

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SCHEDULING DYNAMIC DATAFLOW GRAPHS

WITH BOUNDED MEMORY USING THE TOKEN

FLOW MODEL

by

Joseph Tobin Buck

Memorandum No. UCB/ERL M93/69

10 September 1993

SCHEDULING DYNAMIC DATAFLOW GRAPHS

WITH BOUNDED MEMORY USING THE TOKEN

FLOW MODEL

by

Joseph Tobin Buck

Memorandum No. UCB/ERL M93/69

10 September 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SCHEDULING DYNAMIC DATAFLOW GRAPHS

WITH BOUNDED MEMORY USING THE TOKEN

FLOW MODEL

by

Joseph Tobin Buck

Memorandum No. UCB/ERL M93/69

10 September 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

SCHEDULING DYNAMIC DATAFLOW GRAPHS WITH

BOUNDED MEMORY USING THE TOKEN FLOW MODEL

by

Joseph Tobin Buck

Doctor of Philosophy in Electrical Engineering

Prof. Edward A. Lee, chair

This thesis presents an analytical model of the behavior of dataflow graphs with

data-dependent control flow. In this model, the number of tokens produced or consumed

by each actor is given as a symbolic function of the Boolean-valued tokens in the system.

Several definitions of consistency are discussed and compared. Necessary and sufficient

conditions for bounded-length schedules, as well as sufficient conditions for determining

whether a dataflow graph can be scheduled in bounded memory are given. These are

obtained by analyzing the properties of niinimal cyclic schedules, defined as minimal

sequences of actor executions that return the dataflow graph to its original state. Addi

tional analysis techniques, including aclustering algorithm thatreduces graphs to standard

control structures (such as "if-then-else" and "do-while") and a state enumeration proce

dure, are also described. Relationships between these techniques and those used in Petri

net analysis, as well as in the theory of certain stream languages, are discussed.

Finally, an implementation of these techniques using Ptolemy, an object-oriented

simulation and software prototyping platform, is described. Given a dynamic dataflow

graph, the implementation is capable either of simulating the execution of the graph, or

generating efficientcode for it (in an assembly language orhigher level language).

Ill

TABLE OF CONTENTS

1 THE DATAFLOW PARADIGM 1

1.1 OPERATIONAL VS DEFINITIONAL 3

1.1.1 The OperationalParadigm 3

1.1.2 Definitional and Pseudo-definitional Models 5

1.2 GRAPHICAL MODELS OF COMPUTATION 7

1.2.1 Petri Nets 7

1.2.2 Analysis of Petri Nets 9

1.2.3 The Computation Graphs of Karp and Miller 13

1.2.4 Marked Graphs 14

1.2.5 Homogeneous DataflowGraphs 15

1.2.6 General Dataflow Graphs 16

1.2.7 Kahn's Model for Parallel Computation 19

1.3 DATAFLOW COMPUTING 20

1.3.1 Static Dataflow Machines 21

1.3.2 Tagged-Token Dataflow Machines 22

1.3.3 Dataflow/von Neumann Hybrid Machine Models 24

1.4 DATAFLOW AND STREAM LANGUAGES 26

1.4.1 Lucid 27

1.4.2 SISAL 28

1.4.3 SIGNAL and LUSTRE 30

1.5 SUMMARY AND PREVIEW OF FUTURE CHAPTERS 32

2 STATIC SCHEDULING OF DATAFLOW PROGRAMS
FOR DSP 33

2.1 COMPILE-TIME VERSUS RUN-TIME SCHEDULING 34

2.2 SCHEDULING OF REGULAR DATAFLOW GRAPHS 36

IV

2.2.1 The Balance Equations for a Regular Dataflow Graph 37
2.2.2 From the Balance Equations to the Schedule 40

2.2.3 Comparison With Petri Net Models 42

2.2.4 Limitations of Regular Dataflow Graphs 44

2.3 EXTENDING THE REGULAR DATAFLOW MODEL 45

2.3.1 Control Flow/Dataflow Hybrid Models 45
2.3.2 Controlled Use of Dynamic Dataflow Actors 47

2.3.3 Quasi-static Schedulingof Dynamic Constructs
for Multiple Processors 49

2.3.4 The Clock Calculus of the SIGNAL Language 51
2.3.5 Disadvantages of the SIGNAL Approach 56

3 THE TOKEN FLOW MODEL 59

3.1 DEFINITION OF THE MODEL 60

3.1.1 Solving the Balance Equations for BDFGraphs 61
3.1.2 Strong andWeak Consistency 63

3.1.3 Incomplete Information and Weak Consistency 65
3.1.4 The Limitations of Strong Consistency 66

3.2 ANALYSIS OF COMPLETE CYCLES OF BDF GRAPHS 68

3.2.1 Interpretation of the Balance Equations for BDF Graphs 69
3.2.2 Conditions for BoundedCycle Length 72
3.2.3 GraphsWith Data-DependentIteration 74

3.2.4 Proof of Bounded Memory by Use of a Preamble 77

3.3 AUTOMATIC CLUSTERING OF DATAFLOW GRAPHS 79

3.3.1 Previous Research onClustering of Dataflow Graphs 80
3.3.2 Generating Looped Schedules forRegularDataflow

Graphs 81

3.3.3 Extension to BDF Graphs 85

3.3.4 Handling Initial Boolean Tokens 90

3.4 STATE SPACE ENUMERATION 92

3.4.1 The State SpaceTraversal Algorithm 94
3.4.2 Proving That aBDF Graph Requires Unbounded Memory 96
3.4.3 Combining Clustering and State Space Traversal 101
3.4.4 Undecidability of the Bounded Memory Problem for

BDF Graphs 104

3.5 SUMMARY

4 IMPLEMENTATION IN PTOLEMY

4.1

108

111

PTOLEMY 111

4.1.1 Example of a Mixed-Domain Simulation 114

4.1.2 The Organizationof Ptolemy 115

4.1.3 Code Generation in Ptolemy: Motivation 119

4.1.4 Targets and Code Generation 120

4.1.5 Dynamic Dataflow In Ptolemy: Existing Implementation 122

4.2 SUPPORTING BDF IN PTOLEMY 124

4.3 STRUCTURE OF THE BDF SCHEDULER 127

4.3.1 Checking For StrongConsistency 128

4.3.2 Clustering BDF Graphs: Overview 129

4.3.3 The Merge Pass 131

4.3.4 The Loop Pass: Adding Repetition 132

4.3.5 The Loop Pass: Adding Conditionals 133

4.3.6 Loop Pass: Creation of Do-While Constructs 134

4.4 GRAPHS LACKING SINGLE APPEARANCE SCHEDULES 137

4.5 MIXING STATIC AND DYNAMIC SCHEDULING 139

4.6 BDF CODE GENERATION FOR A SINGLE PROCESSOR 140

4.6.1 Additional Methods for Code Generation Targets 140

4.6.2 Efficient Code Generation for SWITCH and SELECT 141

4.7 EXAMPLE APPLICATION: TIMING RECOVERY IN

A MODEM 143

4.8 SUMMARY AND STATUS 148

5 EXTENDING THE BDF MODEL

5.1 MOTIVATION FOR INTEGER-VALUED CONTROL
TOKENS

5.2 ANALYSIS OF IDF GRAPHS

149

149

152

6 FURTHER WORK 155

VI

6.1 IMPROVING THE CLUSTERING ALGORITHM 156

6.2 PROVING THAT UNBOUNDED MEMORY IS REQUIRED 156

6.3 USE OF ASSERTIONS 156

6.4 PARALLEL SCHEDULING OF BDF GRAPHS 157

REFERENCES 159

vu

ACKNOWLEDGEMENTS

I wish to acknowledge and thankProfessor Edward Lee, my thesis advisor, for his

support, his leadership, and his friendship, and for the ideas that helped to inspire this

work. I thank Professor David Messerschmitt for serving as a second advisor to me, and

thank both Lee and Messerschmitt for conceiving of the Ptolemy project and giving me

the opportunity to play a key role. I also thank Professor Sheldon Ross for serving on my

committee.

I thank my colleagues Tom Parks and Shuvra Bhattacharrya for their careful

reviewof earlier drafts of this dissertation and their useful suggestions. I benefited greatly

by working closely with Soonhoi Ha, my collaborator on many projects and papers. S.

Sriram assisted in clarifying several points relating to computability theory. I alsobenefit

ted from technical interaction with my colleagues Wan-ten Chang, Paul Haskell, Philip

Lapsley, Asawaree Kalavade, Alan Kamas, Praveen Murthy, Jos6 Pino, and Kennard

White, as well as the feedback from all those brave enough to usethePtolemy system.

This work was supported by a grant from the Semiconductor Research Corpora

tion (93-DC-008).

I cannot conceive of howI could have accomplished what I have without the sup

port and love of my wife, Christine Welsh-Buck. I dedicate this work to her.

1

THE DATAFLOW PARADIGM

/ believe that the current state of the art of computer programming

reflects inadequacies in our stockofparadigms, in our knowledge ofexist

ingparadigms,and in theway ourprogramming languages support, orfail

to support, the paradigms of their user communities.

—R.Floyd

This dissertation is devoted to the application of a particular model of computa

tion,namelydataflow, to the solution of problems in digital signal processing (DSP). It is

not our intent to dogmatically insist that any particular model be applied in a pure form;

rather, it is our thesis that themostefficient applications of dataflow to DSP useahybrid

model, combiningthe best features of dataflow and other modelsof computation, andthat

it is advantageous to determine as much as possible about the execution of a dataflow

system at"compile time". Therefore this section is an attempt to place the dataflow para

digm in context with respect to other possibilities and to flesh out the theoretical back

ground for the graphical and stream-based models of computationwe will consider.

In section 1.1, we discuss the distinction between operational and definitional par

adigms in computer science, building acase for consideration of definitional approaches

to problem formulation in computer science. A variety of operational and definitional

models are discussed. In section 1.2, we focus on those definitional models that can be

expressed graphically, most ofwhich arerelated in some way to the Petrinet model. These

models, for the most part, form the basis of dataflow computing. The rest of the chapter

presents a survey of dataflow computing from both the hardware and software perspec

tives: section 1.3 discusses dataflow machines, and section 1.4 discusses languages that

implement a dataflow model. Finally, section 1.5 summarizes the chapter.

Following Floyd [Flo79], we adopt the term paradigm from Thomas Kuhn's The

Structure ofScientific Revolutions. A Kuhnian paradigm, in the field of history of science,

is a work that shares two characteristics: it succeeds in attracting an enduring group of

adherents away from competing modes of scientific activity, and it is sufficiently open-

ended to leave all sorts of problems for the "converts" to solve [Kuh62]. By analogy, in

computer science we can say that structured programming is a paradigm (Floyd's main

example), as is object-oriented programming, logic programming, communicating

sequential processes, and many others. Floyd also identifies techniques with morelimited

applicability as paradigms, thus branch and bound or call by name are paradigms.

Ambleret al. identifythree levels of programming paradigms [Amb92]: those that

support high-level approaches to design (functional languages, object-oriented design),

methods of algorithm design, and low-level techniques (copying versus sharing of data,

for example). We are mainly concerned with high-level paradigms, butunlike Ambler, we

will consider both programming language paradigms and those that pertain to computer

architecture. In general, we have a hierarchy of languages: at thehighest level, the user or

system designer manipulates the most abstract objects. Any numberof intermediate levels

may intervene between this model and the physical machine, and paradigms model the

organization and design of each level.

1.1. OPERATIONAL VS DEFINITIONAL

Whether we consider programming languages or computer architecture and orga

nization, it appears that one distinction is fundamental: the difference between operational

and definitional approaches to problem-solving. Roughly stated, the distinction has to do

with thelevel of detail in which thedesigner orprogrammer mustspecify howtheanswer

is computed, in addition to specifying what is computed. This distinction is similar to, but

not the same as, the distinction between imperative and declarative models of program

mingmade by the advocates of functional programming (for example, [Hud89]).

1.1.1 The Operational Paradigm

The most successful paradigm for computer architecture and organization is the

von Neumann model of the computer. The most important aspect of this model for our

purposes is that the von Neumann machine has a state, corresponding to the contents of

memory and of certain internal registers in the processor (the program counter, for exam

ple). The machine executes one instruction ata time in aspecified order, and theresult of

each instruction is that one or more memory locations and internal registers take onanew

value.

The most commonly used computer languages have retained this fundamental par

adigm: the programmer is presented with a higher-level andcleaner version of a von Neu

mann machine, andthe task of the programmer is to specify the states and to schedule the

state transitions. Following Ambler et al.t we refer to programming paradigms in which

the designer or programmer specifies the flow of control that converts the starting state

intothe solution state by means of aseries of state transitions as operational.

Given this definition, there are agreat variety ofprogramming languages and para

digms that fall under the operational approach, from unstructured assembly language to

structured programming to object-oriented programming. Ambler et al divide traditional

operational programming languages into two principal groups: imperative and object-ori-

ented. Languages that support abstract types and information hiding but not inheritance,

such as Ada, would fall in the latter group according to theirclassification, although other

authors, notably Booch in [Boo91], call such languages object-based. The difference

between imperative and object-based languages is mainly that the states have become

much more abstract in object-based languages.

Parallel languages in which the programmer explicitly controls the threading to

some degree are also considered operational. We will not discuss such languages further;

the interested reader is directed to [Bal89].

While operational, imperative languages are very widely used, and many software

engineering techniques have been developed to make them more manageable, there are

some significant disadvantages. As pointed out by Backus [Bac78], the imperative state

transition model renders programming as well as programming execution intractable to

formal reasoning. To be fair, there are techniques for reasoning about sequential programs

provided that some structure is followed, as Dijkstra, Floyd, Hoare and others have

shown. There are also languages that are explicitly based on a state machine model, such

as Esterel [Ber92] and Statecharts [Har87], butthey represent definitional (or pseudo-defi

nitional) rather than operational approaches, since the programmer uses the language to

specify properties the solution is tohave and does not specify the exact sequence of steps

in finding the solution. From an organizational point of view, programs for a state transi

tion machine constitute rather sophisticated work schedules [Klu92], and efforts to reason

about programs must deal with the fact that the specification of the exact order in which

operations areto be performed can get in the way of the logic.

Despite these disadvantages, the very aspects that cause difficulties for the impera

tive specification of large parallel systems (the need to precisely specify all details,

together with their order) often turn into advantages when it is necessary to obtain the

maximum performance for a particular small piece of code on a particular piece of hard

ware. As we will later see, certain hybrid models (e.g. coarse-grain dataflow as in block

diagram languages and the cooperating sequential processes model of [Kah74]) may be

used to combine aspects of the operational anddefinitional approaches.

1.1.2 Definitional and Pseudo-definitional Models

In the definitional or declarative paradigm, we express theresult we wish to pro

duce by defining it rather than by giving astep-by-step method of computing it. Relation

ships between inputs and the required output are specified in a formal manner, and inputs

are transformed to outputs by state-independent means. In principle, theprogrammer does

not specify theorder of operations, butin many cases mechanisms are provided to"cheat"

and hence we use the term pseudo-definitional to describe thehybrid approach that results.

The canonical example of this paradigm is one of the oldest, that subset of Lisp

known as "pure Lisp". In this subset, results are computed as aresult of function applica

tion alone; there is no assignment (other than the binding of formal arguments to actual

parameters), no side effects, and no destructive modification of list storage. Results are

generated by copying, and garbage collection is used to reclaim memorywithout interven

tion by the programmer. This is a simple example of functional programming, where the

key conceptis thatof functional composition, feeding theresultof one function to the next

until the desired result is computed.

The major categories of definitional paradigms that we consider here include

forms-based programming, logic programming, functional programming, and dataflow

and stream approaches. Forms-based programming, as is used in spreadsheets, may well

be the most common form of definitional programming in existence today, if we consider

the sheer numbers of "programmers" (many of whom do notrealize that they are in fact

programming).

In the logic programming paradigm, we are given known facts, relationships, and

rules of inference, and attempt todeduce particular results. Just as functions are the keyto

functional programming, relations are the key to logic programming. "Thus, logic pro

gramming from the programmer's perspective isamatter ofcorrectly stating all necessary

facts and rules [Amb92]." Evaluation of alogic program starts from a goal and attempts to

deduce it by pattern matching from known facts ordeduction from thegivenrules. In prin

ciple, this makes logic programming purely definitional, but because of the combinatorial

explosion that results almost all logic programming languages have means of implicitly

controlling the order of evaluation of rules, including mechanisms known as "cuts" to

inhibitbacktracking. Use of thesemechanisms is essential in the logic programming lan

guage Prolog, for example [Mal87].

Functional programming languages are characterized by the lack of implicit state

(state is carried around explicitly in function arguments), side effects, and explicit

sequencing. Modern functional languages are characterized by higher-order functions

(functions are permitted toreturn functions and accept functions as arguments), lazy eval

uation (arguments are evaluated only when needed) as opposed to eager evaluation (in

which arguments are always evaluated before passing them to functions), pattern match

ing, and various kinds of data abstraction [Hud89]. Functional languages possess the prop

erty known as referential transparency, or "equals may be replaced by equals"; this is a

powerful tool for reasoning about and for transforming functional programs.

In thedataflow paradigm, streams of data flow through anetwork of computational

nodes; each node accepts data values, commonly called tokens, from input arcs and pro

duces data values on output arcs. The programmer specifies the function performed at

each node. The only constraints on order of evaluation are those imposed by the data

dependence implied by the arcs between nodes. Visual representations for this kind of

computation are natural; in addition, there are textual representations for such languages

that are typically translated into a dataflow graph internal form.

Dataflow languages are, for the most part, functional languages, distinguished

mainly by their emphasis on data dependency as an organizing principle. Like functional

languages, they are applicative, rather than imperative; many lack the notion of a higher-

order function (a function that operates on andreturns functions). In several dataflow Ian-

guages, a distinguishing feature is the use of identifiers to represent conceptually infinite

streams of data; this feature apparently originated in the language Lucid [Ash75]. The

best-known languages of this type are Lucid, Val [Ack79] and its successor SISAL

[McG83], andId [Arv82] and its successor, Id Nouveau [Nik86]. We will explore the fea

tures of these languages and others in more detail in the next section.

Dataflow machines and graph reduction engines are examples of machines that

implement definitional programming paradigms directly in hardware. We will have more

to say about dataflow machines later in this thesis (see section 1.3); for a discussion of

graph reduction engines see [Klu92].

1.2. GRAPHICAL MODELS OF COMPUTATION

Graphical models of computation are very effective in certain problem domains,

particularly digital signal processing and digital communication, because the representa

tionis natural to researchers and engineers. These models naturally correspond to dataflow

semantics, resulting in manycases in definitional models that expose theparallelism of the

algorithm and provide minimal constraints on the order of evaluation. Even where text-

based rather than graphical languages are used (as in section 1.4), compilers often create

graphical representations as an intermediate stage. Almost all graphical models of compu

tation can be formulated as either special cases of, or in some cases, generalizations of

Petri net models, including the dynamic dataflow models that are the core of this thesis.

This section introduces the analysis techniques that provide tools for understanding and

manipulating these models.

1.2.1 Petri Nets

Petri nets are a widely used tool for modelling, and several models of dataflow

computation are important special cases of Petri nets. Before explaining the special cases,

we will discuss Petri netsin their general form, using thedefinition of Peterson [Pet81].

A Petri net isadirected graph, G = (V,A) .where V = {vl5..., vs] isthesetof

vertices and A = {alt..., ar} is abag (not aset) ofarcs.1 The set V ofvertices can be

partitioned into two disjoint sets P and 7\ representing two differenttypes of graph nodes,

known as places and transitions. Furthermore, every arc in a Petri net either connects a

place to a transition, or a transition to a place (noedgemay connecttwo nodes of the same

type). Thus if at = (vjt v^) is an arc, either vy.€ P and vk€ T or Vj€ T and v^€ P.

There may be more than one arc connecting a given place to a given transition, or vice

versa , thus A is abag rather than aset,and themembership function for agivennodepair

specifies the numberof parallel arcs present between thatpair of nodes.

In addition, places may contain somenumber of tokens. A marking of a Petri net is

simply a sequence of nonnegative integers, one value per place in thenet,representing the

number of tokens contained in each place. It can be considered a function from the set of

places P to the set of non-negative integers N, \l: P -»JV. A Petri net together with a

marking is called a marked Petri net.

For each transition t in aPetri net, there isacorresponding setof input places / (r)

(the setof places for which an arc connects the place to the transition) and a setof output

places O (t) (the setof places for which an arc connects the transition to the place). Simi

larly, we can define the setof input transitions and output transitions for each place, / (p)

andO(p).

The execution of a marked Petri net is controlled by the presence or absence of

tokens. A Petri net executes by firing transitions. When a transition fires, one token is

removed from each input place of the transition (if there are nparallel arcs from aplace to

a transition, then n tokens are removed from the place) andone token is added to eachout-

1. A bag isdistinguished from aset inthat agiven element can beincluded ntimes inabag, sothat
die membership function isinteger-valued rather than Boolean-valued. A discussion ofbag theory
as anextension of set theoryas it applies to Petri nets appears in [Pet81].
2. InPetri's original formulation, parallel arcs were not permitted; weuse the more general form
discussed inPeterson [Pet81] and, following Peterson, usethe term ordinary Petri net todiscuss the
more restricted case.

put place of the transition (again, if there aren parallelarcs from the transition to the same

output place, n tokens are added to that place). The number of tokens in a given place can

never be negative, so a transition maynot fire if there are notenough tokens on anyof its

input places to fire the transition according to these rules. A transition that has enough

tokens on all of its input places for it to fire is said to beenabled. Enabled transitions may

fire, but are not required to; firings may occur in any order. Execution may continue as

long as at least one transition is enabled.

In figure 1.1, we seeasimple marked Petri netwith five places and four transitions.

Inthis example, transitions fj and t2 are enabled; the marking can berepresented as avec

tor {1,1,2,0,0}. If transition t2 is fired, thenewmarking will be {1,1,1,1,0} and transition

tA will be enabled. This Petri net does not have parallel arcs; if, for example, there were

two parallel arcs between p3 and r2, then firing t2 would remove both tokens from p3.

1.2.2 Analysis of Petri Nets

Petri nets are widely used in modeling; in particular, a Petri netmay be used as a

model of aconcurrent system. For example, anetwork of communicating processors with

shared memory or a communications protocol might be so modeled. For this model to be

of use, it mustbe possible to analyze the model. Thequestions that one might ask about a

Figure 1.1 A simple Petri net.

10

Petri net model also apply when analyzing other models, both those that occur for models

that are subsets of Petri nets and for other computational models that we will consider. The

summary that follows is based on that of Peterson [Pet81] and Murata [Mur89].

For a Petri net to model a real hardware device, it is often necessary that the net

have the property known as safeness. A Petri net with an initial marking \i is safe if it is

notpossible, by anysequence of transition firings, toreach anew marking p,' in whichany

place has more than one token. If this property is true, then a hardware model canrepre

sent a placeas a singlebit or, if the token represents data communication, space for a sin

gle datum.

It is possible to force a Petri net to be safe by adding arcs, provided that there are

no parallel arcs connecting places and transitions. To force a place pt to be safe, we add

another place p\ that has the property that p\ has atoken if and only if/?,, does not have a

token. To achieve this, transitions that use pt are modified as follows [Pet81]:

Ifpi € / (tj) and Pi € O(tj), then add p\ to 0 (ry).

ffpz.e 0(tj) and p^ I(tj) .thenadd/^to I(tj) .

This technique was used by Dennis to simplify the design of static dataflow

machines [Den80]. In this context, these additional arcs are called acknowledgment arcs.

Safeness is aspecial case of amore general condition called boundedness. In many

cases we do not require that the number of tokens in each place is limited to one; it will

suffice to have a limit thatcanbe computed in advance. A place is k-bounded if the num

ber of tokens in that place never exceeds k, and a net as a whole is it-bounded if every

place is^-bounded. If, for aPetri net, some kexists so that the net is it-bounded, wesimply

say that it is bounded. Where Petri nets are used as models ofcomputation and tokens rep

resent data, we can allocate static buffers to hold the data if the corresponding net is

bounded.

Another important property of a Petri net model is liveness. Liveness is the avoid-

11

ance of deadlock, a condition in which no transition may fire. Let R (N, |X) be the set of

allmarkings that are reachable given the Petri netN withinitial marking \i. Using thedef

inition of [Com72], we say that atransition f. is live if for each \l'£ R(N, [i), there exists

a sequence of legal transition executions a such that /• is enabled after that sequence is

executed. Speaking informally, this means that nomatter what transition sequence is exe

cuted, it is always possible to execute tj again. A Petri net is live if every transition in itis

live.1

Another important property of Petri net models isconservativeness; anetis strictly

conservative if the number of tokens is never changed by any transition firing. A net is

conservative with respect to a weight vector w if, for each place p(we can find a weight

M

w(such that the weighted sum oftokens Y wft. never changes; here jj.f is the number of

tokens in the place p,- while the marking n is in effect. Note that all Petri nets are conser

vative withrespect to the all-zero vector. A netis said to beconservative (no modifiers) if

it isconservative with respect to aweight vector with all elements greater than zero. Every

conservative net is bounded, but not vice versa.

All the problems discussed so far are concerned with reachable markings, in the

sense that they ask whether is it possible toreach amarking inwhich some property holds

or does not hold. In that sense, given an algorithm for finding the structure of the set of

reachable markings, we can answer these and other analysis questions.

The reachability tree represents the set of markings that may be reached from a

particular initial marking for a given Petri net. The initial marking becomes theroot node

of the tree. Each node has one child node for each transition that is enabled by that mark

ing; the tree is then recursively expanded, unless anode duplicates anode that was gener

ated earlier. Note thatif a net is ^-bounded, for anyk, this construction is finite; there are a

1. Commoner also defined lesser levels of liveness; this definition corresponds to"live at level 4".

12

fixed number of distinct markings that are reachable from the initial marking. An addi

tional rule is added to make the construction finite even for unbounded nets. To understand

this construction, we define a partial ordering on markings. We say that |i* ^ [i if, when

considered as a vector, each element of \V is greater than or equal to the corresponding

element of \i (meaning that each place has as many or more tokens undermarking |i' as

under marking \i); we then say that |T >|X if and only if |T £ \l and \V * \i. Now consider

a sequence of firings that starts at a marking (l and endsat a marking |!' such that |0.' > jj,.

The new marking is the same as the initial marking except for extra tokens, so we could

repeat the same firing sequence and generatea new firing \i" that has even more tokens; in

fact, whenconsidered as avector, \L" -[V = |T - [i. Every place that gains tokens by this

sequence of firings is unbounded; we can makeitsnumber of tokens grow arbitrarily large

simplyby repeating the firing sequence that changes themarking from |X to \i'. We repre

sent the potentially infinite number of tokens associated with such places by a special

symbol, co, whichcanbe thought of as representing infinity. When constructing thereach

ability tree, if we ever create a node whose marking is greater (in the sense we have just

defined) than another node that occurs on the path between the root and the newly con

structed node, we replace the elements that indicate the number of tokens in places that

may grow arbitrarily large with co. As we continue the construction of the tree, we assume

that a place with co tokens can have an arbitrary number of tokens added or removed and

still have co tokens. Given this convention, it can beshown that the resulting reachability

tree (with infinitely growing chains of markings replaced by co nodes) is finite for any

Petri net; this construction and the proofwas given by Karp andMiller [Kar69].

Given this construction, we have an algorithm for determining whether a Petri net

is bounded: if the co symbol does not appear in the reachability tree, the Petri net is

bounded. Similarly, possible weight vectors for a conservativeness test can be determined

by solving a system of m equations in n unknowns, where m is the number of nodes in the

13

reachability tree and n is the number of places. These equations takethe form

\l]w = 1 (1-1)

where |X|. is the marking associated with the fh node in the reachability graph, and

w represents the unknown weight vector. We treat co as representing an arbitrarily large

number, sothat any place that ever has a co symbol must have zero weight. If the system is

overly constrained there will benononzero solutions and thesystem willnotbe conserva

tive. The reachability tree cannot be used to solve the liveness question if there is a co

entry, as this represents loss of information.

1.23 The Computation Graphs of Karp and Miller

The earliest reference to the dataflow paradigm as a model for computation

appears to be the computation graphs of Karp and Miller [Kar66]. This model was

designed to express parallel computation and represents the computation as a directed

graph in which nodes represent an operation and arcs represent queues of data. Each node

has associated withit a function for computing outputs from inputs. Furthermore, for each

arc dp, four nonnegative integers are associated with that arc:

Ap, the number ofdata words initially inthe queue associated with the arc,

Up, the number ofdata words added to the queue when the node that isconnected

to the input of the arc executes;

Wp, the number ofdata words removed from the queue when the node that is con

nected to the output of the arc executes;

Tp, athreshold giving the minimum queue length necessary for the output node to

execute. We require T_ ^ W

Karp and Miller prove that computation graphs with these properties are determi

nate; that is, the sequence of data values produced by each node does not depend on the

order of execution of the actors, provided that the order of execution is valid. They also

14

investigated the conditions that causecomputations to terminate, while laterviews of data

flow computation usually seek conditions under which computations can proceed indefi

nitely (the avoidance of deadlock). They also give algorithms for determining storage

requirements for each queue and for those queue lengths to remain bounded. In [Kar69],

Karp and Miller extend this model to get a more general form called a "vector addition

system". In this model, for each actor we have a vector, and this vector represents the

numberof tokens to be added to each of a set of buffers. Negative-valued elements corre

spond to buffers from which tokens are subtracted if the actor executes. Actors may not

execute if that would cause thenumber of tokens in some buffer tobecome negative. If the

number of tokens in each buffer is represented as avector, then executing an actor causes

the vector for that actor to be added to the system state vector, hence the name "vector

addition system." If actors are identified with transitions and buffers are identified with

places, we see that this model is equivalent to Petrinets.

It is not difficult to see that Karp and Miller's computation graph model can be

analyzed in terms of Petri nets. The queues of data can be modelled as places and the

nodes can bemodelled as transitions. Each arc of the computation graph can bemodelled

as Up input arcs connecting asource transition to aplace, followed by T output arcs con

necting aplace to an output transition and Tp - Wp arcs connecting the output transition

back to the place. The Petri netmodel differs from the computation graph model in that

Petri net tokens do not convey information (other than by their presence or absence), only

the number of tokens matters. Since Petri net tokens are all alike, the fact that streams of

values are produced and consumed with a first-in first-out (FIFO) discipline is not

reflected in the Petri net model. However, the constraints on the order of execution of tran

sitions are exactly the same.

1.2.4 Marked Graphs

Marked graphs are a subclass of Petri nets. A marked graph is aPetri netin which

everyplace has exactlyoneinputtransition and oneoutput transition. Parallel arcs are not

15

permitted. Because of this structural simplicity, we can represent a marked graph as a

graph with only a single kind of node, corresponding to transitions, and consider the

tokens to"live" on the arcs. This representation (with only one type ofnode corresponding

to Petri net transitions) is standard in dataflow. Marked graphs can represent concurrency

(corresponding to transitions that can be executed simultaneously) and synchronization

(corresponding to multiple arcs coming together at a transition) but not conflict (in which

the presence of atoken permits the firing ofany of several transitions, but firing any of the

transitions disables the others). Marked graphs are much easier to analyze than general

Petri nets; the properties of such graphs were first investigated in detail in [Com72].

In particular, the question ofwhether amarked graph is live or safe can be readily

answered by looking atitscycles. A cycle of amarked graph is aclosed sequence of tran

sitions that form adirected loop in the graph. That is, each transition in the sequence has

an output place that is also an input place for the next transition of the sequence, and the

last transition in the sequence has an output place that is an input place for the first transi

tion in the sequence. It is easy to see that if a transition that is in a cycle fires, the total

number of tokens in the cycle will not change (one token is removed from an input place

in the cycle and one is added to an output place in the cycle). From this it can be shown

that:

• A marking on a marked graph is live if and only if the number of tokens on each

cycle is at least one.

• A live marking is safe if and only if every place is inacycle, and every cycle has

exactly one token.

1.2.5 Homogeneous Dataflow Graphs

It is natural to modelcomputation withmarked graphs. We can consider transitions

tomodel arithmetic operations; if wethen constrain the graph to be safe, using the results

just described, it is then possible to avoid queuing; each arc needs to store only a single

16

datum. However, since it was shown earlier that it is possible to transform any ordinary

marked Petri net intoa safenet by the addition of acknowledgment arcs, it is usual to rep

resentcomputation in terms of dataflow graphs without theseextra arcs. The acknowledg

ment arcs may then be added, or we may execute the graph as if they were there (as in

Petri's original model, in which a transition wasnot permitted to fire if anoutputplace had

a token). It is then necessary only to be sure that the resulting graph does not deadlock,

which can only occur if there is a cycle of nodes (transitions) that does not contain a token.

