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Abstract

This paper studies approximate input output decoupling ofnonlinear MIMO systems,
for those systems which exhibit numerical ill posedness or nearly singular behavior inthe
exact decoupling algorithms. Although the systems considered are regular so that the
exact decoupling algorithms are applicable in this case, they require inversion of an ill
conditioned matrix, and yield high gain feedback solutions which mayresult in actuator
saturation. The approximate algorithms are numerically robust, and provide solutions
which do not cancel far off right half plane zeros. This latter characteristic is especially
valuable when some of the far off right half plane zeros are unstable. The algorithms
are inspired by and are generalizations of some examples in the flight control literature
([7], [6], [8]).
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NAG 2-243. The authors would like to acknowledge helpful discussions with M. Di Benedetto, J. Grizzle J.
Hauser, R. Kadiyala and P. Kokotovic '



1 Introduction

The nonlinear control toolbox has grown enormously in the last decade. Central to this de
velopment is the theory of feedback linearization for nonlinear systems (see [1], [2]). This
has provided a solution to a fundamental question in imiltivariable nonlinear system design:
when is it possible to input output decouple a multi-input multi-output (MIMO) nonlinear
system? Several algorithms have been proposed in the literature for solving the problem of
exact decoupling for nonlinear MIMO systems, see for example [3], [4], [5], [1], [2]. All these
algorithms need the determination of the inverse of a so-called decoupling matrix. However,
practical implementation of these algorithms is difficult when the decoupling matrix is ill con
ditioned or close to singularity, in which case the decoupling of such systems needs excessively
large control effort. Further, the algorithm is not numerically robust since it requires the
inverse of an ill conditioned matrix.

In this paper, we proposea numericallyrobust input output decouplingalgorithm for
invertible nonlinear MIMO systems. Our efforts are motivated, in part, by the use in Hauser,
et al [6], the work of Singh [7],[8] of such techniques to aircraft flight control problems and
the work of Barbot, et al [9] with applications to models of electric motors and the Belousov
Zhabotinsky reaction kinetics. In these examples, the intuition for approximation and the
choiceof parameters to be approximated is providedby the physics of the problem. This paper
attempts to formalize the theory involved in these examplesand providean algorithm for more
general MIMO nonlinear systems, whose physical derivation may not be explicitly known by
the designer. Anather recent paper by Grizzle and Di Benedetto [10] provides approximate
decoupling algorithm for systemswhichare not decouplable by the exact decoupling algorithms
by reason of their not being regular. The approximate algorithm in this paper aims at those
systems which are regular and so decouplable by the exact decoupling algorithms, but the
numerics of the decoupling is poorly conditioned.

In addition to the numerical robustness of our approximate algorithm, it also serves
another important purpose:
The exact input output decoupling algorithm is essentially a pole-zero cancelling control law.
Thus, this law cancels zeros of the open loop system regardless of whether they are in the
left half plane or the right half plane and regardless of their magnitude. In particular the
input output decoupling control law only works for minimum phase nonlinear systems. For
systems with far off zeros, cancellation may not be necessary, since they do not play a large
role in the system dynamics and indeed may cause instability when the zeros lie in the right
half plane. In either case, cancellation of far off zeros results in high gain controllers. The
approximate decoupling algorithm does not cancel the far off zeros of the open loop system,
thereby providing reasonable gain, practically implementable solutions. The price to be paid
is the replacement of asymptotically exact tracking control laws by approximate tracking
control laws. This connection between regular perturbations of nonlinear systems and the far
off zeros was first pointed out in [11] for the Single-input Single-output (SISO) case and in
[12] for the MIMO case. Systems in which these far off zeros are in the right half plane are
called slightly nonminimum phase system in [6]. The approximate decoupling controller, in
this case, results in a stable closed loop system.

It is possible to develop several different approximate decoupling algorithms starting
from the different decoupling algorithms in the literature. The algorithm presented here is



based on the Descusse and Moog dynamic decoupling algorithm (see [3],[13]). Section 2
reviews the Descusse-Moog algorithm. In section 3, we state the approximate algorithm and
section 4 compares its convergence properties with that of the Descusse-Moog algorithm. In
many cases, input output decoupling is a first step in designing a tracking controller. Section
5 examines the effect of the approximate decoupling on the performance of tracking controller.
Application of this algorithm to linear systems is presented in section 6 for completeness.

2 Decoupling algorithms for nonlinear systems

Consider the square (i.e. number of inputs is equal to the number of outputs) Multi-input
Multi-output (MIMO) nonlinear control system described by

in,

t=i

yj = hj(x) i = l, ,m (1)

where x € £n, f(x),gi(x),---,gm(x) are smooth vector fields on 9ftn and hi(x),--,hm(x)
smooth functions on 3ftn. For convenience, these equations will be written as

y . j x = f(x)+g(x)u
Lo* \y = h(x)

Throughout the analysis, we will assume that x0 is an equilibrium point of the autonomous
system, that is f(x0) = 0. We will assume (without loss ofgenerality) that h(x0) = 0. All the
analysis in this paper will be local and will be valid in a given open neighbourhood U of x0.
We now review some algorithms for decoupling of MIMO nonlinear systems.

We assume in what follows that each output yj has awell defined relative degree 7,.
i.e. there exists an integer 7,- such that

LgiLlfhj(x) = 0 V/<7i-l, Vl<i<m, VxeU

Collecting these calculations, we have

y?
—

r L?^(x) 1
Lfh2(x)

+

" L^LJ-^x) •
L3lLJ-lh2(x) •

• L^LJ-^h^x) •
• L^Lf'h^x)

. 2/mm . . L?mM*). . Lj.iy-'M*) •• • LamLf-lhm(x) .

