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Abstract

Flexibility in the Interactions Between High
Speed Networks and Communications

Applications

by

Paul Eric Haskell

Doctor of Philosophy in Engineering-Electrical Engineering and
Computer Sciences

University of California at Berkeley

Professor David Messerschmitt, Chair

Recent research efforts in the design ofboth communications networks and applica

tions have led to increased adaptability in both domains. Flexible networks support alarge
variety of applications efficiently and facilitate the introduction of new applications.

Adaptable applications can use awide variety ofnetworks, such as wireless, local-area, and

Broadband Integrated Services Digital Networks (BISDN's), without modification. Sur

prisingly little research has focused on the interface between applications and networks,

however. Currently proposed interface models often are poorly defined or so simple as to
hinder high application performance and efficient network resource use.

This thesis shows the feasibility and benefits ofaricher channel setup interface by pre
senting a new interface model and then showing how video applications and networks

could use the model to provide high-performance service with high transport resource uti-
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lization. First, we propose the Medley Interface model, which combines substreams of sev

eral different transport qualities of service (QOS) into a single channel. The Medley

Interface also proposes a detailed QOS description format that bounds each individual sub-

streams* data rates, delays, and loss rates, and further allows bounds to be placed on the

burstiness or spacing of substreams* losses. Loss burstiness control is beneficial to applica

tions such as video or file-transfer whose performance varies as much with their channels'

loss spacing as with their loss rates.

Next, the thesis presents a channel parameter negotiation method that reduces network

resource requirements whilemaintaining aconstant levelof application performance. This

iterative minimization technique achieves channel cost reductions ranging from 20% up to

70% with several applications; these negotiations require the detailed transport description

provided by substream decomposition and the Medley Interface QOS format

We present newvariations of existing video coding algorithms that maintain good video

quality over the range of channel parameters that might result from negotiations. Leaky mo

tion compensation causes transmission errors to disappear quickly and smoothly. When

performed adaptively based upon the coded scene's contents, the bit-rate penalty of leaky

compensation can be made very small.

Finally the thesis presents several new bufferaccess disciplines that allow networks to

provide channels with highly correlated or widely separated losses. These special-purpose

disciplines allow networks toallocate asmuch as 50% lessbuffer space as would beneeded

with generic buffer disciplines.

Together, the network interface, video coding methods, and buffermanagement disci

plines presented inthis thesis show the benefits and feasibility ofaricher call setup network

interface than has been envisioned. Video applications can operate with arange of channel

QOS parameters, but they must have some control of the parameters to adapt to produce

video with high subjective quality after transmission. Networks can provide channels with

delay, loss rate, loss priority, and loss spacing characteristics finely tuned to the needs of



specificapplications,buttheseneedsmustbemadeknowntothenetwork.Thesechannel

characteristicsarespecifiedviatheMedleyInterface'ssubstreamdecompositionandnew

QOSformat;further,thesecomponentsfacilitatechannelsetupnegotiationsthatminimize

anapplication'stransmissioncostatafixedperformancelevel.
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Chapter 1

INTRODUCTION

Traditionally, communications networks have supported only a single type of applica

tion. For example, the telephone network is designed to support voice communications;

fairly elaborate processing is necessary to use this network to transmit computer data even

at moderate rates. Computer networks can support high-bandwidth communications, but

these networks are ill-suited to transport video and audio data because of their poor ability

to control loss and delay characteristics. The specialized capabilities of current networks

have led to the deployment ofmany parallel networks within the same area—computer net

works, telephone networks, cable television networks, and safety and security monitoring

networks all may exist within a single building. This duplication of transport capability is

inefficient, and it hinders the introduction of new communications applications because

each new application, collaborative multimedia for example, must find a new network with

which to operate.

The Broadband Integrated Services Digital Network (BISDN) intends to eliminate the

waste inherent in the provision and maintenance of numerous parallel single-use networks.

BISDN's can transport data for applications with a wide range of transmission require

ments; video applications that transmit tens of megabits per second and sensor monitors

that sporadically transmit only a few bits can sharethe same BISDN fairly efficiently. BIS

DN's merge features ofcircuit-switched and packet-switched networks to gain some of the

benefits of each. They transport data in the form of small, fixed-size bundles called cells,

each of which contains a small header with network information that is used for routing,

identification, etc. Since cells are of a fixed size, network switch and buffer architectures

are not too complicated. Since sources can transmit cells at variable rates, network resourc

es can be shared efficiently.
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An application that uses aBISDN must tell the network about itsdata rate characteris

tics and its transmission quality requirements, and the network provides a channel that

meets these needs. To do so a network must contain significant amounts of control intelli

gence. To avoid congestion, the network must route channels so as to balance the load

through its switches and transmission links. The network mustallocate sufficient resources

to channels to ensure that the channels' transmission qualities are maintained but must not

over-allocate resources, which would limit the number of channels that the network can

provide. Also, the network mustcontrol the behavior of switch buffers and interconnect

hardwareso that buffers can be sharedamong channels even at high datarates without ex

cessively degrading thechannels' delays and loss rates. Thecontrol of networks to achieve

these objectives is an active research area, and many significant achievements have been

obtainedin the past few years [33,35,39,46,49,53,54,55,56,59,63,64,72,76,77,84,

85]. Useful reviews of this work are found in [38,78].

Concurrently, many researchers have been studying how to make communications ap

plicationsthemselves more flexible andadaptable forawide variety ofneeds.Forexample,

two recently finalized video compression standards produced by the Joint PhotographicEx

perts' Group (JPEG) and Motion Picture Experts' Group (MPEG) both specify several dif

ferent compression modes, each ofwhich is best suited for particularvideo source material,

picture resolutions, or coded video quality [99,103]. In fact, the recent high definition tele

vision (HDTV) format proposals presented to the U. S. Federal Communications Commis

sion also adapt with respect to the format of the input material and the noise level of the

through-the-air transmission channel available [92,94,96,98].

Although increasing adaptability and flexibility are found both in modem communica

tionsapplications andthe networksthey use, the utilization ofthis flexibility is constrained

by theinterface between applications and networks. Evenin current BISDN proposals, ap

plications must describe their rate characteristics and transport quality of service (QOS)

needs in terms of asmall, fixed number of parameters. Current interface proposals oftenare
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inadequately defined, which prevents applications from relying upon the QOS specifica

tions they receive from their networks. Other interfaces are so simple that they severely

limit applications' and networks' ability to adapt to each other's characteristics. The re

stricted ability of an application to learn about a network's capabilities limits how much it

can modify its signal processing and encoding to adapt to channel impairments. The limited

abilityof a network to learn about specialized needsof its clients limits its ability to meet

those needs efficiently.

This thesis presents three methods thatcooperate to improve efficiency in networks and

their clientapplications: a flexible channel setup interface, videocoding techniques that op

erate with a range of channel characteristics, andnetwork buffer management disciplines

that implement channels with a rangeof application-specific characteristics.

i
D

flexible network

flexible channel setup interface

Three Methods for Improving Network and Application Efficiency (Fig. 1)

Afterareview of BISDNterminology and components in chapter 2, chapter 3 presents

a flexible interfacemodel, calledthe Medley Interface, forchannel setupbetweencommu

nications applications and high-speed digital networks. The model fosters more elaborate

communications between these two entities thansuggestedpreviously. The first partof the

Medley Interface is a paradigm for the division of a channel into smaller units that can be

described more easily and exactly than the channel as a whole. These pieces, called sub-

streams, each have their own rate and QOS specifications. An application can request as



many substreams as it desires, and the application's channel properties follow from the

properties ofits component substreams. Substream decomposition allows networks to tune

a channel's resource allocation and control to meet the specific QOS needs of an applica

tion's different data types. Without substreams, anetwork must give an application achan

nel tuned to the worst-case resource needs of all of the application's data types—if these

needs vary widely, the channel will use resources very inefficiently. Further, substream de

composition decouples channels' descriptions from their network implementations, simpli

fying the design of applications for use with avariety of networks.

A channel's transport behavior can bedivided into data rate, delay, and loss character

istics; the specification of these characteristics is called achannel's flow specification or

flowspec [80,86]. The second part of the Medley Interface model is a flowspec format that

supports detailed specification ofthese channel characteristics. To date, several researchers

have studied how to best describe data rate characteristics [44,54,55,83], and the Medley

Interface flowspec format uses these works. This thesis argues that the simple delay de

scriptions in use today are likelytobeadequate for thenear future. Most networking studies

describe a channel's loss characteristics through its average loss rate, but the Medley Inter

face flowspec format describes a channel's loss characteristics in more detail. We have

found several types of communications applications whose performances depend strongly

on loss characteristics beyond the average loss rate. The Medley Interface flowspec format

allows these types of characteristics, basically the spacing between cell losses and groups

of losses, to be specified. Networks have the capability to implement this type of loss be

havior, applications benefit from it, and with this description format applications and net

works can cooperate to take advantage of these capabilities.

Different networks have different topologies, transport links, and switching resources.

Thus, two different networks might implement two channels with identical flowspecs dif

ferently. If an application knew about its network's relative availability of transport link,

buffer, and processing resources, the application might request a channel with different
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flowspec parameters inorder to best balance the trade-off between channel cost and the per

formance level that an application delivers to its user. Currently, it would be very difficult

for an application toexplore this trade-off since the only information it obtains about anet

work's resource availability is through the costs ofchannels with different descriptions.

The final part of the Medley Interface channel setup model isa flowspec parameter ne

gotiation method that finds systematically the minimum cost channel for a fixed level of

application performance. This iterative negotiation method requires that an application

know how its performance varies as afunction ofits flowspec parameters. This knowledge

can beembodied either in a function that assigns numerical performance values to sets of

flowspec parameters or in sets of parameters that yield aconstant performance level. The

second approach is especially suitable for applications whose performances are evaluated

subjectively, such as video or audio. Substream decomposition and the detailed flowspec

format cooperate to enable negotiations to reduce channel resource requirements more than

would otherwise be possible. The ability to describe application needs and network capa

bilities indetail allows negotiations to trade offamong awide range ofchannel character

istics.

The negotiation method does not require detailed information from anetwork as toits

resource availability. The network simply must be able to tell an application the cost and

cost gradientofachannel with agiven description. Achannel's cost gradient tells how sen

sitive its cost isto changes in flowspec parameters. During channel setup negotiations anet

work either can return cost and cost gradient information repeatedly as a channel's

parameter space is explored, orthe network can transmit a description of itscost function

toanegotiating entity once at the start ofcall setup. The negotiation procedure uses avari

ant of the gradient descent minimization algorithm; at every iteration step the current flow-

spec parameters are refined such that the channel cost decreases but the application

performance remains constant.

We have implemented channel setup negotiations for several types of communications
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applications and for networks with varying cost functions. For these examples the negoti

ating process does succeed inreducing channel costs while maintaining anear-constant ap

plication performance level.

To justify the performance gains possible with this flexible network interface model,

this thesismust show how real-world applications canadapt to avarietyofnetworks.Video

applications are used as examples frequently throughout this paper—these are among the

most demanding applications that will becarried by future high-speed digital networks be

cause of their high bandwidths, tight delay requirements, and relatively stringent loss re

quirements. Multimedia applications perhaps make an even stronger argument for flexible

network interfaces, however. Multimedia applications integrate the exchange of multiple

data types such asvideo, stillimages, audio, text, graphics, and control; each of these data

typeshas unique rate and QOS needs. A network that can describe these needs exactly and

thatcantransport thesedata typesoverconnections that are tunedto theirneedscanoperate

much more efficiently than a network that implements a single monolithic connection that

must meet the most stringent requirements of all of the data types.

In the spirit of the flexibility shown by the MPEG and JPEG video coding standards,

chapter 4 presents some modifications of commonly-used video compression techniques

that allow video coders to maintain a constant perceived quality when using transmission

channels with varying loss characteristics. These techniques are used as part of a Medley

Interface channel setup negotiation to show how a flexible video coder can operate with a

variety of networks.

In addition to not allocating resources for worst-case QOS needs, a network can reduce

a channel's resource allocation by employing buffer management disciplines that tailor the

channel's loss and delay characteristics to specific application needs. There have been a

number of research efforts that present buffer management disciplines that are optimal in

some sense [35,64,75, 85]. However, these works have not proposedthat different disci

plinesmay be appropriate fordifferent applications. Chapter 5 presents some new special-
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ized buffer management disciplines that implement channels with the specific types of loss

characteristics described by the MedleyInterface flowspec format. With a flexible network

interface, applications can request channels withdifferent typesofloss control for different

substreams. Networks can implement these requests byusing different buffer management

disciplines for different substreams, including the new buffer management disciplines pre

sented here. For example, anetwork could use a buffer management discipline that pre

vents consecutive celllosses toreduce the bufferrequirements of ahigh-performance video

application.

The flexible video compression methods and buffer management disciplines presented

here are useful in their own right, but they also serve to show the advantages ofamore pow

erful channel setup interface than previously has been proposed. A more general interface

allows applications to specify their transport QOS needs more exactly, and enables more

efficient resource allocation and greater resource savings during flowspec parameter nego

tiations. Networks can use special-purpose methods for implementing channels with the

negotiated characteristics, and applications can adapt to the specified channel properties.

Perhaps more importantly, as new applications are developed and as new network capabil

ities are discovered, they can be integrated into an existing infrastructure without majordis
ruption.



Chapter 2

CELL RELAY NETWORKS

The introduction statedthat modern digitalnetworks increasingly areable to adapttheir

behavior to suit the needs of a wide variety of communications applications. This section

reviews some properties and components of these networks and discusses thecontrol tech

niques that allow networks to guarantee the quality of service (QOS) that they offer their

clients. This chapter also gives an overview of some methods commonly usedby networks

and applications to alleviate theeffects of data loss on the application's delivered perfor

mance.Finally, this chapter presents somerecentresearch in the design of the network-ap

plication interface. Later sections of this report present a new interface model thatallows

networks and communications applications to take advantage of the flexibility and adapt

ability they increasingly possess.

2.1 Asynchronous Transfer Mode

Many types ofelectronic datanetworks, such as telephone and broadcast television net

works, are circuit-switched. For each connection, the network allocates a fixed "circuit"

consisting ofbandwidth and switching resources, connection identifiers, etc. Networks can

decide whether or not to accept a new connection easily, since each connection consumes

a fixed amount of resources and since networks know how much of their resources are un

used. Signals that contains time-varying amounts of information must be smoothed with

buffering or variable-qualitycoding so that they canbe sent over the fixed bandwidth given

by a circuit-switched channel.

Computer data networks transportvery bursty traffic. Keystrokes from a human user,

graphics data fromadrawing program, andelectronic mailare allexamplesoftrafficsourc

es in which the data rate for some short time intervals is much higher than for others. To
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handle bursty sources efficiently, computer networks employ packet-switching, in which

data streams are divided into bundles called packets, each of which contains a header with

routing information, priority identifiers, etc. Since each packet can be transmitted as a

stand-alone unit, network resources such as transmission lines and buffers need not be re

served for specific connections; resources can be shared among several connections effi

ciently.

Many computernetworkscomputeeachpacket's routeindependently. Routingis com

putationally expensive, but at low to moderate speeds networks are able to route once per

packet

Some networks use variable-sized packets. This allows small bursts of data to be sent

in a small packet—they neednot wait for more data to arrive to fill a larger packet Also,

large bursts of data can be sent in a single packet, to nrinimize header space and routing

computations. However, the design of network switches and buffers is complicated with

variable-length packets.

Cell-relay networks merge features of circuit-switched and packet-switchednetworks

to gain some of the benefits of each. Cell-relay networks divide traffic from each source

into small, fixed-size bundles called cells, each of which contains a small header with net

work information. Since the cells are small, sources that generate data sporadically need

not wait too long before filling them. Since the cells are fixed-size, the designs for network

switches and buffers are simpler than for packet-switched networks.

The Broadband Integrated Services Digital Network (BISDN) combines cell-relay

transportwith asynchronous transfermode (ATM) switching to achieve high network re

source utilization and thus great efficiency [61, 67]. ATM switching allows sources to

transmit cells not periodically but whenever data are available. For example, an ATM

speech coder would not output cells when the speaker is not talking. With circuit-switched

networks sources often have to transmit "dummy data" to satisfy those networks' constant

bit-rate requirement

9



The ability to transmit variable-rate sources gives ATM networks a statistical multi

plexing gain. AnATM network allocates each source some bit-rate below itspeak rate but

higher than itsaverage rate. Itis statistically unlikely that all sources simultaneously trans

mit at their peak rate, so almost always the aggregate rate of all of the network's sources is

less than the network's capacity. The network thus can carry more channels than if each

source wereallocated its peakbit-rate. When many channels are sentthrough the same net

work nodesandbuffers, statistical multiplexing allows two orthreetimes asmanychannels

asif peak-rate allocation were used[21,76,89].

ATM networks, similarly to circuit-switched networks, establish connections called

virtual circuits that last for the duration of an application's communications ratherthan for

a single cell time. Routing is performed once per virtual circuit rather than once per cell.

During channel establishment, all network nodes that implement avirtual circuit perform

routing (e.g. with the shortest-path algorithm [38]) and associate thevirtual circuit identi

fierwith the correct routingpath. Duringcell transport, nodesuse a tableto translate virtual

circuit identifiers to output links; no routing algorithmneed be performed.

Also during channel setup, network nodes may allocatebuffer space or other resources

to a virtual circuit In fact, during virtual circuit establishment, the source and network may

negotiate average and peak source cell rates, allowed network delay, loss rates, etc. Many

applications need these quality of service (QOS) guarantees from the network in order to

function usefully. For example, since people find two-way voice communications quite

awkward if the end-to-end delay in the network exceeds 0.5 seconds, a voice coding appli

cation should negotiate with the network to obtain a channel with a smaller delay.

2.2 Network Components

We define an application to be hardware or software that provides some communica

tions service to a human user. Examples of applications include multimedia editors, video

conferencing systems, remote visualization devices, file-transfer software, etc. An

application's performance isameasure of how well it satisfies itsuser—performance could
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be the subjective quality of an audio or video presentation, the throughput rate of a file-

transfer application, etc. A network provides transport services to its client applications.

Transport services include sequenced cell delivery, delivery at specified loss rates and de

lay bounds, delivery with lost cell notification, etc. A networkimplementsa channel to pro

vide a transport service to an application. A channel's QOS specificationor QOS guarantee

defines worst-case loss and delay characteristics that a network promises to give the chan

nel; the channel's QOS is the characteristics it actually receives. A channel's QOS specifi

cation combined with the data rate bounds that its client application promises to observe

constitute the channel'sflow specification orflowspec [80, 86]. A channel's flowspec is es

tablished over a signaling interface during channel establishment.

User Application Network

provides
communications
service

flowspec
-?• i*+-

flowspec

provides
transport
service

signaling interface

Terminology (Fig. 2)

A cell-relay network consists of end-user equipment, network switches, links that con

nect the user equipment and switches, and management entities that control the network.

Thelinks and switches have finite capacities, measured in bits per second or cells persec

ond. One of the hardest problems in the field of data networks is to decide how to choose

an interconnection topology among the various network components and link bandwidths

and switching resources within the topology so that the network can handle a maximal
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amount of application traffic. This question is beyond the scope of this report, but [38,63,

77] provide an introductory discussion.

Management functions withinthenetwork are responsible for ensuring thatthenetwork

runs properly. These operations include fault detection, billing, andQOS monitoring.

2.3 Channel Setup

During channel setup, anapplication and the networkagree on a flowspec, andthe net

work tries to establish a suitable channel. Flowspec parametersinclude network QOS mea

sures such as fixed or probabilistic boundson end-to-end delay,variability in delay (called

delay jitter) and probability of cell loss. The network must establisha pricing structure so

that applications do not request a higherQOS specification than they really need. Forex

ample,a high-speed, low-delay,low-losschannel shouldcost more thanalow-speed,high-

delay, high-loss channel,orelse no applications would ever request the latter. The problem

ofestablishing fair prices for different flowspecs depends both upon the cost ofimplement

ing a channel with the given flowspec as well as upon the demand for such channels; this

problem seems quite difficult and has received little systematic study. A good price struc

ture set up by a network for its customers not only discourages applications from wasting

resources, it hopefully generates revenue for the network fairly in that customers that re

quire more network effort pay more than other customers.

If the network were to charge a customer a fixed charge per cell, then bandwidth-inten

sive applications such as video would subsidize less bandwidth-intensive applications. Call

set-up, network maintenance, and network overhead consume network resources; pricing

structures should reflect these expenses. Also, true per-cell charging is probably too diffi

cult for networks to implement.

If prices were proportional pnly to call duration, then applications would have no in

centive not to transmitdata at very highrates, wastingnetworkresources. The easiestway

to base pricing is on the agreed-upon flowspec parameters as well as on the channel life

time.Of course, if anapplication violates itsrate parameters, thenetworkcouldimposesur-
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charges instead of simply discarding the excess traffic. If the network violates its QOS

guarantees, then the client could receive a partialrefund of charges.

2.3.1 Rate Description and Quality of Service

During call setup, an application tells its network its traffic rate characteristics and re

quests a certain channel QOS specification. The network uses this information to establish

a suitable channel. It would be usefulif anetworkcoulddeduceanapplication's trafficrate

characteristics directly from its transmitted data stream. However, the network must know

the application's traffic description before it creates a channel.

An application could specify only its peak datarate in describing its traffic. Then, the

networkpessimistically must assume that theapplication always transmits atthispeakrate.

It is more common for broadband network proposals to require that applications specify

both theirpeak andaverage data rates [104]. With these two metrics, networks cantakead

vantage of applications' time-varying resource needs.

The leaky bucket isacommon method for traffic description [46]. Theleaky bucket acts

like a buffer with a fixed maximum size and deterrninistic service rate. This monitor re

quires that asource's cell traffic notoverflow abuffer withaspecified capacity and service

rate.

To implement apeak rate constraint, a leaky bucket monitor withacapacity of oneand

a service rate equal to thepeak rate can be used. If two cells arrive spaced apart by atime

less than (11 peak rate) then the leaky bucket length would grow to 2 and the capacity

wouldbe exceeded. To implement an average rate constraint, a leaky bucket with a large

capacity and rate equal to the average source rate can be used. Even if the source has long

bursts which exceed the average rate, the bursts should get absorbed in the large leaky

bucketcapacity. If the bucketeverdoesoverflow, thenthe source hasexceeded its average

rate for a long time.

Multiple leaky buckets would be helpful in describing the traffic from a single source.
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The peakandaverage rate of a source couldbe monitored with the combination of the two

leaky bucket monitors discussed above. Other two-bucketratedescriptions could be more

useful to the network, however. Possibly, rate descriptions with more than two leaky buck

ets could be employed to allowthe network to obtaindetailed informationon the trafficrate

statistics of a particular application. For example, a network could ask an application for

appropriate leaky bucket rates for bucket sizes equal to the buffer sizes of each network

switch in a given channel.

Communications applications must know how to translate their high-level performance

requirements into network flowspec' parameters. Forexample, a video coder must translate

performance requirements such as interactive response time and image fidelity into flow-

spec parameters such as channel delay and cell loss probability. The more accurately that

an application can describe its QOS needs to the network, the less the application must

overestimate its needs, incurring extra cost and wasting resources.

2.3.2 Resource Allocation and Routing

While establishing a connection to a particular destination,a network performs routing

by choosing a path of switches and transmission links that connects the source to its desti

nation. Concurrently, the network must ensure that adequateresources exist along the route

to carry the source's data. If no route exists with adequate resources, the source must be

informed that its request foraconnectionmust be denied. Optimally, the network combines

knowledge about its own topology, its available resources, and the likely pattern of future

channel requests to choose routes that will not prevent future channels from beingestab

lished.

The network determines how much buffer, switching, and bandwidth resources to allo

cate toachannel based on thechannel's rate description and QOSspecification parameters.

If the network allocates resources aggressively, assuming that the channel will not need

many resources, then the network can accept more channels than a conservative network.

However, applications' QOS guarantees will be violated more often by an aggressive net-
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work than a conservative one.

It would be possible for networks to allocate resources to channels dynamically as they

are needed. However, dynamic resource allocation creates the problem of what to do if

needed resources are not available. Most users would prefer to be denied a connection at

the start of channel establishment rather than to have their channel break down in the mid

dle of use.

2.4 Rate Monitoring

The resources allocated by a network for a specific channel only will be adequate to

guarantee a certain quality of service if the source traffic conforms to the rate description

that it promised. To ensure that sources are well-behaved, networks use a rate monitor or

policing agent.

The leaky bucket described insection 2.3.1 commonly isused as arate monitor. Again,

the leaky bucketacts as afinite sized buffer with afixed service rate. Todo rate monitoring,

the leaky bucket need notactually buffer any cells. The leaky bucket can beimplemented

with an up-down counter that isincremented whenever the source being monitored outputs

a cell and that is decremented periodically at the servicerate. If the countercounts down to

zero, it is not decremented further. If the counter increases to the leaky bucket size, then

any cells that arrive when thebucket is full should bediscarded rather than given tothe net

work. Thecount of the leaky bucket at all times is equal to the fullness of an actual queue

with the same servicerateand size as the leaky bucket.

The leaky bucket is a simple and effective policing agent. However, one drawback is

thatwith large bucket sizes (as wouldbe usedtoverify an average-rate bound), thenetwork

cannot detect a violation until the violation has continued for a significant time. Also, the

relative time-phase of the leakybucketdecrements withrespect to the source traffic affects
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the monitor's decisions.

arrivals J,J g %j g J^ Ji ^
clock(s)

Different Leaky Bucket Phases (Fig. 3)

In figure 3, the triangles markcell arrival times. The solid anddashed lines indicatedecre

ment times for two leaky buckets. Both leaky bucket monitors operate at the same service

rate. However, if both leaky buckets have size 1 (i.e. if they monitor a peak rate constraint)

then the leaky buckets make different decisions. The leaky bucket corresponding to the sol

id lines rejects the second and fourth arrivals. The other accepts all of the arrivals. Because

of this timing phase sensitivity, it is common with the leaky bucket as well as with other

policing methods to make the policing agent parameters somewhat less stringent than the

negotiated rate description parameters. When allocating resources for new channels, a net

work must know about this safety margin built into its policing agents.

Next, we review policing methods other than the leaky bucket [72,79]. With the jump

ing window method, the number of cells that a source can transmit in fixed-size time win

dows is limited to a maximum value. If more cells arrivein a window than is permitted, the

extra cells are discarded or marked for possible future discard. Each time window starts im

mediately after the preceding window. With this method, the time windows are not syn

chronized with cell arrivals at all. The triggered jumping window policing method differs

from the jumping window method in that a window interval does not start until the first cell

arrival following the end of the previous window. The moving window method stores the

arrival times of the previous N cells at all times, whereN is the window size. If, at any cell

arrival time, the most recent// cells have arrived in less than the prescribed window width,

then the current cell is discarded or marked. Sincethismethodrequires the storage of pos

sibly numerous cell arrival times, it is more complicated to implement than the previous

policing methods.

The exponentially weighted moving average policing method is quite similar to the
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jumping window method except that the number ofcell arrivals in any window interval de

pends upon the number of arrivals in previous intervals as well. The more cells that arrived

in previous intervals, the fewer cells are permitted to arrive in the current interval.

All of these policing methods can monitor peak cell arrival rate violations effectively;

in fact the methods are nearly equivalent with a window size of 1. However, the leaky buck

et method usually detects violations of mean arrival rate agreements more quickly and/or

more accurately than the other methods [72].

Applications can use knowledge of a network's rate policing method to improve their

performance. For example, video coders that use fixed-rate channels maximize their per

formance by always broadcastingat the maximum possible rate.With leaky-bucket polic

ing however, a coder can "loan" itself bandwidth in the future by broadcasting slower than

the bucket service rate; the bucket fullness then decreases to zero. When a scene changeor

burstof activity occurs, the video codercan use this"loaned" bandwidthto improve its per

formance. Note that since policing occursat the source,the source should be able to prevent

any discard by the policing agent by implementing its own copy of the policing agent and

reducing its data rate when its copy is close to its limits. This method is similar to the use

ofbuffer-length feedback in a fixed-rate channel system. However, broadbandnetwork rate

monitoring may exert different influences on coders; if a network uses a leaky bucket con

troller to monitor a video source's average cell rate, the leaky bucket size likely would be

larger than any physical buffer in a fixed-rate network.

2.5 Methods for Alleviating Data Losses

Some applications may transmit data ofvarying importance over a single channel. This

section discusses some methods that networks and applications can implement to protect

more important data from cell losses and also to make the effects of losses less severe.

An application could request two or more channels, each with different QOS specifica

tions, for data streams with different loss sensitivities. However, the application might ob

tain some of the needed transmission channels but not others. Also, the application would
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need to perform cell resequencing at the receiver since delays on different channels may

differ. So, there are advantages to having applications establish only one transmission

channel.

2.5.1 Priorities

Applications can use priority notification to specify that some transmitted cells are

more important than others; networks then can offer different QOS guarantees to different

priority traffic within the same channel. A simple scheme is proposed for the BISDN: one

bit in each cell header specifies if a cell is "loss-eligible" or not. Within network nodes, if

some number of cells from one source are to be discarded in order to prevent buffer over

flow, the "loss-eligible" cells are discarded first. Thus, if a source marks all of its outgoing

cells "loss-eligible" or "loss-ineligible", then cells arediscarded at random. The fewer cells

are marked "loss-ineligible", the less likely that loss-ineligible cells will be lost However,

the percentage of loss-ineligible cells discarded depends upon the state of the network as

well. It is an unanswered question how high a percentage of loss-ineligible cells a coder

should generate to protect them adequately—researchers have tried values from 0% past

50% [2,16].

A video coder based on motion-compensation and the discrete cosine transform (DCT)

could use priority notification to request that high-frequency DCT coefficients be discarded

before motion vectors in the event of network congestion; the DCT coefficients have less

influence than the motion vectors on the received video quality. Later in this report, we

study how a more general multiple-channel network interface can allow modified video

coders to send data over lossy networks more cheaplyand with more loss-immunity than

is possible with present networks. By sending data overchannels with appropriate loss,de

lay, and bandwidth characteristics, video coders can transmit high-quality sequences effi

ciently in spite of cell loss.

A network policing agent need not discard cells in excess of the source's guaranteed

rate; it could use the priority bit to mark such cells as loss-eligible. Then, if networkre-
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sources are free to deliver the cells even though they are in violation, they will be delivered.

If the resources are not available, the illegal cells are discarded to prevent affecting other

sources' QOS.

2.5.2 Error Correction and Detection

Forward error correction (FEC) techniques add coded bits to a data stream such that

limited numbers of bit errors affecting either the new bits or the original input can be de

tected or corrected. Reed-Solomon coding, BCH codes, and Hamming codes all are exam

ples ofFEC techniques [107]. FEC increases the amount of data that a source must transmit

and imposes coding delay also. Further, FEC codes that could correct for the loss of large

numbers of bits, such as would occur with a cell loss, would be fairly complicated.

Nevertheless, some researchers have investigated FEC for recovery from cell losses

[71]. Although this paper finds that FEC can reduce a channel's apparent cell loss rate, the

paper does not address the bandwidth penalty that FEC imposes and does not mention how

FEC could cope with consecutive cell losses.

Applications that cannot tolerateany losses but that can tolerate high delay, such as file-

transfer, combine error-detection with bidirectional protocols that allow a receiver to re

quest retransmission of corrupted data [38]. The overhead and expected delay of these au

tomatic repeat request (ARQ) protocols can be traded against each other for efficient

operation with a variety of networks.

2.5.3 Data Interleaving

Because cell losses often are caused by overflowing buffers within the network and be

cause the conditions that cause buffer overflow may persist for a significant time, cell loss

es do tend to occur in bursts. If a source interleaves or shuffles its data before packingthe

datainto cells, a burst of cell losses can be spread out. For applicationssuch as video trans

mission this is helpful since video receivers can estimate lost data fairly well if the datain

nearby picture regions is available. If a burst of cell losses were to corrupt the data for a
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large picture region though, the coder could not reconstruct the data.

Data interleaving cannot reduce the number ofcells lost on a channel, however. Further,

interleaving imposes delay and storage penalties at both ends of a transmission channel. Fi

nally, a communications application must know the statistics of cell loss burst lengths in

order to decide the length of time over which to interleave its data.

2.5.4 Traffic Shaping

Either a data source or a network can spread out high-rate bursts from a source's cell

stream by performing traffic shaping. A traffic shaper is a storage buffer at the beginning

of a channel that absorbs rapid bursts of traffic and outputs them at a lower rate; the

smoothed cell stream is less likely to cause network buffers to overflow than the original

stream. Although traffic shaping probably makes sense for very bursty sources, this tech

nique does add delay to a channel. Further, the memory required to perform traffic shaping

might be better used to increase the size ofnetwork buffers. If the memory were used within

network switch buffers, it could be shared among multiple applications and would only add

to channel delay when switch buffers were close to overflowing.

2.6 Cell Switching

A network switch accepts cells from a number of input channels, determines where

each cell should be sent next, and sends the cell to the appropriate output port some time

later. From the output port, each cell travels over a transmission link to another switch or

to its final destination. Much of the difficulty in switch design arises because for brief pe

riods of time, the amount of input traffic that must be directed over a particular output link

exceeds the link capacity. To alleviate this problem, cell-relay network switches contain

buffer space in which cells can be stored until their output links become available. A

switch's buffer access discipline decides whether an arriving cell will be stored in a buffer

to awaitoutput or will be discarded becauseinadequate resourcesexist to process the cell.

A switch's buffer service discipline determines when cells stored in one or more buffers
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will be output.

During channel setup, a network uses the channel's QOS specification andratedescrip

tion to allocate resources such as link bandwidth and buffer space within switches to the

new connection. In conjunction with the rate monitor, a network can maintain the channel's

QOS at each buffer and link with appropriatebuffer access and service disciplines. For ex

ample, if a buffer fills so that it is in danger ofoverflowing, cells from different sources will

be discarded in such a way that none of the sources' negotiated QOS guarantees areviolat

ed.

Switch architectures typically containbuffering components, routing logic, andcontrol.

Switches that first buffer all inputcells before routing them to the appropriate output can

suffer"head-of-line" blocking, when thecell at the head of a queue can not be output yet

because its output port is busy and all cells from the same input are stuck waiting in the

queue even though they are destined for different outputs. This is not efficient

Numerous switch architectures buffercells after routing them either partially orcom

pletely.This paper does not discuss switching architectures in detail (see [43,57] formore

information), butassumes a generic switch model that consists of an input stage, routing

logic that operates ata high enough speed so thatall input cells can be routed to the correct

output in one cell duration, a buffering stage, andan output stage.
input_ rSyJJllfl buffering output

Switching Architecture (Fig. 4)

The above architecture shows a single buffer at eachoutput port that is shared by all

inputs that leave through the same port. Shared buffers gain a statistical multiplexing ad-
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vantage; since it is unlikely that all or even most of the sources sharing a buffer simulta

neously send data near their peak rate, then shared buffers can be smaller than dedicated

ones.

However, it is difficult for a switch to guarantee equal quality of service to all input

streams going to acommon output if cells from all streams are stored in acommon buffer.

Switch servicedisciplines that can guarantee fair service to all inputs typically storecells

from different inputs in different buffers (figure 5), and thenspecifytheorder in whichthe

buffers are served. Since buffers are not shared by these disciplines, it is possible that an

arriving cell is discarded because its input buffer is full even though space exists in other

buffers. It should be noted that "fair service" is different from "least cell loss". A switch

mightlosethe fewest cellsby discarding inputs from onlyone source. This approach would

not be fair to the penalized source however.

Multiple Buffers and A Server at One Output Port (Fig. 5)

Buffer service disciplines that do not share buffers include the virtual clock and fair

queueing methods, forms of the earliest due date strategy, the stop and go algorithm, and

the hierarchical round robin strategy [85]. The virtual clock and fair queueing disciplines

essentially are identical. These methods share bandwidth equally among all sources. How

ever, if a source is not using its entire allotment, then other sources can share the unused

bandwidth equally.

The "delay" version of the earliest due date strategy negotiates a transmission delay

bound and transmission rate with each application. Arriving cells from each source are as

signed a deadline which depends on the delay bound and agreed transmission rate. The

server then sorts the arriving cells from all customers by deadline and transmits the cell
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with the earliest deadline. The "jitter" version of the earliest due date strategy is similar to

the "delay" version except that each switch can store cells in abuffer in order to provide

minimum as well as maximum delay bounds.

