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HYPERCHAOTIC ATTRACTORS

OF UNIDIRECTIONALLY-COUPLED CHUA'S CIRCUITS

Tomasz Kapitaniak'and Leon O. Chua

Depatrment of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA 94720, USA.

In this letter we discuss properties of hyperchaotic attractors of unidirectionally-coupled
Chua's circuits. Results from chaos synchronization theory allowed us to observe chaos-
hyperchaos transition on 3D projections of the attractor.



1. Introduction

In the last 20 years it has been shown that chaotic behaviour is typical for three

dimensional systems (see reprint collections: Cvitanovic [1984]; Hao [1986]; Kapitaniak [1992]

for a large number of examples). Chaotic attractors of three-dimensional dissipative systems are

characterized by one positive Lyapunov exponent which indicates a sensitive dependence on

initial conditions (exponential spreading within the attractor in a direction transverse to die flow).

The other two Lyapunov exponents can be either zero or negative, but the sum of all three

exponents must be negative. In higher (at least four) dimensional systems, besides chaotic

attractors, it is possible to find hyperchaotic attractors with two (or more) positive Lyapunov

exponents [Rossler, 1979; Rossler, 1983; Kaneko, 1983; Kapitaniak and Steeb, 1991; Kapitaniak,

1991; Kapitaniak, 1993]. Such attractors involve at least two directions of spreading within the

attractor in directions transverse to the flow. The evolution of the phase space volume under the

action of a hyperchaotic flow was schematically described in Kapitaniak and Steeb [1991].

In what follows we investigate the hyperchaotic attractors in a pair of unidirectionally-

coupled identical Chua's circuits whose combined equations of motion are

where

x=a(y-x-fix)) (la)
y=x-y+z+K(y-y) (">)

Z=-Py (1c)
u=a(y-u-f(u)) (Id)

v=u-v+w (le)
w=-pv (10

ycx)=&c+l(fl-«[ix+i|-|x-in

M=bu+^(a-b)l\u+n-\u-l\l
(2)

a, p, a and b are constants. The first Chua's circuit (eqs l(a-c)) is coupled to the second one



(eqs l(d-f) in such a way that the difference between the signals y and v

d(t)=K(y-v) (3)

is introduced into the first circuit as a negative feedback. K > 0 is the stiffness of the perturbation

which we consider as a control parameter.

The outline of this letter is as follows. Section 2 describes the transition from chaos to

hyperchaos in connection with the synchronization phenomenon. In Sec. 3 we present examples

of hyperchaotic attractors with more than two positive Lyapunov exponents and discuss the

robustness of hyperchaotic attractors in coupled systems. Finally, we summarize our results in

Sec.4.

2. Transition to Hyperchaos

To describe the transition from chaotic to hyperchaotic regimes we exploit some results

from chaos synchronization theory [Afraimovich, 1986; Anishchenko et al. 1991; Pecora and

Carroll 1990,1991; Endo and Chua, 1991]. When bothChua's circuits are operating in a chaotic

regime, it is possible to achieve synchronization [Kocarev et al., 1993; Kapitaniak, 1994] using

the above coupling. It was shown by de Sousa et al. [1992] that the boundary of the possible

synchronization (according to definition by Pecora and Carroll [1990, 1991]), and

nonsynchronization is strictly connected to the transition from chaotic to hyperchaotic behaviour.

In this section we exploit this property to describe this transition.

In our numerical investigation we considered the following parameter values: cc=10.0,

p=14.87, a=-1.27 and b=-0.68, i.e. in the caseof K=0 (nocoupling) the dynamics of both Chua's

circuits evolve along the double-scroll Chua's attractor [Chua et al.,1986, Chua, 1993). We chose

slightly different initial conditions for both circuits x(0)=0.010, u(0)=0.011

y(0)=z(0)=v(0)=w(0)=0. Numerical computationshave been performed using the software INSITE

[Chua and Parker, 1989].

First, we calculate the Lyapunov exponents of the attractor and its associated Lyapunov
dimension



d=jM*h (4)

where j is determined by Eji=1X^0 butEN+1i=1X<0 [Kaplan and Yorke, 1979].