:= b<*)+ j i(x)u

u

(2)

A{x) is called the decoupling matrix. If A(x) is invertible at every point in U, then the static
state feedback given by

u = (A(x))-1 [-6(x) +v ] (3)



will result in a closed loop system which is decoupled from input vto output y. This decoupled
and input-output linearized system is given by

vT
y?

Vl

(4)

If the matrixA(x) is singular, we can not use a staticstate feedback to decouple the nonlinear
system ([1]), and we have to search for a dynamic state feedback to achieve input-output
decoupling:

2.1 Dynamic Decoupling

Ifdecoupling of the system Do of (1) can not be achieved by staticstate feedback, it may still
be possible to find a dynamic compensator of the form

{£ = D(x, z) + E(x, z)v
u = F(x> z) + G(x, z)v (5)

with z G9ftnc,t> € 9£m, such that the closed loop system denoted by Se (for extended system)

(6)
' & = /(») + g(x)F(x,z) + g(x)G(x,z)v

z = D(x,z) + E(x, z)v
k y = h(x)

is decoupled from i; toy. The dynamic feedback which decouples the system So of (1) is
actually a static state feedback to decouple the extended system Sc of (6). There are a
number of algorithms in the literature for dynamic decoupling. The approximate decoupling
algorithm wewill propose is based on the Descusse and Moog algorithm of ([3], [13]), We will
review the original algorithm to fix notation.

Descusse and Moog dynamic decoupling algorithm:
Define the extended system at the end of iteration k —1 to be S* having xe as its state and
equilibrium point Xq. The algorithm will start at k = 0 with the given systemSo having state
x € 9ftn and xo as its equilibrium point. The outputs of the system are unchanged during the
course of the algorithm.
Step 1: Compute the relative degrees 7^ (i £ {1, •••,m}) for the m outputs of S*. Define
the decoupling matrix Ak(xe) to have its ij th entry given by,

«&(*•) =LSiLf-%(x<)
Let rfc be the normal rank of Ak(xe) in an open neighbourhood of Xq. If r* = m, stop.
Step 2: If rje < m, define a square and nonsingular matrix Gk(xe) such that the (m—rjt) last
columns ofAk(xe) := Ak(xe) &k(xe) areidentically zero. Moreover this process can be carried
out such that there exists r* rows of which the nonzero elements form an r* x r* nonsingular
diagonal matrix.



It is shown in [3] that Gk(xe) always exists and is a smooth function of xe.

There are r* columns of Ak(xe) with non-zero elements, out of which qk columns
have two or more non-zero elements. Design a permutation matrix Pk such that the first qk
columns of Ak(xe) Pk have two or more elements non-zero, followed by the (r* —qk) columns
having only one non-zero element and finally the last (m—rk) columns having all zero elements.
Denote Gk{xe) = Gk(xe) Pk- Define an intermediate input u by:

u = [Gkix')]-1 u (7)

Step 3: The system S* now is

*e = /{*")+g(x')Gk(xe)u
y = h(xe)

Add integrators in series with the first qk inputs. This creates the new input vector u of the
form:

ux

u =
u 9fc

Uqk+1 (8)

U
m

Thus the new system after adding these integrators is:

x"

Ul 0 + (9)

L «tt j 0 u
9fc

y = h{xe)

where g(xe) = g(xe)Gk(xe). Call this system E*+i.
Step 4: Go to step 1 and resume the procedure with k <- k + 1, new state variables
xe <- {xe} U{wt}(t=it...,gfc) and new input u <- u. Let f,g,h still denote the extended f,g,h
for notational simplicity. Let Ustill denote the open set of interest containing the equilibrium
point of the extended system. •

It has been shown by Descusse and Moog that if the system (1) is right invertible
and satisfies the accessibility rank condition (cf. [2] page 86) at a?0, then the above algorithm
converges in a finite number of steps, L, to an extended system SL which is decouplable by
static state feedback.

Note: At the end of ith iteration, the above algorithm adds gt- integrators (# < rt) to the



system St\ Thus the dimension of xe increases by #.

The Dynamic Extension algorithm (cf. [1]) is similar, except it involves nonlin
ear transformations of the output space instead of the input space as in the Descusse-Moog
algorithm.

The computation of the rank of Ak(xe) will be greatly simplified if Ak(xe) satisfies
aregularity condition (see [14]), which guarantees that the normal rank of Ak{xe) is the same
as the local rank for every xe € U.

2.2 Normal Form

Let us assume that the Descusse-Moog dynamic decoupling algorithm converges after L steps
to a system of the form of (6). Let us denote this extended system by Se. Let (/c,^e, he) be
the triple characterizing Se, xe = (x, z) € &n+ne its state, uc its input and ye its output. Let
%q = (xo, Zq) be the equilibrium point of interest. This system Sc has a well defined vector
relative degree [7?,"',7ml at xo- Let 7e := E£i7,?- We can construct a local change of
coordinates </>(xe) = (£,77) with £ = col(f'), such that </>(x%) = 0, by choosing

C = «!(*,•(«•), L/.A.V).---,^'1*?^*)) (10)
:= coKfi,4-"4f)

and remaining (n+ nc —7e) complementary coordinates n. In these coordinates, Se takes the
normal form (see [1]):

a = g

€4-1 — £,*
m

yf = a
for i = 1, •••, m, where

*f«,ij) = I$hH4Tl(t,v)) l<i<m
«&«.•») = ^Lt'1M(r1U,n)) l<i,j<m

The static state feedback which decouples the system Sc is given by:

u' = (A°(t,V))-l[-b°(t,v) + v] (12)

The decoupling state feedback renders the 77 dynamics unobservable. The zero dynamics of
system Se are the dynamics of the n coordinates in the subspace { = 0 with the decoupling
feedback law of (12) (with v = 0), i.e.

