

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

DORIC: DESIGN OF OPTIMIZED AND

ROBUST INTEGRATED CIRCUITS

by

Zeina Daoud

Memorandum No. UCB/ERL M93/90

15 December 1993

DORIC: DESIGN OF OPTIMIZED AND

ROBUST INTEGRATED CIRCUITS

by

Zeina Daoud

Memorandum No. UCB/ERL M93/90

15 December 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DORIC: DESIGN OF OPTIMIZED AND

ROBUST INTEGRATED CIRCUITS

by

Zeina Daoud

Memorandum No. UCB/ERL M93/90

15 December 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

To my parents and family,

for their love and their faith in me.

TABLE OF CONTENTS

Chapter 1 Introduction 1
1.1 Previous work 2

1.1.1 Deterministic Approach 2
1.1.2 Statistical Approach 2
1.1.3 Design for Manufacturability 3

1.2 The Robust Design Method 4
1.3 Thesis Organization 5

Chapter 2 Robust Design Method appliedto IC design 6
2.1 Overview of the Robust Design Method 6
2.2 Steps of the Robust Design Method 7
2.3 Error analysis in the Robust Design Method 10

Chapter 3 Description of DORIC 13
3.1 System Overview 13
3.2 Details 15

3.2.1 Pre-processor 15
3.2.2 Core 16
3.2.3 Post-processor 18
3.2.4 Confirmation stage 19
3.2.5 On balancing multiple performanceobjectives 19

Chapter 4 Examples and Results 21
4.1 Example 1: a clocked comparator 21

4.1.1 Brief circuit description 21
4.1.2 Problem definition 22

4.1.3 Results from application of DORIC 23
4.1.4 Example 1 conclusions 28

4.2 Example 2: two operational-amplifiers 29
4.2.1 Problem Definition 29
4.2.2 Results 30

Chapter 5 Conclusions and Future Plans 37

References 40

Appendix I 42

Appendix II 43

Figure 1
Figure
Figure
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

LIST OF FIGURES

System Block Diagram 14
DORIC'S System Architecture 15
DORIC pre-processor window 16
Example of a factor effect plot of power 18
Schematic of the clocked comparator 22
DORIC's post-processor: combined factor-effect plots 25
Predicted versus Measured performances 27
Class A amplifier schematic 29
Class AB amplifier schematic 30
Factor-effect plots for example 2 32
Factor-effect plots for example 2, second iteration 34
Predictedversus Measured performances at the optimal design 36

LIST OF TABLES

Table 1 Example of an orthogonal array for a 4 parameters
at 3 settings problem

Table 2 Definition of parameter settings
Table 3 Optimal parameter settings (for the comparator)
Table 4 Confirmation Runs

Table 5 Validating the models
Table 6 Improvements of the DORIC-optimized final

design over the original
Table 7 Optimal parametersettings (for class AB amplifier)
Table 8 Improvements for the class AB amplifier

8

23

26

26

28

28

33

35

ACKNOWLEDGEMENTS

My sincere gratitude goes to my advisor Professor Costas Spanos for his guidance and sup

port, which have extended beyond the scopeof this research project, to all aspects of my graduate

school experience. I also wish to thank Professor Bemhard Boser for his review of this work and

insightful comments.

Heartfelt thanks to all whohavehelped me along this path of learning: to my parents and fam

ily for their love and their faith in me, to those who haveencouraged me to express myself in

pride, to all my friends who have shared my joys and my sorrows. It is impossible to list their

namesherebut it would not have been possible for me to achieve without theirsupport.

Many people havehelped me with this project. In particular, I wish to acknowledge Sherry

Lee and Eric Boskin for theirhelp and advice, Professor John Ousterhout for his helpful discus

sions of Tcl/tk, Enrico Malavasi for his help with the circuitexamples, and Robert Neflf for shar

ing his circuits design expertise.

I also wish to thank the members of the BCAM group for the camaraderie and the continu

ouslywarm welcome I havereceived: R. Chen, S. Cunningham, H. Huang, S. Leang, S.Y. Ma, T.

Miranda, D. Rodriguez, P. Tsai, C. Yu, and past members: B. Bombay, J. Thomson, E. Wen. Spe

cial thanks to SeanCunningham, the keeperof my sanity, andDavidGreen. And last but not least,

my deep gratitude to Yasmine Akkari, Micheal Deutscher, Joan Davidson and Dr. Sheila Hum

phreys for the generosity of theirhearts andtheircontinuous encouragements.

Chapter 1

Introduction

The Robust Design Method is a technique aimed at designing high quality products at low

cost. It is based on optimizing performance, manufacturability and cost by varying certain deci

sion variables, in order to make the product less sensitive to manufacturing imperfections. Previ

ously, these variations were either ignored orstudied in an ad hoc fashion, which oftenled to long

and expensive design cycles. Using a mathematical tool called orthogonal arrays, the Robust

Design Method explores many variables in a small number of trials.