The trajectories of Eqs (ld-f) are located on a 3D manifold. If the trajectories of the

whole system (la-f) are located in this 3D manifold as well (attractor is embedded in a three-

dimensional subspace of the six-dimensional phase space of Eq.(l)), then the first circuit simply

reproduces the chaotic oscillation of the second circuit In this case, all trajectories converge to

the attractor of Eqs (ld-f), d(t)->0 and both circuits synchronize. The described 3D manifold

exists for any value of the coupling stiffness K. This enables us to investigate the stability of the

chaotic limit set located in this manifold as a function of K. The spectrum of the Lyapunov

exponents of the coupled system (1) can be divided into two subsets Xll) and X(2), respectively,

along and othogonal to the manifold. The first subset of Lyapunov exponents is associated with

the second circuit (ld-f) and consists of three exponents describing the evolution of perturbations

tangent to the manifold. The Lyapunov exponents of the second subset describes the evolution

of the perturbations transverse to the manifold. For smaller values ofK at least oneA.(2)-Lyapunov

exponent is positive and the resulting limit set is no longer restricted to the manifold of the

second circuit (ld-f) and we observe a hyperchaos regime. As shown by de Sousa et al. [1992]

the X,{2)-Lyapunov exponents are equivalent to the conditional or sub-Lyapunov exponents of

Pecora and Carroll [1990] and this is why the chaos-hyperchaos transition in our system is

strictly connected with the synchronization problem.

For values of K in the interval (0,1.17) the spectrum of the Lyapunov exponents is

characterised by two positive exponents and we have a hyperchaotic evolution of the system.

For higher values of K only one exponent is positive and the evolution takes place on a smaller

3-dimensional manifold. In Figure 1 we showed the plot of the Lyapunov dimension versus the

coupling stiffness K. Figure 1 shows that the relation between the Lyapunov dimension and the

coupling stiffness parameter K is not a continuous function at the transition point from chaos to



hyperchaos, and at transitions to higher levels of hyperchaos (when new Lyapunov exponent

becomes positive) as inthe case ofthe unidirectionally-coupled Duffing's equations [Kapitaniak,

1993]. This result shows the possibility of a new route to hyperchaos where the attractor

dimension is increased by a jump at the chaos-hyperchaos transition point

For smaller values of K (K<1.17) the chaotic trajectories of of system (5) are

characterized by two positive Lyapunov exponents; one in the A,(1) -subset and the other in the

A/2)-subset so that in this case the two Chua's circuits cannot synchronize. For higher values of
K (K>1.17) there is no positive Lyapunov exponent in the a,(2) -subset and the circuits can

synchronize. In Figure 2(a,b) we showed the x-u projections of system trajectories on the x-u

plane. In Figure 2(a) we observe a single-line characteristic in the synchronization regime for

K=1.15 while in Figure 2(b) we observe a more complicated plot showing no synchonization

between the two Chua's circuits. The simplicity of the x-u projection of the attractors in this case

allows us to see the qualitative difference between chaotic and hyperchaotic attractors from these

projections. Generally, this distinction is not straightforward [Kapitaniak, 1991].

In Figure 3(a,b) weshow the x-u-z projections ofchaotic and hyperchaotic attractors. The

evolution of the projection of the chaotic attractor of Figure 3(a) takes place on a two-

dimensional (x=u) plane, while the evolution of the projection of the hyperchaotic attractor of

Figure 3(b) is strictly three-dimensional. The attractor of Fig. 3(a) is a classical double-scroll

Chua's attractor, while the attractor of Fig. 3(b) suggests a double-double scroll.

The same x-u-z projections allow us to observe the transition from chaos to hyperchaos.

The mechanism of the transition recalls classical intermittency [Pomeau and Manneville, 1980;

Kohyama and Aizawa, 1984]. The trajectory evolves on a three-dimensional manifold for a long

time and only occasionally does it burst to higher dimensions. This process can be observed in

Figure 4(a,b). In Figure 4(a) we observe how after a relatively long evolution on a 3-dimensional

manifold the trajectory leaves this manifold and tends towards one of the unstable fixed points.

Figure 4(b) shows the double-double scroll attractor shortly after its birth.

