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Abstract

We address the problem of obtaining good variable orderings for the BDD representation of
a system of interacting finite state machines (FSMs). Orderings are derived from the communi
cation structure of the system. Communication complexity arguments are used to prove upper
bounds on the size of the BDD for the transition relation of the product machine in terms of
the communication graph, and optimal orderings are exhibited for a variety of regular systems.
Based on the bounds we formulate algorithms for variable ordering. We perform reached state
analysison a number of standard verification benchmarks to test the effectiveness of our ordering
strategy; experimental results demonstrate the efficacy of our approach.

•This research was supported by SRC 93-DC-008



1 Introduction

Verification of a design is typically done by modelling it as a finite state machine. Properties to be

verified can be specified in a Temporal Logic[MP81], or by a Task Automaton[Kur]. Verification
algorithms proceed by performing some form of traversal of the state transition graph[Dil, Bur].

Large designs arising in practice are invariably the product of small interacting finite state machines,

depicted in Figure 1. Industrial experience indicates that the largest component machines rarely

have more than a hundred states[York]. However forming the product machine leads to the state

explosion problem[Gru, Chi]; given n Finite State Machines (FSMs) {Afi, M2,..., Mn}, the number
of states in the product machine is the product of the number of states in each individual machine.

As a result algorithms that explicitly operate on the state space of the product machine may have

exponential time and space complexity.

A Binary Decision Diagram (BDD) [Bry] is a graph based data structure used for represent

logic functions. It can be used to represent the transition relation of a binary encoded sequential

machine implicitly by forming the corresponding characteristic function [Tou]. This representation
can capture the regularity in the transition structure of the machine, and its canonicality makes it

very useful in fixed point calculations. BDDs are now routinely used in formal verification[HTBSV,

Bur]. The success of such algorithms depends critically on the size of the resulting BDD's which

is very sensitive to the variable ordering chosen. Given a logic function, the problem of finding the

ordering which leads to a minimum sized BDD for the function is co-NP complete[Bry].

In this paper we address the variable ordering problem for interacting finite state machines.

Using communication complexity[Ull],upper bounds on the size of the BDD for a specified ordering

are derived. Similar results have been shown for combinational circuits in [Ber, McMil] and our

work was inspired by these. Indeed the transition relation for the product machine can be viewed

as a logic circuit which takes the conjunction of the transition relations of the component machines,

and the techniques of [McMil] yield upper bounds on the BDD size. The bound this method yields

is weaker than the one we derive, and our proof is significantly different. We stress that we obtain

orderings that minimize the representation of the transition relation of the product machine, and

as such may not be good for representations of the reached state sets, or equivalent state sets.

Indeed there are examples of systems where orderings exist such that the BDD for the transition

relation is linear sized, whereas the BDD for the reached state set is exponential sized under any

ordering. However our experimental results indicate the orderings we obtain work well in reached

state computations. Furthermore, dynamic variable reordering can be used if the BDDs for the

reached state sets become unwieldy.

Previous work in this area deals with ordering strategies for combinational [Mai] and sequential

logic circuits [Tou, Jeo]. Touati [Tou] suggests deriving an ordering on the next state variables first



using a heuristic based on minimizing the cumulative variable support of the latches. The inputs

and present state variables are interleaved with the next state variables; their ordering is derived

by standard DFS ordering on the next state logic [Mai]. Jeong [Jeo] gives efficient algorithms for

finding BDD orderings based on the algebraic structure of the circuit. Another approach is based on

dynamic ordering[Felt]. In this the BDD package automatically invokes a reordering routine which
seeks to minimize the total number of BDD nodes by permuting small sets of adjacent variables.

All these approaches are largely heuristic and do not yield a priori bounds.

In section 2 the basic notions of product machines and process communication graphs are de

fined. We prove upper bounds on the BDD size in terms of communication graph parameters. We

characterize a large variety of interconnect structures for which asymptotically optimum orderings

are derived. We also discuss interleaved orderings, and compare our approach with that of [Tou]. In

section 3, we propose various algorithms based on these bounds for the variable ordering problem.

