

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

MULTIPROCESSOR DSP CODE SYNTHESIS

IN PTOLEMY

by

Praveen Kumar Murthy

Memorandum No. UCB/ERL M93/66

30 August 1993

MULTIPROCESSOR DSP CODE SYNTHESIS

IN PTOLEMY

by

Praveen Kumar Murthy

Memorandum No. UCB/ERL M93/66

30 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MULTIPROCESSOR DSP CODE SYNTHESIS

IN PTOLEMY

by

Praveen Kumar Murthy

Memorandum No. UCB/ERL M93/66

30 August 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

1 Abstract 1

2 Introduction 2

2.1 Overview of Ptolemy. 3
2.2 Synchronous Dataflow 4

3 TheSprocDSP 4
3.1 The Central MemoryUnit 5
3.2 The General Signal Processors 6
3.3 The Data Row Managers 7
3.4 The board 7

3.5 The Sproc development system 8
3.5.1 SSIMD scheduling 8
3.5.2 The IPC vocoder 9
3.5.2.1An upper bound for ao(0) 15

4 Code Generation in Ptolemy 17
4.1 Stars 18

4.2 Targets 23
4.3 Schedulers 24

4.4 Interprocessor communication 25
4.4.1 Send/Receive 25
4.4.2 Spread/Collect 25

5 The Sproc domain 26
5.1 SprocTarget 27

5.1.1 Send/Receive 30

5.1.2 Memory Allocation 32
5.1.3 I/O 33

5.1.3.1Apossibilityforfuture work 34
5.2 Other Targets 34
5.3 Some examples 35

5.3.1 Plucked strings 35
5.3.2 QMF Filter bank 36
5.3.3 ADPCM coding of speech 39

6 Conclusion 41

7 Acknowledgments 41

8 References 42

Appendix: Code for QMF filter bank 44

10f1

*OT*mmnw«a»ew»OTi«miwft«

1 Abstract

miiiiiifiiiiiiimnniiiniriTiiiiiiiiiiiNiiiii

Ptolemy is a flexible tool that has been developed for simulation, prototyping, and soft

ware synthesis for large heterogenous systems. The objectives of Ptolemy encompass virtually all

aspects of designing signal processing and communication systems, ranging from algorithms and

communication strategies, through simulation, parallel computing, and generation of real-time

prototypes. This project report describes the multiprocessor code synthesis aspect ofPtolemy, and

in particular, code synthesis for the Sproc digital signal processor (DSP) made by Star Semicon
ductor.

1of46

2 of 46

Introduction

The reality with most high-performance DSP chips is that they are very tedious and com

plex to program. In addition, programming parallel DSP architectures has required adaptation of

algorithms to parallel implementations on a case-by-case basis, with each application being care

fully analyzed for concurrency. The bulk of coding for DSPs is done using assembly language

techniques and requires the programmer to be familiar with many details of the chips architecture,

such as pipelines. Although C compilers exist for many popularDSPs, they produce code that is

4-5 times less efficient than hand-assembled code and thus are not a feasible solution for demand

ing DSP tasks. The problem with high level language compilers is that they are often not able to

use specialized addressing modes (like bit-reversed addressing for FFT's, hardware support for

circular buffers) efficiently. Another option is to use anapplicative language like Silageto specify

DSPprograms [Gen90]. The declarative semantics of the language, and its support for fixed-point

arithmetic, makes highly efficient code-generation possible. The Mentor/EDC DSPstation is

based on Silage [Men92].

Neither assembly language nor C coding are the most natural ways of specifying DSP

algorithms. A more natural method is to use block diagrams and signal flow graphs [Mes84]. In

this approach, any complete system design methodology must includesoftware synthesis from the

high level block diagram of the system. This can be done by having hand written assembly code

segments in the individual blocks. The hope is that such blocks will be stored in standard libraries

rendering them modular, reusable software components. Software synthesis then consists of two

phases: scheduling and code generation. During the scheduling phase, the blocks are partitioned

onto parallel processors, and for each processor, a sequence of block invocations is determined.

Code generation consists of piecing together the assembly code segments from the blocks in the

order determined by the scheduler. This methodology seems tobeapopular one and is being used

commercially in the Star Semiconductor Sproc system [SS92], in the Comdisco DPC system

[Pow92], and in the CADIS Descartes system.

Introduction

Introduction

2.1 Overview of Ptolemy.

Ptolemy is a software tool that has been developed atBerkeley to facilitate the simulation

oflarge heterogenous systems, for example, communication networks and signal processing sys
tems [Buc93][Alm92], and isbased on dataflow semantics [Den80]. Heterogenous computational

models are achieved through the domain abstraction which enables each subsystem tobe modeled

in away that is natural and efficient for that subsystem. Combination of these heterogenous sub

systems is enabled by the definition of astandard interface called the event horizon. Ptolemy is
implemented in C++ and uses object oriented programming (OOP) methodology to achieve
extensibility to new domains without the need to modify or understand existing ones.

The basic unit of modularity in Ptolemy is the Block. A Block contains a method called

go () whose action can be different depending on the model of computation used. In the code

generation domains, this method synthesizes code for the target processor. Its invocation is

directed by aScheduler (another modular object) which, in the case of the synchronous dataflow

(SDF) model of computation, determines the order of firing of the Blocks at compile time.

Another type of object called the Target, describes the specific features ofatarget for code gener

ation. An interconnected block diagram constitutes the user-interface view of the system (or uni
verse). For anexample, see figure 20 at theendof thereport.

There are many domains in Ptolemy, including synchronous dataflow (SDF), discrete

event (DE), and dynamic dataflow (DDF). Of chiefinterest for this project was the SDF domain

since that is the model of computation for which the code generation capability has been com

pletelydeveloped. By model of computation, we mean the operational semantics and the schedul

ing strategy that are usedin simulating computations in that domain. For example, the DEdomain

has a different model of computation than SDF because in the DE domain, the notion of time is

very important, whereas inSDF, time isnot an issue. For DE stars, the management of timestamps

(which indicate the precise time at which the corresponding data was generated) is as important as

the functionality of the star. Theorder inwhich events are generated can benon-deterministic (for

example, queueing networks); hence, we cannot do static scheduling in DE and have to do sched

uling dynamically. Therefore, the operational semantics and scheduling strategy used for DE is

different from that of SDF; werefer tothese two as having different models of computation.

3 of 46

The Sproc DSP

While the domain abstraction is primarily for mixing different models ofcomputation, in

the code generation domains, different domains can have the same model ofcomputation but dis
tinct target languages. For example, Blocks that generate Sproc assembly code using the SDF
model of computation form their own domain, separate from Blocks that generate Motorola

56000 code using SDF. As an example ofhow Blocks, Targets, and Schedulers can interact, con

sider aset ofBlocks in the Sproc domain. Any of several targets can be chosen including one that
generates code in a higher level form consisting of statements containing Block names and

parameters instead of in-line assembly code. Any of two schedulers, each of which uses different

heuristics to obtain parallel schedules, can also be chosen.

2.2 Synchronous Dataflow

Synchronous Dataflow is a special case ofdataflow in which algorithms are described as

directed graphs where the number of samples produced and consumed by each actor on each

invocation is fixed and known at compile time [Lee86][Lee87]. This model is appropriate for sig
nal processing because alarge set of DSP algorithms are easily specified under the SDF paradigm.
Advantages of SDF over dataflow are agreater degree of setup-time syntax checking (since sam
ple-rate inconsistencies which can cause deadlock can easily be detected), and run-time efficiency
(since the schedules generated are fully static rather than dynamic). In addition, this model

exposes the inherent concurrency in an algorithm that can be exploited in parallel hardware
[Sih91].

3 The Sproc DSP

The Sproc signal processing chip is a multiprocessor DSP made by Star Semiconductor
[SS92]. The architecture uses fixed point arithmetic and has 16 bit address paths and 24 bit data
paths. There are four so called general signal processors (GSPs) on the chip and these share acen
tral multi-ported program and data memory unit (fig. 1). Contention for memory is eliminated by
giving access to each GSP in atime division multiplexed manner. Input/output data flow manag
ers (DFMs) coordinate simultaneous data streams, serial channels interface signals, and parallel

4 of 46

The Sproc DSP

Parallel Port
Microprocessor
Interface

Access Port
for development
system

Fig 1.Sproc central memory architecture

interfaces enable connections to external processors. The use of time division multiplexed mem
ory and the DFMs eliminates the need for interrupts to handle multiple data streams.

3.1 The Central Memory Unit

The CMU uses a frame composed of time slots, or memory access periods, allotted for

each GSP and for the I/O. The basic frame represents one Sproc chip machine cycle (five master

clock cycles) and includes five time slots of one master clock cycle each (fig. 2). Time slots 1

through 4are used by the GSPs. During time slot 1, GSP 1can read or write the CMU; during slot

2, GSP 2can read or write and so on. Time slot 5is used by I/O operations. It is submultiplexed
into 8divisions for parallel I/O and other operations. During every other machine cycle, slot 5 is

used bythe parallel port and can support signal or data flow without interrupting the processing of

5 of 46

The Sproc DSP

any of the GSPs. During the other machine cycle, slot 5 supports the serial ports, the access port,

and the on- chip probing port.