This project investigates the application of the RobustDesign Method to IC design using the

HSPICE circuit simulator, and presents adesign methodology to improve themanufacturability of

integrated circuits. The developed computer-aided design tool, DORIC (Design of Optimized

Robust Integrated Circuits) allows the user to study the effect of certain design parameters (such

as transistor sizes) and manufacturing variations (e.g. variations of the thickness of the oxide) on

specific circuit performance measures. Upon analyzing theresults, the usercan choose an optimal

setting of the decision variables.

Chapter 1

1.1 Previous work

The subject of tolerance design of integrated circuits was first studied in the early 1970s. By

the early 1980s, two main techniques had emerged: a deterministic approach and a statistical

approach [1].

Both techniques are concerned with determining the "region of acceptability" [2] of a given

design. The region of acceptability of a design is defined as a mapping of the specifications onto

the component parameter space. While the deterministic approach tries to precisely define the

boundaries of that region, statistical methods focus on a rough estimation of the acceptability

region, or at least the direction of parameter changes necessary to move towards the center of that

region (design centering) [3].

1.1.1 Deterministic Approach

The deterministic approach, one representative of which is the simplicial approximation

method (Director and Hechtel, 1977) [4][5] varies one parameter at a time, until the circuit no

longer satisfies performance requirements. By varying all parameters similarly, the boundaries of

the region of acceptability are discovered. Parameter targets are then set at the center of that

region or as close to it as possible.

The biggest disadvantages of this method are that first, statistical process variation is often

not stationary, and second, the complexity of this method increases dramatically with the number

of adjustable parameters. Because of this, it is not practical to apply the simplicial approximation

method to circuits with more than five design parameters [2].

1.1.2 Statistical Approach

The statisticalexplorationapproach to tolerance design [6] is based on Monte Carlo analysis

techniquesor the Response Surface Method. In the case of the Monte Carlo technique, the actual

circuit manufacturing variation is simulated by making random selections of componentparame

ter values, given that the values come from a known statistical distribution. Then, the performance

3 Chapter 1

ofeachresulting circuitis evaluated by means of a circuitanalysis package. The totalyield is esti

mated from the number of those circuits which meet specifications.

An important property of the Monte Carlo analysis is that the accuracy of the result is not

dependent on the number of parameters considered. Thisaccuracy, however, depends on the num

berof simulations performed andincreases with thesquare rootof thesample size. Thus thecom

putational requirements of this method inhibits its usefor exploring generally largecircuits.

The Response Surface Method [15] relies on statistical experimental design techniques such

as factorial designs, to determine a number of parameter setting combinations needed for model

ing circuit performances. The RSM requires fewer runs than the Monte Carlo analysis, but its

accuracy depends on the number of parameters considered and the typeof experimental design

used.

1.1.3 Design for Manufacturability

Early efforts in thearea ofDesign for Manufacturability (DFM) have focused onmodeling the

effectsof the variabilityof manufacturing parameters on circuit performances [7][8][9] and draw

ing conclusions about yield prediction. Little work has been done to provide designers with a

complete methodology to optimize designs forrobustness to manufacturing variations, along with

more traditional circuit performances such asspeed, power, area, etc., asearly in thedesign cycle

as possible. Moreover, it is important that such a methodology besupported and implemented by

an automated framework or a set of CAD tools. Previous work done at the University of Illinois

[10] on building an interactive statistical design tool for MOS VLSIcircuits has implemented a

"Modified Taguchi Method" (MTG) which was based on the concept of minimizing the squared-

error lossfunction. ForMTG (aswell as fora standard regression analysis), a performance model

has to bestipulated. In their example, a quadratic model was used. This introduces two types of

problems: one is that of guessing the appropriate model for every performance; and second, in

order to estimatesecond order effects, more simulations are used, even though it is not clear

whether they are necessary. Moreover, the i-EDISON [10] approach tries to optimize "automati-

4 Chapter 1

cally", leaving the designer out of the decision loop. Multi-objective optimization with subjective

trade-offs, common in actual circuit designs, is not discussed.

Due to the large cost of actual circuitexperimentation on the manufacturing line, computer-

based experimentshave been widely used [11][12]. Some of the problemsaccompanying simula

tion-based experimentations are tuning the simulator to match an actual manufacturing line [9]

and the lack of random error [10][13]. Some of these issues will be further developed in Chapter

2.

1.2 The Robust Design Method

Ourapproach consists of acomplete design methodology foroptimizingcircuitperformances

and robustness to manufacturing variations. It is computer-based, built around the circuit simula

tor HSPICE [14], andrelies on a statistical experimental design method called the Robust Design

Method.

The Robust Design Method (RDM) draws on many ideas from design of experiments in

order to plan experiments for obtaining information about variables involved in making engineer

ing decisions. Applied in the context of circuitdesign, this method does not explicitly try to define

the region of acceptability, but instead tries to find an optimal setting within the region we are

exploring. In several experimental design methods, various types of matrices were used for plan

ning experiments to study several decision variables simultaneously, like full or partial factorial

designs [15]. Among them, the RDM makes heavy use of orthogonal arrays, whose use for plan

ning experiments was first suggested by Rao [16]. The fundamental principle of RDM is to

improve the quality of a product by minimizing the effect of the causes of variations without elim

inating the causes. The RDM relies on the assumption that the model is additive and thus uses

orthogonalarraysto define the minimum subset of the design space needed to determine the main

effects of parameters. The orthogonal arrays lead to a consistently smallnumberof experiments.