T) = g(0, n) - P(0, *7)[(AC(0, r/))"1 6<(0, j,)] (13)
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For a detailed discussion of the zero dynamics and the transmission zeros of nonlinear systems
we refer the reader to [15],([1] Chapter 6), ([2] Chapter 11).

3 Approximate dynamic decoupling algorithm

The difficulty in implementing the decoupling algorithm comes from the ill-conditioning of the
decoupling matrix or from a situation in which the decoupling matrix may be non-singular
but close to singularity. To be precise, this occurs if the smallest singular value of Ae(xe) is
smaller than a certain prespecified e > 0 uniformly for x € U. In this case, the algorithm
calls for the inverse of an ill conditioned matrix. In addition to the fact that the inverse is

not numerically robust, it may cause large feedback gains in the controller and also cause the
cancellation of far-off zeros (see [12], Section 4). To alleviate these difficulties, we propose
the following numerically robustified decoupling algorithm: while the algorithm appears to
have numerical considerations in mind, it is, in fact, valuable for the reason that it does not
cancel far off right halfplane zeros and mayhelpcontrol the magnitudes of the control inputs.
To state the algorithm, recall a few basic facts and definitions about the numerical rank of a
matrix:

Definition 1 A matrix A € $tnXn is said to have e numerical rank r if

infrank{fl:||£-A||<e}=r

Thenorm in the above definition is the induced norm ofthe matrix induced by the Euclidean
norm.

Thus, thenumerical rank ofamatrix is thelowest it can drop toinaneneighborhood
ofthegiven matrix. In particular, if thematrix has (n - r) of its singular values less than e,
then its numerical rank is r.

Approximate dynamic decoupling algorithm:
This algorithm starts at k = 0 with the given system S0 having x0 as its equilibrium point.
We are given a threshold e> 0. Let the extended system at the end of iteration (k - 1) be
denoted by S* having xe as its state and xg, the corresponding equilibrium point.
Step 1: Compute the relative degrees of the outputs, namely, 7^,2 = l,...,m, and the
decoupling matrix Ak(xe). Let rk be the normal rank of Ak{xe) in U. If rk = m and if the
smallest singular value of Ak(xe) is greater than the threshold euniformly on U, stop.
Step 2: Ifall the nonzero singular values of Ak(xe) are less than euniformly on U, approximate
Ak(xe) by a zero matrix. Go to step 1 and recalculate the relative degrees 7* with this
approximation.

If r* = m, go to step 3, with Ak(xe) = Ak(xe) and Gk(xe) =/roxm.
Design a smooth, square and nonsingular matrix Gk{xe) such that the last m-rk

columns of Ak(xe) := Ak(xe) Gk(xe) are identically zero.
Step 3: If the smallest nonzero singular value of Ak(xe) is greater than the threshold e, go
to step 4, with Ak(xe) = Ak(xe) and wk = rk.

If the smallest nonzero singular value of Ak{xe) is smaller than e, then there exists
a positive integer wk(< rk) such that the erank of Ak(xe) is wk uniformly on U. i.e. (rk - wk)
nonzero singular values of Ak{xe) are less than e uniformly on U.



Design a smooth square nonsingular matrix Gk(xe) *such that

Ak(x<) =Ak(x<) Gk(x<) = [ak(x% •••, akwk(x*), eakWk+1(x% •••, e<(sc), 0,..., 0] (14)

Approximate the r* - Wk columns, which are small in norm, by identically zero columns. Go
to step 4, with

A^c) = [afM,...,a*fc(xc),0,...,0]

Step 4: Out of Wk nonzero columns of A*(xe), qk columns will have two or more nonzero
elements. Design a permutation matrix Pk such that the first g* columns of Ak(xe) Pk(xe)
have two or more non-zero elements, followed by the (wk —qk) columns having only one non
zero element and finally the last (m —Wk) identically zero columns.
Denote Gn(xe) = Gk{xe) Gk{xe) Pk. Define an intermediate input by:

«= [<?*(*e)r«

Step 5: The system S* now is

y = h(xe)

Add an integrator in series with the first qk inputs. This creates the new input vector u of
the form:

u =

* A "

UX UX
, .

• •

A

_

A

W9*+l U?fc+1

. «m . . "m

Thus the new system after adding these integrators is:

" xe ' "/(*•)+ E£i &(*•)*" "ES^ &(*•)*"
A

Ux = 0 + Ml

.«». 0
««

(15)

(16)

y = %c)

whereg(xe) = 0(xe)<3*(se). Call this system Sfc+i.
Step 6: Return to step 1 and resume the procedure with k <— k -j- 1, new state variables
xe *- {xe} U{tif}(t=if...,,fc) and new input u <- u Let /,#, /i still denote the extended /,p, h for

2The proof ofexistence of such a matrix is given in the appendix



notational simplicity. Let U still denote the open set containing the equilibrium point of the
extended system. •.