1 machine cycle (5 clock cycles)

Slotl
GSPl

Slot 2
GSP 2

Slot 3
GSP 3

Slot 4
GSP 4

Slot 5
I/O

Fig 2. CMU Time Slot Divisions

3.2 The General Signal Processors

The GSPs are 24-bit fixed-point processors and have Harvard-like architectures having

separate programand databuses. The word widths for both program anddataare24 bits, although

some registers are narrower. There are 5 subcycles within each GSP machine cycle (correspond

ing to each clock cycle). These are instruction fetch, decode, data fetch, and two cycles for the

execute phase (fig. 3). All instructions except two execute in one machine cycle, the two excep

tions being the multiply and multiply-and-accumulate instructions, where the result is available

on the third machine cycle. However, non-multiply instructions can be executed while the multi

plier completes. This is useful in constructs like loops where there are necessarily two other

instructions (one to check loop termination and one to load the multiplier's register), resulting in

zero waiting time for the multiply. Two data formats are accommodated in the machine: a fixed

point format extending from -2.000 to +1.9999999762 and an integer format from -8388608 to

8388607.

The bits in a 24-bit Wait register in each GSP can be set or cleared using an LDWS

instruction. A 24-bit Trigger bus connects this register and serial output ports to the first 24loca

tions in the data memory so that awrite to any ofthese addresses will clear the corresponding bits

(if set) in the Wait registers. This feature is of potential use for interprocessor communication;
more will be said about this later.

6 of 46

The Sproc DSP

3.3 The Data Flow Managers

The DFMs coordinate the filing of input and output data into or out of the CMU without

interrupting any ofthe GSPs. Because the CMU is amulti-ported memory space, this activity can
take place concurrently with signal processing. The DFMs set up either double buffers or pro

grammable vector FIFO queues in the CMU. The FIFO can be up to 256 words long, meaning
that 256 samples will be written sequentially into memory before overwriting occurs. This implies
that one does not have to worry about losing samples if a particularly time consuming task is
being executed since an appropriate buffer size can be determined at compile time and set (as long
as the size is less than 256). Ofcourse, if the task takes longer than was estimated, wewould still

lose samples since thebuffer would notbebigenough. A worst case estimate of task times should

therefore be used in order to calculate the buffer size.

3.4 The board

The chip andits associated circuitry reside on a board andare connected to ahost IBM PC

via the SprocBox which contains aMotorola 68000 microprocessor. Theboxcommunicates with

GSPl Instr.

Fetch
Decode

Data
Fetch

Exec. Flag
Update

GSP 2
Instr.

Fetch
Decode

Data
Fetch

Exec. Flag
Update

GSP 3
Instr.
Fetch

Decode
Data
Fetch

Exec. Flag
Update

GSP 4
Instr.

Fetch
Decode

Data
Fetch

Exec. Flag
Update

I/O Code
Access

Data
Access

Fig 3. liming from the GSP's perspective.

7 of 46

The Sproc DSP

the PC over a RS232 port. All user requests to the Sproc chip (such as loading the chip, changing

parameters while a program is beingrun) use the SPROCDrive Interface (SDI) software provided

by Star andare serviced by the SprocBox. The board also contains two A/D converters andtwo D/

A convertershooked up to the chips serial ports. Samplerates ofupto 20kHz arepossible with the

20MHz board. In addition there is a probe port to allow monitoring of signals at any memory

location.

3.5 The Sproc development system

The Sprocdevelopmentsystem is similar to Ptolemy in thatprogramming is via block dia

grams. As in Ptolemy, the blockscontain assembly codeto perform the required functions. How

ever, the Sproc system does not use SDF semantics to the full extent possible (as in Ptolemy) and

a result of this is that multirate graphs are not cleanly developed on the system. This became evi

dent in the early stage of the project when a couple of applications were developed in order to

gain familiarity with the chip. The applications developed were the relatively simple Karplus-

Strong plucked string algorithm and a more complicatedLPC vocoding system. The LPC coder is

described after a discussion on the scheduling strategy used by Star.

3.5.1 SSIMD scheduling

The Star development system uses SSIMD (skewed single instruction multiple data)

scheduling [Bar82][Bar83]. In this scheme, the entire application is run on all processors (or as

many neededto meet real-time throughput requirements), and skewed in time with respect to one

another so that different samples are processed by different processors. This is an attractive

scheme for many signal processing applications and works well in practice. Figure 4 shows an

example of SSIMD scheduling. Note thatprocessor 2 cannot execute blockA until after processor

1has executed blockB because of theprecedence constraint. For SSIMD, thescheduling problem

is just to determine a uniprocessor schedule and to determine the optimum starting time for each

processor (in other words, the skew.)

However, it is easy to see that this method will be suboptimal if large feedback loops are

present [Lee86]. As shown in figure 5, a spatially partitioned schedule will do better.

8 of 46

Procl

Proc2

BWW**'*w*w#***llw***H*«»**^iifflHm^^

The Sproc DSP

Al Bl CI A3 B3 C3

A2 B2 C2 A4

Fig 4. An example of SSIMD scheduling

3.5.2 The LPC vocoder

This required the development ofafew cells that were not available in the Sproc library.
These were an autocorrelation block, ablock implementing the Levinson-Durbin algorithm for
calculating the linear prediction filter coefficients, a time-varying FIR filter, and a block to do

adaptive quantization. The implementation of the autocorrelation and Levinson-Durbin blocks

were the most challenging because the system does not allow the connecting wires between

blocks to be arrays. This is essential for implementing multirate graphs because the programmer
is saved the trouble ofhaving to ensure that blocks do not fire before data is available. As aresult,

the cells had to be implemented with synchronization issues in mind. A further optimization was

also necessary; the blocks had tobewritten sothat their computation was distributed over several

samples rather than just occurring over one sample period, because the SSIMD scheduling

scheme used by Star is inefficient for large granularity stars (meaning stars with relatively long
execution times). This will be explained later on.

There were two main concerns when implementing these blocks on the Sproc. The first

was scaling. Since fixed point numbers are constrained in magnitude to be within 2.0 on the

Sproc, the algorithms hadto have appropriate scaling atvarious points. The other issueis the real

time constraint. Cells have to be written so that the maximum execution time does not exceed the

9 of 46

The Sproc DSP

maximum allowed for a particular samplingrate(400 GSP cycles at a sampling rate of 10kHz and

chip rate of 20MHz.)

To meet the real-time constraint, a pipelining strategy was used. Since the algorithm

requires M + 1 lags of autocorrelation, these have to be computed. With a frame size even as

small as 32, not all the lags can be generatedin one sample interval. So, the lags arecomputed one

per sample interval. Once there are 32 samples in the buffer, these are copied to another buffer

(within the autocorrelation cell) because,while the lags are being computed one per sample inter

val, new data continues to arrive, and this datahas to be storedin the originalbuffer. In each sam

ple interval, one lag is computedandoutput. Similarly, the Levinson-Durbin cell does one pass of

the recursion in each sample period. One pass means computing the /:+ Ith order coefficients

D

Procl

Proc2

Procl

Proc2

Al Bl CI Dl A3

A2 B2 C2 D2

Fig 5. a) A suboptimal SSIMD schedule, b) A spatially partitioned
schedule that's optimal

10 of 46

(a)

(b)

•MMMMMMMM

The Sproc DSP

using equation 1, given below. Therefore, there is adelay ofabout M samples before the Mth
order prediction-error filter coefficients have been computed. These coefficients are then copied
into the output array so that the error-filter and the reconstruction filter can use the coefficients.

Again, because of the pipelined manner of the computation, the cell will start overwriting the
coefficient values 32 - Msamples later instead of32 samples later. Since the validity ofthe filter
coefficients is assumed to be the frame size, we have to copy it into another array where they will
stay that long. Figure 6gives an illustration ofthis procedure. The equations that need to be com

puted are given below. The algorithm is an old one and can be found in an advanced DSP text
book, e.g. [Hay86].

ak+1(m) = ak(m) +yk+lak(k-m +l) m=0,...,*+l k =0, ...,M-1 (EQ 1)
-1 *

Y*+1 = /r£fl*('"K(*+1-»0 * =0,...,M-1 (EQ2)
*m«0

pk+i =^(I-T^m) ^0 =r,(0) (EQ3)
1 N

r*W = N L *(")*("-*) -N+l£k<LN-l (EQ4)
n-1*1+1

The k reflection coefficient is yk and is given by eqn. 2. The ak (/) are the kth order fil
ter coefficients, Pk is the kth order error power, and rx (k) is the kth autocorrelation lag. Mis the
order ofthe desired filter. Note that equation 4gives abiased estimate ofthe autocorrelation; this
is done to ensure that the autocorrelation is positive semi-definite. Also note that aQ (0) = 1.0 in
equation 1.

The amount ofeffort required by the programmer to make cells like these work clearly
shows that abetter way is needed to express cells that generate more than one sample. The SDF
model allows such "multirate" cells to be expressed cleanly in that ithides, from the programmer,
all of the synchronization steps necessary toensure that there isenough data before acell can fire.