The stop and go discipline divides time into contiguous frames. In each frame, only ar

rivals from the previous frame can be output. By adjusting the frame duration, this disci

pline can provide minimum and maximum delay bounds to its customers. Note that this

method, as well as the jitterversion ofthe earliest due date strategy, may leave output trans

mission links idle even when cells await transmission. Such service disciplines are called
non-work-conserving.

The hierarchical round robin discipline is also non-work-conserving. This method

maintains separate input queues for each customer. Each queue is served in turn, periodi

cally. Several collections ofround-robin queues can be served by ahigher-speed round rob
in queue.

K-

K-
Hierarchical Round Robin Queues (Fig. 6)

Of course, buffer service disciplines can compromise between the benefits of shared

buffers and buffers reserved for each input For example, an output port could have one

small buffer for each input and one additional large buffer for overflow cells. Apossible
modification of the round-robin service discipline for this arrangement would serve the

overflow buffer whenever the dedicated input buffer to be served is empty.

The simplest buffer access discipline isfirst-comefirst-served (FCFS). An FCFS buffer

serves cells in the order in which they arrive, and arrivals at a full buffer are discarded.

Since FCFS never leaves buffer space empty when there are cells to be stored, this simple
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discipline achieves the minimum possible cell loss rate.

A simple modification of theFCFS discipline that allows for cellsof different priorities

is called FCFS with pushout [64]. This discipline works much like simpleFCFS, but when

acellarrives ata fullqueueit can pushoutapreviously queued cell of lowerpriority ifone

exists.Most sensibly, thequeuedcellwith lowestpriority is dequeued anddiscarded. FCFS

with pushout suffers an overall cell loss rate equal to that of ordinary FCFS. However,

FCFS with pushout gives communications applications morecontrol over whichcellsare

lost.

The partial buffer sharing discipline [64] prevents lower-priority cells from entering a

queue as the queue nears capacity. A partial buffer sharing queue of length L can be de

scribedwith a screening function rL(/) that specifies the niinimum priority level that a cell

must have to gain admission to a queue of lengthL when that queue contains / cells.As /

increases, cells need higher and higher priority levels to be admitted to the queue. rL(0)

should equal the lowest priorityin the system, andrjJ(L) should be higher than the highest

priority in the system. Forexample, in a systemin which priorities range from 0 top^^x,
/ •Pmax

rL(/) couldbe the function max(0, pMAX ~ ^ +0 or —-—.

This scheme differs from FCFS with pushout in that partial buffer sharing does not

queue some low-priorityarriving cells even when the queue is ableto storethem; the queue

spaceis reserved for future higher-priority arrivals. Thus, partial buffer sharing results in

more cell losses than FCFS with pushout. However, partial buffer sharing is simpler to im

plement than FCFS with pushout because the priorities of the queue contents need not be

examined with partialbuffer sharing.With both schemes however, when a queue is nearly

full then only the highest-priority traffic is delivered, as desired.

2.7 Prior Interface Models

The goal of a network interface is to enable diverse types of applications to use a com

mon network. Typically, existing interface models standardize a set of network transport

service classes or network actions that applications can use for their communications needs.
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The two interface models discussed next provide higher-level transport services than sim

ple cell transport.

Proposed BISDN standards divide networking functions into separate protocol layers:

the "Physical" layer transmits data units between connected network nodes and the "ATM

Layer" transports cells between channel endpoints. The "ATM Adaptation Layer" (AAL)

protocols work at a higherlevel than the ATM cell transport layer. AAL protocols addap

plication-specific customization to the underlying ATM transport For example, an AAL

canperformsegmentation andreassembly ofapplication data units,extracttiming informa

tion, and perform error-detection. Currently, four AAL protocols have been defined. AAL1

supports connection-based, constant-bit-rate communications applications. AAL1 supplies

a timing signal, either synchronous or asynchronous to the network clock, to the receiver.

Further, AAL1 segments and reassembles applicationdata and maintains constant bit-rate

delivery with buffering and bit-stuffing.

AAL2 supports connection-oriented applications thatrequire timing informationat the

receiver butthat donotrequire constant bit-rate delivery. ThenextATM Adaptation Layer

is called ATM3/4 for historical reasons. This layer supports connection-based or connec

tionless variable-rate data transfer. AAL3/4 performs data segmentation and reassembly,

error-detection and possible retransmission of erroneous data, quality of service monitor

ing, etc. AAL5 also supports connection-oriented variable rate data transfer, but this AAL

is simpler than AAL3/4. AAL5 does not support error recovery methods such as retrans

mission, but may notify the receiver ofmissing data. AAL5 also may offerapplications less

control over data transport than AAL3/4. For example, Bellcore proposes that applications

that use AAL3/4 be allowed to cancel the transmission of in-progress frames, while appli

cations that use AAL5 cannot [104].

The motivation for the AALconcept isthat if anetwork can standardize several types

of transport rather than justone, then the needs of more applications can bemetmore close

ly. This approach should be simple to implement because ofthe small number ofproposed
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transport service types, but the drawback is that the offered AAL transport service defini

tions do not meet the needs of complicated applications very well. AAL-based networks

must over-allocate transport resources for applications whose quality of service needs can

not be met exactly.

Bellcore also was integral in the development of the "intelligent network" interface

concept [36,37,51,58,74]. The intelligent network model defines a set ofjunctional com

ponents, basic building blocks of telecommunications applications such as "join connec

tions," "retrieve information from database X," "update record y," "play audio

announcement," "collect touchtone digits," etc. The standardization of functional compo

nents shouldfacilitate the introduction of new applications, because part of the implemen

tation of newapplications can bedefined in terms of already-implemented simple building

blocks. Inpractice, newapplications that require network actions notspecified by standard

ized functional components would face a major obstacle to implementation.

Next we discuss several signaling interface models that support cell-relay channel es

tablishment for avariety of services; none of these models completely solves the signaling

interface design challenge though. Topolcic points out that no one yet has enough experi

ence with large-scale cell-relay networks to specify fully how they should operate. "Few

networks in the Internet currently offer reservation, and none that we know of offer reser

vation of all theresources specified here... No network [yet] provides for thereservation of

packet switchprocessing bandwidth orbuffer space." [80, p. 20].

The "Zeus" project at Washington University has proposed a flexible channel setup

model for multiway connections. This project focuses onthe multicast aspect ofcall control

rather than on QOS specification [39, 41]. The Zeus project includes signaling protocols

and switch hardware architectures that facilitate the establishmentandmaintenance ofcon

nections between numerous endpoints. Applications' only control their received QOS

through the selection of one of four bandwidth choices, however.

Bellcore's "Expanse" project is similar tothe Zeus project inmany ways [66]. The Ex-
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panse project defines an object-oriented call establishment model that implements com

plex, multiway call establishment. The model also supports higher-level application-

specific transport services such as translation between different video formats and verifica

tion of end terminal capabilities. The project proposes a call setup language that is tuned to

minimize the amount of call establishmenttraffic thatmust be exchanged between applica

tions and networks.

Quality of service specification within the Expanse model is kept very simple. Appli

cationschoose from a small, fixed set of QOS specification options for each of their con

nections. Each connection between different endpoints can have its own unique QOS

specification, however.

TheTenetgroup atU. C.Berkeley has proposed anetwork model and suite of protocols

that implement channels with guaranteed QOS [48]. This workstresses the importance of

QOS guarantees, implemented with acombination of call admission, rate monitoring, and

resource reservation; several high-speed network test-beds demonstrate the feasibility of

the Tenet channel model. TheTenet group's approach differs from that presented here in

that they use probabilistic bounds onQOS measures such as delay or loss rate; probabilistic

bounds are difficult todefine in such away that applications can rely on them toguarantee

performance. Further, the Tenet group uses different flowspec parameters than those pre

sented in chapter 3.

Two protocols for the Internet use concepts that should be useful in the BISDN also.

The Experimental Internet Stream Transport Protocol, Version 2 (ST-II) proposes amulti

castchannel setupmodel thatallows different participants in a communications session to

usechannels with different QOS specifications [80]. Theprotocol supports addition and de

letion of participants in an ongoing multiway dialog and implements fault recovery also.

ST-n supports guaranteed QOS channels as well as"best-effort" channels for which inad

equate resources are reserved to meet their QOS guarantees.

The ST-II document presents a flowspec model but states that modifications are likely.
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Flowspec parameters includecell loss probability, maximum channel delay,requested and

minimum acceptable bandwidth, and"duty factor," the estimated percentage of time that

the requested bandwidth actually will be in use.

The RSVP internet protocol presents a novel and clever multicast resource reservation

protocol in which data receivers rather than sources set channel QOS requirements [86].

This protocoldefines "filters" that allowdifferent receivers in amulticast session to specify

subsets of transmitted data that they wish to receive; these filters aid resource sharing in

multicast connections. RSVP leaves the specification of flowspec parameters to its client

applications, however.

2.8 Conclusion

ATM networks support a variety of communications applications, including video, ef

fectively because they handle high-speed variable-rate traffic. Since ATM networks dy

namically share resources among multiple sources, they use transmission and switching

resources efficiently. Thus, ATM networks effectively can support multimedia applications

that combine video, audio, text, graphics, etc. However, ATM networks lose some fraction

of their input data cells because ofoverflowing network buffers, errors in cell headers, etc.

The pattern of these losses is difficult to characterize since it varies greatly with the instan

taneous bit-rates of the accepted traffic. However, losses tend to occur in bursts; if network

buffers are full then some time must pass until they empty substantially.

Network designers have several tools that can be used to shape a channel's cell loss

characteristics. Proper resource allocation and policing ensure that channels are not rou

tinely swamped with more data than they can handle. Intelligent buffer management disci

plines allow networks to protect important data from loss at the expense of more lost

unprotected data. Forward error correction, data interleaving, and traffic shaping help re

duce the severity of losses to the final receivers of transmitted data.

Because future broadband digital network models are still incompletely specified and

because application designers have little experience with high-speed digital switched net-
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works, there remains a significant amount of work to be done integrating applications such

as video communications into modem networks. One important problem addressed next is

the specification of a more expressive signaling interface that allows networks and their cli

ent applications to communicate their capabilities and needs more effectively with each

other than is possible with current models.
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Chapter 3

MEDLEY INTERFACE PROPOSAL

The previous chapter concluded by presenting several new network interface models

that support channel establishment, especially for multiway connections. This chapter pre

sents a new signaling interface model, the Medley Interface, that extends previous work in

several ways. The goal of this interface is to enable networks to implement channels with

guaranteed quality of service (QOS) performance more efficiently than now possible. This

is achieved partly through more detailed descriptions of applications' rate, delay, and loss

needs than has been proposed. To facilitate this description, channels are decomposed into

components called substreams, for which individualizeddescriptions can be specified. By

describing substream characteristics rather than the characteristics of entire channels, ap

plications avoid requesting channels with better QOS than they need.

A channel's flowspec defines its data rate, delay, and loss characteristics. The Medley

I'll

Loss

Channel Characteristics Described by a Flowspec (Fig. 7)

Interface defines a substream flowspec format that guarantees QOS performancewhile still

allowingefficient networkresource use. Manyexisting flowspec definitions arepoorlyde

fined, or they are so simple that they force networks to over-allocate resources to channels.

The Medley Interface describes a substream's cell loss characteristics with a new for

mat that specifies the spacing and burstiness of cell losses in addition to the average cell

loss rate. The description format must balance several trade-offs. In general as the format
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becomes more powerful and complex, it becomes more likely to be able to support the

transport needs of future broadband applications. Thecostof thiscomplexity is that call set

upnegotiations, application design, and network design become more complex.

This chapter next presents achannel setup negotiation heuristic thatallows applications

to obtain minimal-cost channels that support a fixed level of application performance. Ex

amplenegotiations are presented for twotypesofapplications, andtheimplementation dif

ficulties that arise are discussed.

The substream decomposition, new flowspec format, and channel negotiation tech

niquecooperate to enableefficient networkoperation. The first two components enable ac

curate resource allocation and configuration of network components such as rate monitors

and switches. Further, they enable applications and networks to gain advantage during

channel setup negotiations, which reduce channel resource use directiy. For negotiations to

achieve significant resource savings, applications and networks must know enough about

each other's sensitivities to different channel characteristics to trade among characteristics

intelligently.

3.1 A Flexible Network Interface

In thinking about data communications systems, engineers often use the abstraction of

the "ideal lossless channel" to try to decouple datatransmission issues from the dataencod

ing. In practice, thisdecoupling is oftenincomplete. Traditionally, since onlyonenetwork

has been available to application providers, the application designers have assumed one

particular network behavior and then compensated for that fixed behavior within their ap

plications. For example, theU.S. digital HDTV proposals all specify Reed-Solomon coding

and ghost-cancellation methods towork well with through-the-air channels, even though

HDTV probably will be broadcast over other media also.

Conversely, before integrated networks, most networks only supported asingle type of

application. As aresult, the networks sometimes built in signal-processing functions to try

to simplify their supported applications. For example, telephone networks provide echo
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cancellersthataredesigned for the needs ofvoice conversations but areless appropriate for

data modems or fax traffic. Also, cable television networks are well-suited for broadcast

video distribution but do not allow for even the low-rate signaling required for applications

such as pay-per-view video.

On the surface, it appears that the concept of the BISDN couples data sources and the

network more tightly together. After all, applications that use the BISDN will have to ne

gotiate QOS parameters and account for network delays and losses. However, network cli

ents alwayshave hadto allow fornetwork shortcomings; in the past,they could not choose

the shortcomings. For example, the concept of the fixed-rate video codec is based not on

any fixed entropy of the video source but on the need to transmit fixed-rate data over cir

cuit-switched networks. What the Broadband ISDN does, rather than to force applications

to make more allowances for non-ideal network characteristics, is to give them a much

broader choice of network characteristics. Before every connection, applications can select

channels with different delay bounds, different loss rates,different costs, etc.

One problem withproposed BISDNapplication-network interfaces is that applications

are offered avery limited menuof transport services from thenetwork. It currently is pro

posedthat the BISDN define anapplication's needs fairly coarsely, in termsof only a few

parameters such as average datarate, worst-case delay bound, and average loss rate. Also,

the BISDN defines channels as if all of the data transmitted on each channel consists ofone

or at most two types—high loss priority and low loss priority. As aresult, applications often

are forced to transmit data over channels with inappropriate characteristics.

We propose that future broadband networks offer applications a much richer channel

establishment interface, with more description of applications' transport needs than is

available with a single priority bit. The interface should support flexible call setup negoti

ations so that applications and networks can establish channels with minimum-cost re

source use. In this chapter we design and present a new interface model, called the Medley

Interface, first to leam about the issues relevant in the design of such a model and also to
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demonstrate the feasibility of the flexible interface concept.

The establishment of a communications channel through a network consists of several

steps:

• the establishment of channel rate and QOS parameters

• the establishment of a route through the network over which the channel's data will

pass

• the reservation of resources along the route to ensure that the channel's QOS speci

fication will not be violated

• the proper configuration of network components in order to provide the channel most

efficiently

• the proper configuration of application components to utilize the channel most effi

ciently

The Medley Interface proposal addresses the first of these steps.This chapter discusses how

the Medley Interface model describes channel characteristics and how it implements call

setup negotiations in order to arrive at a set ofcharacteristics that is useful both for the com

munications application as well as the network it uses.

An important goal of theMedley Interface model is tomanage complexity through the

separation of the description of a transport service from the transport's implementation.

Differentpieces of networkequipment could implement the same transmission channel in

quite different ways. As faster switches, more elaborate buffer management disciplines,

and more exact resource allocation formulae are developed, they can be incorporated into

networks without affecting the network interfaces or existing applications.

TheMedley Interface model also must beextensible. Asnewer versions of the interface

are developed and integrated into existing systems, older networks and applications should

continue to be able to negotiate and establish channels successfully. If anetwork interface

supports options that an application does not understand or know about, the application

simply can ignore those options. Newer networks should continue to be able to support old

er options by implementing the old options in terms ofnewer ones. For example, anew net-
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work interface that prefers to use exponential-weighting rate monitors could continue to

support leaky bucket rate monitors. The network simply would approximate the leaky

bucket monitor with whatever process it uses to implement the exponential-weighting mon

itor.

This model proposes a change in the way that communications applications conceptu

alize networks—application designers are used to knowing a set of channel characteristics

that they assume are unchangeable and that they try to design around. Now, applications

designers must think about what QOS their applications actually need, how somewhat dif

ferently perforrning channels can be used to supportthe same application, and how an ap

plication's data traffic can be divided into subsets with different transmission needs. In this

way, all of an application's traffic can be transported as efficiently as possible. Also, if an

application requests a substreamwith aparticular QOS that is temporarilynot available, the

applicationpossibly will be ableto alterits signalprocessingstrategyto function with other

available substreams.

The Medley Interface proposal actually decouples interactions between data sources

and networks to some extent. Forexample, some applications currently perform error-cor

rectioncoding on their databefore it is sent to the network. By doing so, the applications

essentiallyestimatethe QOS of the networkchannel themselves andtake theirown, possi

bly quite inefficient, steps to modify the channel. A fairly modern error-correction code

such as a Reed-Solomon code causes a marked increase in the amount of data sent over the

channel. The application really just wants some level of network performance—if the net

work itself decides that error-correction coding or cell retransmission or other methods are

appropriate to maintain that performance level, then the network can provide one of these

functions.

Traffic shaping is another example of an application's attempt to modify the available

transmission channel. The network itself can shape an application's traffic (subject to the

application's delay requirements) more efficiently than the application itself. The network
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memory can be shared among multiple applications, the network knows when traffic shap
ing is unnecessary or detrimental, etc. Ifpossible, the network should handle these network
functions, not the individual sources.

It is important that applications be accurate in requesting their desired delay and loss

characteristics. Although zero-delay lossless channels would be nice for every application,
such channels would and should be very expensive. Of course, if all applications were to

use channels with higher quaUties than they really needed, the network would not be able

to support as many customers. Ifapplications were forced to accept channels with too poor

aQOS specification, then the applications themselves would try to implement network-re

covery operations that would be more intelligendy and efficiently done by the network. It

will be adifficult and important problem in the future for network providers to set prices
for their offered transport services so that client appUcations select channels that are neither
toohigh-quality orinadequate for their needs.

If networks were capable of dynamically varying achannel's QOS specification, they
could offer similar benefits to the proposed Medley Interface networks. However, dynamic
QOS specification is difficult to implement in practice because it implies dynamic resource
allocation. If resources were not available when aconnection requires them, then the con
nection would cease to be useful. Dynamic resource allocation schemes thus must be very
conservative, and thus inefficient. With multiple logical channels, the network can figure
out the maximum resources needed by agiven connection (i.e. set of substreams) during
call setup. The network also can figure out the percentage of time that resources will be
needed, given each substream's source description. Then, the network can allocate its re-
sources efficiently.

Also, communications appUcations could obtain some of the benefits ofthe Medley In
terface by purchasing multiple virtual circuits from anetwork. By usingmultiple virtual cir
cuits, each with different quaUties of service, an appHcation could transmit different data
types with different network qualities. In fact, the Medley Interface may implement differ-
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ent substreams by establishing several virtual circuits. However, without the Medley Inter

face, communications appUcations themselves must be able to translate their transport
needs into QOS parameters, and to map their data substreams onto various virtual circuits.

Further, aU ofthe benefits ofthe Medley Interface model are not available to applications

that establish multiple virtual circuits. For example, it is not possible for an appUcation to

estabUsh avirtual circuit with aquality ofservice dependent on the QOS ofanother virtual
circuit.

The following parts ofthis chapter discuss the components ofthe Medley Interface in

more detail, implementation of the model, and use of the Medley Interface model by appU
cations and networks.

3.2 Transmission Channel Modei: Substreams

Communications appUcations often transmit avariety of different data types between
network end-points. For example, amultimedia conferencing system might transmit stiU

images, compressed motion video, compressed audio, text, graphics, and formatting infor
mation. Each of these data types has unique rate characteristics which depend upon the
source material and the encoding technique. Further, delays and losses of each data type
affect the perceived display quality differendy. Ifall data types were transmitted overasin

gle channel with homogeneous transmission parameters, then the channel would have to be

configured for the most stringent flowspec requirements. Those requirements might vary
considerably over aU of the appUcation's data types, so this approach could be quite ineffi

cient. On the other hand, ifseparate channels were used to transmit each data type, then in-
terdependencies between the QOS needs of the separate data types could not be expressed
or utilized. Also, network management operations which only should be performed once

per connection would need to be performed once for each data type's channel.

Traditionally, networks treat aU data within asingle channel homogeneously. The pri

ority bit in the BISDN allows networks to identify two separate data streams within asingle

virtual circuit and to process those two streams differendy. The Medley Interface proposes
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that alayerofabstraction be placed between the virtual circuit and the appUcation. This lay
er describes the transmission resources used by an appUcation as consisting of asingle
channel that contains an arbitrary number of substreams. ABISDN network implements
this channel with one or more virtual circuits. Each individual substream that belongs to a
single channel can carry traffic with its own rate description and QOS specification. The
appUcation considers the types ofdata it needs to send, and the flowspec characteristics of
those data, and decides itselfhow many substreams to request. While acompressed multi
media conferencing appUcation may use numerous substreams, an uncompressed voice-
only callmay only use one.

Each substream in achannel can be described independently with its own bandwidth,
delay, and loss requirements. Since the Medley Interface allows more detailed rate and
QOS descriptions than do current BISDN proposals, it enables greater network efficiency
than currently is possible. With the detailed substream description, the network can do a
better job ofrouting, resource allocation, and buffer management than it could with only a
general description of an application's rate and QOS needs. Importantly, the joint charac
teristics of several substreams also can be expressed within the Medley Interface model.
For example, an appUcation could specify different loss priority levels for each of its sub-
streams.

Figure 8shows how acombined audio-videoconferencing service could use multiple
substreams for different data types. Each data type's rate characteristics arc described sep-

brightness vidfto data

color video data

coder state

monaural an/K^

Multiple Audio and Video Substreams in One Channel (Rg. 8)

arately. Audio data is sent over substreams with stringent loss bounds, while video data is
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sent on substreams that tolerate more loss. Coder state information can tolerate no cell loss

es but can be delayed more than other data types. The substream decomposition allows aU

of these transport needs to be described separately, and aUows a network to implement a

channel thatmeets aU of theseneedsexacdyrather than meetingthe most stringent require

ments of aUof the data types.

The substreammodel provides a convenient format in which applicationscan describe

their rate characteristics and QOS needs, and it is independent of thenetwork's implemen

tation of the transport. When a network implements a Medley Interface channel, the net

work need not assign separate virtual circuits to each substream. The network could choose

to aggregate multiple substreams onone virtual circuit, ensuring all substreams' QOS guar

antees are met with proper multiplexing, FEC, priorities, andbuffer management. Because

of the separation of transport description and implementation, the networkcanuse different

implementations atdifferent timesto always useresources most efficiendy.

The substream concept also increases networkefficiency by allowing some network

functions suchasbilling and security to beperformed onceperconnection rather than once

per substream or virtual circuit. These management operations are separated from data

transport operations, and thus can be madeless of a burden duringcall estabUshment and

termination.

A goal of the Medley Interface is to support future asweU ascurrent applications and

networks. Today's appUcations may only request one or two substreams perconnection.

Current networks may beconstrained toimplement aU connections withjustasingle virtual

circuit However, future multimedia and multiway conferencing appUcations may need to

transmit a wide varietyof data types, and future networkslikely will contain enoughintel-

Ugence to route or buffer different substreams separately. Only a description format that

supports a greatdeal more flexibility than is needed today can continue to be useful in the

future. The description format for the multiple data types should not impede the develop

ment of new applications and networks.
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The ability to describe transmission needs in detail should help change the way in which

communications appUcations are designed. Without this abikty an application designer un

knowingly may construct communications algorithms that are tailored for the

characteristics ofaparticular network. When the application isused on adifferent network

orwhen the network characteristics change, the appUcation would need retuning for opti

mum performance. With the Medley Interface, designers can concern themselves with the

inherent communications needs of their applications. Further, when an appUcation can

trade between different QOS parameters, the Medley Interface frees applications designers

toexplore and select channels with awide variety ofcharacteristics.

3.3 Flowspec Definition Requirements

As discussed above, the decomposition of a channel into multiple substreams aUows

each substream's flowspec to be specified separately. AppUcations use their substream

flowspecs to configure their data encoding methods to the channel characteristics and to

guarantee their performance level to end-users; networks use flowspecs toset up channels

with guaranteed QOS: a channel's route, resource reservation, switch configuration, and

rate monitoring aU depend on its flowspec parameters.

The definition of a flowspec format should allow appUcations to ensure thatthey pro

videadequate performance to their end-users and should aUow networks to perform chan

nel admission, rate monitoring, and resource aUocation efficiently. Further, a good

flowspec format should bedetailed enough toenable channel setup negotiations toachieve

significant network resource savings. Although many past works have presented flowspec

formats, theseworkstend to be incomplete, inadequately specified, ortoo simpleto enable

efficient network operation. This section discusses requirements for a good flowspec for

mat, and section 3.4 presents the Medley Interface flowspec format that meets these re

quirements.

39



3.3.1 Flowspec Must Be Well-Defined

In some past research works, QOS bounds are not useful because they are poorly or in

adequately defined. For example several works describe channels' cell loss characteristics
statistically, as amaximum probability of cell loss [48,49, 52, 54, 56,73,76, 80]. Proba
bilistic bounds allow anetwork to claim that although foe probability ofcell loss for each

of an application's 1000 offered cells is 0.01%, it happens that ail ofthe application's cells

were lost. This type ofbound does not allow an appUcation to rely on the quaUty ofits chan

nel since the meaning ofthe bound is not well-defined. Similarly, average bounds, such as

on the average delay ofachannel, often are not defined specificaUy enough. An average

delay bound does not tell an application how long particular cells will be delayed or how

many ceUs wiU exceed the given bound. For abound to be useful itmust specify hard nu

mericalUmits on the characteristics ofthe source or channel itdescribes, and itmust specify

the time interval over which the bound isvaUd. Anexample ofameaningful bound is, "On

substream A, fewer than twenty ceUs wiU belost in every time period of duration one sec

ond or shorter."

The ST-II protocol flowspec lets appUcations specify both their minimum and "de

sired" rates [80]. However, without more definition of how the desired rate parameter is

treated, appUcations cannot rely on sending data faster than the rninimum rate; the desired

rate parameter does not guarantee channel QOS.

3.3.2 Flowspec Must Guarantee Channel Characteristics

For appUcations to guarantee their performance level, they should not have to operate

with channels with poorer QOS than was estabUshed during channel setup. Thus, networks

should aUocate sufficient resources and processing toguarantee that negotiated QOS spec

ifications actuaUy wiU be provided. Without guaranteed QOS, appUcation designers must

build their appUcations based on estimates ofthe QOS that their appUcations wiU receive.

The less accurate the estimates, the less efficient the applications and networks. If a net

work guarantees that established QOS specifications never will be violated, then applica-
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tions designers can be confident of providing good performance to their end-users even
with QOS specifications close to their minimum acceptable levels. Networks guarantee
QOS specifications with appropriate channel admission and resource aUocation policies;
the design of efficient policies for different networks is adifficult open problem.

QOS guarantees also must be verifiable by asingle application, so that applications can
monitor anetwork's compUance with their guarantees. For example, guarantees that apply

to agroup of appUcations do not let individual applications rely on their negotiated bounds.
Aggregate guarantees are not enforceable, and they again require appUcations to try to es

timatethe QOS they actually receive.

3.3.3 Flowspec Guarantees are Time-Invariant

In the absence ofrenegotiation ofQOS parameters after channel estabUshment, QOS

specifications should not vary with time. Non-time-invariant loss bounds or bounds that
specify the treatment of individual ceUs constrain network implementations too severely;
the network must monitor the treatment of individual ceUs rather than of aggregate traffic.

Further, these bounds would be more difficult to describe than time-invariant bounds. Fi-

naUy, time-varying bounds require that networks be able to vary their switch configurations

and resource aUocations dynamically. This creates the problem of how networks can sup

port channels whose dynamic resource needs cannot be met after the channels already have

been established.

3.3.4 Flowspec Enforces Time-Local Guarantees

Although QOS bounds should be time-invariant, they should enforce some degree of

time-locaUty. We have studied the performance levels of several types of applications as

they vary with their channel rate, delay, and loss characteristics. For example, video and

audio appUcations can provide good perceived subjective performance withlossychannels

as longas the number of ceU losses that occur in given-length time intervals is controUed

(section 4.5). Many video andaudio applications canestimate lost data attheirreceivers in
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order to display high-quality outputin spite of cell losses. Commonestimation techniques

usesignal values adjacent tolostdata toestimate the lost data's original value. If celllosses

occur in long bursts, then large contiguous data blocks are not available at the receiver;

these blocks cannot be estimated. Even without lost data estimation, video sequences sub

jectively appear better if errors are small and widely spread than if they occur in large con

nected regions. A good flowspec format should be able to express this type of appUcation

requirement.

Other applications must resynchronize their transmitter and receiver afteranyceU loss,

either a single loss or a large burst of losses. For example, if a packet-based file-transfer

appUcation source receives no packet acknowledgments within some time interval, the

sourceresets and begins to retransmit previous packets (section 3.5.3). A low-rate voice

communications system couldreset by forcing both its transmitter andreceiver to set their

adaptive filters orvoice-generator modelsto the samestates. FortheseappUcations to func

tion weU, bursts of cell losses can be large but they must occur infrequently. A good flow-

spec format shouldbe ableto specify this behavior also.

Some proposed rate bounds specify the maximum number of ceUs that a source can

send within a specified time interval [49]; loss bounds also should specify the number of

ceU losses that a network can aUow in a described time interval. Time-local bounds are cru

cial to applications that benefitfrom control thespacing between groups ofceU losses. Per-

call bounds are not very useful; withoutknowing the duration of a caU beforehand a net

work cannot efficiendy implementachannel with caU-level bounds.

3.3.4.1 Dynamical Systems for Monitoring Time-Local Behavior
TheMedley Interface rate and loss description formats monitor channel behavior over

specified time periods. A general way to do the monitoring is with adynamical system, that

is, asystem with inputs, outputs, and astate. Atevery timestep, the current state value and

input value are used to generate the next state value and an output value. Dynamical sys

tems are not the most general types ofinput-output system (because the output at any time
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depends only on the state value and the input) but they can implement awide range ofbe

haviors and their simplicity often is useful. Differential equations and difference equations

are examples of dynamical systems. The continuous-time system

output (r) = input (Jt) isnot adynamical system; if we know the state value at agiv

en time tQ and the input after r0, we cannot compute the entire output after ty (unless the

state stores the entire past input function).

We next consider several dynamical systems that can monitor thedata rate orlosschar

acteristics of a substream. By guaranteeing that these monitors wiU not be violated, net

works and appUcations can use them tospecify QOS and rate characteristics as weU as to

monitor them. The output functions of the dynamical systems are designed to indicate

whenever the systems' implied bounds are violated. The systems' state transition func

tions, the rules that the systems use to map the current stateandinput to the next state, are

designed to provide meaningful monitoring of rate or loss characteristics.

Example:

Suppose a dynamical system's state value at time n+1 equals the state
value at time n plus the number of ceU losses on substream X between
times n and n+1, and the system's output equals its state value. This sys
tem measures the number of cell losses that occur on substream X but

gives no information about the rate of losses.

Suppose a second dynamical system has the same state transition func
tion as the system above, and its output value is its state value divided
by the time. This system gives a weU-defined long-term average ceU
loss rate but does not give any information about cell loss characteristics
over smaUer time periods.

The space of possible dynamical systems is huge, but there is not much reason to con

sider any but the simplest. Forexample, non-time-invariant dynamical systems such as the

second example above are not of much use in specifying behavior over limited time dura

tions. CompUcated systems such as

state(n+l) =max(state(n)3,2 *state(n)2 +6)

also are of little use in measuring the rate of events. Some simple dynamical systems are
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discussed below.

3.3.4.2 Leaky Buckets

The leaky bucketused for rate policing also can be usedto monitor cell loss behavior.

The leaky bucket is adynamical system with the following state transition rule:

state(0) = 0

state(n+l) = max(state(n) + events(n) - tokens(n),0)

Events can be cell deUveries to the network or cell losses, depending on the type of flow-

spec bound being implemented. Theoutput of theleaky bucketsystem is 1if thestate value

exceeds L (the leaky bucket "size") and is 0 otherwise. (Some researchers specify that a

leaky bucket's state value cannot rise above L [39].) Tokens, which decrement the leaky

bucket state, aresent to the system either periodicaUy or dependent upon a substream's traf

fic. If events enter the leaky bucket system faster than tokens, then the state value climbs

towards L. Token arrivals drive the state value down towards 0 (the state value cannot faU

below 0 however). Thus even if no events take place for a long time and then a burst of L

or more events ever happens too quickly, the leaky bucket system wiU detect the violation.

The parameters of the leaky bucket monitor can be varied to implement bounds with

different behavior. For example, a leaky bucket loss bound with L = 0 always forbids any

ceU loss. As the bucket size increases, the leaky bucket system aUows longer and longer

bursts of events to occur without signaling a violation. As the token arrival rate increases,

the system aUows events to occur more frequendy.

One nice property of the leaky bucket system is that it is quite easy to implement Ap

pUcations could implement leaky bucket monitors to verify that the bounds that they were

guaranteed by the network actually are beingmet Networks could implement actual leaky

buckets to monitor a source's rate or to verify their deUvered QOS and to change their be

havior when the QOS begins to deteriorate.

3.3.4.3 Time Windows

Flowspec bounds also could be described in terms of events per time-window. A dy-
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namical system basedon sliding time windows takes the following form, where
n

s(n) = £ e{k)
k = n-N

is the system state, e(n)denotes the events beingmonitored, andN is the window size. The

output of this system is 0 whenever the stateis less than some limit L and 1 otherwise. An

alternative window-based description system is based on non-overlapping windows.
n

s(n) = £ e(k)
k=Kint(l)

The sUding-window based system's state at all times is the sum of the number of events

during the preceding N seconds. The system based on non-overlapping windows defines

windows that begin at times 0, K, 2K, etc. At all times, the state value is the number of

events from the most recent window-start time until the current time. Of course, it also

would be possible to implement time-window bounds that use durations defined in terms

of substream traffic rather than time.

Time-window based rate and QOS monitors work similarly to leaky bucket monitors.

A time-window's parameters, its size and its lossthreshold, canbevariedto implementdif

ferentmonitoring behavior.Largethresholdsizes allowlarger burstsofevents to occur,and

larger ratios of threshold to window size allow higheraverage event rates.

Any time-invariant dynamical system that measures the rate of events (including the

leaky bucket and time-window systems) must decrement or reset its state value at some

times. There can be ambiguities in the specification of the reset times with respect to the

input times. For example, suppose asubstream's loss characteristics isgoverned by aleaky

bucket loss monitor that is fed atoken every milUsecond. Further suppose that both the net

work and the substream receiver both actually implement leaky bucket monitors to verify
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the substream's QOS.

^ ^ event times
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Different Leaky Bucket Monitors (Fig. 9)

Leaky bucket#1's state cUmbs to 2, but leakybucket#2's state valueonly reaches 1.If the

leaky bucketbound specified a maximumsize of 1, then one bucketwould detect aviola

tion wlule the other one would not. The situation is worse with other monitors such as non-

overlapping time-windows.

cell loss times
XXXXXX

#1 time windows

#2 time windows I

Different Time-Window Monitors (Fig. 10)

Here, time window monitor#1 detects six losses perwindow while time window#2 only

detects three.

It is difficult to synchronize, oreven to specify, exactstart times for multiple monitors

distributed throughout anetwork. Without synchronization, twomonitors of thesame pro

cess could detect different characteristics. Forthe leaky bucket system, we can prove that

any two monitors that are identical except for the phases of their token times never differ

in state value by more than 1. This fact argues that monitors based onleaky buckets may

be more useful thanthose basedon non-overlapping time windows forexample.
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Theorem: The state values of any two leaky bucket monitors that have
the same token rate and that are fed the same event processes differ by
at most 1. Their token arrivals may have different time phases.

Assume: Two leaky bucketmonitors A and B bothhave periodic token
arrivals at the same rate but different token time phases. A and B both
monitorthe sameeventprocess, andbothstartwith statevaluesequal to
0.

