i.e. the set is a compatible) iff every pair in it is compatible.

Definition 2.6 If C; is a set of compatible states and C;i; = {si|sx = 6(I;, ;) Vs; € C;}, i.e. Cjj is the set of
next states of the states in C; for input I;, then C;; is said to be implied by the set C; for input I;.

Definition 2.7 Let C; be a compatible set of states and C;; be the set of next states implied by C; for input I;. The
sets C;; implied by C; for all inputs I; are the implied classes of C;.

Definition 2.8 A set of compatible sets C = {C1,C, ...} is closed if for every C; € C all the implied sets C;; are
contained in some element of C for all inputs I;.

Definition 2.9 The problem of minimizing the number of states reduces to finding a closed set C of compatible
states, of minimum cardinality, which covers every state of the original machine, i.e. a minimum closed cover.

Definition 2.10 Sets of compatible states which are not subsets of any other compatible set of states are called
maximal compatibles.

Similarly one defines maximal incompatibles.

The set of all maximal compatibles of a completely specified FSM is the unique minimum closed cover. For
an incompletely specified FSM a closed cover consisting of maximal compatibles only may contain more sets than
a closed cover in which some or all of the compatible sets are proper subsets of maximal compatibles.

Definition 2.11 Let C; be a compatible set of states and C;; be the set of next states implied by C; for input I;.
The class set P; implied by C; is the sets of all sets C;; implied by C; for all inputs I; such that

1. Cj; has more than one element
2. Ci; £ G
3. Ci; £ Ci if Cix € B,
Definition 2.12 A compatible C; dominates a compatible C; if
1. C; D C;
2. P,C P

i.e. C; dominates C; if C; covers all states covered by C'j and the conditions on the closure of C; are a subset of
the conditions on the closure of C';.

Definition 2.13 A compatible set of states that is not dominated by any other compatible set is called a prime
compatible set.

The following procedure (used in section 7.3.2) computes all prime compatibles [8]. At the beginning the set
of prime compatibles is empty.

1. Order the maximal compatibles by decreasing size, say n is the size of the largest.
2. Add to the set of prime compatibles the maximal compatibles of size n.
3. Forti=1ton—1:

(a) Generate all compatibles of size n — ¢ and compute their implied classes. The compatibles of size
n — t are generated starting from the maximal compatibles of size n to n — 7 + 1 (only those that do
not have a void class set).

(b) Add to the set of primes the compatibles of size n — 7 not dominated by any prime already in the set.
(c) Add to the set of primes all maximal compatibles of size n — 1.

The following facts are true:
e A compatible already added to the set of primes cannot be excluded by a newly generated compatible.

e In the previous algorithm, the same compatible can be generated more than once by different maximal
compatibles. The question arises of finding the most efficient algorithm to generate the compatibles.

e Only the compatibles generated from maximal compatibles with non-empty class set need be considered,
because a maximal compatible with an empty class set dominates any compatible that it generates.

¢ A single state s; can be a prime compatible if every compatible set C; with more than one state and containing
s; implies a set with more than one state.

Definition 2.14 An essential prime compatible is a prime compatible which contains a state not contained in
any other prime compatibles.

The following theorem is proved in [8].

Theorem 2.1 For any FSM M there is a minimum equivalent FSM M,.q whose states all correspond to prime
compatible sets of M.

A minimum closed cover can be then found by setting up a table covering problem [8).
The following facts are useful in the minimization of FSM’s;

¢ The cardinality of a maximal incompatible is a lower bound on the number of states of the minimized FSM.
o If there is a maximal compatible that contains all states of a given FSM, the FSM reduces to a single state.

¢ The cardinality of the set of maximal compatibles is an upper bound on the number of states of the minimized
FSM.

o If a maximal compatible has a void class set, it must be a prime compatible. As a result, no compatible
contained in it can be a prime compatible (result used in section 7.3.1).

¢ The minimum number of maximal compatibles covering all states is a lower bound on the number of states
of the minimized FSM.

¢ The minimum number of maximal compatibles covering all states and satisfying the closure conditions is
an upper bound on the number of states of the minimized FSM.

3 FSM Representation using BDD’s

A good representation for a problem is key to the development of efficient algorithms, and this is true also for
problems in sequential synthesis and verification. A state transition graph (STG) is commonly used as the internal
representation of FSM''s in sequential synthesis systems, such as SIS. Many algorithms for sequential synthesis
have been developed to apply to STG’s. However, large FSM'’s cannot be stored and manipulated without memory
usage and CPU time becoming prohibitively large. A limitation of STG’s is the fact that they are a two-level form
of representation where state transitions are stored explicitly, one by one. This may degrade the performance of
conventional graph algorithms.

A binary decision diagram (BDD) (4, 1] provides an alternative way of representing FSM’s. A BDD is a
rooted, directed acyclic graph (DAG) where each node is associated with a Boolean variable. There are 2 outgoing
arcs from each node. The left outgoing arc corresponds to the case when the variable takes the value O and the
right arc corresponds to the case when the variable takes 1. The leaves of the graph are the terminal nodes 0 and 1.
A path from the root to a terminal 1 represents a satisfying assignment of variables on which the BDD evaluates to
1. Thus a BDD can represent any Boolean function on any n Boolean variables f : B® — B where B = {0,1}.
AROBDD is a BDD that is both ordered and reduced. Ordered means that on each path from the root to a terminal
the variables are encountered in the same order. Reduced means that in the DAG there are no two isomorphic
subgraphs.

The literal z; denotes that variable z; has the value 1 and the literal Z; denotes that variable z; has the value 0.

Any subset S in a Boolean space B™ can be represented by a unique Boolean function xs : B® — B, which
is called its characteristic function, such that:

xs(z)=1iffzin S (1)

In the sequel, we’ll not distinguish the subset S from its characteristic function s, and will use S to denote both.
Any relation R between a pair of Boolean variables can also be represented by a characteristic function

R:B? - Bas:
R(z,y) =1 iff z isin relation R to y (2)

R can be a one-to-many relation over the two sets in B. The image of z is the set {y € B|(z,y) € R}, while the
inverse image of y is the set {z € B|(z,y) € R}. The image and inverse image of a set of states S(z) can be
implicitly computed as:

image of S under R = 3z S(z) - R(z, y) (3)

inverse image of S under R = 3y S(y) - R(z,y) (4)

These definitions can be extended to any relation R between = Boolean variables, and can be represented by
a characteristic function R : B® — B as:

R(z1,22,...,24) = 1 iff the n-tuple (21, 22,...,%,) is in relation R (5)

3.1 Positional-set Representation

Assume that the given FSM has n states. To perform state minimization, one needs to represent and manipulate
efficiently sets of states (such as compatibles) and sets of sets of states (such as sets of compatibles). Our goal is to
represent any set of sets of states (i.e. set of state sets) implicitly as a single BDD, and manipulate such state sets
symbolically all at once. Different sets of sets of states can be stored as multiple roots with a single shared BDD.

Given that there are 2" possible distinct sets of states, in order to represent collections of them it is not possible
to encode the states using log;n Boolean variables. Instead, each subset of states is represented in positional-set
or positional-cube notation form, using a set of » Boolean variables, z = 2123 . ..z,. The presence of a state si
in the set is denoted by the fact that variable z takes the value 1 in the positional-set, whereas 2 takes the value
0 if state si is not a member of the set. One Boolean variable is needed for each state because the state can either
be present or absent in the set!.

In the above example, n = 6, and the set with a single state s4 is represented by 000100 while the set of states
83335 is represented by 011010. The states 31, 34, S¢ which are not present correspond to O’s in the positional-set.

A set of sets of states is represented as a set .S of positional-sets by a characteristic function xs : B® — B as:

xs(z) = 1 iff the set of states represented by the positional-set z is in the set S. (6)

A BDD representing xs(z) will contain minterms, each corresponding to a state set in S. The operators for
manipulating positional-sets and characteristic functions will be described in section 4.

If inputs (outputs respectively) of the FSM are specified symbolically, they can be represented as a multi-valued
symbolic variable, i (o respectively) where each value of i (o resp.) represents an input (output resp.) combination.
However if inputs (outputs resp.) of the FSM are given in encoded form, each encoded bit of inputs (outputs resp.)
is represented as a single binary variable. For the latter case, BDD’s will be sufficient for our purpose of implicit
state minimization.

In the case of an ISFSM, some next states as well as the outputs may not be specified. So relations instead of
functions must be used to represent the transition and output information. The transition relation 7(%, p, n) and
the output relation O(%, p, o) capture all the information contained in an STT.

Definition 3.1 The transition relation is represented as:

T(i,p,n) = 1 iff n is the specified next state of state p on input i (i.e.n = §(p,i)) (7)

!The representation of primes proposed by Coudert et al. [6] needs 3 values per variable to distinguish if the present literal is in positive
or negative phase or in both phases.

An unspecified next state from a state p under input i can be represented either by an entry (7, p, n) where the
positional-set 7 is a vector of all 0’s, or by not representing any entry with 7 and p in the relation at all. The latte}
is chosen for our implicit algorithm.

Definition 3.2 The output relation is represented as:
O(¢,p,0) = 1 iff o is a (possibly unspecified) output of state p on input i (i.e.0 = A(p, 7)) (8)

We represent all unspecified outputs in the relation O, to ensure correctness of the output compatibles com-
putation described in Section 5. An unspecified output in the STT corresponds to a set of minterms carrying all
possible output combinations.

When states and transitions are represented implicitly, the BDD representation is often much smaller than
STG. There is no direct correlation between the complexity of the STG and the size of the corresponding BDD.
Using these BDD relations and the positional-set notation, we propose a new implicit algorithms for generating
various sets of compatibles for solving the state minimization problem.

4 Implicit Manipulation of Sets and Sets of Sets

In this section we describe how to represent and manipulate implicitly sets of objects. This theory is especially
useful for applications where sets of sets of objects need to be constructed and manipulated, as it is often the case
in logic synthesis and combinatorial optimization.

4.1 BDD Operators

A rich set of BDD operators has been developed and published in the literature [4, 1). The following is the subset
of operators useful in the present work.