The scheduler ensures that cells only fire after they have enough data. For example, above, we had

to write the autocorrelation and Levinson-Durbin cells so that they counted how many samples
they had received before they started computing. By contrast, the Ptolemy versions of these cells

donothave any of themessy"control" code; they only contain the computation code.

11of46

otwMMttcwa

The Sproc DSP

It is also worth mentioning why the cells have todo the computations in apipelined man

ner. Consider the case of scheduling an acyclic graph. If any node in such agraph has an execu

tion time of Psample intervals, then weneed at least Pprocessors tomeet the throughput (which

is assumed to be the sample rate). Hence, if the execution time ofthe autocorrelation cell every 32
sample intervals were 8 sample intervals, then we would not be able tomeet the throughput dur

ing those 8 sample intervals because weonly have 4 processors. Adding the Levinson-Durbin cell

to this will make the worst-case execution time even longer. Therefore, we have to restrict the

duration of each cell to be atmost4 sample periods. This is why these cells have to be written as

if they were being interrupted so that other cells in the graph (e.g., the FIR, A/D, and D/A) can

fire. By contrast, with spatial partitioning we won't have this restriction because a cell thac fires

infrequently, but has along execution time, could be partitioned onto adifferent processor from

one on which frequently firing cells get partitioned. Figure 7 illustrates a case where we have 2

processors and where the overall execution time of the graph is longer than 2 sample intervals. B

and Ccan represent the autocorrelation and Levinson-Durbin cells for example. Hence, the worst

case execution (in the Star context) occurs every fourth sample period. During the other sample

periods, B and C execute some synchronization code; the duration is much shorter. As can be

seen, D (which can represent a D/A) won't be executed during sample periods 3,4,5, and 6. In

x(n) x(n+l) x(n+2) x(n+3) x(n+4) x(n+M+l)

count=0 1
At this point
we have i

enough data. 1

Compute

MO)
Compute

l
Compute

MD
Compute

M+l

I
Compute

rx(M)

Compute
aM(0

Copy contents
into an internal
array

Initialize
lpc coeffs array

Fig 6. Computation procedure for LPC coefficients. In each sample interval
one pass of theLevmsoniteration takes place.

12 of 46

»oooooo60ociftftnciBaacaeoetiaa<oaoa&o

The Sproc DSP

contrast, the spatially partitioned schedule in figure 7a shows that after the 7th sample period, D
will be executed every sample period. It is easy to see that if all of the nodes combined take less
than two sample periods to execute, than the two-processor system can meet the throughput using
SSIMD scheduling.

Scaling is done in several places. In the autocorrelation cell, the individual products are
scaled by - and then added. Even though this increases the number of multiplies by N-k when
the k1 lag is computed, it is necessary to avoid overflow. This makes using larger frame sizes
trickier since not only are there more computations, but if the numbers get too small (because of
the scaling), then inaccuracies will creep in. The scaling is needed because even if r {k) is less
than 2.0, the sum could still be larger than 2.0 but less than N. Scaling the individual terms by -
is one way to ensure that if rx (k) is indeed less than 2.0 (and hence representable in fixed point),
then we do the computation correctly. If rx (k) is greater than 2.0, no attempt is made to represent
this correctly since the input would have to be scaled; this is left to theuser.

In the Levinson-Durbin recursion, scaling is required in two places. The first is the divi
sion by the error-power in the computation of reflection coefficients. Clearly, ifP is smaller than
0.5, then the inverse cannot be represented in fixed point notation. Hence, Phas to be scaled to He
between 0.5 and 2.0. Since yis guaranteed to he between -1 and 1(because the autocorrelation is
positive semi-definite), the numerator (the summation) can be scaled by the same amount too,

&A^p7pS

Fig 7. a) Aspatially partitioned schedule that meets the throughput b)
AnSSIMD schedule that does notmeet the throughput.

(a)

(b)

13 of 46

•BMMMMMMMI

The Sproc DSP

without fearing overflow. The second scaling has to be done for the filter coefficients themselves.

Equation 1 shows that the initial value, a0 (0), determines the value of the coefficients for all

orders greater than 1. To seehow starting therecursion with a0(0) = b affects thecomputation,

where b is some number less than 1.0, denote by Y the values of the reflection coefficients, and

by ak the filter coefficients generated by the algorithm when a0'(0) = ^ We get that

YL' = -brx(l)/rx{0). So yx = y{/b. If we use yx in equation 1, we get 0/(0) = b and

*i'(l) = Yj^u'W = Yi^- Therefore, ax'(i) = ba1(i),i = 0,1 . Now we can see that

y2' = byl when a<{ (i), i = 0,1 is used in equation 2. Sowe can always compute y^ from yk

by y^ = yk/b and use y^ in equation 1 to compute ak'(m) where ak(m) = bak(m). What

this shows is that starting the recursion with a0'(0) = b results in the filter coefficients being

scaled by b. Therefore, we would like toknow what b should betoensure that ak (m) is always

less than 1.0 in magnitude. It turns out that choosing b = 0.25 works well in practice, but an

exact bound can be derived, as is done in section 3.5.2.1.

The cells were tested by constructing a simple speech coder. The Levinson-Durbin cell is

used to generate the prediction error filter coefficients, which is used by anFIR filter to generate

the error sequence. The error sequence, which should hopefully have much less energy than the

speech signal if the prediction is good, is coded using a 3-bit adaptive quantizer. The speech sig

nal is reconstructed by inverse filtering which can be achieved by having an FIR filter in a feed

backloop, using the same coefficients generated by theLevinson-Durbin recursion (fig. 8).

Fig 8. A simpleLPCcoder

14 of 46

1 —Ii

FIR w

/\

DA

The Sproc DSP

3.5.2.1 An upper bound for a^O)

By upper bound we mean the value b such that

\a0(0)\£b=*\ai(m)\£1.0 V/,/n = 0,1, ...,M (EQ5)

Theorem 1: Equation 5is satisfied if b=1/ (f ** 1).

Proof:

First we need a few facts and lemmas.

Lemma 1:

*-i

a/(m)|̂ £(|a.^(m-y)| +|a/.,(/-m-y)|)^-1J V* =1 /
Proof of lemma 1:

(EQ6)

Theproofis byinduction on k. We have from equation 1 that

\ai(m)\£\ai_1(m)\+\ai_l(i-m)\

Letting k = 1 inequation 6,we see that the base case holds. Now assume it holds for k-l. From

equation 1, we have that

|a/-it(w-;)|^K_^1(m-y)| +|aJ..it.1(/-/:-m+7)|, (EQ7)

and that

\oi.k(i-m-j)\^\ai_k_l(i-m-j)\+\ai_k_1(m+j-k)\ (EQ8)

15 of 46

The Sproc DSP

Now, 0 £ j'<, k - 1 => A: £ k -j £ 1. If we substitute equations 7 and 8 in equation 6, we will get

four terms in the summation. Consider the term |a,._kmm j (/ - m- (k-j)) |. The summation

r

|«/-t-i('-'«-«|^1J+-» +|fl/.*-i('-«-l)|l{.lJ-

*-l

*-l

8 by

V |ai-*-1 (' ~m~ 0* +1)) 11 7 J*Similarly, we can replace m- (k -j) in equation
7-0

m - (jf + 1). If we substitute equations 7 and 8 into equation6 with these index changes, we get

two summations, each of the form

*-i

Y (fl(w-/)+fl(m-7--l))l*-l
yrt v J ;

(EQ9)

where the subscript / - k - 1 has been omitted for clarity. Equation 9 can be expanded as follows:

(a(m) +a(m-l)) Jt-1

k o ;
+ (a(m-l)+a(m-2))r~1 + ...

...+ (a(m-k+l) +a(m-k))
(\

k--1

U-•l)

aOiO^J+flOii-lH^-1 'v)>+•••+«<»•-*> (j:£

V a(m -y) I.J where we have used fact 2.

Applying this to equation 6, we see that it is satisfied for k if it's satisfied for k - 1. QED

Lemma 2: \at (m) \£\a0 (0)

Proof of lemma 2:

16 of 46

M
KM/2J \/0£i,m£M

attra-*xo.>x>oooooceooc<w«»o^^

Code Generation in Ptolemy

Letting k = i in equation 6, we get

«/(m)|££ (\ao(™-J)\+\a0(i-m-j)\)[i-1)
; _ n \ J sy-o

since the summation for A' - 1is less than the summation for k. Suppose that 1£772 £/- 1. Then,
l£i-m£/-l. Since a0(/) = 0, V/*0, we get

\ai(m)\<. '-1 + M l^o(0)1 = fln(0)m;iuo (EQ10)

where we have used Fact 1. For the case m=/, we have that |q(/) | <; |*0 (0) | from equation 1.
For m>i, at (m) = 0 and for m= 0, a. (0) = g0 (0). We have

/ \ / \

Therefore, the lemma follows. QED

1

\jn)
M

M/2)

This implies that if \aQ(0) |£1/ I^J, then |tf|(m)| <; 1.0, V0<; i, m̂M. Hence the
theorem is proved. QED.