In section 4 we present some results based on these algorithms. We conclude by discussing various

extensions.

2 Theory

2.1 Definitions

In this section we define finite state machines and the semantics of their interaction. The definitions

are motivated by the desire to model hardware designs. At the early stages of VLSI design, compo

nents may be incompletely specified, and the wires and states may not be encoded. Our definition

allows this flexibility. Non-determinism is commonly used to abstract the environment or parts of

the designs, and is reflected in the use of transition relations rather than functions to represent the

state dynamics.

Definition 1 A finite state machine with state space Q, inputs I, and output alphabet 0 is

characterized by its transition relation T cQ xIxQ and output relation 0 C Q x O, as illustrated

in Figure 1.

We allow machines to be non-deterministic and incompletely specified.

Systems are described as a collections of hardware units, communicating through a set of wires,

and driven in lockstep by a single clock; this is the basis for the definition of product machine.

Consider a system of n interacting machines M\,Mi ,Mn. We assume there are no external

inputs. Any external inputs Iext can be modeled by adding a one state FSM such that this FSM non-

deterministically outputs any of the inputs from hit- Each component machine M{ has present state

sMi, next statevariable tMi, andtakes as input oex*,t (some subset ofoutputs oftheother machines).
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Figure 1: An FSM on states si,S2»S3i with inputs 0,1, and outputs a,6,c.

Basically, we are dealing with non-deterministic Moore machines with transition predicates on the

edges.

Definition 2 Given n machines Mi,M2,...,Mn, M,- = (Q,-,T,-,0t), the product machine M =
M\ ® Mi ® ... ® Mn is the machine on state space Q = Q\ x Q2 X ... x Qn and output space

0 = 0\ x 02 X ... x On, characterized by

• Output relation

n

0(x,o)=Y[®i(xi,Oi)
«=1

• Transition relation

n

T(x, y) =(3i)[J[ r^xjb, t,3/*). e*(**, 0^) •(i = [01... on])]
fc=l

tc/iene J/ie present state variable is x = [X1X2.. .xn], the next state variable is y = [2/13/2 ••'3/n]> and
the output variable 0 = [01O2 ••-On].. Wc assume the sets 0,-,Oj are disjoint for all i,j.

Binary Decision Diagrams may be used to represent the characteristic function of the transition

relation, the output relation, and set of states encountered in verification.

The problem now addressed is: Given machine M as previously defined, find a good variable

ordering for T, using only the communication structure, i.e. without making use of the internal



details of the component machines. We start by restricting attention to the class of variable orderings

CM where variables corresponding to different machines are not interleaved, i.e. only orderings
which are permutations of {< xi,3/i >,...,< xniyn >}, allowing arbitrary permutations within
the variables of a given machine. In section 2.3 we discuss reasons for this restriction and examine

interleaved orderings.

As a first step towards solving this problem we use communication complexity to prove upper

bounds on the size of the BDD corresponding to a permutation of the above form. The following

definition is used to make the notion of bit communication complexity precise. To illustrate our

approach we use a simplified notion of finite state machine, where the machine output is simply the

state. Our results and algorithms are easily extended to machines with outputs that are functions

of the state.

Definition 3 Given machine M as above, a directed edge labeled graph Gm is defined as follows:

There is a vertex Vj for each component machine M,-. If the transition relation for Mj depends on the
state of M{, we addedge c<j labelled with X{. We refer to thisgraph as the process communication

graph (PCG).

2.2 Upper Bounds

We first develop some intuition behind the bounds derived in this section As an example let M, a be

as given in figure 2. T(x, y) is the product n?=i T{. Thenumber ofBDD nodes at level 4 is bounded
as follows. Split T into the product of (T2T6TzTi) and (TST4). The number of cofactors of T with

respect to the variables in V = {a?2,3/2, «6» 2fe> £3* 3/3, x\, 3/1} is no more than the number of cofactors
of (TiTqTzTi) with respect to V times the number of cofactors of (T5T4) with respect to V.