5 Chapter1

In return for the small number ofexperiments,orthogonal arrays impose some assumptionson the

exploration. These will be discussed later.

The Robust Design Method was introduced by G. Taguchi in Japan, who applied it to a wide

variety of engineering problems. AT&T Bell Laboratories introduced Taguchi's method in the

United States, by applying it to improve the quality andreducethe cost of window photolithogra

phy [17]. This study proposes to apply this method to integrated circuit tolerance design as

described in Chapter 2.

1.3 Thesis Organization

Chapter 2 describes the theory of the Robust Design Method andoutlines its application to IC

design. DORIC (Design of Optimized Robust Integrated Circuits) is presented in Chapter 3 as the

CAD tool developed to support a methodology of IC design optimization based on the Robust

Design Method. In Chapter4, examples and results are shown of the use of DORIC to optimize

basic analog circuit building blocks such as a comparator and an operational-amplifier. Finally,

conclusions are summarized and future work is suggested in Chapter 5.

Chapter 2

Robust Design Method
applied to IC design

This chapter describes the Robust Design Method and how it is applied to IC design. Section

2.1 describes the fundamentals of the RDM. In Section 2.2, the details of the RDM are presented

and its application to IC design is explained. Section 2.3 discusses the topic of erroranalysis on

computer-based experiments.

2.1 Overview of the Robust Design Method

A design's performance degrades because of variations in process parameters (or noise fac

tors) though a complicated, non-linear function. While several combinations of parametervalues

may give the desired output performance under nominal noise conditions, very different perfor

mance characteristics may result under varying noise conditions. The Robust Design Method

exploits the non-linearity to find a set of design parameter values that cause the smallest deviation

of the quality characteristic from its desired target [18].

7 Chapter 2

In previouswork, optimal sets of design parameter values were found by intuition or by trial-

and-error or by performing large numbers of simulations. An attempt to study each parameter

alone and measure its effect on the product's performance can be costly and time-consuming. The

Robust Design Method explores only a subset of the design space and draws conclusions based on

the results of that subset. It uses a mathematical tool called the orthogonal array to study a large

number of decision variables with a small number of trials.

To that end, an additive model of factor effects of variables is assumed. An additive model of

n parameters ¥\ through Pn is of the form jL (aiPi). This implies that each parameter (also

called factors) has an effect that does not depend on other parameters. This assumption may, at

first, seem unjustified, since by experience,we know that many parameters interact. However, on

one hand, it is conceivable thateven though some parameters may interact, their interaction may

be small when compared to other factor effects. On the other hand, parameters thatstrongly inter

act can be lumped as one input to the Robust Design Method since a given setting of one has

direct impact on the value of the other. Moreover, the assumedmodel is of a sum of logarithmic

functions of the input parameters. Therefore, if parameters may interact, their logarithms will not

necessarily do so; log (ab) = log (a) +log (b) therefore an interaction term which might

exist in a linear response is translated to an additive term in a logarithmic response. Moreover,

even if the logarithms interact, their interaction is likely to be smaller than that of the parameters

directly. In any case, the results will showif the parameters picked by the designer have a signifi

cant interaction.

2.2 Steps of the Robust Design Method

To solve this optimization problem systematically, the problem is defined, the performances to

optimize are chosen and the varying parameters are identified. The orthogonal arrays are used to

define the matrix experiment A matrix experiment consists of a set of trials where settings of var

ious parameters (or factors) are modified from onetrial to another. Orthogonal arrays are suchthat

their columns are mutually orthogonal. For the Robust Design Method, this means that, in any

8 Chapter 2

two columns, all combinations of factor levels occur, and they occur an equal number of times.

For example, table 1 shows the orthogonal array for a problem of 4 parameters A, B, C and D,

Table 1: Example of an orthogonal array for a 4 parameters at 3 settings problem

run

number

Factor A Factor B Factor C Factor D

1 Al Bl C3 D2

2 Al B2 CI D3

3 Al B3 C2 Dl

4 A2 Bl C2 D3

5 A2 B2 C3 Dl

6 A2 B3 CI D2

7 A3 Bl CI Dl

8 A3 B2 C2 D2

9 A3 B3 C3 D3

where each parameter can take on three values (Aj, A2, A3, Bj» B2,...).

Once the orthogonal array is chosen, a quality measure, which we will call quality metric, is

calculated for every output function to optimize, for each run. Taguchi calls this metric signal-to-

noise ratio but we do not wishto confuse it withtheconceptof signalto noisein the circuitdesign

world. The quality metric (QM) for each performance, defined as appropriate ratios of perfor

mance value over its sensitivity, is an effective measure of design robustness and specification

compliance. For instance, the QM of the sensitivity of speed to changes in the thickness of the
speed

oxide (tox) is QM = 10 log (•) •sensitivity of speed to tox

The quality metric has two characteristics: first, it is defined for each performance such that

the performance is optimizedwhen the QM is maximized, regardless of whether the physical value

of the performance is maximized or minimized; second, the QM is a logarithmic function of the

performance metric. This logarithmic function aids in ensuring additivity of the model, while

reducing the effect of potential interactions between parameters.