Definition 4.1 The substitution in the function F of variable z; with variable y; is denoted by:
[zi_’yl']}-=f(zlv“,zi—layhmﬂ-l"°-azn) (9)

and the substitution in the function F of a set of variables * =)z, ...z, qith another set of variables
Y=Y ...Yn is obtained simply by:

[z = 9)F = [21 = wllz2 = Wl . [20 >] F (10)
In the description of subsequent computations, some obvious substitutions will be omitted for clarity in formulae.

Definition 4.2 The cofactor of F with respect to the literal x; (Z; resp.) is denoted by F, (F= resp.) and is the
function resulting when z; is replaced by 1 (0 resp.):

Fei(z1y o oy2n) = F(21y oo oy Ticn, L, Zig1y e - 25) 11
fz_.'(zh .. °7zn) = .7:(2?1, X wzi—l)O’zi-i-la .o -1zn) (12)
The cofactor of F is a simpler function than F itself because the cofactor no longer depends on the variable z;.

Definition 4.3 The existential quantification (also called smoothing) of a function F over a variable z; is
denoted by 3z;(F) and is defined as:

Jzi(F) = Fe + T (13)
and the existential quantification over a set of variables © = ,,%3,...,%y is defined as:
3z(F) = 3z1(3z2(. . .(3z(F)))) (14)

Definition 4.4 The universal quantification (also called consensus) of a function F over a variable x; is denoted
by Vz;(F) and is defined as:

Voi(F) = Fur - Fo, (15)
and the universal quantification over a set of variables ¢ = z1,%3,. ..,y is defined as:
Vz(F) = V1 (Vz2(. . . (V2o (F)))) (16)

4.2 Operations on a Pair of Positional-sets

With our previous definitions of relations and positional-set notation for representing set of states, useful relational
operators on sets can be derived. We propose a unified notational framework for set manipulation which extends
the notation used in [15). In this section, operators act on two sets of states represented as positional-sets
T=2123...Zpand ¥ = N1% - - - Yn, and retumn 1 iff (z, y) are in the particular relation. Altematively, they can
also be viewed as constraints imposed on the possible pairs out of two sets of states, z and y. For example, given
two sets of state sets X and Y, the state set pairs (z,) where = contains y are given by the product of X and Y
and the containment constraint, X (z) - Y (y) - Contain(z,y).

Theorem 4.1 The equality relation rests if the two sets of states represented by positional-sets = and y are
identical, and can be computed as:

n
Equal(z,y)= [[zx & w (17)
k=1

where z) & Yr = Tk - Yk + Tk - ~Yx designates the Boolean XNOR operation and - designates the Boolean NOT
operation.

Proof: Tlk=; Tx < yx requires that for every state k, either both positional-sets z and y contain it, or it is absent
from both. Therefore, = and y contains exactly the same set of states and thus are equal. 0

Theorem 4.2 The containment relation tests if the set of states represented by x contains the set of states
represented by y, and can be computed as:

n
Contain(z,y) = H Yk => Tk (18)
k=1

where x = yr = Tk + Y designates the Boolean implication operation.

Proof: TIi=1 yx = = requires that for all states, if a state k is present in y (i.e. yx = 1), it must also be present in
z (zr = 1). Therefore set z contains all the states in y. (]

Theorem 4.3 The strict containment relation tests if the set of states represented by z strictly contains the set of
states represented by y, and can be computed as:

Strict_Contain(z,y) = Contain(z,y) - ~Equal(z,y) (19)

Alternatively, Strict_Contain(z,y) can be computed by:

Strict_Contain(z,y) = H[-'/k = zi) - Z[zk - =) (20)
k=1 k=1

Proof: Equation 19 follows directly from the two previous theorems. For equation 20, the first term is simply the
containment constraint, while the second term Y_7_, [zx - —yx] requires that for at least one state k, it is present in

z (zx = 1) butis absent from y (yx = 0), i.e. and y are not the same. So it is an alternative way of computing
Strict_Contain(z,y). 0

Theorem 4.4 The union relation tests if the set of states represented by z is the union of the two sets of states
represented by y and z, and can be computed as:

n
Union(y, z,z) = [] zx © (gx + 2) (21)
k=1
Proof: For each position k, = is set to the value of the OR between z and y. Effectively, [Ti=; z& < (& + 2£)

performs a bitwise OR on y and z to form a single positional-set 2, which represents the union of the two individual
scts. 0

Theorem 4.5 The intersection relation tests if the set of states represented by x is the intersection of the two sets
of states represented by y and z, and can be computed as:

n
Intersect(y, z,z) = [] = & (yk -) (22)
k=1

Proof: For position k, zj is set to the value of the AND between z; and yy. Effectively, [Ti=; zx < (yk - 2x)
performs a bitwise AND on y and z to form a single positional-set z, which represents the intersection of the two
individual sets. o

4.3 Operations on Sets of Positional-sets

Theorem 4.6 Given the characteristic functions x4 and xp representing the sets A and B, set operations on
them such as the union, intersection, sharp, and complementation can be performed as logical operations on
their characteristic functions, as follows:

XAuB = Xa+XB (23)
XAnB = XA'XB 249)
XA-B = XA'™XB (25)

Xz = "XA (26)

Theorem 4.7 Given the characteristic functions x o(z) and x () representing two sets A and B (of positional-
sets), the set equality test is true iff sets A and B are identical, and can be computed by:

Set_Equalz(xa,xB) = Vz xa(z) & xB(z) (27)
Alternatively, Set_Equal can be found by checking if their corresponding ROBDD’s are the same by bdd_equal(x 4, XB).

Proof: x4(z) and xB(z) represents the same set iff for every z, eitherz € Aand z € B,orz ¢ Aand z ¢ B.
As the characteristic function representing a set in positional-set notation is unique, two characteristic functions
will represent the same set iff their ROBDD’s are the same.]

Theorem 4.8 Given the characteristic functions x 4(z) and xB(z) representing two sets A and B (of positional-
sets), the set containment test is true iff set A contains set B, and can be computed by:

Set_Containg(xa,xB) = Vz xB(z) = xa(z) (28)

9

Theorem 4.9 Given the characteristic functions x4 and x g representing two sets A and B (of positional-sets),
the set strict containment test is true iff set A strictly contains set B, and can be computed by:

Set_Strict_Contain,(x4, xB) = Set_Containz(x,xB) - ~Set_Equal(xa,XxB) (29)
Proof: The proof follows directly from previous two theorems. m]

Theorem 4.10 The maximal of a set F of sets is the set containing sets in F not strictly contained by any other
setin F, and can be computed as:

Mazimal (F) = F(z) - -3y [Strici_Contain(y,z) - F(y)) (30)

Proof: The term Jy [Strict_Contain(y, z) - F(y)] is true iff there is a positional-set ¥ in F' such that z C y. In
such a case, z cannot be in the maximal set by definition, and can be subtracted out. What remains is exactly the
maximal set of states set in F(z). (w

Theorem 4.11 The minimal of a set F of sets is the set containing sets in F' not strictly containing any other set
in F, and can be computed as:

Minimal (F) = F(z) - -3y [Strict_Contain(z,y) - F(y)] (31)

Proof: The term Jy [Strict_Contain(z,y) - F(y)] is true iff there is a positional-set y in F'suchthat z D y. In
such a case, z cannot be in the minimal set by definition, and can be subtracted out. What remains is exactly the
minimal set of states set in F(z). o

Theorem 4.12 Given a characteristic function x a(z) representing a set A of positional-sets, the set union
relation tests if positional-set y represents the union of all state sets in A, and can be computed by:

n
Set_Unionz(xa,¥) = H vk < [3z xa(z) - zk) (32)
k=1

Proof: For each position k, the right hand expression sets yx to 1 iff there exists a z in x 4 such that its kth bitis a
1. This implies that the positional-set y will contain the kth element iff there exists a positional-set z in A such that
k is a member of z. Effectively, the right hand expression performs a multiple bitwise OR on all positional-sets of
X4 to form a single positional-set y which represents the union of all such positional-sets. o
Altematively, we implemented the Set_U nion operation as a recursive BDD operator. Bitwise OR is performed

at the BDD DAG level, by traversing the BDD and performing OR on BDD vertices with the variables of interest.

Theorem 4.13 Given a set of positional-sets F(z) and an array of the Boolean variables z, the union of positional-
sets in F with respect to x can be computed by the BDD operator Bitwise_Or(F,0, z), assuming that the variables
in x are ordered last:

function Bitwise_Or(F,k,z) {
if (k > |z|) return F
t = top_var(F)
v = z[k]
if (t<v){
T = Bitwise_ Or(F;, k,z)
E = Bitwise_ Or(F;, k, z)
return ITE(t, T, E)
} else {
if (F, = 0) return 7 - Bitwise_ Or(F5,k+1,z)
else retum v - Bitwise Or(F, + F5,k+ 1,2)
}

}

10

Proof: v denotes the k-th variable in the array z. Assuming that the variables in z are ordered last, the above
recursion terminates after all of them have been processed (k > |z|, and a 0 or a 1 is returned as F)., Ata
BDD vertex where ¢ < v, the recursion has not reached a variable of interest yet, and we simply recurse down
its right and left children and merge the Bitwise.Or results by creating a new vertex ITE(t,T,E). If t > v,
we have to perform the bitwise OR operation on variable v. If F, = 0, variable v never takes a value 1 in
any satisfying assignments of F, so it is set to 0 by 5. The bitwise OR of the remaining variables is given by
Bitwise_Or(F3,k + 1,z). Otherwise if F, # 0, there exists a satisfying assignment of F in which v = 1. So v
is set to 1, while a bitwise OR is performed over all remaining satisfying assignments of F, i.e. F, + F. o

This recursive BDD operator is very fast, but unfortunately, its operation is valid only if the variables to be
bitwise OR are at the bottom of the BDD DAG. So to execute this BDD operator, we need to perform variable
substitutions before and after the operation. Experimentally, these substitution steps are too slow to be practical
and sometimes cause exponential blowup in the BDD size.