Proof: Consider a time 71 when both buckets have state values equal to
0. No losses can have occurred between the two most recent token arriv
al times at the two buckets, or else the bucket with the less recent token
arrival would not have state value 0. After 71, losses occur that drive
both state values above 0. At all times after 71 as long as both state val
ues aregreater than 0, thestate value of each bucket equals thenumber
of losses on the substream that occurred after 71 minus the number of
tokens that have arrived after 71. At aU such times, the numbers of to
kens that have arrived at the two buckets differ by at most 1, since tokens
arrive at the same rate. Define the time 73 to be the first time after 71
when a token arrives at a bucket (without loss of generaUty, bucket B)
and the state value of the other bucket (bucket A) is 0. If no finite 73 ex
ists, then the above argument explains why the state values of A and B
never differ by more than 1.

Assuming a finite73 exists, define72 to be the oldest tokenarrivaltime
at bucket A before 73. No losses can have occurred between 72 and 73

or else bucket A's state value would not be 0 at 73.

Right before 72 both state values must have been 1.

Lemma: A's state value must have been 1: If A's state value were great
er than 1, then A's state value could not be 0 after Tl. If A's state value
were 0, then no losses could have occurred between the previous token
arrival at bucket A and the arrival that defines 72. There must have been

an arrival at bucket B between these two token arrivals at A, and that
time would have met the conditions for the definition of 73. This con

tradicts the fact that our 73 is the earliest such time.

Lemma: B's state value must have been 1: if B's state value were 0,

then the arrival at A that defines 72 would suit the conditions of the def

inition of 73 (with the roles of buckets A and B reversed). This contra
dicts the fact that 73 is the earliest such time. If B's state value were

larger than 1, then at time 77, bucket A would have had two or more to
ken arrivals since 71 than bucket B. This contradicts the fact that tokens

arrive at the buckets at the same rate.
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So, both buckets had state values equal to 1 right before 72, and no loss
es occurred between 72 and 73. Thus, both buckets have state value 0 at

73. Thus for all intervals between times in which both buckets' state val

ues are 0, their state values differ by at most 1.Thus, at aU times the two
buckets' state values differ by at most 1.

The above proofargues that the leaky bucket system would be more useful for QOS

specification and monitoring than a system based on nonoverlapping windows. Sliding

window systems, since they monitor events overall time windowsof a specified duration,

do not suffer from synchronization ambiguities. However, sUding window systems are

much more difficult to implement thanleaky bucket systems since they must storethe times

of the most recent L events, where L is the allowed number of events per window. Leaky

bucket systems can be implemented with a singlecounter.

3.3.4.4 Exponential Averages

Soil other dynamical systems could be designed for the specification of time-Umited

channel characteristics.The exponential averagesystem behaves as follows. The parameter

s(n+l) = as(n) +e(n)

a is a decay rate that determines how much of aneffect past events have on the current sys

tem state, and e(n) represents the events. As with the systems discussed above, an exponen

tial average system outputs 0 if the system state is less than a given threshold L and outputs

1 if the system state is greaterthan L. TypicaUy a is chosen in the range (0,1). For a values

close to 0 the system state decays to 0 quickly so past events do not affect the state very

much. If a is closer to 1 then the state value decays more slowly and the dynamical system

displays a longer memory.

The exponential system displays the same synchronization problem as the nonoverlap

ping time window system. If two otherwise-identical exponential systems start monitoring

events on the same substream at different times, the state values will not always match. De

pending on the value of a that the systems use the disparity may be large.

The exponential system is not much more difficult to implement than the leaky bucket

system, although it does require high-speed multiplication with several bits of precision.
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However, the exponential system does not map well to appUcations' needs. For example,

with the exponential system it would be difficult to describe the application requirement

that consecutive cells not be lost. This is more easily expressed with the leaky bucket or

time-window systems.

3.3.5 Define Flowspec at an Appropriate Level of Detail

During caU setup, an application can send a channel description to its network and ask

the cost of the channel. If the cost were unacceptably high, the appUcation could close the

channel andrequest another with less demanding characteristics. Thisprocess could con

tinue until the appUcation guesses a channel description thatprovides an acceptable trade

off betweenthe appUcation's delivered performance and the channel's cost.Ratherthanre

lyingon this hit-or-miss process for the negotiation of channel parameters, the Medley In

terface proposes a formal negotiation procedure that tries to achieve the minimum cost

channel possible for a fixed level of appUcation performance.

The need to negotiate channel characteristics creates a trade-off in the design of a flow-

spec format More powerful descriptions aUowmore exact rate and QOS specification. Ad

ditional information only can help networks more accurately allocate resources and

configure themselves; networks that wish to ignore detailed QOS specifications such as

multiple leaky bucket rate bounds can use only simpler ones. However, more complex

flowspec formats make it more difficult to establish an inteUigent negotiation procedure.

Flowspec descriptions could be arbitrarily compUcated.

Example:

Identify cell loss times as tj, t2,... Ensure that for aUeven i,

(ti_2) < M * exp(ati.1 * i) * sqrtOcq)

In the specification of a flowspec format however, we must trade between the expressive

ness of the specification (how general the specification is) and the simpUcity of the speci

fication (how easy it is to use for negotiations, resource allocation, application

configuration, etc.). To describe the variety ofrate, loss, and delay characteristics that it can
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provide, anetwork could give applications:

• one choice

• a set of fixed choices

• parameterized choices

• a complex description language

The first two possibilities clearly do not offer enough flexibility to support a diversity

ofmoderncommunication applications. Assume a networkaUowed appUcations to choose

their channels' flowspec characteristics through the selection of one of a few high-level

primitives such as "VideoO", "AudioO", or"TextO". Each of these primitives would imply

fixed rate, delay, and loss characteristics on a substream. Althoughthis approach is simple

to use andimplement, it is too inflexibleeven forcurrent appUcations. Multimedia presen

tation systems could include different numbersof video components, each with different

resolutions and requirements. The spectrum of video telecommunications applications,

from low-bitratevideophones to high-quaUty conferencing systems requireschannelswith

widely varying characteristics.

Some pastworks proposethat allofanappUcation's flowspec parameters shouldbe ex

pressed in a single parameter—the application's "equivalent bandwidth" [44, 52,54, 62],

whichincorporates information on itsrate, rate burstiness, andlossneeds. These worksdis

cuss narrowly defined source models suchason-off sources [52,54] or interrupted Poisson

processes [62]. They ignore possiblevariations in delayrequirements betweendifferentap

plications. Moreimportandy, this approach prevents channel setupnegotiations from tak

ing advantage of different trade-offs among QOS parameters in appUcations and their

networks.

The opposite flowspec definitionapproach is to designacomplex language. Such alan

guage would be flexible butdifficult to use forcall setupnegotiations. Duringanegotiation,

appUcations andnetworksmust translate flowspec parameters quickly into application per

formance and network cost measures. Further, negotiating entities must be able to perturb
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a flowspec so as to achieve a bettertrade-offbetween cost and performance. With complex

flowspec formats both of theseactions become slower andmoredifficult. Further, syntac-

ticaUy incorrect flowspecs must be detected and handled automatically during call setup

negotiations, which is more difficult with morecomplex description formats.

To balance the trade-offs inherent in flowspec description, the Medley Interface de

scription model uses simple parameterized statements. The meanings of statements and

combinations of statements are defined, and networks can detect syntax errors fairly easily.

Further, through the addition of new primitives to the language, the Medley Interface can

be extended to support future network capabilities without altering the language syntax and

structure.

3.3.6 Flowspec Specifies Both Intra- and Inter-Substream Characteristics

There is a trade-off between how tighdy an appUcation can specify QOS guarantees on

multiple substreams and how much the appUcation constrains a network implementation of

a channel with multiple streams. It is reasonable to expect that a network will transmit all

data on a single substream over the same route and through the same buffers. This allows

characteristics within a single substream to be controlled relatively tighdy. However to re

quire that networks route and process identically aU substreams that make up a channel re

stricts networks' implementation flexibiUty much more. Unless different substreams do

pass through the same network components though, it would be difficult for a network to

offer much controlof the joint ceU discard or delay characteristics of multiple substreams.

To avoidrequiring different substreams berouted and bufferedtogether, flowspec descrip

tion formats should specify fewer multi-substream characteristics than single substream

characteristics. For example,a format mightallow an application torequest thatno ceUs be

loston substream A until all available data onB is discarded or to ask that the long-term

loss rates on substreams C and D beequal but may not allow an appUcation torequest that

cell losses be interleaved on substreams A and B.
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3.4 Medley Interface Flowspec Format

Past flowspec definitions frequendy do not meet all of the requirements presented in

section 3.3.These definitions often rely on poorly definedprobabilistic or average bounds,

or they are so simple that they hamper efficient network resource use. Since no fuU-scale

high-speed cell-relay network implementations yet exist, no flowspec definition has been

shown to perform weU in practice. Next wediscuss how past works have defined channel

flowspec parameters and define the Medley Interface flowspec format. To describe the

characteristics of an entire channel, the Medley Interface first describes each substream's

characteristics and then teUs how the substreams' characteristics should be linked.

3.4.1 Rate Specification

AppUcations withcompressed input signals orrandom sources transmit atime-varying

number of ceUs per second. The average rate of time-varying sources is often easy to cal

culate, but this information alone does not capture enough of the characteristics of these

sources for networks to implement their channels properly.

Example:

A sourcethat always sends one cell per second to aqueue that holds five
ceUsand is served every 0.9 seconds never overflows the queue.

A source that outputs a Poisson process with averagerate one ceU per
second that feeds the same queue overflows the queue with a probabiUty
of about 6%.

A source that outputs six ceUs per second with probabiUty 1/6 and zero
ceUs per second with probabUity 5/6 loses ceUs with a probabiUty of
around 3%.

Some recent works have studied network resource allocation given a particular rate de

scription format [33,44,46,54,55,76,83]. Each of these studies tries one oftwoapproach

es, bothof which derive channel bandwidth aUocations for bursty sources based on their

rate description:

• Force a statisticaUy simple but possibly inaccurate modelonto sources, and analyti-

caUy derive the bandwidth and buffer space required to achieve given average cell
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loss rates. Such models include Gaussian bit-rate histograms and two-state Markov-

modulated Poisson processes.

• Use more general rate descriptions and perform simulations to estimate the band

width and buffer space necessary to achieve given long-term average ceU-lossrates.

The simulation approach can support a widervariety of traffic types more accurately

than the simple analytical approximations, but it does compUcate the resource allocation

problem somewhat. If a network uses the simulation approach to map source rate descrip

tions to resource requirements, then it must store tables of simulation results rather than a

compact analytic formula. However, thesimulation approach currendy seems necessary for

the estimationofbandwidthneedsin networksthatsupport heterogeneous trafficmixes. No

analyses have yet calculated resource needs for different traffic types that share the same

network.

Further, for a given rate description and buffer allocation, no analyses have been able

to calculate any ceU loss characteristics other than average ceU loss rates. Since the range

ofresource aUocation problems thatare soluble analyticaUy is sosmall, it seemsreasonable

torely on simulations for the calculation ofachannel's resource needs given arate descrip

tion and detailed ceU loss description. Tables of simulation results could be organized into

"sub-tables"—for example one for applications that specify only long-term average cell

loss rates, another for those that specify consecutive-loss characteristics, another for spec

ification of lossless intervals, etc. A prototype of anetwork withsuch tables is described in

section 3.5.3.

All ofthe rate description mechanisms presented in the previous chapter attempt to cap

ture the rate variabUity of a source in a simple way. The leaky bucket monitor (sections

2.3.1 and 3.3.4.2) is one such method. If a bursty source is guaranteed not to overflow a

leaky bucket monitor ofagiven capacity and decrement rate, then the capacity and decre

mentrate contain information about both the source average rate and burst distribution. If

a source is described as notviolating several leaky bucket monitors, then more is known
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about the source's rate characteristics. SmaU leaky buckets served at fast rates can bound

the high-speed burst characteristics of a source, andlarger, moreslowly served leaky buck

ets can bound a source's average data rate.

Otherresearchers suggestusing the average cellrate, peakceU rate,andmaximum burst

duration to describe bursty sources.The definitions of"average" and"peak" frequendy are

incomplete ([48] is anexception).Still otherworkspropose two-statemodels in which each

state corresponds to a different cell delivery rate. These types of models are well-suited to

applications that themselves operate in either of two states, onein whichdata is sentathigh

speed and another in which no or Utde transport occurs. Such appUcations include file-

transfer and speech compressed with silence detection and elimination. However, these

models cannot capture the rate dynamics of traffic sources whose output rate varies across

a continuum, such as compressed video sources.

More exotic rate description formats exist as weU. In [54], Guerin et. al. propose that a

source's rate histogram be approximated by a Gaussian distribution (with moment match

ing). Using knowledge of the properties ofthe Gaussian, Guerin derives needed queue sizes

for various probabilities of queue overflow. The Gaussian approximation is most vaUd for

sums of large numbers of identically distributed sources (because of the central limit theo

rem) but is fairly inaccurate for combinations of smaU numbers of sources or for sources

with widely varying characteristics.

The Medley Interface uses leaky bucket bounds to describe a substream's rate charac

teristics. A leaky bucket rate monitor is denoted RLB(A, M, N), where A identifies the sub-

stream being described, M is the maximum allowed leaky bucket state value, and N denotes

the number of leaky bucket tokens generated per second. The behavior of leaky bucket rate

monitors is well-defined, leaky bucket monitors with different token phases behave nearly

identically, and leaky bucket monitors can specify a substream's burstiness at various rates

through proper choice of the parameters M and N.

For simplicity, the Medley Interface allows only one or two monitors to describe each
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substream's traffic. Two rate monitors both can be imposed simultaneously on a substream

with the RUNION(jc, y) primitive; both x and y are RLB() bounds.

3.4.2 Delay Specification

The treatment of delay bounds throughout the literature has been nearly uniform [21,

49, 53, 60, 75, 80, 84]. Nearly all works that mention channel delay requirements at all

specify a maximum allowed channel delay and optionally a delay jitter, or maximum al

lowed delay variation. The specification of channel jitter is equivalent to the specification

of a minimum allowed channel delay. One work has presented a queueing discipline that

attempts to rninimize the expected value of a channel's delay [35].

We know of no efforts that have tried to capture any more complicated delay statistics

within channels. This absence is not so crucial, however. Communications appUcationsuse

delay bounds to guarantee their interactive response time. Perhaps more importantly, many

appUcations use maximum delay and maximum delay jitter bounds to configure storage

buffers at the appUcation receiver. An appUcation thatcontinuously displays a signal (e.g.

video, audio, graphics) at its receiver must be fed a steady stream of data. A buffer in the

receiver smooths out delayvariations in theappUcation's channel and provides ajitter-free

stream of data to be decoded and displayed. The receiver must not begin processing data

from thisbufferuntilatime atleast equal to thechannel delayhaspassed sincethedata was

originaUy transmitted, or thereceiver buffercould underflow. To prevent bufferoverflow,

the receiver buffer must have acapacity at least equal tothe channel's peak rate multiplied

by the channel's maximum jitter. Any larger buffer size never would be used, and any

smaUer size would overflow. Thus, achannel's maximum delay and maximum delay jitter

are sufficient information for the application that uses it toprovide interactive delay bounds

and todimension receive buffers. Additional delay information serves Utile purpose, and

other delay measures are not as useful.

The Medley Interface specifies a substream's maximum allowed delay with the DE

LAYS, D) primitive; A identifies the substream being monitored and D denotes the al-
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lowed substream delay in seconds. A substream's maximum allowed delay jitter is

specified with a HTTER(i4, J) bound; / specifies the maximum jitter on substream A. Any

cells on substream A delivered before D-J or after D seconds are considered lost,

source gives ceU to network ceU can be delivered legally

tune

D-J D

Substream Jitter and Delay (Fig. 11)

Relative differences in delay on two or more substreams areconstrainedsomewhat by

the substreams' delay and jitter bounds. However, appUcations may desire tighter control—

that ceUs on two different substreams leave the network in the same orderas which they

arrived. In-order deUvery within a substream is guaranteed, but is not between separate sub-

streams unless specified. The Medley Interface specifies that ceUs on two different sub-

streams A and B should be delivered in-order with the SEQUENCER, B) primitive.

Sequencing can be guaranteed on more than two substreams by combining SEQUENCEO

bounds.

Example:

SEQUENCER, B) + SEQUENCER, Q + SEQUENCER, Q guaran
tees that ceUs on substreams A, B, and C all are deUvered in the same

order as they were given to the network.

3.4.3 Loss Specification

The treatment of channel loss characteristicsalso has been fairly uniform in the recent

Uterature [21, 35,49, 54, 64, 73,75]. AU works describe a channel's loss characteristics

through its average ceU loss probabiUty. None define "average" adequately however, by

specifying a time-interval over which the average is computed, by defining the average to

be computed at the time of channel tear-down,or by requiring that at every instant during

the channel lifetime that the number of ceU losses divided by the lifetime be less than the

specified bound. The citedworksalsogiveno attention to the specification ofceU losschar-
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acteristics at short timescales.

TheMedley Interface uses leaky buckets tomonitor channels' time-local celllosschar

acteristics. If any one type of dynamical system exhibited analytic or practical superiority

over others then there would be a clear choice of a best cell loss monitoring technique, but

currendy nooverwhelming advantage exists. However, theleaky bucket monitor is simple

to useand to implement, and it doesnot suffer much from time-synchronization problems

between different versions of the same monitor.

The Medley Interface flowspec format denotesa leaky bucket loss monitor as LLB(A,

L, N), where A indicates the substream being monitored, L is the maximum state value al

lowed by the leaky bucket without indicating an error, and N is the number of ceUs that

must be deUvered successfuUy on the substream to cause a decrement token to be sent to

the leaky bucket A single leaky bucket with a large Lvalue can be used to monitor the long-

term average ceUloss rate ofa substream. If the long-term average ceUloss rate on the sub-

stream is greater than one loss per N deUvered ceUs, then eventually the leaky bucket will

detect an error. However, the fact that the bucket does not flag an error until the bucket state

value reaches L aUows bursts of losses to occur without violating the monitor. The larger

is L the more tolerant of error bursts is the leaky bucket monitor.

Example:

A substreamB whose loss characteristics are bounded by an LLB(B, 20,
10 ) monitorcannot have a long-termaverage cell loss probabiUty high
er than 10 and cannot tolerate more than 20 cell losses within any time
period in which fewer than 104 cells are deUvered successfuUy.

We choose to send tokens to the leaky bucket based on ceU deUveries rather than time

intervals. This allows the same leaky bucket bound to be used to specify the spacing be

tween consecutive losses by using leaky buckets that have smaU values for both L and N.

Example:

A substream C withanLLB(C, 1» 1)bound placed uponit cannotaUow
two cells in a row to be lost If the boundwereLLB(C, 1,2) then at most
one cell could be lost from every set of three consecutive cells sent on
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the substream. If the bound were LLB(C, 2, 2) then at most two ceUs
could be lost from every set of four consecutive cells.

In general, anLLB(A, x, y) constraint requires thatatmost x cells be lost from any string of

x + y consecutive ceUs delivered to substream A.

An appUcation might want to impose simultaneously more than one loss bound on a sin

gle substream. The Medley Interface expresses the combination of two bounds with the

LUNIONO keyword.

Example:

A substream with the bound LUNION(LLB(E, 20,105), LLB(E, 1, 2))
imposed upon it has its ceU loss burstiness rate specified at two different
timescales.

To specify the occurrence of loss-free periods, as would bedone by a file-transfer ap

plication, the Medley Interface uses adynamical system that isasimplification ofthe leaky

bucket caUed the togglesystem. The toggle system state transition function behavesas fol

lows

s(n+l) = l(e(n))

The function l(e(n)) is 1 if one ormore ceU losses occur during interval n and is 0 other

wise; the system iscaUed atoggle system because its state value iseither 0 or 1. A token,

which is generated whenever agiven number ofcells are delivered onasubstream, moves

the system from time n to time n+1. This system is identical to a leaky bucket system in

which the state value cannot increase above 1.

The toggle monitor is useful because whenever it detects a loss it remembers the loss

for agiven timeperiod—the amount of time required for atoken arrival. One ormore losses

affect the monitor state identicaUy. This isthe same type ofbehavior exhibited bycommu

nications applications that cannot recover from acell loss until they reset!

The Medley Interface denotes a toggle monitor asTB(A, AO; N is thenumber of cells

that must be delivered on substream Ato send atoken to this monitor. Any given appUca

tion can choose N to match its own reset behavior. The toggle monitor alone does notim-
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plement a complete cell loss burstiness bound, however. Any cell loss would cause the

monitorto signala violation. Whatwe would likeis to specify the rate at whichviolations

of the toggle monitoroccur.This can be done witha leaky bucket that monitorsviolations

of the togglemonitor! The Medley Interface denotes thecombination of thesemonitors as

LLB(TB(A, Nl), L, N2).

Example:

Suppose losses on substreamD are bounded by
LLB(TB(D, 30), 5,1000). The substream can allow bursts of 1 to 30 ceU
losses to occur at an average rate of at most once per 1000 successfuUy
deUveredceUs. Up to 5 such bursts can occur sporadicaUy per 1000 suc
cessfully deUveredcells without violating the leaky bucket monitor.

With just the constructs described above, the Medley Interface can describe cell loss

characteristics within a substream much more precisely than would be possible if it only

specified the substream's average cell loss rate. The most common mechanism for the spec

ification of related loss characteristics on multiple data streams is "loss priority", a some

what vaguely defined concept that defines when cells on one stream should be lost in terms

of losses on another stream. We define a substream A to have an absolute loss priorityhigh

er than substream B at a, particular buffer if no cells on substream A are lost until all ceUs

on substream B have been discarded from the buffer. A substream C is defined to have a

higher relative losspriority than substreamD if the long-termaverage ceU loss rate of sub-

stream C is less than that of substream D.

Broadband ISDN channel specification proposals support both absolute and relative

loss priorities, and any new cell loss description formats should dosoalso. BISDN propos

als aUow only two absolute priority levels per virtual circuit, however [104]. Two levels

alone probably are inadequate for applications such as multimedia that use many different

data types. A multimedia editing application could transmit more than a dozen different

data types, each with a unique effect on the appUcation's perceived performance.

TheMedley Interface specifies absolute priority ordering among theseveral substreams
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that make up a single channel with the ABSPRI(substream, level) primitive. Substreams

have absolute priority level0 by default, and theABSPRI() directive lets any substream's

priority level beset toany integral value above 0. If several substreams are given the same

absolute priority level then no priority-based buffer discard relation exists among those

substreams. If one substream hasahigher priority level thananother, then data on the high

er-priority substream should notbelost whenever data onthelower priority substream can

be discarded instead. The ABSPRI() directive is more of a hint to networks rather than a

requirement If anetwork routes two substreams with different priority levels through en

tirely different buffers and links, then the network probably cannot force losses onthe high-

priority substream to occur only after all data onthe low-priority substream is lost. Within

theMedley Interface, we choose notto aUow thespecification of absolute priority levels to

constrain networks' channel implementations.

3.4.4 Summary

Below is the complete grammar for the Medley Interface flowspec format.

top-level rate + delay + loss

SEQUENCEO, ABSPRIO optional

rate RUNIONOorRLBO

RUNION(jc,y) x,ys RLB()

RLB(jc, y,z) xG substream ID

y, z g z+

delay DELAYO or DELAY() + JITTERO

DELAY(x, y) jcG substream ID

yeR+

jriTER(jc,y) xE substream ID

yeR+

SEQUENCER, y) x,ys substream ID

loss LUNIONOorLLBQ
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LUNIONOt, y) x, y <= LLB()

LLB(x, y, z) jcg type

type substream ID or TBO

TB(x,y) xe substream ID

yG Z4"

ABSPRI(x,y) jcg substream ID

yG Z+

The syntax of this language could be extended to allow more complex bounds.

Example:

LUNION(LUNION(LLB(LLB(F, 5,100), 10,1000), LLB(F, 1,3)),
TB(LLB(F, 100,500), 104))

We choose not to aUow any such extensions currendy. For example, while many research

ers have found it beneficial to control long-term average ceU loss rate, and while we have

found appUcations that operate more efficiendy with control of simple loss burstiness char

acteristics, no one has shown the utility ofcontrolling ceU loss characteristics in more detail

than specified with the current Medley Interface flowspec format.

It would be difficult for applications to decide when such complex bounds would be ap

propriate. It would be difficult fornetworks to decide what type ofcontrol to use to actually

implement such achannel. Also, to exchangecaU setupinformation andnegotiate flowspec

parameters mutually agreeable to a network and an application would be more difficult

with a more complex flowspec description format. However, more exact description for

mats may be beneficial in the future when new applications need exotic control of cell loss

characteristicsand when powerful network management methods can provide such control.

The simplicity of this language makes it fairly easy to interpret No self-contradictory

statements are possible in the language; however redundant statements are possible. Re

dundancy occurs when one component of aUNIONQ bound impUes the other.
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Example:

In the bound RUNION(RLB(G, 5, 104), RLB(G, 10, 104)), the second
componentboundcannotbe violated unless the first is also.

The bound LUNION(LLB(//, 5, 500), LLB(//, 5, 1000)) behaves simi
larly.

The existence ofredundant bounds should not pose any difficulty for networks—a network

simply can provide achannel that meets themore stringent of the bounds. If bounds could

be self-contradictory thennetworks wouldneedto be able to identify thecontradiction and

inform the requesting application.

What remains to be seen is if this formulation for the expression of rate and QOS

bounds is useful. The language must be powerful enough to express any practical channel

characteristics that applications might need, and it must be easy enough to use that appU

cations designers cantake advantage of its capabiUties andnetworkscanimplement chan

nels thatobey its bounds. Section 3.4.5 showsexamplesof how this language can be used

by reaUstic appUcations.

3.4.5 Examples of Guarantees for Different Applications

This section shows Medley Interface flowspec bounds that would be used by a range of

appUcations. HopefuUy this helps convince readers that the format is flexible enough to

support future appUcation needs also. More detailed application simulations that use the

Medley Interface flowspec format are described in sections 3.5.3, 3.5.4, and 4.5. The first

examples here illustrate simple loss and loss burstiness bounds.

Examples:

LLB(/, 0,1) implies that substream / must be lossless.

0 symboUzes no guarantees for aconnection. A network should aUocate
no resources for this connection, thus providing traditional "best-effort"
transport service.

LLB(K, 10,10 ) imposes a maximum loss rate within a time interval.

LLB(L, 100,105) implies the same average ceU loss rate as above, but
with a looser bound on loss burstiness.
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Next, we show how a file-transfer application could describe its flowspec. AU data

within files to be transferred can be treated identically, so the appUcation needs only one

substream, called substream A. The application is not extremely delay-limited, so it can re

transmit lost data. However, if data losses become too frequent then the retransmission

delays become intolerable. Further, the application fragments largedata packets into much

smaUer ATM cells before retransmission. If any cell in a packet is lost, the entire packet

must be retransmitted. Thus, given a fixed cell loss rate, the application operates more ef-

ficiendy if losses are tighdy grouped together, because then fewer packets require retrans

mission.

The appUcation transmits at aconstant rate, say 105 cells per second, which it can de

scribe with the statement RLB(A, 1,105). The application's loose delay needs are expressed

with the DELAY(A, 3) primitive.

The appUcation can specifyaworst-case long-term average ceU lossrate with the state

ment

LLB(A, 100,104)

The appUcation does not reaUy prefer correlated losses; it works best with long lossless

periods, between which the channel can lose many ceUs. The appUcation designer decides

what channel characteristics are minimaUy acceptable and specifies themwithastatement

such as

LLB(TB(A, 20), 5,1000)

Fewer than five times per thousand cell deUveries can the network aUow twenty-ceU-long

bursts thatcontain losses. However, during those lossy bursts, the network can lose allof

the data that the file transferapplication deUvers.

These two bounds can be combined with a LUNION bound.

LUNION(LLB(A, 100,104), LLB(TB(A, 20), 5,1000))
Avideo application's flowspec may be more complex. Suppose avideo telephone uses

intraframe coding, in which sequential frames are compressed and transmitted indepen-
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dendy. The videophone could use standard JPEG encoding [103], whichuses the discrete

cosine transform (DCT) to achieve most of its compression. The output coefficients from

the DCT can be grouped into two sets—high-priority coefficients senton substream A and

low-priority coefficients sent on substream B.

Substreams A and B have known time-varying rate characteristics.

RUNION(RLB(A, 2,2xl04), RLB(A, 25,104))
RUNI0N(RLB(5,4, 8*104), RLB(£, 20, 3*104))

Both have the same delay and jitter bounds.

DELAY(A, 0.2), JITTER(A, 0.15), DELAY(B, 0.2), JITTER^, 0.15)

Substream A should have fewer losses than substream B.

ABSPRI(A, 1)

Both substreams have certain worst-case long-term average loss bounds.

LLB(A, 100,107)
LLB(5,100,104)

Losses on substream B can be recovered through estimation if the loss bursts are not too

large.

LLB(B, 2,5)

Lost data on substream A cannot be recovered very effectively. However, if losses of

substream A's data are spread out rather than bunched then the decoded video subjectively

looks better. There is a benefit in the limitation of loss burstiness on substream A also.

LLB(A, 1,3)

FinaUy, each substream's two leaky bucket bounds can be combined within LUNION0

bounds.

3.5 Call Setup Negotiation Protocol

The flowspec format described above can be used by communications appUcations to

express their,transport requirements. Most simply, a network would provide a channel that

meets whatever loss, delay, and rate requirements that an appUcation specifies. However,

since an appUcation could utilize a variety of different networks to provide data transport,
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different channel flowspecs might provide the best combination of adequate appUcation

performance and low cost with each network. If call setup negotiations were aUowed to be

more complicated than the traditional "request-acknowledge-accept" cycle, then applica

tions could obtain efficientand usefulchannels regardless of their underlying network(fig

ure 12). Negotiations aUow applications to compare the feasibiUty and cost of multiple

flowspecs. A goodnegotiationstrategyconducts thissearchquicklyand reachesa flowspec

that is optimalin somesense. Fornegotiations to besimpleandrapid, the flowspec descrip-

Signaling Interface

Increase bandwidth, increase delay?
Application ^ ^ Network

No performance change Smaller resource use

Change the parameters!

Negotiations Save Network Resources (Fig. 12)

tion used during negotiation must be simpleand easy to process; this need influencedsome

of the trade-offs made in the designof theMedley Interface flowspec format.

Some networks may not support aU flowspec bounds allowed by theMedley Interface

or by any otherdescription format. For example, networks budt to conform direcdy to the

BISDN interface may not support the control of loss-free time intervals; networks should

teU appUcations what flowspec parameters can beused. However, byseparating thetrans

port specification from its implementation, appUcations can take advantage of networks

that do choose to support advanced capabiUties. (A buffer control discipline that helps

channels to guarantee theduration of loss-free intervals is presented in section 5.4.)

Sirmlarly, some appUcations may notwish to negotiate aU of the parameters available

in the Medley Interface flowspec format. Many appUcations maynotcareabouttheirchan

nel jitter characteristics or may only useone leaky bucketrate monitor and one loss moni

tor. AppUcations must specify atleast one rate bound, one loss bound, and one delay bound

oneachsubstream toallow networks toimplement theirchannels, butapplications need not
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understandevery partof the Medley Interface flowspec format in order to use it.

The Medley Interface flowspec structure allowsnew capabilities to be addedto the for

mat whtte it retains the same grammar, thus extending the format's power without requiring

significant modifications tonetworks orapplications. For example UNIONO bounds could

be allowed to contain other UNION() bounds. Parsers could be designed either to incorpo

rate these new features easily or to detect andreject them. Again, only some networks need

support a particular language extension. Network providers couldcompetewith each other

to support moreextensions andthus a greater variety of transport services.

3.5.1 Optimal Negotiations

When communications application designersassumed only a single transportnetwork,

they could use theirknowledge of the network to tune their applications for maximum ef

ficiency. Forexample, the designersof theU. S. digitalhigh-definition television proposals

used their knowledge of through-the-air channel bandwidth and noise limitations when

choosing their proposals' resolutions and error-correction methods [92,94,96,98]. When

applications utiUze different transportnetworks at different times, a single set of flowspec

parameters may be impossible or inefficient. To operate efficiently, appUcations and net

works must exchange information about each other's needs and capabUities as part of a

method that finds flowspec parameters that balance the appUcation's QOS requirements

with the need for network efficiency.

Network resource and management requirements for a channel with a given description

are summed up conveniendy by a cost function c(x). A channel's cost c(x) depends upon

the characteristics of each substream that makes up the channel as well as on interactions

between different substreams' specifications. These characteristics are embodied in a vec

tor x of flowspec parameters; x also can be thought of as being a "point" in the space of

flowspec parameters.

It would be nice if the costs of multiple substreams were additive. However, it is rea

sonable to expect that resource sharing between substreams will decrease a channel's cost,

66



and costs may be incurred for the establishment of special control of multiple substreams

such as loss priority handling. These control costs are not local to a single substream and

they are not proportional to the number of substreams that employ the control. To design a

network's cost function c(x), even for a fixed route, may be quite complicated.

In public networks such as the telephone system, real cost functions exist. They ex

press, usuaUy in dollars per minute of channel usage, the network effort required to provide

a channel. A channel's cost is somewhat proportionalto its resource requirements; the more

link bandwidth and storage space required to implement the channel, the higher its cost A

channel's cost also may reflect processing resources devoted to the channel by the network.

For example, channels that require complicated buffer management poUciesmay cost more

than channels that do not.

The reduction of all of a channel's resource and processing needs to a single number

is a simplification, butit is a simplification that helps formalize whatgood caU setup nego

tiations should try to accomplish. Even networks that do not biU their cUents for their ser

vices can develop the concept of channel cost to reflect the channel's resource and

processing needs. A cost function codifies the trade-offs amongdifferent resources within

a network. Forexample, a networkthatusesundersea cables or scarce satellite Unks prob

ably charges more for bandwidth as compared to buffer space than a smaller-area network

thatuses cheaptransmission Unks. Of course, the cost thata network charges fora channel

can depend on the channel's route. Channels that requiremany transmission links and that

traverse many network switches consume more network resources and thus should cost

more than shorter-distance channels.

HopefuUy a channel's cost function does not vary over the duration of a caU, or at least

during caU setup. Then, a network could maintain a description of its cost function at all

entities that accept call setup requests. This would allow caU setup negotiations to involve

local negotiations only, between an appUcation and the network interface to which it con

nects direcdy. If call setup negotiations were to require communications among a number
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ofwidely separated network components, then the negotiation process itselfwould be slow

and expensive. Once negotiations establish channel parameters and control, the network

canreserve resources and set up control throughout the channel's route.

Every appUcation must understand how the characteristics ofits underlying channel af

fects the performance itdeUvers to its users. Just as networks combine several different re

source and processing requirements for a single channel into a cost, it would be useful

during negotiations if appUcations could map flowspec parameters into a single perfor

mance function p(x) that measures appUcation performance as a function of its channel

flowspec parameters. The design of application performance functions is more difficult

than the design of cost functions, however. During the design of acost function, anetwork

designer knows what resources and processing are required for any given channel. The dif

ficulty is to design a cost function that trades between channel needs intelUgendy. In the

design of aperformance function, thequantity being measured maybedifficult toquantify.

For example, videoand audio systems often are compared subjectively, since noobjective,

calculable performance function has been found that adequately correlates with people's

preferences. In subjective tests, human test subjects eithercompare the outputsof two sys

tems andidentify a preferred one or they give a subjectiverating such as"good," "fair," or

"poor"to different systems.With only this type of subjectivetest to rely on, to design a per

formance function that describes realistically performance differences that would result

from different transportcharacteristics would be quite difficult

The negotiation procedure describedbelow uses the performance function p(x) to cal

culate a constant-performance plane at each x. This plane is the linear surface about x in

flowspec parameter spacein which the appUcation performanceis constant;this is the plane

perpendicular to the gradient ofp(x). AppUcations that cannot assign a numerical perfor

mance values to flowspec parameter points can use a simplified description of their con

stant-performance planes. Rather than assigning a performance value to every possible

point x in flowspec parameter space, an appUcation can define severalperformance levels
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at which it operates. For each performance level K the appUcation specifies a, performance

level-set Pyi that contains aU flowspec parameterpoints that support that performance level,

i.e. Pj£ = {jc: p(x) =K). Local linear approximations of the performance level-set serve as

constant-performance planes; an approximation method is discussed in section 3.5.4.