9 Chapter 2

After the experiments dictated by the orthogonal array are completed, the factor effect of

every parameter on every output function is calculated. The factor effect of parameter P on the

output function F is defined as the amount by which P contributes to the quality characteristic of

F. The orthogonality of the experiment matrix simplifies this calculation. The factor effect FE of

the parameter P, set at level L, is computed for each performance as shown below:

FEPl = QMPl- QM

m n

fepl =(5) I Qmpl- (J) I QM
i=l i=l

where QM is the output average of all n trials (expressed in "quality metric" units or decibels

(db)) and QMp is the output mean of them trials where parameter P is set to level L. The factor

effect plot of a given function represents then a summary of that performance's variation under

the effect of each parameter setting. An example of a factor effect plot is shown in Figure 4 in

Chapter 3. The combined graphs of the factor effect plots for all the performances provide a pow

erful and concise quantitative summary of the design trade-offs. With the factor effect plots, the

designer gets a clearerunderstanding of the impact of engineering compromises on the design at

hand.

The final step of the Robust Design Method is the confirmation cycle: the designer picks a

combination of parameter settings which optimizes desired output functions. This optimal setting

combination might not be one of the trials in the experiment. Given this settingcombination, per

formance predictions can be calculated based on the factor effect model, and those values com

pared to the actual results obtained from executing the experiment at those settings.

In summary, the objective of applying the Robust Design Method to IC design is to system

atize the search in the design space needed to satisfy the many objectives of modern custom IC

design. The application is straight-forward: the designer is presented with a design to optimize,

given certain performances of interest and somenon-interacting parameters to vary. An orthogo

nal array is derived to serve as an experiment matrix. The experiments are run with the aid of a

10 Chapter 2

circuit simulation tool, such as HSPICE. Based on the factor effect plots, the designer can make a

design compromise, with quantifiabletrade-offs in mind. The only peculiarity of such an applica

tion of the Robust Design Method is the handling of the erroranalysis. Since the experiment run is

a computer simulation, the results of the experiments do not exhibit random error (due to tradi

tional experimental noise), but rather deterministic error (due to numerical lack of fit). This

implies that the interpretation of the discrepancy between a predicted performance and the mea

sured results must be slightly modified. The following section discusses how the error is handled

in the traditional Robust Design Method and how it is modified for user with computer-based

experiments.

2.3 Error analysis in the Robust Design Method

Computer-based experiments are characterized by the lack of noise or random error. The out

put of computer-based experiments is deterministically replicated with the same inputs. Therefore

traditional statisticalerroranalysis (such as R statistics) is inappropriate for deterministic experi

ments. An estimation of the error is however critical to a model because it is a measure of the

"goodness" of the model. One must be reasonably confident that once the model is built, it is pre

dicting accurate results.

In real-world experiments (as opposed to computer-based experiments), the error of a model

is of two types: a random noise error, which is responsible for real output discrepancies given

identical inputs, when the experiment is executed at different times; and a lackoffit error which is

responsible for output discrepancies between what a model predicts and the mean process

response for a given input. In real-world experiments, the assumption is that random error has the

same statisticalprofile all over the design space, it is not localized to the experiment space and can

therefore be used as a measure of the goodness of the model over the entire space. Lack of fit error

however is very dependent of the location of the experiment in the design space and therefore

cannot be a measure of the quality of the modelover the entiredesign space. Some attempts have

been made to model the deterministic output of computer-based experiments as a stochastic func-

11 Chapter 2

tions that models experiments whose replication errors are spatially correlated through the experi

mental space [19][20]. The problem with that approach is that the number of unknowns in the

stochastic model is twice the dimension of the input space [20], and this requires many additional

experimental points to fit such a model for the error.

One is tempted to resort to heuristics, such as in [10], where it was noted that "since there is

no randomness in the circuit simulation, statistical model testing will be inappropriate. Neverthe

less, the R2 statistic [...] are larger than 0.99, suggesting that [the] models fit well." The definition

of the R2 statistic, however relies heavily on statistical distributions which are only meaningful

when random error is present.

In this work, we have chosen another heuristic measure, the root-mean-squared (r.m.s.) error

of the data taken at the experimental points. It is an engineering measure of the numerical lack of

fit of the model. The r.m.s. error is actually an average of the numerical lack of fit of the model at

the points of the experiment. The heuristic assumption is that the lack of fit of the model over the

entire design space is comparable to the lack of fit of the model over the experimental points. The

root-mean-squared error is calculated as:

where n is the number of experimental points, yi is the measuredvalue of the output function y at

thei-th experiment and J| is themodel prediction for output y atthei-th experiment

We generalize the use of r.m.s. to the entire design space by assuming, that if the difference

between the predicted output and the measured output of the simulator, at any given point in the

space is less than three times the root-meansquared error of thatmodel, then the model is good. If

however the discrepancy between predicted and measured values are greater than three times the

r.m.s., then the model considered is invalid.