Theorem 4.14 Given a characteristic function x A(z) representing a set A of positional-sets, the set intersection
relation tests if positional-set y represents the intersection of all state sets in A, and can be computed by:

Set_Intersecty(xa,y) = H Yk € [Vz x4(2) - 24 (33)
k=1

Proof: For each position k, the right hand expression sets yx to 1 iff the kth bit of all z in X4 is a 1. This
implies that the positional-set y will contain the kth element iff all positional-sets z in X4 have k has a member.
Effectively, the right hand expression performs a multiple bitwise AND on all positional-sets of x 4 to form a single
positional-set y which represents the intersection of all such positional-sets. (]

4.4 k-out-of-n Positional-sets

Let the number of states be n. In subsequent computations, we will use extensively a suite of sets of state sets,
Tuple, k(x), which contains all positional-sets = with exactly k states in them (i.e. |z] = k). In particular, the set
of singleton states T'uplen,1(x), the set of state pairs Tuple,, 2(z), the set of all states Tuple,, ,(z), and the set of
empty state set Tuple,, o(z) are common ones.

An efficient way of constructing and storing such sets of k-tuple state sets using BDD will be given next.
Figure 1 represents a reduced ordered BDD of Tuplesy(z):

The root of the BDD represents the set Tuples 2(z), while the intenal nodes represent the sets Tuple; j(z)
(t < 5,7 < 2). For ease of illustration, the variable ordering is chosen such that the top variable corresponding to
Tuple; () is z;. At that node, if we choose state ¢ to be in the positional-set, z; takes the value 1 and we follow
the right outgoing arc. In doing so, we still have i — 1 states/variables left to be processed. As we have put state i
in the positional-set, we still have to add exactly j — 1 states into the positional-set. That is why the right child of
Tuple; ;(z) should be T'uple;_; ;-1 (). Similarly, the left child is Tuple;_; ;(z) because state ¢ has not been put
in the positional-set and we have j — 1 states/variables left. Thus, the BDD for T'uple; ; can be constructed by the
following algorithm:

11

Figure 1: BDD representing T'uples 2(z).

function Tuple(s, §) {
if (j <0)or(i < j) return 0
if(i=j)and (: = 0) return 1
if Tuple(s, j) in computed-table return result
T = Tuple(i—1,5—1)
E =Tuple(i - 1,7)
F = ITE(z;, T, E)
insert F in computed-table for Tuple(s, j)
return F'

}

The total number of nonterminal vertices in the BDD of Tuple, xis (n—k+1)-(k+1)—1 =nk—-k2+n =
O(nk). With the use of the computed table ([1]), the time complexity of the above algorithm is also O(nk) as the
BDD is built from bottom up and each vertex is built once and then re-used. Given any =, the BDD for T'uple,,
is largest when k = n/2,

S Implicit Computations for State Minimization

In this section, we will give a series of theorems stating how the sets defined in section 2.2 can be computed
implicitly. An appendix is also provided where the main steps of the procedure are demonstrated on an example.

5.1 Output Incompatible Pairs
Theorem 5.1 The set of output incompatible pairs, OICP(y, z), can be computed as:

OICP(y,z2) = Tuplen(y) - Tuplen,(2) - ~Vi 30 O(i, y,0) - O(i, 2, 0) (34)
Proof: By definition 2.2, states y and 2 are output compatible iff their specified outputs match on all inputs, i.e.

Vi 30 O(i, y,0)- O(4, z,0). OZCP(y, z) simply contains all state pairs (y, z) which are not output compatible. O

12

5.2 Incompatible Pairs

Theorem 5.2 The set of incompatible pairs, ICP(y, z), can be computed with the following fixed-point computa-
tion:

ICPo(y,z) = OICP(y,z) 35)

ICPi+1(y,2) = ICPi(y,2)+ 3, u{T(i,y,u)-[3v T(i, 2,v) - ICPi(u, v)]} (36)

Proof: The fixed point computation starts with the set of output incompatible pairs. After the kth iteration,
ZCPr41(y, 2) contains all the incompatible state pairs (y, z) that lead to an output incompatible pair in k or less

transitions. This set is obtained by adding state pairs (y, z) to the set ZCPy(y, z), if an input takes them into an
already known incompatible pair (u, v). 0

Tayw /N
L]
/ u

<

’—-‘-—_m
4 N
~So _
”~
(o<

Tlzv)

-
-
 ——

N —————

——— g -

/
\

Figure 2: Finding incompatible pairs.

5.3 Compatibles

Theorem 5.3 Given an incompatible pair of states (y, z), a position-set c satisfies Contain_Union(y, 2,¢) iff ¢
contains both state y and state z. This constraint can be obtained by:

n
Contain_Union(y, z,¢) = [[v + 2 = cx (37)
k=1
Proof: Note the similarity in the computations of Contain_Union(y,z,c¢) and Union(y,z,c).
Contain_Union(y, z,c) performs bitwise OR on singletons y and z. If either of their k-bit is 1, the corre-
sponding ci. bit is constrained to 1. Otherwise, cx can take any values (i.e. don’t care). The outer product
[Tx=; requires that the above is true for each k. One sees, from Figures 12 and 13, that Contain_Union(y, z, c)
effectively performs bitwise OR and then changes the zero positions (0) to a don’t-care (). Thus, it generates all
the positional-sets ¢ which contain at least one incompatible state pair. o

Theorem 5.4 The set of incompatibles, ZC(c), can be computed as:
IC(c) = 3y, 2 ICP(y, 2) - Contain_Union(y, 2, ¢) (38)

Proof: The term ZCP(y, z) - Contain_Union(y, 2, c) generates all incompatible constraints. The right hand
expression says that a positional-set ¢ is an incompatible iff there exists an incompatible state pair (y, z) €
ZCP(y, z) such that ¢ contains both states y and 2, because (v, 2, ¢) satisfies the Contain_Union. m]

Theorem 5.5 The set of compatibles, C(c), can be computed as:

C(c) = -IC(c) - ~Tuple, o(c) (39)
Proof: The set of compatibles is simply the set of all subsets excluding the incompatible set of states, and is
obtained by 1 - ~ZC(c) = ~ZC(c). The empty positional-set is excluded from C(c). m]

13

5.4 Implied Classes of a Compatible

Lemma 5.1 The set of singleton next states implied by a compatible c under input i, F(c, i,n), can be computed
by:
F(e,i,n) = Ip [T(3,p,n) - C(c) - Contain(c, p)] (40)

Proof: Given a compatible ¢ € C(c) and an input 1, a next state = is in relation F(c, ¢, n) with ¢ and ¢ (i.c. state
n is implied by compatible ¢ under input ¢) iff the right hand expression is true. i.e. if there exists a present state
p € cand n is the next state of p on input <. (]

Note that the implied next states are represented as singleton states in F(c, ¢, n). For each compatible ¢ and
input 7, subsequent computations require that the corresponding singletons are combined into a single positional-set.
Alternate computations that use F(c, ¢, n) directly will be given in section 7.2.

Theorem 5.6 The implied classes of a compatible c, CI(c,d), can be computed by:
CI(c,d) = i [3In F(c,i,n)]: Set_Union,(F(c,i,n),d) (41)

Proof: By definition, the implied class of ¢ and i is just the set of next states implied by ¢ and i. F(c, 7,) contains
such next states in singleton positional-set form and Set_Union,(F(c, ¢,n), d) will perform the bitwise OR on all
of them to produce a positional-set d which represents the union of the singleton sets. As F also depends on ¢ and
i, the Set_Union operation may produce triples (¢, ¢, d) where c and ¢ may not be a valid compatible and input
respectively. So the term [3n F(c, 7, n)] is needed to prune away invalid triples from the relation. Finally the class
set of ¢ defined as the set over different inputs of all implied next states of ¢ is obtained simply by an existential
quantification of the inputs :. (m]

5.5 Class Sets of Compatibles
Theorem 5.7 The class set of the compatible ¢, CCS(c, d), can be computed as:

CCS(c,d) = Mazimaly(CI(c,d)) - ~Contain(c,d) - ~Tuple, 1(d) (42)

Proof: Given a compatible ¢, M azimals(CI(c, d)) gives all its implied classes d which are not strictly contained
by any other implied classes. This comresponds to condition 3 in definition 2.11 although a weaker condition,
Ci; ¢ Cik, is used here because our implicit computation operates on all implied classes at once. By condition
2 in definition 2.11, we prune away implied classes d which are contained in their corresponding compatibles c.
Then the singleton implied classes are thrown away according to condition 1. u]

5.6 Prime Compatibles
Theorem 5.8 A compatible ' dominates a compatible c iff the following Dominate(c, c) relation is true:

Dominate(c’,c) = Strict_Contain(c,c)- Set_Containg(CCS(c,d),CCS(c, d)) (43)

Proof: The two terms on the right hand expression correspond to the two conditions for ¢’ to dominate ¢
according to definition 2.12. Since compatibles ¢ and ¢’ are represented as positional-sets, ¢ O ¢’ is computed
by Strict_Contain(c, c), as defined by theorem 4.3. On the other hand, class sets are sets of sets of states and
are represented by their characteristic functions. Containment between such sets of sets of states is computed by
Vd CCS(c',d) = CCS(c, d), as described by theorem 4.8. 0

14

Theorem 5.9 The set of prime compatibles, PC(c), can be computed as:
PC(c) = C(c) - ~3c' Dominate(c’,c)-C(c") (44)

Proof: By definition 2.13, a compatible ¢ € C(c)is not a prime compatible if it is dominated by another compatible
¢’ € C(c). This condition s captured by the expression 3¢’ { Dominate(c', ¢)-C(c')}. The set of prime compatibles
is simply given by the set of compatibles excluding those that are dominated by other compatibles. a

Theorem 5.10 The set of prime compatibles with class sets, PCCS(¢, d), can be computed as:
PCCS(c,d) = PC(c)-CCS(c,d) (45)
Proof: Obvious. O

Theorem 5.11 The set of essential prime compatibles, EPC(c), can be computed as:

EPC(c) = PC(c) - i{ck - =3 ¢ - PC(') - ~Equal(c,)]} (46)
k=1

The set of non-essential prime compatibles, N €PC, which constitutes the columns of the covering table, can be
computed as:

NEPC(c) = PC(c) - ~EPC(c) (47)

6 Construction of the implicit covering table

A relation T'(c, 2, ¢, e) representing the entries of the covering matrix can be defined as the disjunction of the
relations UT'(c, z,¢, e) and BT(c, 2, ¢, ¢) defined below. UT(c, 2,7, e) is the unate part and BT(c, z, &,) is the
binate part. Both UT and BT are defined on the variables ¢, z, €, e, where c, 2 are indexes of rows, & are indexes of
columns and e is a Boolean variable that indicates the presence of an entry of value Q or 1 at row ¢, z and column
€. A unate part contains only entries assuming value 1, while a binate part contains some entries with value 0 and
some entries with value 1. Notice that given a row and a column there is at most one entry in the matrix, either
with value 0 or with value 1; it cannot happen that for the same row and column there are two entries, one carrying
value 0 and one carrying value 1.