The static dataflow model of Dennis was designed to work in this way: ideally, the

rule was that anode could be evaluated as soon as tokens were present on all of its input

arcs and no tokens were present on any of its output arcs. Instead, acknowledgment arcs

were added, so that a node could be enabled as soon as tokens were present on all input

arcs (including acknowledgment arcs) [Den80].

Dataflow actors that consume one token from each input arc and produce one

token on each output arc are called homogeneous. The value, if any, of a token does not

affect the eligibility of an actor to execute (though it usually does affect the value of the

tokens computed). These restrictions are relaxed inmore general dataflow models. Graphs

consisting only of homogenous dataflow actors are called homogenous dataflow graphs

and correspond to marked graphs.

Static dataflow machines permit actors other than homogeneous dataflow actors,

such as the SWITCH and SELECT actors we will discuss in the next section. However,

the constructs in which these actors appear must be carefully controlled in order to avoid

deadlock given the constraint of one token per arc [Den75b].

1.2.6 General Dataflow Graphs

In the most general sense, a dataflow graph is adirected graph with actors repre

sented by nodes and arcsrepresenting connections between the actors. These connections

convey values, corresponding to the tokens of Petri nets, between the nodes. Connections

are conceptually FIFO queues, although as we will see, mechanisms are commonly used

Figure 1.2 Regular dataflowactors produce and consume fixed numbers of tokens.

that permit out-of-order execution while preserving the semantics of FIFO connections.

We permit initial tokens on arcs just as Petri nets have initial markings.1

If actors are permitted to produce and consume more than one actor per execution,

but this number isconstant and known, we obtain the synchronous2 dataflow model ofLee

and Messerschmitt [Lee87b]. We will call actors that produce and consume a constant

number of tokens regular actors, and dataflow graphs that contain only regular actors reg

ular dataflow graphs. The canonical non-homogeneous regular dataflow actors are

UPSAMPLE andDOWNSAMPLE, shownin figure 1.2.

If norestrictions are made on when actors can fire other than data availability, the

regular dataflow model is a subclass of Petri nets; it is obtained by starting with marked

graphs and permitting parallel arcs between places and transitions, imposing the require

ment that each place have only a single input transition and a single output transition.

Lee's model is not, in fact, the same as this subclass of Petri nets because the execution

sequence is chosen tohave certain desirable properties, while Petri net transitions are per-

1.Ashcroft and Wadge [Ash75] would call this model "pipeline dataflow" and argue for amore
general model, permitting data values to flow inboth directions and notrequiring FIFO, as in their
Lucid language (see section 1.4.1). Theirs isaminority view; Caspi, for example [Cas92] contends
that the Lucid model is not dataflow at all.

2.The term synchronous has been used invery different senses byLee and bythe designers of the
stream languages LUSTRE [Hal91] and SIGNAL [Ben90]. We will use the term regular torefer to
actors withconstant input/output behavior to avoid thispossible source of contusion.

17

18

mitted to fire wheneverenabled. We will investigate the properties of Lee's model in detail

in section 2.2.

We will use the term dynamic actor to describe a dataflow actor in which the num

ber of tokens produced or consumed on one or more arcs is not a constant. As a rule, in

suchactors the numbersof tokens produced orconsumed depends on the valuesof certain

input tokens. These models are usually more powerful than Petri net models, as Petri net

models are notTuring-equivalent, but, as we shall see, dynamic dataflow models usually

are. However, this increase in expressive power also makes dynamic dataflow graphs

much harder to analyze, as many analysis problems become undecidable.

We can conceive of actors whose token consumption and token production

depends on the values of control inputs. The canonical examples of this type of actor are

SWITCH and SELECT, whose function is shown in figure 1.3. The SWITCH actor con

sumes an input token and acontrol token. If the control token isTRUE, the input token is

copied to the output labeled T; otherwise it is copied to theoutput labeled F. The SELECT

actor performs the inverse operation, reading atoken from theT input if thecontrol token

is TRUE, otherwise reading from the Finput, and copying the token to the output. These

actors are minor variants of theoriginal Dennis actors [Den75b], are also used in [Wen75],

Figure 1.3 The dynamic dataflow actors SWITCH and SELECT.

19

[Tur81], and [Pin85], and are the same as the DISTRIBUTOR and SELECTOR actors in

[Div82].

We can also conceive of actors whose behavior depends uponthe timingof token

arrivals. An example of this class of actor is the non-determinate merge actor, which

passes tokens from its inputs to its output based on the order of arrival. This actor resem

bles the SELECT actor in the figure below except for the lack of a control input. Non-

determinate actors maybedesirable to permit dataflow programs to interact with multiple

external events [Kos78]. In addition, if the setof admissible graphs is severely restricted,

graphs with the nondeterminate merge can havea completely deterministic execution; for

example, it can be used to construct the "well-behaved" dataflow schema discussed by

Gaoefa/in[Gao92].

If the operations represented by the nodes of a dataflow graph are purely func

tional, we have a completely definitional model of computation. Some non-functional

operations, such asthose with history sensitivity, canalso be accommodated within a defi

nitional model; any dataflow actor that has state may beconverted into an equivalent data

flow actor without state by the addition of a self-loop. The new actor accepts data inputs

and a state input, and computes data outputs and a new state; the initial token value on the

self-loop represents the initial state. If actors with state are represented in this manner,

then dataflow programming strongly resembles functional programming, in that state is

represented explicitly in arguments to functions and isexplicitly passed around as an argu

ment.

1.2.7 Kahn's Model for Parallel Computation

Kahn's small but very influential paper [Kah74] described the semantics for a lan

guage consisting of communicating sequential processes connected by sequential streams

ofdata, which are produced and consumed in first-in first-out order. The model ofcompu

tation is further developed in [Kah77]. No communication path exists between the pro

cesses other than the data streams; other than that, no restriction is placed on the

20

implementation of each process — an imperative language could be used, or the process

could simply invoke a function on the inputs to produce the outputand therefore be state-

free. Each process is permitted toread from its inputs in arbitrary order, but it is not per

mitted to test an input for the presence of data; all reads must block until the request for

data can be met. Thus the SWITCH and SELECT actors of the previous section could be

implemented as Kahn actors, but not the non-deterministic merge, since it would be neces

sary tocommit toreading either the first input or thesecond, which would cause inputs on

theopposite channel to be ignored. It is shown that, given this restriction, every stream of

data that forms a communication stream is determinate, meaning that its history depends

only on the definitions of the processes and any parameters, and not on the order of com

putation of the processes.

The semantics of Kahn's parallel process networks are astrict superset of themod

els considered bymany dataflow and stream languages, as well as hybrid systems that per

mit actors to be implemented usingimperative languages orto havestate. Hence, when we

say that all language constructs in a dataflow or stream model obey the Kahn condition,

we mean that the model can be implemented without requiring input tests on streams or

non-blocking read operations and we then can be assured that all data streams are determi

nate.

1-3. DATAFLOW COMPUTING

Dataflow computing originated largely in the work of Dennis in the early 70s. The

dataflow model of computer architecture was designed toenforce the ordering of instruc

tion execution according to data dependencies, but to permit independent operations to

execute in parallel. Synchronization is enforced at the instruction level.

There have been two major varieties of "pure" dataflow machines, static and

tagged-token. In a static dataflow machine, memory for storing data on arcs is preas-

signed, and presence bits indicate whether data are present or absent. In a tagged-token

dataflow machine, token memory is dynamically allocated, and tags indicate the context

21

and role of a particular token.

1.3.1 Static Dataflow Machines

The earliest example of a static dataflow machine was Dennis's MIT static data

flow architecture [Den75a], although the first machine to actually be built was Davis'

DDM1 [Dav78].

In a static dataflow machine, dataflow graphs are executed more or less directly,

withnodes in thegraph corresponding to basic arithmetic operations of themachine. Such

graphs, where nodes represent low-level operations, are called fine-grain dataflow graphs,

as opposed tocoarse-grain dataflow graphs inwhich nodes perform more complex opera

tions. The graph is represented internally as a collection of activity templates, one per

node.Activity templates contain acodespecifying whatinstruction is to be executed, slots

for holding operand values, and destination address fields, referring to operand slots of

subsequent activity templates that need to receive the result value [Arv91]. It is required

that there never be more than one token per arc; acknowledgment arcs are added to

achieve this, sothat anode is enabled as soon as tokens are present on all arcs (including

acknowledgment arcs).

Theoriginal MTT static dataflow architecture consists of agroup of processing ele

ments (PEs) connected by a communication network. A diagram showing a single pro

cessing element appears in figure 1.4. The Activity Store holds activity templates that

have empty spaces in their operand field and are waiting for operand values to arrive. The

Update Unit receives new tokens and associates them with the appropriate activity tem

plate; when a template has all necessary operands, the address of the template is entered

into the Instruction Queue. The FetchUnit uses this information to fetch activities and for

ward them to the appropriate Operation Unit to perform the operation. The result value is

combined with the destination addresses to determine where to send the result, which may

need to go to the Update Unit of the same PE or to that of a a different PE through the

communications network [Den80], [Den91].

22

The requirement that there be only one token per arc, and that communication

between actors be synchronized by acknowledgment arcs, tends to limit the parallelism

thatcan be achieved substantially. If waves of data are pipelined through one copy of the

code, the available parallelism is limited by thenumber of operators in thegraph. An alter

native solution is to use several copies of the machine code [Den91].

13.2 Tagged-Token Dataflow Machines

Tagged-token dataflow machines were created to overcome some of the shortcom

ings of static dataflow machines. Thegoal of such machines is to support theexecution of

loop iterations and function/procedure invocations in parallel; accordingly, recursion is

supported directly on tagged-token dataflow machines, while on static dataflow machines

it is not supported directly. To make this possible, data values are carried by tokens that

include a three-part tag. The first field of the tag marks thecontext, corresponding to the

current procedure invocation; thecorresponding concept in a conventional processor exe

cuting an Algol-like language is thestack frame. Thesecond field of thetag marks theiter

ation number, <used when loop iterations are executed in parallel. The final field identifies

the activity, corresponding to the appropriate node in the dataflow graph — this might be

an instruction address in the physical machine [Arv91]. A node is then enabled as soon as

tokens with identical tags are present at each of its input arcs; all three fields must match.

o

i
Z
c
o

1
o

c
3

E
E
o

O

Output Operation Unit

Input

Update

Instruction Queue

—

Fetch

—*- Activity Store

Figure 1.4 A simple model of a processing element for a static dataflow machine
[Arv86]

23

No feedback signals (acknowledgment arcs) arerequired. A diagram of a single process

ing elemement of this type of machine appears in figure 1.5.

The MIT Tagged-Token Dataflow Machine [Arv90] and the Manchester Dataflow

Computer [Gur85] were both independently designed according to the principles

described above, roughly at the same time. The lattermachine was actually built in 1981.

In both machines, a "waiting-matching unit" is responsible for collecting tokens destined

for binary operators and pairing them together, dispatching operations when a match is

found. Unary operators may be dispatched immediately without going through the wait

ing-matching unit.

In addition to the structure described above, the MIT machine hada special type of

storage for large datastructures using theconceptof I-structures [Arv90]. An I-structure is

a composite object whose elements can each be written only once but can be read many

times. These structures are non-strict, meaning that it is possible to perform an operation

requiring some elements of the structure even thoughthe computation of otherelements of

the structure is not yet complete. There are three operations defined on I-structures: allo

cation, which reserves a specified number of elements for the structure; I-fetch, which

retrieves the content of a given elementof the structure, deferring the operation if the ele

ment has not yet been computed, and I-store, which writes a given element of the struc-

lurveii i|ut?ut?

" s
v

t

Waiting-
Matching

o

Q

%
c

>l
Form

Token

To/1
uni<

^ E
E
o
o

Program
Memory

Figure 1.5 Block structure of a single processing element in the MIT tagged-token
dataflow machine [Arv91].

24

ture, signalling an error if the element has already been written. The I-structure storage

unit provides specializedhardware to supportthese rules, andtokens containreferencesto

I-structures. I-structure operations are split-phase, meaning that the read request and the

response to therequest are two separate actions and do not cause the issuing processing

element to wait.

One of themain problems with tagged-token machines has been that the waiting-

matching unit is a bottleneck; the operation of matching the tokens is expensive and the

amount of memory required to store tokens waiting for amatch is large. A second problem

is that the amount of parallelism that can beuncovered by the operation of atagged-token

machine is very large. If too many tokens are generated thatmust wait for a match and the

waiting-matching unit fills with tokens, the machine deadlocks. Finally, the expensive

token-matching functions are always performed, even on purely sequential code where

they gain nothing because there is no parallelism to exploit.

Some of these problems have been addressed by subsequent architectural designs.

For example, in the Monsoon project [Pap88], rather than allocating memory for tokens

dynamically, explicitly addressed and statically allocated token store is used. In this

model, aseparate memory frame is allocated for each function activation and loop activa

tion, muchasanew stack frame is allocated on function entry onaconventional von Neu

mann machine that is executing an Algol-like language. To make this idea practical, we

must limit the amount of parallelism in dataflow graphs (specifically, the number of loop

iterations that may be active simultaneously) by means of special constructs. For this pur

pose, structures known as ^-bounded loops were used [Cul89].

1.3J Dataflow/von Neumann Hybrid Machine Models

Dataflow machines were conceived of to address the problems of latency and syn

chronization, problems that have not been addressed as effectively as might be desired in

von Neumann machines or innetworks of such machines. Dataflow machines do synchro

nization on the execution of every fine-grain dataflow actor, at a smaller cost than would

25

berequired onatraditional processor. Unfortunately, onshort segments of sequential code

that have all required data in local high-speed storage (registers and cache), any overhead

for synchronization is wasteful. These sequential code segments, corresponding to basic

blocks operating onlocal variables in traditional imperative programming languages, are

more efficiently executed by aRISC-style processor1. However, synchronization between

processors is moreefficiently handled using a dataflow approach. It therefore seems natu

ral to attempt to combine the approaches.

The greatest deficiency of the pure dataflow model is the excessive token matching

and overhead required for communication between actors. Enhancements that exploit tem

poral orspatial locality (caches, for example) are also hard to achieve in the pure dataflow

model. Most of thehybrid models achieve areduction in overhead by applying some form

of clustering: certain sequences of actors are combined into threads, which are sequen

tiallyexecutedwithout incurring the costof matching overhead.

Some of these hybrid approaches, such as [Bic91], retain the notion of the token

and resemble traditional tagged-token machines, except for the clustering of actors into

threads. Others, which have been described as "dataflow architectures without dataflow"

[Gao88], retain a data-driven execution model but fetch all data from shared memory. A

multilevel dataflow model, which exploits features of the von Neumann model such as vir

tual space, multilevel memory hierarchies, and RISC design principles, has been devel

oped by Evripidou andGaudiot [Evr91]; this project has some resemblance to that of Gao

etal.

Finally, there is a category of machines that enhance RISC architecture with addi

tional mechanisms for tolerating memory and communication latencies, supporting fine-

grain synchronization among multiple threads ofexecution. MTTs Alewife project, using

1. A RISC (Reduced Instruction Set Complexity) processor, as used inmost workstations today, is
apipelined von Neumann processor characterized byaload-store architecture, many general-pur
pose registers, asimple and regular instruction set, and amultilevel memory hierarchy including
one or more caches [Hen90].

26

a modified form of the standard Sparc RISC architecture known as Sparcle, is the best

known example [Aga93].

1.4. DATAFLOW AND STREAM LANGUAGES

Dataflow languages were first developed to support programming of dataflow

machines. Since data dependencies were the organizing principle of the paradigm and

since any artificial sequencing was objectionable, these languages were essentially func

tional languages. For several of the languages discussed, a user-written textual form is

converted internally into a dataflow graph.

The two most important languages developed in the early days of dataflow

machines were Val [Ack79], which later became Sisal, and Id [Arv82], which later

became Id Nouveau [Nik86]. For the most part, these and other languages developed dur

ingthat period did nothave higher-order functions, and they were strict (meaning that all

inputs to any function must becompletely computed before the function can begin execu

tion), reflecting the data-driven rather than demand-driven style of control used in data

flow machines (in which new data are produced as quickly as possible and constraints in

the graphical structure are used as a throttling mechanism). Id also supports non-strict

composite objects in the form of I-structures, whose semantics were discussed in section

1.3.2.

Another interesting and important dataflow language is Lucid [Ash75], which is

distinguished by the use of identifiers to represent streams of values. A one-dimensional

stream might represent a time series or a sequence of values passing through a dataflow

node; Lucid also supports streams of higher dimension. This language was intended to

have semantics that were sufficiently clear toprove assertions about parallel programs.

Finally, we will discuss the languages LUSTRE and SIGNAL, languages with a

theoretical foundation that has contributed much to the solution of problems of consis

tency and boundedness in general dataflow.

27

1.4.1 Lucid

Lucid is a functional language in which every data object is a stream (a sequence

of values). It is first-order: we may only construct new streams, not new functions. All

Lucid operations map streams into streams. Like some ofthe other languages we will dis

cuss in this section, it canbeconsidered to bea dataflow language in which the variables

(the streams) name thesequences ofdata values passing between the actors, which corre

spond to the functions and operators of the language. Skillcorn [Ski91] points out its

resemblance to Kahn's networks of asynchronous processes [Kah74]; other stream lan

guages, together with the graphical dataflow systems used inGabriel [Bie90] and Ptolemy

[Buc91], also fit this model. While Lucid supports multidimensional streams, wewill dis

cuss a subset of Lucid in which streams are one-dimensional and the elements of streams

are either integers or Boolean-valued. We then have pointwise functions or operators,

which construct new streams by applying sample by sample to existing operators. There

are three special non-pointwise operators:

• initial, which takes a single stream argument and produces a new stream in

which each element is equal to the first element of the input stream;

• succ, which takes a stream and discards the first element;

• cby (continued by), which is written as an infix operator, taking two streams. The

output stream consists ofthe first element ofthe first stream argument, followed by

the whole of the second argument.

There is also a pointwiseconditional operator:

if c then ts else fs (1-2)

in which cis aBoolean stream and ts and fs are streams ofthe same type. This operator,

if thought of as a dataflow actor, always consumes one element from each of the three

input streams for each element produced in the output stream; this behavior isquite differ

entfrom the behavior ofconditionals in other stream languages, such as SIGNAL.

28

In addition, Lucidpermits user-defined functions, which may be recursive.

As a simple example, a Lucid program (or definition, since Lucid is a definitional

language) for the series of Fibonacci numbers, given in [Ski91] is

fib = 1 cby (1 cby (fib + succ fib)) (1-3)

Parentheses have beenadded to makethe structure of theprogram clearer. It is easy to see

that the first two elements of fib are 1; in addition, it can be seen that element n + 2 is

equal to the sum of elements n and n +1.

Notethat there is no wayto subsample a stream using the above operators, mean

ing that we cannot produce a stream that has values "less frequently" than the input

streams.

1.4.2 SISAL

SISAL is an acronym for "Streams and Iteration in a Single Assignment Lan

guage." SISAL originated in the dataflow community as the language Val [Ack89] and

was usedto program the Manchester Dataflow Machine [Gur85]. It has a target-architec

ture-independent dataflow graphintermediate form. Thelanguage hasevolved intoa com

plete functional language; for example, it has higher-order functions. Implementations

exist for a variety of uniprocessors, shared-memory multiprocessors, the Cray X/MP, and

other machines [B0h92]. It has been a major goal of the SISAL project to demonstrate

sequential andparallel execution performance competitive with programs written in con

ventional languages, and impressive results have been achieved [Bur92].

SISAL has powerful features for manipulating arrays (including vector subscripts

to select and manipulate subarrays) and non-strict stream types, which are produced in

order by one expression evaluation and consumed in thesame order byoneor more other

expression evaluations. As an example of a non-strict operation on streams consider the

following, from a "Sieve of Eratosthenes"program:

function Sieve(S: stream[integer];

M: integer returns stream[integer])

29

for I in S returns

stream of I unless mod(I,M) = 0

end for

end function

The abovefunction accepts a stream of integers andproduces another stream, and

the result may be used before the stream is completely computed. Production and con

sumption ofstreams may bepipelined. Streams are usually generated by for expressions,

as above.

There are two forms of for expressions. In the first form, values are distributed to

(multiple instances of) the body ofthe for expression and each body instance contributes

a value to the overall result (the result might be an array orstream, ora reduction operator

mightbeapplied). TheSieve function above has this type of for construct. In thesecond

form, an iteration, dependencies are expressed between values defined in one body

instance and values defined in the preceding body instance. Again, each body instance

returns a valuethatcontributes to theresult. Here is anexample of the iterative form:

function Integers (lower: integer; upper: integer
returns stream[integer])

for initial

I := lower;

while I < upper repeat

I := old I + 1;

returns stream of I

end for

end function

This form of the for appears tohave animperative structure, butin fact does not;

instead, we are defining the value that certain labels have in each body instance, and the

relations between successive instances form arecurrence. It is not difficult tocompile such

recurrences into a dataflow graph intermediate form.

The program examples in this section are simplified versions ofexamples appear

ing in [Btth92].

30

1.4.3 SIGNAL and LUSTRE

SIGNAL and LUSTREare both streamlanguages that owe part of their inspiration

to Lucid. However, there are important differences between the approach used in these

languages from the approach used in Lucid, and there is a sense in which these languages

are much closer to what is usually meant by dataflow, although there are important distinc

tions, the main one being that queuing ofvalues on arcs does not occur.1 Both ofthese lan

guages are descendants of ESTEREL [Ber92]. These languages form a family of tools for

the design of reactivesystems, including real-time systems and control automata. Time is

explicitly modeled in all of these languages.

In Lucid, it is possible to define a stream so that "future" values depend on "past"

values or viceversa, as longas there is some definition foreach element. This is exploited

effectively in [Ski91] for multidimensional cases in, for example, solving boundary value

problems. In SIGNAL and LUSTRE, however, streams can be thought of as evolving in

time, and operators that are not point-to-point are always causal (so that for each stream,

"future" elements only depend upon "past" elements of the same and other streams). Fur

thermore, each stream variable has associated with it a clock, representing in an abstract

sense the time instances at which a stream has values.

Like Lucid, in SIGNAL and LUSTRE streams can be constructed by applying

pointwise operators to other streams, and there are constructs resembling Lucid's succ

and cby operators. Conditional operators in these languages are quite different from

Lucid, however; both SIGNAL andLUSTRE provide a when operator that has the effect

of subsampling a stream, producing another stream that is "less frequent." For example,

we could write

xp = x when x > 0 (1-4)

Having done this, we may inquire into the meaning of the statement

1.Differences between thesynchronous model provided by these languages andthedataflow
model are discussed in detail in section 2.3.5.

31

y = xp + x (1-5)

It appears that there is an inconsistency here; assuming that the stream x has both

positive and negativevalues and that the stream is arriving at a steady rate, it appears that

the two streams arriving to be summedhave differentsample rates (in that xp will contain

fewer values than x in any given time interval). Both LUSTRE and SIGNAL use a mech

anism called the "clock calculus" to determine whether it is valid to combine two streams

in this manner. Due to some differences in the definitions of the two languages, there are

someimportant differences in theclockcalculus of the twolanguages. The clockcalculus

is discussed in detail in section 2.3.4.

The when operator can be thought of as representing one half of the SWITCH

actor discussed in section 1.2.6 (there is a significant difference in that no queuing of

tokens is permitted). One significant difference between the LUSTRE and the SIGNAL

languages is what is done to replace the corresponding SELECT actor.The LUSTRE lan

guage has the if/then/else statement, with semantics like that of Lucid. This state

ment accepts a Boolean stream and two streams to be selected from. Just as for the

dataflow SELECT actor, a token is consumed from the Boolean input stream foreach out

put value produced (although it is not exactly the same as SELECT). Accordingly, this

actor obeys the Kahn condition: it can be implemented by a communicating sequential

process that never tests its inputs for the presence of data. Since other LUSTRE actors also

obey theKahn condition, all streams defined and computed by thelanguage aredetermin

istic. However, the if/then/else does not correspond to the dataflow SELECT, since

all three input streams have the same rate in the LUSTRE model; a statement like

absx := if x > 0 then x else -x (1-6)

would require botha SWITCH anda SELECT, or a conditional assignment, in a dataflow

model.

SIGNAL provides a different actor to combine streams, default. This actor

merges two streams to produce a third stream:

32

a3 := al default a2 (1-7)

This actor produces a stream that is defined at any logical instant where at least one of the

inputs al or a2 is defined; if both streams are defined at the same time, the value chosen is

taken from the first argument, in this case al. In [LeG91] this is called a deterministic

merge, and indeed it is deterministic in the sense that, given a definition of the streams al

and a2, a3 is always defined and comes out to the same answer. However, its lack of a

control input makes it resemble the non-deterministic merge of dataflow. If the clocks of

the two signals were given, indeed the operation would be deterministic, but in SIGNAL

the definitionsof the signalsdeterminetheirclocks. The semanticsofdefault permit the

construction of non-deterministic systems, and they also violate the Kahn condition

[Kah74] in that, if we attempt to implement the above statement by means of a process

thatreads streams al and a2 and outputsthe stream a3, it cannotbe done if we impose the

restrictionthat read operationson input streams be non-blocking.

An example of a non-deterministic SIGNAL system can be found in [LeG91].

1.5. SUMMARY AND PREVIEW OF FUTURE CHAPTERS

This chapter has presented some of the basic models that are at the foundation of

dataflow and functional models and attempted to place them in context, providing the

basis for analytical models thatwill be presented in future chapters. Dataflow systems can

be analyzed by considering the properties of the actors as communicating objects by

building on Petrinet theory, or by analyzing the properties of the streams of data that con

nectthem, asis done in stream languages. For optimum performance, it is necessary to do

as much work as possible at compile time, possibly by clustering the graph to find threads

and allocating as many resources as possible in advance.

In the next chapter, we consider a very important special case of dataflow graphs:

regular dataflow graphs, in which the entire computation can be scheduled at compile

time. We then discuss attempts to extend this model to accommodate dynamic actors, and

the "clock calculus" model of LUSTRE andSIGNAL will be developed in detail.

33

2

STATIC SCHEDULING OF DATAFLOW

Fallacy: It costs nothing to provide a level of functionality that

exceeds what is required in the usual case.

—J. Hennessy & D. Patterson [Hen90]

Dataflow has been widely adopted as amodel for digital signal processing (DSP)

applications for two principal reasons. The first reason is that dataflow does not overly

constrain the order of evaluation of the operations that make up the algorithm, permitting

the available parallelism of the algorithm to be exploited. This advantage holds regard

less of the application area. The second reason is that a graphical dataflow model, orthe

model provided by a stream language such as Lucid, frequently is an intuitivemodel for

the way that DSP designers think about systems: operators act upon streams of data to

produce additional streams of data. Accordingly, coarse-grain dataflow has been applied

toDSP since the beginning, inthe form oflanguages that directly execute block diagrams

in some form. DSP researchers and users have found this kind of dataflow representation

useful even when there is no possibility of exploiting parallelism (because the whole

34

graph will be executed by a sequential processor, for example).

Digital signal processing differs from other application areas in that the amount of

data-dependent decision making is small, the structures of the problems are regular, and

applications typically have very tight constraints on cost, together with hard real time

deadlines that must be met. Because design trade-offs are frequently very different from

those common in the more "mainstream" computer market, the DSP community has its

own programmable digital signal processors, languages, and software.

On the application of dataflow to DSP, Lee commented that "the dataflow tech

niques of general purpose computing are too expensive for DSP and more powerful than

what is required" [Lee91a]. This is becausemany DSP algorithms have almost no decision

making, meaning that large parts of the problem can be efficiently scheduled at compile

time for single or multiple processors. Of course, "little decision making" is not the same

as "none", and to forbid all data-dependent decision-making will prevent us from using

some valuable algorithms. Nevertheless, we will begin ourexplorations of static schedul

ing of algorithms for DSP with the assumption that there is no data-dependent decision

making at all, and then later relax this assumption.

2.1. COMPILE-TIME VERSUS RUN-TIME SCHEDULING

For the purposes of this thesis, we define scheduling to consistof three operations:

assigning actors to processors, determining the order of execution of the actors on each

processor, and determining the exact starting time of each actor. Every system that exe

cutes adataflow graph mustperform all of these tasks; however, depending ontheimple

mentation and onthe information wehave about the execution requirements of the graph,

some functions may be performed at "compile time", leaving others to be performed at

"run time."

In [Lee89], Lee introduces a "scheduling taxonomy" defining four classes of

scheduling (see figure 2.1). Heuses the term fully dynamic to describe implementations in

which all decisions about the execution of thegraph are deferred until run time. We may

35

delay the assignment of an actor to a processor until its input data are ready, for example,

and then choose the first available processor. Some dataflow machines, such as the origi

nalMTT static dataflow architecture [Den75a], used this style of execution.

It is also possible to partition the actors of the dataflow graph between the various

processors in advance, but then have the processors determine the order of actor execution

at run time; this is called static allocation. Many dataflow machines work this way, for

example, the Monsoon architecture [Pap88]. In the third type of scheduling, the compiler

determines both the processor assignment and the order of execution of each node, but

does notdetermine theexact timing of actor execution; where inter-processor communica

tion exists, implicit orexplicit synchronization operations are required so that actors will

wait for data to become available. This technique is commonly used when there is no

hardware support for scheduling, as when generating code for networks of von Neumann

processors with shared memory. The Gabriel system [Bie90] is one example of this. The

final possibility is to make all decisions at compile time, and this is called fully static

scheduling.

If wepossess an accurate model of the execution requirements and data dependen

cies of every actor, together with the properties of the target architecture to be used

fully dynamic

static allocation

self-timed

fully static

assignment

RUN

COMPILE

COMPILE

COMPILE

ordering timing

RUN RUN

RUN RUN

COMPILE RUN

COMPILE COMPILE

Figure 2.1 The time which the scheduling activities "assignment", "ordering", and "tim
ing" are performed is shown for four classes of schedulers. The scheduling activi
ties are listed on top and the strategies on the left [Lee89].

36

(including thecosts and restrictions oncommunication between processors), then it is pos

siblein principle to construct anoptimal schedule for theexecution of adataflow graph on

a given system of parallel processors with no run-time overhead for scheduling purposes.

In practice, the multi-processor scheduling problem is NP-complete even in the simplest

cases (see [Sih91] for a detailed discussion of NP-completeness as it applies to multipro

cessor scheduling) so that most researchers use heuristic methods to obtain near-optimal

schedules with various definitions of "goodness." Many of these techniques are elabora

tions on Hu's list scheduling ([Hu61]). Nevertheless, some researchers have builtsystems

that produce optimal static multiprocessor schedules for DSP systems for some special

cases (for example, [Sch86] and [Gel93]).

Evenwhen it is possible to generate a fully static schedule, it is sometimes prefer

able to produce code for a self-timed system anyway, because such a system is consider

ablymorerobustto variations in timing because of minordifferences in clock rates, errors

in the specifications for timing of some operations, interrupts, and other factors. As long as

the generated code conforms to Kahn's model of communicating sequential processes

[Kah74], the self-timed system will execute reliably regardless of variations in timing.

When dynamic actors (actors whose execution is data-dependent) are included in

the dataflow graph, it is clear that at least some scheduling decisions must be made at run

time. Nevertheless, many of thetechniques used for compile-time scheduling can bemod

ified so as to remain applicable ondynamic dataflow graphs; it is notnecessary to switch

to a fully dynamic execution model. These techniques form the core of this thesis.

2.2. SCHEDULING OF REGULAR DATAFLOW GRAPHS

If adataflow graph contains only actors for which the number of tokens produced

and consumed on each arc is known in advance, and the time required to execute each

actor is known with precision, it is then possible in principle to produce a fully optimal

multiprocessor schedule for thatgraph (as discussed in the previous section, we must often

settle for anear-optimal schedule because of the computational complexity of the schedul-

37

Figure 2.2 Aregular dataflow graph. The numbers adjacent toarcs give the number of
tokens produced or consumed on that arc by the associated actor.

ing problem). We will call dataflow actors with this property (known and constant num

bers of tokens produced and consumed) regular dataflow actors, and graphs consisting

only ofregular actors will be called regular dataflow graphs.1

Clearly, regular dataflow graphs cannot have data-dependent firings of actors, as

might occur in an if-then-else construct or a loop in which the number of iterations is

determined by a computed value. But by imposing this limitation we obtain several very

useful qualities: we can detect "sample rate inconsistencies" corresponding to unbounded

numbers of tokens on arcs, orstarvation conditions corresponding to deadlock. If these do

not occur, a periodic schedule is always possible that permits the graph to be repeatedly

executed onunbounded streams of data, and it is also possible toconstruct an acyclic pre

cedence graph that permits the construction of a near-optimal multi-processor schedule.

Finally, memory for data buffers between actors may be allocated statically, meaning that

we are no longer constrained to FIFO processing of data streams in manycases, and that it

is unnecessary to pay the overhead of a tagged-token system. That is, the compiler can

associate static memory locations with actor firings toexploit data parallelism fully when

there is no data dependency between successive firings of the same actor. Section 2.2.2

will demonstrate in detail how this is done.