For M= 12, areasonable value, we should make aQ (0) e 0.001 to ensure that the com
putations never overflow. Since bwill typically be small enough that b~l is greater than 2.0, for
efficiency, we should set aQ (0) to be the largest power of two that is less than the calculated
bound. This will allow the reflection coefficients to be scaled using shifts instead of multiplies.
Thecell was implemented with these considerations in mind.

4 Code Generation in Ptolemy

Adomain in Ptolemy consists of Stars, Targets, and Schedulers. The Wormhole interface
is optional and is used only if the domain being designed is going to be used with other domains

in a single universe. The algorithm to be implemented is represented as a hierarchical dataflow

graph. The graph is built hierarchically out ofstandard library Stars or user-defined Stars that can
be linked in dynamically.

17 of 46

Code Generation in Ptolemy

Functional stars that generate the actual
code, e.g. SprocFir.

Ptolemy
kernel
(not a specific
domain)

SDF
Domain

CG
Domain

Fig 9. Derivationhierarchyfor SprocStar. SprocStaris derived
from AsmStar in the CG domain

4.1 Stars

Currently, there are two types of stars in Ptolemy, code-generation stars and simulation

stars. Figure 9 illustrates the derivation hierarchy for stars in the Sproc domain. As can be seen,

the CG domain (which is the baseclass for all code-generation domains) is derived from the SDF

domain and the SDF domain is derived from the kernel as is every domain in Ptolemy. Note that

this derivation hierarchy can change in the future when code-generation will be extended to more

general models of computation like dynamic dataflow and boolean dataflow [Buc92]. Derivation

here refers to the object-oriented inheritance concept in which one class can be derived from

18 of 46

MeMMomcMeeeaMMi

Code Generation in Ptolemy

another class. The derived class will be asuperset of its parent class meaning that methods and

certain types ofdata members from the parent class are available to the derived class. In addition,
the derived class can have new data members, new methods, and re-definition of methods from

the parent class if those methods are virtual methods. In SprocStar some simple functions have
been redefined; for example, the function that prints out state values isredefined todo it inhexa
decimal.

Stars are relatively easy to write because there is apreprocessor language called ptlang
that translates astar description to C++. The star description is given in a"boilerplate" format by
defining states, ports, and various methods, ptlang then parses the file and generates the appropri
ate cc and h files that the compiler can understand. An example ofthis code for the star SprocGain
is given in figure 11. The go () method inthe star is called when the universe in run. In simula

tion stars, this method will perform the actual function of the star, whereas in code-generation
stars, this method will call the addCode (CodeBlock&) method which will add the code con

tained in codeblocks to acode stream inthe target. There are two other functions that are used: the

setup () method and the initCode () method. The setup () method is called before go ()
and is responsible for setting up information that will be needed by the scheduler and memory
allocator, such as the size ofarrays, the number ofsamples read from aparticular port etc. For
example, in figure 12 the setup () method resizes the coefficients vector and sets aparameter
for the input port indicating that Dsamples will be read, where Dis the downsampling factor for
the star. The initCode () method is called before the go () method and is used to generate
code that appears before the main loop; code to initialize portholes for example (fig. 10).

The assembly language code is contained in codeblocks. A complete star description is
given in figure 11 for the star SprocGain. Notice that the codeblock has constructs of the form

$addr or $val. These are called macros. The addCode method will substitute the appropriate val
ues when the codeblock is parsed. The most commonly used macros in Sproc stars are given in
table 1.

Calling the noInternalState () methodin the constructor tells the scheduler that the

star has nodependence onpast computations. This is toallow the scheduler the option of schedul-

19 of 46

wttttMimbtctut

Code Generation in Ptolemy

codeblock (initfill) {
// initiallization code for $starnaine()
Ida #$val(fill)
ldb #$addr(output)
ldd #1
ldl #$size(output)-1
$label(lpl):
sta [B+L]
djne $label(lpl)
}
initCode { if ((factor > l)&(fill != 0.0)) addCode(initfill); }

Fig 10.The InitCodemethodfrom SprocUpsample initializes the outputport to a value.

ing multiple invocations of this star simultaneously on different processors, thereby extracting

more parallelism (see section 4.4.2). The execTime () method is used by the scheduler to find

out how much time this star takes to execute; the star writer must provide this.

One of the advantages of star-writing in Ptolemy is thepossibilityof conditionalcode gen

eration. A good example of this is the go () method from the SprocLMS star (figure 12) which

implements an adaptive filter using the LMS algorithm. There are two parameters for the star: the

down-sampling factor and the number of delays on the error input (since the error is computed

from the output at some stage, there is a feedback loop implying an error delay of at least 1.)

There arevarious optimizations possible in thecode forparticular combinations ofparticular val

ues of these parameters, and this results in the code being stitched together appropriately by the

go () method. Also, note how the execution time is calculated in the execTime method for the

various combinations of the input parameters. The execution times for each of the code sections

are provided by the programmer.

Table 1. Commonly used macros in SprocStars

Macro Use

$addr(memory_name) Substitutememoryaddress.

$addr(pormame, offset) Substitutememoryaddresswith added offset.

$val(state_name) Substitute numerical value of the state.

SstamameO Substitute the name of the star.

$labeI(foo) Create unique label from "foo" by adding aunique identifier.

20 of 46

Code Generation in Ptolemy

defstar {
name { Gain }
domain { Sproc }
desc {

The output is set to the input multiplied by a gain term.
The gain must be in [-1,1].

}
version { @(#)SprocGain.pll.512/8/92 }
author { P. Murthy }
copyright {

Copyright (c) 1990, 1991, 1992 The Regents of the Univer
sity of California.

}
location { Sproc stars library }
explanation {
}
execTime {

return 5;
}
input {

name {input}
type {FIX}

}
output {

name {output}
type {FIX}

}
constructor {

noInternalState();
}
defstate {

name {gain}
type {FIX}
default {1.0}
attributes {A_RAM}
desc {Gain value}

}
codeblock (std) {

//_$starname()_begin:
ldx $addr(input)
mpy $addr(gain)
nop

nop

stmh $addr(output)
}
go {

addCode(std);
}

}

Fig 11. Code for star SprocGain

21 of 46

22 of 46

nemmeMMMMa

Code Generation In Ptolemy

setup {
D = int(downsmpl);
E = int(errorDelay);
input.setSDFParams(D, D-l);
if (int(flag)) {

length = coef_vec.size();
coef_vec.resize(2*int(length)+D*E);
flag = 0;

}
}

go {
addCode(fir_init);
if (D == 1) addCode(no_downsmpl_init);
else if (D == 2) addCode(downsmpl_2_init);
else addCode(downsmpl_n_init);
addCode(update);
if (E > 1) addCode(errordelay);
addCode(fir do);

}
exectime {

int fir init =2;
int no_3ownsmpl_init =2;
int downsmpl_2_init = 4;
int downsmpl_n_init «= 2+5*(D-l);
int fir_do = 6+4*(length-1);
int update = 10+5*(length-1);
int errordelay = 1+3*(E-1)*D;
int common = fir_init + update + fir do;
if (E == 1) {

if (D == 1) return no_downsmpl_init + common;
else if (D == 2) return downsmpl_2_init + common;
else return downsmpl_n_init + common;

}
else {

if (D == 1)

return no_downsmpl_init + errordelay + common;
else if (D == 2)

return downsmpl_2_init + errordelay + common;
else return downsmpl_n_init + errordelay + common;

Fig12. Conditional codegeneration in SprocLMS.

Code Generation in Ptolemy

4.2 Targets

A target in Ptolemy defines those features ofan architecture that are pertinent to code gen
eration. It will specify how the generated code will be collected, specify and allocate resources
such as memory, and define the code necessary for proper initialization ofthe platform. It may
also specify how to compile and run the code if the platform being targeted is directly accessible
from the platform that Ptolemy runs on. There are two types oftargets in Ptolemy, multiprocessor
targets and single processor targets. The difference is that amultiprocessor target will contain sev
eral child targets that are single processor targets. This allows code re-use in that once asingle
processor target has been defined for aparticular processor, any architecture containing multiple
such processors need only define a parent multi-target, making use of the imgle-targets that
already exist. An example ofthis is the OMA architecture [Bie90] where the OMATarget is built
from existing Motorola 96000 targets [Sri93]. The derivation hierarchy for targets is shown in fig
ure 13.

CGTarget is the baseclass for all code generation targets including multiprocessor targets.
The CGMultiTarget represents atarget for ageneric, fully connected architecture. No assumption

Fig 13. Derivationhierarchy for targets

23 of 46

Code Generation in Ptolemy

is made about the memory resources available. The main job of this target is to define various

parameters for the multiprocessor schedulers assuming the fully connected topology (communica

tion costs, schedules for use of communication facilities etc.) Fully connected means that every

processor in the network can communicate with every other processor in the network, and that the

communication time is not a function of a particular communicating processor pair. This model is

appropriate for the Sproc since the shared memory allows each processor to communicate with

any other processor. The shared memory also implies that the communication time is not depen

dent on the processors. There is another target called CGSharedBus which assumes that commu

nication among processors occurs through a shared bus and hence sets up the schedulers so that

bus contention cost is taken into account.These two generic targets fit most parallelDSP architec

tures quite well. In addition to having methods for defining various parameters for schedulers,

CGMultiTarget has a method for creating and initializing child targets, which are derived from

AsmTarget, and a method for choosing and initializing the multiprocessor scheduler based on the

user's selection. The general method by which a particular architecture is targeted is then to

derive a parent target from CGMultiTarget or CGSharedBus. The parent target is responsible for

any shared resources andthe child targets are responsible for private resources local to the proces

sor.