Let us assume that the approximate dynamic decoupling algorithm converges after
L steps to a system of the form of (6). Let us denote this extended system by Se- Let
(/e»5e» he) be the triple characterizing Se, xe = (x, z) its state, ue its input and ye its output.
Let Xq = (xo, zq) be the equilibrium point of interest. The system Se has a well defined vector
relative degree RJ, •••,7?] at xj. Thus we can construct a local diffeomorphism of the form
of (10) such that Se will be transformed into the normal form (£, 77) coordinates given by,

e = c0m(x'),LhhKi'),---,L%-1'hKi')) (17)
= col(|«,...4?)

and remaining (n +hc - YliLx 7f) complementary coordinates fj. In the course of the approxi
mate dynamic decoupling algorithm, we have neglected order e terms at each iteration of the
algorithm. Thus the original or exact systemin the normal form coordinates of Se will be:

d = 3

'J

for i = 1, ♦ ••, m, where

e* = «?«,*)+ £*&«.*)«; (is)

y° = g

«?(!,«) = LjM^dv)) l<i<m

Note: Ifwe substitute e= 0in the above equations (18), then we get the representation ofthe
system Se in its normal form coordinates (i,rj). The static state feedback which decouples
the system Se is given by:

Z' = (A'(ln))-l[-b°(lij) +v] (19)
If we compare the approximate and exact decoupling algorithm, we see that



•

•

If the exact decoupling algorithm converges with a decoupling matrix Ae(xe) whose
smallest singular value is greater than euniformly on £/, then the approximate decoupling
algorithm yields the same result.

If, on the other hand, Ae(xe) obtained by exact decoupling algorithm has its smallest
singular value of the order ofeuniformly on U then the decoupling control law (12) will
have terms of the order of J which will result in a high gain controller which may not
be practically feasible if the actuators have saturation limits.

The approximate decoupling algorithm isofuse if we can answer the following two questions:

1. If the given system (1) is right invertible and locally accessible (i.e. the exact decou
pling algorithm converges in L steps), then does the approximate decoupling algorithm
converge in a finite number of steps?

2. Suppose the answer to the first question is yes, then how much error do we introduce
in tracking of the reference outputs, by using the approximate decoupling and tracking
law instead of the exact one.

These questions will be answered in the following sections.

4 Convergence of approximate decoupling algorithm

The approximate decoupling algorithm isbased onthe Descusse and Moog dynamic decoupling
algorithm. Consequently, the convergence properties ofthe approximate decoupling algorithm
will be compared with that of the Descusse and Moog algorithm. Ideally the approximate
decoupling algorithm should preserve the convergence properties of the Descusse and Moog
algorithm.

The Descusse and Moog algorithm adds dynamics to the given system So, in order
to get an extended system Sl which is decouplable by static state feedback. The following
theorem ([3]), relates this notion to the nonsingularity of the decoupling matrix Al(x).

Theorem 1 System S of the form of (1) is decouplable by static state feedback, iff, the de
coupling matrix for S is invertible

The approximate decoupling algorithm converges to an extended system which is robustly
decouplable by static state feedback. This notion is defined as follows:

Definition 2 An m x m matrix A(x) is e robustly invertible in an open set U with respect
to a threshold e if the e numerical rank of A(x) is m uniformly on U.

Definition 3 A system S of the form of (1) is erobustly decouplable by static state feedback
with respect to a threshold e, if, S is decouplable by static state feedback and the decoupling
matrix A(x) is robustly invertible with respect to e.

The following lemma considers the effect ofone iteration ofapproximate decoupling algorithm
on a system which is decouplable by using the Descusse and Moog algorithm.
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Lemma 1 Suppose that the Descusse and Moog algorithm converges for a system S* of the
form of (1). Apply the approximate decoupling algorithm. After one iteration, we get the
extended system Sjt+i. One of the following is true for S*+i:

1. 7f+1 = oo for some i

2. Afc+i(x) is singular and the Descusse and Moog decoupling algorithm does not converge
for Sfc+i

3. 7fc+1 = nsfc+1 and Ak+x(x) is not robustly invertible.

4- Ak+x(x) is singular, but the Descusse and Moog algorithm converges for Sjk+i

5. i4jt+1(x) is nonsingular, not robustly invertible and~fk+1 < n%k

6. Ak+x(x) is robustly invertible

where 7*+1 = YXLx 7?+1 and n£*+i —the dimension of state space of Sjb+i.
Proof: This is a list of all the cases after application of one step of the approximate decou
pling algorithm. It is easy to check that the list exhausts all the possibilities. •.

We will analyze each ofthe above cases in detail in order to understand why in some
cases the approximate decoupling algorithm maynot converge.

While applying the Descusse and Moog algorithm, we differentiate each output until
at least one input appears on the right hand side. Some of the inputs show up earlier than
others making the decoupling matrix singular. Integrators are added in front of these inputs
to delay their appearance for at least one more step of differentiation.

Inthis process, at a particular step, some oftheinputs might beweakly connected to
the outputs, i.e. the functions multiplying them are smaller than the threshold cuniformly in
U. These functions are approximated by zero in the approximate decoupling algorithm. This
modification in the original Descusse and Moog algorithm might fail because of the following
reasons.

• Aparticular input might have almost singular functions multiplying it at each step of
the algorithm.

• At any step, the approximation might make the resulting system noninvertible.