2.2.1 The Balance Equations for a Regular Dataflow Graph

In figure 2.2 below we present a simple example of a regular dataflow graph. In

order to produce acompile-time schedule for the repeated execution of this graph, it is first

necessary to solve the balance equations for the graph, which determine the relative num-

1. This terminology is from [Gao92]; Leeused theterm "synchronous data flow" [Lee87b] butthis
canbeconfused withdieuseof theterm "synchronous" for the LUSTRE model [Hal91].

38

berof iterations foreach actor thatwill ensure that the number of tokens produced on each

arc is equal to the numberof tokens consumed. This produces one equation to be solved

foreacharc. It is convenientto expressthe resulting equations in matrix form; to do so, we

define the topology matrix T. This matrix has onerow for each actor in the graph and one

column for each arc; the element y.. represents the number of tokens added to arc j by the

execution of actor i. If the arc is aninput arc for the actor, the value of the corresponding

element in the topology matrix will be negative.

We now wish to find a repetition vector r, whose i elementrepresents the num

ber of times to execute actor /, that solves the equation

Tr = 6 (2-1)

where 6 is thezero vector. For example, given the graph in figure 2.2, the topology matrix

is

r =

10-1 0 0 0

0 10-1 0 0

0 0 1 -10 0

0 0 0 1-10

It can be seen that all solutions to the equationareof the form

r = k

1

10

100

10

1

(2-2)

(2-3)

where k is arbitrary and the smallest integer solution has k = 1. It is shown in [Lee87b]

that anecessary condition for the existence of aperiodic schedule for aconnected regular

dataflow graph is that the rank of T be equal to one less than the number of actors, or

equivalentiy, that the null space have dimension 1. For a collection of disconnected

graphs, the null space must have dimension equal to the number of disconnected graphs,

and the problem can be decomposed intoseparate systems of equations for each of the dis-

39

Figure 2.3 An inconsistent regular dataflow graph,

connected graphs.

If there is no solution to (2-1) except for thezero vector, we say that thegraph is

inconsistent. Inconsistency occurs if and only if there is an undirected cycle of arcs in the

graph that is inconsistent in the following sense: treat thegraph as an non-directed graph

for thepurpose of theconsistency check; then any loop of arcs maybeconsidered acycle,

regardless of the direction of the arrows. Consider asequence of arcs eQ,el en_1 that

form such aloop. Let a0 designate the starting actor, which isconnected to arc eQ and arc

en_ j, and let actor a(be the actor that is connected to arcs e{_ xand et. We now define

the gain g(of an arc e{ to be equal to theratio of the number of tokens produced orcon

sumed by actor at on arc et, divided by the number of tokens produced or consumed by

actor flj_ x on the same arc (actor a_x is identified with an_ j). The cycleis inconsistent if

the following condition does not hold:

n-l

/-o

That is, the gain around every undirected cycle must be equal to one. As an example, for

the graph in figure 2.3,we obtain a product of 2 and therefore thegraph is inconsistent.

This result is easily proved by considering the following algorithm for solving for

the repetitions vector: arbitrarily choose anactor and set its repetitions valueto one. Next,

for each arc connected to that actor, set the repetitions value of the adjacent actor (the

actorconnected to the opposite end of the arc)to the appropriate value to solve the balance

equation for the arc; that is, if arc i connects actorj and actork, then we must have

40

% = -Wu (2"5)

where the y terms are the elements of the topology matrix T. This algorithm is applied

iterativelyuntil all the r values areset. If the graph contains cycles, then the algorithm will

visit some nodes more than once; in this case, a consistency check is performed; if the

newly computed value for r • differs from its previously reported value, inconsistency is

reported. It is easy to see that there will always be inconsistency if there exists a cycle

where the product of gains around the loopis not one. If there is no inconsistency, and any

of the ry values are fractional, the terms are multiplied by the least common multiple of

the denominators to obtain the smallest integerrepetition vector.

2.2.2 From the Balance Equations to the Schedule

Given an integer solution for the repetitions vector, it can be seen that if each actor

is executed the number of times specified in its elementof therepetitions vector, thegraph

will return to its original state, because the repetitions vector is in the null space of the

topology matrix. However, it may not be possible to find a valid schedule with this number

of iterations if the graph deadlocks. Deadlock occurs if there are too few initial tokens in a

directed cycleof the graph to permit continued execution of that cycle. One simple algo

rithm for determining whether the graph deadlocks is to simulate the execution of the

graph on a single processor: we execute enabled actors (source actors or actors with suffi

cient input tokens) until each actor has been executed thenumber of times specified in the

repetitions vector, or until it is not possible to execute any actor. If we succeed in execut

ing each actor the correct number of times, we know that deadlock does not occur and we

also have one possible single-processor schedule.

If we wish to schedule the graph for execution on multiple processors, we then

construct the acyclic precedence graph (APG) corresponding to the dataflow graph. The

APG can be thought of as a model of the parallel execution of the dataflow graph on an

unlimited number of parallel processors. Each node in the APG corresponds to a single

41

execution of an actorin the original dataflow graph.

The graph is constructed as follows: first, we find therepetition vectorto determine

the required number of executions of each actor. All required actor executions that can be

accomplished because the actors are source nodes, or because there are sufficient initial

tokens to permit execution of the actors, are added to the structure as root notes. In figure

2.4 below, actor A must be executed twice, and both executions can be accomplished

immediately. Executing actors makes it possible to execute otheractors, so we add nodes

corresponding tothe execution of actors tothe graph, adding arcs representing data depen

dencies, continuing until the number ofexecutions ofeach actor corresponds tothe repeti

tion vector. In figure 2.4, the APG is completed by adding nodes for the three executions

of actor B with arcs corresponding to the data dependencies. Since precedence in a data

flow graph is determined solely by data dependency, arcs in an APG imply precedence as

well as data communication.

A more systematic way to produce the APG is to first transform the original regu

lar dataflow graph into a homogeneous dataflow graph, using the procedure described in

[Lee87b]. Next, arcs containing initial tokens are converted into apair ofinput and output

nodes. The output node is connected to the source actor of the removed arc, and the input

node is connected to the destination actor of the removed arc. A unified algorithm for

expansion of the graph to the homogeneous form together with construction of the APG is

given in an appendix of [Sih91].

*t»

Figure 2.4 A simple regular dataflow graph and its associated acyclic precedence
graph. Numbers adjacent toarcsspecify thenumbers of tokens produced andcon
sumed.

42

Given a specific schedule for a regular dataflow graph, memory requirements for

each arc may be determined and memory may be allocated in a static manner. This static

allocation permits the execution of the graph to be performed out of orderto some extent,

much asin a tagged-token dataflow machine. For example, in figure 2.4 the executions of

actors A and B maybedone in parallel wherever there are noarcs specifying adata depen

dency.

When scheduling adataflow graph for multipleprocessors, we may chooseto min

imize themakespan, whichis thetime for executing asingle repetition of thegraph. How

ever, as a rule in DSP applications, the graph is repeatedly executed on a conceptually

infinite input data stream, so a more reasonable objective is to minimize the iteration

period, implicitly permitting a pipelined schedule. A third alternative is to construct a

blocked schedule thatexecutes the graph k times, for somek. Scheduling criteria are dis

cussed extensively in [Ha92], [Sih91], and [Hoa93].

2.2.3 Comparison With Petri Net Models

Regular dataflow graphs can be considered as a special case of Petri nets, where

actors become transitions and arcs become places, and there are multiple arcs connecting

transitions and places corresponding to thenumber of tokens produced and consumed by

eachactor. There is, however,an important distinction in the analysis. A Petri net model is

considered bounded if it is not possible for thenumber of tokens in a place to exceed the

bound; however, because we schedule the execution of regular dataflow graphs at compile

time, we do not need so strong a property; it is enough that schedules exist that yield

bounded numbers of tokens on arcs. The values of the bounds no longer depend only on

thetopology of thegraph; theyalso depend ontheschedule chosen. For example, consider

the graph in figure 2.4, and assume that we wish to schedule the graph ona single proces

sor. If the schedule ABABB is chosen, the maximum size of the token buffer between

actors A and B is four tokens. If, on the other hand, the schedule AABBB is chosen, the

maximum buffer size is six tokens.1 In addition, ifthe graph is to be executed repeatedly,

43

schedules like 100A.150B are admissible, giving a much larger buffer size. Computed,

schedule-dependent bounds such as these canbe turnedinto "topologicalbounds" (bounds

that are properties of the graph itself, asin boundedPetri nets) by adding acknowledgment

arcs, and this is the procedure normally used to prepare graphs for execution on static

dataflow machines [Den75a]. These arcs may limit parallelism; in fact, with tagged-token

dataflow machines this limitation on parallelism is usually deliberate, to keep the machine

from saturating [Cul89].

There is an interesting connection between the condition for a regular dataflow

graph to be consistent and thecondition for a Petri net to be conservative withrespect to a

nonzero weight vector. The latter condition requires that for each place pi (corresponding

in a regular dataflow graph to an arc) we can choose a fixed weight wz- such that the

weighted sum of tokens in the graph does not change by the execution of any transition.

The former condition (consistency of aregular dataflow graph) requires that the system of

equations

Tr = 6 (2-6)

have a nontrivial solution. Butthe Petri new condition for aweight vector is simply

T^w = o (2-7)

which is precisely the dual of the previous equation (the dual of aPetri net is formed by

replacing transitions with places and vice versa, which replaces the topology matrix byits

transpose).

Unfortunately no generally useful results (that the author is familiar with) have yet

been obtained from this observation. Some simple results can be obtained: if there are at

least as many arcs as actors, the null space of T7 will have adimension at least as high as

that ofT, so that aconsistent dataflow graph will be conservative with respect to aweight

1. The latter schedule might bepreferable inacompilation environment because the code toexe
cute 2(A)3(B) would bemore compact. Generation ofcompact looped schedules isdiscussed in
[Bha93a].

44

vector for tokens w that is not all zeros. But it is possiblethat even so, there is no solution

for which all weights are positive, and Petri nets for which negative weights must be

assigned to some places are notconsidered conservative. For example, the graph below is

conservative with respect to weight vectors ofthe form [-£ jfl, but is not conservative:

Qt=£>
2.2.4 Limitations of Regular Dataflow Graphs

Regular dataflow graphs successfully represent unconditionally executed

sequences of computation, and they also represent iteration successfully in situations

where the number ofexecutions is known andindependent of the data. Conditional execu

tion and data-dependent iterationarenot represented, and neither is recursion.

However, in limited circumstances regular dataflow techniques can still be used

when there is some conditional execution or when recursion takes asimple form. In many

cases tail recursion can be transformed into a recurrence, which can be represented as

feedback paths inadataflow graph [Lee88a]. Also, it is sometimes suitable toreplace con

ditional execution with conditional assignment. In conditional assignment, both alterna

tives of a conditional expression are computed, but one is discarded. This is an efficient

approach when the cost of evaluating the expressions is small. In a hardreal-time environ

ment, it may alsomake sense to use conditional assignment if only one alternative of the

conditional expression is expensive to compute, since we must allow time for the more

expensive computation in order to assure that the deadline can be met. For these reasons,

and because of the expense of conditional branches in pipelined processors, many DSP

and RISC architectures have a conditional assignment operation. However, if both alterna

tives are expensive, then regular dataflow techniques are no longer sufficient for a good

solution.

45

2.3. EXTENDING THE REGULAR DATAFLOW MODEL

Because of the powerful techniques that are available for the analysis of dataflow

graphs, whether homogeneous orregular, and because theycannot solveall problems, it is

only natural that they have been extended in a variety of ways to solve a larger class of

problems. In comparing these models, there are a variety of considerations that might be

applied:

Expressive power. Some extended models are equivalent in expressive power to

Turing machines, which, as far as we know, means that they mayrepresent any comput

able function . Others are less powerful, while still being more expressive than regular

dataflow graphs.

Compactness. A change in the properties of amodel may not increase expressive

power but may permit much more compact representation; the generalization from homo

geneous dataflow graphs to regular dataflow graphs is an exampleof this.

Ease ofanalysis. Some types of models are easier to analyze than others. As arule,

ease of analysis and expressive power are in competition; many analysis questions are, in

fact, undecidable for models that are equivalent to Turing machines, since they are equiv

alent to the halting problem.

Intuitive appeal. When a model is used in a particular application, it helps if the

concepts in the model are closely related to concepts in the physical system being mod

eled.

23.1 Control Flow/Dataflow Hybrid Models

In ahybrid control flow/data flow model, control dependency and data dependency

are combined. Such models normally imply asequential mode of computation while per

mitting some freedom for re-ordering computation. A node in such a structure may have

arcs that imply the communication of data as well as arcs that model the flow of control.

1.Theassertion that nomodel ofcomputation can compute afunction that aTuring machine cannot
compute is equivalent to Church'sthesis [Chu32], whichmade similarstatements aboutthe
(equally expressive) lambda calculus.

46

These modelsare usedwidely in compilers for traditional imperative highlevel languages.

As a rule, a basicblock in such a language is modeled as an acyclic homogeneous data

flow graph, andthis graph, in turn, is a single nodein a directed graph modelingthe con

trol flow structure. In Aho, Sethi, and UUman [Aho86], the inner structure is called a

directed acyclic graph ordag,andtheouter structure is called &flow graph. An optimizing

compiler (a misnomer, but a standard one) analyzes this structure to collect information

about the program as a whole, permitting dead code elimination, restructuring to improve

performance (moving invariant code out of loops orelimination of inductionvariables, for

example), and allocation of program constructs to registers.

This model is an intuitive internal representation for a program written in an

imperative, sequential language (such as Fortran, C, or Pascal) because it reflects its struc

ture closely; the flow of control in the flow graph represents the flow of control specified

by the user. Furthermore, there are over two decades of extensive experience with the

analysis of this type of structure; chapter 10 of [Aho86] provides an extensive bibliogra

phy. Assuming typical underlying primitives, the model is also Turing equivalent. Given

these advantages, we can expect this sort of structure to be used for a long time to come.

However, there are significant disadvantages, caused mainly by the close association with

the operational, imperative model of programming implied. Furthermore, the model is

inherently sequential, although analysis mightbe able to uncover someparallelism.

The above model has two levels, with control flow at the top level and data flow

underneath. There are also modeling techniques that combine the two levels, permitting

both control flow and data flow at the same level. The dataflow/event graphs of [Whi92]

are onesuch model; the PFG graphical programming language [Sto88] provides a similar

capability.

The Program Dependence Web, or PDW, is a relatively new program representa

tion for use as an intermediate representation in compilation of imperative languages

[Bal90]. This model, an extension of program dependence graphs (PDG) [Fer87] and

47

static single assignment (SSA) form [Cyt89], is designed to support mapping of conven

tional imperative languages onto dataflow architectures and includes all the necessary

information to permit either a control-driven, data-driven, or demand-driven interpreta

tion, a feature the PDG and SSA forms lack. The structure is naturally interpreted as a

dataflow graph with controlled use of dynamic dataflow actors to assure that arcs never

have more than one token, although other interpretations are also possible. It differs from

the structurewe will discuss in the next section in that a greater variety of dynamic actors

are used and that initial tokens on arcs are not used.

2.3.2 Controlled Use of Dynamic Dataflow Actors

While there may be advantages to representing control flow and data flow sepa

rately as in the previous section, there is much to be said for a unified model in which data

flow is used throughout. Such models utilize dynamic dataflow actors (see section 1.2.6),

with the consequence that the number of tokens produced or consumed on one or more

arcs of the graph is determined only at"run time." Once dynamic dataflow actors are per

mitted, new problems arise; it is difficult to assure consistency of flow rates, and as we

shall see, certain analysis questions (such as whether the graph can bescheduled torequire

bounded memory) become undecidable if norestrictions are placed on theuseof dynamic

actors.

Nevertheless, dynamic actors have been in use for a long time, since the early

work on static dataflow machines. Analysis problems are avoided by restricting the con

texts in which they appear. Thus the fundamental distinction of approaches described in

this section is that dataflow graphs are built up out of regular actors and specially

restricted clusters of actors known as schema that behave, when taken together, as regular

actors. The resulting graphs have many of the same attractive properties as graphs com

posed only of regular actors; accordingly, Gao et al., who advocate this approach, call

such graphs well-behaved [Gao92].

48

Consider the system in figure 2.5.This is an example of the standard "conditional

schema," in which either actor 3 or actor 4 is conditionally executed based on the control

tokenproduced by actor 7, using adata token from actor 1as an input. The result is sent to

actor 6.We make the observation that the circled subsystem, including actors 2, 3,4, and

5, canitself be treated as a regular dataflow actor which, on each execution, consumes a

single token from each of two inputs and produces asingle token on its output. When con

sidered as acoarse-grain dataflow actor sothat the cluster as awhole becomes an actor, we

again have aregular dataflow system. Furthermore, it iseasy to arrange the scheduling so

thatno arc ever contains more than a single token.

Instead of using the SELECT actor, it would be possible to replace it by the non-

deterministic merge actor (which differs from SELECT inthat it has no control input but

simply transfers tokens from either data input onto itsdata output). If used in this context,

and if executed as soon as an input token appears on either input, the graph as awhole has

deterministic behavior despite the presence of anon-deterministic actor. This property is

used, for example, in theprogram dependence web model of Ballance et al. [Bal90].

In this example, actors 3 and 4 have one input and one output. We can construct

other conditional schema inwhich the actors corresponding to3 and 4 have minputs and n

outputs each, for any mand n (each actor is assumed tohave the same interface), together

with a network of SWITCH and SELECT actors toroute inputs appropriately. Theresult-

Figure 2.5 A dataflow graph with a "conditional schema." The numbers on the actors
identify them. We consider the circled actors (2, 3, 4, and 5) as a subsystem. All
actors other than SWITCH and SELECTare homogeneous.

49

ing system will then look like ahomogeneous dataflow actor with m+1inputs (including

thecontrol input) and n outputs. Again, with asuitable scheduling discipline it is possible

to replace the SELECT actors with non-deterministic merge actors without loss of deter

minism.

Similarly, it is possible to construct well-behaved standard schemas for data-

dependent iteration. It is useful to divide data-dependent iteration into two cases: conver

gent iteration, in which the condition for termination of the iteration is determined by the

data computed by the most recent iteration, and iteration in which the number of iterations

is known before the iteration starts (but not at compile time). It is usually possible to

exploitmore parallelism in the latter case. Examples of these types of constructs will be

studied in detail in chapter 3.

233 Quasi-static Scheduling of Dynamic Constructs for Multiple Pro

cessors

If the language of regular dataflow graphs is extended to permit the conditional

and loop schema described above, but no other uses ofdynamic actors, additional compli

cations either for dynamic execution of thegraph (for example, by a dataflow machine or

a simulator for such a machine) or for compile-time scheduling for a single processor are

minimal. All that is necessary is to execute, orgenerate code for, a conditional branch or

loop. For compile-time scheduling for parallel processors, more is required.

In [Lee88a], Lee proposed a technique called quasi-static scheduling, in which

some actor firing decisions are made at run time, but only where absolutely necessary.

Consider the system in figure 2.6, taken from [Lee88a]. In this case, we wish to schedule

the execution of the system onto three sequential processors. The Gantt charts show the

activity of the processors for two possible outcomes: in the first Gantt chart, the control

token is TRUE, and the schedule includes the execution of the TRUE subgraph. The sec

ondchart shows the execution of theFALSE subgraph. Lee's key contribution was to note

that, if idle times are inserted into both schedules sothat the pattern of processor availabil-

50

ity is thesame regardless of theoutcome of theconditional, static scheduling can then pro

ceed after the execution of the conditional construct exactly as if it were a regular

subgraph. This padding is required for fully static scheduling; if synchronization is used

for data communication between processors the padding can beeliminated. Lee proposes

a recursive structure for the scheduler that permits nested conditionals to be handled

cleanly, and Ha extends and generalizes this idea ([Ha91], [Ha92]).

Depending on whether the goal is to meet hard real-time deadlines or to minimize

the expected completion time, different scheduling strategies are appropriate. For a hard

real-time system, it is advantageous to minimize themaximum time required; if theproba

bilitydistribution of the Boolean control stream is known, it may be possible to minimize

the expected time to completion instead.

The sameessential idea(create a schedule in whichthe pattern of processor avail-

CODE FOR f(«)

1

2

3

i
NO-OPS

l

PATTERN OF AVAILABILITY

CODE FOR g(.>-i N°-°PS
Figure 2.6 Adataflow graph containing the construct y:= if c then f(x) else g(x), where

f and g represent subgraphs of arbitrary complexity. We produce Gantt charts for
two schedules corresponding totwo possible decisions. The schedules are padded
with no-ops so that the pattern ofavailability after the conditional is independent of
the decision [Lee88a].

51

ability after the execution of the dynamic construct is independent of any run-time data)

can be applied to the scheduling of data-dependent iteration. The approach described in

[Lee88a] accomplishes this taskby devoting all theprocessors to thebodyof theiteration,

but cannot exploit any parallelism between successive iterations and is wasteful if the

body of the loopdoes not contain enough parallelism for oneiteration to keep all proces

sors busy. This flaw is addressed in [Ha91], in which thenumber of processors devoted to

the iteration is chosen based on the probability distribution of the number of iterations

(assumed known). The technique is further elaborated in [Ha92].

2.3.4 The Clock Calculus of the SIGNAL Language

While the approaches discussed so far have proven their usefulness in at least

some domains, there is still a difficulty: dynamic actors are singled out for special treat

ment and not represented in the same way that regular actors are. Whether we choose to

place dataflow graphs inside alarger control flow graph as in theinternal representation of

manycompilers, orif we restrict theuse of dynamic dataflow actors to special constructs

and then apply special scheduling techniques, we are left withatwo-level theory, withone

approach to handle the uniform data flow and another approach to handleconditionals and

iteration. At least for aesthetic reasons, it seems that aunified approach is desirable.

One such approach is to focus on the streams of data connecting the dataflow

actors, rather than the actors themselves, and to associate a clock with each data stream.

Rules are then defined for deriving clocks when generating one stream from another, and

for determining conditions for two clocks to be considered compatible. In order to com

bine two streams with a pointwise operation (for example, we wish to add together two

streams of integers to produce a third stream of integers) we require that their clocks be

the same.1 The rules for determining the properties ofclocks are called the clock calculus.

As a simple example, consider the following, where x is some stream (the language is a

1.Clocks need notbeexactly thesame if queuing of tokens is permitted, butthis isnotallowed in
the SIGNAL model.

52

Lucid-inspired pseudocode):

alt := false cby not alt

x2 := x when alt

y := x + x2

Here the streamalt is alternately false and true (it is false followedby the inverse

of itself), and therefore x2 is a downsampled version of x. It is clear that the definition of

y bears a strong resemblance to the inconsistentregular dataflowgraph of figure 2.3, but

we would have the same type of inconsistency even if alt were of unknown structure.

Only if alt were always true would y be well-defined.

In SIGNAL, stream variables are considered to be signals with implicit clocks;

thus we may consider that there is a time instant associated with eachelement of the sig

nal. The exactvaluesof these time elements do not appear in the analysis; only their rela

tive ordering. Two signals defined at the same time instants are said to have the same

clock. We are permitted to "observe" one signal at the time points corresponding to the

clock of a different, "more frequent" signal; if wedo,wewill find that the "less frequent"

signal is undefined at some points, which is indicated by the special symbol J.. We can

then define the semantics of the SIGNAL when and default operators and the effect

they have on clocks. In the statement

a3 := al when a2

thesignal a2 mustbe a Boolean signal, and a3 is a subsampling of theal signal. a3 hasa

value at each instant that al has a value and simultaneously, a2 has a true value. Note that

al could have a value at a point in time where a2 does not have a value at all (has the

"value" X). If so, a3 also does not have a value at this point. Thus we could have

xle := x <= 0

px := x when x >= 0

y := px when xle

Theonly times when px and xle are simultaneously defined is when x is equal to

zero, and in all such cases, xle is true, hence y has zero values defined only at points

53

when x has zero values.

The SIGNALdefault operator resembles a dataflow merge operation (except that,

as always, queuing does not occur). In

a3 := al default a2

the signal a3 has a value at any time instant that either al or a2 has a value. If al has a

value or both have a value, the correspondinga3 value is obtained from al. Otherwise if

a2 has a value, the corresponding a3 value is obtained from a2.

A systematic method for determining consistency of clocks and their relations is

then developed [Ben90]. We encode the state of a signal at a time instant into one of the

three values -1,1, or 0, corresponding to whether a signal is defined and false, defined and

true, or undefined. We can then model relations between signals as equations on the finite

field {-1,0,1} , using modulo-3 arithmetic. For non-Boolean signals, we treat them as

Boolean signals where the truth value is unknown butit is known whether or not a signal

is defined. Thus if it is known that two signals have the same clock (because one is defined

in terms of the other using pointwise operators, for example) we can write

a] =a\ (2-8)

which is interpreted to mean that the signals al and a2 have the same clock (we will use

bold face to refer to stream variables and italics to refer to the corresponding clocks). To

understand this, observe that if ax is undefined (corresponding to a "clock code" of 0), so

must a2 be, and if ax is defined (corresponding to a code of 1or-1) then a2 must also

have a code of 1 or -1.

Wecan also produceequations that model the relations described by the when and

default operators. There are two separate cases foreach, depending on whether the sig

nals being downsampled or merged are Boolean or not. Consider

a3 := al when a2

assuming all signals are Boolean. We know that for the clocks, a3 is the same as ax when-

54

ever a2 is true (equal to 1), and otherwise a3 is zero. The following equation models this:

a3 =ax{-a2-a22) (2-9)

It can be verified that this definition for a3 defines theclockappropriately tomatch

the semantics of the when statement (remember that arithmetic is carried out modulo 3

andreduced to the values {-1,0,1}). This canbe verifiedby the truth table method, by

considering all nine combinations of values for a2 and a3.

If a± is notBoolean, weonly know that a3 isdefined when ax isdefined and a2 is

true, so we have

a\ =a\(-a2-a\). (2-10)

For

a3 := al default a2

we know that a3 has a value that is the same as that of al if al is defined, and has a value

that is the same as a2 if al is not defined. It can be verified by inspection or by the truth

table method that the equation

a3 =ax+ (l-a\)a2 (2-11)

is correct for Boolean signals, and

a\ = a\+(\-a\)a\ (2-12)

is correct for non-Booleans.

We can now analyze the system

c := x > 0; g := x when c; y := x + g

Again, we will use italic variables to refer to the clocks of the corresponding boldface

stream variables. We have g2 =x2 (- c- c2) and also g2 =x2 = c2 =y2, so we must

have c true at every point where x is defined (corresponding to - c - c2 = 1 whenever

x* 0) in order for the clocks to be consistent.1 In this case, the result is intuitive, but the

55

keyis to be ableto reason automatically about large systems of signals.

Given a system of signal definitions in SIGNAL, each definition implies a set of

relationships between signal clocks. All signals that are combined with pointwise opera

tions havethesameclock; furthermore, thewhenand default operators cause additional

equations to be added, as we have seen. The solution to this system of equations, if it

exists, results in a lattice of clock definitions in which clocks for the "less frequent" sig

nals aresubsampled versions of the clocks for "more frequent" signals in the system. We

willsometimes find that there exists a particular clock, called the"master clock," such that

all other clocks in the system are subsampled versions of the master clock. Systems with

this property are well-defined. Forother systems, there is more than one possible defini

tion of this "master clock", and all definitions are "more frequent" than any signal in the

system. Such systems are underconstrained and their execution is not determinate.

The LUSTRE clock calculus resembles that of SIGNAL in many ways, but there

are some important differences that tend tomake the analysis ofLUSTRE systems some

what simpler. Since there is no operator like default that can produce a signal that is

more frequent than either input to the definition, every LUSTRE signal's clock is a sub-

sampled version ofsome other signal, sothat it is not possible for the most frequent clock,

the "master clock", to be ill-defined. There is one additional LUSTRE operator that can

produce a more frequent version ofasignal, called current, which works like a"sample

and hold" operation in signal processing. The clock of the signal

current x

is the same as that of the master clock. At the points where x has a value, the signal cur

rent x has the same value, and at other points, current x has the same value as the

most recent value ofx. If weconsider the master clock to beone of theinputs to thecur

rent operator, wepreserve the property that we only have clocks and the subsampled ver

sions of the clocks, so it is relatively easy to assure that only signals with the same clock

1. This isadifferent result from the dataflow equivalent which requires c tobe true always.

56

are combined in pointwise operations.

2.3.5 Disadvantages of the SIGNAL Approach

The SIGNAL model is a powerful and useful one. However, one disadvantage to

its application is that the semantics of the language depart from dataflow in several

respects. It does not naturally model queuing behavior, for example. If a system like the

inconsistent model of the previous section

c := x > 0; g := x when c; y := x + g

were implemented from traditional dataflow actors (e.g. the when operation is imple

mented by a SWITCH, the > and + by homogeneous dataflow actors), we would obtain an

unbounded buildup of tokens on some arcs, unless c is always true, but nevertheless, all

the streams aredefined. In SIGNAL, the definition of y is simply an error.

In this particular case, this is probably what is desired. However, in the moregen

eral sense in which dataflow actors are completely general and in which the only restric

tions are those required by the Kahn model to assure determinism, a buildup of tokens on

some arcs may be just fine (and only temporary), so that a model that permits arbitrary

queueing on arcs between actors is what is actually desired. Some algorithms require this

form of token buildup if there is to be any hope of implementing them; the canonical

example is a parser for a context-free grammar, which requires an unbounded pushdown

stack. It is not possible to implement such structures in SIGNAL or LUSTRE, precisely

because of the lack of queuing. It is important in such cases to determine which arcs

require unbounded memory and which do not, so that as much allocation of resources as

possible can be performed at"compile time." Given this requirement that all actors obey

dataflow semantics, it appears that the SIGNAL model does not satisfy the requirement,

since the actor executions are so tightly synchronized that they correspond to dataflow

systems in which no more than one token is permitted on any arc. Nevertheless, the SIG

NAL clock calculus has strongly influenced our work.

There is research on combining the reactive model used in SIGNAL and LUSTRE

57

(together with its parent language ESTEREL), in which components are tightly coupled

and synchronous, with acommunicating sequential process approach more reminiscent of

dataflow, to form ahybrid model called "communicating reactive processes" [Ber93]. The

model relies on acareful separation ofthe synchronous and asynchronous layers, so that it

is a hybrid model, not a unification.

The next chapter presents amodel that extends regular dataflow directly, creating a

single model that encompasses both regular dataflow actors and dynamic actors such as

SWITCH and SELECT.

3

THE TOKEN FLOW MODEL

Everything should be as simple as possible, butnotsimpler.

— Albert Einstein

59

In the previous chapter, we introduced Lee and Messerschmitt's synchronous

dataflow model, and demonstrated itsuse in compile-time scheduling of regular dataflow

graphs. As this model does not support the use of dataflow actors with data-dependent

execution, we examined several techniques that, in some sense, extend this model (or a

related model) to support data-dependent execution while still permitting some sort of

formal analysis.

We now present a model, the token flow model, that extends regular dataflow

graphs direcdy, modeling actors with token flow that is not known at compile time in

much the same way as regular dataflow actors are modeled. Regular (or synchronous,

using the terminology of [Lee87b]) actors are simply a special case of a more general

actor, which we will call a Boolean-controlled dataflow (BDF) actor. Conditions for

60

graphs consisting of such actors to possess well-defined cycles, a bounded-length periodic

schedule, and a schedule that requires bounded memory will be discussed.

The ideas in this chapterwere first presented in [Lee91b] and further elaborated in

[Buc92] and [Buc93a].

3.1. DEFINITION OF THE MODEL

A regular dataflow actor has the property that the number of tokens produced on,

or consumed from each arc is fixed and known at "compile time." Boolean-controlled

dataflow (BDF) actors contain the regular dataflow actors as a subset, but in addition, the

numberof tokens produced or consumed on an arc is permitted to be a two-valued func

tion of the value of a control token. The behavior of a conditional input for an actor (an

inputthatconsumes different numbers of tokens depending on the control token) is deter

mined by a second input for the same actor; this second input always consumes exactly

one token, the control token, oneach execution. The behavior of a conditional output for

an actor may bedetermined either by an input (as for conditional inputs) or by an output;

in the latter case, the output produces a single control token whose value can be used to

determine the number of tokens produced by the conditional output. Given this definition

for actors, the Kahn condition [Kah74] is satisfied, sothat all data streams produced by the

execution of BDF actors are determinate, regardless of the order in which the actors are

executed (as long as constraints imposed by the availability of tokens are satisfied). Fur

thermore, a scheduler need consider onlythenumber of tokens on an arc, plus thevalues

of any tokens on control arcs, to schedule the execution of the actors, whether at compile

time or run time. Because the Kahn condition assures us that all valid executions of the

graph produce the same streams, we can be assured that the particular evaluation order

chosen by the scheduler will not matter.