(T5T4) has only a limited number ofvariables (wj(4),defined asbelow) which are being cofactored
in its support. There are at most 2wt*1' possible for cofactors of(T5T4).

(TiTqTzTi) has only a limited number of variables (w{T(4), defined as below) remaining after
cofactoring. There are at most 22" functions on n boolean variables, so there are at most 22t"r(4)
possible cofactors of (T2T6T3Ti).

Hence the BDD for T(x, y) under the non-interleaved ordering derived from o has no more than
2tV '. 22WV nodes at level 4. This approach can be extended to derive bounds at each level of the
BDD and hence on the total size of the BDD.

Theorem 2.1 Let M be a system ofn interacting machines M\,M<i,..., Mn, and let a be a permu
tation on {1,2,.. .,n}. Then the number of distinct cofactors ofT(x,y) with respect to the variables

«» {£«r(i)iy<r(i)iS«7(2)»&(2)> •••»**(*)»&(*)} «* bounded by 2U'7(*) •22Wp(*), where



Figure 2: Machine M as in figure 1. The machines follow the permutation a = (413652). We are
considering k= 4. «>J(4) =| xi | + | x3 | + 112 |, t»?(4) =| xs \ + 114 |.

w'}(k) number o/ distinct bits communicated from

{Ma(i), •••,^(jt)} to{Ma(jt+i),..., Ma(n)}
number o/ distinct bits communicatedfrom

Wr(Jfe+l)> •••>Mr(n)} *<> {-Ma(l)». .., Afa(fc)}

Proof: Refer to Appendix A for a detailed proof. •

As a corollary to the above theorem we get an upper bound on the number of nodes for the

BDDforT(£,37):

Corollary 2.1 The number ofnodes inthe BDDforT(x, y) for the ordering xc^ -< ya^ -<...-< xa^ •< ya{n),
is bounded by :

s* _ V(22^*«)l) .2tu/(,+1) •22<(,+1)) (1)
i=i

A looser bound is

M° = n>c>2wf 2' (2)



level k

level k +1

- PS variables at level k+ 1 : xa^
- NS variables at level k -f- 1 : ya^
- At most 2wf(fc) •22<(k) roots at level k+ 1
- For each root at most 2'x<r(fc)l extra nodes

Figure 3: Bounding the total number of nodes in the BDD for T(af, y)

where

• wZ is the maximum number of forward crossing bits across any partition induced by a

• w° is the maximum number of reverse crossing bits across any partition induced by o

• c depends only on the maximum number of state bits in some machine

Proof:

From Theorem 2.1, it follows that the number of nodes in the BDD for T(af,y) at level fc-f-1, where

the variables from the FSMs Ma^,...,Ma^ have been cofactored out, is bounded by 2wf*" -22UV .
The total number of nodes at all the levels between level k and level k -f 1 is no more than 22^:Ca(')l)
times the number at level k. Summation over k yields the result. This is sketched out in figure 3

•

Remark: Given A:, there are always choices of the individual machines such that there are at least

2tw7(*) distinct cofactors of T(x,y) with respect to {«<7(i),3/a(i),«a(2)JSr(2)»---»*<r(fc)>y(7(jt)}J ie the
bound of Theorem 2.1 is tight in the first term. Details are available in [TR].

2.3 Interleaved Orderings

Typically, communication within a machine is dense, ie each bit of the next state depends on all
the present state bits, since otherwise the machine would have a trivial factorization. Reasoning



as in Corollary 2.1, it would seem that interleaving the variables leads to increased communication

complexity and higher bounds. This suggests that variables corresponding to a single machine be
ordered contiguously.

However, there are situations where interleaving state variables from different machines may be

superior to a non-interleaved ordering. Consider a product machine in which a component machine

has a transition relation T = [yi$(xfxf + x2x2 + ... + xfxn)]> where xf,xf are the present state
bitsfrom machine MA andMB. In this case, a non-interleaved ordering will result in an exponential
sized BDD for T, where as the ordering < xf, xf,..., xfxf >, is optimum and yields a linear sized
BDD for T.