Asystem which is decouplable by the Descusse-Moog algorithm but which is not decouplable
by the approximate algorithm is said to be t-unnormalized. Such a system can be normalized
by replacing the unnormalized inputs u{ by ^. The classification of various cases in the
previous lemma helps detect an unnormalized system in the following manner:

Recall that 7,* are the relative degrees of the outputs of S*. We have,

= bk{x) + Ak(x)u

2/mm
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rank of Ak(x) = rk. At the end of step 2, (m - rk) columns of Ak(x) are identically zero and
there is at least one nonzero element in each row of Ak(x).

At the end of step 4, some of the rows of Ak(x)Gk{x) might be identically zero
because of the approximation of (r* —Wk) columns by zero. The numberof such rows is less
than or equal to (rk —Wk). Let us denote the set of outputs corresponding to these rows by
Yk.

(wk —qk) columns of Ak(x)Gk(x) have only one nonzero element. By construction,
these nonzero elements will be in (wk —qk) different rows. Let us denote the (wk —qk) outputs
corresponding to these rows by Y*.
The remaining outputs will be denoted by J*.

The outputs of S* do not change in the process. Thus for S/b+i, we have

• 7*+1=7?,Vis.t. yieYk

• 7*+1=7/r + l,Vis.t. yieYk

• 7*+1>7Hl,Vis.t. yi€Yk

Case 1: If the only non zero entries in the ith row are in the j column, then when the jih
columnof Ak(x)Gk(x) is approximated by zero, the t** row is made identically zero, yi is only
affected by Uj, and after the approximation, Uj never appears on the right hand side again.
This makes 7*+1 = oo. The problem can be solved bynormalizing the input Uj to 2Si.
Case 2: The situation here is that Case 1 recurs, but not immediately at the end of the
k —1 st step but later in the algorithm. Thus the system S* loses invertibility because of the
approximation. Some rows of Ak+t(x) will be dependent for all / > 0. This case can also be
avoided by normalizing the jth input.

In the course of the approximate decoupling algorithm, case 2 goes unnoticed until
you reach case 3. Thus the reason for case 3 is in fact the occurrenceof case 2 during one of
the previous iterations.

If the approximate decoupling algorithm converges to a system Sl which can be
decoupled by static state feedback, the outputs yt and their respective derivatives upto the
order of (7^ —1) qualify as a partial change of coordinates. In the normal form notation these
are the { coordinates.

During each iteration of the approximate decoupling algorithm, the state space
dimension of S* is extended by qk whereas at least (m —Wk + qk) new f coordinates are
introduced. The difference between the state space dimension of S^+i and the dimension
of { coordinates decreases by (m —Wk) during each iteration of the approximate decoupling
algorithm.
Case 3: If we go through (k + l)th iteration, dimension of f coordinates will exceed the
dimension of the state space of Sfc+2. Thus we can not proceed further.
Cases 4,5 and 6 lead towards the convergence of approximate decoupling algorithm.
Now we are ready to define an unnormalized system:

Definition 4 Suppose So satisfies the hypothesis of Descusse and Moog algorithm. Apply
the approximate decoupling algorithm, for some e > 0. Let k > 0 be the smallest integer such

12



that either case 1, 2 or 3 of the previous lemma is true for S*+i. Then the systems S0 is said
to be e-unnormalized.

Theorem 2 Suppose So satisfies the hypothesis of the Descusse and Moog dynamic decoupling
algorithm. Apply the approximate decoupling algorithm for a given e > 0. Then one of the
following is true

• The approximate decoupling algorithm converges in finite steps.

• The system So is e-unnormalized.

Proof: During each step of the approximate decoupling algorithm, the difference between the
state space dimension and the dimension of £ coordinates decreases by (m —Wk). Thus if the
first three cases of the previous lemma are avoided during each iteration, the algorithm has
to converge in a finite number of steps.

The discussion following the previous lemma shows that the first three cases corre
spond to the underlying system being unnormalized. •

In general, it is not possible, a priori, to find out whether a given system is normal
ized or not. If the approximate decoupling algorithm does not converge in n steps, then the
system is unnormalized, provided it was decouplable by using the exact Descusse and Moog
dynamic decoupling algorithm.

4.1 Multiple time scale zero dynamics

Since the zero dynamics of a system does not change by addition of integrators to its input
channels ([1] page 389), or by input space transformations or by state feedback, the zero
dynamics ofS0 is same as that ofSl, where Sl istheextended system at the end ofDescusse
and Moog algorithm. The next lemma compares the zero dynamics of Sl and Sl, where
Sl is the extended system at the end of approximate decoupling algorithm. Note that the
approximate decoupling algorithm can not converge in fewer steps than the Descusse and
Moog algorithm.

Lemma 2 Suppose S0 is right inveHible (cf. [3]) and satisfies the strong accessibility rank
condition (cf. [2] page 86) at x0. Suppose the approximate decoupling algorithm converges for
this system in exactly the same number ofsteps as the Descusse and Moog algorithm. Let Sl
and Sl be the system at the end of the Descusse and Moog algorithm and the approximate
decoupling algorithms respectively. Then

L-l

dMl±L) < <M*?sJ - £(r,- - Wi)

where n denotes the zero dynamics coordinates.

Proof: During each iteration, the difference between state space coordinates and the £ coor
dinates decreases by (m - wk) for approximate decoupling algorithm and by (m - rk) for the
Descusse and Moog decoupling algorithm. After Lsteps when both the algorithms converge,
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the zero dynamics dimension is given by the difference between the state space dimension of
the extended system and the dimension of f coordinates. Thus the normal form of Sl will
have J2i=o(ri - v>i) more n coordinates than that of Sl. Hence the result. D.