To decrease the wordiness in what follows, we will use the term port to describe

either an input or an output of a dataflow actor, and also we will use the shorter phrase

"tokens transferred byaport" instead of"tokens consumed byan input or produced by an

61

output". Thus we can say that a control token transferred by a control port controls the

number of tokens transferred by a conditional port. We use "port" rather than "arc"

because a port is only one end of an arc.

3.1.1 Solving the Balance Equations for BDF Graphs

In order to extend the analysis techniques usedin regular dataflow to handle BDF

actors with their conditional ports, we associate symbolic expressions with conditional

ports to express the dependency of the number of tokens transferred on the associated con

trol port. In figure 3.1 we see the SWITCH and SELECT actors with their associated

annotations. One possible interpretation of this figure is as follows: given a sequence of n

actor executions of the SWITCH actor in which the proportion of TRUE Boolean tokens

consumed bythe control port is pt, the number of tokens produced on the TRUE output of

the SWITCH actor is np(and the number of tokens produced on the FALSE output is

n(1 -pf). Other interpretations are possible: if the Boolean input stream can be modeled

as astochastic process, then p, might be considered to be the probability that arandomly

selected token from the input stream is TRUE (assuming that this is well-defined), in

which case the annotations indicate the expected number of tokens transferred by the asso

ciated ports for a single actor execution.

Several rigorous interpretations ofthe piare possible. The most general interpreta

tion is that the pt are simply formal placeholders for unknown quantities that determine

i-Pl

Figure 3.1 Dynamic dataflow actors annotated with the expected number of tokens pro
duced or consumed per firing as a function of the proportion of Boolean tokens that
are TRUE.

62

the numbers of tokens that are produced and consumed. For a probabilistic formulation,

we can define pt as the probability that atoken selected from the stream bi is TRUE pro

vided that the Boolean stream is stationary in the mean, so that it does not matter how the

sampling is performed. This condition is too restrictive for most dataflow graphs. If the

streamis not stationary in the mean, but the long-term average fraction ofTRUE tokens in

the stream exists asalimit, thisdefinition couldbe usedinstead, but this assumption is still

too restrictive for our purposes. However, we will find that for most practical dataflow

graphs, we may define pi as the proportion of tokens that are TRUE in a well-defined

sequence of actor firings, called acomplete cycle. As it turns out, we are atnopoint depen

denton knowing exact values for the pt; all our manipulations will use it symbolically.

We cannow use the annotated dynamic actors to analyze BDFgraphs in much the

same way that regular dataflow graphs were modelledin section 2.2 (and also [Lee87b]).

We maycombine the terms for thenumbers of tokens transferred by each port intoa topol

ogy matrix, and solve for the repetitions vector to determine how often the actors should

be fired. As a first example, we will apply thisanalysis technique to the traditional if-then-

else dataflow schema, shown in figure 3.2, in which we have assigned numbers to the

actors and the arcs. The Boolean stream bx controls the SWITCH actor, and b2 controls

the SELECT actor. We obtain the following topology matrix:

Figure 3.2 An if-then else dataflow graph. The numbers next to thearcs identify them
and do not reflect the number of tokens transferred as in other figures; all actors
other than SWITCH and SELECTare homogeneous.

r(p) =

1-1 0 0 0 0 0

0 (1-Pi) -10 0 0 0

0 0 10 (p2-l) 0 0
0 px 0-1 0 0 0

0 0 0 1 -p2 0 0
0 0 0 0 1 -10

0-1 0 0 0 0 1

0 0 0 0 -1 0 1

The topology matrix is not constant as it was for regular dataflow actors, but is

instead afunction ofp, the vector consisting ofall thep variables (px and p2 in this case).

We wish to find an f (p) such that

T(p)r(p) =o (3-2)

It turns out, for this example, that there are nontrivial solutions only if px =p2

(which fortunately is true trivially since both Boolean streams are copies of the same

stream) and the solution vector has the form

tip) =*[ll (l-PiJPilll]7' (3-3)
where k is arbitrary. Note that the existence of this solution does not depend on the value

of pj. It can beinterpreted tomean that, onaverage, for every firing of actor 1, actor 3 will

fire (1 -px) times and actor 4will fire px times, which agrees with intuition. Since p2 is

not, ingeneral, an integer, it appears tomake no sense to find the smallest r (p) with inte

ger values. Later we will see how to re-interpret repetition vectors so that the concept ofa

smallest integer solution again makes sense, but for now wecan use r (p) to find relative

firing rates.

3.12 Strong and Weak Consistency

Because T(p) is now a function of p, the existence of nontrivial solutions may

also depend on p. In [Lee91b], the term strongly consistent is introduced to describe sys

tems such as figure 3.2 in which nontrivial solutions exist regardless of the value of p.

63

(3-1)

64

Systems for which solutions exist only for particular values of p arecalled weakly consis

tent. The system we justanalyzed would be weakly consistent if bx and b2 were different

streams, for example, because of theextra requirement that px and p2 mustbe equal.

Let's consider a weakly consistent system that is analogous to the synchronous

language system

g := x when x>0; y = x + g

described in section 1.4.3. As we saw, this system is inconsistent unless x is always

greater than zero, and techniques based on the clock calculus of LUSTRE and SIGNAL

can detect this. We can model an analogous system using BDF actors as well, as shown in

figure 3.3. In the figure, the stream x is produced by actor 1 and the stream y is produced

by actor 3 (the addition operator) and consumed by actor 4. The corresponding topology

matrix is

1-10 0 0

10-100

0 p -1 0 0
0 0 1-10

10 0 0-1

0-1001

(3-4)

andwe find that a nontrivial solutionexists only if p is 1, as expected. The same result is

obtained in SIGNAL since the stream x > 0 is defined atexactly the same points as the

stream x, so the complications from undefined values do not occur.

Figure 3.3 An example of a weakly consistent dataflow graph. The FALSE output of
the SWITCH is not used so we ignore it.

65

3.13 Incomplete Information and Weak Consistency

When we solved the balance equations for the if-then-else graph of figure 3.2, we

initially treated the Boolean control streams for the SWITCH and SELECT actors as two

separate streams bx and b2, and found thata condition for strong consistency was thatthe

two streams haveequal values for px and p2. In thisexample thisis true trivially, sincethe

two streams are identical, but it is easy to imagine cases where streams are identical but

the compiler is unable to determine this, because this identity depends on mathematical

properties of the actors that the compiler is unaware of or because the required analysis is

toocomplex. In fact, since BDF graphs are Turing-equivalent, the problem of determining

whether two Boolean streams in an arbitrary BDF graph are identical is undecidable.1 As

a result, a compiler that uses the techniques of sections 3.1.1 and 3.1.2 will sometimes

falsely report that aBDF graph is weakly consistent, when it is in fact strongly consistent.

In most cases, the compiler will be able to report a specific reason for the weak

consistency or inconsistency: in our example above, thereason might take the form "Can

not show that px = p2." One possibility for proceeding is to permit the user to addasser

tions to the graph that would explicitly provide the missing information. It would then be

possible to generate code for checking such assertions at run time if desired.

While incomplete information can cause a false report of inconsistency or weak

consistency, the reverse is not possible: if a BDF graph is strongly consistent, then addi

tional information about the properties and relationships between the actors and the data

streams they compute can nevercause inconsistency. The effect of the additional informa

tion is, at most, a restriction of the possibilities for the vectorp to a subset of SR", where n

is the number of Boolean streams. Since strong consistency implies consistency for any

point in $in, restriction to asubset does not alter strong consistency.

1.TheTuring-equivalency of BDF graphs and related propositions are proved in section 3.4.4,
assuming appropriateprimitives.

66

3.1.4 The Limitations of Strong Consistency

If we interpret the pi as long-term average rates, then strong consistency permits

us to assert that the rates are in balance regardless of the precise proportions of Boolean

tokens that are TRUE or FALSE. The analogous condition for regular dataflow graphs

(that there arenontrivial solutions for the balance equations) permitus to assert that, pro

vided that deadlock does not occur, we may compute a bounded-length schedule that exe

cutes the graph continuously in bounded memory. The fact that the schedule has bounded-

length permitsus to prove thata hardreal-time deadline can be met, given execution times

for each of the actors. For BDF graphs, however, strong consistency is not enough to

assure either a bounded length schedule or bounded memory, because stronglyconsistent

BDF graphsareeasily constructed that have neitherproperty.

Consider the modified if-then-else construct in figure 3.4. This example was dis

cussed by Gao et al. [Gao92]. The only difference between this version and the one that

we haveseen before is that actors 3 and 4 now consume two tokens from their inputarcs,

and produce two tokens on their output arcs, on each execution. The result is to modify

four elements in the topology matrix. The modified topology matrix is as follows:

H 11II...

Figure 3.4 Modified if-then-else construct [Gao92]. Oblique numbers identify arcs;
roman numbers next to ports indicate those inputs and outputs that transfer more
than one token.

r(p) =

1-1 0 0 0 0 0

0 (l-p^ -2 0 0 0 0

0 2 0 (p2-l) 0 0
0-2 0 0 0

0 2 -p2 0 0
0 0 1 -10

0 0 0 0 1

0 0 -1 0 1

Pi
0

0

-1

0

67

(3-5)

Solving the modified balance equations gives

HP) =*[2,2, (l-p1),p1,2,2,2]r (3-6)

Since the existence of this solution does not depend on the value of p2, again we

have a strongly consistent system. However, if all data communication on arcs is required

to be FIFO, difficulties emerge. Consider, as did Gao et al, what happens when actor 7

produces a single FALSE token followed by a long string of TRUE tokens, as shown in

the figure. Since the control arc of the SELECT actor is FIFO, the initial FALSE token

will"block up"itsinput. Thesingle token onarc 2will notbeenough to fire actor 3. Actor

4 will be able to fire any number of times, but the SELECT gate will be unable to fire,

since with aFALSE token on its control port it requires atoken on arc 3,corresponding to

itsFALSE input. Whenever actor 7 produces another FALSE token, the SELECT gate will

become "unblocked" because actor 3will beable to fire. The accumulated queue ofTRUE

tokens will then matchup with the accumulated queue of tokens on arcs 4 and 5, and exe

cution can continue. Since the run of TRUE tokens may be of any length, either

unbounded memory must be provided for or the system will deadlock.

If this system is executed on a tagged-token dataflow machine, however,

unbounded memory is notrequired, sincewe may now execute actors out of order as soon

as two tokens that aredestined to be passed together to the same actor are available. In this

case, we could execute the SELECT actor out of order, pairing the TRUE tokens in the

queue with the data tokens on arc 5. This is permissible since there are nodata dependen-

68

cies between successive executions of actor 6, the sink actor. If, however, a self-loop with

an initialtoken were added to actor 6, we would then be forced to execute it sequentially,

which would again require unbounded memory.

For compile-time scheduling of BDF graphs, it would be permissible to do the

same kind of rearrangement of actor executions at compile time that canbe accomplished

at run time by token matching. However, in the remainder of this discussion we will

assume that FIFO execution is required.

3.2. ANALYSIS OF COMPLETE CYCLES OF BDF GRAPHS

We now introduce some terminology to permit us to analyzethe properties of BDF

graphs in more detail.

The state of a BDF graph consists of all information about the graph that affects

the eligibility of actors for execution. For control arcs, we must know the number of

tokens present, together with their values (TRUE or FALSE) and the order of their values.

Forother arcs, only the number of tokens is significant. Thus we might encode a state of

the system in figure 3.4 as (0, 1, 0, 1, 4, 0, 0, TFFFF}. This conceptis analogous to the

concept of a marking for Petri nets.

A complete cycle of a BDF graph consists of a sequence of actor executions that

returns the graph to its originalstate.Clearly, a null sequenceof actorexecutions is a com

pletecycle under this definition, though trivial. We define a minimal complete cycle to be a

non-null complete cyclewith no non-empty subsequence that is also acomplete cycle.

For any dataflow graph, we can ask the following questions:

• Do complete cycles even exist? If flow rates are inconsistent, it is possible thatno

sequence of actor executions will return thegraph to its original state.

• Does the graph deadlock?

• Is the number of actor executions required for a complete cycle bounded, regard

less of the values of any Boolean tokens producedor consumed? This condition is

69

useful when there is a hard real-time deadline for execution of the graph.

• Finally, can the graph be executed with bounded memory? If so, memory can be

statically allocated.

3.2.1 Interpretation of the Balance Equations for BDF Graphs

For regular dataflow graphs, we determine the properties of complete cycles by

solving the balance equations. Since Tr = 6, the result of executing actors in such away

that each actor i is executed rt times is that the system returns to its original state. If there

is only atrivial solution to the balance equations, weconclude that no minimal complete

cycles exist. If the balance equations have nontrivial solutions, then either the graph dead

locks, orschedules that are bounded both in length and in memory requirements exist and

are easily generated [Lee87b].

We cannot perform the corresponding analysis for BDF graphs with dynamic

actors given what wehave done so far since the repetition vectors are not integral given

theinterpretation of the p(as probabilities or long-term averages. Accordingly, we revise

our interpretation: we consider them to be the fraction of Boolean tokens on the stream b •

produced during a complete cycle that are TRUE (assuming for the time being that com

plete cycles exist). Since the complete cycle must restore the graph toitsoriginal state, the

number of Boolean tokens of each type that are produced on agiven stream is equal tothe

number consumed. Since tokens are discrete, this means that

U
Pi= „> (3-7)

where ns is the total number ofcontrol tokens produced in the stream bi during the com

plete cycle, and f,- is the total number of these nt tokens that are TRUE. We may then ana

lyze the properties of complete cycles as follows: solve thebalance equations as discussed

previously whenwe considered the px to be probabilities oraverages. Then substitute for

70

the Pi using equation (3-7) above,andthenconstrain the numberof actor executions,con

trol tokens, and TRUE control tokens to be integral.

Let us reconsider the if-then-else and modified if-then-else examples discussed

previously. When solving the balance equations for figure 3.2, we obtained the solution

HP) =*[l 1(l-Pi)Pil ll]r (3-8)
One Boolean token is produced for each execution of actor 7, thus nx = k. So,

substituting equation (3-7) for pl9 dropping the subscript of 1 (since there is only one

Boolean stream), and substitutingn for k we have

r(p) = [nn (n-t) t nnw] (3-9)

We still have an integer solution if n is 1, in which case t is either zero or 1. The

minimal complete cycle therefore has the repetition vector

T

[l 1 (1-r) tl 1l] (3-10)

where the variable t is 1 if a TRUE token is produced by the execution of actor 7,

and 0 if a FALSE token is produced. This solution is in accord with intuition.

Consider the modified if-then-else example in figure 3.4, in which the condition

ally executed actors produce and consume two tokens per execution. We obtained the fol

lowing solution for the repetition vector:

HP) = k[2,2, (l-Pl),pv2,2,2]T (3-11)

Substituting using equation (3-7) for px as before, noting that this time 2k = n

where n is the number of Boolean tokens in the cycle, we obtain

r(P) = ,n-t. t
nn (-2~) 2nnn (3-12)

We now seek to find the smallest integer solution for this equation. We notice two

constraints for such a solution to exist: thenumber of TRUE tokens produced in thecycle

71

Figure 3.5 An if-then-else construct modified to have an initial FALSE token on the con
trol arc for the SELECT actor.

must be even, and also the number of FALSE tokens produced in the cycle, n-t, must be

even. Given these constraints, and given that we have no control over the sequence of

Boolean outcomes, there is no limit to the length of the minimal cycle. In particular, if the

first Boolean token is FALSE andthen a large even number ofTRUE tokens are produced,

the cycle will not end until another FALSE token is produced.

Finally, we consider a third example, again obtained by modifying the basic if-

then-else construct. In our original discussion, we treated the stream of control tokens for

the SWITCH and the SELECT actors as two separate Boolean streams, and showed that

the graph was strongly consistent if the corresponding quantities px and p2 are equal. We

now modify the graph by adding an initial token to the control arc for the SELECT that

has value FALSE, as shown in figure 3.5. Now the streams are no longer identical; b2 isa

delayed version of bx. Initial tokens do not affect the topology matrix for a dataflow

graph, as it depends only on the number of tokens produced or consumed by the actors.

With a probabilistic or long-term-average interpretation, we can neglect the initial tran

sient and still claim that this graph is strongly consistent. When computing the properties

of complete cycles, however, we require that the graph be returned to its initial state

(including the FALSE token on arc 8) and also that the proportion of TRUE tokens in

streams bx and b2 be equal. Both conditions are met if and only if the last token produced

by actor 7 in the cycle has the value FALSE. By imposing this condition, we can set px

72

and p2 equal and we obtain the same solution as for the if-then-else, with one difference:

we havethe extra constraint thatthere must be a FALSE token in the stream. Equation (3-

9) is still valid. However, since every complete cycle must now contain a FALSE token,

we may not reduce n, the numberof executions of actor 7, to 1, so equation (3-10) is not

valid. Instead, we have as a minimum that n -1 = 1 , and thus

T
r(P) = \nn Itnnn] (3-13)

where n = 1 +1.

As we shall see, proofs like the above that minimal cycles have unbounded length

are not sufficient in themselves to prove thatunbounded memory is required to execute the

graph. At this point, we have merely demonstrated that unbounded time is required to

return the system to its original state(assuming eachactor execution requires some time).

Proofs that the graphs given in figure 3.4 and figure 3.5 require unbounded memory

require additional techniques and aregiven in section 3.4.3.

3.2.2 Conditions for Bounded Cycle Length

If a minimal complete cycleexists at all, it must satisfy the balance equations and

therefore the analysis of the previous section constrains the properties of any solutions. It

is possible, however, that even though bounded solutions exist for the balance equations,

thatno schedule, bounded orotherwise, exists thatcontinually executes thegraph, because

the graph deadlocks. Therefore, to complete the proofthat a graph has a bounded-length

schedule, we must also demonstrate that deadlock does not occur. Formally, we have the

following:

Theorem: a BDF graph has bounded cycle length if and only if two conditions

hold: First, there must be a bounded integer solution to the balanceequations for a com

plete cycle for any possible sequence of Boolean tokens produced in that cycle. Second, it

must be possible, for each possible sequence of Boolean tokens produced, to construct a

corresponding acyclic precedence graph (APG) for the BDF graph given the constraint

73

thatBoolean tokenswith thoseparticular values are produced, usingthe techniques of sec

tion 2.2.2.

In effect, we prove that the graph has bounded cycle length by construction: we

first determine the exact number of times each actor is to be executed, and then determine

that precedence constraints do not prevent us from executing those actors the required

number of times. By specifying the exact values of the emitted Boolean tokens, we trans

form aBDF graph into aregular dataflow graph1 (since, given the identity ofall control

tokens the flow of alltokens is completely determined), and we may then useregular data

flow graph techniques for constructing schedules.

Consider the if-then-else construct of figure 3.2. We have determined that there are

two possible sequences of Boolean tokens that can be produced in a minimal complete

cycle: a single TRUE token, or a single FALSE token. We can construct an APG for each

of those cases, given the repetition vector from equation (3-10). These precedence graphs

appear in figure 3.6.

In most cases, there is a large amount of redundancy between the precedence

graphs produced given different assumptions about what Boolean tokens are produced.

We therefore prefer to use a more compact structure called an annotated acyclic prece

dence graph (AAPG) to represent the full set of possible precedence graphs. As in the

APG, each node corresponds to a single execution of an actor in the original graph; the

diiference is that nodes may be annotated with the condition under which they fire and

arcs are labelled with the condition under which they move data. Nodes and arcs appear

ing in all the possible APGs have noannotations; nodes and arcs appearing in only some

of the APGs (such as actors 3 and 4 in figure 3.6and the arcs connected to them) receive

annotations indicating the Boolean tokenvalues they depend on.

1. There are cases where this isnotstrictly true; there exist graphs that have complete cycles in
whichthe sameactor is fired twice,oncewithaTRUEcontrol tokenand oncewith aFALSEcon
trol token, sothat thenumber of tokens transferred onitsarcs isnotconstant. Itis,however, known
at"compile time"so that it is stillpossible toconstruct compile-time schedules.

74

Figure 3.6 Acyclic precedence graphs for the if-then-else construct, assuming the
identities of Boolean tokens produced are known. The upper graph corresponds to
the production of a FALSE token, the lowergraph to a TRUE token.

The AAPG can be constructed directly, rather than by combining APGs for each

outcome. However, there is nothing new theoretically in this direct construction, other

than bookkeeping; it is conceptually equivalent to the construction of all of the possible

APGs at once.

The AAPG is a compact structure that can be taken to represent one precedence

graph for each possible outcome for the generation of any Boolean tokens. As the struc

ture corresponding to each possible outcome is bounded, we have by construction a proof

that a bounded-length schedule for the graph exists. Thus successful construction of the

AAPG is sufficient for a bounded-length schedule. It is also necessary, for if it is not pos

sible to construct the AAPG then the schedule is undefined for at least some Boolean out

comes.

3.23 Graphs With Data-Dependent Iteration

If a graph has a bounded-length schedule, it is guaranteed that it can be scheduled

to require bounded memory, because the buffer sizes return to their initial state at the end

of each cycle, the number of actor firings in the cycle is bounded, and the number of

tokens generated by the firing of an actor is bounded. However, the reverse is not true;

75

ttKtvMMnmmttmttsttm

Figure 3.7 Adataflow graph that does not have a bounded-length schedule. In this
graph, actors 1, 2, and 4 are homogenous, and actor 5 requires two tokens per
execution. The grey curve denotes a possible clustering.

dataflow graphs that require bounded memory may nevertheless have cycles that are

unbounded in length. Graphs corresponding to data-dependent iteration, where the num

ber of times an actor is executed depends on the data itself and cannot be bounded at com

pile time, fall into this category.

Consider thegraph in figure 3.7. It would correspond to a typeof if-then-else con

struct except for one feature: actor 5 requires two tokens per execution. Letting n be the

number of Boolean tokens per cycleand letting t bethenumber of TRUEtokens as before,

we find by inspection that the solution vector for thegraph is

nnnt
(n-t)

(3-14)

Investigating the properties of minimum integer solutions of this vector, we find

that acomplete cycle requires that the number ofFALSE tokens generated in the cycle be

even. If a TRUE token is generated first, we can immediately complete the cycle; how

ever, if a FALSE token is generated, the cycle does not complete until we have a second

FALSE token. At this point, it looks very much like the example from [Gao92] in figure

3.4. There is an important difference, however.

Consider the subsystem consisting of the actors enclosed by the grey curve in fig

ure 3.7. Letus assume that we are given the problem of computing aseparate schedule for

this subsystem, excluding actor 5. Our rule for constructing schedules for disconnected

76

subsystems is this: we will assume that any number of tokens are available from any dis

connected input ports, and thatwe can write any numberof tokens to disconnected output

ports. Our desire is that the subsystem as a whole, with its internal schedule, will resemble

a BDF actor from the outside . Given this rule we have the following repetition vector for

the subsystem: [ill/). The corresponding schedule might, for instance, execute actor

1, then 2, then 3, and then optionally 4 if a TRUE token was produced.

Notice that the schedulehas bounded length, and therefore has bounded memory.

If, however, we try to treat the cluster as a whole as a single actor, we have a difficulty: if

the above schedule is executed, the cluster may ormay not produce a token on its output

(the input to actor5). Considerthe following solution: let us repeatedly execute the sched

ule until a token is produced on the FALSE output of the SWITCH actor. We have now

enclosed the schedule in a do-while loop. The resulting looped scheduleproduces a cluster

that, when executed, always emits one token; it is a homogeneous dataflow actor. We can

thencomputea new schedule at the top level that is also bounded in length. The resulting

schedule, assuming a sequential processor, might look like the following (written in a C-

like pseudocode):

repeat 2 times {

do {

actor 1;

b = actor 2;

actor 3;

if (b) actor 4;

} while (b);

};

actor 5;

We notice the following: if we can divide the dataflow graph into clusters in such a way

1.Toactually achieve this desire (that clusters resemble aBDF actor from the outside) requires
some additional conditions that will be discussed in detail in section 3.3.3.

77

that each cluster has a bounded-length schedule, and the top-level graph also has a

bounded-length schedule, and we permit the introduction of do-while loops of the type

shown here, it then follows that the graph can be scheduled in bounded memory.

3.2.4 Proof of Bounded Memory by Use of a Preamble

Another technique that may be used to prove that some graphs have a bounded-

memory schedule is by use of a preamble. This technique is particularly useful for graphs

with initial Boolean tokens on control arcs. In many cases, if another state is reachable

from the initial state by a bounded number of actor executions, and the new state has no

Boolean tokens, it is possible to show that all minimal cycles starting from the new state

are bounded in length, so that the graph can be scheduled in boundedmemory. Consider

the graph in figure 3.8. This graph implements a do-while loop. Since there is an initial

FALSE token on the control arc for theSELECT actor we know immediately thatthe min

imal cycle length is unbounded; all cycles must end with a FALSE token on the Boolean

stream produced by actor 3 to replace this token, but there is no limit to the number of con

secutive TRUE tokens that may be produced. As we shall see, it is possible to apply a

clustering technique to this graph, although another technique we have not yet discussed

(state enumeration) is required as well. However, there is another possibility. Consider

what happens if actor 1 is executed, followed by executing actor 2 (the SELECT actor).

Figure3.8 Adata-dependent iteration construct corresponding to a do-while. Given an
input x, actor 3 produces thedataoutput f(x) andthe Boolean output b(x). The loop
repeatedly replaces x by f(x) until b(x) is false.

78

The resulting system is shown below in figure 3.9. There is no longer a skew between the

Boolean streams bx and b2, and therefore no longer a constraint that any Boolean

sequencemust end with a particular value. Letting n and t have theirusual interpretations,

we find that cycles have the repetition vector \(n-t) nn n (n-tj] .As there are no

other constraints, for minimal cycles we have n = 1 and t is 0 or 1. We have bounded

length cycles and therefore bounded memory. The following pseudocode represents a

schedule that executes this graph"forever" using a preamble:

1; SELECT;

do forever {

3; SWITCH;

if (control token from 3 is FALSE) { 5; 1; }

SELECT;

}

What is the relationship between the bounded-length cycles of figure 3.9 and the

unbounded-length cycles of figure 3.8? We notice that minimal cycles for figure 3.9 con

tain only a single productionand a single consumption of a Boolean token, while niinimal

cycles for figure 3.8 produce and consume any number of TRUE tokens and a single

FALSEtoken.Therefore therelation between the two notions of cyclescorresponds to the

addition of a do-while loop. Repetition of a bounded-lengthschedule thatreturns the num-

t3
ID

1

a
1 i

r^
X

i

*n
Figure 3.9 The system of figure 3.8, after executing actors 1 and 2 once each. The

new system has a bounded-length schedule.

79

ber of tokens to the same value each time clearly keeps memory bounded, no matter how

many times the schedule is repeated.

For the preamble approach described to be feasible, three conditions must hold:

there must be initial Boolean tokens in the graph, and it must be possible to execute a

boundednumberof the actors in suchaway as to eliminate thesetokens (one implementa

tion we have experimented with simulates the dynamic execution of the graph with all

actors that produce Boolean tokens disabled, until either deadlock occurs or all Boolean

tokens areeliminated). Finally, the resulting graph must have abounded length schedule.

3.3. AUTOMATIC CLUSTERING OF DATAFLOW GRAPHS

As we have shown, oneway to demonstrate that a BDFgraph canbe scheduled in

bounded memory is to cluster it and show that each of the clusters has a bounded-length

schedule; where necessary, subclusters are then executed repeatedly to obtain the full

schedule, which then contains data-dependent iteration. In order to make this approach

feasible, we require algorithms to perform the clustering.

The structure obtained by performing this clustering resembles the hierarchical

"well-behaved dataflow graphs" of Gao et al. [Gao92]. In Gao's work, it is demonstrated

that certain standard constructs corresponding toconditionals and data dependent iteration

are "well-behaved" in the sense that, if the construct is treated as a cluster, it can be

regarded from the outside as a single (coarse grained and composite) regular dataflow

actor. A style of programming is advocated inwhich graphs are built up hierarchically out

of these constructs. Given a graph constructed with this technique, our clustering algo

rithm will find the constructs, and in that sense it is precisely the reverse of Gao's

approach. Given an unstructured dataflow graph, we cluster it to find structure within it.

The technique is partially applicable even to graphs that cannot be scheduled with

bounded memory, since even such graphs will, as arule, contain many arcs and subgraphs

that can be scheduled to usebounded memory, permitting memory to be allocated atcom-

80

pile time for most arcs.

33.1 Previous Research on Clustering of Dataflow Graphs

There have been three principal motivations for clustering of dataflow graphs.

First, to improve performance on dataflow machines, it has been found useful to collect

and group those actors that can be executed sequentially and treat the combined cluster as

a unit; such units are sometimes referred to as threads because of their resemblance to

communicating sequential processes (the threads can have state because of internal tokens

within the cluster); the term grains is used in [Gra90]. The need for synchronization is

thereby reduced. The compiler is responsible for rearranging and grouping the dataflow

graph intoclusters to accomplish this. As a rule, code for a thread is generated atcompile

time, and thedataflow machine dynamically selects which thread to execute depending on

the availability of tokens.This approach has beenusedin theEpsilon-2 [Gra90] andEM-4

[Sat92] hybrid dataflow architectures, andin the Monsoon project [Tra91].

Second, clustering is used to partition dataflow graphs for scheduling onmultiple

processors when static assignment is used (see section 2.1). In many ways this resembles

the process for collecting actors intothreads for dynamic execution by a hybrid token flow

machine; in either case we can consider the resulting clusters to be communicating

sequential processes. A comparison of several techniques for solving this clustering prob

lem can be found in [Ger92]; a more thorough treatment of several specific techniques

appears in [Sih91] along with many references to the literature.

Finally, clustering has been used to determine the loop structure of regular data

flow graphs for the purpose of generating compact code for a single sequential processor.

This work has taken place primarily in the context of research on the Gabriel [Bie90] and

Ptolemy [Buc91] systems with the goal of improving code generation for programmable

DSP devices. Some of this work is described in [How90] and [Bha93a]; related work with

a different optimality criterion appears in [Rit93]. The problem is analyzed in consider

ably more detail in [Bha93b] and necessary and sufficient conditions are given for aregu-

81

Figure 3.10 Agraph that has a nicely nested singleappearance schedule,

lar dataflow graph to possess a completely clustered form called a single appearance

schedule.Single appearance schedules are defined and discussed in more detail in the next

section.

33.2 Generating Looped Schedules for Regular Dataflow Graphs

The techniques weshall develop forclustering BDF graphs areformed byextend

ing solutions to the corresponding problem for regular dataflow graphs. We will therefore

discuss procedures for producing looped schedules forregular dataflow graphs in detail.

Tomotivate theproblem, consider thefollowing simple dataflow graph:

<D
Assume thatwe wish to schedule this graph toexecute on a single sequential processor. If

our criterion is to minimize the memory needed for the data buffer betweenthe actors, we

might choose the schedule ABABB, which requires a buffer capable of storing four data

tokens. An alternative that normally leads to more compact code is to choose the schedule

(2A),(3B) instead, although now the buffer requires six tokens. This form of schedule,

with thenumber of repetitions preceding each sub-schedule, is known as a looped sched

ule, if thelooped schedule contains only one appearance ofeach actor, it is called a single

appearance schedule. For thegraph in figure 3.10, onepossible single appearance sched

ule is A, 10(B,(10C),D),E.

A single appearance schedule (if such a schedule exists) is the goal of the looped

1. It appears thatwehaveusedtheterm "looped schedule" in a different sense in section 3.2.3;
however, wewillsoonproduce aunified framework thatcombines integer repetition factors and
do-while loops into one unifying structure.

82

schedule generation problem. There are regular dataflow graphs that do not have single

appearance schedules; they inevitably contain feedback loops of a special form called a

tightly interdependent component in [Bha93a]. Consider, for example, the graph in figure

3.11. For this graph, which has one initial token on each arc, we must execute ABA.

We now discuss an algorithm for generating looped schedules that differs signifi-

cantiy from either How's [How90] or Bhattacharyya's [Bha93a],[Bha93b] algorithm. This

algorithmis designed to be fast and to be generalizableto BDF graphs; there are, however,

some graphs that can be looped successfully by Bhattacharyya's algorithm that are not

handled successfully by this approach.

For the purposes of this discussion, we say that two actors are adjacent if there is

an arc that connects them. With respect to this arc, we call the actor that produces tokens

on the arc the source actor and the actor that consumes tokens from the arc the destination

actor. Two adjacent actors have the same repetition rate if the number of tokens the source

actor produces on an arc is always equal to the number of tokens the destination actor con

sumes from the arc. Finally, we will call an arc a feedforward arc if it is not part of a

directed cycle of arcs, or equivalentiy if there is no directed path of arcs from the destina

tionactor to the source actor. An arc that is not a feedforward arc is called &feedback arc.