Interleaved orderings are also superior in the context of equivalent state computations. If states
are equivalent only to themselves, the equivalence predicate is equality. For the equality relation a

noninterleaved ordering is exponential, and an interleaved ordering is linear.

2.3.1 Comparison with Touati's heuristic

Touati et. al.[Tou] consider a BDD based approach to the problem of the equivalence of sequential
hardware consisting of latches and logic gates. Their heuristic for variable ordering proceeds by first

finding a permutation <r* on the latches which minimizes the support, i.e. minimizes the following

cost function:

cost(<r) = J2 I U SUPP(/*;)I
l<j<n 1<*'<J

where | A | denotes the cardinality of A, and supp(/t) is the set of variables in the support of /,-.
Malik's heuristic [Mai] is used to order the supports of the /,-,supp(/t) individually. Finally input and

output variables areinterleaved as follows: supp(/a(!)), y^j,..., supp(/(r(n) - Ui<i<n-i suPP(/<r(t)))> 3k(n)-
Naturally, this ordering procedure can be used to derive orderings for systems of interacting

FSMs. The component machines correspond to latches, and their fanins correspond to the support.

cost(<r) can be calculated directly from the process communication graph. However cost(<r) is not
directly correlated to the communication complexity of o. Consider the system of FSMs interacting

through a binary tree as shown in Figure 3. The ordering << M\,M2,..., M2«_i >> is optimum for

cost(ff) but has high communication complexity as is seen in the partition IT = {1,2,..., 2n_1 —1},
V = {2n_1,...,2n —1},for which wj —2n_1. In fact, there exists an ordering with low communi

cation complexity, namely the ordering returned by lexicographically first DFS, for which to/ = 2.
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Af2(„_l) M2(n-i)+1 Af2«-1

Figure 4: An example on which Touati's Heuristic fails

2.4 Optimum Orderings

We can use the bounds derived above to get optimum variable orderings for a variety of sparse

interconnect structures. The following lemma shows that for certain recursive structures whose

communication complexity is independent of the number of nodes in the graph, the transition

relation for the product machines grows linearly in n.

Lemma 2.1 Let M{n) be the composition ofn component machines {Afi,..., Mn} . Suppose there
exist constants wj, w*, and b such that forfor all n,

1. there exists an ordering a* of the vertices of the PCG such that for each k

w°/(k) < w)
w<(k) < w*r

2. the state of each M£ can be encoded in not more than b bits

Then for all n there is exists a variable ordering such that the BDD for T(n) = T\xT2...xTn has
at most c -n nodes, where c is independent of n.

Proof: We use the bound of corollary 2.1, (equation 2)

M* = n•22max'<MI •max(2u,/(fc>. 22<(*})

For each machine Mn using an ordering defined by o* leads to a BDD for Tn such that

ITn | < n•22-max*l**l •max(2f"W •22<n(*})
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Figure 5: A variety of sparse interconnect structures commonly encountered in verification

By the hypothesis ofthe lemma, max* | Xk |< 6, max* wZn(k) < iuj, and max* Wrn{k) < w*.
Therefore

T„|< n-22'b'2wf'22r <cn

whe^ec = 22•6.2u'̂ 22,,,*

Armed with this lemma, we can find variable orderings for a variety of interconnect structures

(parametrized by n) that yield linear sized BDDs, and so are optimum within constants. Figure 4
illustrates some communication graphs which satisfy the hypothesis of the lemma.

3 Algorithms

The upper bounds Sa and Ma of section 2 can be used to obtain a good variable ordering for the

transition relation of a given product machine M composed of {Mi,.. .Mn}. We first extract the

process communication graph (PCG). The parameters in the bounds can be calculated directly from
the PCG. We then find a permutation o* on the vertices of the graph that minimizes the bound.