For example, a video-on-demand appUcation could specify three performance levels:

low, medium, and high. For each performance level, the application designer specifies the

performance level-set P^. The design of performance level-sets can be done with subjec

tive testing fairly easily. A designer simulates the appUcationwith different channel param

eter points and then has the subjective testers rate pairs of results as either equivalent in

quality or not, and a set of channel parameter points that is judged to produce video of

equivalent quahty forms a performance level-set. We have found such tests to be easier to

administerandto give more repeatable resultsthantests in which people areaskedto assign

numericalscoresto the quahty ofdifferent video sequences.An example of this testing pro

cedure is discussed for a video appUcation in section 3.5.4.

3.5.2 Negotiation Algorithm

To set up a channel, negotiations between an application and network must estabUsh

characteristics for each substreamwithin the channel.During negotiations, the characteris

tics of the several substreams can be traded off against each other in order to achieve an

optimal balance between appUcation performance and channel cost. With the restriction

thatappUcations may specify performance level-setsP& rather thanperformance functions

p(x), it is simplerto conductnegotiations thatminimize cost at a fixed performance level

than it would be to maximize performance at a fixed cost. That is, negotiations find the x

thatminimizes c(x)subject top(x) =K. Ofcourseit would be possible forbothchannel cost

and appUcation performance to vary during negotiations. However, the trade-off between

performance and cost depends upon the desires of the human users of a communications

appUcation; this is more of an economic orpsychological issue than an engineering one.

Substream flowspec parameters such as maximum delay are easily represented numer-
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icaUy. Rate and loss bounds both are represented with one or two leaky bucket monitors,

each of which has two parameters that could be varied during negotiations. These charac

teristics are easy to vary graduaUyduring a negotiation in order to explore different channel

configurations.

Other channel characteristics, such as the absence or presence of multiple levels of ab

solute loss priority, cannot be varied gradually during a negotiation. GeneraUy, the channel

characteristics that are not easily parameterized are the absence or presence of control ca

pabiUties. Rate, delay, and loss characteristics vary smoothly with the amount of resources

aUocatedto a channel, and resources can be allocated with fine granularity. (For example,

section 5.2.2 discusses how the partial buffer sharing discipline can adjust lost rates for

multiple priorityclasses with fine granularity.) The provisionof loss priorities among the

substreams that make up a channel, of delay priorities, or of the abiUty to control ceUloss

spacing or burstiness aU depend upon a network's processing capabiUties. Negotiations

must be ableto identify theseunsupported capabiUties to applications; flexible appUcations

should be able to operate without them. If these capabUities can be provided to a channel

for free, then appUcations simply can requestthe capabiUties that they find useful and ne

gotiations can focus only on the aspects of channel description that affect resource aUoca

tion. However, if these capabiUties do increase the channel cost, then negotiations must

establish whether the controls areworth theircost. These negotiation decisions areof a dif

ferentcharacter thanthe decisionsabouthow much delay orceU loss a substream wiUhave,

and this difficult problem is not studied in detaU here.

Even given a complete specification of an application's performance function and a

network's cost function, to find minimum-cost flowspec parameters for a fixed perfor

mance level is not straightforward. If both functions were stricdy linear(or ifone were Un-

ear and the otherquadratic), thenlinear programming methods couldbe applied. However,

the functions canbequitenonlinear. Even simpler mathematical problems suchasthemin

imizationof a non-quadratic function often must be solvedusingnumerical iterative meth-
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ods. Next we present an iterative method that tries to find the minimum-cost flowspec

parameters that allow an appUcation to maintain a specified performance level.

Iterative numerical techniques generally work by refining a candidate solution to a giv

en problem repeatedly until it is as accurateas necessary. The cost-rmnimization technique

discussed next uses this strategy. First, the application specifies a starting flowspec param

eter point xq that yields the desired performance level. Repeatedly a point x\ is produced

with a small update to jq_i such that the performance of the appUcation with the altered

flowspec remains the same but the cost of the channel decreases. EventuaUy, this technique

should reach a point for which any change results in a higher channel cost

Each updated flowspec parameter point jq must maintain a fixed application perfor

mance but must reduce channel cost For each update to maintain a fixed performance, the

updated points must remain within the previous point's constant-performance plane. For

the updates to reduce cost most rapidly, they should be in the direction of the negative gra

dient of the cost function.

\ ) =constant-cost curves within
the constant-performance surface

= constant-performance surface

• = sequence of flowspec parameters

X =minimum-cost flowspec parameter point

To achieve bothof these goals simultaneously, we makeiteration updates in the direction

of Hhe projection of the negative cost gradient onto the constant-performance plane.

X =current flowspec parameter point
- = negative cost gradient
- = projectionof negative gradientinto

the constant-performance plane
= constant-performance plane

itiiiitiiiitmifl

The expression below calculates the projection of the negative cost gradient into the con-
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stant-performance plane.

/ -Vc(Xi)- Vp(Xi) \update, =p^-Vcfr,-)- ]]Vp(Xi)ll2 Wj

This negotiation technique is a modificationof existing gradient descent techniques.

The projection rule determines the direction of the flowspec parameter point updates

during iteration. The choice of the size of the updates is a trade-off. Larger steps allow few

er iterations but are less accurate. The projection operation assumes that the constant-per

formance planeis a perfect approximationto the constant-performance surfacein flowspec

parameterspace.The largerthe projectionvector, the less accurate this assumption and the

more the performance associated with the updated flowspec parameter point may vary. We

choose step-sizes pj dynamicaUy to balance these trade-offs. At each iteration step,

xi+1 = x( + oi -updatei . Aftera step, we see how different aiep(X[+i) ajidpfc). If this

difference is smaUer than some threshold then we increase the stepsize p sUghdy. If it is

larger, we undo this most recent step and try smaUer stepsizes until one is found that does

not exceed our performance change threshold. Thus the stepsize gradually increases in re

gions of the channel parameter space in which the constant-performance surface is relative

ly linear with respect to the stepsize, but when a nonlinear region is entered, then the

stepsize is reduced until the constant-performance surface again appears to be linear.

We terminate the iteration when the projections become sufficiendy small with respect

to the gradient vector. This occurs when the cost gradient is nearly perpendicular to the lo

cal constant-performance plane.

Next we present an example of this minimization algorithm appUed to a simple prob

lem. Suppose a channel's cost and an application's performance both vary in two parame

ters x and y. These could represent a channel's bandwidth and loss rate, for example. The

channel's cost function is c(x, y) = IOjc01 +5(1 -y)2 and the appUcation's perfor

mance function is p (x, y) = x+2(1 - y)u .We negotiate such that p(x, y) stays near

10.The application requests an initial flowspec of (x, y) =(8.22,0.1); the cost for this con-
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figuration is 16.39. During iteration with variable step-sizes, the channel cost faUs as fol

lows:

iteration step 0 cost 16.39

iteration step 1 cost 16.14

iteration step 2 cost 15.86

iteration step 20 cost 12.59

iteration step 21 cost 12.59

In 21 iterations the cost has fallen about 25%. The final flowspec parameters are (9.99,

0.98). If this same appUcation used the same initial parameters with a different network that

2 12has cost function c(x,y) = 0.3jc + (1 -y) , then 5 timesteps reduce the channel

cost from 20.40 to 20.20. The final parameter point is (8.05,0.022), quite different from the

previous result

This minimization algorithm may not reach a cost minimum in fewer steps than any

other algorithm, but it does have some nice properties:

Assume the performance function p(y) is differentiable. Then

p(v0+Av) =p(vj +l^-Av! +... +̂ -Av^+o(|| Av||)

When we project the cost gradient into the local constant-performance plane, we choose

Avi,..., Avjsf such that

§^v1+...+|-Av„ =0
Thus,at everystepof the iteration, thechange in theperformance levelis only o(\\ Av||).

Also, when iteration terminates (i.e. when the cost gradient is perpendicular to the con

stant-performance plane) the cost is a local minimum (or maximum) within the constant-

performance plane.

Theorem: When the cost gradient vector is perpendicular to the con
stant-performance plane at flowspec parameter point vq, the cost func
tion is a local minimum or maximum.

73



Assume: Assume that the cost gradient is perpendicular to the local con
stant-performance plane at vq.

Proof: Linearize the cost function c(.) at vq.

c(f0+Av) =c(v0) +|£-Av1+...+^-Avw+0(||Af||)

, ,dc Be v . ,. , ,By our assumption, the vector (^—,...,^—) is perpendicular to the

constant-performance plane. If a displacement d is within the constant-
performance plane, then

c(v0 +d) =c(v0) +(gp-'g^-) -d-c(F0)

Thus, when the cost gradient is perpendicular to the constant-perfor
mance plane, no small displacement within this plane results in a cost
change.

One defect with this algorithm is that it only finds local constrained minima in the cost

function. The iteration might become trapped in shaUow local minima with much lower-

cost channel parameters only a smaUdisplacement away. The algorithm could incorporate

refinements similar to simulated anneaUng [114] to avoid this trap. The simulated anneal

ing algorithm solves optimization problems by starting with a candidate solution and then

considering perturbations of the candidate solution. The probabiUty that the perturbation

becomes the new candidate solution depends on the relative qualities of the two solutions,

and the probabiUtyof accepting worse solutions decreases during the problem iteration. To

apply this method to the minimization ofchannel cost, we could start with a candidate flow-

spec parameterpoint and then consider a move in any random direction away from the can

didate. We make the probabiUty of accepting the tentative move dependent on the relative

costs of the two flowspec points, and as iterationcontinues we make the probabiUty of ac

cepting unfavorable moves smaUer and smaller.

A problem with this optimization approach is thatit may require orders of magnitude

more iterations to reach a solution than a gradientdescent method. For smaU numbers of
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iterations, the algorithm discussed above probably performs better than the annealing algo

rithm for most performance and cost functions [114].

3.5.2.1 Negotiation Data Format

To support negotiations with this gradient descent algorithm, an application and net

work can exchange several different types of data. The application could send a description

of its constant-performance plane at each iteration and could let the network calculate suc

cessive flowspec points. Alternatively, the network could transmit cost and cost gradient

information to the appUcation. Also, either the appUcation or network could transmit a

complete description of its performance or cost function to the other entity once at the start

of negotiations. Then, the entire iterative procedure could be performed without any inter-

agent communications. This would require a standard format for the description of cost or

performance functions, however.

The performance of a communications appUcation frequendy depends on the interrela

tionship between characteristicsof its different substreams. For example, an image transfer

appUcation could use two substreams to transmit high- and low-priority image data. The

applicationcould improve its performance by decreasing the ceU loss rateon its low-prior

ity substream. However, if the loss rate on the high-priority substream is relatively high,

then the resulting image defects renderthe appUcation performance independent of the loss

rate on the low-priority stream. On the other hand, if a network's cost structure does not

reflect possibleresource-sharing between substreams, or if the amountofresource sharing

between substreams is equal to the amount of sharing between independent channels, then

the cost of a substream is independent of the characteristics of the other substreams in the

same channel. In this case the cost ofachannelis just the sum of the costs of its component

substreams, each of which can be measured with the same cost function. In the simulation

prototypes presentedlaterin this paper, we make this simplifying assumptionandhave net

works transmit their substream cost functions to their cUent appUcations. An appUcation

then can calculateits desired substream characteristics iteratively, without communication
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with the network. A benefit of this approach is that networks with different control capa

biUties can describe their capabUities to applications at the same time that they transmit

their cost functions. For example, a network that only can handle single leaky bucket loss

bounds can specify this in its cost function.

3.5.2.2 Data Exchange Protocol

A system thatimplements the call setup negotiation procedure described abovewould

have to contain a new protocol that could exchange the necessary channeldescription in

formation. The designof sucha protocol is outside of the scopeof this report, but we men

tion briefly somerecentworks in the area of protocol specification.

Communications protocolstypically aredescribedusing one of three paradigms. Finite

state machine (or more generally, Petri net) descriptions give insight into transitions be

tween protocol states, and for simple descriptions, analytical results can be derived about

the protocol's correctness. Formal grammars have been designed for the specification of

protocols. These grammarsare simple enough that it is easy to verify the correct operation

of a protocol designed with them; the LOTOS system is an example of such a language

[119]. Unfortunately, it is difficult to design useful protocols using these limited languages.

Recendy, researchers have used more powerful computer languages for protocol specifica

tion. The additional power of these languages as compared to formal grammars facilitates

the protocol design task, but complicates the analytic verification of protocols' correctness.

However, computer tools have been developed that can verify a protocol's behavior ex

haustively or with pruned-search tests [111].These tools have been used to analyze the be

havior of far more compUcated protocols than was previously possible, and they have been

used to find errors in formerly accepted correctness proofs.

Of course, these paradigms can be combined in the design ofa complete protocol [105].

Petri nets can be used to model a protocol's control flow, computer languages can be used

to model data structures, and formal grammarscan be used to verify the correctness of parts

of a protocol's behavior.
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3.5.3 File-Transfer Application Prototype

This section presents a simulation prototype ofa file-transfer appUcation that can estab-

Ush channels through a variety ofnetworks using the Medley Interface negotiation method.

The prototype is buUt within the Ptolemy system developed at U. C. Berkeley [106]. Ptole

my supports the integrated simulation of heterogeneous systems, for example systems that

include synchronous signal processing subdomains as well as network components that are

modeled in discrete-event domains.

The file-transfer source accepts packets of data from its high-level user and fragments

the packets into smaUer fixed-sized cells. The appUcation uses a selective repeat protocol

[38] to detect and recover from transmission losses. If any ceU in a packet is lost, the file-

transfer receiver does not acknowledge the packet and awaits its retransmission. All of the

data sent by the appUcation has equal importance to its users so it can be senton a single

substream. The throughput of the file-transfer appUcation depends on the bandwidth and

loss characteristics of its transport channel.

To prototype caU setup negotiations that conform to the Medley Interface model we

must calculatethe performancefunction, in this casethe packet throughputrate, for the file-

transfer appUcation. We must measurehow the application's throughput varieswith its sub-
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streamrate and loss descriptions. The followingexperimental setup is used for these tests.

Competing
Traffic

Ptolemy Diagram of a File-Transfer Application

Burst-Loss

Queue

FIFO

Queue

(Fig. 13)

The file-transfer application outputs a continuous stream of ceUs with no variation in

the inter-ceU spacing. Thus, a single leaky bucket with size 1 and rate R can describe the

data rate exacdy. The file-transfer data competes for bufferspace withaPoisson source that

models competing network traffic; this competition causes ceU losses. Simulations with

Markov-modulated Poisson competing traffic give similar results as long as the ratio of the

traffic's peakrate to its average rate is sufficiendy small.

We use two Ptolemy channel models. One uses a"flushing" queue (section 5.3) that can

control the separation between ceU losses, and the other channel uses a first-in, first-out

(FIFO) queue that can not. Since either a single ceU loss orthelossof several consecutive

cells requires the retransmission ofan entire packet, the file transfer application should ben

efit from control of its channel's loss burstiness.

The channels use loss bounds ofthe form LLB(TB(A, N), M, L). Nis the size ofagroup

ofconsecutive ceU losses that is equivalent to asingle ceU loss. For this application Nis the

number ofcells in apacket. Mlimits the allowed burstiness oflosses ofgroups ofcells, and

Lspecifies the average rate at which losses ofgroups can occur. For afixed L, Mmeasures
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howclose 1/L is to thechannel's group loss rate—the closer 1/L is to thelossrate, thelarger

is M. For eachqueuewe fix L andparameterize the file-transfer throughput andthe channel

cost by R and M. We could have fixed M and varied L or varied both M and L, but here

variationsin M are sufficient to describechanges in the performance and cost functions.

Table 1 shows the ratios of packets received and acknowledged to packets transmitted

(the packet throughput ratio) for the twochannels astheir queue sizes vary.

queue

size

FEFOM:

LLB(TB)
max

FIFO

channel

throughput
ratio

Flushing
channel

M:

LLB(TB)
max

Flushing
channel

throughput
ratio

20 30 .77 18 .74

25 13 .80 7 .81

30 10 .81 5 .85

40 9 .85 5 .90

60 8 .88 4 .94

File-Transfer Throughput Performance (Table 1)

The FIFO channels use L=39 and the flushing-channels use L=33. The throughput rates

do not depend very strongly on the LLB(TB()) maxima and are fairly proportional to the

channel bandwiddis. However, channel buffer requirements do vary significandy with the

loss parameters.

The loss rates shown in table 1might seem high to people used toworking with high-

quaUty communications appUcations. However, the file-transfer protocol is designed to

give good packet throughput rates with quite lossy channels. This application thus can use

very inexpensive channels with few resources allocated to them whUe stiU providing ade

quate performance to the end user.

For the FIFO channel, we can use a function linear in (1/M) to approximate fairly ac

curately the falloff in throughput due to the nonzero cell loss rate. If weuse least-squares
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estimation with the data from table 1, the resulting throughput function is

(1.11/M + 0.723)J?throughput^) = ceUs/packet

For the flushing channel we use another least-squares estimate to calculate the throughput

function

(1.02/M + 0.616) R
throughput (M,R) =

cells/packet

For the FIFO channel, violations of the TBO monitor better predict throughput than do

cell losses. The number of packet losses per TB() violation varies from 0.6 to 1.2, but the

number of packet losses per cell loss varies from 0.2 to 0.9, a largerrange. This shows one

benefit in using the LLB(TB()) monitor to describe ceU loss characteristics rather than the

average ceU lossrate—applications canuseQOS measures thataremoreclosely correlated

with their performances. TB() violations and cell losses both predict throughput about

equaUy weU forthe flushing channel. Thischannel nearly always losesceUs in packet-sized

bursts, sothe ceU loss probabiUty is nearly proportional to the ceU loss burst probability.

We use data from the above simulations to design network cost functions also. The

FIFOchannel's cost depends on its bandwidth andrateaUocation. The variationin M with

queue sizelooks exponential, as might beexpected for aqueue fed by Poisson traffic. We

make anexponential approximation and find the least-squares estimate for Masa function

of queue size.

M = 29 7e~Q'Q25queuesize

For the flushing channel, the exponential model does just about as weU. Both models do

M = ll.56e~omqueuesize

become less accurate for queue sizes outside of the range in table 1.

A network's cost function must balance achannel's bandwidth and buffer require

ments. Thus, the FIFO channel cost function could be

cost(M,R) = a(ln(19.7)-ln(M)) +pfl
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for some a and p. The flushing channel cost function could be

cost(M,R) =a(2^g) (/«(11.56)-/n(M)) +p/?

The factor (0,°25) ensures that both channels charge the same for identical resource con-

sumption.

During caU setup negotiations, the file-transfer appUcation tries to find the lowest-cost

channel for a fixed throughput rate. The appUcation picks an initial flowspec parameter

point that yields the desired throughput and then uses the iterative strategy discussed in sec

tion 3.5.1 to find the minimum-cost channel. The results of course depend on the a and p

parameters of the network's cost function. These parameters differ in different networks

because of differences in therelative costs to provide bufferspace and transmission band

width. Because of these differences, the same file-transfer application wouldusedifferent

channel parameters withdifferent networks.

Suppose anetwork with FIFO queues has acost function with a =20 and P=1. The

file-transfer appUcation chooses an initial bandwidth Rvalue of 1000 and an initial Mof

15. Afteriteration, the application obtains an Rof746 and an Mof3.0. During negotiations,

the cost of the channel decreases by 22%.

A different network that also uses FIFO queues has acost function with a =45 and p

=1. The file-transfer application chooses the same initial channel parameters. Iteration pro

duces anR of 952 and an M of 9.6. During negotiations, the cost of the channeldecreases

by2.8%. Asexpected because of the larger a value, the final parameters aUow more losses

than with the previous network.

With bothnetworks, if we wereto begin negotiations with adifferent channel parame

ter point that yields the same packet throughput rate, then we.would end up with simUar

parameters after negotiation. For the first network, if westart negotiations withR=797 and

M=4 then negotiations yield R=731 and M=3.0. Negotiations with the second network

terminateimmediately with R =797 andM =4.
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If the same file-transfer appUcation has access to a network that uses flushing queues,

the greater efficiency ofthese queues can lead to acost savings. Negotiations would pro

ceed similarly to those with the FIFO queues, but the final costs should be lower to reflect

the smaller resource needs. Table 1 shows that flushing queues give the same throughput

ratio as FIFO queues with about 15% to 25% less buffer space. During periods ofextreme

network overload, flushing queues are even more advantageous (section 5.4).

3.5.4 Video Application Prototype

Next we describe the simulation of acompressed video transfer application, also done

in Ptolemy. The video application uses conditional replenishment, afairly simple compres

sion technique, to reduce the data rate ofavideo stream before transmission. Aconditional

replenishment coder divides each frame ofvideo into square blocks all of the same size.

Both the transmitter andreceiver store a copy of a"state"imagethatinitiaUy contains the

first frame of the video sequence. Whenever anew input frame is received at the source,

the source compares each block in the input with the corresponding block inthe state im

age. If the input block issimilar to the state block, the input isignored. If the input block is

sufficiendy different (by a mean-square difference comparison criterion), then the input

block is transmitted to the receiverand also is copied into the source stateimage. The re

ceiver copies all blocks that itreceives toits own state image and displays itsupdated state

image at the frame rate.

The Ptolemy prototype adds a few enhancements to this basic algorithm. First, the

transmittedblocks arecoded andsent over two separate substreams. The threemost signif

icant bits of the update blocks are sent over a"high-priority" substream (with substream

identifier hipri) and thenext three significant bits are sent overa"low-priority" substream

(with substream identifier lopri). Also, a problem with the generic conditional replenish

mentalgorithm is that if a block is lost during transmission and no changes occur atthat

block position for a long time, then the receiver wiU display an error at that position for a

long time. Toreduce the persistence of errors, the prototype conditional replenishment cod-
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er generates a third "correction" substream (with substream identifier correction) over

which each blockin the source state image is sent periodically. These blocks may experi

ence high transmission delays. When the receiver reads ablock from this substream, itcom

pares the block's creation time with the creation time ofthe corresponding block in its state

image. If the correction block is newer, it iscopied into the state image.

The design of aperformance function, ameasure of video quality for this application,

is more compUcated than for the file transfer appUcation because of the larger number of

substreams it uses. There are many more substream characteristics to be negotiated. We

simplify the performance function in several ways. First, the video application only pro

vides an acceptable performance when some ofthe substream parameters faU within known

ranges. Also, some of the substream parameters are constrained byothers. For example, the

delays of the hipri and lopri substreams must be equal and the rate descriptions of these

substreams are equal asweU, because of the structure of thecompression algorithm. These

constraintslimit the domain over which the performance function must be defined.

The output video quality of theappUcation varies verysharply withtheloss rate onthe

hipri substream. Theeffects of variations in this parameter dwarf the effects of variations

in other substreamcharacteristics. It is fair to say that for a fixed performancelevel, the loss

rate on the hipri substream must be fixed.

For simplicity we assume that the loss rate of the correction stream is0. Since this sub-

stream can tolerate delays muchlarger than theother two substreams, lossless transmission

could beimplemented with an acknowledge-repeat protocol as was used bythe file-transfer

application. This assumption simpUfies the receiver since it need not detect errors on the

correction substream.

Theremaining channel parameters that can bevaried are the data rate of thehipri sub-

stream, thedata rate of thecorrection substream, the delay of thecorrection substream, and

the loss rate of thelopri substream. With the Ptolemy simulator we have run simulations to

compare the output video performance level that results with awide variety of flowspecs.
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Using these tests we can design this application's performance level-set
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With four parameters tovary, the simulations cannot beorganized as neady as were the

file-transfer simulations. We begin by finding the smaUest compression ratio that justifies

performing compression and the largest that gives an acceptable picture quaUty. A com

pression ratio of4:1 justifies compression and gives an acceptable picture quaUty even at

moderately high levels of data loss on the lopri substream. A compression ratio of 10:1

gives about the same picture quaUty at much lower loss levels. We only study hipri band

width levels between these compression limits.

We next study thetrade-offs between the data rate of thehipri substream and the loss

rate of the lopri substream. We measure date rate with anELBQiipri, 2000, K) monitor; a

burst-level of 2000 aUows frames after scene changes, which are not compressed by con

ditional replenishment, to be transmitted without violating therate monitor. We monitor

losses with an IXBQopri, 50, L) monitor. The bandwidth of the correction substream is

fixed at 1/5 of theoriginal data rate and thedelay of this substream is setto 0.The foUowing

combinations of hipridata rate and lopri loss rate give fairly equivalent subjectivequality
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video.

hipri stream K
(kilotokens
per second)

lopri stream
L value

(deliveries per
loss)

18.1 29

13.4 100

9.4 333

6.4 1000

Next we study the trade-off between the data rate of the correction stream and the loss

rate of the lopri substream. The data rate on the correction substream is constant, so it can

be described with an RLB{correction, 1, K) bound. We fix the hipri substream data rate

with a K value of 18.1 kilotokens per second and fix the delay of the correction substream

tobeO.

correction stream

K (kilotokens per
second)

lopri stream
Lvalue

(deUveries per
loss)

12.9 29

6.5 50

3.25 100

We continue studying pairwise trade-offs between various parameters to learn more

about the natureof this video coder. Some intuitionbecomes clear. At higherratesof lopri

ceU loss, the video quaUty varies more sharply with the parameters of the correction sub-

stream than at lower rates. However, at low hipri bandwiddis and low lopri loss rates, to

decrease the correction delay or to increase the correction bandwidth helps somewhat in

hiding compression artifacts. Further, delays longer than eight frame times are ofUtde use

except for very slowly changing video sequences.
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With theintuition developed during thetests, we produced t application's performance

level-set. We first chose avectorof baseline flowspec parameters that wejudged toproduce

video with coding defects that are barely noticeable but certainly do notdistract from the

contents of thevideo scene. For thesubjective tests, we choseseveral groups of three flow-

spec parameters and then varied the fourth parameter until subjective evaluators judged the

resulting sequences to be ofthe same quality as the baseUne sequence. The subjective eval

uators were graduate students at U. C. Berkeley not studying video coding; they were not

told inadvance the video processing techniques employed inthese tests ornature of thevid

eo impairments they were judging. The testers were shown two 45-frame video sequences

that looped repeatedly—the baseline sequence and atest sequence. They were asked which

they found tobeof higher quaUty. If, without prompting, atester said that the sequences'

quaUties were equal, then the test sequence parameters were entered into the performance

level-set Usted in table 2.

hipri stream K
(kilotokens per

second)

lopri stream L
value

(deUveries per
loss)

correction

stream/^

(kilotokens per
second)

correction stream

delay (frame
times)

7.1 1000 12.9 1

7.1 1330 12.9 4

7.1 2000 12.9 8

7.1 2000 6.5 1

7.1 2500 6.5 4

7.1 3330 6.5 8

7.1 3330 3.2 1

7.1 4000 3.2 4

7.1 5000 3.2 6

9.4 333 12.9 1

9.4 455 12.9 4

9.4 667 12.9 8
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hipri stream K
(kilotokens per

second)

lopri stream L
value

(deliveries per
loss)

correction

stream AT

(kilotokens per
second)

correction stream

delay (frame
times)

9.4 667 6.5 1

9.4 833 6.5 4

9.4 1110 6.5 8

9.4 1110 3.2 1

9.4 1330 3.2 4

9.4 1670 3.2 8

13.4 100 12.9 1

13.4 220 12.9 4

13.4 333 12.9 8

13.4 250 6.5 1

13.4 333 6.5 4

13.4 500 6.5 8

13.4 333 3.2 1

13.4 500 3.2 4

13.4 1000 3.2 8

18.1 29 12.9 1

18.1 67 12.9 4

18.1 100 12.9 8

18.1 50 6.5 1

18.1 100 6.5 4

18.1 145 6.5 8

18.1 100 3.2 1

18.1 145 3.2 4

18.1 250 3.2
8

Channel Parameters that Yield Constant Performance (Table 2)

In the four-dimensional spaceof flowspec parameters, this data forms a tiiree-dimensional
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subsurface overwhich the video coder performance is nearly constant. This performance

level-set can beused during call setup negotiations toestablish minimum-cost channel pa

rameters. We could attempt toestimate this entire surface with amultidimensional polyno

mial that would be used as a performance function during negotiation, but this approach

has two drawbacks. Low-order estimates mightdiffersignificandy from the true surface.

However, higher-order polynomial approximations would contain osciUations that would

make the approximation useless for gradient estimation. Instead, we estimate local con

stant-performance planes near apoint with linear approximations to the performance level-

set.

The video application begins negotiations bypicking a flowspec parameter point/> that

yields the desired video quaUty. To calculate the next point during channel-description it

eration, the appUcation must estimate the constant-performance plane near p. This can be

done as foUows. Assume that the appUcation's channelis describedby D parameters.

• Find D points from the performance level-set close top. One way to do this is to

choose points jq from the performance level-set that have channel-description param

eters that are just less than p's in aU but the 1th coordinate; the 1th coordinate ofx\ is
just larger than that ofp. Alternatively, wecould define ametric function in param

eter space and use the function tofind the points from the performance level-set near

est/?.

• These D points define aD-1 dimensional hyperplane in thespace of flowspec param

eters.The normalvector v to this hyperplane can be found by solving the equation

v = (EQ1)

*D

where each of the jq's is a vector of its component parameters.

Theorem:TheD points jq define a.D-1 dimensional hyperplane defined
by equation 1.
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Proof: A normal-form equation of this hyperplane is
(x-X}) •v = 0 . This is equivalent to x •v = xx •v . This equation

must be satisfied for x2,..., xD.Further, the value of xl • v may be set
to any nonzero value by scaling the components of v. Choose this value
to be 1 and equation 1 results.

• With this estimate for the constant-performance plane, the rest of the negotiation al

gorithm can proceed as specified previously.

During caU setup negotiations, the conditional replenishment coder chooses points

from its performance level-set near the current flowspec parameter point using both a met

ric function and individual coordinates. First the coder sorts aU points in the performance

level-set by their distance from the current point; the closest point is X\. Then, points *2,...,

jcd are chosen from the sorted Ust such that the 1th coefficient ofthe current point isbetween

the 1th coefficients of x\ and jq. This method produces more accurate negotiation results

than does choosing points jq with a metric function alone. We have tried several different

forms for the metric function, and all that give appreciable weight to aU flowspec parame

ters produce similar negotiation results.

Some complications arise when using the performance level-set in table 2 for negotia

tions. First, because the lopri substream L values are much larger than the substream band

width and delay values, gradient and gradient projection calculations accumulate

significant inaccuracies.The loss rate component ofboth the appUcation performance gra

dient and the network cost gradientis two or threeordersofmagnitude largerthan the other

components. Whenever these gradient components have opposite signs, the cosine of the

angle between the gradients is within a few parts per miUion of -1 so iteration terminates.

(Ifboth gradients have one component 103 times larger than the others, then the law ofco

sines impUes that the cosine of the angle between them is within a few partsof 10° of 1 or

-1.) Thus, channel cost reductions through trade-offs among the other flowspec compo

nents do not occur. To utilize these trade-offs we performrenormaUzation [109]. If we mul

tiply the L values by 0.01 and adjust the network cost function accordingly, then common

numerical accuracies suffice and negotiations treat significandy changes in all flowspec pa-
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rameters.

It is possible that during the calculation of the constant-performance plane, thenegoti

ation algorithm wiU detect an iU-conditioned problem. This occurs when the points from

the performance level-set that are chosen to approximate the constant-performance plane

near thecurrent point donotdefine aproperAMdimensional subspace of theNdimension

al parameter space. To remedy this problem, the negotiation algorithm adds another point

from constant performance surface and finds the v such that IXv - II2 is minimum; this re

places equation 1. The simplest way to solve this minimization problem is with the normal

equations v = (X?X) X*l .However, QR factorization gives much more accurate results

for about only twice as much computation [109]. The QR factorization method factors X

into anorthogonal matrix Q andanupper triangular matrix R and then solvesthe equation

Rv = Qll.

We perform some negotiations using the constant-performance plane described above

with channel cost functions simUar to those derived during the discussion of the file-trans

fer appUcation. Of course the cost functions must be extended to handle a channel with

three substreams rather than one and to charge appropriately for a substream with variable

delay. We use cost functions of the form

cost = laK(hipri)y+$(log(L(lopri)) -log(0.29)) +

oiK(correctionj*+ KDelayicorrection)11

The "log(0.29)" term comes from the assumption that no substream has anL value smaUer

than 29; 29 is renormalized to 0.29.

First we use a cost function with a = 0.2, y = 0.5, P = 0.6, k = 3.0, and p. = -0.5. We

begin a negotiation with these flowspec parameters: hipri substream bandwidth monitor K

= 9.42 kuotokens per second, lopri substream loss monitor L = 1330 deUveries per loss,

correction substream bandwidth monitor K = 3.27 kUotokens per second, and correction

substream delay = 4 frame times. The initial channel cost is 5.38. After 44 iterations the
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flowspec parameters are (7.76,1440,1.89,5.46) and the channel cost has fallen to 5.01. If

we start with flowspec parameters (13.5, 500, 3.27,4) then the channel has an initial cost

of 5.04. After 56 iterations the flowspec parameters are (17.0,341,3.29,8.0) and the chan

nel cost is 4.55. A third negotiation startswith parameters (18.2,1420,2.58,4) and channel

cost 5.86. After 52 iterations the parameters are (16.6,1250,2.68,8.0) and the channel cost

is 5.28.

Next we use a different network for which low-loss substreams are less expensive. This

network's cost function uses a = 0.2, y = 0.5, p = 0.1, k = 3.0, and p. = -0.5. We perform

negotiations with the same three initial channel configurations as above.

Initial parameters
initial

cost
iterations final parameters

final

cost

9.42,1330,3.27,4 3.47 43 7.73,1460,1.89,5.78 3.03

13.5,500,3.27,4 3.62 54 14.7,694,4.04,8.0 3.31

18.2,1420,2.58,4 3.92 54 16.6,1400,2.72,8.0 3.41

Although the parameters after the three negotiations are somewhat different, the channel

costs are similar. As expected, final costs are lower with this network than with the first,

and the final parameters use more lopri bandwidth.

Now the appUcation uses a different network for which bandwidth is more expensive.

This network's cost function uses a = 0.2, y = 0.7, p = 0.1, k = 3.0, and \L = -0.5.

Initial parameters
initial

cost
iterations final parameters

final

cost

9.42,1330, 3.27,4 4.26 41 7.42,1410,1.89,5.21 3.64

13.5,500,3.27,4 4.72 52 11.4,298,1.88,7.13 3.87

18.2,1420,2.58,4 5.33 46 14.0,1400,3.06,8 4.42

These negotiationsreduce channel costs between 15% and 18%.

It is important during negotiations thatenough points from the performance level-set
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be sufficiently close to the current flowspec parameter point that the constant-performance

plane can be estimated accurately. Further, if negotiations carry the current point past the

boundary of the performance level-set then negotiations must be stopped. Presumably the

application designer does not want the application to operate outside of the performance

level-set's range. For example, several negotiations above terminate when the correction

substream delay increases to 8.

The two photos below show frames that were transmitted with the initial and final flow-

spec parameters of the final negotiation above.

Frame Transmitted over Channel with Initial Negotiation Parameters (Photo 1)
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Frame Transmitted over Channel with Final Negotiation Parameters (Photo 2)

3.6 Medley Interface Implementation Issues

The Medley Interface channel setup model only addresses one component of broadband

communications network design. This section discusses how the Medley Interface model

interacts with other network components and protocols.

3.6.1 Interaction with Existing Protocol Hierarchies

It is important that the Medley Interface model have a minimal impact on existing net

work protocols if it is to be accepted and integrated seamlessly with current systems. BIS

DN proposals divide their functions into separate"planes." The User Plane is responsible

for data transfer between network endpoints. The Control plane handles call control and

network signaling. The Management planeprovides network management and monitoring

support, and coordinates the actions of the other two layers [104, p. 1-3]. The Medley In

terface is used during call-setup to establish characteristics of transmission channels; it

does notprovide transport services itself. Thus, the Medley Interface could be integrated

intothe"Control Plane" of proposed BISDN networks with fairly minimal impact onother
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planes.