We will assume that the graph is connected and possesses an acyclic precedence

graph(APG), implying that thereare nontrivial solutions to thebalance equations and that

deadlockdoes not occur. If this is true, then we can assure that certain problematicsitua

tions do not occur — for example, we will never have a pair of adjacent actors that are

Figure 3.11 Asimple graph that lacks a single appearance schedule.

1.Accordingly, theimplementation inPtolemy [Buc93], [Pin93] uses this algorithm asafirst pass,
applying themore general (butslower) algorithm of [Bha93a] asa second pass if thegraph is not
completely clustered.

83

&^e

Figure 3.12 This example graph is used to help explain the loop pass,

"thesame repetition rate" with respect to one arc that connects them, but notwith respect

to another connecting arc (this would lead to inconsistency). We would also never have

arcs connecting the actors in both directions, with no initial tokens on any arc (this would

bea delay-free loop and would cause a deadlock). It is possible todrop these assumptions

and detect these conditions aserrors with slight modifications to thealgorithm; these mod

ifications insert extra checks before apair ofactors iscombined into a single cluster totest

for deadlock or inconsistency.

Our algorithm consists of two alternating phases: a merge pass and a loop pass.

The merge pass attempts, as much as possible, to combine adjacent actors that have the

samerepetition rate intoclusters. We must assure that no merge operation results in dead

lock. In figure 3.12, for example, we cannot merge A and B into one cluster because the

new cluster and actor C would then form a delay-free loop.

The loop pass may transform a cluster by adding a loop factor, corresponding to

repetition of thatclustersomenumber of times. These loop factors arechosen to cause the

cluster to match the repetition rate of one or more adjacent clusters. The loop pass must

also be designed to avoid deadlock, as we shall see. Loop passes and merge passes are

alternated until no more transformations on thegraphare possible.

The merge pass will combine anactor with an adjacent actor under the following

conditions: if the actors are ofthe same repetition rate and are connected by an arc that has

no initial tokens, the actors are always merged unless there is a directed path that starts at

thesource actor, passes through at least one actor that is not in the pairof candidates to be

merged, and ends in the destination actor. Given the graph infigure 3.12, Aand Bmay not

84

be merged because of the path A, C, B. However, A and C may be merged, and the result

ing cluster may be merged with B. If the only arc (orarcs)connecting the actorshas one or

more initial tokens, we may complete the merge given the above conditions (no indirect

path) only if the connecting arcis a feedforward arc. Finally, if there arearcs of both kinds

(with and without initial tokens) connecting the actors, we may ignore the presence of the

arcs with initial tokens anduse the arcs without initial tokens to complete the merge.

The loop pass introduces looping for the purpose of matching rates of adjacent

clusters. If a loop factor of n is applied to a cluster, then each of its ports transfers n times

as many tokens per cluster execution. Unrestricted looping may also introduce deadlock,

for example, adding a loop factor of 2 to actor A in figure 3.11 can cause deadlock. We

therefore must avoidthis. It is also desirable for thegenerated loops to nest; in figure 3.10

we would not want to begin by looping actor B 10 times to match the rate of actor A,

because we would then not wind up with A,10(B,(10C),D),E but rather something like

A,(10B),(100C),(10D),E, and the latter schedule requires considerably more memory to

store tokens on arcs.

The loop pass has two phases: the integral loop pass (so called because it only

applies to integral rate changes, corresponding to arcs where the number of tokens trans

ferred by oneneighbor evenly divides thenumber of tokens transferred by another neigh

bor) and the nonintegral loop pass (which will attempt to add loop structure to more

general graphs). To understand why we separate these cases, consider the following por

tion of a dataflow graph, where A and B are actors or clusters:

If M evenly divides N, wecould add aloop around actor A to permit alater merge

1. In[Rit93], the single appearance schedule problem isattacked with adifferent optimality crite
rion toform minimum activation schedules; with this criterion the latter schedule ispreferred.

85

operation; similarly, if N evenly divides M, wecould loop B. If theratio of the smaller to

thelarger value is notan integer, however, we must loop both clusters, and it turns out that

the conditions for making this a safe operation are considerably more restrictive.

Integral rate changes may be produced by adding a loop factor to a single actor or

cluster. A cluster will not be looped if it is connected to a cluster at a different rate by an

arc with initial tokens that is not afeedforward arc. To see why this rule is needed, see fig

ure 3.11; looping actor A in that graph would introduce deadlock. Also, to make sure that

the looping will nest properly, we will not loop a cluster if it is connected to a peer that

"should loop first" (that is, would match the rate of this cluster if it were looped). Thus it

would be forbidden to loop actor B in figure 3.10, since C should be looped first. The

choice ofloop factor corresponds to achoice ofapeer actor for asubsequent merge; if this

merge would not bepermitted (because of the potential for introducing deadlock) neither

would the loop be permitted.

The simple nonintegral loop pass described here is restricted to graphs that either

have only two clusters or have a tree structure (only feedforward arcs). In essence, it

applies a loop factor to every cluster so that all rates in the graph will match. We do not

attempt to handle more complex cases here; the result is that some graphs are not com

pletely clustered by this algorithm. Nevertheless, most common cases are handled.

3.3.3 Extension to BDF Graphs

We now consider the extension ofthe above approach to BDF graphs. Clearly, the

rules for merging the regular actors that make up the graph may proceed unchanged; doing

this for these actors and leaving the resulting clusters for dynamic execution resembles the

approach taken by [Tra91] to some degree. To go beyond this, we consider the meaning of

adding loop factors like pt and —to acluster in a BDF graph, where pt is the rate param

eter corresponding to the fraction of values in a Boolean stream that are TRUE. We shall

interpret these "loop factors" as "execute this cluster only if the token from b- is TRUE"

86

or "repeatedly execute this cluster until a TRUE token from the stream bi is obtained."

These interpretations are easier to understand when pt is interpreted as tt, the number of

TRUEtokens produced orconsumed onthe Boolean stream, divided by nit the total num

ber of tokens produced or consumed on the stream.The point is that we can treat the intro

duction of conditionals and of data-dependent iteration loops with Boolean termination

conditions within the same framework as the introduction of iteration in regular dataflow

graphs.

We are now ready to discuss the extension of the algorithm described in section

3.3.2 to BDF graphs. There are extra considerations to be taken into account: we require

that each cluster produced obey BDF semantics. This means that each port of the cluster,

like the ports of any BDF actor, must transfereither a fixed number of tokens or a number

of tokens that depends on a token transferred on a control arc of that cluster, and that con

ditional input arcs be controlled by input control arcs.

This means, for example, that we may be forbidden to merge a pair of adjacent

actors because a control arc would be buried, so that the external behavior of the cluster

would depend upon an invisible control signal (it is permissible to hide a control arc

withinacluster aslong asno arc that it controls is visibleoutsidethe cluster). We may also

choose, when merging a pair of clusters connected by a Boolean control arc with initial

Boolean tokens, to have thecontrol arc appear asa self-loop in the merged cluster. In addi

tion, we permit certain graph transformations that correspond to the combination of a

merge operation and a loop operation; this sort of transformation is required when the

resultof the mergewould bury a control arc. Finally, when the loop pass adds an"if* con

dition to a cluster, it is normally necessary to add an arc that passes a copy of theBoolean

control stream to that cluster to preserve BDF semantics.

We willnowdemonstrate the above points by applying theclustering algorithm to

avariety ofBDF graphs. In the figures showing partially constructed graphs, we will indi

cate conditional ports by associating the labels "T" and "F" with them and the associated

87

Boolean control streams by labels such as bx or(if there is only one stream) b. Ports with

no labelcan be assumed to be homogeneous (such ports transfer a singletoken). Consider

yet again the canonical if-then-else construct from figure 3.2, repeated below for conve

nience:

We may clearly merge actors 1 and 2; we may also merge actors 5 and 6. Exploiting the

fact thatalloutputs of the fork have thesame value, we may merge actor 7 into the cluster

formed by merging actors 1and 2 as well (we must use this fact or else the clustered graph

would not contain a valid control stream for the conditional outputs of the switch). Our

result now looks like this:

The control input for the SWITCH actor is now a control output for the cluster.

Note that while the two clusters have the same rate, we cannot merge them because that

would create delay-free loops involving actors 3 and 4. Therefore the first merge pass is

complete. The loop pass can now convert actors 3 and 4,which unconditionally consume

and produce one token, into conditional actors that match the interfaces of their neighbors.

We may prepare to mergethem either with thecluster containing the SWITCH or the clus

ter containing the SELECT. Let's suppose the former is done. For the new, conditional

88

versions of actors 3 and 4 to be BDF actors, they require control inputs. We obtain those

control inputs by adding arcs that conceptually transmit a copy of the Boolean control

stream to the new actors. Our new graph looks like this:

Actor 3 has now been replaced by a cluster with the following semantics: consume a con

trol token; if it is FALSE, consume a data token, execute actor 3 using that token and out

put the result, otherwisedo nothing. Actor 4 hasbeenreplaced by a similarconditional. At

this point, all adjacent actors have matching rates so all four remaining clusters may be

merged into a single cluster (atthis point the control arc may be buried asit hasno conse

quences visible outside thecluster). The clustering algorithm is complete.

It onlyremains to showthat each cluster has a bounded-length schedule. There are

three such schedules to consider (other than the trivial clusters containing only oneactor):

the cluster containing actors 1,2, and 7; the cluster containing actors 5 and 6, and the top-

level cluster containing four clusters. For the first two clusters, we note that no within-

cluster arc has any data dependency and that all connections are at the same repetition

rate; this condition suffices to assure that the schedule is bounded in length because the

problem is equivalent to the scheduling of aregular dataflow graph. For thetop-level clus

ter, some data transfers are conditional, however, the conditionals have the property that

therepetition rates always match (because thealgorithm was designed to assure this). As a

result, we can construct a data-independent schedule for thecluster, by scheduling it as if

the data transfers were unconditionalrather than conditional (that is, as if all arcs labeled

"T" and "F" always transferred a token). When clusters have this property, we know

89

immediately that the graph can be scheduled in bounded memory, and furthermore, we

may use regular dataflow scheduling techniques to produce code for a single processor.

Conditionals arise only in the places where we deliberately added themto cause repetition

rates to match.

For our second example, let us consider figure 3.7, repeated below.

(V0
O- CO

©
In this graph, we may merge actors 1 and 3. We are forbidden, however, from

merging actor 2 with the resulting cluster, sincethis would "bury a control arc"— the con

trol signal that determines which output gets data on the SWITCH actor would be hidden

and we would not have a BDF actor. We can then add an "if' condition to actor 4 to cause

its rate to match that of the SWITCH actor, but we cannotdo the same to actor 5, since the

latter actor requires two tokens per iteration. This yields the following graph:

rv^0

After merging the conditionalized actor 4 with the cluster formed by actors 1 and

3, we have

90

As we saw when we discussed this example earlier, we wish to introduce a do-while loop,

repeatedly executing the new cluster until a FALSE token is produced. To permit this

while preserving the BDF property of each cluster ateachstep, we must permit the merge

operation (of actor2 with the cluster it is attached to) and the loop operation (that intro

duces the do-while loop) to occur in one step. This operationis permissible when all out

puts of the cluster would be conditional without the do-while, and would depend on a

condition that appears only inside the cluster. The effect of the do-while is to make condi

tional ports unconditional. After the merge and loop, we now have

repeat (2,1,3,rKb)4r\ 1 *fT\
until dis false J ^\ $ J

^ which is a regular dataflow graph at the top level; furthermore, we have a data-indepen

dent schedule at all levels. Again, the only conditional operations arethose we introduced

to cause the rates to match.

3.3.4 Handling Initial Boolean Tokens

When initial Boolean tokens are present, other considerations often arise. To illus

trate, we will now apply the clustering algorithm to the do-while construct of figure 3.8,

which we repeat below. We willnotuse the preamble approach, but will find aclustering

that naturally reflects the control structure.

OS^

First, we merge the SELECT actor and actor 3.Because of the rule that wemust keep con

trol arcs visible, the arc with the initial delay on it becomes a self-loop of the cluster. We

91

now have

We may now merge the SWITCH actor with thecluster we just formed, since the

rates match. But there is one potential difficulty: the arc labelled "T" on the SWITCH

actor is controlled by a different Boolean stream than the arc labelled "T" on the cluster

(corresponding tothe SELECT). We apply the following rule: for any arc with apotential

rate mismatch such as this, we turnit into a self-loop rather than an internal arc when we

perform the merge. This rule assures that withinanycluster, allrates will matchso that the

cluster will always have a data-independent schedule which is bounded in length, so that

only the top level of the graph retains any data dependent behavior. We can therefore

always use the simpler techniques applicable to regular dataflow scheduling within clus

ters.

Our new system is

1

2.3.4

FALSE

The labelling of conditional ports has been changed; Tl indicates that the port is

controlled by Boolean stream bY and T2 indicates that the port is controlled by Boolean

stream b2. It would now be possible to add conditionals to actors 1 and 5 and merge them

into the cluster (though it turns out thatthis is not desirable). If we do, however, we are left

92

with a single actor with two external self-loops. The techniques we have developed so far

do not permit us to prove that the resulting structure has a bounded-memory schedule.

Forgraphswith self-loops of this type, we recall that a complete cycle requiresthat

the graph return to its original state, which includes the value of any initial Boolean con

trol tokens. It is thereforenatural to consider the following technique: consider the appli

cation of a do-while loop around the cluster with the self-loop, in which the cluster is

repeatedly executed until a new Boolean token of the same type is produced. We must

assure that two propertieshold true: that the looped cluster possesses BDF semantics, and

that the number of tokens on anyself-loops remains bounded. If we apply this technique in

thiscase, we find that the looped cluster consumes exactiy onetoken from actor 1 and pro

duces exacdy one token for actor 5 to consume. Furthermore, by tracing executionwe find

that at most one token appears on the arcconnecting T2 with Tl.

3.4. STATE SPACE ENUMERATION

In the last example, when we verified that the introduction of the do-while loop

was legitimate, we implicitly did avery simple form of state space enumeration, a process

that corresponds directiy to the construction of thereachability graph for Petri nets. Let us

return to the previous example and treat it from a state space perspective. As it turns out,

there are only two states for the cluster with the self-loop: in the initial state, there is a

FALSE token on the control arc and the data feedback arc is empty. This token will be

consumed and new tokens will beproduced when the cluster executes. There are two pos

sibilities: either aFALSE or aTRUE token will be produced on stream b2. If aFALSE

token is produced, no token will be produced on outputT2 and the state will remain the

same; otherwise, a single data token will appear on output T2. Thus there are two reach-

•rfT
2.3.4

[M1 FfE h
(a) (b)

Figure 3.13 Reachable states for the data-dependent iteration cluster. State (a) is the
initial state; state (b) occurs if a TRUE token is produced. From either initial state,
either state is reachable as the next state.

able states, as shown in figure 3.13. Similarly, by considering the two possibilities that are

reachable from the TRUE state (state (b) in figure 3.13), we find that we obtain the same

two states again. We are thus assured that there is never more than one token on either vis

ible arc. Bounds on other arcs may be obtained from the schedules for the inner clusters.

It is possible to apply a state space searching technique to theoriginal graph, with

out performing anyclustering. Themain advantage of clustering is that thesize of thestate

space is vastly reduced. As for Petri nets, if we can demonstrate that there are a finite num

ber of reachable states, it follows that the memory required for arcs is bounded.

There are some significant differences between the state space search for BDF

graphs and for Petri nets. First, consider the following trivial regular dataflow graph:

<£)

93

Interpreted as aPetri net(actors are transitions, the token storage of the arc is aplace), this

graph's set of reachable states is unbounded, because actor A may fire any number of

times before actor B is fired. Interpreted as aregular (or BDF) dataflow graph, the graph

has aschedule that is bounded inboth schedule length and inmemory, because we are per

mitted to choose the schedule AB for the graph and to avoid executing actor A a second

time before the token produced from the first execution is consumed. Thus for the state

94

space search to have a meaning, we must identify a set of rules for actor execution; these

rules should be defined in such a way as to avoid ever putting more tokens on an arc than

necessary.

3.4.1 The State Space Traversal Algorithm

Let us consider an algorithm that explores the state spaceof the graph by simulat

ing its execution. By analogy with the reachability tree algorithm for Petri nets first given

in [Kar69], we will construct a tree of reachable states. Each state will berepresented by a

node of the tree, with the initial state corresponding to the root node. For each node there

may be multiple possibilitiesas to which actor to execute next, and as to the value (TRUE

of FALSE) of anyBoolean tokens produced by actor executions; each of these correspond

to anew nodeof the tree that is achildof the initial state. As for the Petri net reachability

tree construction, when a state that has already been reached is re-visited it will have no

children. If the state space is finite, this procedure will terminate when the state space has

been completely matched. If the state space is unbounded, the procedure as described so

far will not terminate. We will describe a procedure to terminate the search for some such

cases shortly.

To explain therules for simulating actor execution, we require the following defi

nitions: we define a runnable actoras onethat has sufficient tokens on allits inputarcs to

execute.We say that an actor demands input from an arc if it requires one or more addi

tional tokens onthat arc tobe able to fire. For conditional inputs, we do notsay that input

is demanded unless we know that a token will be required on that arc; for example, for a

SELECT actor, if there is no token onthe control input, the actor is notdemanding input

from either its TRUE data input or its FALSE data input. Finally, we define a deferrable

actor as a runnable actor that has one or more output arcs, but no other actor demands

input from any of these arcs (intuitively, an actor is deferrable if it has already produced

enough data to supply the needs of all its downstream actors). For the purpose of deter

mining whether anactor is deferrable, self loops are ignored. Actors with no output arcs

95

other than self loops are never deferrable.

There are three possibilities at any given state that the algorithm must consider.

First, it is possible thatno actors are runnable at all. If so, then the graph deadlocks upon

reaching this state (there are no successor states). The second possibility is thatthere are n

runnable actors with n > 0, but all the runnable actors are deferrable. In this case we gen-

th
erate n child nodes, each obtained by executing the n runnable actor, representing the n

possible next states.The final possibility is that some number m <. n of the runnable actors

are not deferrable. If so, we only create child nodes corresponding to the states generated

by executing each of the m non-deferrable actors. The rationale is that we never execute

the deferrable actors unless the only runnable actors are deferrable. When executing an

actor produces a token on a Boolean control arc, we generate two child nodes; there are

two possible output states, one corresponding to the production of a TRUE token and one

corresponding to the production of a FALSE token. Generation of child nodes terminates

when a previously visited state is re-created.

This algorithm can generate a very large number of states. It is possible to reduce

the number of states generated considerably by imposing additional constraints on the

execution order (doing so is safe only if the samerestrictions will apply to the scheduler).

Because each Boolean token generated by an actor execution guarantees at least two suc

cessor states, one useful heuristic is to defer theexecution of any actor thatproduces Bool

ean tokens as long as there are runnable, nondeferrable actors that do not produce

Booleans. We may also modify thedefinition of adeferrable actor to specifythatdemands

for input from actors that are themselves deferrable do not prevent an actor from being

deferred; this results in a strictly demand-driven model of execution. As long as the same

rules are applied in the construction of schedules orin the operation of adynamic schedul

ing algorithm as are used in the construction of the reachability tree, the bounds deter

mined by examining the nodes of the tree will be correct regardless of the details of the

execution rules.

96

3.4.2 Proving That a BDF Graph Requires Unbounded Memory

We now consider how to cause the above algorithm to terminate on graphs for

which the state space is unbounded. One simple heuristic is to terminate execution if a

boundon the capacity of an arc is exceeded. The boundmight be a constant for allgraphs;

another reasonable heuristic is to have the bound for a particular arcbe some multiple of

the maximum of the number of tokens written to the arc and the number of tokens con

sumed from the arc by its source and destination actors (the reason for this heuristic is to

preserve roughly equivalent behavior as the numbers of tokens produced and consumed

are scaled upward). This sortof technique is usedin the Ptolemy dynamic dataflow simu

lator(which supports a more general model of dataflow actor than described here).

A simple bound on arc length has the weakness that it will sometimes complain

about graphs that are actually bounded in memory use (because the threshold is set too

low); furthermore, if the memory requirement exceeds the bound, this is not a proofthat

thegraph is in fact unbounded. Itwould bedesirable to have atechnique that easily proves

that the graphs shown in figure 3.4 andin figure 3.5 require unbounded memory. We use

the reachabilitygraph algorithm for Petri nets (as described in section 1.2.2) as a clue for

how to proceed. What we require is a way to produce the equivalent of the co places that

appearin the reachability graph structure for a Petrinet.

The essential feature of an unbounded Petri net that produces nodes labelled with

co in the reachability graph is the existence of a transition firing sequence that has two

properties: it can be repeated indefinitely, and it results in a net increase in the number of

tokens in at least one place and anetdecrease in none. To apply these techniques to BDF

graphs, we first require a partial ordering corresponding to the partial ordering on mark

ings defined in section 1.2.2. We define this ordering as follows: let p represent the state

of aBDF graph. This state consists of anumber (the number of tokens) for each ordinary

arc and a sequence of TRUE and FALSE Boolean values for each control arc. Given two

states p and \i\ we say that p' £ p if and only if the following conditions hold: for all

97

ordinary arcs, p' has at leastasmany tokensas p, and for allcontrol arcs, the sequence of

tokens in state p is a prefix of the corresponding sequence of tokens in state p'. That is,

given p we can produce p' by adding tokens of the correct type in a FIFO manner. We

also define a second relation p' > p that is trueif and only if p' £ p and p and p' are dis

tinct states.

It would now appear that we could use the procedure described for Petri nets in

[Pet81] to construct the reachability tree for BDF graphs, replacing the relation used for

Petri net markings with the one we have described for BDF graph states, but there is a

catch. ForPetrinets, any enabledactor may fire, so thatgiven p1 £ p there is no reason we

could not repeat the same execution sequence that moved us from p to p'. For BDF

graphs, however, actors that were not deferrable in the state p may become deferrable in

p'. Forexample, consider the simple regular dataflow graph

Since there is only one arc and it is notacontrol arc, the state of the graph is asca

lar and there are three states, corresponding to0,1, or 2 tokens onthe arc. Using thenum

ber of tokens as the state name, state 1 is reachable from state 0, and state 2 is reachable

from state 1. By analogy to the Petri netreachability graph construction, we might argue

that we could repeat the sequence of actor executions (execute actor A) that got us from

state 0 to state 1 indefinitely and therefore this graph is unbounded. This is prevented by

the rule for deferrable actors, however. Since actor A becomes deferrable in state 2, it is

notpossible to produce more than twotokens onthe arc, and the system only has three dis

tinct states.

We therefore define a new operatoron states, which returns a vector with an inte

ger value for each arc. The value for an arcrepresents the number of tokens demanded on

98

that arc, using the criterion discussed earlier: the number of tokens that must be added to

satisfythe requirements of the actor that consumes from the arc. If these requirements are

unknownbecause the arc is conditional and there are no tokens on thecorresponding con

trol arc, the numberdemanded is zero. We write this operator as D (p) and refer to it as

the demand vector for state p.

IfD(p') = D (p), then the set of runnable actors in state p and the set of runna

ble actors in state p*, as well as the set of deferrable actors, is exactly the same. This is

because the demand vector completely determines this information. What we require is a

sufficient condition for showing that we can indefinitely repeat the firing sequence that

moves us from state p to state p\ The following conditions are sufficient:

• p' must be reachable from p,

• D([i') = D(\l) (the demand vectors in both states are the same),

• an additional requirement on intermediate states between p' and p must be satis

fied.

The fourth condition is as follows: consider all the intermediate states between

(but not including) p and p' (on any path). Let us name these states s(ii = 1...n. If, start

ingatstate p', werepeat the same actor executions (and assume the same results for any

generated Boolean tokens) we obtain new states s'^i = 1.../I. If, for each /, we have

s'i > s(and also D(s\) = D(st), it follows that we can repeat the execution sequence

endlessly and therefore all arcs that increase in length between the two states are

unbounded. Note that if there are nointermediate states, because state p' is directly reach

able from state p, then the first three conditions are sufficient.

Given these conditions, we can nowdefine the state reachability tree construction

algorithm as follows, using terminologyborrowed from [Pet81]. We will use the co label to

99

indicate an ordinary arc with an unbounded number of tokens, corresponding to [Pet81];

we require anew notation for unbounded sequences. Because we mustbe able to compute

the partial order relationship, we will represent unbounded sequences by a prefix, fol

lowed by a sequence of tokens that may be repeated an indefinite number of times, fol

lowed by an asterisk. For example, a state might be labelled as {co,0,F(T)*}, indicating

that thecontrol arc has asingle FALSE token followed by an indefinitely long sequence of

TRUE tokens.

Letafrontier node refer toanode that has notyetbeen processed by thealgorithm.

Initially, the tree has one frontier node, the root, corresponding to theinitial state. For each

node, we record the number of tokens stored on each ordinary arc and the sequence of

Booleantokens on eachcontrol arc. We also store D (p), the demand vector for the state.

The processing is as follows:

If there exists another node y in the tree that has the same marking as the current

node x, we stop; x is aduplicate node. If there are norunnable actors in state x, we stop; x

is a deadlock state (a terminal nodein the terminology of [Pet81]). Otherwise there will be

successor states, which will correspond to child nodes in the tree.

We now compute allof the successor states andadd a child node for each, follow

ing the rules described in section 3.4.1 for determining which actors to run. Consider a

particular state anda particular actor to be fired, with particular Boolean outcomes. If the

number orsequence corresponding to an arc in state x does not have an co symbol or an

asterisk corresponding to an indefinite number of tokens, the appropriate number of tokens

is simply added or removed. If an ordinary arc has an co symbol, the corresponding arc in

the successor state also has an co symbol. If Boolean tokens are added to an arc that has an

indefinitely repeated sequence, the added tokens are ignored (we pretend that there are so

many tokens that the "tail end" is never reached). If the actor execution consumes tokens

from the beginning of a Boolean arc with a repeated sequence, we represent this in the

next state by removing the appropriate number of tokens from the stream.

100

Finally, if for any of the newly created states p*, we can find another state p on the

path from the root such that p' > p, D (p') = D (p), andthe corresponding relations for

intermediate states hold as described on page98, we replace the new state as follows: all

non-controlarcs thatgained tokens get a co in theirrepresentation, and for control arcs, the

markingis represented by putting the sequence of tokens added by going from p to p' in

parentheses and addingthe asterisk.For example, if we go from F to FT, we change the FT

toF(T)*.

Just asdoes the reachability tree fora Petri net, this BDFreachability tree structure

we havedefined loses information, as it does notrepresent the reachability set (to use the

terminology of [Pet81]). In states with multiple co labels we discard any relationship

between them, and we also discard suffixes added to states with infinite Boolean

i sequences. If there are no nodeswith a co orindefinitely repeated Boolean sequence, how

ever, the reachability tree specifies the state space and allowed transitions completely and

the BDF graph is bounded.

For Petri nets, it is proved in [Kar69] and in [Hac74] that the reachability tree is

always bounded in size, so that the construction algorithm is a true algorithm. Is the same

true for the BDFreachability tree? Unfortunately, no.The essence of the proofin [Hac74]

is to show that no infinite path of nodes starting at the root can exist. In essence, what is

shown is that any such path must contain an infinite non-decreasing subsequence of states

such that p0£ Pj £ p2.... Since for each pair of states such that p <. p\ the algorithm

replaces at least one place in p' by co, and since the number of places is bounded, we

quickly reach a marking where every element is co, meaning that the infinite non-decreas

ing sequence must haverepeated states, whichis notpermitted. However, since for control

: arcs we record the sequence of tokens and not just their number, we can have infinite

sequences of states in which thenumber of tokens on a Boolean arc continually increases,

but in which no state's marking is a prefix of any other state's marking. For example, F,

101

TF, TTF,... is such a sequence. The consequence is that the techniques used in [Hac74]

cannot be used to prove that the reachability tree construction is bounded. This means that

we may still require heuristics such as a bound on arc capacity to make the state traversal

algorithm terminate.

As with Petri nets, we can convert the BDF reachability tree into a reachability

graph by replacing duplicate frontier nodes with arrows pointing to the previously gener

ated copy of the node.

3.43 Combining Clustering and State Space Traversal

Clustering and state space traversal are best applied in combination. Graphs corre

sponding to the dataflow schema of Dennis [Den75a] or Gao [Gao92] are clustered

readily; the only state space traversal needed is the simple two-state space corresponding

to the node with the self-loop(seethe beginning of section 3.4 for adiscussion), andthis is

easily handled as a special caseanddoes not require the full algorithm we have described.

More irregular dataflow graphs, or graphs that do in fact require unbounded memory, may

only be partially clusterable.

Let us again consider the graph in figure 3.5, repeated for convenience below:

If we apply the clustering algorithm, this graph is reduced to the following structure

(where as before, the label Tl onaport indicates that atoken is transferred only if aTRUE

102

token appears in the corresponding positionon stream Z^):

/
1.7.2.

if(b) 3 else 4

/T\

This choice of clusters is not unique, by the way; we have chosen to combine actors 3 and

4 with the cluster containing the SWITCH actor, but we couldequallywell have grouped

them with the SELECT actor, resulting in the same top-level pattern of clusters but with

different cluster contents.

Since we can cluster no further, we now apply the state enumeration algorithm to

this graph. The initial state is {0,0J7}, which we will call pQ. There are two possible suc

cessor states: pp corresponding to{0,1JT}, and p2, corresponding to {1,0,FF}. We note

that P^Pq and also D(Pj) = D(p0) = {1,0,0} (the sink cluster demands a token

on its F2 input). Since there are no intermediate states, we have all that we need: arcs 1

and3 are unbounded, andthe transition thatmakes the arcs grow indefinitely corresponds

to the production of a TRUE output by the first cluster. The complete reachability graph

for this figure is

(co,0,F(T)* 0,1,FF

t
co,l,F(T)*- -•co,0,(T)*J

and we see that arc 2 is bounded (never has more than a single token).

The reachability graph omits some information, just as does the corresponding

103

structure for a Petri net. Given two arcs with co values, for example, the graph does not

specify anyrelationship between them (though they mightalways have the same number

of tokens). Also, given a Boolean arc with a description like (T)*, we pretend that the

effectof adding tokens, whether TRUE or FALSE, does notchange the description of the

arc. Loosely, there are somany Ts that wewill never reach the end to see what is beyond.

In many cases this substantially reduces the sizeof thegraph.

However, it is possible to use a similar notation to record the entire set of reachable

statesif that is what we require. What is missing in the above is that the number of tokens

on the first arc equals the number of TRUEtokens on the third arc in all of the states; also,

suffixes are dropped in the Boolean sequence on some nodes of the graph. The following

figure represents the complete state space of thegraph:

n:=l/ . n5/TCi
n:=n+l(nfl,Fn(T) \ 0,1,FF

n:=0

n,l,Fft(T)F—• n,0,n(T)F V=n-1

In this figure, arcs labelled with assignments to the variable n reflect the value that

variable has when the arc is traversed. It is clear from this diagram that the network is

"live" in the sense that every state is reachable from every other state, something that is

not clear from the previous figure.

The examplegiven in figure 3.4 can be proven unbounded in a similar way. In this

case, the result of clustering is the graph shown in figure 3.14.

This system has a considerably larger number of states. However, since we know

that sequences such as FTTTT... are the troublesome ones, we can use this fact to quickly

construct a proof of unboundedness. We find that there are states {2,0,1,0,FTT} and

{3,0,1,0,FTTT} that satisfy the conditions for a proof of unboundedness: the second is

104

reachable from the first in a single step, the demand vectors are the same and the partial

orderrelationship holds. We therefore know that arcs 1 and 5 areunbounded. Similarly, by

reversing TRUE and FALSE we find the states {1,0,2,0,TFF} and {1,0,3,0,TFFF} with the

same properties, so that arc 3 is also unbounded. Note that our definition of "deferrable"

prevents actors 3 and4 from being executed until theiroutput is demanded, thereforeonly

two tokens are needed on their output arcs, arcs 2 and 4. In fact, if a demand-driven evalu

ation technique is used, any arc whose source actor has only one output is always

bounded, since the source actor will not be executed if the number of tokens on the arc is

sufficient to satisfy the demand of the destination actor.

It is not necessarily an error for an algorithm that is represented as a dataflow

graph to require unbounded memory. As a simple example, a recognizer for a context-free

grammar requires an unbounded pushdown stack. But even systems that require

unbounded memory normally require this memory for a small subset of the arcs that make

up theentire graph. The combination of clustering and state traversal discussed here per

mits such arcs to be isolated, so that acode generation model need supply dynamic mem

oryallocation for tokens onlywhere needed. For example, in the above figure actors 3 and

4 mightrepresent arbitrary clusters with internal bounded-memory schedules.