Thus, in general, the zero dynamics of the extended system at the end of the ap
proximate decoupling algorithm (i.e. Se) will have smaller dimension than that of Se. We
would like to investigate the relationship between 7/g and rj^e.

Recent results in the area of singularly perturbed zero dynamics of nonlinear systems
(ref. [12], [11]) lead us to the following conclusion: Under some suitable technical hypotheses,
the zero dynamics of Se can be decomposed into two or more time scales using singular
perturbation theory (cf. [16]). The slow or reduced system is described by the zero dynamics
of Se and the dynamics which was neglected during the process of approximation constitutes
the faster time scale or boundary layer subsystem. In ([12]), the authors have proved the
above conclusion for a restricted class of two-input two-output systems. The full details
and the technical hypotheses needed to guarantee the existence of singularly perturbed zero
dynamics for this general class of systems remain to be worked out. We will conclude this
section with the following remarks:

The approximate decoupling algorithm creates an extended system which does not
include the far^ off zeros of the original system. Since the static state feedback which achieves
decoupling of Sl is a pole zerocancellation law, we do not cancel the far off zeros of S0 in the
case of the approximate decoupling algorithm. The cancellation of these far off zeros requires
a large control effort resulting in a high gain controller. If these far off zeros are unstable then
their cancellation makes the closed loop system unstable. These systems are referred to as
slightly nonminimum phase systems in [6]. Application of approximate decoupling algorithm
to slightly nonminimum phase systems, results in a stable closed loop system.

5 Approximate Asymptotic Tracking

Input output decoupling is closely related to tracking of reference trajectories by the outputs
of a MIMO nonlinear system. If the desired trajectories to be tracked fall into a restricted
class of functions, say constants or sinusoids with a finite spectrum, then we can use the
regulator theory (see [1], Chapter 7). If the class of desired trajectories is more general,
for example, functions which are N times continuously differentiable but otherwise arbitrary,
then according to [17], the decoupling controller forms an inner loop of the overall tracking
controller. If the given system is not robustly decouplable by using the exact decoupling
algorithms, then we have to use the approximate decoupling feedback. This section considers
the effects of approximate decoupling on the performance and stabilityof the overall tracking
controller.

Let us assume that the approximate decoupling algorithm converges for So giving
us the approximate extended system Se. The equations (18) with e = 0 represent Se in
its normal form (f, fj) coordinates. If the objective of the controller is to track the desired
reference trajectory yd(t) = [^(i), •••,3/<*TO(i)]T which is smooth and bounded with bounded
derivatives, we design the control input ue to be:
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ae = (A'(Z,v))-l[-b'(U) + v]

V =

Vx y% +'k-iiyT1 - 3*-i) +•••+*J(w. - fi)

»£ +«u-iGr£ ' - €&-i) +•••+offo*. - ff)
where (s^f + g^-i^-1 H 1- (70) is a Hurwitz polynomial for z= 1, •••, m.
Let us define the tracking errors to be

e[ :=i[ - ydi, \<i<m

Let us define the error coordinates for system Se to be

" 4 •
=

. $?-i.

— 1 < i < m

Thus the system Se with the feedback (20) can be expressed in (e, fj) coordinates by

e* = A*el z = l,..«,m

where A* € 3£^x^? given by

A* =

• 0 1 o ••• 0

0 0 0 0

-*i . ...
1

It can be shown (e.g. see [6]) that if

• The reference trajectory and its derivatives are bounded and small enough.

• Zero dynamics of (23) (i.e. the equilibrium point fj0 =0ofthe system)

^ =?(0,i?) +P(0,^c(0,^,0)
is exponentially stable

• q{€, V) +P(£> »7)we(|, fj, v) is locally Lipschitz continuous in £, n
then limei(i) = 0 Vi. and the states £,n remain bounded.

t too '

The controller of (20) is designed for the approximate extended system Se. If we
apply this controller to the exact system, we get the system equations in the (e, fj) coordinates
given by

e* = Atet + €F(xe)iT(xe) 1<»<

15
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(20)

(21)

(22)

(23)

(24)
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where

for some K < oo

/?' =

Oixnt

Olxm

Olxm

represents the dynamics which was neglected during the approximate decoupling algorithm.
Each /?j is 1xm row vector offunctions ofx, thefirst w0 elements ofwhich areidentically zero.

The tracking control law (20) was designed for a system ofthe form (25) with e = 0.
The following theoremshows that it works for the approximate system with nonzero eas well.
This theorem is motivated by and is similar to the one for slightly nonminimum phase systems
as in [6].

Theorem 3 //

• zero dynamics of the system (25) (i.e. the equilibrium point fj0 = 0 of the equation (24))
is exponentially stable

• The functions P*(xe)ue(xe) are locally Lipschitz continuous with ^*(xg)we(xg) = 0 Vi =
l,-..,m

• Q(£j*/) + P{£i*i)ue(£,rj,v) is locally Lipschitz continuous in |,^f,u

Then for e sufficiently small and for desired trajectories with derivatives small
enough, the states of system (25) are bounded and the tracking errors satisfy

IKII = III! - *«1 < Ke

Note: Since we know that /, </, h are smooth functions of x to start with, the functions
0%(xe)ue(xe) will be locally Lipschitz so long as the matrix Gk(xe) is a smooth function of xe
at each iteration of the approximate decoupling algorithm.
Proof:

Prom (22) and the fact that the desired trajectory and its derivatives are bounded (by 6j), we
get

Hill < Ml + bd (26)