If the original FSM has = states, the relation representing the covering table has 3n 4 1 variables. This is the
crucial point of being the representation implicit. In the explicit case, we would have as many columns as there
are primes and as many rows as there are clauses. Both rows and columns could be exponential in the number of
states of the FSM. In the case of our implicit representation instead the number of variables is linear in the number
of states.

Theorem 6.1 The unate part of the relation T is given by:
UT(c,2,¢¢€) = Tupley 1(z) - PC(E) - Contain(é,2)- (e = 1) (48)

Notice that ¢ can be any vector of n variables, because rows in UT are uniquely distinguished by the fact that z’s
are singletons. UT represents the covering clauses of the exact formulation of state minimization ([8]).

Theorem 6.2 The binate part of the relation T is given by:

BT(c,2,é,e) = PCCS(c, z) - PC(&) - {Contain(é,z)- (e = 1) + Equal(c,?) - (e = 0)} (49)

15

BT represents the closure clauses of the exact formulation of state minimization ([8]).2
Theorem 6.3 The covering matrix is given by:
T(c,z,¢€)=UT(c,z,¢¢€)+ BT(c,z,¢,¢€) (51
Notice that
o {¢ s.t. PC(&)} are column indexes, i.e. prime compatibles.
o {(c,2),st. PCCS(c,z)} are row indexes, i.e. clauses.
o Elements of T can be O or 1 orno entry and they are indicated respectively by e = 0, e = 1, no representation.

One subtracts from PCC S the cubes z of all zeroes or singletons, because they denote no closure condition.

7 Improvements on Implicit Algorithm

The experiments reported in section 9 identified two bottlenecks in the computations described in section 5:
1. the fixed-point computation of incompatible pairs;
2. the handling of closure information, i.e. implied classes and class sets.

Sections 7.1 and 7.2 describes alternative methods to perform those computations. Section 7.3 shows how maximal
compatibles can be used with advantage in the computation of prime compatibles.

7.1 Computation of Incompatible Pairs using Generalized Cofactor

This subsection describes some variations of the fixed-point computation of incompatible pairs ZCP(y, z), de-
scribed in section 5.2. Each iteration of the computation of equation 36 can be viewed as an inverse image
projection from a set of state pairs in IC Py(u, v) to a set of states pairs in IC P4, (¥, z) via the product transition
relation 7(%,y,) - 7(%, 2,v). In the original method, all state pairs in JC Py1(u, v) are projected during the
k + 2nd iteration. This is not necessary because if the projected pair (¥, 2') of IC Py, is actually in IC P; as
shown in figure 33, we can be sure that its projection (y”, z”) has already been calculated in a previous iteration.
Thus at the k + 2nd iteration, we need only to project the new incompatible state pairs discovered at the k + 1st
iteration, as it is done in the following modification of the fixed-point computation of section 5.2.

ICPo(y,z) = OICP(y,z)(= NEW(y,z)) (52)
TMP(y,z) = 3,u{T(i,y,u) - [IvT(i,2,v)- NEW(u,v)]} (53)
NEW(y,z) = TMP(y,z)-~ICPx(y,>2) (54)
ICPry1(y,2) = ZICPi(y,2)+ NEW(y,z2) (55)

Notice that the following would be wrong

BT(c, z,&,e) = PCCS(c, z) - PC(2) - {(Contain(2, z) = (e = 1)) + (Equal(c, &) = (e = 0))} (50)

3Figure 3 represents the inverse image projections with direct arrows.

16

Ty xT(lzv) A

ICP k k+1th iteration ICP k+1

Figure 3: Finding incompatible pairs.

Instead of finding a minimum cardinality set of state pairs for projection, a minimal set of state pairs with a small
BDD representation is more desirable for our implicit BDD formulation. A small BDD for N EW (y, z) can be
obtained using the generalized cofactor ([23]) using ZCPy(y, z) as the don’t care set:

NEW(y,z) = NEW(y, 2)|-1¢P,(y,2) (56)

As a result, the geometric mean of the ratio of CPU time for computing ZC P with this generalized cofactor method
vs. the original method is 0.678.

7.2 Handling of Closure Information

For FSM’s with many compatibles, the most time-consuming part of our implicit algorithm is the computation
of implied classes and class sets corresponding to the compatibles. The complexity arises because these implicit
computations deal with two sets of variables in each relation, ¢ representing a compatible and d representing its
implied class or class set. Since each compatible may have a different class set, the size of the corresponding
BDD'’s may blowup during the computation.

A way to cope with this problem is to represent the class sets by means of singletons, as done in the following
series of computations.

Theorem 7.1 One can prune the relation F(c,i,n) of compatibles with implied next states to obtain the class set

by:

F(e,i,n) = 3p[T(i,p,n)-C(c)- Contain(c, p)) £Y))
I(c,i) = 3nn' F(c,i,n): F(c,i,n') - ~Equal(n,n’) (58)
F(e,i,n) = F(e,i,n)-I(c,i) 59
J(¢,i) = 3n F(c,i,n)- ~Contain(c,n) (60)
F(e,i,n) = F(c,i,n)-J(c,1) (61)

K(e,i) = 3¢ [Vn F(e,i,n) = F(c,t,n)+ ~J(c, 7)) - m[VnF(c,i,n) = F(c,i',n) + =J(c,i")]
3¢ [-3n F(c,i,n)- = F(e,i,n)- J(c,i')] - [3n F(c,%,n) - ~F(c,,n)- J(c,1')] (62)
Fle,iyn) = F(e,i,n)— K(c,i) (63)

Proof: By definition 2.11, an implied class C; of compatible c can be in a class set only if
1. C; has more than one element,
2. C; € e,
3. C; € Cyif Cy € class set.

17

I(ec, 1) computes all implied classes C; which contains at least two distinct implied states n and 7', i.e. all
implied classes with more than one element. Equation 59 prunes the set F' accordingly. J(c, %) contains all
remaining implied classes not contained in c.

We need to modify slightly the 3rd condition to be able to compute it implicitly using BDD’s. From the set
of implied classes, we want to take away an implied class C; iff C; C Cy. Itis C; C Cy iff C; C Cy and
Ci € C;. The Set_Contain,(F(c,i,n), F(c,,n)) operation can be used to test if C; C Cy, but since its result
may include invalid (c, ') pairs (i.e. implied classes) the terms J(c, ') are needed in the equation. In the last
equation K (¢, ¢) is subtracted away, instead than AND-ed as I(c, #) and J(¢c, #), because it is the complement of the
3rd condition. D

Theorem 7.2 The condition that compatible ¢’ dominates compatible c is captured by:
Dominate(c',c) = Strict_Contain(c',c)- Vi’ 3i Set_Contain,(F(c,i,n), F(c,i,n)) (64)

Proof: C' dominates C if C’ covers all states covered by C and the conditions on the closure of C’ are a subset of
the conditions on the closure of C. o

After computing the dominance relation Dominate(c’, c), the prime compatibles can be found using theo-
rem 5.9.

7.3 Methods using Maximal Compatibles
Theorem 7.3 The set of all maximal compatibles MC(c) can be computed as:

MC(e) = Mazimal(C(c)) (65)

Proof: By definition 2.10, the set of maximal compatibles is simply the maximal set of positional-sets in C(c) with
respect to c. o

Note that the algorithm given in section 5 does not rely on the computation of the set of maximal compatibles,
whereas the classical method in [8] does. We are going now to present alternative implicit algorithms that require
their computation.

7.3.1 Compatible Pruning by Maximal Compatibles with Void Class Set

Theorem 7.4 The set of singleton next states implied by a maximal compatible c under input i, F(c,,y), can be
computed by:
F(e,i,n) = 3p[T(3,p,n) - MC(c) - Contain(c, p)] (66)

The class set information for the maximal compatibles can then be obtained using the class set generation procedure
described in theorem 7.1.

The maximal compatibles with void class set, MCV(c), can be obtained by:
MCV(c) = MC(c) - ~3i K(e,1) (67)

where K (c, 1) is given by equation 63.
The set of compatibles can then be pruned by MCV(c):

C(c) =C(c)- =3¢’ MCV(c) - Contain(c',c) (68)

18

7.3.2 Slicing Procedure for Prime Compatible Generation

The following slicing procedure is an implicit version of the procedure outlined at the end of section 2.2.

PC(c)=0
fork=nto1{
MCi(c) = MC(c) - Tupley i(c)
Ci(c) = C(c) - Tuplep i(c) - ~MCi(c)
Fe,(¢c,%,n) = Prune(C(c), T(i,p,n))
Fpc(c,i,n) = Prune(PC(c),T(i,p,n))
Dominate(c',c) = Strict_Contain(c',c) - Vi’ 3i Set_Containn(Fpe(e, i, n), Fe,(c',i',n))
PCi(c) = C(c) - -3¢ Dominate(c’,c)-C(c')
PC(c) = PC(c) + PCi(c) + MCi(c)
}

PC(c) is a set of prime compatibles accumulated during each iteration, and is originally empty. MCx(c)
contains maximal compatibles with cardinality k. Cx(c) contains compatibles with cardinality k excluding those
in MCx(c). Prune(Cx(c),T(i,p,n))is the class set pruning procedure described in theorem 7.1 by substituting
Cx(c) for C(c), and Fe(c, ¢, n) for F(c, i, n) in the equations. Prune(PC(c), T(i,p,n))is similarly defined. So
Fe,(c,1,n)and Fpc(c, i, n)contains the class sets of Ci(c) and PC(c) respectively. To test for Dominance(c’, c),
we only need to know if a compatible ¢ € Cj is dominated by an already discovered prime compatible in PC(c),
because (1) for any other ¢’ € C, ¢ ¢ ¢/, and (2) ¢ can be dominated only by prime compatibles with cardinality
greater than k. PCi(c) contains the newly discovered prime compatibles with cardinality k, and this set is added
to MCj. and PC to update the set of prime compatibles found so far.