3.4.4 Undecidability of the Bounded Memory Problem for BDFGraphs

We havesupplied techniques for determining that someBDFgraphs can be sched

uled with bounded memory, and techniques for showing that others require unbounded

Figure 3.14 Result of applying the clustering algorithm to figure 3.4. As before, italic
numbers identify arcs; non-italic numbers adjacent to inputs and outputs give the
number of tokens transferredby that port.

105

memory. However, there are also graphs that fall "between the cracks," not responding to

any of the techniques described so far. Is itconceivable that further research will provide a

complete decision procedure? The answer is no, as we shall show, using the following rea

soning:

• A small set of BDF actors has equivalent computational capability to auniversal

Turing machine, in fact, auniversal Turing machine (UTM) can bebuilt from this

small set of actors.

• If a decision procedure exists for determining whether a BDF graph has a

bounded-memory schedule, it would then bepossible to determine whether aTur

ing machine accesses abounded or unbounded length on its tape. The latter prob

lemis undecidable (equivalent to the halting problem).

• As a simpler alternative to building aUTM, it is possible to demonstrate theTur

ing equivalence of the BDF model using partial recursive function theory.

We now provide an outline for the construction of a two-tape universal Turing

machine from BDF actors.1 The building block for the data tape is astack with the prop

erty that, if "popped" when empty, a"fill symbol" (corresponding to the blank tape sym

bol of the UTM) is returned. Onesuch stack represents the tape to the right of the "head"

of theUTM, and another represents thetape to theleft of the"head." The tape head can be

shifted in one direction ortheother by popping atoken from one stack and pushing it onto

the otherstack. To implement a stackusing BDF, we have a bit of a problem: dataflow arcs

work like queues, not stacks. If we "push"ontothe stackby adding a token to a queue, to

"pop" the stack it is required to circulate the entire queue around and extract the last token.

This is most easily accomplished if an integer-valued token is kept thatgives the count of

tokens on the stack.

1.We will not give the full construction, whichis about asinteresting astheresultof the traditional
assignment that a student build acomputer outof NAND gates, butwilljustpresent enough to
demonstratethe main design problemsandshow thatit can indeed be done.

106

The program for the UTM consists of a set of quintuples: current state, current tape

symbol, new state, new tape symbol, and action (e.g. shift left, shift right, halt). These

reside on a set of five self-loop arcs. To determine the action, the controller block reads the

current state and tape symbol, circulates the "program" around until a match is found, and

generates the next state, tape symbol, and action.

To implement the UTM, we require the SWITCH and SELECT actors, together

with actors for performing addition, subtraction, and comparison on the integers, plus a

source actor that produces constant stream of integer-valued tokens and a fork actor.

It is perhaps easier to show that BDF graphs (using the same simple set of actors

described above) suffice to compute any partial recursive function. To define the set of

partial recursive functions, we first define a smaller set of functions, the set of primitive

recursive functions. This set of recursively generated functions is defined to include the

following functions on the nonnegative integers [Boo89]:

• The zero function, z(x) =0.

• The successor function, s (x) = x + 1.

• For any integers M andN such that M£ N, the identity function of N arguments,

which returns the M*h argument: ia^ (xlt ...,xN) =xM.

• Any function thatcanbe expressed in terms of other primitive recursive functions

using function composition.

• Any function that can be defined in terms of two other primitive recursive func

tions/and g using the operation of primitive recursion, which is defined as fol

lows:

h(*i *jv-i.O) =/(*!,...,%_ i) (3-15)

h(x1,...,xN_vs(xN)) = g(Xl xN,h(xv...,xN)) (3-16)

This operation defines functions by mathematical induction on the last argument. It iseasy

107

to see that addition can be defined using id\ for/and the composition ofs and idl for g.

Similarly, by applying primitive recursion wemay obtain multiplication from addition and

exponentiation from multiplication.

The set of primitive recursive functions, together with the operation of minimiza

tion

f(x) ={The least value of y such that g (x, y) = 0} (3-17)

(where x and y are integers), as well as composition and primitive recursion over previ

ouslydefined functions, generate the setof all partial recursive functions.

Any computational procedure that computes all such functions is Turing equiva

lent. In order tocompute all partial recursive functions, it suffices (as is shown in[Den78])

to be able to support arithmetic on arbitrarily large nonnegative integers together with a

loop construct controlled by a predicate (such as "less than"). The smallset of BDFactors

described earlier in this section suffices to do this, therefore the BDF model is Turing

equivalent.

Theorem: the problem of deciding whether a BDF graph can be scheduled with

bounded memory is undecidable. To show that TViring equivalence of the BDF model

implies that the bounded memory decision problemis undecidable, it is sufficient to show

that given a bounded memory decision algorithm, we could then solve the halting prob

lem. Assume we have an algorithm A that can determine whether a UTM uses only a

bounded length of its tape with a given program and input. If we apply algorithm A and

find that an unbounded length of tape is used, we know that the programdoes not halt. If a

bounded length of tape is used and that bound is less than or equal to N, we know that the

system has no more than 5^ states, where S is the number ofdistinct state symbols. We

execute the system this number of times and see if there is a loop (a repeated state). If

there is, we know the system will not halt; otherwise it must have halted (since all possible

states have been visited). Since algorithm A solves the halting problem but the halting

108

problemis undecidable, it follows that algorithm A does not exist.

Theorem: if is not possible in general to prove that two Booleanstreams in a BDF

graph haveidentical values, thus theproblem ofdetermining thata BDF graph is strongly

consistent is undecidable. To demonstrate this, we assume we have a procedure that deter

mines that two Boolean streams are identically valued, and consider a UTM constructed

out of BDF actors. We now construct a Boolean stream whose n value is TRUE if the

UTM has not halted after n steps and is FALSE otherwise.We construct a second Boolean

streamthat is always FALSE. If we had a decision procedure that could tell whether these

two streams were identical, we would have a tool for solving the halting problem, which is

impossible.

In the discussions above we have used, in addition to Boolean tokens, arbitrarily

large integer-valued tokens. The state traversal algorithm we have described discards

information on arcs with token values that are not Boolean. However, we could equally

well construct BDF graphs in which FALSE is treated as the T\iring-machine "blank

token", TRUE is treated as the TAiring-machine "tally" token, and the integer n is repre

sented as n + 1 consecutive TRUE tokens. All arcs would then have Boolean tokens and

the state as represented in the algorithm of section 3.4.3 would represent all the informa

tion about the system. It therefore follows that the state traversal algorithmdoes not termi

nate for at least some graphs (without a heuristic to cut off search).

3.5. SUMMARY

This chapter has presented avariety of techniques for the analysis of BDF graphs.

Each is by necessity only partially applicable, owing to the Turing-completeness of the

model which implies that many analysis questions are undecidable. However, byapplying

the techniques, we maydivide the setof all BDF graphs into three categories.

The first category includes those graphs withbounded-length schedules. This cate

goryincludes the set of all regular dataflow graphs, and it also includes constructs of the

if-then-else form. The fact that the schedule is ofbounded length may (depending on the

109

semantics of execution of a minimal complete cycle) permit us to establish that hard real

time deadlines are successfully met, given execution times for each actor. Parallel sched

uling techniques that apply to regular dataflow graphs are not difficult to extend to this

type of graph, particularly if a minimax scheduling criterion is applied (make the worst

case run as rapidly as possible).

The second category, asuperset of the first, includes all graphs that may be proven

tohave bounded memory by clustering and state enumeration. Such graphs may express

data-dependent iteration as well as conditional execution. Because ofthe undecidability of

the bounded-memory problem, the boundary of this category is not computable and

depends on the particular clustering technique used; there is still considerable room for

improvement in BDF clusteringalgorithms.

The third category of BDF graphs are those that are not completely clusterable,

and either wecan prove that unbounded memory is required or we are unable to prove that

the state enumeration algorithm will complete without aheuristic bound. For such graphs,

it is possible toconstruct static schedules for the clusters, but dynamic scheduling of clus

ters, plus some degree of dynamic memory allocation, isneeded toexecute such graphs.

4

IMPLEMENTATION IN PTOLEMY

/ would rather write programs that write programs than write pro
grams.

—Anon, (graffiti from Stanford CS department quoted in [Flo79])

Ill

This chapter discusses implementation of Boolean-controlled dataflow graph

analysis, clustering, scheduling, and code generation using the algorithms described in

the previous chapter together with earlier work described in [Pin93]. The Ptolemy frame

work for heterogeneous simulation and software prototyping was used [Buc93]. We will

first discuss the relevant features of the Ptolemy system in detail and then describe the

features of the BDF implementation.

4.1. PTOLEMY

Ptolemy is anenvironment for simulation, prototyping, and software synthesis for

heterogeneous systems. It uses modern object-oriented software technology to model

eachsubsystem in a natural andefficientmanner, and to integrate these subsystems into a

112

whole. The objectives of Ptolemy encompass practically all aspects of designing signal

processing and communications systems, ranging from algorithms and communication

strategies, through simulation, hardware and software design, parallel computing, and

generation of real-time prototypes.

Ptolemy is the third in a series of design environment tools developed at the Uni

versity of California, Berkeley; its ancestors are Blosim [Mes84] and Gabriel [Bie90].

Blosim's primary focus was on algorithm development for digital signal processing; it

used a general dynamic dataflow model of computation. Gabriel was designed to support

real-time prototyping on parallel processors, and in addition to its use as asimulation tool,

was capable of code generation for one or for multiple programmable digital signal pro

cessors. Gabriel's code generation abilities could be used only for algorithms with deter

ministic control flow that could be described by regular dataflow graphs. This restriction

permittedthe development of several automated schedulingand code generation schemes

[Bha91][Lee87a][Sih91].

Unlike its predecessors, Ptolemy is not restricted to a single underlying model of

computation. Instead, as a heterogenous system, Ptolemy is designed to support many dif

ferent computational models and to permit them to be interfaced cleanly. For example, a

Ptolemy simulation may contain a portion that uses a discrete-event model, another por

tionthatuses aregular dataflow model,and a third portion thatuses agate-level logic sim

ulation model. Some parts of the application might be simulated within the workstation

running the Ptolemy process, while other parts might consist of synthesized DSP code

running on an attached processor.

Ptolemy relies heavily on the principles of object-oriented programming to permit

distinct computational models to be seamlessly integrated. In [Boo91], Booch defines

object-oriented programming as follows:

Object-orientedprogramming isa method ofimplementation in which pro
grams are organized as cooperative collections of objects, each of which
represents an instance ofsome class, and whose classes are all members of

113

a hierarchy ofclasses united via inheritance relationships.

In Ptolemy, different computational models can be seamlessly integrated because

the objects that implement them are inherited from common base classes and therefore

provide the same interface, while the derived classes implement the specific behavior

required for implementing specific computational models.

While it is not fundamental to Ptolemy, the graphical user interface deals with

descriptions of systems represented as block diagrams (a text interface is also available). It

is therefore convenient to think of the basic module in Ptolemy as a block, and in fact all

actors in Ptolemy are members of classes derived from the class Block. An atomic block

is called a star (and is, in fact, an instance of a class derived from the class Star). The

class Galaxy represents a hierarchical block (a block that contains other blocks). The out

ermost block, which contains the entire application together with means for controlling its

execution, is an instance of the class Universe. The entity that controls the order of exe

cution of the blocks is the scheduler, some schedulers determine the entire order of execu

tion of blocks at compile time; others do some of the work at compile time and some of

the work at run time. Another important class is Target; target objects model or specify

the behaviorof the target of execution for codegeneration applications and may alsopro

vide parameters that control a simulation. The combination of a scheduler, a set of blocks,

and other support classes that conform to a particular model of computation is called a

domain. Different models of computation(time-driven, event-driven, etc.) can be built on

top of Ptolemy by simply substituting different domains. Two or more simulation environ

ments built on top of Ptolemy may be combined into a single environment, thus enabling

the user to perform heterogeneous simulations of large systems that combine different

computational models.

New domains areeasily added to Ptolemy, including domains that do notconform

to the block/scheduler model described above. In addition, new blocks and domains may

be added to a running Ptolemy system by means ofincremental linking. The basic inter-

114

faces that glue the system together form the Ptolemy kernel, described in detail in

[Buc93c]. While Ptolemy was first conceived of for simulations, it also subsumes and

extends the multiprocessor code generation capabilities of Gabriel. When these capabili

ties are added to Ptolemy's multi-paradigm simulation capabilities, a powerful platform

for hardware-software co-design results [Kal92][Pin93].

4.1.1 Example of a Mixed-Domain Simulation

Consider the system in figure 4.1. This is asimulation model inwhich compressed

speech is transported on a broadband packet network. The simulation requires a combina

tion of signal processing (including compression, silence detection, and reconstruction)

andqueueing (packet assembly, disassembly, and transport).

The simulation naturally divides into two pieces, the signal processing (the com

pression, silence detection, and decompression) which is naturally modeled with a time-

driven synchronous model (the SDF domain, corresponding to regular dataflow), and the

network simulation (packet assembly, switching, queuing, and disassembly), where a

model that only takes into account changes in system state is appropriate. Here the DE

(discrete-event) domain may be used. Since neither model is preferred by Ptolemy, it is

possible to design the simulation with either domain at the top level.

To connect the two domains together, a concept known as a wormhole is intro

duced. A wormhole (from astronomy and cosmology) is a theoretical objectthat connects

TIME-DRIVEN EVENT-DRIVEN TIME-DRIVEN

rr compress
-

packet
assembly network

packet
disassembly

and buffer
decompress

silence
detection

1

Figure 4.1 A packet speech system simulation. The signal processing portions of the
algorithm (compression, silence detection) suit a time-driven model, while packet
assembly, disassembly and transport are best modelled using a discrete-event sim
ulation model. Figure from [Ha92].

115

two regions of space, or even two distinct "universes". In some speculative cosmological

models, such as the original inflation model of Guth, distinct laws of physics may operate

in the two connected "universes" (corresponding to symmetry breaking in different "direc

tions"), and these separate regions are called domains. Accordingly, we adopted these

terms for use in describing related terms in Ptolemy (Ptolemy is named after a famous

astronomer because of the use of astronomical terms in the system). Briefly, a wormhole is

an object that appears to be a star belonging to one domain from the outside, but on the

inside, contains a galaxy, scheduler, and target object appropriate for a different domain.

4.1.2 The Organization of Ptolemy

In Ptolemy, every functional block is derived from the basic class Block. A block

may contain one or more inputs and outputs known as portholes, which are objects

derived from class PortHole. Portholes permit blocks to connect to other blocks and per

mit messages to be transmitted between them; these messages are objects derived from

class Particle. The basic atomic actor, Star, and the basic composite actor, Galaxy,

are both derived from class Block.

The link between two connected portholes is implemented by the class Geodesic.

The class Plasma implements a pre-allocated pool of Particle objects to avoid expen

sive particle allocation and de-allocation at run time. The connection between Blocks in a

typical simulation model is shown in figure 4.2.

For each domain, there is a correspondingstar class and porthole class; for exam

ple, for the hypothetical domain XX we would have XXStar and XXPortHble. Thus

actors belonging to the SDF domain are derived from class SDFStar and actors belonging

to the DE domain are derived from class DEStar. Each of these classes is in turn derived

from class Star. We do notrequire adifferent derived type of galaxy for each domain; the

domain of agalaxy is determined by theobjects it contains and for mostpurpose theGal-

1.Interested readers are referred toHawking ([Haw88]) for adescription of these theories that is
accessible tothe non-physicist. Itshould be noted that Ptolemy does not attempt to be "astrophysi-
cally correct" in theuseof these terms; they are onlysuggestive.

116

axy classmerely servesas a means for introducing hierarchy.

Wormhole objects are implemented using multiple inheritance, meaning that there

is more than onebase class for theobject and that it implements theinterface required for

each of the base classes. For example, an object of class SDFWormhole is multiply inher

ited from class SDFStar and class Wormhole; and in general XXWormhole is derived

from class XXStar and the Wormhole class.The Wormhole class cannot be used alone; it

has ascheduler, a target object, and agalaxy, allof which correspond to the"inside"of the

wormhole. A portion of theclass inheritance hierarchy is shown in figure 4.3.

The class of the wormhole object (e.g. SDFWormhole) corresponds to the outer
Block Geodesic

• initializeO • initializeO
• setupO * numlnitO
• goO * setSourcePortQ.
• wrapupfj /£~ ..^N * setDestPortfJ
• cloneQ

PortHole

• initializeO
• receiveDataO
• sendDataQ

Particle Particle

• typeO
• printO
• operator «0
• cloneQ

Figure 4.2 Block objects in Ptolemy send and receive data encapsulated in Particles
to the outside world through Portholes. Buffering is handled by the Geodesic;
recovery of used Particles is handled by the Plasma (from [Buc93b])

Block Runnable

Galaxy

Universe

XXUniverse
XXWormhole

Figure 4.3 A portion of the inheritance hierarchy for blocks and wormholes in the hypo
thetical domain XX.

Wormhole

117

domain of the wormhole object since the class of an object determines its external inter

face; the inner domain of the wormhole is determined by the types of objects it contains.

The principle that a wormholelooks like a star from the outsidemust be remembered by

the wormholedesigner andis the key to permitting differing domains to interface cleanly.

From the graphical interface, the user creates wormholes by causing an instance of a gal

axy belonging to one domain to appear as a member of a galaxy or universe of another

domain; this means that to the casual user, domain boundaries look much like galaxy

boundaries.

The portholes of a wormhole object are special becausethey perform a conversion

function on messages traversing the domain boundary. Because of this difference, the

boundary between the input and output of a wormhole is implementedby a special object

known as an event horizon} The conversions required at the event horizon are domain-

specific. One possible approach to interfacing different domains would be to provide a

separate typeof event horizon for each pair of domains interfaced. Unfortunately, as new

domains are added the expense of this technique wouldgrow as the square of the number

of domains. Instead, our approach is to convert particles crossing domain boundaries to a

"universal" representation, and thereby implement objects that convert signals from each

domain to and from this representation. This requires 2N conversion methods instead of

AT methods, one to convert from each domain to the universal representation, and oneto

convert from theuniversal representation to each domain-specific representation. We can

not guarantee that this approach will be successful for all possible domains, so it may still

be considered experimental.

Event horizon objects are implemented using multiple inheritance in much the

same way as wormholes are. For the domain XX, we have the classes XXtoUniversal

andXXfromUniversal. The former is derived from the classes XXPortHole andToEv-

1. For ablack hole, an event horizon is the boundary ofthe region from which nothing, even light,
can escape. Itisarguable that the terms "event horizon" and "wonnhole" inPtolemy should be
reversed.

118

XXUniverse

XXDomain

V.
Figure 4.4 The event horizon interfaces two domains and converts particles from the

representation required in one domain to that used in another.

entHorizon; the latter is derived from XXPortHole and FromEventHorizon. ToEv-

entHorizon and FromEventHorizon, in turn, are derived from EventHorizon. The

wormhole object contains a pair of event horizon objects for each connection that

traverses the wormhole boundary, one to convert from the inner domain to the universal

representation and one to convert from this representation to that of the outer domain (for

connections travelling in the opposite direction, the event horizon objects are arranged to

perform the reverse conversion).

Conversions commonly needed at wormhole boundaries include the generation,

removal, or conversion of time stamps associated with Particle objects. It may also be

necessary to transmit data to a different process or processor; in this case, methods of the

Target object associated with the wormhole are used to perform the inter-process or

inter-processor communication. A detailed discussion of the wormhole/event horizon

interface may be found in [Buc93b].

Ptolemy simulations execute under the control of schedulers. The top-level uni

verse object contains a scheduler; so do any wormholes the simulation contains. In some

domains (such as SDF), the entire order in which blocks are to be executed may be deter

mined by the scheduler's setup method; in other cases (such as DE), the scheduler's oper-

119

ation is highly dynamic, and the order of execution is determined at run time. For code

generation models, an object derived from the class Target represents the target of code

generation. The scheduler acts as the slave of the target object and is used to determine the

order of actor executions, while the target controls such operations as downloading code,

and required inter-process or inter-processor communication, and so forth. In simulation

domains, the target is still present but mostly passes commands on to the scheduler (it

may, however, be used to select among several schedulers or to pass parameters that con

trol the scheduler's operation).

4.13 Code Generation in Ptolemy: Motivation

Practical signal processing systems today are rarely implemented without some

form of software or firmware, even at the ASIC (application-specific integrated circuit)

level. Programmable digital signal processing chips (PDSPs) form the heart of many

implementations. For tasks that are computationally demanding, even the fastest PDSPs

are not sufficientiy powerful, so some custom circuitry is often required. A new imple

mentation technology that is now available from several major manufacturers of PDSPs is

DSPcores. A DSPcore is a programmable architecture thatforms only a portion of a sin

gle integrated circuit, unlike standard PDSP chips that are separate components. Thus a

designer canproduce anASIC that isequivalent infunction toa circuit board containing a

standard PDSP chip and custom circuitry. Such devices are already being used extensively

for digital cellular telephony [Pin93J.

The task of designing an ASIC that uses a DSP core resembles the problem of

designing a circuit board; it requires a mixed hardware and software design. Thus any

complete system design methodology for DSP applications must include software synthe

sis; and accordingly commercial manufactures of DSP development environments, such

as Comdisco Systems, Mentor Graphics, and CADIS, have recentiy added such capabili

ties [Pow92][Rab91][Des93].

It isdesirable to be able to simulate the software and the hardware portions ofthe

120

system together, and to cleanly support heterogeneity since the design styles and model

ling for the different portions of the system can beexpected to bevery different. Ptolemy

was designed from the beginning to support this kind of heterogeneity.

It is, of course, possible to program PDSPs in a high level language such as C,

however, features of most PDSPs are not well-modeled by C or other conventional high

level languages, so that code produced by most C compilers has not been satisfactory to

many designers. More specialized DSP languages such as Silage, an applicative language

with fairly simple semantics, have also been used, for example in the DSPStation applica

tion from Mentor Graphics [Gen90]. In Ptolemy we use a third alternative, one adopted

from the Gabriel system. In this model, actors generate small pieces of hand-written

assembly language corresponding to functional operators. Actors may be fine-grain or

coarse-grain, andmaypossess state(actors with stateplace extraconstraints on thesched

uler but are otherwise cleanly handled). There are two phases to code generation under

Ptolemy (or Gabriel): scheduling and synthesis. The scheduler possibly partitions the

actors for parallel execution and determines their order. The synthesis phase stitches the

hand-written code segments (which may be assembly language, a higher level language,

or a mixture) together. This technique has been commercialized by Comdisco (see

[Pow82]), CADIS, and others, although there are important differences between their

techniques and ours; for a detailed discussion, see [Pin93].

4.1.4 Targets and Code Generation

The Target class was first conceived of to model the environment for which code

is to be generated by Ptolemy, and it is the Target that ultimately controls the execution

of any Ptolemy process, whether it involves simulation, code generation, or a combination

of both.

For code generation applications, the Target defines how the generated code will

be collected, specifiesand allocatesresourcessuch as memory, and definescode necessary

for proper initialization of the platform.The Target will also specify how to compile and

121

run the generated code. Optionally, it may also define wormholes. A Target may repre

sent a single processor or multiple processors; in the latter case, the interconnection net

work is also specified.

All code generation targets are derived from the base class CGTarget, which

defines methods for generating, displaying, compiling, and executing code (as is standard

in object-oriented design, derived classes may accept these default methods or replace

them with domain-specific methods, as appropriate). There are derived classes AsmTar-

get for assembly language code generation (which adds methods for the allocation of

physical memory) and HLLTarget, the base class for synthesis of high-level-language

code (such as C). Targets for the generationof a specific kind of assembly language would

be derived from AsmTarget, (e.g. C656Target permits the generation of assembly lan

guage code for the Motorola 56000), andtargets for the generation of a specific high-level

language would be derived from HLLTarget (e.g. CGCTarget for C code).

In code generation applications, rather than computing particular results, stars are

designed instead to produce code thatcomputes theseresults. Schedulers are responsible

for determining the order in which these actors will be executed, and Targets collect,

download, and execute the resulting code. In the current implementation, stars always

communicate through memory, and memory buffers are allocated for each arc. Future

implementations will permit assembly language stars to communicate through registers

instead. To reducethe numberof copy operations, Ptolemy supports a"fork buffer"mech

anismthat permits the input andall the outputs of a FORK actor to share the samebuffer,

and an"embedded buffer"mechanism that, in somecases, permits actors such as DOWN-

SAMPLE to beimplemented without any code (the output arc of the actor corresponds to

one memory locationinside the buffer for the input arc).

Code generation from regular dataflow graphs in Ptolemy is described in detail in

[Pin93].

122

4.1.5 Dynamic Dataflow In Ptolemy: Existing Implementation

Ptolemy contains both an SDF domain, which is restricted to regular dataflow, and

a DDF domain, which permits any type ofdynamic dataflow actor. Since an SDF actor is a

special case of a DDF actor, the implementation uses a common base class, DataFlow-

Star, and the DDF scheduler is able to execute any actorthat is a member of this class.

Given a dataflow application that contains some data-dependent decision-making,

and given the greater efficiency that can be achieved with SDF, one approach that natu

rally suggests itself is to group, as much as possible, those portions of the dataflow graph

thatare regular into separate wormholes, so thatlarge portions of the graph can be sched

uled statically. One way to do this is to ask the user to do it manually, by grouping sub

systems together in galaxies andmarking all the galaxies that contain only regular actors

as SDF. By means of nesting, in which DDF and SDF domains are alternated, the amount

of run-time scheduling required can be reduced considerably. This was the first approach

taken in Ptolemy's development. As a simple example of this approach, consider the fol

lowing Ptolemy program, intended to suggest the path taken by a moth. At the top level,

we generate arandom sequenceof direction vectors, with the following program, which is

a regular (actually homogeneous) dataflow graph:

IIDI Inifnrm

IID1 Inifnrm

0
ItenfToPnlar

*—>-

Cos.

Sin.

> >

Gain

Gain

Ha-

> > jJnc

y nc

line-

All of the actors except for "drawline" are primitive actors. The "drawline" actor

accepts a length value, which is converted to an integer, and a "unit vector", supplied by

the inputs "xinc" and "yinc". This actor, when executed, will add "length" points to the

graph, using the vector (xinc,yinc) as the offset between points. If we expand the "draw-

line" actor we see the following:

xinc

123

Here the "Repeater" actors are not regular dataflow actors. The bottom input, an

integer, specifies the number of output tokens produced; each output token is a copy of the

input token . The number of tokens to be produced on the output arc of this actor is not

known until the graph is executed. The "displayline" actor adds a singleline to the graph,

given the X and Y coordinates of the relativemotion from the input vector.

Finally, the interior of the "displayline" actorappears as follows:

This graph is, once again, aregular (homogeneous) dataflow graph. The "Integra

tor" actors form arunning sum of their inputs, and the "XYgraph" actor adds each input

pair to the graph. By setting the domain of the innermost and outermost levels to "SDF"

and the domain of the "drawline" galaxy to "DDF", Ptolemy constructs wormholes in

such a way that dynamic scheduling is only required to run "drawline"; otherwise, static

1. The Repeater actor isnot aBDF actor as the number oftokens produced depends on an integer-
valued control token; extension of the BDF model tosupport such actors direcdy isdiscussed in
Chapter 5. Itispossible, however, torepresent aRepeater actor using ado-while loop ofBDF
actors.

124

scheduling is used.

It is also possible to apply clustering methods to group adjacent regular actors

together, effectivelycreating thesame type of partitioning we mightotherwise require the

user to perform. We then have several choices about what to do with the clusters and

dynamic actors that remain. One possibility is to simply execute them completely dynam

ically using a general dynamic dataflow scheduler, while using a schedule generated at

compile time for each cluster. This is reminiscent of the hybrid dataflow techniques dis

cussed in section 2.3. Another is to attempt to recognize certain standard "dynamic con

structs" such as if-then-else (or the more general case statement) and do-while and treat

them specially. If the entire graph can be so classified, it is then possible to generate code

using Lee's quasi-static scheduling idea [Lee88a]. This approach is explored in detail in

[Ha92]. In Ha's work, rather than finding constructs by means of the token-flow analysis

and clustering techniques of chapter 3, a more limited pattern-recognition approach was

used. This approach is sufficient in many cases to recognize the constructs, especially in

graphs where there is very littie use of dynamic actors.

4.2. SUPPORTING BDF IN PTOLEMY

We now describe the implementation of Boolean-controlled dataflow (BDF) under

Ptolemy. Adding the new domain required some re-thinking of the Ptolemy class hierar

chy to permit better sharing of codebetween SDF, BDF, and DDF domains and to simplify

use of the BDF model for code generation.

The design goals for the projectwere as follows: we wanted to supportBDF mod

els ofexecution both for simulation and for code generation. The simulation model should

be ableto generate clusters of actors that are scheduled statically, and, if clustering cannot

completely succeed, execute the resulting clusters dynamically, as described in section

3.4.3. It should be possible to use BDF simulation actors under the existing DDF sched

uler, as well as existing SDF simulation actors under the BDF scheduler. All single-pro

cessor code generation targets should be able to support BDF code generation actors and

125

constructs. We did not address parallelscheduling of BDF actors in this project; that is an

area for future research.

So that the new actors fit convenientiy intotheexisting design, we clearly wish for

BDFStar to be derived from DataFlowStar; this means that the DDF scheduler can exe

cute BDF stars as well (as it should, since BDF actors form a subset of dynamic dataflow

actors). However, we wish to have a BDF scheduler successfully execute objects of class

BDFStar aswell asSDFStar, butnotDDFStar. Given this consideration, onepossibility

would be to introduce a common base class for BDFStar and SDFStar. However, the sit

uation becomes more complex when code generation stars are also considered. Under the

initialPtolemy implementation, stars thatgenerate assemblylanguage code for the Motor

ola 56000 DSP chip using regular dataflow semantics form the CG56 domain and are

derived from CG56Star, and CG56Star was derived from SDFStar (indirecdy). How

should dynamic actors for the 56000 be implemented? Should they form a separate

domain and be derived from BDFStar? This would require large amounts of code dupli

cation and other difficulties in implementing the portions of the code and behavior com

mon to all stars that generate the same language, although it might be possible to resolve

with multiple inheritance. Unfortunately, because of some inconvenient features of the

C++ language, this type of solution was considered too expensive and complex, and was

rejected.1

We therefore changed the class hierarchy so that all code generation stars are

derived from DataFlowStar but not from SDFStar. The class DataFlowStar has a

virtual function isSDF() which returns TRUE if the object on which it is called obeys

SDF (regular dataflow) semantics and FALSE if it does not. The default implementation

of methods in DataFlowStar correspond to those for a regular (SDF) dataflow actor.

Schedulers that require regular dataflow semantics on their actors must now call isSDF to

1. For adetailed discussion of the impact of the features of the C++ language onPtolemy's design,
see [Buc91c].

126

test that the actors obey the required semantics.

Just as we have a common base class for the stars, we also have a common base

class for the portholes. Classes SDFPortHole, BDFPortHole, and DDFPortHole all

have a common base class, called DFPortHole. The base class has virtual functions that

specify whether the number of tokens transferred per execution is fixed or varying. There

is also a method that returns the number of tokens transferred on each execution by

default; for non-varying portholes, this is the number that is always transferred. In addi

tion, virtual functions are provided that permit the porthole to indicate that another

DFPortHole is "related" to the given DFPortHole (the associated port), as well as to

return a code indicating the nature of the relationship. This feature is used by BDF port

holes to indicate, for example, that another port is the control port for this port. There are

currentiy five possible relations, with provisions for extension:

• DFJTRUE: the port transfers data only when the token from the associated port

(the control port) is TRUE;

• DF_FALSE: the porttransfers data only when the token from the associated port is

FALSE;

• DF_SAME: the stream producedon this port is logically the same as the stream on

the associated port (this relation is used for fork actors, for example);

• DF_COMPLEMENT: the stream produced on this portis the logical complement

of the stream on the associated port (this relation could be usedby a logical NOT

actor).

• DF_NONE: there is no specified portholerelationship at all.

Because of the structure of these relations, we impose some restrictions on the

actors we can represent. In section 3.1, we required only that the number of token trans

ferred by a conditional port be a two-valued function of a control Boolean. We now

require thatoneof the two values be zero. Furthermore, we currently donot provide away

127

to model certain relationships; for example, we do not represent information sufficient to

reason about cases where Boolean streams are subsampled by SWITCH actors in such a

way that two subsampled streams are equivalent (as is discussed in the section "Mutually

Dependent Booleans" of [Lee91b]). It did not appear thatthere was sufficientpayoff from

the added complexity, although as a result, some unusual graphs that are in fact strongly

consistent may be reported as weakly consistent, and some graphs with a bounded state

space may appear to be unbounded. In practice, these restrictions have not proved to be a

problem, although our experience is still limited.