12 Chapter2

If the model is invalid, this implies that the form of the model is unsuitable for our application.

Given that the most restrictive aspect of our model is the assumption of additivity, an invalid

model is a most probable indication of a violation of the additivity assumption. If this is the case,

the designer has the following options:

a)lFeduce the size of the experimental space in orderto separate the interacting terms and

obtain a better fit

bj\pi<)ick an appropriate orthogonal array that can support calculation of interaction effects: cer

tain orthogonal arrays have corresponding interaction tables [18] that guide the assignment of

parameters to columns of the orthogonal array, so that specificcolumns if left unused, can help

determine the interaction effect between two othercolumns. Interaction tables only supporttwo-

parameters interaction, however, andnot allorthogonal arrays have by construction, correspond

ing interaction tables.

c)Wse another analysis technique if necessary, that takes into account interactive terms, at the

expenses of additional experimentalruns (e.g. full factorial, central composite designs, Monte

Carlo analysis,...).

Chapter 3

Description of DORIC

3.1 System Overview

DORIC (Design of Optimized and Robust ICs) is theCAD tooldeveloped to apply the Robust

Design Method described in Chapter 2 to the problem of optimizing performances of IC circuits.

DORIC is intended for IC designers who, given a functional circuit design, wish to increase the

robustness of their designs to manufacturing variations, whileensuring equivalent or better per

formances in the traditional sense (e.g. speed, power, area, etc...). A high level description of this

tool is outlined here and more details of the low level description follow in Section 3.2.

DORIC'sarchitecture is composed of three functional units: the front end pre-processor and

user interface, the core optimizer and the back end post-processorand user interface. The block

diagram of Figure 1 outlines the interaction of the designer with this system.

14

DESIGNER

Original Design

Problem Definition

Improved Design

DORIC

Post-
Processor

Optimization
Results

••*

TOOL INTERFACE

Figure 1 System Block Diagram

Chapter 3

CORE

The input to DORIC is an original design circuit schematic (in the form of a SPICE netlist).

The program is also provided with the problem statement, namely a set of performances to opti

mize and a set of variables representing the design space to be explored.The output of DORIC is

a circuit whose performancehas been optimized while its sensitivities to process variations have

been reduced.

The pre-processor userinterface helps the userspecify the problem definition. The optimiza

tion problem is internally stated and submitted to the core. Upon completion of the optimization,

the results in the form of plots are presented to the user through a graphical post-processor. Some

other features and functionalities are included in the pre-processing and post-processing module,

as discussed in the next section.

15

3.2 Details

Original
Wirelist

c Pre

Processor

interactive definition
of design space and
process performances

CORE

Wirelists

i

Figure 2 DORIC System Architecture

Results

Confirmation run

Chapter 3

Post

Processor

Figure 2 reveals DORIC's system architecture. The pre-processor and post-processor's main

tasks are to help formulate and analyze the optimization problem through a specifically designed

user interface,with additional functionality outlinedbelow.The core optimizer is divided into two

parts: the wrap-up around HSPICE which schedules the circuit simulation runs and the analysis

part which is based on the Robust Design Method.

This section details the optimization procedure flow and highlights the features of DORIC.

Four main steps are identified in optimizing a circuit with DORIC: pre-processing, coreoptimiza

tion, post-processing and the confirmation loop.

3.2.1 Pre-processor

The first step in solving the circuit optimization problem is to provide the system with the

problem definition. This includes the design(s) of interest in the form of one ormorespicedecks,

the performances to optimizeandthe design space variables to vary, aswell asthe range of values

they can take. The front end user interface (Figure 3) provides the user with an environment that

16 Chapter3

facilitates this defimtion task. Another feature of the pre-processor is to identify the smallest

orthogonal array that fits the problem at hand, and based on that determine, the expected number

of simulation runs. The number of simulation runs is the number of experiments (or rows in the

orthogonal array) or a multiple of it, if sensitivity analysis is requested. Finally, the pre-processor

translates the problem definition in a format that is understood by the core optimizer and submits

thejobtoit

Spicefiles | Parameters | Performances | LAUNCH | Cancel | Help

Thegoal of DORIC is to letcircuit designers explore several design
alternatives to create higher performance and morerobust designs,
i.e. circuits that are less sensitive to manufacturing variations. This
tool implements the Robust Design Method for usein IC design.

To start, invoke the above buttons/menus in order from left to right.

To exit, press the "Cancel" button.

Figure 3 DORIC's pre-processor window

3.2.2 Core

The optimizer's body is divided into two distinct modules: the first is the automatic HSPICE

file generator and circuit simulation, the second is the analysis module. Those two modules are

independent so as to permit replacementof one or the other with anotherequivalent module. For

instance, HSPICE can be replaced with anothercircuit simulator, or the analysis module which is

now based on the Robust Design Method can be replaced with another statistical method (facto

rial designs, Monte-Carlo simulations, etc...).