Thetransformation which transforms Se into (|, fj) coordinates isa diffeomorphism, thus there
exits lx > 0 such that,

y»y < will+i?u)
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As the functions p*(xe)ue(xe) are locally Lipschitz continuous with Pt(x%)ue(xQ) = 0, there
exists a positive constant lp such that,

\\2Pf}{x°)u°{x°)\\ < y**|| (28)

where /?(xe) is the block diagonal matrix with 0%(xe) being its diagonal blocks.
Since the zero dynamics

fj = q(0,fj) + P{0,fj)ue(0,ij,0) (29)

is exponentially stable, by a converse Lyapunov theorem [18]
there exists, v(fj) and positive constants kxik2ik^k4 such that:

*l||*j||2 < W < *2"""2
dv
Qz[q(0,fj) +P(0,ij)u°(0,fi,0)]<k3

llflll <Ml
Thus from theexponential stability of zero dynamics and the Lipschitz continuity of q+Puk,
we get,

dv ~ ~ -* = gijli&n) +P(t,v)At,fi,v)]
dv

= jtWo,«+p(o,?V(o,v,o)]
dv " ~+ JfiW, V) +P(t, ?)«*({, V, v) - {?(0, §) +P(0, v)ti*(0, ij, 0)}]

< -Mlvll2 + kMMMW + H)

To show the states of (25) remain bounded, let

V(e,7?) = eTPe +^(7?)

be a Lyapunov function for the system (25) where P > 0 satisfies the following lyapunov
equation

ATP + PA = -I

and ^ is a positive constant to be specified later. Then

V=-\\ef+2eeTP0(x)uk(x) +̂ ij
< -IN2 + elHZ/M +*l-*»MII' +M^fllfU+ I'll)]
< "Ikll2 +e||e||W||e|| +h+||r)||) +*[-k3\\rj\? + fcltiUMM +*» +'.(INI +*«)}]
<-(^ - «W*)2 +(^/x6<()2
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Let

"(^ - (* +*W,(1 +/v))||*7||)2 +(el0lx +#4/„(l +7„))a||«||!
-^3(^ -^ 2 fc )

1 o 3-(§" ^«||e||2 - j0fcp''a
1

)2 + ^ ftWH/.))s

< -(5 - ^/x)||e||2 - (7^3 - (e/,/. +W„(l + /w))2)||vll

+(e//j/a?6d)2 + V
(M,«i + /*)):

^ =
4(//j/, + W,(l + /.))2

Then, for all ^ < ^ and all e< minty, 4^-), we have

y< fM +(fWf,/W +W (30)

Thus V < 0 whenever ||^f|| or ||e|| is large. This implies that \\fj\\ and ||e|| and also, |||||
and ||x|| are bounded. The above analysis is valid in U. Thus by choosing initial conditions
inside U and bd sufficiently small, we guarantee that the states will remain in U. Using the
boundedness of x and the continuity of /?*(x)u*(x), we see that

e*'(x) = AV + eF(x)uk(x)

are m SISO exponentially stable linear systems driven by order e input. Thus we conclude
that the tracking errors e* converge to a ball of order e •.

6 MIMO Linear systems

The analysis for linear system can be carried out in the same fashion as the nonlinear system
analysis presented in previous sections. A recent report [19] describes the software which is
developed for designing approximate decoupling controllers for linear systems. We propose a
precompensation and normalization technique which gives a controller of smaller dimension.
Start with the square linear system So of the form:

x = Ax + Bu x € ftn, u e &m

y = Cx ye$lm (31)

Assuming that each component of the output has a finite relative degree, we get,

CxA^"lB

CmA^"lB

\y? 1 " CxA-n '
•

= x +

. 2fmm . [CmA^ m
= b0x + AqU

18
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If the decoupling matrix A0 is nonsingular, then the static feedback law

u = Ao"1 [-60x + v] (33)

decouples the system into m SISO systems of chains of 7, integrators each.
If Ao is singular or close to being singular, then the application of approximate

decoupling algorithm presented in section 3 results in a numerically robust dynamical con
troller. In case of linear systems, the singular value decomposition of A* also provides the
transformation matrix Gk, thereby simplifying the implementation (cf. [19] for details).

We propose a precompensation technique for linear systems which will reduce the
computations further.

6.1 Precompensation and Normalization

If the given system So is observable in addition to being controllable and invertible, then it
is possible to precompensate for the far offtransmission zeros before applying the decoupling
algorithm. The idea is to transform the system into a canonical form in which one can identify
the individual elements responsible for the far off transmission zeros. The precompensated
system will need a controller of smaller dimension.

Recall (see [20], page. 333) that a completely observable square MIMO linear
system can be transformed into the following "canonical form"

xc = Acxc + Bcu

y = Ccxc

where xc are the states corresponding tothe moutputs yt- and their derivatives upto the order
of pi -1.

a =

ex

0

0

Ci = [10-
0

•0]

0

0

Cm

with each c,- being arow vector ofdimension pit where p{ are the observability indices ofthe
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system. Ac is in a MIMO "controllable canonical form" given by

o i :

Ac =

* * * * *******

0 1

: 1

************

The diagonal blocks are of the size pi x pi. All the other elements which are not shown are
zero except the m rows of Ac corresponding to the last row of each block which might have
nonzero elements.

Define the set ofintegers ft, i = 1, •••,mto be ft = px and ft =£j=1 #, i = 2, •••,m.
Complete controllability ofthesystem implies that the mrows of Bei corresponding to the row
numbers ft are linearly independant. Without loss of generality we assume that Sf- element
of the jth column of Bc is non zero. This means that we can control the j*h output and its
derivatives by using the jth input.