The class hierarchies for dataflow stars and portholes resulted in two isomorphic

trees. All star classes,as stated, are derived from DataFlowStar, andall porthole classes

are derived from DFPortHole. From these are derived the classes SDFStar and SDF

PortHole, respectively, representing simulation objects obeyingregular dataflow seman

tics. The classes DynDFStar and DynDFPortHole are the base classes for all other stars

and ports, respectively, and contain somesupport for execution under dynamic schedulers.

BDFStar, representing BDF simulation actors, is derived from DynDFStar, as is

CGStar, representing all codegeneration stars. The latter derivation provides support for

BDF semantics in allcode generation domains. The derivation tree for portholes is analo

gous (see figure 4.5).

We permit clusters of BDF simulation actors to be executed by a dynamic sched

uler, but we do not support dynamic scheduling of codegeneration stars (other than in the

sense that generated if-then-else or do-while constructs constitute dynamic scheduling).

Accordingly, schedulers are designed to "inform" stars (by calling the setDynamicExe-

cution method of DataFlowStar) whether they will be executed by a dynamic sched

uler; class CGStar will report an error in such cases indicating that the operation is not

supported.

4.3. STRUCTURE OF THE BDF SCHEDULER

The BDF scheduler performs a limited version of the "strongly consistent" check

128

Star

DataFlowStar

/ \
SDFStar DynDFStar

BDFStar CGStar

S \
AsmStar CGCStar

CG56Star, etc.

Figure 4.5 Inheritance hierarchy for dataflow and code generation stars. The hierarchy
for portholes has the same form, with class names obtained by substituting Port-
Hole for Star (except DataFlowStar -> DFPortHole).

ongraphs presented to it, followed by loop scheduling and, if necessary, state space tra

versal. At this point, state space traversal has not yet been implemented, other than the

simple form necessary to recognize certain types of do-while loops; we will discuss the

planned implementation strategy, however.

4.3.1 Checking For Strong Consistency

The check for strong consistency proceeds by associating an object called aBool-

Fraction with each actor and computing its value, in much the same way as aregular

dataflow scheduler computes the repetition value of each actor. A BoolFraction has a

numerator and denominator, each of which is a BoolTerm; a BoolTerm has a constant

term plus a list (possibly zero length) of BoolSignal objects. A BoolSignal object

contains a reference to a control signal and a desired value, which is either TRUE or

FALSE. A BoolTerm can be considered to be a product of its constituent constant term

and BoolSignal terms. Given this representation, we can now compute the repetition

vector for the system. At this stage we consider only equality of long-term rates, so acon

trol signal is considered equivalent to adelayed version ofitself. We begin by picking an

actor and assigning it a repetition rate of one (represented by a BoolFraction with

numerator and denominator both one). Each adjacent actor that has not had its repetition

129

Figure 4.6 Aweakly consistent graph, used as an illustration of consistency failure
detection. All actors other than the SWITCH and SELECT are homogeneous.

rate set yet is assigned an appropriate value to solve the balance equations; if there are

cycles in the graph when considered as anondirected graph, agiven actor will bereached

more than once, at which point aconsistency check isperformed. If two different paths to

an actor determine two different repetition rates, an error results. This algorithm isexactly

the same as the one described in section 2.2.1 for regular dataflow graphs.

To report a useful error to the user, any common factors in the two BoolFractions

are eliminated and what remains is reported as an error. We then obtain adiagnostic mes

sage like

Consistency failure detected at Selectl:

Selectl. control != Switchl. control

for the graph in figure 4.6.

4.3.2 Clustering BDF Graphs: Overview

The BDF loop scheduler is responsible for implementing the clustering algorithm

described in section 3.3.3. It does so byconstructing aparallel hierarchy ofclusters corre

sponding to the dataflow graph it is presented with, and by successively transforming this

group ofclusters by applying merge operations, which merge actors with the same repeti

tion rate into single clusters where possible, and "loop" operations, which introduce con

ditionals and loops into the graph. The most complex part of the implementation has to do

with constructing the relationships between the ports of the cluster actors (e.g. DFJTRUE

and DF_FALSE to indicate conditional ports, and DFJSAME to indicate ports with the

130

same value) and keeping them consistent. This is simply a matter of careful bookkeeping,

however.

The abstract class BDFCluster represents a cluster. There are three kinds of clus

ter, each derived from BDFCluster: BDFAtomCluster, which corresponds to a single

actor in the original graph, BDFClusterBag, a composite cluster with an internal sched

ule, and BDFWhileLoop, a special type of composite cluster that represents a do-while

loop. A cluster has a set of input and output arcs (class BDFClustPort), a loop count

(which may indicate that the contents are to be executed n times, for some n), and an

optional condition (which indicates that the cluster is only to be executed if some control

token has either a TRUE or a FALSE value).

The top level of the clustering algorithm is simple to describe: first a"cluster gal

axy" consisting of one BDFAtomCluster for each actor from the original universe is

built. We then alternate two passes, called the merge pass and the loop pass, until no fur

ther transformations can be made. An internal schedule is computed, using regular data

flow methods, for each composite cluster. Because each cluster consists only of actors

with the same repetition rate, these schedules have avery simple structure: they are data-

independent, and each subcluster willbeexecuted exactly once. All data dependencies are

represented either by the inserted "if-then-else" or "do-while" constructs, or remain visi

ble at the top level.

"Looped" clusters will have if-then-else or do-while constructs around them, or

else will have aconstant repetition factor. At this stage, some clusters may have multiple

subclusters that are conditionally executed based on the same condition, or on opposite

values of the same condition; amerge pass isrun at this point to combine them into larger

loops and into if-then-else statements.

If the top level isreduced to asingle cluster or isaregular dataflow graph, wecom

pute a schedule for the top level and we aredone. If not, and this is a simulation run rather

than acode generation run, we can execute the top-level clusters with adynamic dataflow

131

scheduler, treating each cluster as a single actor.

433 The Merge Pass

The goal of the merge pass of the BDF scheduler is to transform the input BDF

graph into anewBDF graph by combining adjacent actors into a single cluster, in such a

way that each cluster will have a static, data-independent internal schedule. In order to

merge two adjacent actors, several conditions must be met. It should be noted that these

conditions are sufficientbut not necessary.

First, we retain the conditions that pertain to cluster merging in regular dataflow

graphs; these are described indetail in section 3.3.2. Consider apair of adjacent actors we

wish to merge, consisting of a source actor S that produces tokens on an arc and adestina

tion actor Dthat consumes tokens from the same arc. Briefly, the merged actors must have

the same repetition rate and merging them must not cause deadlock, which may occur if

there is a path from the source actor to the destination actor that passes through athird

actor.

In addition, we obtain more conditions, imposed by the requirement that the new

graph we obtain by the merge operation must also be a BDF graph and that the internal

schedule be data-independent. We must avoid "burying" control arcs: if any of the arcs

that connect S and D have control ports for conditional ports of either S or D that will

remain external ports after S and Dare merged, we may not perform the merge unless the

control ports can be "remapped", or if the merged cluster can be turned into a do-while

loop with the correct semantics. Remapping of control arcs and the creation of do-while

loops is described later.

Normally, all arcs that connect the actors that are merged become internal arcs, not

visible from the exterior of the cluster.. There are two exceptions: first, if the control arc

that would be buried contains initial tokens, we permit the merge and transform the con

trol arc intoaself-loop of the merged cluster (the merge is permissible in this case because

the control arc remains visible). Second, to assure the data-independence of the internal

132

schedule, arcs with mismatched control conditions at either end will be also be trans

formed into self-loops. An example in which bothof these types of self-loops are created

appearsin section 3.3.3 on page 90.

This is a complex set of conditions that may require repeated searching of the

entire graph for paths. Fortunately, in most cases it canquickly be determined whether two

actors can be merged based onlyon local information. If all outputs of S connect directly

to D, or if all inputs to D connect directly to S, and there are no initial tokens on at least

one arc, then merging cannot possibly create deadlock. Since most dataflow actors have

only one output, only one input, or both, this is a common case. Furthermore, most arcs

are notcontrol arcs. Therefore the merge pass consists of a"fast part" that merges as many

pairs of adjacent actors as possible without performing any path searches or control arc

remapping, followed by a"slow part" that searches for indirect paths and remaps control

arcs where possible and necessary (after the size of the graph has already been reduced by

the application of the fast part).

Remapping of control arcs is accomplished by exploiting DF_SAME and

DF_COMPLEMENT relations on arcs. FORK actors have an indication that all arcs pro

vide the same signal, and otheractors may be designed to provide this indication as well.

For the NOT actor, the output arc is marked as being the complement of the input. If an

important control signal would be buried by merging two actors, but the same signal is

available via aDFJSAME relation on an arc that will remain external, the merge operation

mayproceed anyway and theporthole relations in thenewcluster are remapped to usethe

signal that remains external. To ease the operation of remapping control arcs, the class

BDFClustPort possesses an iterator mechanism that sequentially steps through every arc

that can be considered the same as, or the complement of, agiven arc, so that this complex

operation need be implemented only once.

43.4 The Loop Pass: Adding Repetition

It is the task of the loop pass to transform clusters of the dataflow graph toenable

133

subsequent merge passes to combine more clusters. To do this it must alter the clusters in

such a way that their repetition rates will match those of their neighbors. Three transfor

mations of a cluster are possible: acluster mayberepeated for a fixed number of times, a

cluster's execution may be made conditional on some control token, or a do-while loop

may be added around a cluster (so that the cluster is executed repeatedly until a desired

value appears on some control arc). Two of these three transformations cause control

loops to be added to theexecution of the graph, hence the name "loop pass."

The first transformation, corresponding to iteration of a clustera fixed number of

times, is easiest to describe. There are two cases: integral rate conversions, in which the

number of tokens transferred at one end of an arc evenly divides the number of tokens

transferred at the other end, and nonintegral rate conversions, in which this condition does

not hold. These cases are handled exactly the same way as they are for regular dataflow

graphs in the algorithm described in section 3.3.2. The only additional considerations are

these: we do not loop a cluster to match the rate of its neighbor by inserting a constant

loop factor if there is also a difference in control conditions (one end of the arc is condi

tional but the other isnot, or the two ends are controlled by different conditions). Only "if'

conditions and "do-while" loops may be inserted in such cases. Second, in regular data

flow graphs certain graphs with feedback loops containing delays can be looped given

knowledge of the repetition count of each actor (arcs with "enough delay" can be com

pletely ignored, as discussed in [Bha93b]); these techniques are not applicable for BDF

graphs so clustering must sometimes be more conservative.

43.5 The Loop Pass: Adding Conditionals

In addition toadding repetition tocause acluster tomatch the rate of its neighbors,

the loop pass may alsoaddconditionals. Given an arc whereone end transfers tokenscon

ditionally and the other endtransfers tokens unconditionally, and the constant term is the

same (e.g. actor A always produces 2tokens, actor Bconsumes 2 tokens if its control port

provides aTRUEtoken) we have apossible candidate for making acluster conditional. In

134

many cases, if a cluster is made conditional we must add an extra arc that serves to pass

the conditional token from its source to the cluster that requires it. An example of this

appears in section 3.3.3. To accommodate this, theimplementation provides amechanism

for creating duplicate arcs to pass conditions from one cluster to another.

If the control arc is on a self-loop, we may wish to avoid creating a conditional

construct so that a do-while may be created instead. Consider the example in figure 4.7,

which might arise in the process of clustering a system with data-dependent iteration. It

would be possible to add an "if" around clusters 1 and 5, and then merge them into the

main cluster. We would then add a"while" around the whole system. Butthen actors 1and

5 would both appear inside both an "if" statement and a"while" statement, even though

they are each executed exactiy once. For now, we avoid creating aconditional construct if

the if-condition matches the state of the initial token on the feedback arc, sincethis means

thata "do-while" form of clustering is likely to succeed.

43.6 Loop Pass: Creation of Do-While Constructs

Do-while constructs, in which acluster is repeatedly executed untilacontrol token

with a particular value is produced on some control arc, may be created in either of two

ways. The first possibility is that an actor that contains acontrol signal on aself-loop may,

if conditions are right, be transformed by adding a do-while condition around it. The sec

ond possibility is that apair ofadjacent actors, inwhich one produces acontrol signal and

Figure 4.7 Apartially clustered do-while system. At this point, it would be possible to
make either actor 1 or actor 5 conditional so that a subsequent merge pass can
combine them with the main cluster. We prefer to putonly the main cluster inside
the while loop to more accurately reflect the controlstructure.

135

one consumes it, may be simultaneously "merged" and "looped" to produce a do-while

loop.

There is a natural tension between the creation of an "if* construct and the creation

of a"while" construct. In many dataflow graphs, it is possible tocreate either type ofcon

struct in the process of obtaining acomplete clustering. Consider the following graph:

0

§
s
co

It is identical to figure 3.7 except that actor 5 is now homogeneous. Clearly wecould clus

terthis graph by the introduction of conditionals, obtaining a schedule like

(l,2,3,if (cond) then 4 else 5)

But the clustering we obtained for figure 3.7 in section 3.3.3 would work as well; in this

case, we would obtain

do { 1,2,3, if (cond) 4} while cond; 5

We could also obtain the alternative clustering

do { 1,2,3, if(!cond)5 } while !cond; 4

Our implementation favors the creation of "if" over "while" where possible as it

leads to bounded-length schedules where they exist. It is possible that one of the latter

schedules may be preferable insome circumstances. The third schedule would be prefera

ble, for example, if the task is to repeatedly execute the graph until actor 4 has been exe

cuted some number of times.

If a pair of actors meet all the conditions for merging other than that the merge

operation would bury acontrol arc, it is possible that the pair may still be merged by the

creation of a while loop. The while loop will have the form

136

do {S; token = S.control; D> while (token = value)

The code for insertion of do-while loops determines whether the insertion of this type of

loop is legal. For it to be permissible, all arcs of the source and destination actors that

remain external after the merge must be conditional on the control signal, and conditional

in the same way; they will become unconditional after the addition of the while loop and

the direction of their conditionalitywill determinethe terminationcondition.For example,

in the process of clustering the example in figure 3.7 we obtained the following intermedi

ate clustering:

Here we are considering merging actor 2 with the cluster at the center. There will

then be one external port, and it is indeed conditional on the control signal that connects

the actors to be merged. The fact that it produces output when the signal is FALSE deter

mines the sign of the loop termination condition: the loop executes until a FALSE token is

produced. Since there will be exactly one FALSE token, the conditional goes away, and

we obtain the clustering given below:

repeat (2,'
until bLw«v , \ ' j^Y-^(7)

The second type of do-while loop is created from a single actor or cluster. This sin

gle actoralways has one or moreBoolean control signals in the form of self loops, so that

the sameactor both produces and consumes the control signal. Such actors may possess

other self loops as well. In order to create a do-while in this circumstance, all external

ports must be conditional with the same sign (TRUE or FALSE) and depend either on the

samesignalor on delaysof the same signal. Dependence on delays is permissible because

the loop will generate one cycle of both the signal and all of its delays. After the while

137

loop is added, the new cluster will be unconditional.

If the actor we started with contains self-loops, or the pair of actors we started with

has additional conditional arcs that pass between the actors to be merged, we must also

check that the loop created will be "proper", in the sense that it is bounded. Doing so

forms a simplified case of the general state traversal problem. We currently handle only

the cases in which there are exactly two states, one corresponding to the production of a

TRUE token on the control arc and one corresponding to the production of a FALSE

token. Other cases are objected to by the current implementation.

4.4. GRAPHS LACKING SINGLE APPEARANCE SCHEDULES

Some BDF graphs cannot becompletely clustered, sothat after the clustering algo

rithm has completed its work, multiple clusters are left at the top level and the top-level

graph is not a regular dataflow graph. In some cases, even though the graph cannot be

reduced to a regular form, a static schedule (one consisting only of sequential execution,

fixed-repetition loops, if-then-else constructs, and do-while constructs) may sometimes

still exist. This happens for BDF graphs that, in the terminology of [Bha93b], lack single

appearance schedules. One such example appears in figure 4.8. To avoid having acompli

cated maze of wires, the graph has beensimplified; actor E's output is connected to a six-

way FORK actor that passes identical control streams to each of the six dynamic actors

(three SWITCH and three SELECT actors). This graph has an interesting property: based

on local information, each connection appears to be "logically homogeneous" in that the

source star produces exactiy whatthe destination star consumes. Despite this, the order of

execution must depend on the particular Booleanvalues generated.

The graph can be partially clustered; actors B and C may be combined with the

SWITCH and SELECT actors that are adjacent to them, as can actors A and D. Further

more, the actor E and the FORK can becombined with thecluster containing actor A. The

resulting graph cannot be clustered further, but nevertheless the graph can be shown to

have a bounded-length schedule. In fact, the following schedule executes the graph cor-

138

FORK

O
LU
—I

o
LU
-J

FLU

B
O

'An

o
t

o
LU
_J

-toJTU-l

Figure 4.8 A BDF graph that lacks a single appearance schedule. Certain arcs have
been omitted from the graph to make it easier to understand: the FORK actor con
nected to E, whose outputs are not shown, passes the stream of tokens from actor
E to the control input of each of the SWITCH and SELECT actors. Crossing lines
do not imply a connection.

rectly:

A, E, FORK, SW1;

if (E.output) {SEL2,B,SW2,SEL3,C,SW3>

else {SEL3,C,SW3,SEL2,B, SW2}

D

Note that six actors appear in the schedule twice. The total number of times each actor is

executed in the schedule is exactly one, but since the order of execution and data depen

dencies depend on the value of the Boolean token, we do not have a data-independent

schedule. Our current implementation does notgenerate such schedules, though they can

be generated by a process we call "node splitting" that has been designed but not yet

implemented.1 It is applicable for graphs with bounded-length schedules that cannot be

completely clustered. We compute the repetition vector, considering it as a list of tasks to

be performed, and attempt a topological sort. In the above example, each actor is to be

executed once. We succeed in scheduling A, E, FORK, and SWTTCHl, but find that the

1.In theliterature of optimizing compilers for procedural languages, "node splitting" refers to a
process of codeduplication thatconverts unstructured codewithmany"gotos" to astructured form.
This procedure was firstdescribed in [AIT72].

139

SELECT2 actor can onlybeexecuted conditionally. We therefore split it intotwo separate

tasks to be performed, corresponding to if (E.output)SEL2 and if (!E. output)-

SEL2. We then find that wecan schedule the former task. Weproceed in this manner, split

ting nodes into two tasks only when otherwiseno actors can be executed, until all actors

have been scheduled thenumber of times required. This operation succeeds in scheduling

any graph that has a valid bounded length schedule, but in code generation applications,

code size may increase considerably unless subroutine calls are used to avoid duplication

of code.

4.5. MIXING STATIC AND DYNAMIC SCHEDULING

If, after clustering, the resulting BDF graph does nothave abounded length sched

uleand we must execute the graph anyway, dynamic scheduling is required, together with

dynamic memory allocation oncertain arcs. When executing dataflow graphs in thesimu

lation environment, this requirement is not a problem; it is already supported for general

dynamic dataflow actors. To be asefficientaspossible, we wish for the clusters to be con

sidered atomic actors from the point of view of the dynamic scheduler. When the dynamic

scheduler selects acluster to berun, thecluster's statically computed schedule is executed.

This kind of behavior is exactly what is provided by Ptolemy's wormhole mecha

nism, inwhich a portion of the graph that follows one computational model appears as an

atomic actor inside alarger portion of the graph that follows another computational model.

Clusters have some of the features of wormholes; for example, BDPClusterBag has an

internal scheduler, and all clusters appear as atomic actors to the outside. However, clus

ters donothave internal Target objects, and there are noEventHorizon objects tocon

vert between Particle communication protocols because there is no difference in

protocol. Accordingly, clusters are designed to serve as "lightweight wormholes" — in

particular, cluster boundaries are treated exactly likewormhole boundaries by all schedul

ers. Given this behavior, all that is necessary to arrange for mixed static and dynamic

scheduling is to arrange for the dynamic scheduler to run the galaxy containing the top

140

level clusters, and to assure that the clusters, when run, obey the protocol expected of

dynamic actors by the dynamic dataflow scheduler.

4.6. BDF CODE GENERATION FOR A SINGLE PROCESSOR

We now discuss the modifications to the Ptolemy code generation scheme

described earlier to permit BDF code generation for single-processor targets. The design

goal was to permit all targets to use dynamic actors,not to require that special new targets

or new domains be provided. Accordingly, CGStar, the base class for all code generation

stars, is now derived from DynDFStar, and C(3>ortHole is derived from DynDFPort-

Hole. This means that all code generation domains now permit dynamic actors such as

SWITCH and SELECT. However, it is not currently possibleto generatecode correspond

ing to Ptolemy's dynamic dataflow scheduler or that handles dynamic memory allocation

for arcs; therefore, systems of code generation stars that cannot be completely clustered

are rejected as errors.

4.6.1 Additional Methods for Code Generation Targets

So that code can be generated corresponding to the structure built up by the BDF

loopscheduler, CGTarget andderived Target classes weregivennewmethods thatgen

erate the correct code for if-then-else constructs and do-while constructs. There are five

newmethods, as follows. Separate implementations of these methods mustbe supplied for

each output language targeted.

void beginlf(PortHole& cond, int truthdir,

int depth, int hav&Else);

This method begins an "if-then"or "if-then-else" statement. Subsequent codegen

eration corresponds to code to be executed if the condition cond's value matches the "truth

direction" truthdir. The depth parameter indicates the nesting depth; if haveElse is TRUE,

there is an "else" part to the statement.

void beginElse (int depth) ;

This method begins the "else" part of an "if-then-else" statement that has previ-

141

ously been begun with abeginlf call. The depth parameter will match that of the previ

ous beginlf call that corresponds to this "else" part. Subsequent code generation

corresponds to code that belongs in the "else" part of the statement.

void endlf (int depth)}

This method completes the "if-then-else."

void beginDoWhile (int depth);

This method begins a"do-while" statement. The condition is provided atthe end.

void endDoWhile (PortHolefi cond, int truthdir,
int depth) ;

This method ends the "do-while" statement. The loop will continue to execute as

long as the state of the condition cond matches the truth direction specified by truthdir.

4.6.2 Efficient Code Generation for SWITCH and SELECT

It would be possible to generate code for SWITCH and SELECT actors that reads

the control token and, based on its value, copies a token between the appropriate pair of

arcs. We can do much better, though. Consider the special case in which all ports con

nected to the SWITCH or SELECT actor transfer only one token. This will be true if all

actors adjacent to the SWITCH or SELECT are homogeneous, for example. In this case,

all arcs connected to the actor except for the control arc can share the same memory and

no code is required to implement the SWITCH or SELECT function. The token on the

control arc will still be used; itwill be referred to bythe control construct that implements

the"if-then-else" or"do-while" statement. For example, in thecanonical if-then-else con-

142

struct below

where all actors other than SWITCH and SELECT are homogeneous, we can allocate a

single memory location for the value produced by A, and a single memory location for the

value consumed by D, and arrangeto have the actors B and C share these locations, which

is feasible because only oneof thetwo actors will execute. The tokengenerated by actor K

determines which of B or C will execute.

In order to have all the arcs share the same buffer, we require thatthe data input(s)

and output(s) of the SWITCH and SELECT be of size one. The current implementation

alsorequires that the control arc have only one token, so that it will be a simple matter to

find the control token that controls execution. These restrictions would appear to be a

severe limitation, but in practice they are easily met: if a non-homogeneous actor is con

nected to a SWITCH or a SELECT, the system simply inserts a dummy homogeneous

actor that performs a copy operation in between.

It would be possible to remove some of the restrictions on dynamic actors. Con

sider the SWITCH actor, and assume that one or more of the data arcs transfer more than

one token per execution. We can still use one buffer for all three arcs; this would be

accomplished by having the actors that read from the TRUE output and the FALSE output

of the switchshare aread pointer. Since the star connected to theTRUE output is not exe

cuted unless the control token is TRUE, and similarly for the starconnected to the FALSE

output, sharing the read pointer assures that thedata are properly "consumed" by the star

they are intended for.

143

The data input and the two outputs of the SWITCH, as well as the data inputs and

the output of the SELECT share memory by use of the Ptolemy embedded buffer mecha

nism, which is described in detail in [Pin93]. The control input to each actor has its own

buffer.

4.7. EXAMPLE APPLICATION: TIMING RECOVERY IN A MODEM

This section will consider a nontrivial application of BDF scheduling of a dataflow

graph: timing recovery in a modem. The application models baud-rate timing recovery in

a digital communication system using an approximate minimum mean square error tech

nique. This example, as implemented in Ptolemy, was presented in [Buc91a]; the underly

ing digital communication theory is presented in detail in [LeeSSb]. The example appears

in figure 4.9.

An amplitude-shift keyed (ASK) signal is generated by the "ask" galaxy on the

left. The bit source provides a source of random bits; the table lookup actor and pulse

ASK signal source

pulse
shaper

display

^SK

signal
source

ASK Receiver with
approximate MMSE timing recovery

BDF version

estimate

derivative

signal
display

baud-rate
baud-rate
samplers

*
r-

er~w
display

t£
timing
control

ra^mJ

baud-rate receiver

/J_J timing
V' error

>

®-fiTr-e±§>,-,f» > -e^fj-c—^ estimate

wraparound
detector

nominal frequency

Figure 4.9 APtolemy screen dump of an applicalioTroTBBFg^
in a modem. The top-level system is at the upper right; the other three windows
represent subsystems (galaxies).

decision

ED-
display

144

shaper provide for modulation, resulting in a simple baseband, binary-antipodal signal

with a 100% excess bandwidth raised cosine pulse. The sample rate is eighttimes the baud

rate, and may be controlled by adjusting the parameters of the pulse shaping filter. The

derivative of the signal is estimated using a finite impulse response (FIR) filter in the top-

leveldiagram (the universe). The derivative and thesignal sample itself are sampled by a

signal provided by the "timing control" subsystem; they will either be discarded (at con

vergence, about seven out of eight times) or passed on to the baud rate subsystem (about

one out of eight times) by a pair of SWITCH actors. This baud rate subsystem estimates

the timingerror anduses this estimate to control a phase locked loop. The key to estimat

ing the error is that, if the timingis correct, we should see full-scale values (plus orminus

one) at thedecision device (the "slicer") and a slope (derivative) of zero. Accordingly, the

error estimate is formed by multiplying theestimated derivative by theerror atthe slicer.

The error estimate is upsampled to the original sample rate at the SELECT actor

by adding zeros corresponding to the missing points. It is then used to adjust a phased

locked loop implemented in the "Timing Control" galaxy. A simple voltage controlled

oscillator is madeusing an integrator with limits that is allowed to wrap around when the

limits are exceeded. The wrap-around is detected and used as the signal to indicate that a

baud-rate sample should be taken. Increasing the input to the VCO integrator (middle of

the lower left window) causes the time between samples to decrease.

Executing the simulation generates four plots, corresponding to the four graph

stars. These plots appear in figure 4.10. The first plot shows the line signal and its esti

mated derivative. The second and third plots show the timing control signal and the error

signal usedby the phase locked loop, respectively. The final signal shows the actual sam

ples, representing the received digital data. Ideally the values of these samples will be 1

and-1.

In [Buc91a], thesimulation of this system under Ptolemy's DDF and SDF domains

was described. Here the three subsystems were statically scheduled and the top-level sys-

0.00

-0.5

1.00

o.oo

-1.00

Line signal and its estimated derivative

0.00

0.00

0.00

<>-«-

0.00

500.00

Timing control

500.00

PLL error signal

JUL
T

500.00

Baud-rate samples
ooo no Qoo Qa0—jaoo 0- o - 0 0 odo rtocO oo ooo—eet-fr0" - ~ -^D O"^ uO 0 0

0 0 0 o

0 0 o

-e *% o Q "-.°0 00 00- •**—• o oo—oeee—9-ee-

50.00

145

derivative

signal

adjustment

control

Figure 4.10 Plots generated bythe Rolemy timing recovery model of figure 4.9. The
plots showthe first 80 baud-rate samples. Thesample clock is eight times the baud
rate, hence the first three plots have eight times as many samples as the last plot.

tem was dynamically scheduled. However, given aBDF implementation, it is possible to

cluster thegraph to find an efficient set of control structures that permit a lower-overhead

simulation, or to generate code for an even more efficient execution, either in C or in

assembly language.

We now describe the clustering of the graph bythe BDF loop scheduler. For simu-

146

lation purposes, it is possible to declare that thesubsystems are regular (SDF) as was done

in [Buc91a], but it turns out to be more efficient to use BDF scheduling at all levels to

avoid the excess overhead of communicating across wormhole boundaries. This is

because the BDF loop scheduler generates a static schedule for all regular subsystems

found in the graph.

The control structure of thegraph is notextremely complex; there is a sample rate

change, because the ASK subsystem produces eightsamples perexecution and theFORK

actor consumes one, and there is an if-then-else construct formed by the pair of SWITCH

actors and the SELECT. Furthermore, the presence of the four delay tokens complicates

the analysis somewhat, though for the most part, these complications come into play only

for code generation, since they affect the buffer allocation for arcs.

The system has thirty-six actors, including four implicit FORK actors inserted to

permit the same actor output to connect to multiple inputs. The first merge pass succeeds

in reducing the universe to seven clusters. This clustering is shown in figure 4.11. Most

merging is accomplished by the "fast merge pass" using only local information; to com-

ASK Receiver with
approximate MMSE timing recovery

Eversion

Figure 4.11 Clustering caused by applying the first merge pass. Clusters are indicated
by the two loops marked BAG1 and BAG2; also, the subsystems "ASK" and "baud"
become single clusters, as do the two "black holes" and the DC star.

147

bine the two SWITCH actors into the "BAGl" cluster, it is necessary to remap the control

arcs for the "baud" and the "black hole" actors (the latter actors are the inverted triangles

attached to the FALSE outputs of the SWITCH actors). These arcs are controlled after

clustering by the arcthat connects to the control input of the SELECT actor that is part of

the cluster "BAG2." Although they have the same repetition rate, BAGl and BAG2 can

not be combined into one because this would cause deadlock.

The first loop pass makes the two black hole actors, the "baud" cluster/subsystem,

and the DC actor into conditionally executed clusters. To do so, a dummy arc is created

connecting these clusters with the BAGl cluster; this arc provides a copy of the control

signal. BAGl is not looped to match the rateof the "ASK" subsystem because of the need

to "loop" the "baud" subsystem first. After the loop pass, the next merge pass is able to

combine BAGl, BAG2, and all the conditional subsystems into one. There are now only

two clusters: the ASK cluster/subsystem and everything else. A "repeat 8 times" loop is

put around the "everything else" cluster, and the system has now been completely clus

tered. At this stage, each of the black hole actors, the DC actor, and the"baud" subsystem

is in adifferent "if' statement; theparallel loop merge pass combines these intoasingle if-

then-else statement. Here is a simplified version of the generated schedule, in which sub

systems arewritten as single actors and automatically inserted forks are omitted:

ASK;

repeat 8 times {

Fork3, TimingControl, FIRl, XMgraph;
Switchl, Switch2;

if (TimingControl.output) Baud;

else { BlackHolel, BlackHole2, DC }

Selectl; Fork; Xgraph3

}

When code is generated for this system, no code is required to implement the

FORK, SWITCH, and SELECT actors. However, because of initial delay tokens, it turns

148

out that one of the SWITCH actors and the SELECT actor are connected to buffers that

require two tokens, violating the assumption used to implement these actors with no code

and with embedded buffers. This problem is solved by automatically inserting a pair of

COPY actors, whose function is to generate code to copy a single token. Insertion of these

extra actors implies the creation of two extra buffers. In effect, we have added a small

amount of code to createtwo simple delay lines.

4.8. SUMMARY AND STATUS

At the present time, Ptolemy's ability to execute BDF actors in a simulation mode

is nearly complete. Dataflow graphs with mixtures of BDF and SDF (regular) actors are

clustered as much as possible, and the clusters are dynamically executed if the algorithm

does not successfully reduce the graph to a single cluster. Other than the special case of

detennining that do-while loops are valid, the state traversal algorithm described in sec

tion 3.4.1 is not implemented.

Code generation using the BDF model is currently limited to C language genera

tion for asingle processor, and assembly language BDF code generation will becompleted

shortly.

5

EXTENDING THE BDF MODEL

God made the integers; all else is the work ofman.

— Kronecker

149

This chapter describes an extension of the token flow modelthat permits a larger

class of dynamic dataflow actors to be considered. This class differs from BDF actors

such as SWITCH and SELECT in that control tokens are permitted to have arbitrary inte

ger values, notjust TRUE and FALSE. We will find that, for the most part, the analysis

techniques developed in previous chapters apply with little change to this extended

model, which we shall call integer-controlled dataflow, or IDF.