4.3 Schedulers

There are two multiprocessor schedulers of interest to the Sprocdomain. One is Hu's level

based list scheduling [Hu61] and the other is Gil Sin's declustering scheduler [Sih91]. There is

also Gil Sin's dynamic level scheduler, but this assumes that processors have the ability to do

computations in parallel with communication. Since the Sproc does nothave this ability, it is not

used. The parent target contains parameters that allow the user to choose between either of these

schedulers. Since the schedulers behave differently for all butthe most trivial graphs, this flexibil

ity is useful for selecting the best schedule. In addition, the user can manually schedule the graph

by setting a state in each star that tells the scheduler the processor on which the star should be

scheduled. The schedulers are responsible for partitioning the graph across the different proces

sors, taking interprocessor communication into account. Once the graph has been thus partitioned,

24 of 46

Code Generation In Ptolemy

sub-graphs are created for each processor and an order for firing the blocks is determined. Since

each uniprocessor target hasauniprocessor scheduler object, which in turn has adata structure for

storing the schedule, the scheduled sub-graphs are handed down to the uniprocessor schedulers'

schedule data structure. This allows the child target to execute its sub-graph without knowing
where it came from, thus preserving the modularity of the target hierarchy. The parent target,

however, has to ensure that the uniprocessor scheduler in each child target does not get invoked
since the schedule will be provided by themultiprocessor scheduler.

4.4 Interprocessor communication

4.4.1 Send/Receive

Interprocessor communication (IPC) is implemented using the send-receive model. In this

model, send stars are inserted whenever one processor wishes to communicate data to another

processor. The receiving processor will have areceive star that will receive the data. No assump

tion is made about how these stars will be implemented; that is part ofthe target/domain design.
The scheduler is merely told the cost involved (i.e., the execution times ofthe send and receive).

Once the sub-graphs are created, the scheduler inserts these communication stars at the appropri
ate places and schedules them along with the other stars in the sub-graph. For an example, see fig
ure 14. A side benefit of this approach is that no sub-graph will have unterminated connections.

This is important because each child target behaves exactly as if its sub-galaxy were the whole

universe and unconnected terminals are not allowed inany graph the user might create.

4.4.2 Spread/Collect

In multirate applications, it is often possible to extract more concurrency out of the graph

byexecuting multiple invocations ofablock simultaneously on different processors. This is pos

sible with actors that do not contain state variables; the noInternalState() directive mentioned in

section 4.1 informs the scheduler of this. Figure 15 shows a simple example of this.

Since Bl (the first invocation of B) requires a sample from A2 and A2 is scheduled on

processor P2, a way is needed of collectingthe three samples required for Bl (2 from Al, 1 from

A2). The reason we have to collect these samples is that the original node B only has one input

25 of 46

The Sproc domain

&O-® p,
I

Rev * CA

B SndB

A

Rev

(a) (b)

B Snd

(c) (d)

Fig 14. Send/Receive Model, a) A graph, b) A two processor schedule
with IPC stars, c) sub-graph for PI, d) sub-graph for P2

arc. The code inside will make reference only to this input arc. In the APEG graph, however, each

invocation of B has three arcs. We cannot allocate memory separately for these arcs because they

won't be referenced in the codeblocks. Hence, a "Collect" star is inserted as shown in figure 15.

This star tells the memory allocator that the three output locations on the Collect stars output arc

should be aliased to the two outputs on A and one to the receive star output. Similarly, of the four

samples produced by A2 and A3, one is sent to PI while the rest are used by B2. This behavior

can be implemented via a "Spread" star. The subgalaxies created by the scheduler are shown in

fig.15d.15e.

The Sproc domain

The Sproc domain consists ofa set oftargets, an experimental scheduler, and a library of

stars.

26 of 46

MMMMMMMMMMI

The Sproc domain

GP0
(a)

©t^^
(b)

P1

" 1 R Bl

P2 A2 S A3 B2

0
2 2

Jg

Rev
^

1 1

3 3

(c)

B

1 1

•o

Snd

«

S
a 3 3/^X

CO / - ^
—w

^

(d) (e)

Fig 15. Spread/Collect a) Multirate graph, b) Acyclic precedence
expanded graph (APEG), c) Schedule, d) Sub-galaxy for PI, e) Sub-
galaxy for P2

5.1 SprocTarget

This is the main parent target object derived from CGMultiTarget as shown in figure 13. It

controls the creation and pairing ofIPC stars, itis responsible for initializing the child targets, and
itcoordinates the memory allocation process with the child targets. Figure 16 shows the sequence
of function calls that take place. Only the important calls are shown. Some of the calls have a

name beside themin brackets; this name indicates theclass from which thecalled function will be

27 of 46

WMMMOMMWMttl

The Sproc domain

executed because of the virtual mechanism. The basic function troika is setup (), run (), and

wrapup () (recall that these are the main functions in stars as well). At what level in the deriva

tion tree one of these gets called depends on the function. For example, SprocTarget has

setup () and wrapup () but no run () because the definition in CGMultiTarget suffices. The

scheduler object is chosen during setup () in the Target as shown. The schedule is computed

during setup () and the code generation occurs during run (). Memory allocation is done by

the allocateMemory function and functions such as beginlteration () and endlter-

ation () are used for generating looping code. In SprocTarget the number of iterations is cur

rently ignored but in general these methods should generate code takingthatnumberinto account

because loop schedulers call the same functions to generate the looping code within a schedule.

Since loop schedulers are not used in parallel code-generation, this is not an issue in the Sproc

domain.

28 of 46

The Sproc domain

SprocTarget:: setup()
create the memory object
CGMultiTarget:: setup()

createChildO [SprocTarget] //create child targets
chooseSchedulerO
Target:: setupO

scheduler:: setupO [SDFScheduler]
computeScheduleO [ParScheduler] //main schedule

createSendO
createReceive()
pairSendReceiveO [SprocTarget] //pair eachsnd w/rcv

headerCode()
CGMultiTarget:: mnO

CGTarget:: run()
generateCode() [CGMultiTarget]

scheduler()->compileRunO [P arSchedu1er]
UniProcessor(i):: prepareCodeGenO

convertScheduleO // copy par.sched to targets'
simRunScheduleO // trace schedule for rightbuffersizes

mtarget->prepareCodeGen [SprocTarget]
build a galaxy from several sub-galaxies
instantiateO

resizeBuffer() // for I/O stars based on makespan
firstChild->setup() [SprocGspTarget]

allocateMemory() [AsmTarget]
codeGenInit() [AsmTarget]

doInitializationO [SprocGspTarget]
writeInt,Fix etc

UniProcessor(i):: generateCode()
child(i)->generateCode() [SprocGspTarget]

headerCode()
initCodeO // fire stars initcode methods
mainLoopCodeO [CGTarget]

beginIteration() [SprocGspTarget]
scheduler()->compileRun [SDFScheduler]

fire go() methods in stars
endIteration() [SprocGspTarget]

Target: :wrapup()
wrapup each star

addProcessorCodeO // append code to stream in parent
SprocTarget:: wrapupO

frameCodeO // generate any framing code required for program
printDataRam [SprocMemory] //generate memory initialization map
Dump code to files

Fig16.Function call sequence for code-generation

29 of 46

•MMMMMMMMi MOmmMMMttMMMMMttMCaaMMOMMMMMMI

The Sproc domain

5.1.1 Send/Receive

As mentioned in section 3.2, the Sproc has a trigger-bus mechanism which could be of

potential use for low-overhead IPC. A possible implementation using this mechanismis shown in

figure 17.

Send: Receive:
LDA $addr(input) wait:

STA $addr(location) LDA WS

AND #$val(location bit)
JNE $label(wait)
LDA $addr(location)
STA $addr(output)

"Location" is an address for the trigger-bus memory locations
and "location bit" is a number with a 1 is the bit position corre
sponding to the address of location. E.g., the trigger-bus locations
are 0800h to 0817h. For location 0805h, the location_bit is 2A5 or 32.
The WS register is loaded with an appropriate "bit-mask" at the begin
ning of the overall program loop. The bit-mask is simply a number with
ones is the positions of address locations.