In this formulation, the structure of Bc provides important information about the
transmission zeros of the system. Let B' denote the jih column of Bc. Consider the following
two cases:

1. If for each column B*, all the elements B\ are zero except for i = ft_i + 1, •••, $j
and i = ft, V j = 1, •••, m, then

• The system So is decouplable by static state feedback.

• The m polynomials

4-.+is"-1 +4-.+2s""2 +•••+B\. =0 j =1, •••,m (34)
determinethe finitetransmission zeros of the system. The precompensation scheme
given below can then be applied.

2. If the above condition in case 1 is not valid, then

• A dynamic controller may be needed to decouple the system So-

• The precompensation scheme similar to case 1 can still be applied and works for
most of the cases. But these few exceptional cases might make a system noninvert-
ible. The categorization of all these exceptions is not as yet complete.
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Detailed calculations to establish one-to-one mapping between the neglected dynamics and
the formal structure at infinity are still to be worked out. The ongoing work on the CAD
package called AP-LIN ([21]) based on this approach will help automate the application of
this theory so that it can be easily used in practice. Although this approximate algorithm is
based on the Descusse-Moog dynamic decoupling algorithm, a similar algorithm based on the
dynamic extension algorithm (see [1], Chapter 7) can be worked out in similar fashion.

A Existence of a smooth matrix Gk{x).
A

The proofof existenceof Gk(x) is given by Descusse and Moog in [3]. Thus we have a matrix
Afc(x) whose e numerical rank is Wk and the last m —rk columns are identically zero.

Prom the definition of c numerical rank of A*(x), it is possible to find a to* x Wk
minor, say, A*(x), such that all the singular values of A*(x) are bigger than e in U. Without
loss of generality, we assume that A*(x) is the block formed by the first Wk rows and the first
Wk columns of Afc(x), and let 6(x) represent its determinant.

By definition, any minor of Ajt(x) having sizebigger than Wk, will have at least one
singular value smaller than c uniformly in U. Thus the determinant of this minor will be of
the order of e x 6(x). Thus we get,

Axj(x)

det

A*(x)

AWltj(x)

. Aa(x) ... AiWk(x) : Aij(x)
Vi€{uto + l,...,m}, V;€{u;/b + l,...,rfc}

Consider the top left rk x rk block of Afc(x). We get

6(x)Aij(x) +]T Xi(x)Au(x) =order ex 6(x), Vi G{wk +1, •••, m}, Vj € {1, •••, rk} (36)

= e 6(x) (35)

where Aj(x) is the cofactor of At/(x), calculated with respect to the top left rk x rk block of
Ak(x).
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For case 1, we can get a numerically robust controller by the following precompen
sation technique.

Precompensation: Recall that the polynomials (34) determine the finite transmission ze
ros of the system. The precompensation procedure approximates those coefficients of each
polynomial that give rise to far off zeros. The precompensation works for each polynomial
individually.

1. If all the coefficients of jth polynomial are smaller than c, then normalize the jih input
by?.

2. Divide each coefficient of the jth polynomial by B{. and denote the normalized coeffi
cients by pi" =1,pj = |f- i=ft_! +1,..., ft - 1.
Thus the normalized jth polynomial will be given by

PJi-l *Pi~l +fij-2 *PJ~2 +*' *+AS+1=0

Start with pj.„i and then examine the magnitude of these coefficients all the way upto
pj. Ignore the zero coefficients.

If the first nonzero coefficient is bigger than c, stop! This polynomial does not need
precompensation.

If there exists two positive integers fc,/ < pj\k <l such that

• bil<e> lp£+1l<«V--,W<*'-t+1
• b£-il>i

then we can approximate the first k elements of p* by zero. The approximated jth
polynomial will be given by

Thus wehave to approximate the corresponding elementsofBcby zero. This corresponds
to neglecting the transmission zeros whose real parts axe of the order of -.

7 Conclusions

A numerically robust algorithm for input output decoupling of nonlinear dynamical systems
has been proposed. This algorithm provides low gain, practically implementable controllers
which in addition does not cancel far off zeros. The use of this algorithm for a slightly non-
minimumphase system (i.e. one which has far off right half plane zeros), results in an overall
stable closed loop system. It is shown that the tracking controllers constructed by using this
approximatedecoupling algorithm result in bounded tracking with stability. Controllers based
on this theory already exist for a few specific examples in the literature and this paper can
be thought of as an attempt to formalize the techniques used in those particular examples.
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of x.

Define the elementary column operation by

1 Xi(x)

0 :

9j(x) :=

1 Arfc(x)
1 0

: 0

1 0

0 6{x)
0 1

0 1

Where 6(x) is in the jth row and column. The first rk - 1 elements in the jth column of
Ak(x)gj(x) will be zero. The rf element will be the determinant given by (36), which is of
the order of c. The rest of the elements in this column must be of the order of e, else there
will be aminor of Ak(x)gk{x) having all its singular values more than eand having more than
Wk columns and rows. This will contradict the definition of the e numerical rank of a matrix.
Thus this particular procedure makes the elements of jth column ofthe order ofcas compared
with 6(x). We can have rk - Wk matrices of these form making one column of A*(x)#(x) small
at a time. It is clear that the matrix Gk{x) will thus be nonsingular, square and a smooth
function of x.

Thus Gk(x) := Gk(x)Gk(x)Pk(x) is a square invertible matrix of smooth functions
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