Current BISDN proposals further divide their actions into "layers" orthogonal to the

above planes. These layers are analogous tothe layered structure of the OSI protocol stack

model. While actions in separate planes provide either transport, connection, or manage

ment functions, actions in higher layers provide more abstract or high-level services than

actions in lower layers. TheBISDN Physical Layer isresponsible for thetransport of fixed-

size data units betweenconnected, specified endpoints. The BISDN ATM Layer is respon

sible for routing, generation of the fixed-sized data cells, etc. The BISDNATM Adaptation

Layer (AAL), discussed in section 2.7, provides application-specific functions such as tim

ingrecovery, segmentation, anderror detection.

The Medley Interface model affects rate and QOS descriptions at the cell level only,

and justusesservices of thephysical layer. It affects thecall setup and control functions of

the ATM (cell transport) Layer through thatlayer'sControl Plane, but it doesnot affect the

actions of the ATM LayerUserPlane. Also, theMedleyInterface model may replace func

tions of the ATM Adaptation Layer (section 2.7), such as lost-data retransmission.

3.6.2 Information Format in Cell Payload

Applications that obtain Medley Interface connections with more than one substream

mustspecify the substream towhich each transmitted cell belongs. Thesubstream identifier

could beplaced inthebeginning bits of each cell payload, justas theATM Adaptation Lay

ers embed application^specific information in cells. Medley Interface connections with

only one substream would notneed toembed any substream information. Connections with

two substreams would use the first bit of each cell payload to specify the substream to

which thecellbelongs. Connections withmore substreams wouldusemorebits. Since the

number of substreams allocated to a connection does not vary over the lifetime of the con

nection, there is noambiguity about thenumber of bits ineach cellthat are usedfor thesub-

stream identifier.

This encoding method is simple and amply powerful for all reasonable applications.
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With ATM cell sizes currendy specified as 384 =8x48 bits, up to2384 substreams could

beallocated toevery network connection. Even 256 =28 substreams could be allocated to

a single connection with an overhead penalty of only 8/384 « 2%.

3.6.3 Application and Network Interface Software

The Medley Interface model affects application designs in several ways. Most impor

tantly, the model expects that applications know enough about their transport needs to ne

gotiate them with the network. (All integrated-service networks have this requirement in

some form.) With the Medley Interface model, applicationsknow about the availability of

specific transport services, and they can request specific characteristics for each substream.

An advanced application thus can adapt its sourcecoding technique if requested transport

services are not available. Alternatively, anapplication couldchooseto support only a sub

set of its total capabilities if attached to a limited network. Applications that can utilize

many types of networks through a common interface should be more widely used and more

popular than network-specific, fixed-capability applications.

Forexample, areal-timevideoconferencingapplication couldchoose amongthe coding

techniquesdescribedin section4.4 to obtain best performance with arangeof flowspec pa

rameters. If substreams with very low loss ratesareavailableand sufficiently inexpensive,

the videoconferencing application could use motion compensationwith simple periodic re-

plenishment for compression. If only high-loss and bursty-loss substreams are affordable,

the videoconferencingcodercould use conditional leaky motion compensation. This tech

nique requires more computation than periodic replenishment, but it hides the effects ofcell

losses better.

If only low-bandwidth connections are available to a particular destination, the video

conferencing application could subsample the video at its source and interpolate between

subsamples at the receiver. Although the subsampled video will not show the fine details

of the original video sequence, for many users it is preferableto receive lower-quality im

ages than no images at all.
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3.6.4 Application Multiplexing and Coding Description

An application that can select between a variety of signal coding methods must tell its

receiver about its chosen data multiplexing strategy. The source could signal that one of a

set of previously agreed-upon methods has been chosen. Alternatively, at startup a source

could send the destination a map from each substream ID to a particular data type. For some

applications it might be simplest if each datacell contained enough information to tell how

the cell should be interpreted.

3.6.5 Network Channel Provision

A network uses the information obtained from the Medley Interface to implement a

channel with the requested characteristics. The network maps the requested substreams to

one or more virtual circuits; just as many virtual circuits can share a single physical link,

many substreams can share one virtual circuit. To obtain different qualities of service for

different substreams sharing a single virtual circuit, the network call-setup processor can

use the priority mechanism of virtual circuits and can alter the substreams' multiplexing

and buffering pattern at the network interface. If it is significandy less complicated to send

many substreamsover achannel with betterQOS thanthey need than to establishmany vir

tual circuits for the substreams, the interface could send the streams over one channel, de

liberately wastingnetwork resources but reducing management complexity.

A networkcoulduse information obtained from the Medley Interface to do abetter job

ofrouting connections. Multiple virtual circuits supportingthe same channel could be han

dled by different routes in order to better balance the traffic load or to use network switches

with special features for one of the virtual circuits. If multiple virtual circuits supporting

one channel have no interrelated delay bounds specified, lower-QOS virtual circuits could

be routed over high-delay but lighdy utilized routes,increasing network utilization and ef

ficiency.

With the Medley Interface, a network can process different substreams with different

buffermanagement disciplines. For example, lossless substreams wouldbe given absolute

96



loss priority over low-priority substreams. Awater [35] shows how one buffer management

discipline can simultaneously support a low-delay channel and a low-loss channel, al

though he does not propose the use ofdifferent buffer access and service disciplines for dif

ferent channels' specific quality of service needs.

The Medley Interface could request AAL-level processing at the endpoints of a connec

tion. The network could add error-correction coding or buffering to eliminatedelay jitter,

for example.

3.7 Benefits of the Medley Interface Model

This section reviewssomeof thebenefits of theMedleyInterface. First, theMedleyIn

terfaceallows applications to describe theirQOSrequirements andrateparameters in more

detail than is now allowed, enabling more efficient network resource allocation. With a

standard BISDNinterface, scarce orexpensive resources such as bandwidth orbuffer space

must be allocated basedupon only a few flowspec parameters. In practice, estimatesofnet

work traffic statistics are far from perfect. The rate of callrequests is time-varying and dif

ficult to predict Further, application-supplied descriptions of their traffic statistics are

incomplete and imperfect as well. For anetwork toestablish adata connection withquality

of service guarantees thus requires that the network make conservative assumptions [49]

that allow the network to fulfill its QOS guarantees but leave network resources under

used. The Medley Interface model's substream decomposition and detailed flowspec for

mat help reduce resource waste by allowing networks to allocateresources less conserva

tively. Further, this model facilitates complex negotiations between applications and

networks,allowing applications to findthemostcost-efficient channel thatsupports agiven

performance level with a variety of networks.

A network interface must beclearly definedandwell-knownto thenetwork'sclientap

plications. However, if the implementation of a transport channel is separated from its in

terface then network providers can upgrade network algorithms or components without

making existing applications obsolete. If the interface is sufficiently general, new commu-
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nications applications canusenetworks that implement theinterface withoutchanges to the

network. This flexibility is one of the most importantbenefits of a useful interfacemodel.

3.7.1 Specialized Buffer Management

The Medley Interface model allows network components to tailor their buffermanage

mentdisciplines tothedata ondifferent substreams. Thenetwork could usethebufferman

agement disciplines discussed in chapter 5 toimplement substreams withspecific loss and

loss-burstiness characteristics. For example, given a suitably detailed description of its lo

cal traffic, each network node could construct an appropriate priority screening discipline

that would allow all of the substreams that make up a videoconferencing channel to share

the samebuffer andoutputlink. The design of thisbuffer managementdiscipline giveseach

substreamdifferent qualitiesof service. Also, one of an application's substreams could be

buffered so thatanylossesoccurin very shortbursts while anotherofits substreams is buff

ered so that the time between loss bursts is maximized.

With different buffer management disciplines applied to different substreams it is fea

sible for networks to offer lossless transmission as a viable transport service. Simpler cell-

relay network interface models often implement lossless transmission channels with high-

layer protocols that detect cell losses and request retransmission of the lost data. These au

tomatic repeat request (ARQ) protocols still are supportable within the Medley Interface

framework and are certainly appropriate for data streams that need lossless transmission

and can tolerate high delay and delay jitter. However, the Medley Interface format can de

scribe substreams that need both lossless transmission and stringent timing bounds. A net

work implements a lossless substream as if it were circuit-switched; the substream needs

guaranteed buffer space and guaranteed maximum bounds on the service delay at every net

work node. As a result, buffers and service timeslots for lossless substreams cannot be

sharedwith other data streams; further, these resourcesmust be reserved in sufficient quan

tity for the worst-case traffic characteristics of the lossless substream. Obviously, to sup

port such a substream is quite expensive and clearly is not suitable for most traffic. Lossless
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substreams may be appropriate for small subsets of an application's traffic, however. For

example, the video compression algorithm in a videoconferencing application may switch

between several different quantizer tables in order to best match the quantizers to the cur

rent input data. The video coder must notify the receiver about the quantizer table change,

and if that information were lost then all of the receiver's decoded video would be substan

tially in error. Data representing quantizer table changes would require only a very small

bit-rate, but they certainly would benefit from lossless transmission. Chapter 4 contains ad

ditional examples of applications that benefit from sparing use of lossless Medley Interface

substreams.

Either ARQ protocols or worst-case resource allocation allows a network to guarantee

to an application that no transmitted cells will be lost. Some researchers have considered

forward error-correction (FEC) methods for the reduction ofcell loss rates [71]. However,

this approach would introduce delay into the decoding of every cell because both the cell

and its error-correction data would need to be received entirely before errors could be cor

rected within the cell. Also, an error-correction code long enough to correct for the loss of

every single bit in a cell would be fairly complicated. Finally, the mechanism ofcell loss is

quite different from that which causes bit errors. Cell losses are caused by localized con

gestion within the network, and if a cell were lost then the congestion is likely to affect the

cells containing the error correction information also.

While FEC at the cell level may be too inefficient for most purposes, FEC may be use

ful to reduce the incidence of bit errors on some noisy channels. Some demanding appli

cations may require more stringent bounds on the network's bit error rate than the network

usually offers. For these applications, the network could choose to apply bit error detection

coupled with cell retransmission or forward error correction. For wired and optical net

works, bit errors are most likely caused by unpredictable electrical noise within the net

work's amplifiers and switches. The network components are designed for a target bit error

rate, but forward error correction or detection could allow a much lower rate of undetected
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errors. Since bit errors occur randomly and fairly independentiy for these networks [112],

theprobability of enough bit errors occurring in a single cell to defeat the cell's error de

tection or correction mechanisms is much lower than the probability of bit error itself.

3.7.2 Multiple Loss Priority Levels

Loss priority is a resource! Not only should a communications application be able to

specify thelossrates for multiple substreams, butit should be able to say that nodata on a

particular substream should bediscarded before traffic onanother. A Medley Interface net

workallows an application to specify theorder in which its network should discard data in

the event of congestion. The loss-eligible bit in proposed ATM standards allows this to be

done to some extent, but a Medley Interface network gives more levels of control. A vid

eoconferencingapplication might chooseto sendallof its audiodatamore reliablythanany

of its video data. The application could choose to transmit a stereo audio signal over two

substreams: one carries the average of the left and right channels and the other carries the

difference between the two. For good audio fidelity, both substreams should be transmitted

with nearly equal fidelity. However in the event of network congestion, if cells containing

the difference signal were discarded before cells containing the average signal then the re

ceived audio quality will be much better than if losses affected the two substreams equally.

To support this capability a network would need at least three loss priority levels.

3.7.3 Best-Effort Channels

The term "best-effort" used to describe a communications channel usually implies that

a network makes almost no effort to transport data on the channel. The network allocates

no resources for and guarantees no QOS to best-effort traffic, although the network proba

bly gives this traffic as good a QOS as it can without adversely affecting the quality of traf

fic with QOS guarantees.

Applications might want to use best-effort channels because they are quite cheap and

because the QOS that these channels provide often is good enough for the applications'
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needs.However, with the Medley Interface it is possibleto requestchannels with extremely

low but guaranteed QOS. For example, a file-transfer application could request a channel

with a delay bound of 12 hours. Networks could implement these low-quality channels in

almost the same way as current"best-effort" channels,and thus could chargethe same cost.

The Medley Interface also can improve the QOS of "best-effort" transport service. Im

proved traffic description allows networks to decide more intelligendy if resources should

be allocated to best-effort trafficin somenodesto helpreducecongestionin others. Further,

applications that can tolerate very lossy or high-delay channels but do need to know bounds

on theirchannel characteristics can obtain the needed information from the Medley Inter

face.

3.8 Conclusion

The Medley Interface is a model for the call setup interactions between communica

tions applications and broadband digital networks. This interface organizes data transport

into substreams; applications request and configure as many substreams as they need to

model their communications needs accurately. The Medley Interface also presents a sub-

stream flowspec format that is intended to be simultaneously simple, powerful, and exten

sible. Cost-rmiiimizing channel setup negotiations are possible within the Medley Interface

model because the flowspec format is not excessively complex. The substream decompo

sition, flowspec format, and negotiations combine toenable network provision of channels

withQOS guarantees that still useresources efficiendy. Theaccurate QOS description pos

sible with substreams and the Medley Interface flowspec format allow channel resources

to be tailored to different application data types needs' without waste. Also, the accurate

description enables more savings during channel setup negotiations, because negotiations

can trade between a wide varietyof channel characteristics to find low-costchannelimple

mentations.

Simulationsof negotiations with a file-transfer application anda video transport appli

cationboth achievedchannelcost savings as highas 20%. Negotiations with the video ap-
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plication were more complicated than with the file-transfer application because of the

greater numberof flowspec parameters negotiated and because thevideo performance was

evaluated subjectively. These negotiations used a technique that finds a low-cost channel

flowspec whose parameters fall within the set definedby subjectiveperformance testing.

The Medley Interface proposal should not require major changes to existing network

architectures. Cell transport and network management protocols should be unaffected; call

control protocols may need extension to support the degree of transport control that the

Medley Interface allows. Further, hardware that implements ATM layer interfaces may

need to be modified so that it can recognize substream identifiers as well as virtual circuit

and virtual path identifiers.

Plenty of open questions remain in the design of the broadbandnetwork interface, and

a few are introduced below. Some involve the optimization of difficult design problems

over large systems, but many areeconomic—they can not be answered through engineering

alone. They ultimately will be answered in the marketplace.

3.8.1 Resource Allocation and Pricing

The allocation of link and buffer resources for multiple calls through a single switch is

somewhat understood. [33, 56, 59]. However, work still needs to be done to understand

how networks should combine their resource allocation strategies, buffer management, and

routing algorithms given statistics on the number and type of connections the network car

ries. This statistical control problemis complicated by the fact that although pricing is one

method the networkcan use to control application behavior, the effects ofdifferentpricing

policies on application behavior is difficult to predict.

A network's pricing policy charges for theuseof resources that can notbeusedby oth

ers, and it helps compel certain behavior from applications. For example, a network may

charge based onbandwidth usage, call setup costs, etc. It probably is infeasible to charge

some amount for each cell transmitted. More likely, costs are determined by the agreed-

upon traffic description, QOS specification, adherence to thetraffic description, and actual
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delivered QOS. In fact, it is unfair to charge based simply upon the number of delivered

cells because this charges high-rate connections excessively for call setup and network

managementcosts. However, the priceof a given transport resource alsois affected by the

supplyofthe resource fromothernetworks and by the demand for theresource from appli

cations, both of which are difficult to model or predict.

3.8.2 Multicast Connections in Medley Interface Networks

A multicast connection connects possibly morethan one source to possibly more than

one receiver. Of course, several sources and receivers may be co-located, as with a multi

media terminal or a multiway videoconference with several participants at each site. The

establishment of multicast connections in future broadband networks isvery much an open

research issue. Efficient algorithms are needed for routing multicast connections, adding

and dropping individual connections from an existing multicast connection, etc. The spec

ification of quality of service measures for amulticast connection also is quite difficult; if

a data cell is delivered successfully to all intended recipients but one, should the loss be

considered toaffectonlytheoneuser's received quality ofservice ortheQOS for theentire

connection?

Itis likely that not all participants inamulticast connection would want the same qual

ity of service. Users coulddecide toreceive only someofthesubstreams in amulticast con

nection and could specify different QOS parameters for the same substreams. The question

of how tobill multiple users for partially shared transport service also needs study.
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Chapter 4

FLEXIBILITY IN MODERN VIDEO CODERS

The previous chapter showed cell-relay networks, and applications such as conditional

replenishment video coders negotiating to obtain low-cost channels that support a fixed ap

plication performance level. This chapter discusses how more modem video coders can

adapt to provide constant perceived image quality with the range of channel QOS specifi

cations that might result from negotiations. Sections 4.4.3.3 and 4.4.3.4 present new ver

sions of the traditional video motion compensation algorithm, developed by the author, that

provide more resilience to cell losses than the original. These methods allow a video coder

to operatewith arangeofchannel bit-ratesandloss rates. Section 4.5 presentsnegotiations

with amodernvideo coderthatvariesnotonly its rateofchannellosses but alsothe spacing

betweenlost cells. During negotiations the video codertakes advantage of the subjective

improvements possible with network controlof cell loss burst lengths.

Video signals generally are compressed before transmission because the resulting re

duction in transmission cost morethan compensates for the compression effort.While vid

eo coding may not reduce a channel's loss rate,it can provide resilience to the visual effects

of transmission losses by reducing the perceived objectionability of theresulting defects.

Video compression first removes redundancy from the source data. For example, pic

ture regions that are relatively uniform can be represented more efficientiy than by listing

all of their pixel values. Also, compression suppresses information that is notperceivable

by the human eye. Very high spatial frequency picture details or very small changes in

brightness between nearby pixels can beignored, reducing avideo sequence's bit-rate but

not changing its perceived appearance.
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4.1 Discrete Cosine Transform

A widely used method for the compression of images is the discrete cosine transform

(DCT) [23,27]. The DCT is an example of a multiresolution method, in which an image is

decomposed into several "frequency" components with a linear transform.

DCT
coefficients = D D

DCT Coefficients Result from a Linear Transform (Fig. 15)

The two-dimensional DCT divides an image into square blocks and multiplies the blocks

on the left and right by orthogonal matrices (figure 15).Each of the two matrix multiplica

tions performs a one-dimensional DCT on the input picture data—one on the datarows and

one on the columns. After both one-dimensional transforms, the resulting coefficients are

quantized and transmitted. The DCT removes redundancy by expressing largely uniform

image regions with only one or two nonzero DCTcoefficients. It suppresses perceptually

insignificant information by more coarsely quantizing higher-frequency coefficients, to

which people are less sensitive [28, 29]. For many video scenes and for DCT transform

block sizes of 8 x 8 pixels or larger, most high-frequency DCT coefficients can be set to 0

without affecting the perceived quality of thereconstructed scene noticeably.

Moving video can be thought of as athree-dimensional signal, abrightness (or bright-

ness-and-color) function ofwidth, height, and time. We have seen that the two-dimensional

DCT compresses images—the three-dimensional DCTcould be used to compress video.

The three-dimensional DCTtransforms each of the rows, columns, and temporal slices of

avideo sequence with the one-dimensional DCT.The magnitudes ofvariations of different

"frequencies" ineach direction are represented byunique coefficients inthe resulting three-

dimensional DCT coefficient cube. If the sequence contains predominandy low-frequency

variations, then mostof theinformation about the sequence is contained injusta few coef-
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ficients of the DCT coefficient cube. (Most coefficients would be nearly equal to zero.) For

compression, the coefficients near zero could be set to zero and then the resulting cube

could be represented efficientiy with entropy coding.

Unfortunately, video scenes with even moderate amounts of motion produce three-di

mensional transformcoefficients thatoften are not close to zero [14]. The nature of tempo

ral redundancy in video differs from the redundancy found in two-dimensional images. In

images, largeregions are quite uniform, other regions vary gradually, and at the border be

tween two regions there is an abrupt change. If we look at a single pixel in a video signal

straight along its time axis,we seerapid changes that occur wheneveramoving objectcov

ers or uncovers that pixel. To notice the redundancy present in video along its temporal

axis,we must look froma pixelin the current frame to nearby pixelsin neighboring frames.

Such acompression method could eliminate temporal redundancy even for movingobjects.

4.2 Motion Compensation

If we could compensate for the motionin avideo sequence, then techniques suchas the

DCT would more successfully remove temporal redundancy from a scene. A technique

calledmotion compensation does just that [30]. Motion compensation methods try to find

regions in past video frames that are as similar as possible to some region in the current

frame. "Pel-recursive" methods find a best-matching pixel in the previous frame for each

pixel in the current frame. Region-based motion compensation methods segment each

frame into"regions" that correspond toidentifiable objects withintheimage, andthenthey

try to trackthe motion ofeachregionin the image.Most common areblock-matchingmo

tion compensationmethods that divide each frame into rectangular blocks and then search

previous frames for a translated block of the same size that matches the current block as

well as possible (figure 16).

The criterion used to decide when two blocks match usually minimizes the mean

squared differencebetween acurrent block andallnearby blocks in the previous frame. Ab

solute differences and other criteria have been investigated as well [26].
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Block in Current Frame Estimated with Past-Frame Block (Fig. 16)

Once we have determined the trajectory of a block over several frames we could trans

mit the motion information, for example as a sequence of frame-to-frame displacement

vectors. Then, we could perform DCT encoding, subband coding, or some other one-di

mensional compression technique along the trajectory with much more effectiveness than

if we had not compensated for the motion. Unfortunately, if we track the motion of a block

for several frames from frame N to frame M, then because of non-translational motion and

imperfect motion estimation, there will be parts of the frames between N and M that are not

coded at all. These residual regions would have to be described and coded. Because of this

problem, we know of no existing research that has used motion-compensated compression

over more than two frames at once.

With groups of two frames, it is fairly straightforward to divide each frame into blocks

and then to find the best-matchingblock in the other frame via motion estimation. Then, a

short two-tap subband filter can provide some compression when applied along two-frame-

long groups of motion-compensated blocks [14]. More common is to use differential en

coding incombination with motion compensation. Rather than transmitting frames fin) di

recdy, we transmit the first frame of asequence/^; and then transmit the difference d(n)

between the current frame and the previous frame: d(n) = fin) -fin - 1). To decode this
n

sequence, the receiver simply adds all received values: fin) = ]£ d(k). Ifchanges from
k= 0

frame to frame are relatively small, then the number ofbits needed to transmit d(n) should

be less than the number to transmit/fo). Motion compensation with differential encoding
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combined with the DCT usually provides two to three times more compression than the

DCT alone at similar image qualities.

A typical motion compensation based video coder segments each input image into

blocks. For each block, once the past-frame matching block has been found, the coder out

puts the displacement vector that moves the past-frame block onto the current block. Also,

the coder calculates and outputs the residual difference between the past-frame block and

the current block. This difference may be nonzero due to non-translational motion within

the video, brightness changes within the video, or motion displacement that is not a multi

ple of the motion estimation distance resolution. This difference is compressed with the

frame,) dy7\ difference w DCT
coder'¥.

M.C.
motion vectors

w

zl *

Motion Compensation Coder (Fig. 17)

DCT and transmitted.

To generate a frame ofvideo, a motion compensation decoder reads in a motion vector

anddifferenceblock foreachblock in the frame. The DCT encoding first is inverted. Using

the motion vector, the decoder finds the block in the previous frame that the encoder used

to calculate the difference values. By adding the received difference values to the past-

frame block, the pixel values for the current block are produced. Note that the decoder

needs a correct copy of the past video frame in order to generate a current frame. An in-

traframe coded frame of video can be sent from the encoder to the receiver in order to start

the motion compensation process.

Motion compensation works well because motion vectors are a very efficient represen

tation of motion, the most common temporal change in video. If most temporal changes in

video scenes were brightness changes, scene changes, or other transformations, then mo-
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tion compensation would not perform as successfully. Further, the difference signal pro

duced by motion compensation coders is quite amenable to further compression by the

DCT.

4.3 Relevant Standardization Efforts

The Joint Photographic Experts' Group (JPEG) of the International Organization for

Standardization (ISO) produced what is commonly known as the JPEG standard to com

press and represent continuous-tone (as opposed to two-level) images [97,103]. JPEG is

not intended for video compression, but since video is simply a sequence of frames JPEG

has been used for video compression even though it does no interframe coding.

JPEG is based upon the DCT. Blocks of 8x 8 luminance (brightness) values arediscrete

cosinetransformed, quantized, run-length encoded, and entropy codedviaHuffmancoding

or arithmetic coding. Chrominance (color) values are subsampled by a factorof two verti

cally and horizontally and then arealsoDCT-encoded,quantized, run-lengthencoded, and

entropy coded.

The MotionPicture Experts'Group of theISOdesigned the MPEG standard specifical

ly forvideo compression [99]. MPEG uses acomplicated version ofmotioncompensation

in which frames may be intraframe coded, differentially encoded from a previous frame

(not necessarily the immediately preceding frame), or differentially encoded from both a

past and future frame.

The combination of both past frame prediction and future frame interpolation helps al

leviate the "uncovered area" problem. As the scene in figure 18 progresses from right to

/wk.

W^$^Z&3M®$5m

Wfc

Uncovered Region of Tree Caused by Automobile Motion (Fig. 18)

left, the car uncovers some regions within the frame and covers other areas. When coding
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the center (current) frame, the newly uncovered lower right comer of the tree can be inter

polated from the (future) frame on the right, and the lower left hand comer of the building

can be interpolated from the (past) frame on the left. If either the past or future image were

not available, then part of the current image would have to be coded without any reference

block. In scenes with several moving objects, bidirectional interpolation allows many more

blocks to be coded from good reference blocks than would one-direction predictive coding.

Since MPEG codes some blocks using blocks several frames in the future or past, the

MPEG motion detection algorithm must be able to detect motion over a much largerregion

than traditionalalgorithms.Most likely, MPEG coderswill estimate motion hierarchically.

First, the coder estimates motion coarsely (to an accuracy of several pixels) without an ex

haustive search but over a large area. Then, the coarse motion estimate is refined with a

more accurate search centered at the coarse motion estimate. The coder can estimate motion

to sub-pixel accuracy by interpolating values between pixel positions.

Otherrecent video standardization efforts include MPEG-2, which addresses higher-

resolution video than the MPEG standard, and MPEG-4, which addresses lower-rate video.

The H.261 standard of the International Telephone andTelegraph Consultative Committee

(CCTTT) specifies how to compress videoconferencing signals at multiples of 64 kilobits

per second [100].

Two multimedia standardsnow being developed are the American National Standards

Institute (ANSI) and ISO "HyTime" standard and the ISO "Multimedia and Hypermedia

Information Coding Experts Group" (MHEG) standard [101]. These describe howapplica

tions can create and present information streams that combine video, audio, text, and graph

ics. Streams of the various types can be synchronized to each other or linked to viewer

requests (such as button presses ormenu selections). These standards donot specify signal

coding formats themselves, but allow the formats to be specified as part of a data stream.

For example, a multimedia stream could contain video coded with both the MPEG and

H.261 standards and still images coded with the JPEG standard.
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4.4 Video Coding for Lossy Networks

Chapter 5 presents network buffer management disciplines that implement channels

tuned to the cell loss needs of a variety of communications applications. This section takes

the opposite approach and studies ways that video coders based on motion compensation

and the DCT can adapt be more resistant to the effects of cell losses.

If either motion vectors or the frame difference data are lost during transmission, then

the video receiver will produce a somewhat incorrect version of the current frame. Since

each frame is used at the receiver to generate the succeeding frame, unless corrective action

is taken the effects of the loss will propagate to a larger area and become more easily no

ticed (photo 3). The problems of the corruptedcurrent frame and of error propagation into

Propagation of a Loss Five Frames Ago (Photo 3)

future frames may be thought of somewhat independently. Estimation of lost data at the

video receiver helps hide the effects oferrors in the frame in which they occur. However,

the motion compensation algorithm itselfmust be modified somewhat to eliminate the ac

cumulation of even small errors. Two existing modifications are presented in sections

4.4.3.1 and 4.4.3.2; sections 4.4.3.3 and 4.4.3.4 present methods developed by the author.
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4.4.1 Past Works

Most past research studying video transmission overlossynetworks doesnot consider

motion compensation [1,3,5,6, 8,9,13,19,22]. Many of these works simply suggest the

combination oflayered coding, in whichvideois separated intomoreandlessloss-sensitive

streams, and multi-priority transmission, in which more sensitive data are transmitted at

lower loss rates. [5, 6] discuss an alternative to the DCT that helps hide cell loss defects.

[19] shows how filtering around the boundary of loss-affectedpictureregionshelps to hide

the severity of the errors.

A motion compensation coder can limit error propagation to a subset of DCT coeffi

cients by calculating block differences using past-frame data that are the inverse-DCTof

only the subset of coefficients with all othercoefficients are set to 0. One previous study

[18] uses only high-frequency DCT coefficients in the motion compensation difference.

These authorsarguethat low-frequency coefficients cannot be coded with motion compen

sation because error propagation in the low-frequency coefficients makes received video

quality unacceptable. Others [4,16] argue that only low-frequency coefficients should be

used in the difference operation. Any error propagation makes received video quality un

acceptable, but low-frequency coefficients, packed in high-priority cells, essentially are

never lost. In either case, other methods ofeliminating error propagation must be used also

or else the effects of occasional errors will accumulate enough to be objectionable.

Below we present and analyze severalmethods for using motion compensation in spite

of cell losses that affect data inside the motion compensation loop. If the coder and receiver

aredesigned correcdy, high-quality video can be transmitted over lossy networks without

abandoning motion compensation altogether.

4.4.2 Estimation of Lost Data at the Receiver

The loss of either the motion compensation difference signal or of motion vectors pro

duces picture errors and error-propagation. If the positions of losses areknown to a video

receiver though, it can attempt to estimate or reconstruct the lost data, improving the quality
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of the displayed video. Next, we discuss the recovery of lost motion vectors.

4.4.2.1 Recovery of Lost Motion Vectors

Both thehorizontal andvertical components ofadjacent motionvectors haveintraframe

adjacent-vector correlations that range between 0.1 and 0.3 for four tested sequences that

contain varying amounts of detail andmotion. The frame-to-frame correlation for the hor

izontal and vertical components of neighboring motion vectors is much higher in scenes

with litde motion butis smaller than 0.05 insequences with rapid motion. Scenes with litde

motion can be reconstructed easily in spite ofmotion vector loss, so we focus on high-mo

tion scenes. The above correlations indicate that both intraframe and interframe strategies

for estimating lost motion vectors are reasonable.

The replacement of lost motion vectors with the component-by-component median of

their intraframe neighbors seems to yield better image quality than simply the average of

their intraframe neighbors. One explanation is that near the boundary between two objects

inascene, motion vectors for the different objects point indifferent directions. When amo

tion vector is lost, itshould be replaced with amotion vector that describes the object from

which the lost motion vector came. Bytaking the component-by-component median ofthe

four nearest neighboring motion vectors, we less likely use areplacement value that aver

ages in contributions from vectors that describe other displayed objects.

We have studied two recovery methods that use past motion vector values to recon

struct lost motion vectors. The simplest technique replaces lost motion vectors with the cor

responding-position motion vectors from the previous frame. This actually works quite

well—better than the intraframe median for some lost motion vectors and worse for others.

Amore complicated recovery method searches all motion vectors in the nearby blocks

of the frame before alost motion vector. The past-frame motion vector that best moves its

block into the position of the loss-affected block is used to replace the lost motion vector.

Intuitively, ifapast block moved from its old position into the loss-affected position, then

that block probably continues to move along the same trajectory in the current frame. This
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strategy actually does not work as well as the intraframe median method or past vector

method. It occasionally is fooled along object boundaries, which causes boundary blocks

to be reproduced incorrecdy. These blocks stand out as too-bright or too-dark discontinui

ties along the objects' edges. However, any of these recovery methods produces much bet

ter-looking sequences than the replacementof lost motion vectors with a zero vector. Many

fewer blocks stand out because of discontinuities with their neighbors.

4.4.2.2 Recovery of Lost DCT Coefficients
The estimation of lost higher-frequency DCT coefficients is not of critical importance.

If the lost coefficients are set to zero then the loss-affected block is replaced by motion-

compensated data from the previous frame; this works fairly well. If the receiver blurs the

boundary (with low-pass filtering) of the loss-affected block, then the error is somewhat

less noticeable [19].

The lowest-frequency DCT coefficient in each block is called the "brightness coeffi

cient" or "DC coefficient" becauseit describes the brightnessof its block. The loss ofeven

a few brightness coefficients produces veryobjectionable image artifacts. People are very

sensitive to incorrect brightness values in images, much more so than to incorrect detail.

We can replace lost brightness coefficients with the average of their intraframe neighbors,

themedian of their neighbors, theaverage of intraframe and past-frame neighbors, etc. For

thesemethods to work, lost brightness coefficients must not be adjacent.

We have found all of these methods to work fairly well—much better than no estima

tion at all. Blocks with estimated DC coefficients occasionally appear slighdy too bright or

too dark for their surroundings, but blocks with lost and unestimated DC coefficients stand

out as sharp dark squares.

4.4.3 Motion Compensation Resynchronization

Estimation of lost video data helps reduce the magnitude and objectionability of loss

artifacts. However, motion compensation causes even small errors toaccumulate until they

become annoying. Some resynchronization methodbeyond lost-data estimation is neces-
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sary toprevent this error propagation.

4.4.3.1 Periodic Replenishment
The simplest resynchronization technique in motion compensation coders is to transmit

periodically aframe of intraframe-coded video rather than of motion-compensated differ
ence. The accumulated effects ofall transmission losses before this synchronization frame

are eliminated. This technique, periodic replenishment, produces an output with abursty

bit-rate however, since the intra-frame coded frames generally require many more bits than

the difference-signal frames. Still, this method is used by the MPEG and H.261 video cod
ing standards. Amore sensible approach is to intraframe code asubset of every frame in
such away that all parts ofaframe are intraframe-coded periodically. As the percentage of
each frame that is intraframe coded increases error artifacts are etiminated more quickly,

but the transmitted bit-rate increases. IfBisthe number ofbits required to represent an in

traframe coded frame, b is the number ofbits required to represent amotion-compensated

frame, andp is the percentage ofdata that is replenished every frame, then the number of

bits required to transmit aperiodic replenishment frame is

pb + {l-p)B.

On average, every pixel block is replenished every Up frames. Ifthe probability qthat

ablock suffers a transmission loss is much less than p, then ablock is replenished many

times between errors. The replenishments impose abit-rate penalty but otherwise are harm

less. Ifq is comparable to or greater than p, then several errors can increasingly corrupt a

block before it is replenished.

4.4.3.2 Leaky Motion Compensation
Another approach to limit error propagation mimics leaky differential pulse code mod

ulation (DPCM) coders [17,24]. Rather than sending motion vectors and the difference sig

nal

diffk = inputk - input^.ilmotion compensated],

the coder sends motion vectors and a difference signal
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diffyi = inputs - a input^tfmotion compensated].
The decoder adds a times its past frame to diffk to produce a new current frame. With a

between 0andl, each inputs contribution to inputs is scaled by aK Thus, the effects of
past errors decay away exponentially. Errors visually appear to fade away at arate that de

pends on a.Subjectively, this error fading is preferable to the behavior ofperiodic replen

ishment, which causes errors to flash on the screen when they occur and flash again when

they are corrected. Leaky motion compensation first was presented in [15] and later inde-

pendendy by the author of this report in [7].

As with periodic replenishment, leaky motion compensation trades between good error

resilience and low bit-rate. As a approaches 0, errors decay away faster butmore bits are

needed to code thedifference signal (figure 19). Images coded with a =0 have acompres

sionratioless than 1.0becausethe DCT alone gives substantial compression.
ratio
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Coded Bit-rate / Uncoded Bit-rate for Two Sequences (Fig. 19)

Since errors decay withthis method butnever disappear completely, wedefine thehalf-

life of an error as the number of frames that must pass until the errored data is scaled by 1/

2 in the current frame.

half-life= -l/log2(oc)

4.4.3.3 Conditional Replenishment
Both of the abovemotion compensation resynchronization methods ignorethe content

of thecodedimages whendeciding how frequentiy to resynchronize. The methods present

ed in this and the next section have been developed by the author to use the picture data

whendeciding whether to replenish ablock; these methods have been presented in [7].



Some networks tell the receiver what image blocks have been lost; the receiver can re

construct thempartially using neighboring data in the same and past frames. Thecoder can

aid thereceiver by most frequendy replenishing blocks that would bereconstructed poorly.