Fig 17. A possibleSend/Rev implementation

In the above implementation, we simply poll the appropriate bit in the WS register to see

when a write has occurred. The trigger-bus memory location is used to transfer the data. The

above implementation will be fine for homogenous graphs (meaning that all blocks produce and

consume at most one sample) but will fail for multirate rate graphs because there is no mechanism

for ensuring that the send star does not overwrite the previous data in location if it hasn't been

read yet. The reason that it will work for homogenous graphs is that each send/receive pair is

called only once; hence, if we do some sort of barrier synchronizationat the beginning of the main

loop (for instance, by waiting for the next sample to arrive), the send need not worry about over

writing good data. On the Sproc, this type of barrier synchronization is easy because the begin

ning of each sample period results in the least significant bit in the WS being cleared. Hence, by

setting this bit at the beginning of the main loop, each processor can wait until the bit is cleared;

this will be the indication that a new sample period has started. Of course, for this to work, the

main loop on each processor should be completed within a sample period. Also, the WS register

has to have the appropriatebit set againafter the receive in order for the next receive to occur (this

30 of 46

——————— rrTtniriinnnnniim mmiumuiinii

The Sproc domain

is assuming that a particular send/receive pair is invoked more than once in a schedule period).

Again, for homogenous graphs, this won't be a problem since with barrier synchronization, we

can assume that all send/receive pairs have executed and reload thebit maskintotheWS register

atthe beginning of themain iteration. It turns out that setting abitin the WS register and ensuring

that the send star does not overwrite previous data requires more overhead than the usual sema

phore approach. In particular, a single instruction for setting a bit in the WS register does not

exist; so three instructions would berequired to set abit. In addition tothese disadvantages, there

are only 18 trigger bus locations which puts a limit on the number of IPC stars, an undesirable

prospect.

Therefore the approach used is a semaphore mechanism. In this scheme, the Send star will

write the datum onits input to the output of the Receive star if the semaphore location contains a

one. Otherwise, it waits until the condition is met. After the write to the Receive's output, the

semaphore location is reset to a zero. The Receive star merely examines the semaphore location

and if it is one (meaning that a new datum has not arrived), it waits until the location has a zero.

The code for doing this is shown in figure 18.

Send: Receive:
idl #0 Ida $addr(pollAddr)
ldx $addr(input) jne $label(wait)
$label(wait): std $addr(pollAddr)
Ida $ref(pollAddr)
jeq $label(wait)
stl $ref(pollAddr)
stx $ref(output)

Fig 18. Send/Rev implementation

It is worth noting that a rather roundabout methodis used to enable the Send star to write

directly to the output on the Receive star. Recall that aSend star does not have an output port and

a Receive star does not have an input port because one is a sink while the otheris a source in the

sub-galaxy in which each exists. However, the macro function that actually computes the address

of a location canbe re-defined in the Send star because this is avirtual function in CGStar. The re

defined method simply looks up the Receive star's output location even though the codeblock in

31 of 46

•MMMMMeeomttMW

The Sproc domain

the Send starrefers to a non-existent "output" port.The parent target ensures that each Send star

has a pointer to the Receive star that it has been paired with. The same technique is used for the

semaphore location as well, since this has to be a state in either the Receive or the Send.

The overall executiontime is 9 cycles,with the Send star requiring 6 cycles. An advantage

of this scheme is that the semaphore location canbe allocated just like any othermemory location.

It does not require a special region of the memorylike the trigger-bus region. Even though it is a

waste of memory to use 24-bit locations for storing single bits, a single location or register for

multiplebits cannot be used withoutinstructions for bit setting andclearing.

5.1.2 Memory Allocation

Since the Sproc has a shared-memory architecture, only onememory object is required in

the Target definition. The parent target creates this object during setup () and a pointer to the

object is passed to each child targetwhen the child target is createdso that each child has access to

the same object. The memory allocator functions are all called by AsmTarget (the baseclass for

the child targets). The order in which this occurs is as follows: requests for all memory are posted

first. For the child this means all the states andports in its subgalaxy. Then the performAllo

cation () method is called to process all the requests. The request-allocation sequence, how

ever, canonly happen once foreach memory object because of the way the allocation routines are

written. So for a shared memory object, justhaving each child go about memory allocation on its

turn fails because the request-allocate sequence will occur once for each child and we want it to

occur only once. Therefore, the parent intervenes with a method called prepareCodeGen (),

which is called before the generateCode () method (the generateCode () method is the

usual way of passing control to the child targets for memory allocation and code generation). In

prepareCodeGen (), one galaxy is created outof the subgalaxies for each of the processors.

This galaxy is then re-instantiated because the original instantiation is lost when the sub-galaxies

were created in the first place. After the re-instantiation, the memory allocation methods are

called through one of the child targets. Now when the generateCode () method is called, the

child targets simply fire the stars in their subgalaxies and add the generated code directly to a

stream in the parent target. The wrapup method in the parent then writes the contents of the

32 of 46

The Sproc domain

stream to a user-specified file. The initialization code for the memory is also generated during
wrapup () via a method in the SprocMemory class.

Normally the initialization is done in AsmTarget via "org" like statements. The Sproc
compiler, however, does not have such astatement, and the only method for initializing the mem

ory is by statements such as variable fixed foo = 1.5. Moreover, these statements have to

occur in order ofthe memory map since there is no way (without run-time code) to initialize spe
cific memory locations. The initialization method in AsmTarget does not initialize port locations,
something that is required for the Sproc. Hence, the dolnitialization () method is rede

fined in the child targets to permit port initialization, dolnitialization () calls virtual

methods such as writelntO (for writing integers), writeFix(), and writePort().

These would normally generate compiler statements such as dc l. 5(on the Motorola 56000) but

here these methods write the values to global arrays maintained inthe parent target. This is done

so that the memory initialization can be done in order of memory rather than the order of stars.

Three arrays are maintained: one for the name ofthe state or port, one for the type, and one for the

value. These arrays are then read by the method printDataRam () in the SprocMemory class
during the wrapup () in the parent target and the "variable" declarations are generated and
written to another file. Having the names in the initialization serves another useful purpose,
namely to allow efficient debugging and change ofstate values while the program is nmning on
the chip through the SDI interface on the PC.

5.1.3 I/O

Programmable buffering is used for the input/output stars. One weakness ofthe SDF para
digm is that since there is no concept oftime, it is assumed that source stars can be fired at any
time. This is obviously not true in the case ofA/D stars where the star is actually synchronous
with an external sample rate. Therefore the schedulers, which are based on SDF, will schedule

input/output stars without taking the sample rate into account. When aschedule period contains
multiple invocations ofan input star, itis crucial that some method be used to ensure that samples
are not lost. In the Motorola 56000 domain, interrupts are used if there are multiple invocations.

The Sproc has programmable buffers where the size can be set before-hand; this loosens the con-

33 of 46

MCCMMMMMMMMI

The Sproc domain

straintof an input block having to fire every sample periodto aninput block having to fire N times

in N sample periods (if the schedule requires N firings of this input block). This eliminates the

need for interrupts and the loss in processingtime that results. The buffer size is set automatically

by the target by calculating the number of sample periods overwhich the schedulewill run.

5.1.3.1 A possibility for future work

Even though programmable buffering is a better solution than interrupts, the best solution

would be for the scheduler to take into account periodicitiesof certain stars. This could then result

in schedules where the I/O stars are executed in each sample period, eliminating the need for any

buffering at all.This is generally a difficult thing to do becausenot only does the I/O star have to

fire every sample periodbut all starsthatwork at the sameratemust also fire every sample period.

This is especially difficult since all such stars may not be on the same processor and some may

even have execution times greater than a sample period. If I/O stars can be scheduled on different

processors for different invocations, then meeting the no-buffering goal might be possible. But

given that the number of different combinations of schedules for schedulingN invocations of an1/

O star on P processors is PN, the problem may not have a polynomial time solution in general.

Figure 19 shows a simple example of an efficientschedule if source stars are scheduled on differ

ent processors.

5.2 Other Targets

Two other targets have been written. One target generates code in the form of high level

function calls. In other words, instead of in-line assembly code in the program, a statement con

taining the name of the block, its states, and its input and output ports is generated. The Sproc

compiler then generates code for these functions from the Sproc library of assembly language

cells. Therefore this requires there to be an exact match between Ptolemy stars and cells in the

Sproc library. This requirement is not very attractive because as discussed before, stars in Ptolemy

aremore general in terms of theirmultiratecapability andtheirability to do conditionalcode gen

eration.

34 of 46

The Sproc domain

Al Bl A3 B2

illilf^l^i'!- A2 CI

a I ♦ i

Fig 19. Example of sourcestars fired on different processors
for alternate samples.

The other target is a test for an experimental scheduler understudy. This targetjust sets up

the scheduler object and does not do anything else. It illustrates the ease with which new targets

and schedulers can be written based on existing code.

5.3 Some examples

Some applications developed include the Karplus-Strong algorithm for simulating

plucked string sounds (this is done in a way that turns the PCinto a mini keyboard), reverberation

of an audio signal, a three band QMF filter bank, and ADPCM encoding and decoding of speech

using LMS filters. Three of these are described below.