A non-interleaved variable ordering corresponding to a is simply one in which all variables corre

sponding to the machine Mff»^ appear first (in any internal order amongst themselves), followed
by all variables from Ma*(2), etc«

Finding an optimum permutation on the vertices of the communication graph is a hard prob

lem, akin to the Travelling Salesman Problem. We conjecture that it is NP-complete. Exhaustive

search has factorial complexity, and dynamic programming yields an algorithm with complexity

0(n32n). We now discuss an exact branch and bound procedure and some heuristics for finding
good permutations.

10



3.1 Branch and Bound

Consider the problem of obtaining a permutation o* which minimizes Sa = £?=i 9\{?)- This
problem lends itself to a branch and bound algorithm solution. This can be better understood by

a closer look at the sum for S°. We have to minimize S° over all permutations. Let Sa be the
smallest sum obtained from the permutations considered so far. For the next permutation a' being

examined, if for some k Yli=\ 9i(^') > Sa, then the summation can be terminated. Moreover, any
permutation that has < a'(l).. .of(k) > as a prefix can be eliminated. This provides a wayto prune
the search tree. In fact any permutation that has the FSMs above in that order can be pruned. But

it is expensive to store and check for this information. The same formulation yields a branch and

bound algorithm to find a permutation minimizing M°'.

To increase the probability of pruning, we first calculate a good initial guess. This is explained

in more detail in the next subsection. Then, we go over all permutations lexicographically, pruning
whereverpossible. The exhaustive search tree is never constructed, since this would require excessive
memory and time. Instead, when a "bad" (in the sense described above) prefix is discovered, the
algorithm branches to the next permutation in lexicographic order which does not have the bad
prefix.

The input to the branch and bound algorithm is a "process communication graph". Observe
that all parameters in the bound can be calculated directly from the PCG. For each permutation
examined, for each k, the number of bits crossing the cut in the forward and reverse directions are

counted separately. Then the cost for the cuts so far for that permutation is calculated. Either

pruning takes place before all cuts are examined, or the permutation considered is the best seen so

far. The algorithm proceeds in this manner until all permutations are exhausted.

The memory used by this algorithm is linear in the size of the process communication graph.
The algorithm can take factorial time in the worst case. It was necessary to experiment with the
algorithm to see how effective the pruning is at reducing the search.

3.2 Heuristics

Several schemes, with varying degrees of sophistication, exist for picking the initial guess for the
optimum permutation. The simplest is to choose vertices one at a time in the greedy sense, ie,
choose the next vertex to minimize the partial cost. This greedy approach can be extended to an
algorithm that has bounded look-ahead k. The algorithm proceeds recursively by computing all
possible choices for the first k vertices in the permutation. It chooses the best among these and
recursively completes the ordering. While improving the quality of the initial guess, look-aheads
of k increase the time complexity of the algorithm by adding a factor of nk. This is acceptable
compared with the complexity of the branch and bound algorithm, since a good starting point can

11



prune the search space drastically. When n is large, the initial guesses themselves can be used as
approximate solutions. We implemented a simple greedy algorithm to minimize 5", and algorithms
with look-aheads of 2 to minimize Sa and M°'.

4 Results

4.1 Computing an Optimum Permutation

The branch and bound algorithms that find permutations that minimize Sa and Ma were im

plemented using a greedily generated initial guess. Still for more than 10 to 15 vertices in the

communication graph, the exact branch and bound algorithm was too slow. Our experiments show
that a permutation which minimizes S" generated using a look-ahead of 2 yields a solution that
is sufficiently close to being optimum and has negligible running time. When the communication
graph has a regular structure (e.g. a mesh, tree, ring, etc), this permutation is often optimum.
Thus, this is the method of choice.

4.2 Correlation between bound and actual size of BDD for Transition Relation

For assessing the usefulness of our bound as a measure of the actual BDD size, and checking
the validity of assumptions, we needed a set of representative examples to test our algorithms.
We artificially constructed several product machines according to various interconnection schemes.

In each case the component machines had a small state space and a randomly chosen (possible
nondeterministic) transition relation.