For example, if the receiver replaces loss-affected blocks with the corresponding block

from theprevious frame then the coder need notreplenish blocks that have notchanged re-

centiy. Blocks that change mostrapidly must bereplenished most often.

Ideally, the subjective visual appearance of ablock could be used to decide how often

it is replenished. In practice, it is difficult to measure a block's subjective importance so

other criteria are used. The source could measure the energy of the motion-compensated

difference signal for ablock—if it is higher than some threshold, theblockcontains an ob

jectundergoing non-translational motion orundergoing acolor orluminance shift. Presum

ably, such a block represents a detailed foreground region in the video, so it should be

replenished by transmitting it without interframe differencing. With this replenishment cri

terion, both the bit-rateand average error lifetime depend upon the thresholdvalue and ac

tual input video. The threshold must be matched with the network loss rate to best trade

between the bit-rate and error lifetime.

This mean-square-error replenishment criterion clearly is imperfect, but it works quite

well in practice. Compared to periodic replenishment, videocoded withthismethod shows

fewer and shorter-lasting errors.

The most annoying defect in video coded with this method is that some errored blocks

standout because their brightness is incorrect. A possibleremedy is a replenishment crite

rion that checks the brightnesschangein ablock from its previousvalue. If it is larger than

some threshold then the block is replenished. Otherwise, the block is difference-coded.

This criterionwill not replenish a block if its brightnessdoes not change with time. How

ever, errors can affect such a block enough so that the errors are easily noticed at the video

receiver. This brightness criterion alone does not produce high-quality video. It may be

combined with a periodiccriterion or another image-dependent criterion to yield betterre-
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suits.

Both of the above replenishment criteria decide whether to replenish a block based

upon the block's difference from its immediate predecessor. Gradual changes in a block

over time are not noticed. An improvement is to compare a block with the version of the

block the last time it was replenished. Then, gradual changes cause a replenishment after

the changes have reached a sufficient magnitude. Whenever a block is replenished it is

savedto a"state"image for later comparisons. A coderthatuses this conditional replenish

ment criterion does hide errorsin slowly changing picture areasbetter than a coder that uses

a frame-to-frame replenishment criterion.

4.4.3.4 Conditional Leaky Motion Compensation
We can combine the benefits of conditional replenishment and leaky-difference motion

compensation by choosing different a values for eachblock; blocks with a values close to

0 areresynchronized more quickly than blocks coded with a values close to 1. Of course

each block's a value must be transmitted to the receiver. This method can allocate more

bits to the most critical portions of a video sequence and also can utilize external informa

tion such as network state.

As usual, a video coder must trade between loss resilience and bit-rate. Figure 19 shows

that blocks with a close to 0 require more bits than blocks with a close to 1. (However, the

choice of a values between 0.5 and 1.0 does not have a great affect on the bit-rate of the

transmitted signal.) Conditional leaky motion compensation makes the trade-off in a very

intelligent way. For example, in a stationary scene, background blocks can be predicted

very well with past-frame blocks. So, ifdata for a background block is lost, the receiver still

can produce an excellent picture. These background blocks can be coded with a = 1 for

maximum compression. Foreground blocks that change rapidly are more sensitive to data

loss and should be coded with a closer to 0.

The same criteria can be used to choose a values as were used by the conditional re

plenishment method to decide which blocks should be intraframe coded. A very simple cri-
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terion checks if the squared difference between a block and its motion-compensated

previous block exceeds athreshold. If so then a =Oq; otherwise a =04.

Conditional replenishment methods that depend upon the changes in a block from

frame to frame are quite simple. More complicated schemes that consider changes in a

block over several frames, that use network congestion information to choose a values, or

that utilize more than two a values could give better results.

If high-priority information such as ablock's a value is lost, then the receiver probably

replaces the loss-affected area with the block from the previous frame. If the block's motion

vectors areavailable, the receivercanmotion-compensate ablock from the previous frame

and use that to fill in the loss-affected area.

Of course, a block's a should depend uponthe bit-rates neededto represent the differ

enced and undifferenced frames. If a block's pixel values can be coded with fewer bits or

even only a few morebits than the frame-difference values thenthe transmitter should use

a =0, winningbothlowerbit-rate and better loss-immunity. Undifferenced pixelvalues are

most likely to take fewer bits than difference values during scene changes. However, it is

difficult to predict the number of bits required to represent differenced blocks, undiffer

enced blocks, and blocks coded with numerous a values, without performing differencing

with each a value and then coding each result This would be quite expensive, since it re

quires that several DCT's, run-length encodes, and entropy codes be performed. It might

be feasible to code just the differenced andundifferenced blocks andthen interpolate the

number of bits needed for other a values.

4.5 Medley Interface Negotiations with a DCT+ Motion Compen

sation Based Video Coder

In this section we simulate and describe call setup negotiations between a video coder

thatusesmotion compensation andtheDCT andaMedley Interface network.Although sta

tistical analyses give insight into the asymptotic behavior of network systems,real-world

video codersdo not produceeasilyquantified data rate distributions andactual networksdo
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not contain near-infinite buffer sizes and Poisson traffic. In some cases, cell losses depend

very sensitively upon source rate characteristics, and artificially modeled video does not

give useful results. For example, scene changes or frames with rapid motion require more

cells than less active frames. (The peak-to-average ratio for the number of cells per frame

ofcompressed video is about 4.0 for several different types of coders [87,89,90].) Further,

coders are most sensitive to loss during the transmission of fast-moving detailed images,

also when networks are most likely to lose data. To see how transmittedvideo sequences

look, we need realistic cell loss patterns.

The simulations in this paperare performed with thePtolemyheterogeneous simulation

environment developed atU. C. Berkeley [106]. Ptolemy simulations are designed graph

ically—the Ptolemy user interface supports the design of hierarchical, block-based sys

tems. Blocks included with the system include arithmetic and filtering functions, queues

and switches, logic operations, signal sources and sinks, etc. Base-level blocks are written

in C++, and new base-level blocks can be written and linked in by anyone familiar with

C++ prograniming.

At every level of hierarchy, interconnected blocks in Ptolemy areexecuted in a partic

ular domain. Each domain decides the order in which blocks are run, handles data exchang

es between blocks and other levels of hierarchy, and performs auxiliary actions such as

automatic code generationor interaction with stand-alonesimulators (for example for DSP

integratedcircuitsor circuit description languages). The simulations in this paperprimarily

rely on the synchronous dataflow (SDF) domain and the discrete event (DE) domain. The

SDF domain handles subsystems in which each block produces and consumes a fixed num

ber ofdata samples on each invocation. Most signal-processing type algorithms exhibit this

type of behavior. The block execution order of SDF subsystems only need be calculated

once; this speeds the simulation of signal processing systems.

The DE domain is more useful for modeling data networks, in which data exchanges

between blocks areimpossible to predict before execution. The DE scheduler assigns tirne-
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stamps to all data samples within its subsystem and executes theblock withtheoldest input

data sample. The scheduler establishes a method for scheduling blocks with simultaneous

inputs as well.

The ability to rundifferent parts of a simulation in different domains whileexchanging

information among the domains seamlessly is Ptolemy's strongest point. During system

prototyping, a designer can model a complicated subsystem in an efficientdomain while

controlling the top-level simulation from themost powerful domain. As thedesign contin

ues, parts of the systemcanbe modeled first atthe functional level and later at theregister

level (with a hardwaredescription language such as VHDL or Thor). Programmable DSP

applications first canbe simulated atthe functional level, later canbe testedwith DSP sim

ulators, and finally can be compiled and loaded onto actual hardware.

The Ptolemy model of the video coder used in this section is built in the SDF domain.

High-Level Diagram of Ptolemy Video Coder (Fig. 20)

The "FwdH" block reads current and past image frames and outputs motion vectors,

motion-compensation prediction errors, and a values. The "InvH" block inverts these ac

tions. It generates an approximate version of the current frame, given motion vectors, a val

ues, the previous frame, and the motion compensation difference. In the coder, delayed

outputs from the "InvH" block are used as the past-frame inputs to both the "FwdH" and
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"InvH" blocks.

Figure 21 shows the contents of the "FwdH" block. This block contains subblocks that

perform motion compensation, the DCT, reorderingof DCT coefficients, and quantization

and Huffman coding.

4

4
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Diagram of Ptolemy Video Coder Subsystem (Fig. 21)

All of the partsof the coder, including the discretecosine transform block, motion compen

sation block, and quantization blocks, read and write exactiy one frame of video per invo

cation. Thus, Ptolemy can schedule the execution order and data transfer pattern of the

blocks just once before executing any of the blocks. This eliminates overhead processing

during coder simulations.

The coder is quite similar to that suggestedby the H.261 and MPEG video coding stan

dards. Interframe redundancy between successive frames is removed with motion-compen

sated prediction that uses a block size of 8 pixels and a fixed leak factor. Further, the coder

uses a reduced-search motion estimation algorithmwhich is quite a bit more computation

ally efficient than full-search motion estimation. The reduced-search motion estimator

searches an area that extends 15 pixels above, below, to the left, andright of each block in

the previous frame. First, the 8 positions atoffsets of±8 pixels from theoriginal block are

compared with the unshifted block. From whichever candidate block matches best, the 8

positions atoffsets of ±4 pixels are compared. From thewinner of these comparisons, the

blocks atoffsets of ±2pixels are checked, and then the blocks at offsets of a single pixel.
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We found that the loss in compressibility using reduced-search motion compensation as

compared to full-search motion compensation is on the order of 1%.

Motion-compensated frame differences are transformed with an 8 x 8 DCT. Also, the

first frame of each sequence and after every scene change is transformed direcdy with the

DCT without the motion-compensated difference operation. The coder transmits one a val

ue per frame: 0 if the frame comes right after a scene change and another fixed value oth

erwise. Intraframe coding of the frames after scene changes requires about 30% fewer bits

than motion compensation coding.

The coder output is sent over three substreams.The frame-by-frame a values aretrans

mitted over a "guaranteed-delivery" substream. If even a single a value is lost, all remain

ing video frames until the next scenechange will be seriously in error. Motion vectorsand

DCT coefficients are quantized and sent over "high-priority" and "low-priority" sub-

streams. For each block in the input sequence, the horizontal andvertical components of

the block's motion vector are Huffman-coded andsent on the high-priority stream. Also,

the brightness DCT coefficient is linearly quantized, Huffman-coded, and sent over the

high-priority stream. There is nothing to be gained from sending motion vectors andDC

coefficients over separate substreams since their combined rate characteristics are easily

measured and since losses of either of these values have very similareffects.

All "AC" DCT coefficients from each block are scanned in a zig-zag pattern before

quantization, whichhelps to increase thelength ofruns of zeros and thus improves thecom

pressibility of theACcoefficients. Next, the coefficients are linearly quantized with aquan

tizer thathas a dead-zone around 0. Runsof zeros are replaced with a symbol that marks

the start of a zero-run andwith the Huffman-coded length of the run. Nonzero AC coeffi

cients are Huffman-coded; the lowest-frequency coefficients may besent over the high-pri

ority substream but the bulk are sentover the low-priority substream.

This video coder uses four separate Huffman code tables: one for the motion vector

components; one for the DC DCT coefficients; one for the AC DCT coefficients, "start of
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zero-run" marker, and a "start of block" marker; and one for the lengths of zero-runs. The

symbol statistics for these tables were generated using aversion of this video coder without

theHuffmancoding andwith four test sequences. Before generation of theHuffmancodes,

the symbol statistics were smoothed so that very unlikely symbols would not have very

long codewords.

There are a few possible improvements that could be made to the coder. The image

noise level of non-motion-compensated blocks could be improved somewhat (or the bit-

rate could be reduced) if higher-frequency AC DCT coefficients were quantized with a

larger step size than lower-order coefficients. This frequency scaling degrades the image

quality of predictively coded frames soit is notincluded. The compression ratio also could

be improved if Huffman coding were done on pairs of an AC DCT coefficient and the

lengthof the zero-run that follows eachcoefficient. (If another nonzerocoefficient follows

aparticular coefficient, the zero-run lengthis 0.) MPEG, JPEG, andH.261 alluse thiscom

pression scheme.These standards alsoallowthe DC and AC coefficient quantizerparam

eters to be modified within an image. This can reduce the image noise level or reduce the

bit-rateof sequences that arevery different from those used to generatethe initial Huffman

tables, but we have found that it does not produce any notable benefit for numerous natural-

scenery video clips of people, sports, and outdoor scenes.

Also as mentioned previously, full-search motion compensation would give a slighdy

lower bit-rate for a given image quality than reduced-search motion compensation. An ad

ditional method for improving the bit-rate/quality trade-off of this video coder would be to

use sub-pixel motion estimation, in which virtual pixel values are calculated by interpola

tion for positions between the real pixels in the reference image, and motion compensation

is performed using both the real and virtual pixels. Sub-pixel motion compensation might

improve the coder performance significandy.

The image fidelity and bit-rate of this coder output depend on several parameters. The

step sizes and dead-zone sizes for the AC and DC DCT coefficient quantizers determine
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how noticeable noise and contouring artifacts are in the video output. Typically these pa

rameters are chosen through subjective testing so thatmost people just cannot notice any

artifacts. Then anyreduction in theseparameters increases thevideo bit-rate with noreduc

tionin perceived image noise level,whileany decrease quicklyincreases theamount of vis

ible noise.

For channel setup negotiations we vary several othercoderparameters. Changing thea

value in the motion-compensation difference operation allows the coder to trade between

higher bit-rates and increased protection from cellloss artifacts. The coder varies thenum

ber of DCT coefficients sent at high priority also; moving more coefficients to the high-

priority substream alters the relative bit-rates on the high- andlow-priority substreams and

also allows more losses on the low-priority substream.This move also changes the total bit-

rate of a sequence because acoder cannotrun-length encode consecutive zero DCT coeffi

cients that are sent on both substreams.

Many of the three substream parameters are fixed. All substreams must have the same

delay for the receiver to work properly; we choose a value that gives sufficiendy fast re

sponses to user control actions. The rate of the guaranteed-delivery stream is fixed at one

cell per frame time, or 30 cells per second; this rate can be specified with an KLB(guaran-

teed-delivery, 1,30) rate description primitive. No losses are allowed on this stream, which

can be specified with an LLB(guaranteed-delivery, 0,1) loss primitive.

The coder performance varies notably with the burstiness of cell losses. Consecutive

losses reduce the effectiveness of lost-data estimation in the receiver and also subjectively
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make errors more noticeable.

Video with 0.2% Low-Priority Losses and No Consecutive Losses (Photo 4)

Video with 0.2% Low-Priority Losses and Up to Ten Consecutive Losses (Photo 5)

Ofcourse the coder performance varies with the long-term average cell loss ratealso. Any

losses on the high-priority substream cause objectionable artifacts, so we choose a loss rate
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for that stream that makes such defects suitably rare.We could use a cell loss bound of the

form ULB(high-priority, 100,107) to ensure that such losses occur on average about once

per hour (107 cells delivered per loss /104 cells per second =103 seconds per loss). Losses

on the low-priority substream occasionally are noticeable but rarely are trulyobjectionable;

this substream can tolerate a much higher loss rate.We describe losses on the low-priority

substream with two bounds: LLBQow-priority, M, 1M) controls consecutive losses, and

UJB(low-priority, 50, L) controls the loss rate at a larger timescale. Several simulations

with different network models have shown that for L chosen such that 1/L > the long-term

average loss rate,aleaky bucket of size 50is notviolatedeven with long loss bursts. During

negotiations we vary L and M.

The data rates of the high- and low-priority substreams can be specified with leaky

bucket bounds also: lZlJB(high-priority, 150, J) and RLB(low-priority, 150, K). Simula

tions with this coder indicate that with / and K approximately equal to the long-term aver

age cell rates on the high- and low-priority substreams, monitors that allow bursts of up to

150 cells will not be violated even during scene changes. / and K vary during negotiations

also.

As in section 3.5.4, we use numerous subjective tests to establish a set of channel flow-

spec parameters that yield the same perceivedlevel ofvideo quality—that is, aperformance

level-set. The parameters are listed in table 3 at the end of this chapter. The performance

level-set contains a range of data rates and loss characteristics. We use the data in table 3

to conduct call setup negotiations as was done in section 3.5.4; that section's negotiation

method can operate with a subjectively defined performance level-set We use a channel

cost function similarto those used in the negotiations in sections 3.5.3 and3.5.4.

cost = oJy+ $Ky+ k(log (L) - log (6.67)) +X/(M +\i)

This function charges for bandwidth through the / and K terms, buffer resources through

theL term, and control effort through the Mterm. During negotiations we must divide all

L values by 100, renormalizing toreduce the accuracy necessary for the calculations.
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First we study a network in which bandwidth costs dominate buffer space costs. For a

network with a = 2.0, p = 1.0, y= 0.7, k = 0.03, X= 0.1, and u. = 3.0, the following table

shows negotiation results for three sets of starting channel parameters.

initial parameters:
J,K,L,M

initial

cost
iterations

final parameters:
J,K,L,M

final

cost

5.80,5.17,400,5.00 10.1 100 3.15,5.60,535,4.47 7.96

3.22,5.64,500,5.00 8.04 100 3.08,5.46,577,4.64 7.82

10.1,4.79,167,10.0 13.2 32 3.66,6.31,227,9.9 8.71

Negotiations do not converge to the same final parameters because the iterations frequendy

carry intermediate flowspec parameter points away from the points that define the param

eter level-set. However, final cost values arecomparable. As expected because of the rela

tively low cost ofbuffer space, bandwiddis andallowedloss rates both decrease duringall

three negotiations.

Results are more favorable with a different network that charges less for bandwidth and

that does not impose a cost penalty for the transmission of high-priority data. Such a net

work could use a buffer management discipline that provides multiple levels ofloss discard

priority with litde network processing effort (section 5.2.2). This network cost function

uses a = 0.5, P = 0.5, y= 0.7, k = 3.0, X= 10.0, and u. = 3.0.

initial parameters:
J,K,L,M

initial

cost
iterations

final parameters:
J,K,L,M

final

cost

5.80,5.17,400,5.00 17.1 29 5.76,5.45,7.26,5.04 5.16

3.22,5.64,500,5.00 17.3 24 3.56, 6.08,297,5.35 15.9

10.1,4.79,167,10.0 14.8 15 10.1,5.25,9.00,10.0 6.10

The negotiation results again differ somewhat because negotiations carry intermediate

flowspec parameter points away from the points that define the performance level-set for

this application. Negotiations with this network achieveup to a 70% reduction in channel
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cost, however! Below are shown frames from sequences that use the initial and final chan

nel parameters in the last negotiation above.

Frame Transmitted with Initial Channel Parameters (Photo 6)

Frame Transmitted with Final Channel Parameters (Photo 7)

The starting pointof this negotiation useda leakymotion compensation a valueof 0.75
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and 6 high-priority DCT coefficients perblock. After negotiations the coderuses a = 0.5

and 8 high-priority coefficients per block. These coder parameters can be derived from the

coder parameters of points from the performance level-set near the final negotiated flow-

spec parameters. After negotiation, the coder sets its coderparameters appropriately, ac

cepts a network channel with the negotiated flowspec parameters, and begins

communications. The first information that must be sent to the video receiver is the coder

parameters chosen.

The network's adaptation to the negotiated flowspec is discussed further in chapter5.

In particular, the network might establish achannel with a special buffer access discipline

that limits the number of consecutive cell losses. Without this control, negotiations must

assume that 15 or more cells in a row could be lost. The data in table 3 shows that, at least

for leaky motion compensation a values close to 1 and 1 or 3 high-priority DCT coeffi

cients per block, consecutive loss control allows 3 to 5 times higher loss rates. This allows

17% to 27% smaller buffer allocations for the video coder, using the model that buffer re

quirements are proportional to log(L), where L is the token parameter in the leaky bucket

loss bound.

If this video coder supported audio transport also, parameters of the audio substreams

could be negotiated separately from those of the video substreams. The application would

use a single channel that includes both video and audio substreams, thus simplifying net

work management, routing, and synchronization of the audio and video transport During

negotiations, parameters of the video substreams could be traded against each other and pa

rameters of the audio substreams could as well. Unless the application knows how to trade

between video and audio performance however, it could keep both performance levels

fixed by not allowing trade-offs between video and audio substream parameters. This es

sentially decouples a constant-performance surface that includes both video and audio pa

rameters into independent surfaces for each.
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4.6 Other Video Coding Methods and the Medley Interface

Below, we presentsome video applications thatbecome feasible ormoreefficient with

flexible networks such as those employing the Medley Interface. Video coders, and more

so multimedia coders, benefit from having multiple substreams with different quality of

service (QOS) specifications available because these applications often produce several

different datatypes with different effects on theirperceivedqualities.

4.6.1 Improved Video Compression Methods

In addition to broadcast video, many new communications applications using video are

being studied and tested. For example, commercial two-way videoconferencing systems

currendy are available, and researchers arebeginning to plan for portable hand-held video

communications devices [115]. Also, computer manufacturers are improving their display

hardware and control software for true multimedia applications. Large-scale video databas

es such as in the Sequoia project [117] only will be useful if the stored video can be access

ed and viewed remotely by several users at once.

These new video applications as well as existing video coding methods can be extended

to offer improved performance with flexible networks. For each application, the designer

must identify the transport needs for different data types and must decide how different

transport resources can be used to support the application.

4.6.1.1 Multiresolution and Progressive Video Coders
The first stage of a multiresolution coder represents and outputs a coarse representation

of its input image. The next stage codes more finely the difference between the original in

put and the first stage's coarse representation. Each stage of the multiresolution coder rep

resents (somewhat imperfecdy) the coding error of the previous stage. Thus, as the receiver

adds together more outputs from a multiresolution coder, its received image becomes more
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accurate.

*• coder 1 substream 1

•©•

coder 2 substream 2
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o

Multiresolution Coder (Fig. 22)

The Medley Interface model works wellwithmulti-resolution coders. Each ofmultiple

receivers connected to a single coder can receive only the substreams necessary for its de

siredperformance level. Also, since the Medley Interface supportsmore than two levels of

loss priority, each of many multi-resolution substreams can be protected more than higher

layers; this makes sensesinceeachlayeris useless unless all lower layers are receivedcor-

recdy.

Progressive coders also divide videointoonecoarse and several finer approximations.

The coarsest data are transmitted quickly and later approximations are transmitted more

slowly and more reliably. Progressive transmission systems differ from multi-resolution

systems in that their high-delay approximations must be accurate even if coarser approxi

mations are corrupted by data losses. Progressive systems efficiendy allow users to browse

through many images and to see only a few at fine resolution.
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When a progressive coder sends data sequentially over a single homogeneous channel,

the coder must store at least an entire frame of data. At each progressive coding step, the

coder must have available the difference between the original frame and the most recent

approximation. The coder then codes the remaining error approximately, transmits the ap

proximation, and stores the error of the newest approximation.

With a Medley Interface network, a source could code sub-regionsof each image (such

as blocks) with a multiresolution technique and then send the different multiresolution de

scriptions over different substreams with different delays. As the destination receives and

decodes new data, it simply adds the decoded values to the correct part of the picture frame.

4.6.1.2 Loss Recovery

Previous research that studies how to limit error propagation caused by cell loss de

pends a greatdeal on the percentage of video datathat can be sent at high-priority [7,16,

17]. In real networks, if a significant fraction of coded video datais sent at high priority,

then either transmission costs become high or some cells initially sent at high priority get

bumped to low priority. If even a few high priority cells sufferasmuchloss and delay as

low priority cells, thenvideo quality at thereceiver suffers drastically.

Modified video coding methods such as discussed in section 4.4 allow better perfor

mance. Anothercoding method possible with Medley Interface networks is to sendcom

pressed video over several substreams as usual, and then to send resynchronization data

over a cheap, low-bandwidth guaranteed-delivery substream (that might use an automatic

repeat request protocol). A receiver never displays the data ontheresynchronization sub-

~_ resynchronization substream _ _„ •= downsample

£®- main substream
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stream because it often arrives too late to be useful, but does use the data to correct accu

mulated errors in the displayed information. For any replenishment data to be useful to a

video receiver, the receiver must storea copy of the video data that it actually displayed at

the time the replenishmentdatawere generated. The difference between the displayed and

correct data presumably is due to transmission errors—this difference is subtracted from

the currendy displayed frame to eliminate the effects of the errors.

4.6.1.3 Transform Coding on Non-Rectangular Shapes
Transform coding of nonrectangular pictureregionsis discussed in [25]. Such systems

must transmit shape information in addition to transform coefficients. Since the transform

coefficient values are useless without correct shape information, this data should be sent

morereliably than thecoefficients. Sill, there is abenefit to sending low-frequency coeffi

cients over morereliable substreams than high-frequency coefficients. A flexible network

can support the description of these loss needs as well as different rate characteristics of the

different data types.

4.6.1.4 Direction-Adaptive Subband Coding
Directionalsubbandcoders,which performtransformcoding alongthe directionofmo

tion in a video scene, may offer more compression potential than the DCT [31]. It is criti

cally important thatthese coders receivethe direction vectors foreachblock accurately. A

channelwith multiple-discardpriorities with a lossless substreamcould supportthis appli

cation well.

4.6.2 Multimedia

Multimedia applications especially benefit from flexible networks since multimedia

traffic streams contain substreams with widely varying requirements: video, audio, image,

graphics, procedures, text, control information, etc. Audio and video data have fairly strict

loss and delay requirements but different bandwidth needs. Images, graphics, and text can

toleratehigher delays but must be transmitted 100%reliably. Procedural and control infor

mation may or may not have real-timedelivery constraints, but they also must be delivered
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without error.

A single homogeneous channel for a multimedia application would need to meet the

most stringent transport requirements of all of these data types. Such a high-bandwidth,

low-delay, lossless channel would beexpensive. By supporting thetransport needs of each

data typeseparately, anetwork could support the application atthe same perceived perfor

mance level while consuming many fewer resources.

4.7 Conclusion

This chapter discusses howvideocoders based on motion compensation and theDCT

can provide high-quality video with a range of network channels. Conditional replenish

ment, leaky motion compensation, and conditional leaky motion compensation give such

video coders protection from cell loss artifacts for only moderate bandwidth penalties.

They limit errorpropagation such that errors arecorrected faster and less obtrusively than

in periodic replenishment coders. Leaky motion compensation is used by the video coder

prototype that negotiates with severalMedley Interfacenetworks to obtain low-cost chan

nels for high performance—simulated negotiations reduce channel costs by up to 70%.

The end of this chapter reviews other video coding techniques that would benefit from

networks with multiple tunable substreams. Video as well as other signal types often are

encoded in such a way that transmitted datavalues vary widely in their rate, delay, and loss

sensitivity characteristics. By sending different data types over substreams tailored to their

needs, an application can use network resources more efficiendy thanif they all were sent

over a homogeneous channel.

4.8 Appendix

The table below lists channel flowspec parameters for the video coder described in sec

tion 4.5 that subjective tests indicate yield video sequences of roughly constant perfor

mance. We first picked a baseline set of flowspec parameters that produced video with

barely perceptible coding artifacts. Then, for a range of flowspec parameters, we asked
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graduate students to compare the qualityof the baseline video sequencewith test sequenc

es. Flowspec parameter sets that produced test sequences of equivalent quality to the base

line sequence are listed below.

a

DCT

coefficients

on high-
priority

substream

/, high-
priority

kcells/sec

K, low-
priority

kcells/sec

L, cell

deliveries

per loss

M,
consecutive

cell losses

0.9375 1 2.964 5.486 667 1

0.9375 1 2.964 5.486 1000 5

0.9375 1 2.964 5.486 1667 10

0.9375 1 2.964 5.486 3333 15

0.9375 3 5.772 5.226 500 1

0.9375 3 5.772 5.226 667 5

0.9375 3 5.772 5.226 1000 10

0.9375 3 5.772 5.226 2000 15

0.9375 6 10.14 4.862 400 1

0.9375 6 10.14 4.862 400 5

0.9375 6 10.14 4.862 500 10

0.9375 6 10.14 4.862 667 15

0.9375 10 16.12 4.394 50 1

0.9375 10 16.12 4.394 50 5

0.9375 10 16.12 4.394 66.7 10

0.9375 10 16.12 4.394 100 15

0.875 1 3.068 5.486 500 1

0.875 1 3.068 5.486 667 5

0.875 1 3.068 5.486 1333 10

0.875 1 3.068 5.486 2500 15

0.875 3 5.798 5.174 333 1

0.875 3 5.798 5.174 400 5
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a

DCT

coefficients

on high-
priority

substream

/, high-
priority

kcells/sec

K, low-
priority

kcells/sec •

L, cell
deliveries

per loss

M,
consecutive

cell losses

0.875 3 5.798 5.174 667 10

0.875 3 5.798 5.174 1000 15

0.875 6 10.114 4.784 222 1

0.875 6 10.114 4.784 250 5

0.875 6 10.114 4.784 286 10

0.875 6 10.114 4.784 333 15

0.875 10 16.094 4.316 33.3 1

0.875 10 16.094 4.316 40 5

0.875 10 16.094 4.316 50 10

0.875 10 16.094 4.316 66.7 15

0.75 1 3.224 5.642 400 1

0.75 1 3.224 5.642 500 5

0.75 1 3.224 5.642 1000 10

0.75 1 3.224 5.642 2000 15

0.75 3 5.85 5.252 200 1

0.75 3 5.85 5.252 250 5

0.75 3 5.85 5.252 333 10

0.75 3 5.85 5.252 500 15

0.75 6 10.088 4.784 125 1

0.75 6 10.088 4.784 143 5

0.75 6 10.088 4.784 167 10

0.75 6 10.088 4.784 200 15

0.75 10 15.964 4.264 12.5 1

0.75 10 15.964 4.264 12.5 5

0.75 10 15.964 4.264 12.5 10
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a

DCT

coefficients

on high-
priority

substream

/, high-
priority

kcells/sec

K, low-
. priority
kcells/sec

L, cell
deliveries

per loss

M,
consecutive

cell losses

0.75 10 15.964 4.264 12.5 15

0.5 3.458 5.98 250 1

0.5 3.458 5.98 333 5

0.5 3.458 5.98 500 10

0.5 3.458 5.98 667 15

0.5 3 5.98 5.486 111 1

0.5 3 5.98 5.486 125 5

0.5 3 5.98 5.486 143 10

0.5 3 5.98 5.486 200 15

0.5 6 10.088 4.94 83.3 1

0.5 6 10.088 4.94 100 5

0.5 6 10.088 4.94 100 10

0.5 6 10.088 4.94 125 15

0.5 10 15.86 4.342 6.67 1

0.5 10 15.86 4.342 6.67 5

0.5 10 15.86 4.342 6.67 10

0.5 10 15.86 4.342 6.67 15

0.0 1 3.458 11.96 333 1

0.0 1 3.458 11.96 400 5

0.0 1 3.458 11.96 667 10

0.0 1 3.458 11.96 1000 15

0.0 3 5.72 10.92 200 1

0.0 3 5.72 10.92 250 5

0.0 3 5.72 10.92 333 10

0.0 3 5.72 10.92 500 15
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a

DCT

coefficients

on high-
priority

substream

/, high-
priority

kcells/sec

K, low-
priority

kcells/sec

L, cell
deliveries

per loss

M,
consecutive

cell losses

0.0 6 9.282 9.75 125 1

0.0 6 9.282 9.75 125 5

0.0 6 9.282 9.75 167 10

0.0 6 9.282 9.75 167 15

0.0 10 14.248 8.502 10 1

0.0 10 14.248 8.502 10 5

0.0 10 14.248 8.502 10 10

0.0 10 14.248 8.502 10 15

Performance Level-Set for the Motion Compensation +DCTVideo Coder (Table 3)
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Chapter 5

BUFFER MANAGEMENT DISCIPLINES FOR

FLEXIBLE NETWORKS

Chapter 3 presented a network interface model that allows communications applica

tions to express theirrateandnetwork qualityof service(QOS) needs fairly exacdy. Within

this model, severaldifferent applications have negotiatedwith high-speed networks to ob

tain low-cost channels that support the applications* needs. The previous chapterdiscussed

how a modem video coder could adapt to function well with the variety of channels that

might result from negotiation. Without such adaptability, applications onlycould operate

witha very limited setof flowspec parameters. This chapter discusses the opposite prob

lem—how networks can adapt to the specialized needsof theirclient applications.

Goodbuffer management strategies are vitalto the provision ofhighnetworkQOS with

highresource utilization. Networks mustchoose their buffermanagement disciplines toen

sure thatapplication data are transported quicklyenough andare lost rarely enough to sat

isfy their clients. Buffermanagement conceptually consists of two interrelated disciplines:

buffer service and buffer access. A buffer service discipline determines the order in which

storedcells areremoved from one or more buffers before transmission over anoutput link.

Since a buffer's service discipline controls how long an arrivingcell must awaitretransmis

sion, it determines the delay and bandwidth characteristics of channels that pass through

the buffer. A buffer access discipline determines whether to store or discard cells that arrive

at one or more buffers. Since the buffer access discipline controls a switching node's cell

discard behavior, the buffer access discipline determines the loss characteristics of chan

nels that pass throughthe buffer. When applications transmitdifferent datatypes over a sin

gle channel, frequendy the applications find it useful to specify that some data is more
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sensitive to loss than the rest. A network that supports multiple levels of loss priority must

use a buffer access discipline that selectively discards low-priority data before high-priority

data.

Buffer service disciplines for various systems have been studied in [35,45,53, 64,75,

85]. Since cell-relay networks traditionally have been used to support data-transfer appli

cations and protocols that detect and retransmit lost data, perhaps it is reasonable that less

attention has been given to the control of cell loss rates than to bandwidth and delay char

acteristics. However, applications that require steady streams of data, such as audio and

video, cannot tolerate the delay and processing overhead inherent in automatic repeat re

quest (ARQ) protocols. Therefore, designers of networks that support these applications

must give careful thought to the design of buffer access disciplines.

We have identified two types of applications that benefit from the control of channel

loss characteristics other than the channel's average loss rate. Applications such as file-

transfer and low-bit-rate voice must resynchronize the transmitter and receiver after any

cell loss. The subjective performance or throughput of these applications depends more

strongly on the expected time between losses than on the probability ofcell loss. Losses can

occur in long consecutive bursts as long as the bursts are infrequent. Oppositely, applica

tions such as high-quality video that can estimate lost data perform best if consecutive cells

are not lost; consecutive losses reduce the accuracy of the estimates. These applications'

subjective performance depends on both their channels' average loss rate and on the distri

bution of the lengths of cell loss bursts.

This chapter studies the design of buffer access disciplines that provide a range of cell

loss burstiness characteristics. Disciplines well-suited for file-transfer applications concen

trate cell losses together, those well-suited for video applications spread out losses. The

benefits of these disciplines lead us to propose that networks support a variety of buffer

management disciplines in their switching nodes, so that the loss and delay characteristics

of specific channels can be tuned for the needs of the channels' client applications. Differ-
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ent buffers within a switch could implement application-specific disciplines, or special dis

ciplines could bedeveloped that support simultaneously the needs of several applications.

As seen in the simulations and analyses of new buffer access disciplines in the following

sections,with buffer accessdisciplines tailored for applications' needs, networks can allo

cate less buffer spaceand bandwidth to achieve the same QOS.

A network of course must know application needs to tailor buffer management disci

plines to them. Applications can specify their loss rate, spacing, and priority requirements

using the Medley Interface flowspec description format described in chapter 3. Just as the

Medley Interface facilitated flowspec parameter negotiations andvideo coderadaptations,

it enables networks to use specialized buffer management disciplines to implement chan

nels with smaller resource requirements than would be required with generic disciplines.

5.1 Buffer Access Disciplines

Works that analyze cell-relay network buffer disciplines include the control of high-

and low-priority losses in shared buffers [64], queueing control for minimum network de

lay [75], aqueue controlmethod that supportsboth low-loss and low-delay traffic [35], and

a review of a number of buffer management disciplines [85]. We know of no works that

study loss burstiness or that advocate that networks adapt their buffer management disci

plines to their channels' specific needs.

Any buffer access discipline is either work-conserving or non-work-conserving. Work-

conserving buffer accessdiscipUnesnever discardcells when there is buffer space available

to store them [64]. Thus, all have the same queue length distribution and overall cell loss

probabilities when fed the same arrival stream. Work-conserving disciplines can differ in

their choice of ceUs to discard when inputs arrive at a full buffer, producing channels with

different degrees of loss burstiness or loss priority protection.