The spicefile generator inside the core creates the entire set of wirelists which are based on the

original user provided wirelist(s) and modified according to the experimental matrix (orthogonal

array). The number of wirelists is equal to the number of simulation runs determined by the pre-

17 Chapter 3

processor decided on. Next, all the spicefiles are submitted to HSPICE. DORIC currently only

supports sequential submission of HSPICEjobs, however it could lend itself very easily to paral

lel simulation submissions on remote machines across the computer network. The simulations are

run and the circuit simulator output is parsed to extract values of the performances of interest.

These raw results of the circuit simulation aresubmitted to the analysis module.

The analysis module implements the Robust Design analysis method. Sensitivities arecalcu

lated by perturbation: the sensitivity of performance P on variation in parameter x is defined as
... o AP

sensitivity S = -r- . The quality metric, defined as the logarithm of the ratio of the perfor

mance value overits sensitivity, is expressed soasto always maximizethe QM whenever the per

formance is improved. For instance, thequality metric of thesensitivity of speed to changes in the

thickness of the oxide is:

Quality Metric =10 log (. . . Spreed _,) =10 log
sensitivity of speed to Atox *

f

speed
Aspeed

V Atox

Factor effect plots are then generated and passed on to the post-processor for display and

interaction with the designer. As explainedin Chapter 2, a factor effect plot as the one shown in

Figure 4 is a graphical representation of the contribution of every parameter for each setting, to

the output performance studied.The plot is normalized so that the mean of the performance is at0

db. In the example shown below, the width of transistor ml, when set at setting 3 (which was

defined in that problem as 2 microns), contributes 0.99 db above the performance mean of the

quality metric of the power. Note once again thatthe QM is defined such that the performance is

optimized whenthe QMis maximized. Therefore, ahigher point onthe factor effectplot signifies

a better performance.

18 Chapter3

Factor Effect (in db) POWER

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

-2.00

±

12 3 12 3 12 3
width_ml width_m2 length_ml

Figure 4 Example of a factoreffect plot of power

A factoreffect plot represents the effect of each factoron a given output performance. Several

objectivescan be studied together by simultaneous consideration of multiple factor effect plots.

3.2.3 Post-processor

The post-processor's two main tasks are to display the optimization results and to support the

confirmation loop. First, the factor effect plots generated by the analysis module of the core are

displayed to the designer, representing a powerful visualtool for summarizingengineering design

trade-offs. By viewing the factor effect plots of all performances, the designer is able to select an

optimal set of parameter settings with a clear idea of which performances would exhibit the most

improvementat these setting ascompared to the original design. The user selectsa settingwith a

mouse click on the parameter level of interest The combination of parameter levels chosen may

or may not have been part of the original experimental matrix.The user is then prompted to con

firm the assumptions by engaging in the confirmation stage, or confirmation loop. Figure 6 in

19 Chapter 3

Chapter 4 represents the output of the post-processor and the action buttons that support the con

firmation stage.

3.2.4 Confirmation stage

For every combination of parameter settings, DORIC can be prompted to either provide only

performance predictions (by pressing the button "show prediction") or to predict performance

values and confirm the predictions by running the appropriate spicefile (by pressing the button

"confirm"). Performance predictionsarecalculated as the sum of the factor effect of each parame

ter at its given level on that performance. Forconfirmation, the appropriate spice wirelist is setup,

the simulation is performed, raw spice resultsarecollected and processedto obtain the actual per

formance values. The predicted performance values and the ones measured from simulation are

compared for accuracy. Potential discrepancies between predicted performances and simulation

results are explained in Section 2.3 which dealt with the details of the erroranalysis.

Several such confirmation loops can be executed if desired. The intent is not to exhaustively

explore the design space, since that would contradict the initial choice of the Robust Design

Method. However, it is recognized that many optimal designs may exist and DORIC allows the

designer to explore such alternatives and quantify the trade-offs. When a satisfactory design deci

sion is reached, the user commits the parameter choices and DORIC creates the final wirelist that

appropriately reflects the design choices.

3.2.5 On balancing multiple performance objectives

In the development of DORIC, a consciousdecisionwas made to avoid incorporating an auto

matic decision-making entity which would attemptto pick an optimal design based on some pre

defined priority criteria. We believe that the designer needs to remain involved in the decision

making loop through the confirmation stage to fully explore and understand the design trade-offs.

The tool can help by eliminating non-viable options (such as parametersettings that would be det-

20 Chapter3

rimental to all performances at once), however, the tool must not try to mask the compromises nor

bias the choice of an optimal design.

Chapter 4

Examples and Results

This chapter details the use of DORIC to improve performances and robustness of two basic

analog building blocks: a comparator and an operationalamplifier. These two examples have been

hand-optimized by expert circuit designers before the DORIC application, so any improvements

that DORIC might suggest were not overlooked by the designers. However, the tool is not

intended to have a pre-optimized application, but merelya functional design. The design method

ology we have adopted as well as some features of DORIC are highlighted below.