5.3.1 Plucked strings

The Karplus-Strong algorithm is a simple, elegant way of simulating plucked string instru

ments like guitars and harps [Moo90]. A plucked string can be modeled as a digital delay line

with a low- pass filter in a feedback loop. The delay line is initially filled with random samples;

this signal represents an excitation signal that is rich in harmonics. As the signal circulates in the

feedback loop, the low pass filter attenuates the higher frequencies. This results in a signal that

35 of 46

The Sproc domain

sounds like aplucked string instrument when played through aspeaker. The length of the delay

line, which is equivalent to the length of the string, determines the pitch of the resulting sound.

While the delay line can only contain integer values, it is possible to get fractional delays by

including anall-pass filter in series with thedelay. This wouldthenallow the model to be tunedto

desired frequencies quite precisely.

Figure 20 shows seven of these modules connected to aD/Aconverter. The pulse star in

each module generates arectangular pulse that has aduration equal to the length of the delay line

for that module. The values of the delays in each module are chosen to roughly approximate an

incomplete scale. Through the access port on the Sproc board, the user can set a flag in the prise

star. The pulse star generates apulse only if this flag is set. After generating the pulse, the star will

reset the flag and generate zeros. Therefore, by tying commands that set this flag to particular keys

on the IBM PC keyboard, one gets the effect ofamusical keyboard bypressing different keys that

trigger one or more ofthe modules. Note that even though the behavior ofthe pulse star appears to

be asynchronous, it isnot really being used in that manner since it is fired on every iteration. The

star decides, based on its flag, whether to generate apulse or not, rather than generating one peri

odically. This application is partitioned onto all four processors and the makespan is exactly 200
cycles.

5.3.2 QMF Filter bank

Figure 21 shows athree-band quadrature mirror filter (QMF) bank. The principle behind

QMF filter banks is as follows. Signals ofpractical interest, for example, music signals or speech

signals, do not contain equal amounts ofenergy in all parts ofthe spectrum. Hence, if itwere pos

sible to separate the signal into components for different frequency regions, each frequency
region could be coded separately based on the amount ofenergy it has inthat part of the spectrum.

One way of obtaining these components is to recursively divide the spectrum by half at each

stage. In other words, a high-pass and a low-pass component is created by filtering and then one

of these is further subdivided until one has enough bands. For speech signals, where the energy is

typically in the low-pass region, it's the low-pass component that is subdivided at each stage.

Note that by dividing the spectrum by two, we obtain two band-limited signals that can be deci-

36 of 46

MMMMMW«M«MMUMI

H/

L

L

L

L

L

L

L

The Sproc domain

<&—-€>—er~^*
', ,*..»

U&

e—€>•€>—~&T^ t
fC30

m

g>—®—d> —(-<

'. .«. I

m

^g>—^ (g^HQT^
I, ,4, ,)

m

-€>—€>-h2C^
m

Hg>—€>—^k-hST^
m

e—€>—er

m

Fig 20. The multi-string bank. Each bank generates a
plucked string sound atagiven frequency using theKarplus-
Strong algorithm

•<S>—»/ft

€^

37 of 46

The Sproc domain

£> ^i

fi/D ^ d/a

Fig 21. A 3-band QMF filterbank. The left side consists
of the analysis filters and the right side the synthesis fil
ters

mated by two. So even though we have two signals, each is transmitted at half the original rate.

The reduction in the transmission rate comes aboutbecause fewer bits will typically be required

to code one of the components. The choice of the analysis filters is very important since the recon

structed signal usually differs from the original signal due to aliasing, amplitude distortion, and

phase distortion. However, the filters can be designed in such a way that some (or all) of these dis

tortions are eliminated. See [Vai93] for a good introduction to the theory and design of filter

banks.

Figure 21 contains 2 stages: the low-pass component of the first stage is subdivided again

into two bands. We get three bands overall, and in the example, we can vary the gain in each of

the paths to get the effect of an audio equalizer. The FIR filters that implement the high-pass and

low-pass filters (figure 22) also do the decimation (interpolation) in the analysis (synthesis)

stages. This is because the implementation of the filter is much more efficient if the decimation is

taken into account; samples that are thrown away, as is the case during decimation, are not com

puted, and multiplies with zeros, as is the case during interpolation, do not occur. More stages are

not used because each additional stage causes the code space to more than double because of the

decimation/interpolation. Given that there are only Ik words of program memory available, any

thingmorethan 2 stages is currently not feasible. However, if loopscheduling techniques [Bha93]

are extendedto the multiprocessor case (possible future work), thenthe codespace problem might

be mitigated.

A small fraction of the generated code for this universeis given in the appendix (all of it

isn't given since many trees would have suffered).The filter bank runs at a sample rate of 9.7kHz.

38 of 46

The Sproc domain

<

I + I

Fig 22. The analysis block expanded; the top is a
low-pass FIR andthe bottom ahigh-pass FIR

5.3.3 ADPCM coding of speech

A third example developed is an adaptive differential pulse code modulation (ADPCM)

coder for speech.The coder/decoder shownin figure 23 achieves a bit rate of about29000bits per

second at a samplingrate of 9.7kHz andthree bits persample. The ideabehind ADPCM codingis

to code an error signal that is obtained as the difference of the input sample with a predicted ver

sion of the input sample [Rab78][Jay84]. In other words, because speech signals have a high

degree of correlation for short periods of time, it is possible to use a certain number of past sam

ples (say 14) to predict the next sample. If this prediction is good, then the error signal will be

small, andwe can use many fewer bits to encodethe error signal. The LMS filter shown in the fig

ure does linear prediction from past values of the quantized input samples using the LMS algo

rithm with an instantaneous estimateof the cross-correlation betweenthe error andthe input.The

adaptive quantizer codes the error signal to 8 levels (3 bits) using anestimateof the powerin the

error signal to determine the step size. If the actual bits were transmitted (instead of the levels),

then we would need to transmit the step size as well so that the decoder could reconstruct the

quantized error signal. Note that the feedback-around-quantizer structure ensures that both of the

LMS filters adapt using the same error signal; this avoids having to transmit the filter coefficients

periodically. Figure 24 shows a Gantt chart display that illustrates the partitioning of the blocks

onto three of the four processors.

39 of 46

The Sproc domain

Fig 23. The ADPCM coder schematic. The left half is the
coder and the right half is the decoder.

period = 171 (vs. min. 171), busy time = 47X(vs. max. 47%)
lupe 'cntrl-D' to exit, and *h* for he I

40 of 46

Fig 24. Gantt chart showing the partitioning of the blocks for
the ADPCM example

Conclusion

Conclusion

A new domain targeting a parallel architecture has been built and demonstrated in

Ptolemy. The architecture is the shared-memory, 4-processor Sproc DSP made by Star Semicon
ductor. Limitations of the synthesis environment provided by Star were explored; these were
found to be a lack of multirate capability and SSIMD scheduling. The first limitation requires
blocks to be written with synchronization issues in mind. The second limitation is more serious in

that it requires large-granularity cells to be written in a manner that allows the computation to
occur over several sample periods. An application was developed to illustrate these limitations.

Advantages of the code-generation environment in Ptolemy over the environment provided by
Star Semiconductor are:l) the SDF model which allows multirate appUcations to be expressed
neatly, 2) an object-oriented approach that permits any of several schedulers and any of several
targets to be used, or for new ones to be incorporated easily, 3) an ability for blocks to do condi

tional code-generation, and 4) the existence of schedulers in Ptolemy that do not have the limita
tions of SSIMD scheduling. Alibrary of stars for the domain has been developed and the library is
extensive enough to allow appUcations such as QMF filter banks and ADPCM speech coders to
be rapidly prototyped. As is the case with aU Ptolemy domains, the Ubrary can be easily extended
once the user has the required knowledge of assembly language programming for the Sproc.

7 Acknowledgments

I am grateful to Star Semiconductor and the State of California MICRO program for sup
porting this project. Iwould also Uke to thank Soonhoi Ha for being ever-willing to answer ques
tions and fix bugs in the schedulers and the CG kernel. Without his help the Sproc domain might
not have been a reaUty! Last but not least, I would Uke to thank my advisor, Professor Edward

Lee, for his many helpful comments for improving this report. I am grateful for his patience!