Experimentally, this slicing method, during BDD construction, uses on average half memory as compared to
the method in section 7.2.

8 Implementation Details
8.1 BDD Variable Assignment

When dealing with BDD’s, common wisdom is to keep the number of BDD variables used to a minimum. The
rationale is that the smaller the number of BDD variables involved, the less probable is that a BDD operation will
cause exponential blowup in the BDD size. In our case

1. 10 state variable vectors (p, =, ¥, z, 4, v, ¢, ¢', d, d') are used in all previous equations,

2. in positional-set notation, each state variable vector corresponds to n Boolean variables where n is the
number of states.

Looking into each equation carefully reveals the fact that we never operate on more than four sets of variables
simultaneously in a single BDD operation. For example, 4 sets of variables ¥, 2, « and v are used in equation 36,
and 3 sets p, n and c in equation 40. The idea of BDD variable assignmentis to use a set of BDD variables for more
than one purpose, by binding at different times more than one set of variables from the equations onto a single set
of BDD variables. The assignments should be made in such a way that no two sets of variables appearing in an
equation will be assigned to the same set of BDD variables. Such an assignment is shown in figure 4.

There is a conflict with the above BDD variable assignment in equation 38. Variable c is assigned the same
BDD variables as variable y in these equations. To get around it, an extra variable e is used instead:

19

BDD variable sets

0(1] 2] 3
p | n

y|lu| z |
c d| | d
e

Figure 4: Assignments of equation variables to BDD variables

ZC(c) = [e =)3y, 2 ICP(y, 2) - Contain_Union(y, z,€) (69)

. Note that two functions containing different variables being assigned to the same BDD variable, e.g. 7(%,p,n)
and CCS(c’,d'), can co-exist within a multi-rooted BDD at the same time, without any interference. Conflict
will occur only when they become operands to a BDD operation. Actually, such overlapping functions can be
constructed and manipulated more efficiently because of possible hits in the unique and computed hash tables in a
BDD package [1].

8.2 BDD Variable Ordering

The equality, containment, strict containment, maximal and minimal relations described in section 4 have expo-
nential BDD'’s size if the different sets of BDD variables are not interleaved with each other. Both for space and
time efficiency, the four sets of BDD variables have to be interleaved.

It is found that the ordering between individual state variables within a set of BDD variables is also important,
especially when handling the closure information. The heuristics we use is to put the states that occur most
frequently in the compatibles at the top of the BDD. This should leave the BDD sparse in the lower part of the
BDD where most state variables take a value of 0. As the set of compatibles is usually very large, we approximate
the count by counting the occurrences of states in maximal compatibles instead.

8.3 Using Don’t Cares in the Positional-set Space

The main advantage of our positional-set representation of FSM'’s is that, with a single multi-rooted BDD, sets of
sets of states can be represented. As a result, we can compactly represent and manipulate sets of compatibles (C),
prime compatibles (PC), etc. However during the computation of OCP, OZCP and ZCP, we are manipulating
only sets of singleton states and so we only care about a small portion of the encoding space. Since no positional-set
of cardinality > 1 will appear there, we can make use of these don’t care code points in the positional-set space.

For example, the computations involved in equations 34 to 36 manipulate a product of two sets of singleton
states (¥, z). The don’t care condition with respect to this pair of singletons is captured by:

DC(y,z) = ~Tupleno(y) - ~“Tuplen1(y) + ~Tuple, o(z) - ~Tuplen1(2) (70)
and can be used to simplify the BDD computation of these sets.

9 Experimental Results

We report results on different suites of FSM’s. They are:
1. The MCNC benchmark and other examples.

20

2. FSM’s generated by a synthesis procedure for asynchronous logic [13].
3. A constructed family of FSM'’s that exhibit a large number of prime compatibles.
4. Random FSM’s.

We discuss features of the experiments and results in different subsections. Comparisons are made with STAMINA, a
program that represents the state-of-art for state minimization based on explicit techniques. The program STAMINA

was run with the option -P to compute all primes. All run times are reported in CPU seconds on a DEC DS5900/260
with 440 Mb of memory.

9.1 Examples from MCNC Benchmark and Others

Table 1 reports the results of the most interesting examples (as far as state minimization is concemed) from the
MCNC benchmark and from other academic and industrial benchmarks available to us. Most examples have a
small number of prime compatibles, with the exception of ex2 and green. The running times of ISM are worse
than those of STAMINA, especially in those cases where there are very few compatibles in the number of states
(squares is the most striking example). But when the number of primes is not negligeable as in ex2 and green,
ISM ran as fast or faster than STAMINA. This is consistent with our expectations, since 1SM manipulates relations
having a number of variables linearly proportional to the number of states. When very few compatibles need to
be represented, the purpose of ISM is defeated and its representation becomes very inefficient.

max # prime CPU time (sec)

machine | # states | compat. | # compat. | compat. | #NVEPC | IsM | sTAMINA
arbseq 9% 2 9% 9 3 12 0
bbsse 16 11 97 13 0 0 0
beecount 7 4 11 7 5 0 0
ex1 20 2 22 19 1 1 0
ex2 19 36 2925 1366 1366 | 11 13
ex3 10 10 195 91 91 1 0
exs 9 6 81 38 38 0 0
ex’7 10 6 135 57 57 0 0
fsm1 256 47 302 208 0| 83 0.6
green 54 524 1234 524 524 | 125 125
lion9 9 5 20 5 2 0 0
mark1l 15 12 41 18 11 0 0
scf 121 12 1201 175 87| 26 0
squares 37N 45 473 307 01| 761 1
tbk 32 16 48 48 48 8 1
tma 20 15 35 20 4 1 0
trainl1 11 5 85 17 15 0 0
viterbi 68 5 329 57 3 8 0

Table 1: Examples from the MCNC Benchmark and others.

21

9.2 Examples of FSM’s from Asynchronous Synthesis

Table 2 reports the results of a benchmark of FSM’s generated as intermediate steps of an asynchronous synthesis
procedure [13]. We notice that STAMINA ran out of memory on the examples vmebus.master.m, isend, pe-rcv-ifc fe,
pe-send-ifc fc, while ISM was able to complete them. These examples (with the exception of vbe4a) have a number
of primes below 1000. To explain the data reported in Table 2, we notice that in order to compute the prime
compatibles, the set of compatibles needs to be generated too. The compatibles of the FSM'’s of this benchmark
are usually of large cardinality and therefore their enumeration causes a combinatorial explosion. So the huge size
of the set of compatibles accounts for the large running times and/or out-of-memory failures. About the behavior
of IsM, we underline that the running times track well with the size of the set of compatibles and that in significant
cases they are well below those of STAMINA (pe-rcv-ifc fc.m, pe-send-ifc fc.m, vbeda).

max # prime CPU time (sec)

machine # states | compat. | # compat. | compat. | #NVEPC | ISM | STAMINA
alex1 42 787 55928 787 787 | 40 16
future 36 49 | 7.92986¢8 49 49 8 0
future.m 28 16 | 2.62144¢7 16 16 2 0
intel_edge.dummy 28 120 9432 396 396 | 40 3
isend 40 128 22207 480 480 [19 | spaceout
isend.m 20 15 22207 19 19 1 0
mp-forward-pkt 20 1| 1.04858e6 1 0 0 0
nak-pa 56 8 | 4.74109¢15 8 8| 17 0
nak-pa.m 18 8 44799 8 8 1 0
pe-rev-ifc.fc 46 28 | 1.52816el1 148 148 | 22 | spaceout
pe-rev-ifc.fcm 27 18 | 1.79379¢6 38 38 3 147
pe-send-ifc.fc 70 39 | 5.07174e17 506 506 | 701 | spaceout
pe-send-ifc.fc.m 26 6 8.97843¢6 23 22 3 312
ram-read-sbuf 36 2 | 3.00648¢10 2 0 2 0
sbuf-ram-write 58 24 1.4336¢6 24 24| 15 0
sbuf-ram-write.m 24 12 1.4336¢6 12 12 2 0
sbuf-send-ctl 20 10 81407 10 10 0 0
sbuf-send-pkt2 21 2 622591 2 0| O 0
vbeda 58 2072 | 1.7562¢12 2072 2072 | 141 167
vbeda.m 22 13 73471 13 13 2 0
vbe6a.m 16 8 527 8 4 1 0
vmebus.master.m 32 10 | 5.04955¢7 28 28 | 16 | spaceout

Table 2: Asynchronous FSM benchmark.

9.3 Examples of FSM’s from Learning I/O Sequences

Table 3 shows the results of running a parametrized set of FSM’s constructed to be compatible with a given
collection of examples of input/output behavior [7]. These machines exhibit very large number of compatibles.

Here 1SM shows all its power compared to STAMINA, both in terms of number of computed primes and running
time. STAMINA runs out of memory on the examples from threer.35 onwards and, when it completes, it takes close
to two order of magnitude more time than ISM.

22

_ # # # prime | CPU time (sec)

machine | state | compat. | compat. | ism | stamina

threer.6 7 55 4 0 0
threer.10 11 671 112 0 0
threer.14 15 6335 1052 0 5
threer20 | 21 16829 3936 2 159
threer25 | 26 60857 17372 8 215
threer30 (31 97849 33064 50 1344
threer35 | 36 223705 82776 66 | spaceout
threer40 | 41 | 1456805 529420 | 156 | spaceout
threer45 | 46 | 5532323 | 2225468 | 1213 | spaceout
threer.50 51 | 16809300 | 7246284 | 1142 | spaceout
threer.55 | 55 | 36223548 | 15550092 | 1999 | spaceout

Table 3: Leaming I/O sequences benchmark.

CPU Time Vs. # Prime Compatibles

R——

ism
/ stamina

/

1

le+02

le+04

23

le+06

#iprimes

Figure 5: Comparison between ISM and STAMINA on learning I/O sequences benchmark.