Descriptions of the process communication graphs of the test examples are given in Table 1.

The benchmarks were written in the S/R language [Har]. We extracted the process communication
graphs, and found variable orderings as follows:

ran-vars All variables are ordered randomly

ran-comps Non-interleaved ordering where component machines are ordered randomly

touatLheur Interleaved ordering as described in section 2.3.1

min.comm Non-interleaved order where components are ordered to minimize communication com

plexity as described in section 2.1

As seen in Table 2, in all cases, our approach significantly reduces the BDD size as compared

with random orderings. All algorithms took only a few seconds to compute the ordering. The

running time was negligible when compared to the time taken to read in the example and build the

12



EXAMPLE Communication Structure

Acyclic Acyclic graph on 25 FSMs
Cyclic Graph on 25 FSMs with more than 10 cycles,

no specific direction to the data flow
Few_Ran_C Random graph with few ( < 10) cycles on 25 FSMs
RT Tree on 25 FSMs with communication in

both directions between parent and child
Mesh20 Rectangular grid on 25 FSMs as in Figure 1
Tree31 Complete binary tree on 31 FSMs
Ran_Mesh 16 randomly connected FSMs,

with outdegrees from 2 to 5
AcyclicII Similar to Acyclic,

Larger component machines
CyclicII Similar to Cyclic,

Larger component machines

Table 1: Communication structure of our benchmarks

EXAMPLE ran-vars ran-comps touatLheur min-comm

Acyclic 00 inf 5,336 1,188
Cyclic 00 inf 21,174 3,185
Few_Ran_C 00 inf 35,444 1,085
RT oo inf 2,455 421

Mesh20 00 inf 21,573 9,203
Tree31 00 inf 75,034 1,134
Ran_Mesh 00 43,727 17,435 6,511
AcyclicII 00 inf 112,379 10,756
CyclicII oo inf 583,603 79,199
oo: Intermec iate BDD grew larger t han 1,000,000 nodes

Table 2: Number of BDD nodes for the TR of the product machine; in all cases time to find the
ordering was negligible

13
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Figure 6: Correlation between bound and actual BDD Size

BDD. Note that Mesh20, which has high communication complexity (as shown in [TR]) had a large
BDD compared to TreeSl which has low communication complexity (as discussed in section 2.4).
Also observe that Touati's heuristic does particularly badly on TreeSl and RT, corroborating the
discussion of section 2.3.1. We also experimented with some interleaving, similar to that given
by Touati's heuristic. In many cases this allowed further reduction in BDD size. We concluded

that ordering based on minimizing the communication complexity, while allowing some heuristic
interleaving works best in practice.

The bound S° derived in Corollary 2.1 is an upper bound. To examine the relationship Sa
between the actual number of nodes in the BDD for the transition relation under the non-interleaved

ordering derived from a, we took several different permutations of the components and computed
the bound. We then built the BDD and plotted the actual BDD size against the bound. The plots
are seen in figure 5; they demonstrate a strong correlation between the bound and the actual BDD

size.

4.3 Performance on Reachability Analysis

As mentioned in the introduction, an ordering which minimizes the size of the BDD representing
the transition relation does not necessarily lead to an ordering which is good for general verification

14



EXAMPLE Description

DinPhil32 Dining Philosopher protocol, 32 processes
arranged in a ring

MilSchedl6 Milner Job Shop Scheduler, 6 jobbers
and hammers in an augmented ring

Fis5 Fischer Mutual Exclusion protocol,
5 processes, dense complex interaction

DME15 Distributed mutual exclusion circuit,
15 elements, tree structured

Dynachek3 Railway controller, 3 train tracks,
Random sparse interconnect

2MDLC Part of a Data Link Controller

Random interconnect

Table 3: Verification benchmarks used for reached state computation

calculations. Reached state computation is a core routine in verification. A truer measure of the

effectiveness of our ordering is given by our performance on reached state analysis for realistic
verification benchmarks.