Non-work-conserving buffer access disciplines can discard ceUs even when buffer

space is available.Such discards free spacethatmight be more useful in the future. For ex

ample, a queue that serves alternatingbursts of high- and low-priority cells could discard
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low-priority data from a partiaUy fiUed queue in anticipation of a high-priority burst. As

with work-conserving disciplines, the rules that non-work-conserving discipUnes use to

discard cells can be tuned to achieve different QOS objectives. For some QOS objectives

non-work-conserving discipUnes are simpler to implement than work-conserving disci

pUnes (section 5.2).

While loss characteristics are arguably the most important component ofnetwork QOS

for real-time appUcations such as video and audio, the average loss rate is not the most im

portant loss statistic for all communications appUcations. As mentioned previously, com

pressed video appUcations are very sensitive to the loss of several ceUs in a row. File

transfer appUcations need long periods uninterrupted by cell losses, although they can tol

erate long bursts of missing ceUs when losses do occur. The ceU discard rules practiced by

different work-conserving or non-work-conserving buffer access discipUnes can be de

signed to meet these different loss burstiness needs. Section 5.2 reviews disciplines that

regulate the treatment of ceUs with different discard priorities. Section 5.3 reviews an ex

isting buffer access discipline that maximizes the time between loss bursts, and section 5.4

extends that technique. Section 5.5 presents a new discipline that minimizes consecutive

ceU losses.

5.2 Loss Priority Control

The simplest buffer access discipline, first-come-first-served (FCFS), directs that

whenever a ceU arrives at a queue with empty slots, the ceU is placed at the end of an or

dered Ust When an input arrivesat a fuU queue, it is discarded.The queue outputs elements

from the front of the list. Since the FCFS discipline only discards ceUs when the buffer is

full, this discipline is work-conserving.

The FCFS discipUne is easily modeled with a Markov chain. Each state of the chain cor

responds to a particular level of queue occupancy, and given the probabiUtydistribution of

arrivals, the Markov transition probabiUties can be derived.

Although FCFS is easy to implement, it makes no provisions for handling inputsof dif-
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ferent priorities. We now review two methods that protect higher priority data against loss

es more than lower priority data.

5.2.1 Buffer Pushout

A simple modification of the FCFS discipline that aUows for cells ofdifferent priorities

is caUed FCFS with pushout [64]. This buffer access discipline works much like FCFS, but

when a ceU arrives at a full queue, the FCFS with pushout discipline discards a previously

queued ceU of lower priority. Most sensibly, the queued ceU with lowest priority is de

queued and discarded. FCFS with pushout is a work-conserving buffer access strategy.

Thus, it has the same cell loss rate as ordinary FCFS. However, FCFS with pushout gives

communications applications more control over which ceUs are lost.

FCFS with pushout queues are morecompUcated to model than FCFS queues. Since

this discipline mixes inputs of different priorities in the same queue, the priority of each

queue entry must be known in order to calculate loss probabiUties for each priority level.

Tomodel this information with aMarkov chain would require sF states, where s isthe num

ber of priorities and N is the queue length. Even for two priorities and moderate queue

lengths, this approach is computationaUy infeasible.

A discipline in which arrivals of different priorities are stored in different queues and

higher-priority queues are always served before lower-priority queues is simpler to ana

lyze. However, this is not as useful for video traffic because the delays suffered by low-

priority data are much longer than those suffered by higher-priority data, given comparable

arrival rates.

5.2.2 Partial Buffer Sharing

Next, wereview the partial buffer sharing discipline [64]. ThisdiscipUne prevents low

er-priority ceUs from entering aqueue as the queue nears capacity. A partial buffer sharing

queue oflength L can be described with a screeningfunction rL(l) that specifies themini

mum priority level that acellmusthave to gain admission to aqueue of length L whenthat
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queue contains / ceUs.As / increases, cells need higher priority levels to be admitted to the

queue. rL(0) should equal the lowest priorityin the system, and r^(L) should be higher than

the highest priority in the system. For example, in a system in which priorities range from
/' Pmay

0to PMAX» r\Sf) could be the function max(0,p^AX—L + l) or —-—.
Li

Partialbuffer sharing differs from FCFS with pushout in that partialbuffer sharingdoes

not queue some low-priority arriving cells even when the queue is able to store them; the

queue space is reserved for future higher-priority arrivals. Thus priority screening is not

work-conserving. However, partialbuffer sharingis simpler to implement than FCFS with

pushout because the prioritiesof the queue contents need not be examined with partial buff

er sharing. With both schemes, when a queue is nearly full then only the highest-priority

traffic is deUvered, as desired. Also, both schemes decide whether or not to admit a ceU

based solely on the current state of the queue.

In aFCFS with pushout buffer,nohigh-priority ceUs are discarded untilalllow-priority

ceUs have been pushed out. Thus, the low-priority traffic cannot affect the loss rate of the

high-priority traffic. Of course, the amount of high-priority traffic affects the loss rate of

the low-priority traffic significandy. For some appUcations, this behavior is ideal. Forex

ample, in a stiU image transmission application based on the JPEG standard [103] the

brightness discrete cosine transform (DCT) coefficients wouldbe sentathighpriority and

the detail coefficients at low priority. The loss of any brightness coefficients adversely af

fects the received image quality so much more than the loss ofdetail coefficients that a cell

containing detail coefficients never should bedeUvered instead ofaceU containing bright

ness coefficients.

However, for otherappUcations thisbehavior is toodrastic. High-priority traffic should

experience fewer losses than low-priority traffic, but both priority classes should satisfy

certain loss probability bounds. A network switch could discard a high-priority ceU if the

discard would not violate the loss bound for the high priority class. An application that

combines video and audio transmission might benefit from this sort of network behavior.
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Audio ceUs are sent at high priority and video cells are sent at low priority because audio

quality is more important than video quaUty for this particular application. However, the

loss of a small number of cells of either audio or video can be mitigated with proper esti

mation techniques. As long as the audio ceU loss rateis low enough, audioceUs can be dis

carded to maintain high video quaUty.

Partialbuffer sharing provides tunable loss probabiUties among aU input priority class

es through proper designof the function r^(l). With only two priorityclasses the selection

of a screening function is fairly straightforward; the only adjustableparameter is the length

at which the queue stops accepting low-priorityceUs. However, the design of a screening

function for a system with many input priorityclasses is difficult. The function riff) should

increase monotonically, since the more queue slots a given priority class is aUowed to enter,

the lower is its loss probabiUty (as long as arrivalsof each priority class are independent of

the queue state). As the cutoffis lowered for a particular priority class, that class' loss prob

abiUty increases but the loss probabiUtiesof all other classes decrease; the amounts of the

changes depend on the source statistics.

A queue could use an adaptive screening function that adapts for local changes in the

input statistics. Such a queue updates its estimates of the arrival probabiUties of each dif

ferent priority class. Then, the queue can calculate a screening function to satisfy specified

loss bounds or simply can adjust its current screening function to try to minimize the loss

probability of high-priority inputs.

With multiple priority classes there can be no "optimal" buffer access strategy for min

imum loss probabiUties. In general,as a buffer accessdiscipline is alteredto provide a low

er probabiUty of loss for high-priority traffic, the loss probabiUty for lower-priority traffic

increases. The designer of an application must choose loss probabiUties for each priority

class and then must try to find a buffer access strategy that supports that quaUtyof service.

Partial buffer sharing is somewhat easierto study analytically thanFCFS with pushout

since ceUsareonly rejected at the time of their arrival, and whether or not they arerejected
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depends only upon the instantaneous queue state. Onecase that can be analyzed is that in

which aU input priorities have independent exponential distributions and service is inde

pendent andexponentialas weU. A Markov process tracks the queue length,andeachtran

sition corresponds to an arrival or a service. Transitions only occur to adjacent states, and

the probabiUty of transition is determined by the probability of service vs. the probabiUty

of arrival of any input that isnotrejected atthe current queue length. To find each priority's

loss probabiUty, we sum the probabUities of being in any state in which that priority is re

jected.

Pr (losepriority/?) = ]T Pr (queue state=/)
i: pis lost

In this way, the loss probabilities of different priority traffic can becompared for different

screening functions.

A partial buffer sharing queue with deterministic service can be analyzed in discrete

time. A Markov chain tracks the length ofaqueue, and the chain transitions correspond to

service times. A random number ofarrivals from each priority class arrives every timestep.

Ateach timestep, highest-priority ceUs are admitted to the buffer first until aU highest-pri

ority arrivals have been accepted or until the buffer fiUs. Then, if the second-highest prior

ity is stiU accepted by the screening function, those arrivals are accepted until the buffer

fiUs or until the screening function increases past the second highest priority. Lower prior

ities are admitted similarly. Transitions ofthe Markov chain can jump to the preceding state

ortoany higher state; atransition jumps tothe preceding state only if no arrivals occur dur

ing the service interval. Given that the buffer is in aparticular state, the loss probabiUty of

a ceU with arbitrary inputpriority is somewhat tedious to calculate since it mustbe calcu

lated conditionally on the number ofhigher-priority arrivals in the same timestep.

5.3 Queue Purging and Queue Flushing

One disadvantage of the above buffer access disciplines is that once abuffer is fuU it is

possible that the buffer will remain full or nearly full for along time, during which chan-
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nels'loss probabiUties willbehigh. Several buffer access disciplines forcibly reduce abuff

er's occupancy in hopes of preventing long loss durations. The rationale for these

discipUnes is that abuffer overflow builds graduaUy, because many of the buffer's inputs

are sending atorjustovertheir allowed rates. If abuffer discards many inputs whenever it

fiUs, the bufferwiU takealongtime to fiU again. Thus the time betweenerrors may bekept

lower with occasional bulk discards than without them.

A drastic buffer access discipline that tries to maximize the duration between ceU loss

bursts can be caUed queue purging. With queue purging, whenever a queue fills every

queued cell is discarded. Although each purging results in anumber of ceU losses equal to

thequeue length, the fact that the queue is empty after the purge makes theexpected time

between purges long.

A better alternative, caUed queueflushing [81], specifies that when a queue fiUs, newly

arriving inputs are discarded until the queue has emptied. This is less drastic than queue

purging because the number of inputs that arrive during the time necessary to serve aU

queued ceUs is muchless than thequeue capacity. Otherwise, thequeue service rate would

be insufficient to handle even the expected queue traffic and the queue would overflow al

most continuously.

5.4 Prioritized Queue Purging and Prioritized Queue Flushing

We next present some new buffer access disciplines, modifications of queue purging

andqueue flushing, that providemore control ofchannel loss characteristics. A new disci

pline calledprioritized purging protects important traffic while mamtaining an expected

time between buffer overflows nearly as high as ordinary queue purging. With prioritized

purging, when a buffer fiUs, only buffered ceUs from low-priority inputsare discarded. As

long as most queued ceUs arelow-priority then the buffer purge should prevent datadiscard

for a substantial time. However, cells from high-priority sources only are lost if the queue

fiUs with high-priority data. We can simulate this buffer access method, but to analyze it

analytically is difficult since we would need to keep track of the position of each high-pri-
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ority cell within a buffer.

Ofcourse, queue flushing can be modified to handle multiple priority traffic in the same

way asqueue purging.With prioritized queueflushing, only low-priority arrivals at aqueue

that is flushing are rejected. With this scheme, a queue may never empty entirely or may

take a long time to do so because ofhigh-priority arrivals.Thus the queue might reject low-

priority inputs for a long time. Some maximum duration of low-priority flushing could be

enforced; the duration could equal the amount of time necessary to serve one queue-

length's worth of ceUs, for example.

This discipline is superior to the prioritized queue purging discipline for the same rea

son that queue flushing is superior to queue purging. With prioritized queue flushing, the

expected number of low-priority losses is much lower than with prioritized queue purging,

but both flushing and purging have the abiUty to increase the time between ceU loss bursts.

No buffer access discipline can maximize the time between cell loss bursts—discipUnes

can reject more and more arriving ceUsin arow to produce longer and longer times between

bursts (as weU as longer bursts). Practical discipUnes must choose useful trade-offs be

tween the average spacing between cell loss bursts and the overall ceU loss rates. In fact, if

prioritized queue flushing gives a particular channel too high a low-priority loss rate and

more time than is needed between loss bursts, then partial flushing, in which arrivals are

discarded until the queue empties only partiaUy, gives fewer losses and less time between

loss bursts.

To analyze prioritized queue flushing via a Markov chain is fairly straightforward ifwe

do not impose a maximum duration of flushing. We assume that a queue that is flushing

low-priority inputs continues to do so until the queueempties entirely. A Markov analysis

of prioritized queue flushing is presented in the appendix.

Using thatanalysis we can find loss probabilities andexpected times in non-flushmode

for various buffer sizes and inputs. In figure 23, the input is a combination of 30 BernouUi

sources, each with probability of occurrence 0.03. The FIFO loss rates and loss burst rates
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(i.e. rates at which one or more cells are lost in a row) are nearly equal. The flushing queue

loses around an order of magnitude more cells than the FIFO queue, but many losses occur

consecutively. Thus the flushing queue loss burst rate is about an order ofmagnitude small

er than the FIFO loss burst rate. These rate differences grow slightiy more pronounced as

queue lengths increase. As the flushing queue length grows, the queue suffers longer loss

bursts, but it suffers them less often. Thus the loss characteristics of the flushing queue be

come less like that of the FIFO queue as the queue lengths increase,

ratio lost
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(Fig. 23)

Figure 24 contains data for two sources: source A consistsof 15high- and 15 low-pri

ority Bernoulli(p = 0.03) inputs. Source B contains 10 high- and 20 low-priority Bernoul-

ti(p =0.03) inputs.Forboth sources, the low-priority loss rates arenearlyequal. The high-

priority loss rates for source B are somewhat lower than for source A, sensibly enough,

since source B outputs less high-priority data. For both sources the loss burst rates are near

ly equal since in eithercase once the flushing state is entered, it is left very quickly. Thus,

the rate at which either source enters the flushing state is approximately the time required

for 30 Bernoulti(p = 0.03) sources to fill an empty queue.

One interesting note is that the rate of entrance into the flushing state in the priority
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flushing queue is slightiy lower than this ratein the ordinary flushing queue. This is because

the priority flushing queue spends stightiy longer in the flushing state than the flushing

queue because it accepts high-priority arrivals.This longer duration also contributes to the

higherpercentage of low-priorityceU loss in the priority flushingqueue thanin the flushing

queue. Another contribution is that when a combinationof high- and low-priority arrivals

causethe priority flush queue to overflow, aU low-priority arrivals arediscarded beforeany

high-priority arrivals are lost. However, even for equal numbersof high- andlow-priority

arrivals, the low-priority loss probabiUty in the priority flushing queue is only 1.8 times

larger than the loss probabiUty in the ordinary flushing queue.

Even with equalnumbersofhigh- andlow-priority arrivals, the priority flushing queue

gives high-priority arrivals a one or two order of magnitude smaller loss probabiUty than

low-priority arrivals. This spread becomeslarger astheratioof low- to high-priority traffic

increases. This simple modification of queue flushing canextend significant protection to

high-priority traffic.

In the above analyses, the flushing queue suffers aloss percentage 2 to 10timeshigher

than that of the FIFO queue. However, these losses are confined to the periods when the
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flushing queue is actually flushing. As mentioned in the introduction, some communica

tions applicationsaremore adversely affected by ahigh frequency of loss bursts ratherthan

by the length of the bursts. Forexample, we have simulated a packet-based file-transfer ap

pUcation that uses a slidingwindow protocol to implement reliable sequenceddelivery of

user packets (section 3.5.3). The protocolretransmits an entire packet whenever any cell in

the packet is lost. A flushing queue can cause fewer packet errors than a FIFO queue, giving

better performance to the file-transfer application.

The file-transfer application is simulated operating in paraUel with several bursty cross-

traffic sources. When the total amount of file-transfer traffic and cross traffic is less than

the network capacity then no ceU losses occur. However, as the amount of cross traffic in

creases and losses begin, a partial flushing queue supports a higher packet throughput rate

than does a FIFO queue. The results in section 3.5.3 show that when a partial flushing

queue and a FIFO queue are fed file-transfer and competing traffic at their service rates, the

partial flushing queue successfully deUvers packets at a rate up to 6% higher. Flushing

queues show their real advantage when they are fed data faster than their service rate,

though. Such periods could occur frequendy if file-transfer appUcations are allocated less

than their peak bandwidth. When a file-transfer appUcation is tuned to network queue sizes

properly and when its rate aUocation is moderately lower than its peak rate, a partial flush-
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ing queue delivers packets at a rate 3.4 times higher than does a FIFO queue (figure 25).

throughput ratio

1.00 partial flushing queue

TfIFO queue

1.00 1.10
Throughput Ratios for Two Overloaded Queues

offered traffic / capacity

(Fig. 25)

This figure shows the ratio ofdelivered packets to offered packets (the throughput ratio) for

a partial flushing queue and a FIFO queue fed with combinations of file-transfer data and

competing Poisson traffic.

5.5 Staggered Pushout

Video coders often work better with channels that have non-bursty losses than with

very bursty losses that occur infrequendy. This is first because isolated lost ceUs usuaUy

can be estimated given correct values for the video data in nearbypictureregions. For ex

ample, a discrete cosine transform (DCT) based video receiver can replace isolated lost

brightness coefficients using the median of neighboring brightness coefficients, the past-

frame coefficient, or the average ofneighboring coefficients. If neighboring brightness co

efficients arealsolost, estimation performs morepoorly. Also, peoplewatchingvideo tend

to judge an entire video sequence's quaUty as equalling the quality during its worst mo

ments. A few serious errors subjectively hurt video quaUty more than more frequent but

less serious errors [32].

Signal processing appUcations that estimate missing data usingneighboring data blocks

are served bestby transmission channels that neverlosemorethan one ceU consecutively.

AppUcations that estimate missing data using more than the nearest neighboring blocks
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need transmission channels with even longer intervals between losses, for example once

every three, four, or five ceUs.

A video source could reduce the effective burstiness of ceU losses by shuffling its data

before passing the data to thenetwork. Data shuffling has several disadvantages, however.

Both the video source and receiver need extra memory to store shuffled ceUs before they

are reordered. Thus, both the source and receiver introduce decoding delay into the video

link. Also, shuffling must be done over alongenoughawindow so thata burstofceU losses

wiU not lose aUcells in the window. The source has no idea how long burst losses are, how

ever. If burst losses were eliminated by the network, the network itself would know which

previousceUs have been lost and thus could discard otherceUs more intelUgendy.

Next, we presenta new buffer accessdisciplinecaUed staggered pushout,which reduc

es the burstiness of ceU losses caused by queue overflow compared to the previously de

scribed queue access disciplines. Staggered pushout generaUzes the priority pushout and

FIFO buffer access disciplines. With FIFO, aceUis lost when it arrives at a fuUqueue. With

priority pushout, a queued ceU is discarded when a higher-priority ceU needs its buffer

space. With staggered pushout, when a ceU arriving at a buffer finds no available buffer

space, a ceUis chosen to be discarded that is maximaUy separated from previously discard

ed ceUs. That is, the staggered pushout discipline picks a ceU to be discarded (either the ar

riving ceU or a queued ceU) such that the number of ceUs successfuUy delivered between

the ceU to be discarded currendy and previously discarded ceUs is maximum. Since FIFO,

priority pushout, and staggered pushout buffer accessdisciplines all are work-conserving,

aU experience the same rate ofceUloss when fed with identical inputs. The discipUnes dif

fer in their choice of ceUs to discard.

Through proper choice ofceUsto be discarded, the ceUslost during briefperiods ofcon

gestion are separatedby several successfuUy deUveredceUs.Suppose three ceUsarrivevery

quickly at a full queue that uses the staggered pushout discipline. The first arriving ceUis

discarded, since this cell is maximaUy separated from previous losses. When the second
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cell arrives, the first (oldest) cell in the queue is discarded (assuming no cells have been lost

in a while) to maximize the separation from the first discarded ceU. Third, the middle ceU

in thequeueis discarded to maximizethe separation from thetwo previous discards. Rather

than losing three consecutive ceUs, the staggered pushout buffer discards three widely

spaced ceUs.

5.5.1 Simulations

To study analytically the consecutiveloss characteristics of a staggered pushoutbuffer

would be very difficult because of the need to track the positions of past losses. Next, we

use simulations to show the distributions ofthe lengths ofconsecutive ceU losses for a FIFO

queue and a simplified staggered pushout queue fed by bursty sources. The simplified

queue assigns aU arrivingceUsa sequence number. During periods ofcongestion, this stag

gered pushout queue bumps out even-numbered ceUs if any are available; otherwise odd-

numbered cells are pushed out. While this simplified discipline does not maximize the sep

aration between ceU losses, it does help ensure that no consecutive ceUs are lost. Even this

simplified buffer access discipline aUows only a few consecutive ceUs to be lost in these

simulations.

Loss burst length histograms for three different sources are shown in figures 26 and 27.

Each source is a two-state Markov-modulated Poisson process (MMPP) [108,110,88,113,

116, 118]. The MMPP generates a Poisson process whose rate depends on the state of a

Markov process. The amount of time spent in each state is random and exponentially dis

tributed with a mean time again dependent on the state. The two-state MMPP is character

ized with four parameters: for an MMPP(a, b, c, d) process, a is the Poisson rate in state 1,

b is the expected holding time of state 1, c is the Poisson rate in state 2, and d is the expected

holding time in state 2.

By changing the rates of the two constituent Poisson processes and the expected hold

ing time in each state, simulations of ceUarrival streams with varying degrees ofburstiness

and rate variation can be simulated. Past works genendly use Poisson or Bernoulli sources
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in their simulations; these statistical models cannot adequately model the burstyrate char

acteristics of real coded video or audio streams, however. Several researchers have used

MMPP's to model video with various compression algorithmsand source material [88,72,

76].
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In the above simulations each source is modeled as an MMPP(0.84y, 0.01, 4.2y, 0.2)

process, where y varies. The simulations run for 3,000,000 iterations (long enough for the

queue behaviorsto reach steady state) anduse an arbitrarily selected queue capacityof70

cells. For each source (i.e. each y value) the FIFO and staggered pushout queue lose the

same number of ceUs. However, the staggered pushout.queue gready decreases the length

of loss bursts. 66% to 69% of the cell loss bursts in the FIFO queues are longer than one

ceUlong; the bursts areas long as 15 cells. The longest loss burst in the staggeredpushout

queues is three ceUs long, and 99% or more of the loss bursts areonly a single ceUlong.

As y increases, the queues' overaU ceU loss rates increase and ceU loss bursts become

longer. StiU, the staggered pushout queues Umit cell loss bursts to three cells and keep all

but 1% of the bursts to only a single ceU.With a simple change of buffer access strategy, a

network switch can reduce gready consecutive ceU losses in the streams it transports. Al

ternatively, if a channel must limit the number ofconsecutive losses it allows, the staggered

pushout discipline gready reduces buffer requirements. Simulations with a FIFO queue

with a capacity of 140 ceUs fed by the above MMPP source with y=0.8 stiU show up to 6

consecutive ceU losses. A queue with the FIFO buffer access discipline would need to be

more than twice as large as a queue with the staggered pushout discipline to limit consec

utive losses as weU.

5.5.2 Video Simulations

We have simulated the transmission of compressed video through both a staggered

pushout queue and the partial flushing queue used in section 5.4. The video compression

technique used is the same as that used for channel setup negotiations in section 4.5. This

technique is similar to that proposed by the MPEG standard [99], but it uses leaky motion

compensation to help hide the effects of cell losses [7]. Further, the Huffman coders used

by this video coder are modified to aUow easy and efficient detection of data losses.

Losses in compressed video streams often occur during scene changes, when interframe

compression cannot be used and when bit-rates are higher than average. We simulate the
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transmission of a compressed video stream that contains scene changes every fifteen

frames, to make cell losses more frequent than they would be with more conventional video

input. The compressed stream is fed through the two queues, decoded, and displayed. The

stream fed through the staggered pushout queue contains fewer noticeable defects than the

stream fed through the partial flushing queue (photos 8 and 9). Although both streams suf

fer approximately the same overall loss rate, errors are smaller and harder to see in the se

quence fed through the staggered pushout queue because the errors are dispersed more

widely.
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Image from Sequence Transmitted through Staggered Pushout Queue (Photo 8)

5.5.3 Staggered Pushout Rules

Modifications of the staggeredpushoutdiscipline certainly are reasonable.Whenever a

cell arrives at a full queue, this discipline uses some rule to determine which cell to discard.

The choice of a rule produces buffer access disciplines with different properties. The pre

vious section discusses two rules that could be used fora single stream with only onepri

ority class that feeds a single queue. The first rule directs that any cell selected for discard

should be maximally separated from previously discarded cells. The simpler rule, suitable
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Image from Sequence Transmitted through Partial Flushing Queue (Photo 9)

for applications that estimate lost data using nearest neighbors, directs that a cell to be dis

carded should not be adjacent to any previously discarded cells. Other rules could follow

from other application needs. For example, an application could request that at most two

consecutive cells ever be discarded or that at least three cells be delivered successfully be

tween any discarded cells.

All of the above discard rules are examplesof "greedy" algorithms—at every time in

stant these algorithms try to optimize the current loss characteristics without regard to how

current decisions may affect future performance. More sophisticated buffer access disci

plines could estimate future input characteristics and then act based upon the estimate. For

example, if a queue observed that high-speed bursts of inputs were always four cells long,

then the queue could discard the cells0%,25%, 50%,and 75% of the way down thequeue

whenever a high-speed burst first is detected.

Staggered pushout rules could be generalized to handle multiple priority classes also.

With multiple priorities, of course lower priority cells should be discarded before higher-

priority cells. However, an application may prefera long burst of low-prioritycell losses to
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a mix of several isolated low- and high-priority ceUs. Further, an application may or may

not benefit if lost low- and high-priority ceUs are widely spaced temporaUy. AppUcations

that prefer aU low-priority ceUs to be discarded before any high-priority ceUs would use a

staggered pushout discipline much like the prioritized pushout discipline. However, within

each priority class, the staggered pushout discipUne would discard ceUs in the order that

maximizes the time between consecutive losses. If an appUcation can assign costs or pen

alties to different patterns of high- and low-priority losses, then a staggered pushout queue

can use the costs to formulate a cell-discard criterion that minimizes the loss penalty.

This section shows that even simple versions of the staggered pushout buffer access dis

cipline can tailor a channel's loss statistics to provide short ceU loss bursts. Communica

tions appUcations with even more specialized ceU loss needs can have appropriate control

methods designed to meet those needs also.

5.6 Comparison of Disciplines

Buffer access disciplines may be classified as work-conserving or non-work-conserv

ing and further asto how much they concentrate or separate cell losses.The disciplinespre

sented in this paper are classified in figure 28.

work-conserving { FIFO pSf
{partial

flushing buffer
sharing

-* •

concentrate separate
losses losses

Buffer Access Discipline Classification (Fig. 28)

A work-conserving loss-concentrating discipline only would discard ceUs from a fuU

queue and would choose the discarded cells to rnaximize consecutive loses. We have sim

ulated such a discipline with the file-transfer appUcation discussed in section 5.4 and found

that it giveshigher packet throughput rates than FIFO but lower than queue flushing. Non-

work-conserving queue flushing maintainsa longertime between loss bursts than does this
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new work-conserving discipUne.

Non-work-conserving loss-separating disciplines might be useful in some circumstanc

es. These disciplines would discard cells from partiaUy full queues in hopes of preventing

future consecutive losses, trading between low average loss rates and low probabiUties of

consecutive loss. Many applications would prefernot to suffer higher ceUloss rates for only

moderate decreases in the rate of consecutive losses, however. These trade-offs could be

studied further.

5.7 Hardware Implementation

Above, several experiments have shown that different communications appUcations,

suchasvideo transmission and file transfer, benefit from different networkbuffermanage

ment discipUnes thatproduce channels with loss statistics tuned to the needs of the appU

cations. The simulations implementedbuffermanagement disciplines tuned to the ceU loss

needsofasingleappUcation. A moreadvanced topic notstudied hereis thedesign ofbuffer

management disciplines that simultaneously and efficiendymeet the needs of avariety of

appUcations.

We must justify the feasibility of switches that adapt their buffer management disci

plines to suit different appUcation requirements. First, simple parameterizable methods

suchasdescribed in [64] clearly are feasible. [64] describes a technique in whichtraffic in

different priority classes is given different levels of protection against ceU discard. A more

powerful type of buffer management flexibUity would be demonstrated by a switch that

routes different types of traffic to different buffersor that selectsone of several fixed buffer

management discipUnes for itsinternal buffers based upon their traffic mix.Possibly inthe

future, powerful switches could custom-design inreal-time abuffer access discipline tai

lored for the needs of their current traffic.

Several past works present asynchronous transfer mode (ATM) switch architectures

that incorporate flexible processing at the cell level. For example, [47, 70, 82] present

switch architectures with dynamic internal routing functions that process each input cell in-
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dividuaUy. SimUar processing power could be used for buffer management at the ceU level.

Armbruster [34] analyzes architectural trade-offs in multiuse switches and concludes that

switch hardware must be distributed flexibly and extensibly so that it can be deployed dy-

namicaUy wherever resource needs are greatest. The switch architecture presented in [68]

actuaUy includes hardwaresupport for the selection of different buffer management based

upon traffic requirements. The architecture combines a non-blocking crossbar stage with

ring buffers at each switch output port A controller attached to each ring buffer decides the

order in which stored ceUs are output Through the design of clever controUers, it is possi

ble to implement adaptive, modifiable buffer management disciplines within a high-speed

switch.

5.8 Conclusion

Different communications appUcations should use channels with buffer access disci

plines tailored to their needs. AppUcations that transmit data types with varying subjective

significance should use a discipline that gives different loss rates to different priority class

es. AppUcations that need a long time between bursts of losses should use a type of queue

flushing discipline; for example, partial queue flushing allows designers to trade between

the time between loss bursts and the loss probabiUty. AppUcations that need losses to be

spreadout should use queues with staggeredpushout discipUnes. The examples of the file-

transfer and the video appUcations show how the proper choice of buffer accessdiscipUne

can improve appUcation performance for fixed buffer and bandwidth aUocations.

To tailor the buffer access discipUne of a channel to meet the QOS needs of its cUent

appUcations can be much more efficient than to over-allocate resources to a channel to meet

those needs with genericbuffer management Forexample, section 5.5 shows that to guar

antee similarly smaU probabilities that cell loss bursts be no longer than one ceU, a FIFO-

basedqueue would need to be larger and served faster than a staggered pushout queue. A

network, with knowledge of each of its communication channel's needs, should select its

buffer accessdiscipUnes so that all appUcations' quality of service needs aremet fairly ex-
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acdy.

To obtain information on its client applications' needs, a network could use the Medley

Interface. Traditional models of the BISDN signaling interface cannot express QOS re

quests for multiple levels of ceU discard priority or for control ofa channel's ceU loss burst

iness. The Medley Interface supports these requests and thus facilitates the use of the signal

processing and buffer management disciplines described in this and the preceding chapter.

Together, the Medley Interface, adaptable signal processing, and specialized buffer man

agement disciplines allow a variety of communications appUcations to use networks and

network resources more efficiendy than do less flexible systems.

5.9 Appendix

To study a prioritized flushing queue of length L, we use a Markov chain with 2L+1

states. States 1 through L+1 represent queue lengths 0 through L when the queue is not

flushing low-priorityinputs. StatesL+2 through 2L+1 represent queue lengths 1 through L

when the queue is flushing. With k sources, whenever a queue overflow occurs the queue

jumps from one of the states L-k+2 through L+1 direcdy to state 2L+1. When the queue is

flushing and accepting only high-priority inputs, the Markov chain jumps from stateL+2

to state 1 as the queue empties. With k sources again and barring overflow, given that the

chain is in statex, possible transitionscan take place to statesx-1, jc, jc+1, ..., x+k-l.

Priority Flushing Queue State Transition Diagram for Three Sources (Fig. 29)

Assume that the priority flushing queue is fed by Mhigh-priority and N low-priority

Bernoulli sources, each with probability of arrival equal top. It is straightforward to find
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the transition probabiUties for this chain. For example, the probabiUtyofmoving from state

x to state jc+l is the probabiUty of two arrivals in one time period: two arrivals minus one

departure equals an increase of one in die queue length. This probability equals

h*)
Given the transition probabUities, we find the Markov chain's state transition matrix Q.

From Q we calculate the Markov chain's stationary probabiUty distribution p. By defini

tion, p is a normaUzed vector such that \iQ = p. Thus, u. is just the normaUzed left-eigen

vector of Q corresponding to the eigenvalue 1.0, so u.could be found with any eigenvector

calculation algorithm such as Jordandecomposition or QR factorization. However, since Q

is aperiodic and since aU of Q's states arerecurrent, we can find u. simply by raising Q to

higher and higher powers. Each rowof Qn tends to u. asn increases. From p. we can calcu

latethe percentage oftime spentin a flushing state, the percentage of time spentempty, etc.

To calculate the percentage oflost high- and low-priority cells, we condition on the cur

rent state. Given that the chain is in statex, we calculatethe expected number ofceUlosses

by siuiiming the probabiUty of a quantity of arrivals thatwiU resultin ceU loss multipUed

by the numberoflossesincurred. In any flushing state, the numberoflow-priority ceUs lost

equals the number of low-priority ceUs that arrive.

The priority flushing queue alternates between flushing mode and non-flushingmode.

We are interested in the rate rf at which the queue changes modes. The rate at which the

chain leaves flushing mode equals the probabilityof being in stateL+2 times the probabU-

ity thatthe transition out of stateL+2is into state1.The expectedtime spentin non-flushing

mode equalsPr{current stateis non-flushing) / rf.
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Chapter 6

OVERVIEW OF THE CHANNEL SETUP

PROCESS

This thesis has studied three methods for increasing efficiency in high-speed commu

nications appUcations and modem broadband networks: chapter 3 defined a signaling in

terface model, chapter 4 discussed video appUcation coding techniques, and chapter 5

presented network buffer management discipUnes. Next, an example channel setup negoti

ationis used to presentanoverviewof allof thesetechniques andto review how thesecom

ponents cooperate. AU three components provide, communicate, or utilize increased

knowledge of transport requirements and capabiUties to improve appUcation performance

and efficiency of network resource use.

Section 4.5 presented channel setup negotiations with a video coder based on motion

compensation and the discrete cosine transform (DCT). This chapter reviews the channel

estabUshment process with that coder and discusses howbothit and anetwork wouldadapt

to the negotiation results.

6.1 Preliminaries

AppUcations and networks both must be designed to support some Medley Interface

system requirements in order to participate in channel setup negotiations with this model.

The video coder appUcation designer first must decide how to partitionits various transmit

ted data types onto a number of substreams. If each data type is sent over a unique sub-

stream with a flowspec tailored to its transport needs, then no data need be sent on a

substream with a more expensive rate aUocation than necessary. This saves network re

sources—for example if leaky motion compensation a values and DCT coefficients were

both sent over a lossless substream as required for the a values, then the DCT coefficients
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would force the aUocation of more buffer space than if they were sent separately over a

lossy substream.

The video coder in this overview uses three substreams. A "lossless" substream carries

very low-rate coder state information such as the motion compensation a value used for

each video frame. A second substream carries "high-priority" data whose loss degrades the

received image quality significandy, but not as much as the loss of an a value. A third sub-

stream carries less important "low-priority" information.

Before channel setup can begin, the video coder and network both must know how to

express their transport needs and capabUities. Within the context of the Medley Interface,

appUcations express their transport needs in terms of a performancefunction or perfor

mance level-set and networks express their capabiUties in a costfunction.

The motion compensation + DCT based video coder performance level-set is designed

through a battery of tests and subjective evaluations. The tests simulate video transmission

through channels with a range of flowspec parameters—tests show how the video coder

should best adapt to different parameters, and they identify parameter sets that yield video

ofroughly identical subjectivequaUty. The performance level-set identifies these parame

ters, hidingthe detaUs of how the video coder adapts to achievethat performance.