9.4 A Family of FSM’s with Exponentially Many Primes

In the previous examples, the number of prime compatibles is not large compared to the number of states. A
natural question to ask is whether there are FSM’s that generate a large number of prime compatibles with respect
to the number of states. We were able to construct a suite of FSM’s where the number of prime compatibles is
exponential in the number of states.

Rubin gave in [20] a sharp upper bound for the number of maximal compatibles of an ISFSM. He showed
that M(n), the maximum number of maximal compatibles over all ISFSM’s with n > 1 states, is given by
M(n) = i3™, if n = 3.m + i. The proof of this counting statement is based on the construction of a family
of incompatibility graphs I(n) parametrized in the number of states*. Each I(n) is composed canonically of a
number of connected components. Each maximal compatible contains exactly one state from each connected
component of the graph. The number of such choices is shown to be M (»).

The proof of the theorem does not exhibit an FSM that has a canonical incompatibility graph. Based on
the construction of the incompatibility graphs given in the paper, we have built a family F(n)° of ISFSM’s
(parametrized in the number of states n) that have a number of maximal compatibles in the order of 3(»/3) and a
number of prime compatibles in the order of 2(2*/3), F(n) has 1 input and n/3 outputs. Each machine F is derived
from a non-connected state transition graph whose components F; are defined on the same input and outputs. Each
FSM F; has 3 states {sio, i1, 5i2} and 3 specified transitions {eio = (si0, 8i1), €1 = (301, 82), €2 = (32, 8i0)}-
Each transition under the input set to 1 asserts all outputs to —, with the exception that e;o and e;; assert the i-th
output to 0 and e;, asserts the i-th output to 1. Under the input set to O the transitions are left unspecified.

Table 3 shows the results of running increasingly larger FSM’s of the family. While ISM is able to generate
sets of prime compatibles of cardinality up to 212% with reasonable running times, STAMINA, based on an explicit
enumeration runs out of memory soon (and where it completes, it takes much longer).

max # prime CPU time (sec)
machine | # states | compat. | # compat. | compat. | #NEPC ISM | STAMINA
rubinl2 12 34 28 -1 28 -1 28 —1 0 4
rubinl8 18 36 221 [221 | 212 1 751
rubin24 24 38 2161 | 2161 | 216 1 | spaceout
rubinl50 | 150 350 | 2100_q | 2100_7 | 2100_ 88 | spaceout

rubin300 | 300 3100 | 2200 _q | 2200 _q | 2200 _ 452 | spaceout
rubind50 | 450 3150 | 2300 _q [2300 _p [2300_4 1458 | spaceout
rubin600 | 600 3200 | 2400 _q | 2400 _§ | 2900 _1 | 3106 | spaceout
rubin750 | 750 3250 | 2500 _q | 25001 | 2500 _1 | 7106 | spaceout
rubin900 | 900 3300 | 2600 _q | 2600 _q | 2600 1 | 711588 | spaceout
rubin1050 [1050 | 330 | 27001 | 2700 _1 | 2700 _ 1 | 21048 | spaceout
rubinl200 | 1200 | 3400 [2800_ | 2800 _q | 2800 _ 3 | 37502 | spaceout
rubin1500 | 1500 | 3500 [21000 [21000_ 4 21000 1 | 77590 | spaceout
rubin1800 | 1800 3600 | 21200 _q [21200 _ g | 21200 _ 1 | 142824 | spaceout

Table 4: Constructed FSM’s.

“The incompatibility graph of an ISFSM F is a graph whose nodes are the states of F, with an undirected arc between two nodes s and
tiff s and ¢ are incompatible.
3Called rubin followed by n in the table of results.

24

CPU Time Vs. # Prime Compatibles

CPU sec
le+05 ism
J / stamina
3
//
le+04

3
le+03 /

le+02 /

3 #primes
le+54 1le+121 1e+188 1e+255

Figure 6: Comparison between ISM and STAMINA on constructed FSM’s.

25

9.5 FSM'’s with Many Maximals

Table 4 shows the results of running some examples from a set of FSM’s constructed to have a large number of
maximal compatibles. The examples jac4, jc43, jc44, jc45, jc46, jc47 are due to R. Jacoby and have been kindly
provided by J.-K. Rho of UC Boulder. The example lavagno is from asynchronous synthesis as those reported in
Section 9.2. For these examples the program STAMINA was run with the option -M to compute all maximals. While
I1SM could complete on them in reasonable running times, STAMINA could not complete on jac4 and completed the
other ones with running times exceeding those of ISM by one or two order of magnitudes. Notice that ISM could
also compute the set of all compatibles even though the computation of prime compatibles cannot be carried to
the end while STAMINA failed on both.

max # prime | CPU time (sec)

machine | # states | compat. | #compat. | compat. | ISM | STAMINA
jacd 65 3859641 | 41593120 ? 34 | spaceout
jZX] 45 82431 | 1.55634¢6 ? 13 7739
jcA4 55 4785 | 7.58463¢9 ? 20 662
jcAS 40 17323 480028 ? 10 1211
jca6 42 26086 | 1.1536¢6 ? 11 2076
jeAT 51 397514 | 1.12096¢7 ? 19 41297
lavagno 65 47971 | 9.1631e6 ? 163 40472

Table 5: FSM’s with many maximals.

9.6 Randomly Generated FSM’s

We investigated also whether randomly generated FSM’s have a large number of prime compatibles. A program
was written to generate random FSM’s®. A small percentage of the randomly generated FSM’s were found to
exhibit this behavior. Table 4 shows the results of running ISM and STAMINA on some interesting examples with a
large number of primes. Again only ISM could complete the examples exhibiting a large number of primes.

9.7 Summary of the Results

The results of Tables 2, 3, 4 and 5 show that when the sets of compatibles needed for exact state minimization
are huge, an algorithm based on an explicit enumeration of those sets will be unable to complete due to an
out-of-memory condition.

The question now arises of how it is realistic to expect such examples in logic design applications. One could
object that the examples of Table 1 show that hand-designed FSM’s can be handled very well by an existing
state-of-art program like STAMINA. If this can be true for usual hand-designed FSM’s, we argue that there are
FSM'’s produced in the process of logic synthesis of real design applications that generate large sets of compatibles
exceeding the capabilities of programs based on an explicit enumeration. The examples of Table 2 are such a case.
They are FSM'’s produced as intermediate stages of an asynchronous logic design procedure and their minimization
requires computing very large sets of compatibles. Another case is the one reported in Table 3, referring to the
synthesis of finite state machines consistent with a collection of I/O learning examples.

We expect that similar cases are going to arise, for instance, in the minimization of interacting FSM’s. It
has been reported by Rho and Somenzi [19] that the exact state minimization of the driven machine of a pair

SParameters: number of states, number of inputs, number of outputs, don’t care output percentage, dont care target state percentage.

26

max # prime CPU time (sec)

machine | # states | compat. | # compat. | compat. | #NVEPC | ISM | STAMINA
fsm15.232 14 4 7679 360 360 2 23
fsm15.304 14 2 12287 954 954 1 85
fsm15.468 13 2 4607 772 772 1 16
fsm15.897 15 2 20479 617 616 0 50
ex2.271 19 2 393215 | 96383 96382 | 26 | spaceout
ex2.285 19 2 393215 | 121501 | 121500 | 17 | spaceout
ex2.304 19 2 393215 | 264079 | 264079 | 94 | spaceout
ex2.423 19 4 204799 | 160494 | 160494 | 112 | spaceout
€x2.680 19 2 327679 | 192803 | 192803 | 156 | spaceout

Table 6: Random FSM'’s.

of cascaded FSM’s is equivalent to the state minimization of an ISFSM that requires the computation of prime
compatibles.

10 Conclusions

This paper has presented an algorithm that implicitly generates the various sets of compatibles needed to solve
exactly state minimization. Compatibles, maximal compatibles, prime compatibles and implied classes are all
represented implicitly by the characteristic functions of relations implemented with BDD’s. If it is possible to build
these BDD's, computations on these sets of compatibles are easy. The only explicit dependence is on the number
of states of the initial problem. We have demonstrated with experiments from a variety of benchmarks that implicit
techniques allow to handle examples exhibiting a number of compatibles up to 212%, an achievement outside
the scope of programs based on explicit enumeration [9]. We have shown, when discussing the experiments,
that ISFMS’s with a very large number of compatibles may be produced as intermediate steps of logic synthesis
algorithms, for instance in the cases of asynchronous synthesis [13], and of learning I/O sequences [7]. A similar
situation is expected to occur also in the synthesis of interacting FSM’s [19]. This shows that the proposed
approach has not only a theoretical interest, but also practical relevance for current logic synthesis applications.

The final step of an implicit exact state minimization procedure, i.e. solving implicitly a binate covering
problem [21], is part of an ongoing research that will be presented in a separate paper. A complete formulation of
an implicit binate covering algorithm has been already worked out and an implementation is in progress.

We underline that besides the intrinsic interest of state minimization and its variants for sequential synthesis,
the implicit techniques reported in this paper can be applied to other problems of logic synthesis and combinatorial
optimization. For instance the implicit computation of maximal compatibles given here can be easily converted
into an implicit computation of prime encoding-dichotomies (see [22]). Therefore the computational methods
described here contribute to build a body of implicit techniques whose scope goes much beyond a specific
application.

27

References

[1] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In The Proceedings of the
Design Automation Conference, pages 4045, 1990.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3]1 R. Brayton, A. Sangiovanni-Vincentelli, and G. Hachtel. Multi-level logic synthesis. The Proceedings of the
IEEE, february 1990.

[4] R. Bryant. Graph based algorithm for Boolean function manipulation. In /EEE Transactions on Computers,
pages C-35(8):667-691, 1986.

[5] O. Coudent, C. Berthet, and J. C. Madre. Verification of sequential machines using functional Boolean
vectors. IFIP Conference, November 1989.

[6] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and essential prime implicants
of boolean functions. In The Proceedings of the Design Automation Conference, pages 36-39, 1992,

[7] S. Edwards and A. Oliveira. Synthesis of minimal state machines from examples of behavior. EE290LS
Class Project Report, U.C. Berkeley, May 1993.

[8] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely specified
sequential networks. IRE Transactions on Electronic Computers, EC-14(3):350-359, June 1965.