41 of 46

References

8 References

[Alm92] TheAlmagest. EECS/ERLILP Office. Software Distribution. 479Cory Hall. UCB 1992

[Bar82] TRBarnwell EL CJ.M.Hodges, MJlandolf. "Optimal Implementation of Single Tune Index Signal Flow
Graphs onSynchronous Multiprocessor Machines". Proc. of the ICASSP, Paris France May, 1982

[Bar83] TP.Bamwell HI, D.A.Schwartz. "Optimal Implementations of Flow Graphs on Synchronous Multiproces
sors". Proc. 1983Asilomar Conf. on Circuitsand Systems. PacificGrove. CA, Nov. 1983

[Bha93] S.S.Bhattacharyya, J.Buck, S.Ha. EAJLee, "A Compiler Scheduling Framework for Minimizing Memory
Requirements of Multirate DSP systems represented as Dataflow Graphs". Tech. Report, Memorandum
UCB/ERL M93/31, Electronic Research Laboratory. College of Engineering. UCBerkeley, Berkeley CA
94720.1993

[Bie90] J3ier,S.Sriram, E.AXee. "A Class ofMultiprocessor Architectures for Real-Tune DSF', VLSI Signal Pro
cessing IV. 1990

[Buc93] J.Buck. S. Ha. E.Aiee. D.G.Messerschmitt. "Ptolemy: a Framework for Simulating and Prototyping Heter
ogenous Systems", to appear in the International Journal of Computer Simulation, special issue on"Simula
tion Software Development," 1993

[Buc92] J.Buck. E.A.Lee. "The Token Flow Model". Dataflow workshop, Hamilton Island, Australia, May 1992

[Den80] J.BDennis, "Dataflow Supercomputers", Computer, 1980

[Gen90] D. Genin, P.Hilfinger, LRabaey, C.Scheers, H. de Man, "DSP Specification Using the Silage Language"
Proc. of the ICASSP 1990

[Hay86] S.Haykin, "Modern Filters". MacMillan. 1986

[Hil89] P.N.Hilfinger, "Silage Reference Manual. DRAFT Release 2.0", Computer Science Division EECS Dept
UC Berkeley. Berkeley, CA 94720. 1989

[Hu61] T.C.Hu, "Parallel Sequencing and Assembly Line Problems." Operations research 9(6). November 1961

[Jay84] N.SJayant. P.Noll. "Digital Codingof Waveforms". PrenticeHall, 1984

[Lee86] E.AJLee, "A Coupled Hardware and Software Architecture for Programmable DSPs" Ph D thesis UCB
1986

[Lee87] E.AJLee, D.Messerschmitt, "Static Scheduling of Synchronous Dataflow Programs for Digital Signal Pro
cessing", IEEE Transactions on Computers, January 1987

[Men90]Mentor Graphics Corp.. "DSP StationUser's and Reference Manual". 1992

[Mes84] D.G.Messerschmitt, "Structured Interconnection ofSignal Processing Programs." Proceedings ofthe Globe-
corn 1984

42 of 46

References

[Moo90] R-Moore, "Elements of Computer Music",Prentice Hall. 1990

[Pow92] D.B.Powell, RAXee. W.C.Newmann. "Direct Synthesis of Optimized DSP Assembly Code from Signal
How Block Diagrams,"Proceedings of ICASSP 92. March 1992

[Rab78] L.R.Rabiner, R.W.Schafer, "Digital Processing of Speech Signals". Prentice Hall. 1978

[Sih91] G.Sih, "Multiprocessor Scheduling to Account for Interprocessor Communication", PLD.thesis, UCB 1991

[Sri93] S.Sriram, E.AXee, "Design and Implementation of an Ordered Memory Access Architecture". ICASSP 93

[SS92] Sproc Signal Processor Databook.StarSemiconductor, 1992

[Vai93] PP.Vaidyanathan. "Multirate Systems and Filter Banks",Prentice Hall, 1993

43 of 46

Appendix: Code for QMF filter bank

Appendix: Code for QMF filter bank

#User: murthy
#Date: Thu Mar 11 16:51:06 1993
#Target: default-Sproc
#Universe: qmf
*******•*********************************/

asmblock qmf {} ()
#include "qmf.var"
duration 0;
begin

//

// Code for GSPl:
//

_$start_gspl:
ldd #1

// initiallization code for InO

ldf #1

Ida #8

ldb #096fh
stb 0991h

ldx #15h

stf 440h

sta 441h

stb 442h

stx 443h

// initiallization code for OutO

Ida #8

ldb #0977h

stb 099dh

ldx #5h

ldf #1
sta 451h

stb 452h

stx 453h

stf 454h // decimation register
stf 456h // wait trigger mask

main loop gspl:
// Synchronize on incoming sample

ldws #1
_sync_gspl:

jwf _sync_gspl
// code from star code_proc0.1n0 (class Sprocln)
// InO begin:
begin 0:

Ida 2048

and #16383

cmp 0991h

jeq begin 0
Ida 0991h

ldb A

add #1 // buf_size = 1
cmp #096fh+8

jit ok 1

Ida #096fh

44 of46

IMMMMMMttaMtl

Appendix: Code for QMF filter bank

ok_l:
sta 0991h

Ida [B]
sta 0994h

sta 099dh

stx 1109

// code from star codejprocO.Receivel (class SprocReceive)
//__Receivel_begin:
wait_33:

Ida 09aOh

jne wait_33
std 09a0h

// code from star code_j>roc0.Receive0 (class SprocReceive)
//_ReceiveO_begin:
wait_34:

Ida 099fh

jne wait_34
std 099fh

// code from star code_proc0.Add20 (class SprocAdd2)
//_Add20_begin:

Ida 0999h // 1st input -> A
add 0984h // 2nd input added to A
sta 099ah

// code from star code_proc0.Gain2 (class SprocGain)
//_Gain2_begin:

ldx 099ah

ropy 099bh
nop

nop

stmh 099ch

// code from star codejprocO.OutO (class SprocOut)
//_Out0_begin:

ldb 099dh

Ida 099ch

sta [B]
ldx #-1
Ida 099dh

cmp #0977h+8/2
jeq cont_35
ldx #0

cont 35:

ok 36:

add #1 //buf_size = 1
cmp #0977h+8
jit ok_36
Ida #0977h

sta 099dh

stx 1109

jmp main_loop__gspl

//

// Code for GSP2:
//

$start gsp2:
ldd #1

// initiallization code for DelayNO
Ida #0818h
sta 09a2h

45 of46

Appendix: Code for QMF fitter bank

main_loop_gsp2:
// Synchronize on incoming sample

Variable Declarations generated for QMF (Not all are shown)

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable
variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable
variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable
variable

variable

variable

variable

variable

variable

variable

variable

variable

46 of46

fixed Fir7_coef_vec = -0.00122400000691414;// 094bh, length 36
fixed Fir7 coef vec 1 = -0.000698000018019229;// 094ch
fixed Fir7_coef_vec_2 *
fixed Fir7_coef_vec_3 *
fixed Fir7_coef__vec_4 *
fixed Fir7_coef_yec_5 *
fixed Fir7_coef_vec_6 *
fixed Fir7_coef_vec__7 «
fixed Fir7_coef_vec_8 s
fixed Fir7_coef__vec_9 *
fixed Fir7_coef_yec_10
fixed Fir7_coef_vec_ll
fixed Fir7_coef_vec_12
fixed Fir7_coef_vec_13
fixed Fir7_coef_yec_14
fixed Fir7_coef_vec__15
fixed Fir7_coef_vec_16
fixed Fir7_coef_vec_17
fixed Fir7_coef_vec_JL8
fixed Fir7__coef_vec_19
fixed Fir7_coef_vec_20
fixed Fir7_coef_vec_21
fixed Fir7_coef_vec__22
fixed Fir7_coef_vec_23
fixed Fir7_coef_vec_24
fixed Fir7_coef_vec_25
fixed Fir7_coef_yec__26
fixed Fir7_coef_vec_27
fixed Fir7_coef_vec_28
fixed Fir7_coef_yec_29
fixed Fir7_coef_vec_30
fixed Fir7 coef vec 31

fixed Fir7__coef_vec_32
fixed Fir7_coef_vec_33 =0.0;
fixed Fir7_coef_vec_34 = 0.0;
fixed Fir7_coef_vec 35 = 0.0;
fixed InO fifo[8];/7 096fh
fixed OutU_fifo[8];// 0977h
fixed Send0_input[2];// 097fh
fixed Sendl_input[2];// 0981h
fixed Receivel_output[2];// 0983h
fixed Send2_input[2];// 0985h
fixed Receive2_output[2];// 0987h
fixed Receive3_output[2];// 0989h
fixed Add21_input2[2];// 098bh
fixed Send4_input[2];// 098dh
fixed Send5_input[2];// 098fh
integer In0_out_ptr = 0;// 0991h, length 1
integer In0_fifo__buffer length = 0;// 0992h, length 1
integer InO_fifo_index__Tength = 8;// 0993h, length 1
fixed Gain0_input;// 0994h, length 1
fixed Gain0_gain = 0.5;// 0995h, length 1
fixed Gainl_input;// 0996h, length 1
fixed Gainl_gain = 1.0;// 0997h, length 1
fixed Fir2_input;// 0998h, length 1

0.011832999996841;// 094dh
0.0116820000112057;// 094eh
-0.0712829977273941;// 094fh
-0.0309859998524189;// 0950h
0.226242005825043;// 0951h
0.0692479982972145;// 0952h
-0.73157399892807;// 0953h
0.73157399892807;// 0954h

= -0.0692479982972145;// 0955h
» -0.226242005825043;// 0956h
» 0.0309859998524189;// 0957h
» 0.0712829977273941;// 0958h
» -0.0116820000112057;// 0959h
» -0.011832999996841;// 095ah
» 0.000698000018019229;// 095bh
» 0.00122400000691414;// 095ch
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

// 095dh
// 095eh
// 095fh
// 0960h
// 0961h
// 0962h
// 0963h
// 0964h
// 0965h
// 0966h
// 0967h
// 0968h
// 0969h
// 096ah

// 096bh
// 096ch
// 096dh
// 096eh

	Copyright notice 1993
	ERL-93-66