For thevideocoder in thisoverview, flowspec parameters that support arelatively con

stantperformancelevel areUsted in table3 at the end ofchapter4. The "lossless" substream

behavior is described withan RLB(lossless, 1,30)rate bound and aLLBQossless, 0,1) loss

bound. The"high-priority" substream's rate is defined withan KLBQugh-priority, 150, J)

bound and its loss behavior is specified with an LLB(high-priority, 100,107) bound. The

"low-priority" substream's behavior is specified with KLBQow-priority, 150, K), LL-

B(low-priority, M, 1M), andLLB(low-priority, 50, L) bounds. AU three substreams are giv

en equal delay constraints with the Medley Interface DELAY(-) flowspec bound. The

parameters /, K,L,and Maxe estabUshed during flowspec parameter negotiations, since the

video coder can adapt tooperate as these parameters vary over arange.
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Sirmlarly, the network decides the resource and processing cost of substreams with a

rangeof flowspec parameters anddesigns its cost function to reflect the resource costs.The

cost function expresses in doUars per minute or some equivalent measure the rate at which

an appUcation must pay for its transport service.The cost function hides a channel's imple

mentation details such as the best buffer management discipline for the channel, rate and

buffer aUocations, etc. In fact the detads of a channel's implementation may vary with net

work conditions at the time ofa channel estabUshment. If a network has aUocated relatively

Uttle of its buffer space when a channel is estabUshed, the channel may be implemented

with a lower rate aUocation and higher buffer allocation than at other times. This overview

uses a substream cost function of the form below; this equation was modeled on the buffer

cost = oc/+ptfY+K(log(L) -log(6.67)) +X/(M+\i)

requirements of the file-transfer appUcation discussed in section 3.5.3. The / and K terms

charge for reserved bandwidth for the high- and low-priority substreams, theL term charges

for reserved buffer space for the low-priority substream, and the M term charges for the

control of consecutive losses on the low-priority substream. The constants ot, (3, k, X, and

u.are chosen by the network to reflect its relative avaUabmty ofbandwidth, buffer, and pro

cessing resources.

6.2 Channel Request

The video appUcation begins to set up a channel by requesting that the network estab-

Ush a connection to a particular destination. The network then transmits its cost function to

the appUcation so that the appUcation can choose minimum-cost channel flowspec param

eters that support its desired performance level. The parameters of the cost function are

those used by the Medley Interface flowspec description format. At this point the appUca

tion also must leam about any limitations in network capabiUties, such as an inability to

base a substream's cost on more than one leaky bucket rate bound.

6.3 Negotiations

The video appUcation uses the iterative minimization algorithm described in section 3.5
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with its performance level-set and the cost function it received to find minimum-cost flow-

spec parameters. This overview reviews the first negotiation presented in section 4.5. The

cost function for each substream is:

cost = if'1 +K°J +0.03(log(L) -log(6.67)) +0.1/(Af+3)

The video applicationpicks areasonableinitial set of flowspec parameters: / =5.8 kUocells

per second, K = 5.17 kUoceUs per second,L =400 cell deliveries per loss, and M = 5 cells.

As it runs theiterative rninimization algorithm, theappUcation updates its flowspec param

eter point in the direction of the projection of the cost function gradient into the local con

stant-performance plane. The size of the updates varies to keep the updates near the

constant-performance plane while attempting toreduce thenumber of iterations necessary.

After 100 iterationsthe flowspec parameters are / =3.15, K = 5.60, L = 535, and M =4.47.

The channel cost has fallen 21% from 10.1 to 7.96. Thus the network reserves 21% fewer

resources with the final parameters than withtheinitial ones, whUe thevideo appUcation

maintains the same performance level. The final parameter values are sent to the network

in a channel configuration request.

6.4 Network Response

Given the Medley Interface flowspec description of the video appUcation's desired

channel, the network can implement the channel. WhUe the appUcation was choosing flow-

spec parameters, the network couldhave beencalculating prospective routes for the chan

nel. With the flowspec, the network chooses a route that contains sufficient resources to

support the channel whUe rriinimizing the probabiUty that future channel setup requests wiU

beblocked. The negotiated end-to-end QOS impairments, delay, lossrate, and consecutive

losses, must be partitioned among all network components along the channel route. The

necessary buffer, bandwidth, and processing resources are reserved along the channel's

route, and any switch configuration necessary is performed. For example, since oneof the

appUcation's substreams has bounded the number of consecutive losses that can occur, the

network could use staggered pushout disciplines in its switches to meet this bound with
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smaUer buffer allocations than would be required with first-in, first-out buffers. Simula

tions in section 5.5.1 indicate that thebuffer savings could be greater than 50%.

Also, the network establishes suitable rate monitors at the application interface and be

gins to bUl the application at the negotiatedcost. Possibly, the network also establishes in

ternal monitors that verify that its guaranteed QOS bounds actuaUy are being met.

6.5 Video Coder Response

The coder uses the flowspec parametersthat result from iterative cost reduction to adapt

its signal processing and multiplexing to these channel characteristics. With the initial

channel parameters, the coder would have used a motion compensation a value of 0.875

and 3 high-priority DCT coefficients per block. With the final negotiated flowspec chan

nels, the coder uses a = 0.75 and 1 high-priority DCT coefficients per block; these coder

parameters are determined by matching the final flowspec parameters with the coder pa

rameters used to generate the known flowspec parameter values in table 3.

After the network confirms to the appUcation that the requested channel was estab

Ushed, the appUcationmust teUits receiver how to configure itself. The receiver must know

what leaky motion compensation a value to use and how many DCT coefficients per block

are sent at high priority. Further, if the multiplexing pattern ofeach substream's data is not

standardized, the appUcation transmitter and receiver must establish a common one. For ex

ample, the receiver must know the pattern in which each block's motion vectors and DCT

coefficients are sent on the high-priority substream.

The receiver decides, either alone or in conjunction with the transmitter, what correc

tive actions should be taken when informed of a ceU loss. Depending upon the likelihood

of ceU losses and the availabUity of processing power, the receiver could use the lost-data

estimation techniques described in section 4.4.2 to help reduce the magnitude of image ar

tifacts caused by losses, or it could employ the low-pass filtering concealment techniques

of [19] to help make loss-affected video regions less noticeable.
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The components of the Medley Interface model enable adaptable video applications

and networks to operate more efficiendy and with better performance than they could with

less flexible interfaces. The Medley Interface substream decomposition and flowspec for

mat enable channel setup negotiations to reduce channel resource consumption, and they

give appUcations andnetworks sufficient information that they can maximize their perfor

mance by adapting to each other's characteristics.
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Chapter 7

CONCLUSION

Recent research efforts in the design of both communications networks and appUca

tions have led to increased adaptability and flexibiUty in both domains, yielding several ad

vantages. Flexible networks support a larger variety of appUcations and facilitate the

introduction of new applications because they already provide high-level transport func

tions such as sequenced delivery and loss-detection; each new appUcation need not imple

ment these functions. Flexible appUcations will be successful because they can operate with

a wide variety of networks without modification. As wireless networks, BISDN's, and

high-speed local area networks all are deployed to meet different communications needs,

flexible appUcations that operate seamlessly with aU avaUable networks will be in demand.

New network buffer management disciplines allow networks to transport diverse traffic

mixes quickly and efficiendy [35, 45, 53, 64, 75, 85]. Network interface models such as

those developed by Washington University [39,41] and BeUcore [36, 37, 51, 58, 66, 74]

aUow appUcations to estabUsh multiway connections in a simple, intuitive way.

Communications applicationssuch asvideo transmission have become more adaptable

also. Recent coding formats such as JPEG, MPEG, and the digital U. S. high-definition

television proposals [97,92, 94,96,98, 99,103] aU specify several different video com

pression techniques that can be chosen to adapt to different source materialor performance

demands. These formats also are scalable, which means they can be appUed to a range of

picture sizes and frame rates.

An obstacle to the utiUzation of increasing flexibility in networks and appUcations is

the interface between them. Many currendy proposedchannel estabUshmentinterfaces are

poorlydefined or are so simple as to prevent efficient network operation. A more powerful
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model is needed to support guaranteed transport quaUty of service (QOS) to applications

and to enable efficient processing and resource use within networks.

This thesis has studied three methods for increasing efficiency in high-speed commu

nications applications and modern broadband networks: a signaling interface model, video

application coding techniques, and network buffer management discipUnes. Chapter3 pre

sented a new model for the channel setup interface between applications and networks. The

Medley Interface model allows appUcations to specify their transport QOS needs in more

detail than currentBISDN models. An appUcation can request data rate, delay, loss rate,

andloss burstiness or spacing guarantees (i. e. flow specification orflowspec guarantees)

on several substreams that combine to form a single channel. Substream decomposition

combined withtheMedley Interface's detaUed flowspec format allows appUcations design

ers to specify QOS guarantees in more detaU and to design appUcations that can operate

with a wider variety of avaUable channels thanis now possible. These features of the Med

ley Interface also aUow networks to implement channels using link and buffer resources

more economicaUy and to tailor channels' characteristics more closely to appUcation

needs. For example, anetworkchannel for thevideocoder described in chapter 4 coulduse

up to 27% less buffer space if it prevents consecutive ceUlosses.

This interface model also aUows more powerful caU setup negotiations than previously

studied. The negotiations benefit from the wide range of trade-offsbetween channelchar

acteristics that can be expressed with the detailed flowspec format and substream decom

position described above. Section 3.5.2 has presented an iterative gradient-descent

minimization algorithm that, by exchanging costgradient information asweU ascostdata,

aUows appUcations and networks to obtain minimum-cost channels that support the appU

cations' needs rather than simply toestabUsh and use the first feasible channels that the ap

pUcations request Prototype negotiations with a file-transfer and conditional-

replenishment video appUcation have achievedsignificant channelcost reductions.

Chapter 4 next reviewed two modern video compression techniques, motion compen-
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sation and the discrete cosine transform (DCT) and has presented new modifications of the

standard motion compensation algorithm that improve its resilience to transmission losses.

Leaky motion compensation, conditional-replenishment, and conditional leaky motion

compensation all produce video with higher subjective quaUty in the presence ofcell losses

than does motion compensation with standard periodic error replenishment These new

coding techniques allow video coders based on motion compensation and the DCT to pro

vide high-quaUty video with a range of channel QOS parameters, and thus they aUowsuch

coders to negotiate for low-cost channels with Medley Interface networks. During simulat

ed negotiations, the video appUcation has maintained a fixed video performance level while

reducing its channel cost by up to 70%.

Finally chapter 5 presented new buffer management disciplines that aUow network

switches to efficiendy provide communications channels with the loss-spacing character

istics desired by a range of appUcations. AppUcations such as file-transfer that must reset

their transmitterandreceiverafterevery ceU loss operatemost efficiendy if losses aretight

ly bunched and groups of losses arewidely spaced. A queue flushing, partial queue flush

ing, or priorityqueue flushing discipUne provides these loss characteristics and gives file-

transfer appUcations packet throughput rates as much as 3.4 times than a first-in, first-out

(FIFO) queue.

AppUcations suchasvideo transmission that canoperate in spiteof ceU losses operate

best if loses are separated by as many successfuUy delivered ceUs as possible. Widely

spaced losses subjectively are less objectionable, and theyaUow lostdata estimation to per

form morereliably than consecutive losses. The staggered pushout discipUne gives chan

nels widely spaced cell losses and thus supports video appUcations more efficiendy than

FIFO or flushing disciplines. Simulations in section 5.5.1 showed that staggered pushout

discipline queueswith 50%the capacity of FIFO queuesstiU limit consecutive cell losses

more effectively.

Together, the signaling interface model, video coder adaptations, and buffer manage-
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ment discipUnes presented in this thesis show the benefits and feasibUity ofa richer caUset

up interface for the BISDN than has been envisioned. Video applicationscan operate with

a range of channel QOS parameters, but they must have some control of the parameters to

produce video with high subjective quaUty after transmission. Networks can provide chan

nels with delay, loss rate, loss priority, and loss spacing characteristics finely tuned to the

needs of specific appUcations, but these needs must be made known to the network. These

channel characteristics are specified with the Medley Interface flowspec format; this format

further facilitates channel setup negotiations that minimize (with some limitations) an ap-

pUcation's transmission cost at a fixed performance level.

7.1 Future Work

Many open problems remain in the study ofinteractions between networks and their cU-

ent appUcations. Progress with the network resource aUocation problem is proceeding

slowly. Although researchers have derived analyticexpressions for the bandwidth and stor

age requirements for simple traffic models and QOS parameters, the extension of this work

to more reaUstic models or to mixes of several traffic types has not been very successful.

Resource aUocation heuristics based on network simulations yield usefulresults, but they

aredifficult to generalize to other traffic mixes. In fact, the composition of future BISDN

traffic is largely unknown!

The estabUshment of pricing strategies for BISDN's is related to the resource allocation

problem. Good pricing strategies discourage thewaste ofnetwork resources and processing

power. The price of a channel should be "fair" in that it is somewhat proportional to the

network effort expended to implement the channel. The design of effective pricing strate

gies is largely unexplored.

The design of high-speednetwork hardware architectures thatcan adapt to avariety of

appUcation needs is in its infancy. Although researchers have presented architectures that

vary their buffer management or routing depending on short-term traffic characteristics

[47,68,70,82], more work must be done to increaseswitches' flexibiUty at high datarates.
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The next few years surely wiU see advancesin signal processing and estimation meth

ods to hide the effects of data loss and delay. As BISDN's, wireless networks, and local

areanetworks become faster and more prevalent, they will carry a growing amount ofvideo

traffic. To operate efficiendy, applications that use any of these networks must tolerate

somewhat bursty data losses.

The channel setup negotiations presentedin this thesis show the feasibiUty ofcost-min

imization negotiations, but the method employed in this thesis is inadequate in some ways.

Any strict gradient-descentmethod becomes trapped in local minima of the cost function

too easUy. Also, more study is needed to design appUcation performance functions more

efficiendy and exactiy and to approximate them more accuratelyduring negotiations.

Negotiations with subjectively-defined performance level-sets occasionally terminate

because iterations carry the current flowspec parameter point to the boundary ofthe defined

performance level-set Negotiations could achieve significandy greater cost reductions if

they could continue along the boundary rather than terminating. In general, the develop

ment of fast, efficient channel setup negotiations that require low communications over

head should see attention in the future.

175



Chapter 8

REFERENCES

8.1 Video Coding for Cell Relay Networks

[I] J. Darragh and R. Baker, "Fixed Distortion Subband Coding of Images for Packet-
Switched Networks," IEEE Journal on Selected Areas in Communications, vol. 7,
June 1989, pp. 789-800.

[2] M. Garrett and M. VetterU, "Congestion Control Strategies for Packet Video," Inter
national Packet Video Workshop, Kyoto, August 1991, pp. G2.1-G2.6.

[3] M. Ghanbari, "Two-Layer Coding ofVideo Signals for VBR Networks," IEEE Jour
nal on Selected Areas in Communications, vol. 7, June 1989, pp. 771-781.

[4] M. Ghanbari andJ. Azari,"Comparison between the CBR andVBR atthe base layer
of aTwo-layer video codec," International Packet Video Workshop, Kyoto, August
1991,pp.F2.1-F2.6.

[5] P. HaskeU, K. Tzou, and T. Hsing, "A Lapped-Orthogonal-Transform Based Vari
able Bit-Rate Video Coder for Packet Networks," IEEE ICASSP'89, May 1989,
Glasgow, Scodand, pp. 1905-1908.

[6] P. Haskell andD. Messerschmitt, "Reconstructing Lost Video Datain a LappedOr
thogonal Transform Based Coder," IEEE ICASSP'90, April 1990, Albuquerque,
New Mexico, pp. 1985-1988.

[7] P. HaskeU and D. Messerschmitt,"Resynchronizationof Motion CompensatedVid
eo Affected by ATM CeULoss," IEEEICASSP'92, March 1992, San Francisco, Cal
ifornia.

[8] G. Karlsson and M. VetterU, "Sub-band Coding of Video Signals for Packet-
Switched Networks," SPIE Visual Communications and Image Processing II, vol.
845,1987, pp. 446-456.

[9] G. Karlssonand M. VetterU,"Three DimensionalSub-Band Coding ofVideo," IEEE
ICASSP, 1988, pp. 1100-1103.

[10] G. Karlsson and M. VetterU, "Packet Video and its Integration into the Network Ar
chitecture," IEEE Journal on Selected Areas in Communications, vol. 7, June 1989,
pp. 739-751.

[II] F. Kishino, et al., "Variable Bit-Rate Coding ofVideo Signals for ATM Networks,"
IEEEJournal on Selected Areas in Communications,vol. 7, June 1989, pp. 801-806.

176



[12] D. Lee, S. Li, and K. Tzou, "Analysis of Video Packet Loss Control in ATM Net
works," IEEE Globecom, 1990, pp. 857-861.

[13] D. Lee, K. Tzou, and S. Li, "Control Analysis of Video Packet Loss in ATM Net
works," SPIE Visual Communications and Image Processing, vol. 1360, 1990, pp.
1232-1242.

[14] J. Ohm, "A Hybrid Image Coding Scheme for ATM Networks Based on SBC-VQ
and Tree Encoding," International Workshop on Packet Video, August 1991, Kyoto
Japan, pp. B2.1-B2.6.

[15] A. Puri and R. Aravind, "An Interframe Coding Scheme for Packet Video," SPIE Vi
sual Communications and Image Processing IV, vol. 1199,1989, pp. 1610-1618.

[16] A. Riebman, P. GoU, and V. Kumar, "Combined Performance Study ofa Video Com
pression System and an ATM Switch," International Packet Video Workshop, Kyo
to, August 1991, pp. E4.1-E4.6.

[17] K. Sakai, T. Hamano, and K. Matsuda, "Varible Bit-Rate Video Coding with Cell-
Loss Compensation," International Packet Video Workshop, Kyoto, August 1991,
pp. C10.1-C10-6.

[18] M. Tsujikado, et al., "A Variable Bit Rate Video Coding Scheme for Broadcast
QuaUty Service via ATM Networks," International Packet Video Workshop, Kyoto,
August 1991, pp. C11.1-C11.6.

[19] K. Tzou, "Post FUtering for Cell Loss Concealment in Packet Video," SPIE Visual
Communications and Image Processing IV, vol. 1199,1989, pp. 1620-1628.

[20] W. Verbiest, "Variable Bit RateVideo Coding in an ATD Network," Proceeding of
thePictureCoding Symposium, June 1987, Stockholm, Sweden, pp. 200-201.

[21] W. Verbiest, L. Pinnoo, and B. Voten, "The Impact of the ATM Concept on Video
Coding," IEEE Journal on Selected Areas in Communications, vol. 6, December
1988, pp. 1623-1632.

[22] W. Verbiest and L. Pinnoo, "A Variable Bit Rate Video Codec for Asynchronous
Transfer Mode Networks," IEEE Journalon Selected Areas in Communications, vol.
7, June 1989, pp. 761-770.

8.2 General Video Coding

[23] W. Chen andW. Pratt, "Scene Adaptive Coder,"IEEE Transactions on Communica
tions, vol. COM-32, March 1984, pp. 225-232.

[24] D. Connor, "Techniques for Reducing the VisibiUty of Transmission Errors inDigi
tally Encoded Video Signals," IEEE Transactions on Communications, June 1973,
vol. 21:3, pp. 695-706.

[25] M. Gilge, T. Engelhardt, and R.Mehlan, "Coding of Arbitrarily Shaped Image Seg-

177



ments Based on a GeneraUzed Orthogonal Transform," Signal Processing: Image
Communication, vol. 1:2, October 1989, pp. 153-180.

[26] T. Hsing, ""Motion Detectors and Compensation Coding for Motion Video Coders:
Technical Review and Comparison," IEEEGlobecom, 1987, pp. 2.6.1-2.6.5.

[27] A. Jain, "A Sinusoidal Family of Unitary Transforms," IEEE Transactions on Pat
ternAnalysis andMachine Intelligence, vol. PAMI-1, October 1979, pp. 356-365.

[28] A. Jain,Fundamentals ofDigital ImageProcessing, Englewood Cliffs, NJ, Prentice
HaU, 1989.

[29] A. Netravali and B. Haskell, Digital Pictures, New York, Plenum Press, 1988.

[30] A. NetravaU andJ. Robbins,"Motion-Compensated Television Coding: Part I," Bell
System TechnicalJournal, vol. 58, March 1979, pp. 631-670.

[31] D. Taubman and A. Zakhor, "A Multi-Start Algorithm for Signal AdaptiveSubband
Systems," IEEE ICASSP, March 1992, pp. m.213-in.216.

[32] S. Wolf, "The Development and Evaluation of an Objective Video QuaUty Assess
mentSystem that Emulates Human Viewing Panels," AT&T Workshop onQuaUty of
Service Issues inHigh Speed Networks, April 1992, Murray Hill, NJ.

8.3 Cell Relay Networks

[33] V. Anantharam, "The Optimal Buffer AUocation Problem," IEEE Transactions on
Information Theory, July 1989,pp. 721-725.

[34] B. Armbruster and F. Mellor, "SwitchArchitecture Evolution in SONETNetworks,"
IEEE International Conference on Communications, Atianta, GA, April 1990, pp.
552-556.

[35] G. Awater and F. Schoute, "Optimal Queueing Policies for Fast Packet Switching of
Mixed Traffic," IEEE Journal on Selected Areas in Communications, April 1991,
vol. 9:3, pp. 458-467.

[36] M. Bahl, J. Daane, and R. O'Grady, "The Evolving InteUigent Interexchange Net
work- An SS7 Perspective," Proceedings oftheIEEE, April 1992, vol. 80:4, pp.637-
643.

[37] R. Berman, "Perspectives onthe AIN Architecture," IEEE Communications Maga
zine, Feb 1992, vol. 30:2.

[38] D. Bertsekas andR. Gallager, DataNetworks, 2nded., Englewood Cliffs, NJ, Pren
tice Hall, 1992.

[39] R. Bubenik, J. DeHart, and M. Gaddis, "Multipoint Connection Management inHigh
Speed Networks," IEEE INFOCOM, 1991, vol. 1, pp. 59-68.

[40] M. Butto, E. Cavallero, and A. Tonietti,"Effectiveness of the 'Leaky Bucket' PoUc-

178



ing Mechanism in ATM Networks," IEEEJournal ofSelected Areas in Communica
tions, April 1991, vol. 9:3, pp. 335-342.

[41] J. Cox, M. Gaddis, and J. Turner, "Project Zeus," IEEE Network, March 1993,
vol.7:2, pp. 20-30.

[42] T. Cox, et al., "SMDS: The Beginning of WAN Superhighways," Data Communi
cations, vol. 20, April 1991, pp. 105-110.

[43] M. de Prycker, Asynchronous Transfer Mode: Solution for Broadband ISDN, New
York, ElUs Horwood, 1991.

[44] M. Decina, L. FagUa, and T. Toniatti, "Bandwidth AUocation and Selective Discard
ing for Variable Bit Rate Video and Bursty Data CaUs in ATM Networks," IEEE IN-
FOCOM, April 1991, vol. 3, pp. 1386-1393.

[45] A. Demers, S. Keshav, andS. Shenker, "Analysis andSimulationof aFair Queueing
Algorithm," SIGCOMMy90, Sept. 1989, Austin, TX, Computer CommunicationsRe
view, vol. 19:4.

[46] A. Elwalid and D. Mitra, "Stochastic Fluid Models in the Analysis of AccessRegu
lation in High Speed Networks," IEEE Globecom'91, pp. 1626-1637.

[47] K. Eng, M. Karol, and Y.-S. Yeh, "A Growable Packet (Atm) Switch Architecture:
Design Principles and AppUcation," IEEE Transactions on Communications, Feb.
1992, vol.40:2, pp. 423-430.

[48] D. Ferrari, A. Banerjea, andH. Zhang, "Network Support forMultimedia: A Discus
sion ofthe Tenet Approach," InternationalComputer Science Institute TechnicalRe
port, TR-92-072, Berkeley, CA, November 1992.

[49] D. Ferrari and D. Verma, "A Scheme for Real-Time Channel EstabUshment in Wide-
Area Networks," IEEE Journal on Selected Areas in Communications, April 1990,
vol, 8:3, pp. 368-379.

[50] A. Fraser, "Design Considerations for a PubUc Data Network," IEEE Communica
tions Magazine, October 1991, pp. 31-35.

[51] M. Fujioka, H. Yagi, and Y. Ikeda, "Universal Service Creation and Provision Envi
ronment for IntelUgnet Networks," IEEE Communications Magazine, Jan 1991, vol.
29:1, pp. 44-51.

[52] R. Gibbens and P. Hunt, "Effective Bandwiddis For The Multitype UAS Channel,"
Queueing Systems, October 1991, vol. 9:1-2, pp. 17-27.

[53] S. Golestani, "Congestion-Free Communication in High-Speed Packet Networks,"
IEEE Transactions on Communications, Dec 1991, vol. 39, #12, pp. 1802-1812.

[54] R.Guerin, H. Ahmadi, and M. Naghshineh, "Equivalent Capacity and its AppUca
tion to Bandwidth Allocationin High-Speed Networks," IEEE Journal on Selected

179



Areas in Communications, Sept. 1991, vol.9:7, pp. 968-981.

[55] D. Hong and T. Suda, "Congestion Control and Prevention in ATM Networks,"ZEis£
Network, July 1991, vol.5:4, pp. 10-16.

[56] J. Hui, "Resource AUocation for Broadband Networks," IEEE Journal on Selected
Areas in Communications, vol. 6, December 1988, pp. 1598-1608.

[57] J. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer
Academic Publishers, 1991.

[58] "Intelligent Networks," IEEE CommunicationsMagazine, Feb 1992, vol. 30:2.

[59] S. Jordan and P.Varaiya, "Throughput in Multiple Service, Multiple Resource Com
munication Networks," IEEE Transactions on Communications, vol. 39, August
1991, pp. 1216-1222.

[60] C. Kalmanek, H. Kanakia, andS. Keshav, "Rate Controlled Servers forVery High-
Speed Networks," IEEEGlobecom, vol. 1,1990, pp. 12-20.

[61] G. Kaplan, "Data Communications," IEEE Spectrum, vol. 28, August 1991, pp. 21-
45.

[62] F. KeUy, "Effective Bandwiddis At Multiclass Queues," Queueing Systems, October
1991, vol. 9:1-2, pp. 5-15.

[63] M. Kiemele, "Optimizing the Topology of anIntegrated Network," in Network Mod
eling, Simulation, andAnalysis,edited by R. Garziaand M. Garzia,New York, Mar
cel Dekker, 1990, pp. 329-359.

[64] A. Lin and J. SUvester, "Priority Queueing Strategies and Buffer AUocation Proto
cols for Traffic Control at an ATM Integrated Broadband SwitchingSystem," IEEE
Journal onSelected AreasinCommunications, Dec 1991, vol. 9:9, pp. 1524-1536.

[65] J. McQuillan, "Broadband Networks," Data Communications, vol. 19, June 1990,
pp. 76-86.

[66] S. Minzer, "A Signaling Protocol for Complex Multimedia Services," IEEE Journal
on SelectedAreasin Communications, Dec. 1991, vol.9:9, pp. 1383-1394.

[67] S. Minzer, "Broadband ISDN and Asynchronous Transfer Mode (ATM)," IEEE
Communications Magazine, vol. 27, September 1989,pp. 17-24,57.

[68] B. Monderer, G. Pacifici, and C. Zukowski, "The CyUnder Switch: an Architecture
for a Manageable VLSI Giga-cell Switch," IEEE International Conference on Com
munications, Adanta, GA, April 1990, pp. 567-571.

[69] A. Netravali, W. Roome, and K. Sabnani, "Design and Implementation of a High
speed Transport Protocol," IEEE Transactions on Communications, Nov. 1990,
vol.38:ll, pp. 2010-2024.

180



[70] H. Obara, "Distributed ATM Cross-connect Switch ArchitectureUsing Transmission
Scheduling Control," Electronics and Communications in Japan, Part I (Communi
cations), Jan. 1991, vol.74:1, pp. 55-64.

[71] H. Ohta and T. Kitami, "A Cell Loss Recovery Method Using FEC in ATM Net-
v/OTks,"IEEE Journal on Selected Areas in Communications, Dec 1991, vol. 9:9, pp.
1471-1483.

[72] E. Rathgeb, "Modeling and Performance Comparison of Policing Mechanisms for
ATM Networks," IEEE Journal on Selected Areas in Communications, April 1991,
pp. 325-334.

[73] J. Roberts, "Variable-Bit-Rate Traffic Control in B-ISDN," IEEE Communications
Magazine, September 1991, pp. 50-56.

[74] R. Robrock, 'The UitelUgent Network - Changing the Face ofTelecommunications,"
Proceedings of the IEEE, Jan 1991, vol. 79:1, pp. 7-20.

[75] H. Saito, "Optimal Queueing DiscipUne for Real-Time Traffic at ATM Switching
Nodes," IEEE Transactions on Communications, December 1990, vol. 38:12, pp.
2131-2136.

[76] H. Saito, M. Kawarasaki, and H. Yamada, "An Analysis of Statistical Multiplexing
in an ATM Transport Network," IEEE Journal on Selected Areas in Communica
tions, vol. 9, April 1991, pp. 359-367.

[77] R. Sharma, Network Topology Optimization: The Art and Science ofNetwork Design,
New York, Van Nostrand Reinhold, 1990.

[78] "Special Issue on ISDN," IEEE Communications Magazine, vol. 28, April 1990.

[79] J. Suruagy Monteiro, M. Gerla, and L. Fratta, "Input Rate Control for ATM Net
works," Queueing, Performanceand Control in ATM: Proceedingsof the Thirteenth
International Teletraffic Congress Copenhagen, Denmark, June 1991,pp. 117-122.

[80] C. Topolcic, Experimental Internet Stream Protocol, Version 2 (ST-II), InternetRFC
1190, October 1990.

[81] D. Towsely and S. Tripathi, "A Single Server Priority Queue with Server Failures
and Queue Flushing," Operations Research Letters, Aug. 1991, vol. 10:6, pp. 353-
362.

[82] T. Troudet and S. Walters, "Neural Network Architecture For Crossbar Switch Con
trol," IEEE Transactions on Circuits and Systems, Jan. 1991, vol.38:l, pp. 42-56.

[83] J. van der Rhee and F. Schoute, "ATMTraffic Capacity ModeUing," Philips Tele
communication and Data Systems Review, June 1990, vol.48:2, pp. 24-32.

[84] H. Zhang and D. Ferrari, "Rate-Controlled Static-Priority Queueing," IEEE Info-
corn'93, 1993, San Francisco, pp. 227-236.

181



[85] H. Zhang and S. Keshav, "Comparison of Rate-Based Service Disciplines," ACM
SIGCOMM'91 Conference, vol. 21:4,September 1991, pp. 113-121.

[86] L. Zhang, et. al., "RSVP: A NewResource ReSerVation Protocol," preliminary draft,
to appear in Proceedings ofACM SIGCOMM, 1993.

8.4 Rate Characteristics of Coded Video

[87] S. Huang, "Source ModelUng for Packet Video," IEEE International Conference on
Communications, 1988, pp. 1262-1267.

[88] D. Lee and S. Li, "Transient Analysis of Multi-Server Queues with Markov-Modu
lated Poisson Arrivals and Overload Control," Performance Evaluation, vol.16, #1-
3, Nov. 1992, pp. 49-66.

[89] B. Maglaris, et. al., "Performance Models of Statistical Multiplexing inPacket Video
Communications," IEEE Transactions on Communications, vol. 36, July 1988, pp
834-843.

[90] M. Nomura, T. FujU, and N. Ohta, "Basic Characteristics of Variable Rate Video
Coding inATMEnvironment," IEEE Journal on SelectedAreas in Communications,
vol. 7, June 1989, pp. 752-760.

[91] M. Zukerman, M. Leditschke, andM. Biggar, "Traffic Studies of Variable Bit Rate
Conferencing Video," International Packet Video Workshop, Kyoto, August 1991,
pp.D2.1-D2.6.

8.5 Proposals and Standards

[92] Advanced Digital Television System Description, proposal submitted to theFederal
Communications Commission bythe AdvancedTelevision Research Consortium, 27
February 1991.

[93] P. Ang, P. Ruetz, and D. Auld, "Video Compression Makes Big Gains," IEEE Spec
trum,vol. 28, October 1991, pp. 16-19.

[94] ATVA-Progressive System, proposal submitted to the Federal Communications Com
mission by theAmerican Television AUiance, February 1991.

[95] "Coding of Moving Pictures andAssociatedAudio," MPEGVideo Committee ISO-
IEC/JTC1/SC2/WG11 Draft of Standard ISO 11172,18 December 1990.

[96] DigiCipher HDTV System, proposal submitted to the Federal Communications Com
mission by General Instrument Corporation, 6262 Lusk Blvd., San Diego CA
92121, 8 June 1990.

[97] "Digital Compression and Coding of Continuous-Tone StiU Images," JPEG Commit
tee ISO-IEC/JTC1 Draft ISO 10918,1991.

[98] Digital Spectrum Compatible, proposal submitted to the Federal Communications

182



Commission by American Telephone andTelegraph (AT&T) and Zenith Electronics
Corporation.

[99] D. LeGaU,"MPEG: A Video Compression Standard for Multimedia AppUcations,"
Communications of theACM, vol. 34, April 1991, pp. 47-58.

[100] M. Liou, "Overview ofthe p x 64 kbps Video Coding Standard," Communications of
the ACM, vol. 34, April 1991, pp. 59-63.

[101] B.Markey,"HyTime and MHEG," IEEE CompCon Proceedings, February 1992, pp.
25-40.

[102] "Video Codec for Audiovisual Services atp x 64kbits," International Telephone and
Telegraph Consultative Committee (CCITT) Recommendation H261.

[103] G.WaUace, "The JPEG StiU Picture Compression Standard," Communications ofthe
ACM, vol. 34, April 1991, pp. 31-44.

[104] "Asynchronous Transfer Mode(ATM) andATM Adaptation Layer(AAL) Protocols
Generic Requirements," BeUcore Technical Advisory TA-NWT-001113, August
1992.

8.6 Other

[105] N. Behki and S. Tavares, "An Integrated Approach to Protocol Design," IEEE Pa
cific Rim Conference onCommunications, Computers and Signal Processing, June
1989, pp. 244-248.

[106] J. Buck,et. al., "The Almagest: Manual for Ptolemy", University of California, Ber
keley Electronics ResearchLabs report.

[107] T. Cover andJ.Thomas, Elements ofInformationTheory^ev/ York, John WUeyand
Sons, Inc., 1991.

[108] W. Ding, "Calculating the Parameters of a Two-Phase Markov-Modulated Poisson
Process Using Moments of theInterarrival Time,"TTG-Fachberichte, vol. 107,1989
pp. 125-130.

[109] G. Golub and C. Van Loan, Matrix Computations, Baltimore, The Johns Hopkins
University Press, 1989.

[110] H. Heffes, "A Class of Data Traffic Processes-Covariance Function Characterization
and Related Queueing Results," Bell Sys. Tech. Journal, vol. 59:6, 1980, pp. 897-
929.

[111] G. Holzmann, "Design and Validation ofProtocols: aTutorial," ComputerNetworks
andISDN Systems, April 1993, vol. 25:9, pp. 981-1017.

[112] E. Lee and D. Messerschmitt, Digital Communication, Boston, Kluwer Academic
PubUshers, 1988.

183



[113] M. Neuts, "A Versatile Markovian Point Process," Journal ofApplied Probability,
vol. 16,1979, pp. 764-779.

[114] R. Otten and L. van Ginneken, The AnnealingAlgorithm, Boston, Kluwer Academic
Publishers, 1989.

[115] S. Sheng, A. Chandrakasan, and R. Broderson, "A Portable Multimedia Terminal,"
IEEE Communications Magazine, vol. 30:12, December 1992, pp. 64-75.

[116] H. Sitaraman, "Approximation of some Markov-Modulated Poisson Processes,"
ORSAJournal on Computing, vol. 3:1,Winter 1991, pp. 12-22.

[117] M. Stonebraker, "An Overview of the Sequoia 2000 Project," COMPCON'92, Feb
ruary 1992, pp. 383-388.

[118] U. Sumita and Y. Masuda, "Analysis of Multivariate Markov Modulated Poisson
Processes," OperationsResearchLetters,vol. 12:1,July 1992, pp. 37-45.

[119] M. van Sinderen, L. Ferreira Pires, and C.Vissers, "Protocol Design And Implemen
tation Using Formal Methods," ComputerJournal, Oct 1992, vol.35:5, pp.478-491.

184


	Copyright notice 1993
	ERL-93-83