4.1 Example 1: a clocked comparator

4.1.1 Briefcircuit description

The clocked comparator circuit chosen for this example is shown in Figure 5. Two non-over

lappingclocks connected to inputs 13 and 14 implement set-resetphases. During the set phase,

the comparator senses input voltage difference at the differential input (transistors Ml and M2)

and amplifies it at the differential output (nodes 92, 93). During the reset phase, the output is

22

too

JMJL_, M22 JjfD IM2S

^nt df^s
82

M24

jr=3>
B4

34

18

12

'HI** ^Jh"
81

*dll ^Jl M4

200

\

SO

M25

is

»»§r

IB

=dr

lU llh
I S3 SB 15

Chapter 4

MX MS3
MS7 MSS

JOJ JfJt2

is

14

Figure 5 Schematic of the clocked comparator

brought back to zero. The biasing circuitry is implemented by transistors M3, M4, M5 and M24

and the bias current Ij is lll^iA. There is a 5 voltswing between Vdd and Vss and the capacitive

loads at the output nodes 92 and 93 are lpF each. A differential input voltage with zero common-

ground is applied to the input pair M1-M2 and is converted into a current differential. The current

is mirrored and amplified through the current mirrors and cascode configuration of transistors

M20-M26. Transistors M8-M11 act as switches to the set-reset phases and transistors M6 and M7

implement the active loads that convert the amplified currentdifferential into an outputvoltage

differential.

4.1.2 Problem definition

We are interested in reducing the sensitivity of speed and power to changes in the effective

channel length (Ld), while stillmaintaining acceptable speed and power performances. Thespeed

of the comparatorswitchingis measured from theclock (node 14) to the output (node 120)at 50%

of the final value. The parameters we chose to vary are the lengths and widths of transistors M4

23 Chapter 4

and M6, the width of transistors Ml and M10. M4 was chosen because it determines the amount

of the bias current. M6 is important because it is acting as the active load to transform the differ

ential current intodifferential output voltage. M8 and M10 act as switches for theset-reset phases.

Theparameter settings aredefined in table 2, namely thesecond setting is chosen to be theorigi

nal device size value, while the first andthird settings reflect a 1micron change.

Table 2: Definition of parameter settings

factor setting 1 setting 2 setting 3

width_Ml (in \un) 113 114 115

width_M4 (in |im) 11 12 13

width_M6 (in ^.m) 4 5 6

width_M10 (in |im) 2 3 4

length_M4 (in |im) 1 2 3

length_M6 (in Jim) 1 2 3

In DORIC, it is possible to point to specific devices that must remain equal throughout the

experiment. For instance, transistors M6 and M7 are active loads that must be matched. So when

ever the size of M6 is varied according to the settings defined in table 2, M7 is set identically.

Similarly M10 is matched to Mil, and Ml to M2 (differential input pair). Given the circuit and

these definitions offactor levels, the objective is to find a setofparameter values which optimize

thedesired output functions. It is conceivable, indeed likely, thatthere is nota unique setofvalues

that will optimize all output functions.

4.1.3 Results from the application ofDORIC

Theorthogonal array that accommodates a problem of 6 parameters each at three settings is

the matrix Ljg shown in Appendix 1. This implies that 18 simulation runs are needed to calculate

the main effects of the parameters on speed and power. However, since we are also interested in

sensitivity of speed and power to changes in the effectivechannel length, 18 additional runs

(hence a total of 36 runs) were performed in order toevaluate sensitivities byperturbing thevalue

24 Chapter 4

of Ld with respect to the original 18 runs. As a comparison, a full factorial design would have

required 2 times 36 (2 times 729) or 1458 simulation runs!

Within the framework of DORIC, the task of interactively defining the problem is taken care

of by the pre-processing module (Figure 3), which also decides on the smallest orthogonal array

neededto execute the design spacesearch. Oncethe problem definition is completed, the designer

sends the information to the core, after having confirmed the choices.

The core thenexecutes its taskwithout exposing the userto any of the theoretical and practi

cal details described in Chapters 2 and 3. The post-processor returns to the user the factor effect

plots as shownin Figure 6. The backend window contains one factor effect plot perchosen per

formance (four in our case), and theaction buttons atthebottom of thescreen. The user highlights

points on the graphs as combination input settings for the prediction or the confirmation of the

performances.

Looking across the parameters of one factor effect plot, we can pick out the best parameter

settings to optimize that function. So for instance, in order to reduce the sensitivity of speed to

changes in Ld, the length of transistor M6 hadbetterbe set to its first level (or 1 ^tm). At the same

time, we can get a measure of the relative importance of certain parameters with respect to the

output function. For instance, it is clear thatthe length of transistor M6 has a biggereffect on the

sensitivity of speed to Ld than other parameters. Moreover, the width of transistor M4 does not

havea very relevant effect on the sensitivity of power to Ld, given that all three setting produce

almost identical values, and the difference between anytwo settings is less than the magnitude of

the error bar. Table 3 summarizes the best choices of each parameter forevery performance.