Table 3 lists a series of common verification benchmarks with a short description of their commu

nication structure. In Table 4 we describe results for reached state analysis using ordering derived
from min-comm on these examples. We computed the reached state set in the most direct fashion,
namely by directly computing the imageof the reached state set under the global transition relation.
There are more sophisticated ways of computing the image that involve using dont cares to mini
mize the BDDs, and partitioned transition relations to avoid building the full transition relation.
However this simple experiment is enough to give us a good idea ofthe performance ofour ordering.

Specifically we report the following three statistics—

TR size : Number of nodes in BDD for transition relation

Max-Reached : Number of nodes in largest BDD representing a set of states encountered during
reached state computation

Time-Reached : Time taken to perform reached state computation

The ordering given by touatLheur was identical to that given by min.comm on all examples
except for DME15 where it was orders of magnitude worse. This is explained by the fact that
DinPhil32, MilSchedl6, Fis4 have ring like structure, and touatLheur will find the asymptotically
best ordering for rings. However, as pointed out in section 2.3.1, touatLheur is especially bad for

15



EXAMPLE min.comm

TR size Max-reached Time-reached (sec)
Dynachek3 332 37 2.0

DME16 4,982 45 1.2

DinPhil32 4,863 304 26.0

MilSchedl6 5,003 938 33.6

Fis5 22,227 27,901 1145.4

2MDLC 24,487 1,335 635

Table 4: Results on reached state analysis

trees, and this is brought across in DME15. Also, the best ordering that could be obtained by hand
for Fis4 was much worse than that generated by min.comm.

5 Conclusion

We addressed the problem of deriving good variable orderings for the BDD representation of a

system of interacting finite state machines for formal verification applications. Towards this end we

introduced the notion of the process communication graph and proved results connecting BDD size
to the communication graph. We justified the decision to derive orderings based only on knowledge
of the communication graph. We use the bounds to formulate fast heuristic algorithms for variable

ordering. The experimental results show good correlation between the BDD size predicted by the

bound and the actual BDD size, and comparing our results on the transition relation size with

orderings derived from Touati's heuristic validates our decision to use orderings which minimize the

communication complexity through the communication graph. Our performance on reached state

analysis for verification benchmarks further demonstrates the effectiveness of our approach.
We have implemented our algorithms in a hierarchical synthesis and verification tool currently

under development. We are applying our techniques to the quantification ordering problem which
comes up in reached state computation. We have also developed methods to partition logic designs
using a cost function which minimizes bit communication complexity. For these applications, even
the greedy approach to finding a good ordering is too slow, and we are working on faster algorithms.
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A Proof of Upper Bound on BDD size

Theorem A.l Let M be a system ofn interacting machines Mi,M2,..., M„, and let a be a permutation on
{1,2,..., n}. Then the number ofdistinct cofactors ofT(x, y) with respect to « x<r(1), y<r(1), xa(2), yo{2),..., xo(k), &(Jk) »
is bounded by 2u,/(*> .22"?(*), where

Wj(k) = number of distinct bits communicated from

{M^i),..., Ma(Jb)} to {M,(jfc+1)i...|Af<r(n)}
w?(k) = number of distinct bits communicated from

{Ma(*+i), •••,Af^n)} to {M^i),..., M^fc)}

Proof:

Observe

n

r(*,y) = nr'W»*) (3)
1=1

jfc n

= (IIT«(£»(0.^0))-( II Ti(s°«hMi))) (4)
t=i «=fc+i

Let

Aha - nT*^(o»»»(*))
1=1

n

Bj = J] iH*,<o,fc(o)
t=Jb+l

Observe A* involves only the state variables internal to Ma^,. ..,Ma^) plus w%(k) variables internal
to the remaining N —k FSMs. Similarly Bj involves only the state variables internal to Ma(fc+1),..., M<r(n)
plus wj(k) variables internal to the remaining k FSMs.