[9] G. Hachtel, J.-K. Rho, FE. Somenzi, and R. Jacoby. Exact and heuristic algorithms for the minimization of
incompletely specified state machines. In The Proceedings of the European Design Automation Conference,
1991.

[10] J.E. Hopcroft. n log n algorithm for minimizing states in finite automata. Tech. Report Stanford Univ. CS
71/190, 1971.

[11] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company, New York, New York,
second edition, 1978.

[12] L. Lavagno. Personal communication. UC Berkeley, December 1991.

(13] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving the state assignment
problem for signal transition graphs. The Proceedings of the Design Automation Conference, June 1992,

[14] B.Lin. Synthesis of VLSI designs with symbolic techniques. Tech. Report No. UCB/ERL M91/105, November
1991.

[15] B. Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued functions. In The
Proceedings of the Design Automation Conference, pages 40-44, 1992.

(16] B. Lin and A.R. Newton. Implicit manipulation of equivalence classes using binary decision diagrams. In
Proceedings of the International Conference on Computer Design, pages 81-85, September 1991.

[17] M. Paull and S. Unger. Minimizing the number of states in incompletely specified state machines. /RE
Transactions on Electronic Computers, September 1959.

28

[18] C.P. Pfleeger. State reduction in incompletely specified finite state machines. IEEE Transactions on Com-
puters, pages 1099-1102, October 1973.

[19] J.-K. Rho and F..Somenzi. The role of prime compatibles in the minimization of finite state machines. In
The Proceedings of the European Design Automation Conference, 1992.

[20] Frank Rubin. Worst case bounds for maximal compatible subsets. IEEE Transactions on Computers, pages
830-831, August 1975.

[21] R. Rudell. Logic synthesis for VLSI design. Tech. Report No. UCB/ERL M89/49, April 1989.

[22] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni- Vincentelli. A uniform framework for satisfying input
and output encoding constraints. The Proceedings of the Design Automation Conference, June 1991.

[23] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration of
finite state machines using BDD’s. The Proceedings of the International Conference on Computer-Aided
Design, pages 130-133, November 1990.

29

A Appendix

The following example is used to illustrate the BDD’s constructed in the implicit algorithm. FSM’s are usually
specified in STT form; a convenient way of writing STT’s is given by a flow table. Each row in the flow table
corresponds to a state and each column corresponds to an input combination (or vector). Each table entry gives
the next state and output for the corresponding input and present state.

encoded inputs

01 10 11
sl | 83/0 -/= 82/~
82 | -/- s4/0 s6/-
states 83 | 85/1 -/- -/0
84 | -/- s1/1 sl/-
a5 | sl/- -/- 86/~

Figure 7: An FSM example.

10 11 pl p2 p3 péd p5 pé nl n2 n3 nd4d n5 né 10 11 pl p2 p3 pd pS5 pé6 nl n2 n3 nd n5 né
0 1 0 0 0 0 0 1 0 0 01 0O 1 0 01 0 0 0 O 0 0 01 0 0O
01 0 0 0 0 1 0 10 0 0 0 O 11 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 01 0 0O 0 0 0 0 1 0 11 0 0 0 0 1 0 0 0 0 0 0 1
01 1 0 0 0 0O 0 01 0 0O 11 0 0 01 0 O 1 0 0 0 0 O
1 0 0 0 0 0 0 1 0 0 0 0 1 0 11 01 0 0 0 o 0 0 0 0 0 1
1 0 0 0 01 0 O 1 0 0 0 0 O 1 1 1 0 0 0 0 O 0 1 0 0 0 O
Figure 8: Transition relation 7 (%, p, n) for the example.

i0 i1 pl p2 p3 p4d pS pé6 o 10 i1 pl p2 p3 p4d pS pé [-)

0 0 0 0 0 0 0 1 - 1 0 0O 0 0 0 0 1 -

0 0 60 0 0 0 1 O - 10 0O 0 0 0 1 O -

([] 0 0 01 0 O - 10 0 0 01 00O 1

00 0 01 0 0 O - 10 0 01 0 0 O -

0o o 0O 1 0 0 O O - 1 0 01 0 0 0 O 0

0 0 1 00 0 0 O - 1 0 1 0 0 0 0 O -

0 1 0O 0 0 0 0 1 - 11 0 0 0 0 0 1 -

0 1 0o 00 01 0 - 11 00 0 0 1 0 -

0 1 0 0 01 00 - 11 0 0 01 00O -

0 1 0 0 1 0 0 O 1 11 6 01 0 0 O 0

0 1 01 0 0 0 O - 11 01 0 0 0 O -

0 1 1 00 0 0 O 0 1 1 1 0 0 0 0 O -

Figure 9: Output relation O(%, p, o) for the example.

2l z2 z3 z4 25 z6

zl z2 23 24 25 z6 vyl y2 y3 y4 y5 yé

¥l y2 y3 y4 y5 y6

0 0 01 00 i1 0 0 0 o o
0 0 o

0O 0 0 0 0 1

0 0 0 0 0 1

- OO

(=3 o -]

(= ~]

oo

(==

oo

(= =]

(=]

(o]

(=N ~]

c 01 0 0 O

oo

(==}

(=N =]

- O

(=2

oo

0 0 0 0 1 0

o o

-~ -

oo

oo

[= =]

oo

0 0 0 0 0 1

(=X =]

[~ = X~

(=~

(= =]

oo

0 0 1 o0
01 00

oo

oo

oo

oo

(= -]

(o]

0 01 0 0 O
0 01 0 0O

oo

- O

(=2

oo

(= =

(= =]

01 0 0 00O
1 00 0 000

oo

(= =]

-

(o =]

(==

0 0 0 0 1
0 0 0 0 1

oo

coo0ooco

coo

[=}

oo

0 0 1 o
1
0

01 0 0 0 O
01 0 0 0 O

01 0 0 0 O

0 0 01 0 O
0 01 0 0 O
01 0 0 0 O

oo

(=]

0 0 01 0

(==}

(=~

+ O

o

(==

oo

oo

(==}

oo

(<=4

oo

oo

oo

-

(=2}

o o

[~ ~]

oo

oo

O

o o

- O

(=]

o o

[= <]

(=]

(==}

oo

- O

[« =]

(=3 |

(= =]

(=N =]
o o
o o
[= <]
oo

(o]

(==}

- O

(=]

(=8 =]

(=N =]

o o

oo

(==

- -

(= =]

oo

(ol =]

0 01 0 0 0 1 00 0 0 o0 1 00 0 00

0 0 01 00O

Output compatible pairs OCP(y, z) for the example.

o
.

Figure 10

zl 22 23 z4 z5 z6

¥yl ¥2 y3 y4 y5 yé

coo0oo

(==~ =]

OO

(==~ R

00O

O-OO

oo oo

oo0oo0oo

OO0

o400

©CO0Om~wO

OO

OCP(y, z) for the example.

Output compatible Pairs

.
.

Figure 11

zl 22 z3 24 z5 z6 vl y2 y3 y4 y5 yé zl 22 23 z4 z5 z6

¥l y2 y3 y4 yS yé

oo

- O

oo

(==

[« =]

o~

oo

(=~

oo

0O 0 01 00
0 01 0 0 O

0 0 0 0 0 1
0 0 0 01 0

o o

oo

- O

(=N =]

[« =]

oo

(==

(=28 =]

oo

[= o)

- O

o~

(=2]

(=2 =]

(==}

oo

(=2 =]

- O

[= =]

[=]

(=}

o o

(==

(= =]

0 01 0 0O

01 0 0 0 O 1 0 0 0 0 O

0 0 01 0O

Incompatible pairs ZCP(y, z) for the example.

Figure 12

cl c2 c3 c4 ¢5 cé

LI I B B |

Las O B A I |

LI B B I}

LI I

LI B L, |

Incompatibles ZC(c) for the example.

.
.

Figure 13

cl c2 ¢3 c4 ¢5 c6

cl c2 c3 c4 ¢c5 c6

t 1101

1 0Oo0o

(=2 =00]

- OO

110 00

o
OO0
-
OO0
-) O
O 1 O

OO

QOO

011 0 0

(== oNe)

0OO0O0COoOOo

Figure 14: Compatibles C(c) for the example.

cl ¢2 ¢3 c4 c5 cé

cl c2 ¢3 c4 5 cb

- O
o oo
(oo Nl
- OO
- O -

Oric

[~]

O

-~ =0

OO

ood

(==)

Maximal compatibles MC(c) for the example.

Figure 15

nl n2 n3 n4 nS né

nl n2 n3 nd4d nS né 11 42 ¢l ¢2 ¢3 ¢4 ¢S5 c6

cl c2 c3 c4 c5 c6

i1 i2

0O 0 01 0 O

01 0 0 1 0
01 0 0 1 1
01 0 0 1 1
01 1 0 o0 O

0

1

0 0 01 0O

0 0 0 0 1 1

0

(==

oo

-~

oo

0 0 0 0 1 O

[
0
0

1
1
1

0
0
0 0 0 1 0

~OoOd

- O

[« N =]

(o=

(== =]

(== =]

el

oo0o

(= =]

- O

o

o o

[~ =]

oo

~ -

o o

(==}

-

-

(==}

oo

L]

o o

(=2]

—~ O

oo

o o

(==}

™ O

o o

o~

[o]

(= =]

oo

-t -t

oo

(= =]

- O

(=X =]

1 0 0 0 0 1
1 0 01 0 O

0
0

1
1

0 0 01 0O
1 0 0 0 0 O

Qo

o o

- -

(==

- -

oo

oo

o-0O

- O -

(oo =]

[« =N <]

(=~ -]

(=2

[~ =~

0o

00O

N

el

(o =3 =]

e~

[~ =1¥<]

[~

- OO

oo

(= -]

OO

O

O

(===

[~

el

(= =]

L B I |

(=N~

O~
(=== =]
©co0o0o
(= ===
[« o=

OO0 HO

HOO0OH

et O

O- O

OO0«

[~ = = ¥ =]

(ool =0y =]

e L]

L I]

[= = =¥ =]
O O0OO
OO
(===
o000

[= =N ==

L N I]