3. Higher-Dimensional Hyperchaotic Attractors

To show the robustness of the hyperchaotic attractors in the coupled-Chua's circuits we
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investigate also a chain of three unidirectionally-coupled Chua's circuits described by

x=a(y-x-flx))
y=x-y-z+K(v-y)

v=tt-v+w+A#(^-v)
w=Bv

... (5)

f^a(srrrfirfi

*rrrVi+I<(Wi)

where M and L4 are constants, i=l,2,..,N-2 and each additional Chua's circuit is coupled to the

previous one in the same way described earlier for coupling between the second and the first

circuits. In the 3N-dimensional system described by Eq. (5), where N is the number of Chua's

circuits, besides the hyperchaotic attractors with two positive Lyapunov exponents it is possible

to have attractors with more than two positive exponents. Detailed investigation of the dynamics

of system (5) will be given elsewhere. Here we only present some examples of hyperchaotic

attractors of the 3N-dimensional system (5) shown in Figure 5(a-c). In Figure 5(a) we presented

a hyperchaotic attractor with three positive Lyapunov exponents. Unfortunately in this case due

to the high-dimensionality we are unable to investigate the transition to such an attractor in the

way we observed the creation of the double-double scroll attractor.

Hyperchaotic attractors are robust in unidirectionally-coupled Chua's circuits and we can

state the following conjecture: If in a 3N-dimensional chain of Chua's circuits (5) no two circuits

synchronize with each other, then the system (5) has a hyperchaotic attractor with N positive

Lyapunov exponents.

Some examples of x-u-z projections of higher-dimensional hyperchaotic attractors are

shown in Figure 5(b,c). As the number of unstable fixed points increases with the number of

circuits, so does the number of scrolls in the attractor. Unfortunately this can be observed only

as more intense black spots on the x-u-z projection of the attractor, and for large N we will



observe only a fuzzy black ellipse in this projection.

4. Conclusions

To summarize it has been demonstrated here that two coupled Chua's circuits can exhibit

chaotic or hyperchaotic behaviours. Transition from chaotic to hyperchaotic regimes is

characterized by abehaviour similar to theclassical intennittency [Pomeau and Manneville, 1980;

Kohyama and Aizawa, 1984] phenomenon with long evolutions of the hyperchaotic trajectory on

a lower-dimensional chaotic attractor with occasional bursts to higher dimensions. This

mechanism is similar to the mechanisms observed in the coupled generalized Van der Pol's

equations [Kapitaniak and Steeb, 1991], and the unidirectionally-coupled Duffing's equations

[Kapitaniak, 1993]. The special features of the coupling introduced in this system allow us to

show that the Lyapunov dimension of the system during a chaos-hyperchaos transition is not a

continuous function of the control parameter. This propetry is different from that found in

Kapitaniak [1993] thereby pointing out the possibility of a new route to hyperchaos.

Finally we showed the way in which it may be possible to obtain hyperchaotic attractors

with N positive Lyapunov exponents in a chain of N unidirectionally-coupled Chua's circuits.
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CAPTIONS

Figure 1: Plot ofLyapunov dimension versus Kfor Eqs (1): a=10.0, (3=14.87, a=-1.27, b=-0.68.

Figure 2: x - u projection of the trajectory of Eqs (1): a=10.0, (3=14.87, a=-1.27, b=-0.68; (a)
K=1.15: synchronization between two circuits, (b) K=1.20: no synchronization.

Figure 3: Chaotic and hyperchaotic attractors of Eqs (1) shown in 3D x-u-z projection (a)
K=1.15: chaotic attractor, (b) K=0.02: hyperchaotic attractor; X,=0.43, ^=0.41, X3=0,
X4=0, ^=-3.74, A.6=-3.85.

Figure 4: Details of the evolution on hyperchaotic attractor (a) escape from 3D manifold, (b) birth
of the double-double scroll attractor.

Figure 5: Hyperchaotic attractors with N positive Lyapunov exponents for a chain of N

unidirectionally coupled Chua's circuits; K=M=L,=0.01 (a) N=3: A.,=0.41, A^O.49,
X3=0.42, A.4=0> M>> M>, V=-3.27, ^=-3.32, ^=-8.47; (b) N=4, (c) N=5, A,,=0.43,
^=0.42, ^=0.41, ?t4=0.41, ^5=0.40, *6=0> ^=0, ^=0, ^=0, X10=0, *n=-3.80, X12=-3.82,
X13=-3.82, X14=3.83, X15=-3.84.
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