Since cofactoring distributes with respect to conjunction we have the following identity:

^W(l)=^l.(^)a(l)=6i («)r(fc)=J».(«»<*)=Jlil^B<F^(*)»(l)=yt.(Wr(l)=5'l (£)ff (fc)=6k ,(j7)ff(fc)=SjJ (5)

Notation: Ftlf...,t, denotes the set of distinct cofactors of F with respect to t\,... ,</.
Then by equation 1,
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Ir(*,y){2,(1)ljk(1) *.(*>,£,<»)} I<I(^J){«#(i),^(l)....,*r(*)} I•I(*J){**(l),*c(l) **<*)> I (6>

Since £* involves only wj(k) variables from {xa(i), ya(i)i •••, «*(*), &(*)} there are at most 2W*W possible
cofactors of B* with respect to {£*(i), yV(i)> •••>£*(*)}• Hence

K^W*,,, Jo.,,)!****' <7>
Since j4* involves only u£(&) variables not from {a?ff(i),yff(i),...,£<,(*),&(*)} »and there are no more

than 22"r Boolean functions on w% (k) variables,

I(^t){*,(i),^(»),...A(*).^(fc)} I^ &"* (8)

The theorem follows from equations 6, 7 and 8. •

B Lower Bounds

As another application of communication complexity arguments, we prove a lower bound on the BDD size

for a specific function.

Consider the function fn : Bnxn —• B,where n is even, given by

/n(*ii, •••»Znn) = JJ JJ(«»i + x(i+l)modnj + &<(J+l)modn + 2(i-l)modnj + 3$(j-l)modn) (9)
i=lj=l

Each expression (ar$i + X(j+i)modnj + *i(j+i)modn + *(<-i)modnj + Xi(j-i)modn) will be referred to as the
product term pij

Graphically /„ is derived from a symmetric mesh M* onnxn vertices as shown in Figure 1. We will

refer to the vertices by the associated variables xtJ-.
We know from graph theory that the bisection width of an n x n mesh M is n, ie at least n edges must

be removed from the mesh to disconnect any two disjoint sets of n2/2 vertices. Since M* contains M, the
bisection width of M* is also at least n.

Consider any ordering a of the variables. <r : {1,..., n} x {1,..., n} —» {1,..., n2} is a bijection. Consider
the bipartition of the vertex set X into

*i = {*« I<r(U) < na/2}

X2 = {xij\a(i,j)>n2/2}

19



n

Figure 7: Graphic representation of the function /„

Theorem B.l There are at least 2"/125 distinct cofactors offn with respect to the first n2/2 variables.

Proof: Observe each Xij appears in 5 product terms. Since M* has a bisection width of n, there are at least
n/5 product termspij where at least onevariable in pij is from Xi and at least variable is from X2. Let P
be the set of all such product terms, clearly | P |> n. There are at least | P | /5 product terms in P which
have distinct variables from X\. Let P' be a set ofsuch product terms. Clearly | P' |> (n/25). Again there
are at least (| P' | /5) product terms in P' which have a distinct variable from X2. Let P" be such a set.
Clearly | P" |> (n/125).

Lemma B.l $ = HPiiieP» Pi,j yields at least 2n/125 cofactors with respect to the variables in X\.

Proof: Each p,j € P" has a distinct variable from X\ and from X2. Let X" C X\ and X'2' C X2 refer to
these sets variables. Consider only cofactors of $ with respect to variables from X\ where variables from
X\ —X" are assigned zeros. Observe: Distinct assignments to variables from X" yield distinct cofactors of
$. For, let the assignments differ in the value given to some x/1(ja € X" and let Ptltt7 be the corresponding
term in $. Let xri,ra be the variable in pu,t7 from X'2'. xri>r3 is a controlling value for the cofactor in which
xilti3 is assigned zero, and dominated in the cofactor in which xjltj3 is assigned one. The lemma follows from
the observation.

•

Since /„ = $ YlPi ep» Pi,i> anc* the second term is non trivial, /„ has asmany cofactors as$. Thus the
theorem follows immediately from Lemma A.l. •

20


	Copyright notice 1993
	ERL-93-71