5.1- MOTIVATION FOR INTEGER-VALUED CONTROL TOKENS

While the Boolean-controlled dataflow model is Turing-equivalent, it does not

directly express certain actors that have been found to be useful. Most of these actors

have the property that the control token is an integer rather than a Boolean token, which

150

might be used in two ways:

• Specification of the number of tokens produced orconsumed on some arc (e.g. the

REPEAT or LAST_OF_N actor), or

• Enabling or disabling the arc depending on whether the token has a specific value

or belongs to some set of values (as in a multi-way CASE construct).

Note that it is not difficult to synthesize either a REPEAT actor or a multi-way

CASE from the SWITCH, SELECT, and SDF actors. In some cases, however, the con

structs thatnaturally arise for iterations have shortcomings. Consider the design of a sub

graph that, given aninteger-valued token with valuen,computes a token with value

8(n) = £/(/)
loO

(4-1)

assuming that the function f(n) is computed by an atomic actor. Let us assume

that the function/is relatively expensive to evaluate, and we wishto leave open the possi-

ypg_
JUSELECT-2D2 oc,-c^, * D1

output

(b)

Figure 5.1 The first subgraph (a) implements the function g(n) described above

using BDF actors. The actors SWITCH-2 and SELECT-2 switch two data streams
based on one control token, e.g. SWITCH-2 copies D1 to either T1 or F1 and cop
ies D2 to either T2 or F2. The system on the right (b) computes the same function
using coarser-grained IDF actors.

151

bility that the / evaluations be computed in parallel. We could produce a subgraph that

implements this function using BDF and a DO-WHUJE loop (see figure 5.1 (a)), but this

graph implies a serialexecution of the/actors, and the data dependency between the itera

tions is difficult to analyze away. The parallelism is more naturally expressed with actors

that have integer control tokens. Consider two such actors: one that, given an integer value

n, produces n output tokens with values ranging from 0 to n - 1, and one that, given an

integer value n on its control port,reads n tokens from its input data port and outputs their

sum. Let us call the former actorIOTA (after the operation from the APL languagethat it

resembles) and the latter actor SUM or Z. Then the simple system in figure 5.1 (b) natu

rally models the solution.While it is truethatwe could produce BDF systems correspond

ing to the actors IOTA and SUM, it would be desirable to have a theory that could

represent such actors directly, rather than as composite systems of simpler actors. How

ever, the BDF model has one very significant advantage: the BDF system requires only

onelocation for eacharc, while the IDF systemrequires memory proportional to n.

We therefore wish to extend the BDF model to permit integer control tokens. We

will consider a set of actors withthe following properties: thenumber of tokens produced

or consumed on any arc is either a constant, or a function of an integer-valued control

token on some other arc of the same actor. Only the following functions are permitted:

TVpe 1 (CASE): the number of tokens transferred is either a constant, or zero,

depending on whether the value of thecontrol token is amember of aspecified set.

Type 2 (REPEAT): the number of tokens transferred is a constant multiple of the

control token.

Given any specified encoding of TRUE and FALSE values into integers, we see

that BDF actors areIDF actors. If only Type 1 functions are considered, thereis not much

new in the IDF theory: we simply have mapping functions to turn integer tokens into

Booleans, and, with respect to any controlled arc, acontrol token may still be regarded as

"true" or "false". However, relations among Booleans may bemore easily discovered and

152

ni

I
CASE

DEF,

rrf
Pi0 Pil l-piO-Pil

Figure 5.2 The CASE and ENDCASE actors, annotated with IDF analysis quantities.
This particular pair of actors implementa three-way case, however, any number of
outputs are admissible.

represented in some cases given CASE arcs.

We introduce two new dynamic dataflow actors, which we call CASE and END-

CASE, as shown in figure 5.2. CASE is the IDF analog of the SWITCH actor, and END-

CASE is the IDF analog of the SELECT actor.

5.2. ANALYSIS OF IDF GRAPHS

Where in BDFtheorywe use pn to represent the proportion of tokens on stream n

that are TRUE, we instead use pnm to represent the proportion of tokens on stream n that

have value m. The other interpretations for the p quantities we considered for the BDF

case, such as long-term averagesand probabilities, could be used as well for the IDF case,

of course.The analysis problems aremuch the same asbefore: the procedure for determin

ing whether a graph has a bounded length schedule is the same as before, and the cluster

ing algorithm is easily adapted to handle "CASE arcs". The result is that we now build

multi-way case statementswhere in BDF we built if-then-elsestatements, so we have gen

eralized from a two-way conditional branch to an Af-way conditional branch.

Using the CASE and ENDCASE actors,we can produce the three-way branch ana

log to the canonical if-then-else construct, as shown in figure 5.3. By a straightforward

generalization of the techniques of section 3.2, we can determine the repetition vector for

the graph; it is simply

P" 1-/>..-PiQ-Pil

153

Figure 5.3 Athree-wayCASE statement. The numbers adjacent to arcs and on actors
merely identify them; all actors other than CASE and ENDCASE are homogeneous.

HP) =*[l lPxoPn (l-Pio-Pn) 11l] («)

By analogy with BDF theory, we now interpret expressions like p10 as the number

of tokens oncontrol stream 1with value 0 during acomplete cycle divided by the number

of tokens on stream 1in acomplete cycle, and then find the smallest integer solution. We

then find that there is only one control token per complete cycle and the repetition vector

is

HP) =[l l«o«i (i-rto-Ki) 111] (4-3)

where nQ is 1if the control token is0 and 0 otherwise, and nx is 1if the control token is 1

and 0 otherwise. Furthermore, it is a simple matter to generalize the clustering algorithm

of section 3.3 to cluster graphs such as this to form multi-way case statements, like the

"switch" construct in the C programming language.

Type 2 arcs, in which the number of tokens transferred onan arc is proportional to

thevalue of an integer control token, introduce anew complication into IDF theory. If we

have even a single type 2 arc in the system, we immediately have unbounded memory,

because there is no limit on how large an integer control token's value might be1. But

1.For certain actors, it mightbe possible to exploitproperties of the actor's semantics to avoid
unbounded memory. For example, all outputs ofaREPEAT actor have the same value, and depend
ing on the context, it might be possible touse a size-1 shared bufferto hold thevaluerather thana
buffer of unbounded size.

154

there arevery distinct differences between a case like the IDF graph of figure 5.1 (b) and a

BDF graph with data-dependent iteration. The BDF graph may represent a system that

never halts; however, we can be assured that the IDF system always terminates. With the

IDF system, it is also a simpler matter to determine the number of times each actor is exe

cuted. While the cycle length and the memory required are not absolutely bounded, both

are bounded if we possess an upper bound on the value of the computed tokens, and fur

thermore they are guaranteed to be finite even without such a bound. Thus for IDF we

have an important distinction between "bounded length schedule" and "finite length

schedule" and we can speak of bounds that are functions of the maximum values of certain

control tokens.

It may be possible to combine the advantages of IDF and BDF in cases like figure

5.1. Note that we could construct subsystems with behavior corresponding to the IOTA

and SUM actors of figure 5.1 (b) out of BDF actors. IDF analysis permits us to easily

determine the number of executions of each actor. We can now remove the cluster bound

aries of the IOTA and SUM systems and schedule the collection of actors as BDF actors,

thereby assuring that memory is bounded. What we have accomplished that could not be

obtained by BDF theory alone is that we know the number of times the actors are exe

cuted; since BDF knows only about relationships between Boolean tokens and knows

nothing about the properties of the DECREMENT and COMPARE-TO-ZERO actors that

might make up IOTA and SUM, it is not capable of reaching these conclusions.

6

FURTHER WORK

Graduate? But I'm not done yet!

— J.T.Buck

155

It is rare indeed when any line of research can be considered completed, andthere

is much remaining work to do on the token flow model. This chapter summarizes the

principal lines of investigation now being considered as an answer to the question

"What's next?". There are theoretical issues having to do with answering openquestions

about the material presented in Chapter 3, implementation of the current theory is incom

plete, and there is also the task of extending BDF to fully support parallel scheduling.

The last topic, parallel scheduling ofdynamic dataflow graphs, is worthy of athesis topic

all on its own, and [Ha92] is such athesis, and has abibliography pointing to other work

in the field. To avoid significantly expanding thesizeof this thesis for little gain, we will

not attempt to duplicate the full treatment of the topic given there,but rather we will sim

ply summarize possible approaches tothe use of BDF theory for parallel scheduling.

156

6.1. IMPROVING THE CLUSTERING ALGORITHM

There is a striking contrast between the completeness of the development of the

loop scheduling theory in [Bha93b] and the clustering algorithm presented in section 3.3.

To summarize, we find thatwe cancompletely cluster regular dataflow graphs into single

appearance schedules provided that they have no tightly interdependentcomponents, and

we have algorithms for finding such components. Even if tightly interdependent compo

nents exist, we canstill find efficientlooped schedules for theremainder of the graph, with

repeated appearances only for the actors that appear in the tightly interdependent compo

nents. A family of divide-and-conquer algorithms is presented that decomposes the loop

scheduling problem for regular dataflowgraphs into a set of smaller problems.

No such complete theory exists for the BDF loop scheduling problem; instead, we

havepresented a series of transformations that simplify the structure but thatmay not suc

ceed in completely clustering it, withoutany sort of precise indication of the properties of

the class of graphs thatcan be completely clustered. One possible line of investigation is

to find divide-and-conquer algorithms for BDF graphs that attempt to separate out the

parts of the graph whose execution depends on particularBoolean streams.

6.2. PROVING THAT UNBOUNDED MEMORY IS REQUIRED

In section 3.4.2, we provide a technique for proving that a BDF graph requires

unbounded memory. It appears that the fourth condition we give for proving that

unbounded memory is required, given that we can reach state p' from state p, is too

strong. Is it really required that we check every intermediate state as described on

page 98? This check may be expensive in some cases, and may not even be needed given |

that the first three conditions are satisfied. At minimum, it should be possible to find a

weaker condition.

6.3. USE OF ASSERTIONS

We have at several points discussed the use of user-supplied assertions to provide

the BDF analysis system with more information than it can directly obtain from the graph.

157

One assertion that is relatively easy to use is the statement that two Boolean streams are

equal. Such assertions can be added when a system is found to be only weakly consistent

because the system could not prove two streams to be equal, as in the example in figure

4.6, asdiscussed in section4.3.1. Given this type of assertion, the clustering algorithm can

usually reduce the graph to standard control structures.

There is another type of assertion thatmay be useful in cases wherethe state space

would otherwise be unbounded, for example in figure 3.5. If we knew, for example, that

the Boolean control stream in this actor could never contain more than 10 TRUE tokens in

a row, then the graph could be scheduled in bounded memory. The state space in such

cases could be quite large, and it would be desirable to find efficientways to handle such

cases in an efficient way.

6.4. PARALLEL SCHEDULING OF BDF GRAPHS

Parallel scheduling of dynamic dataflow graphs is a topicworthy of a dissertation

in itself; in fact, my colleague Soonhoi Ha recently completed such a project [Ha92]. It

has not, however, been the main focus of research on the token flow model, which has

been concerned mainly with the consistency properties of the graphs and with the genera

tion of sequential schedules. However, it has always been ourintention to extend the anal

ysis principles of the token flow model toencompass parallel scheduling, and accordingly

this section points out directions for parallel scheduling of such graphs. This section is

unavoidably sketchy and lacking in detail.

The first possibility is to build onthework of Lee [Lee88] and Ha [Ha91], [Ha92],

in which standard dynamic constructs are scheduled using quasi-static methods. These

techniques produce parallel schedules based on the simplifying assumption that the con

trol stream that controls each dynamic construct (if-then-else, multi-way switch, do-while,

or recursion) has known statistics and that these streams can be considered as being inde

pendent ofeach other. These assumptions are clearly violated in practice, but at least yield

agood starting point. By coupling the BDF clustering algorithm (and its generalization to

158

IDF) with this quasi-static scheduling framework, a greater variety of control structures

could be automatically recognized.

For the case of BDF graphs with bounded-length schedules, another approach is

feasible that does not require any assumptions about the statistics of the Boolean control

streams. In this approach, which is appropriate for hard real-time systems in which dead

lines must be met, our scheduling criterion is to minimize the worst-case execution time of

the schedule, or to produce a schedule thatassures thata deadline is met regardless of the

outcomes of the Boolean control streams. For all but the most trivial cases, either of these

criteria lead to anNP-complete problem, meaning that it belongs to aclass of problems for

which theonlyknown solutions require time that is exponential in the sizeof theproblem

(see [Gar79] fora thorough discussion on the theory of NP-completeness). We must there

fore settle for heuristic, suboptimal solutions.

It appears reasonable to generalize heuristic algorithms based on the critical path

algorithm [Ada74], which generates near-optimal schedules when communication costs

arenot included, or the various heuristicalgorithms discussed in [Sih91] that do take com

munication costs into account, to work with the annotated acyclic precedence graphs dis

cussed in section 3.2.2. In effect, we generate one schedule for each of the possible

Boolean outcomes. There are some complications added by the requirement thatBoolean

control tokens be communicated between processors when a computation on one proces

sordepends on Boolean tokens generated on another processor. This may effect the com

munication costs generated by certain partitions.

159

[Ack79] REFERENCES

W. B. Ackerman and J.B. Dennis, "VAL — A Value-oriented Algorithmic Lan

guage; Preliminary Reference Manual," Laboratory for Computer Science MIT/

LCS/TR-218, MIT, 1979.

[Ada74]

T. L. Adam, K. M. Chandy, andJ. R. Dickson,"A Comparison of List Schedules

for Parallel Processing Systems," Communications of the ACM, 17(12), pp. 685-

690, December 1974.

[Aga93]

A. Agarwal, J. Kubiatowicz et al., "Sparcle: An Evolutionary Processor Design

for Large-Scale Multiprocessors," IEEE Micro, June 1993.

[Aho86]

A. V. Aho, R. Sethi, J. D.Ullman, Compilers: Principles, Techniques, andTools,

Addison-Wesley, 1986.

[A1172]

F. E. Allen and John Cocke, "Graph-Theoretic Constructs for Program Flow

Analysis," IBM Technical Report RC 3923 (17789), IBM Thomas J. Watson

Research Center, July 1972.

[Amb92]

A. L. Ambler, M. M. Burnet, B. A. Zimmerman, "Operational Versus Defini

tional: A Perspective on Programming Paradigms," Computer, September 1992.

[Arv80]

Arvind and R. E. Thomas, "I-Structures: AnEfficient Data Type For Functional

Languages," Technical Report LCS/TM-178, MIT, 1980.

[Arv82]

Arvind and K. P. Gostelow, "The U-Interpreter," Computer, 15(2), February

160

1982.

[Arv86]

Arvind and D. E. Culler, "Dataflow Architectures," Annual Review in Computer

Science, Vol. 1, pp. 225-253,1986.

[Arv90]

Arvind and R. S. Nikhil, "Executing a Program on the MTT Tagged-Token Data

flowArchitecture,"IEEE Trans, on Computers, 39(3),pp. 300-318, March 1990.

[Arv91]

Arvind, L. Bic, and T. Ungerer, "Evolution of Data-Flow Computers," in

Advanced Topics in Dataflow Computing, ed. L. Bic and J.-L. Gaudiot, Prentice

Hall, 1991

[Ash75]

E. A. Ashcroft, "Proving Assertions aboutParallel Programs,"/, of Computer and

Systems Science, 10(1), pp. 110-135,1975.

[Ash77]

E. A. Ashcroft and W. W. Wadge, "Lucid, a Nonprocedural Language with Itera

tion," Comm. ACM, 20(7), pp. 519-526, July 1977.

[Bac78]

J. Backus, "Can programming be liberated from the von Neumann style?A func

tional style and its algebra of programs," Communications of the ACM, 21(8), pp

613-641,1978.

[Bal89]

H. E. Bal, J. G. Steiner, A. S. Tanenbaum, "Programming Languages for Distrib

uted Computing Systems," ACM Computing Surveys, 21(3), September 1989, pp.

359-411.

[Bal90]

R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein, "The Program Dependence

161

Web: A Representation Supporting Control-, Data-, and Demand-Driven Interpre

tation of Imperative Languages," Proc. of the ACM SIGPLAN '90 Conf on Pro

gramming Language Design andImplementation, pp. 257-271, June 1990.

[Ben90]

A. Benveniste and P. Le Guernic, "Hybrid Dynamical Systems Theory and the

SIGNAL Language," IEEETrans, on Automatic Control, 35(5), pp. 535-546, May

1990.

[Ber92]

G. Berry and G. Gonthier, "The ESTEREL Synchronous Programming Language:

Design, Semantics, Implementation," Science of Computer Programming, 19(2),

pp. 87-152, Nov. 1992.

[Ber93]

G. Berry, S. Ramesh, and R. K. Shyamasundar, "Communicating Reactive Pro

cesses," Proc. 20th ACM Conf. on Principles of Programming Languages,

Charleston, VA, 1993.

[Bha91]

S. S. Bhattacharyya, "SchedulingSynchronous Dataflow Graphs for EfficientIter

ation," Master's Thesis, EECS Dept. Univ. of Calif. Berkeley, May, 1991.

[Bha93a]

S. S. Bhattacharyya andE. A.Lee, "Scheduling Synchronous Dataflow Graphs for

Efficient Looping," to appear in /. ofVLSI SignalProcessing, 1993.

[Bha93b]

S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee, "A Compiler Scheduling

Framework for Minimizing Memory Requirements of Multirate DSP Systems

Represented as Dataflow Graphs," Memorandum UCB/ERL M93/31, Electronic

Research Laboratory, U. California, Berkeley, March 1993.

162

[Bic91]

L. Bic, M. D. Nagel, and J. M. A. Roy, "On Array Partitioning in PODS," in

Advanced Topics in Dataflow Computing, ed. L. Bic and J.-L. Gaudiot, Prentice

Hall, 1991

[Bie90]

J. Bier, E. Goei, W Ho, P. Lapsley, M. O'Reilly, G. Sin and E.A. Lee, "Gabriel: A

Design Environmentfor DSP," IEEE Micro Magazine, 10(5), pp. 28-45, October

1990.

[B5h91]

A. P. W. Btthm, R. R. Oldehoeft, D. C. Cann, J. T. Feo, "SISAL 2.0 Reference

Manual," Colorado State University Computer Science Department Technical

Report CS-91-118, November 1991.

[Boo89]

G. S. Boolos and R. C. Jeffrey, Computability and Logic, Third Edition, Cam

bridge University Press, 1989.

[Boo91]

G. Booch, Object Oriented Design With Applications, Benjamin/Cummings, 1991.

[Buc91a]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Multirate Signal Process

ing in Ptolemy,"Proc. ICASSP1991, Toronto, Canada,April 1991.

[Buc91b]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: a Platform for

Heterogeneous Simulation and Prototyping," Proc. 1991 European Simulation

Conference, Copenhagen, Denmark, June 1991.

[Buc91c]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: a Mixed Para

digm Simulation/Prototyping Platform in C++," Conference Proceedings, C++ At

163

Work 1991, Santa Clara, California, November 1991.

[Buc92]

J. T. Buck and E. A. Lee, "The TokenHow Model," presented at Data Flow Work

shop, Hamilton Island, Australia, May, 1992.

[Buc93a]

J. T. Buck and E. A. Lee, "Scheduling Dynamic Dataflow Graphs with Bounded

Memory Using the Token Flow Model," Proc. oflCASSP '93, Minneapolis, MN,

April, 1993

[Buc93b]

J. Buck, S. Ha, E. A. Lee,D. G. Messerschmitt, "Ptolemy: A Framework for Sim

ulating and PrototypingHeterogeneous Systems," to appear in International Jour

nalofComputer Simulation, special issue on"Simulation Software Development,"

1993

[Buc93c]

J. T. Buck, "ThePtolemy Kernel: A Programmer's Guide to Ptolemy version 0.4,"

Memorandum UCB/ERL M93/8, January 19,1993.

[Bur92]

M. Burns, "SISAL Challenges Fortran," Supercomputing Review,S(2) pp. 72-73,

February 1992.

[Cas92]

P. Caspi, "Clocks in Dataflow Languages," Theoretical Computer Science, 94(1),

pp. 125-140, March 1992.

[Chu32]

A. Church, "Aset ofpostulates for the foundation oflogic," Ann. Math. 2, 33-34,

346-366,839-964,1932.

[Com72]

F. Commoner, "Deadlocks in Petri Nets," Report CA-7206-2311, Massachusetts

164

Computer Associates, Wakefield, MA (June 1972), 50 pp.

[Cul89]

D. E. Culler, "Managing Parallelism and Resources in Scientific Dataflow Pro

grams," Ph.D. thesis, MTT, June 1989.

[Cyt89]

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, "An Effi

cient Method of Computing Static Single Assignment Form," Proc. of 16th ACM

Symp. on Principles ofProgramming Languages, pp. 25-35, January 1989.

[Dav78]

A. L. Davis, "The Architecture and System Method of DDM1: A Recursively

Structured Data Driven Machine," Proc. of the Fifth Annual Symposium on Com

puter Architecture, pp. 210-215, ACM, April 1978.

[Den75a]

J. B. Dennis and D. P. Misunas, "A Preliminary Architecture for a Basic Dataflow

Processor," Proc.2ndAnn. Symp. Computer Architecture, New York, May, 1975.

[Den75b]

J. B. Dennis, "First Version Data Flow Procedure Language," Technical Memo

MAC TM61, May, 1975, MTT Laboratory for Computer Science.

[Den80]

J. B. Dennis, "Data Flow Supercomputers," Computer,\5(\\), November 1980.

[Den91]

J. B. Dennis, "The Evolution of 'Static' Data-Flow Architecture," in Advanced

Topics in Dataflow Computing, ed. L. Bic and J.-L. Gaudiot, Prentice Hall, 1991.

[Den78]

P. J. Denning, J. B. Dennis, and J. E. Qualitz, Machines, Languages, and Computa

tion, Prentice-Hall, 1978.

165

[Des93]

D. Desmet and D. Genin, "ASSYNT: Efficient Assembly Code Generation for

DSP's Starting from a Data Flowgraph," Proc. ICASSP1993, Minneapolis, April,

1993.

[Evr91]

P. Evripidou and J.-L. Gaudiot, "The USC Decoupled Multilevel Data-Flow Exe

cution Model," in Advanced Topics in Dataflow Computing, ed. L. Bic and J.-L.

Gaudiot, Prentice Hall, 1991.

[Fer87]

J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The Program Dependence Graph

and its Use in Optimization," ACM Trans, on Programming Languages and Sys

tems, 9(3), pp. 319-349, July 1987.

[Flo79]

R. Floyd, "The Paradigms of Programming (Turing Award Lecture)," Comm.

ACM, 22(8), pp. 455-460, August 1979.

[Hy72]

M. J. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE

Trans, on Computers C-21(9), pp. 938-960, September 1972.

[Gar79]

M. R. GareyandD. S. Johnson, Computers andIntractability: A Guide to theThe

ory ofNP-Completeness, W. H. Feeman and Co., New York, NY, 1979.

[Gao88]

G. R. Gao, R. Tio, and H. J. Hum, "Design of an Efficient Dataflow Architecture

Without Dataflow," Proc. ofthe International Conf. on Fifth-Generation Comput

ers, pp. 861-868, Tokyo, Japan, December 1988.

[Gao92]

G. R. Gao, R. Govindarajan, P. Panangaden, "Weil-Behaved Dataflow Programs

166

for DSP Computation," Proc. ICASSP1992, San Francisco, CA, March 1992.

[Gel93]

P. R. Gelabert and T. P. Barnwell HI, "Optimal automatic periodicmultiprocessor

scheduler for fully specified flow graphs," IEEE Trans, on Signal Processing,

41(2), pp. 858-888, February 1993.

[Gra90]

V. G. Grafe and J. E. Hoch, "The EPSILON-2 hybrid dataflow architecture," in

COMPCON Spring 1990 Digest ofPapers, 1990.

[Gur85]

J. R. Gurd, C. C. Kirkham, and I. Watson, "The Manchester Prototype Dataflow

Computer," Communications ofthe ACM, 28(1), pp. 34-52, January 1985.

[Ha91]

S. Ha and E. A. Lee, "Compile-time Scheduling andAssignment of Dataflow Pro

gram Graphs withData-Dependent Iteration," IEEE Trans, on Computers, 40(11),

pp. 1225-1238, November 1991.

[Ha92]

S. Ha, "Compile-llme Scheduling of Dataflow Program Graphs With Dynamic

Constructs," Memorandum No. UCB/ERL M92/43 (Ph.D. Thesis), University of

California, Berkeley, April 1992.

[Hac74]

M Hack, "Decision Problems for Petri Nets andVector Addition Systems," Com

putation Structures Group Memo 95, Project MAC, Massachusetts Institute of

Technology, Cambridge, MA, March 1974.

[Hal91]

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, "The Synchronous Data Flow

Programming Language LUSTRE,"Proc. ofthe IEEE, 79(9), September 1991.

167

[Har87]

D. Harel, "Statecharts: A Visual Approach to Complex Systems," in Science of

Computer Programming, 8-3, pp. 231-275,1987.

[Haw88]

S. W Hawking, A BriefHistory ofTime: From the Big Bang to Black Holes, Ban

tam Books, New York, 1988.

[Hen90]

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann Publishers, Inc., 1990.

[Hoa93]

P. D. Hoang and J. M. Rabaey, "Scheduling of DSP Programs Onto Multiproces

sors for Maximum Throughput," IEEE Trans, on Signal Processing, 41-6, pp.

2225-2235, June 1993.

[How90]

S. How, "Code Generation for Multirate DSP Systems in Gabriel," MS Report,

ERL, EECS Dept., UC Berkeley, May, 1990.

[Hu61]

T. C. Hu, "Parallel Sequencing and Assembly Line Problems," Operations

Research, 9(6), pp. 841-848,1961.

[Hud89]

P. Hudak, "Conception, Evolution, and Application of Functional Programming

Languages", ACMComputing Surveys, Vol 21, No 3, September 1989.

[Kah74]

G. Kahn, "The Semantics of a Simple Language For Parallel Programming," in

Information Processing 74: Proceedings of IFIP Congress 74, pp. 471-475,

August 1974.

168

[Kah77]

G. Kahn and D. B. MacQueen, "Coroutines and Networks of Parallel Processes,"

Information Processing 77, B. Gilchrist, editor, North-Holland Publishing Co,

1977.

[Kal92]

A. Kalavade and E. A. Lee, "Hardware/Software Co-Design Using Ptolemy: A

Case Study," Proceedings of the IFIP International Workshop on Hardware/Soft

ware Co-Design, Grassau, Germany, May 19-21,1992.

[Kar66]

R. M. Karp and R. E. Miller, "Properties of a Model for Parallel Computation:

Determinacy, Termination, andQueueing," SIAM Journal of AppliedMath, 14(6),

pp 1390-1411, November 1966.

[Kar69]

R. M. Karp and R. E. Miller, "Parallel Programming Schemata," Journal of Com

puter and System Sciences, 3(2), pp. 147-195, May 1969.

[Klu92]

W. Kluge, The Organization ofReduction, Data Flow, andControl Flow Systems,

Massachusetts Institute of Technology Press, 1992.

[Kos78]

P. R. Kosinski, "A Straightforward Denotational Semantics for Non-Determinate

Data Flow Programs," Conf Record of the 5th Ann. ACM Symp. on Principles of

Programming Languages, Tuscon, AZ, 1978.

[Kuh62]

T. Kuhn, "The Structure of Scientific Revolutions", University of Chicago Press,

1962 (second edition published 1970)

[Lee87a]

E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous DataFlow

169

Graphs for Digital Signal Processing," IEEE Trans, on Computers, January, 1987.

[Lee87b]

E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow," IEEEProceedings,

September, 1987.

[Lee88a]

E. A. Lee, "Recurrences, Iteration, and Conditionals in Statically Scheduled Block

Diagram Languages," in VLSISignal Processing III, IEEE Press, 1988.

[Lee88b]

E. A. Lee and D. G. Messerschmitt, Digital Communication, Kluwer Academic

Press, Norwood, MA, 1988.

[Lee89]

E. A. Lee and S. Ha, "Scheduling Strategies for Multiprocessor Real-Time DSP,"

GLOBECOM, November, 1989.

[Lee91a]

E. A. Lee, "Static Scheduling of Data-Flow Programs for DSP," in Advanced Top

ics in Dataflow Computing, ed. L. Bic and J.-L. Gaudiot, Prentice Hall, 1991

[Lee91b]

E. A. Lee, "Consistency in Dataflow Graphs," IEEE Trans, on Parallel and Dis

tributed Systems, Vol. 2, No. 2, April, 1991.

[LeG91]

P. Le Guernic and T. Gautier, "Data-Flow to von Neumann: the SIGNAL

Approach," in AdvancedTopics inDataflow Computing, ed. L. Bic andJ.-L. Gaud

iot, Prentice Hall, 1991.

[Mal87]

J. Malpas, Prolog: A Relational Language and its Applications, Prentice Hall,

1987.

170

[McG83]

J. McGraw, S. Allan, J. Glauert, and I. Dobes, "SISAL: Streams and Iteration in a

Single-Assignment Language: Language Reference Manual." Tech Rep. M-146,

Lawrence Livermore National Laboratory, 1983.

[Mes84]

D. G. Messerschmitt, "A Tool for Structured Functional Simulation," IEEE Jour

nalonSelected Areas in Communications, SAC-2(1), January, 1984.

[Mur89]

T. Murata, "Petri Nets: Properties, Analysis, and Applications," Proceedings of the

IEEE, 77(4), April 1989.

[Nik86]

R. S. Nikhil, K. Pingali, and Arvind, "IdNouveau," Computation Structures Group

Memo 265, Laboratory for Computer Science, Massachusetts Institute of Technol

ogy.

[Pap88]

G. M. Papadopoulos, "Implementation of a General Purpose Dataflow Multipro

cessor," Technical Report TR-432, MTT Laboratory for Computer Science, Cam

bridge, MA, August, 1988.

[Pet81]

J. L. Peterson, Petri Net Theory and the Modeling of Systetns, Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[Pin85]

K. Pingali and Arvind, "Efficient Demand-Driven Evaluation. Part I," ACM Trans,

on Programming Languages andSystems, 7(2), pp. 311-333, April 1985.

[Pin93]

J. Pino, S. Ha, E. Lee, and J. Buck,"Software Synthesis for DSPUsing Ptolemy,"

invited paper in Journal ofVLSI SignalProcessing, to appear.

171

[Pow92]

D. G. Powell, E. A. Lee, and W C. Newman, "Direct Synthesis of Optimized DSP

Assembly Code from Signal Flow Block Diagrams," Proc. ICASSP 1992, San

Francisco, vol. 5, pp. 553-556.

[Rab91]

J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, "Fast Prototyping of Data

path-Intensive Architectures," IEEE Design and Test ofComputers, 8(2), 1991, p.

40-51.

[Rit93]

S. Ritz, M. Pankert, and H. Meyz, "Optimum Vectorization of Scalable Synchro

nous Dataflow Graphs", Technical Report IS2/DSP93.1a, Aachen University of

Technology, Germany, January 1993.

[Sat92]

M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi, et al, "Thread-based Programming

for the EM-4 Hybrid Dataflow Machine," Computer Architecture News, 20(2), pp.

146-155, May 1992.

[Sch86]

D. A. Schwartz and T. P. Barnwell m, "Cyclo-Static Solutions: Optimal Multipro

cessor Realizations of Recursive Algorithms," in VLSI Signal Processing, IEEE

Press, 1986.

[Sih91]

G. C. Sin, "Multiprocessor Scheduling to Account for Interprocessor Communica

tion," Memorandum No. UCB/ERL M91/29 (Ph.D. Thesis), U. C. Berkeley, 1991.

[Ski91]

D. Skillicorn, "Stream Languages and Data-Flow," in Advanced Topics in Data

flow Computing, ed. L. Bic andJ.-L. Gaudiot, Prentice Hall, 1991.

172

[Sto88]

P. D. Stotts, "The PFG Language: "Visual Programming for Concurrent Comput

ing," Proc. Int. Conf. on ParallelProgramming, Vol. 2, pp. 72-79,1988.

[Tra91]

K. R. Traub, "Multi-Thread Code Generation for Dataflow Architectures From

Non-Strict Programs," in Functional Languages and Computer Architecture, 5th

ACM Conference Proceedings, ed. J. Hughes, Springer-Verlag, pp. 73-101,1991.

[T\ir81]

D. A. Turner, "The Semantic Elegance of Applicative Languages," Proc. of the

ACMConf. on Functional Programming Languages and Computer Architecture,

Portsmouth, NH, pp. 85-92,1981.

[Wen75]

K.-S. Weng, "Stream-Oriented Computation in Recursive Data Flow Schemas,"

Laboratory forComputer Science (TM-68), MTT, Cambridge, MA, Oct. 1975.

[Whi92]

G. S. Whitcomb and A. R. Newton, "Data-Flow/Event Graphs," Memorandum

No. UCB/ERL M92/24, Electronics Research Lab, University of California, Ber

keley, March 4,1992.

	Copyright notice 1993
	ERL-93-69