0000

000

<00

~“e< OO

OO0

e

(=== =]

oo

(==

(= =4

0 0 1 1 0 O
01 0 0 0 1

1
1

1
0 01 0 0 O 1

0 01 0 0 O

1 0 01 0 O
110 0 00

—

o

o

o

(=]

o

Ll

o

o

-

[=}

Lol

(o]

o

o

-

o

-

oo

oo

(=2 =]

o o

oo

[]

(o =]

o o

- O

- O

(=2]

o~

-l

oo

o

oo

-~ O

o o

(==

-

o

o o

(= =]

- O

- -Oo

0O«

1 0 0 0 0 1 01 0 0 0 O
01 0 0 0 O

1
1

1

l1 00 0 0O

0 0 0 1 1 0

o«

oo

[~ =]

[+~

oo

01 0 0 0 O

- O

o |

oo

- O

(=2 =]

(=]

1 0 01 0 O
1 1 0 0 O

-

1

-

1

-

1

oo

o~

(= ~]

oo

oo

0 0 0 0 1 O
0 0 0 1 0 O

- O

o~

[o =]

- O

- O

(=20

01 0 0 01

0 0 1 0 0 1

(=N =]

L N I]

Figure 16: F(c, i, n) for the example.

dl d2 d3 d4 d5 dé

cl c2 ¢c3 c4 c5 cé6

dl d2 d3 d4 d5 dé

cl ¢2 ¢3 c4 c5 c6

- OO

OO

(= =0_]

(==}

©o0o

o000

(= =]

oo

oo

-

-

011 0 0 O

(==}

- O

o

oo

o o

o o

1 00100

o o

-

L]

(ol elye]

oo

(==

oo0o

- O

o«

(=1

oo

(==

(=2 =]

L]

[=]

(= =]

-t -l

-

(=]

[|

o o

oo

oo

(=2 =]

< O

(=

- O

- O

o

[= e

[= =]

oo -HO

O OO0

0
1
0
0
0 0 0 O

- O~

- O I

0 0 O
0

- O

[= =]

(=]

(==

(==}

1 0 0 0 01
1 0 0 0 0 1
1 0 01 00

-

oo

- O

© o

(= =]

0 0 0 0 1

(=<

0 0 0 0 1 0
0 0 0110

OO

(=N~ -]

O

O

oo

0 01 0 01
0 01 0 01

(=N ==}

oo

oo

- O

o

(=21 =]

oo

oo

(= ~]

oo

(==}

-~

Lo]

o

1 ©

- O

oo

(==

© o

-~ o

o

o o

oo

L]

© o

-1 O

(=]

(=}

(=X <]

- O

oo

o

(==}

oo

oo

o]

Lo]

[= =]

oo

- O

© o

(=]

(=2 |

[«)

(==}

- O

-~ O

(=

oo

[]

oo

[« =4

oo

(o]

~

-1 O

(=]

(=]

(==}

oo

oo

10 0 1 0 0O

OO ™

Lo B R I)

00000

©Cooo0oo

e R N |

0000

Implied classes of compatibles CZ(c, d) for the example.

Figure 17

dl d2 d3 d4 d5 dé6 cl c2 c3 c4 c5c6 dl d2 d3 d4 d5 d6

cl c2 c3 c4 c5 cé6

© oo

OO

~“~O ™

oo

(= =N=]

0 0 0 ¢ 0 O
0 0 60 0 0 O

(== =]

~ -

[~ -2

oo

~~OO

- OO

01 1 0 0 0
0110 01

(=2]

(=3 =]

(=~ N -]

(=R ~N~]

00

oo

0 0 0 0 0 0O
1 0 01 00

(=3 N~

OO

=0

OO dArO

0000 ™

[~ I~ 2o N

[~ =Moo

01 0 0 01
0 0 0 0 0 O

1 0 01 0O

1 0 0 0 0 1

0 0 0 1 1 0
0 0 0 0 0 O

o

- -

(==}

(==}

OO ~O

0000

[« 3=~

(=20 =0 =]

OO

- O OO

[= =]

(==}

- O

o o

o

1100 01
1100 01
11 0 0 0 1

110 0 00O

-

[~ =]

o~

o

oo

(=]

0 0 0 0 0 O
0O 0 0 0 0 O

(= =]

O

O«

oo

oo

i1 0 0 1 1

L B B

[e e a)

[« =]

- O

-~

(=

oo

- O

~

oo

oo

o™

-

-

(==}

(==}

-~

(= =]

Class sets of compatibles CCS(¢, d) for the example.

Figure 18

cl ¢c2 ¢3 c4 c5 cé6

cl c2 ¢3 c4 c5 cé6

-

(=4

-t

0 0 0 0 0 1

o~

o o

(==}

(==}

(=X =]

~ =

O

-

(=]

o o

o o

oo

1 0 0 1 0 O
1100 00O
11 00 01

0 0 1 1 00

01 0 0 1 0
01 0 0 1 1

0 1 10 00

Figure 19: Prime compatibles PC(c) for the example.

dl d2 d3 d4 d5 dé cl c2 c3 c4 c5 c6 dl d2 d3 d4 d5 d6

cl c2 c3 c4 c5 c6

(= =]

- O

- O

(= =]

[= 2K =]

oo

- O

(=]

(==

- O

O

O

[y e)

[= =]

(==}

(o =]

oo

(= =]

-

(=}

oo

o o

(==}

(o0 =]

0O 0 0 0 0 O
0 0 1 1 00O

1 0 0 0 0 1
1 0 0 0 0 1

1 0 01 00
0 0 0 0 0O
1 0 0 0 0 1

oo

oo

(= =]

(=K =]

O 0O

0oo0o0Oo

OO0 O0Oo

00O

O <O

OO0 MO

[o o]

o o

-~ O

o o

o

1 0 0 0 0 1
1 0 01 0 ©

-

o o

oo

oo

[= =]

(= =]

0 0 0 0 0 O

oo

o™

(o]

o o

© o

o~

0 0 0110

0 01 1 0 O

(=X =]

01 0 0 01
0 0 0 0 0 O
0 0 01 1 0

11 0 0 0 O
1100 01
1100 01

0 0 0 1 1 0
1 0 01 00
6 0 0 0 0 O
0O 0 0 0 0 O

0 0 1 1
1
0

[N o]

0 0 1 1 0 O

11 0 0 0 1

01 1 0 0 1

Figure 20: Prime compatibles with class sets PCCS(c, d) for the example.

zl z2 z3 24 25 26 ¢l ¢c2 ¢c3 c4 c5¢c6 e

cl c2 c3 c4 5 c6

1 0 0 1 0 0 1

1 00

1 0 0 0 0 O

[= K=o

[~ =N~

o«

(=X~

- O

(= =]

oo

1 00

oo

[~ =)

o-w0

- -

oo

(=]

-

- O

oo

oo

(=N -]

oo

e~

(= =]

oo

(=3 =]

e R N]
OHerOO
HOOOOO
O O0OO0OO0O0
00000
Orriededd
Orrred
OO0OOdMOO
00000
o000 o0o
o000 O0O0
OO0 HOOH
O-HOO0O~=O

1
1
1

1 0 0 0 0 1
1 0 0 0 0 1
0 0 0 0 0 1
01 1 0 0 1

01 1 0 0 1

1 0 0 0 0 O

0 0 0 0 0 1

0 0 0 0 01

01 0 0 0 O
0 01 0 0O

L B e I

- OO

[~ N=N-]

[« =¢=]

L I I]

e

(===

(o ==

[= = =]

[= =N =]

[= =]

o0

[= ==

1
1

01 0 0 1 1

01 0 0 00O

0 0 0 0 1 0

01 0 0 1 1

OO«

L e B |

0O O0O0

0000

-0

cCo0o0Oo

O OO0

OO

(oo olye]

(=2 =1y =1y

OO0

[o o NolNa]

0 0 0 0 1 1

0 0 0 0 0 1

Figure 21: Unate clauses in covering table UT'(c, 2, ¢, e) for the example.

2l 22 23 24 25 26 cl c2 c3 c4d c5¢c6 e

cl c2 c3 c4 c5 c6

1
1
1

110 0 0 1
110 0 0 0
110 0 0 1

11 0 0 0 O
11 0 0 0 ©
1 0 0 0 0 1

1 0 0 1 0O

1 0 0 1 0 O

0 0 0 1 1 0

-

O

© o

(= =]

(o <]

- O

(o]

Lo]

(= =]

(=]

(==}

[= =]

o

[= =]

(o]

-

oo

(= =]

(= =]

o~

- O

o
o
™~ = O
OO
[= =]
o

O~

(==
(=2 =]
O
- OO

[~ =a)

-0
(o]
(== =]
0o
[]

-

~ -

- -

oo

oo

- O

~ -

(o <]

-

oo

[=]

oo

- -

oo

[~ =]

o o

(==

(==

o~

-~

0 011 00
11 0 0 0 1

0 0 110 O
0 1 0 0 0 1

oo

[= =]

(= =]

L]

-

-~
o
(==
-~ O
LI |
oo
-~
[~} =)
oo
o o
-

(=3 =]

-t -
o o
[= =]
(=X =]
(==

-~

o~

oo

- O

L B I |

[o <N <]

oO0Oo

OO

(== =]

~ O

e]

O oo

(===}

(= o I =]

-

O~

(== =]

- OO

(o)

oo

O OO

[~

- O

- O

[N~

O

1 001 00
1 001 00

O

- O

oo

o

o

o o

10 01 0 0
11 00 0O

- O

(=2

- O

- O

oo

(=]

0 0 0 0 1 1
1 0 0 1 0 O

(=2

[o]
~ O~
[= N ~N-]
(=2~
o o0o
- O

i~

(=2 o I =]
OO
O
oo
O ~O

oo

O~
[N o]
(== =]
oo
-~ O

[]

oo

- -

© o

(= =]

o

(=2]

- O

- O

O

(=28]

oo

- O

[-N-2

-

oo

oo

(=2]

o~

- O

(ol =]

- -

Lo]

c o

oo

-

(= =]

o o

o

~ -

oo

o o

- O

-~

-

oo

[= =]

-t

(=~

0 0 0 0 1 1

table BT (c, 2, ¢, e) for the

1 0 01 00

0 0 0 0 1 1

example.

.

.

in covering

Figure 22: Binate clauses

	Copyright notice 1993
	ERL-93-60