25 Chapter 4

This window displaysthe factor effectvalues of all the
parameters (with various levels) on all the performances.
Qick on a point to select one level for each parameter as
input to a confirmation run.

delayl

'/*
o^o (Xoo 0*00

• * • • • • . .

w Ml w M4 w M6 w M10 1 M4 1 M6

sens_delay1jd

IA s« A *s A \
• § 1

• 1 • • « * » « •

w Ml w M4 w M6 w M10 1 M4 1 M6

power

«o*°"° Q*ou0 0-00 cho° 0*00

* * • • • ••• • • •

w Ml w M4 w M6 w M10 1 M4 1 M6

sens_powerJd

p V* f* o^° / °\
« « • • • 1 ...

w Ml w M4 w M6 w M10 1 M4 1 M6

show prediction confirm commit

Figure 6 DORIC's post-processor: combined factor-effect plots

26 Chapter 4

Table 3: Optimal parameter settings (for the comparator)

factors speed
sens_speed

_ld
power

sens_power

Jd

optimal
choices

width_Ml 2or3 any any any 2or3

width_M4 any any 1 any 1

width_M6 any any any any any

width_M10 any any any any any

length_M4 1 any 3 3 3

length_M6 3 1 any any lor 3

The last column is a selection of parameter settings that represent a few optimal design

choices. Several choice criteria could be applied to select an optimal design. For instance, on one

hand, if the designer was mostly concerned about reducing the circuit's speed sensitivity to varia

tions in the thickness of the oxide, he or she can pick the optimal choice reflecting the setting

combination that improve that performance. If, on the other hand, all performances are to be

simultaneously optimized, as is the case in this example, the parameter settings were chosen that

optimized most performances. The following confirmation runs were performed as indicated in

table 4 and the quality metric (in db) collectedfrom the output of the circuit simulator are gath

ered in Table 4, and compared to the original design (settings [2,2,2,2,2,2]).

Table 4: Confirmation Runs

run#
Input

combination

delay
(indb)

sens_delay_ld
(indb)

power

(indb)
sens_power__ld

(in db)

0 [2222222]
original

71.37 94.20 32.73 17.75

1 [212233] 71.32 91.40 33.43 22.22

2 [221131] 71.34 98.75 33.52 21.44

3 [311331] 71.33 99.51 33.62 21.58

4 [321131] 71.34 98.75 33.52 21.41

27 Chapter 4

It is not necessary to run other confirmation runs, but it is encouraged to explore some of the

options around thechosen optimal design point, in thehope of finding acombination that reduces

all the sensitivities while not hurting the design performances. We chose tothat end the settings in

confirmation run number 3. It improves the robustness and the power with litde sacrifice to the

speed of the circuit.

An example of the interface showing the predicted and measured performance values is

shown in Figure 7 for the input selection of [3,1,1,3,3,1]. Note that the discrepancy between pre

dicted and measured values (calculated inTable 5) is much less than the error margin weset for

accepting aperformance model (which was three times the root mean squared error at the experi

mental points). We are therefore reasonably confident that the models are acceptable.

SELECTION 3113 31

PERFORMANCE

Delay!

Power

PREDICTION MEASUREMENT

|71.17346db (71.33243 db

|96.02155 db (99.51399 db

Sensitivity of Delayl to delta Ld (33.66173 db (33.62111 db

Sensitivity ofPower to delta Ld |19.76890 db [21.57991 db

Done

Figure 7 Predicted versus Measured performances

28

Table 5: Validating the models

performance
difference =

1Pred - Meas 1

acceptable
error

delay 0.040217 0.473961

power 3.49244 6.851325

sens_delay_ld 0.04062 0.230679

sens_power_ld 1.81101 10.450419

Chapter 4

4.1.4 Example 1 conclusions

An optimal design is then chosen to be the one reflecting the combination [3,1,1,3,3,1]

because it improves the sensitivities over the original design [2,2,2,2,2,2], especially the sensitiv

ities of power to manufacturing variations, while still not sacrificing the traditional performances.

The improvement is further highlighted in Table 6.

Table 6: Improvements of the DORIC-optimized final design over the original

performance original optimal improvement

delay (in ns) 72.95 73.62 -0.9%

sens_delay_ld (in ns/nm) 5.2 10"3 1.5 10"3 70.8%

power (in mW) 5.33 4.34 18.6%

sens_power_ld (in mW/mm) 31.48 16.00 49.2%

In spite of the fact that our originalcomparatordesign was hand optimized before it was used

with DORIC, this methodology has successfully identified anequivalent circuit with significantly

better manufacturability and equal or better performance.

29 Chapter 4

4.2 Example 2: two operational-amplifiers

The first example illustrated some basic concepts and the use of DORIC in creating more

robust and optimized circuits. The following example expands on the methodology and shows

how DORIC (and the RDM method) supports categorical parameters, such as choices of circuit

topologies. Forthis example, some of the details of DORIC which were presented previously are

skipped. Emphasis is placed on theiterative methodology and results areshown at every stage of

the process.

4.2.1 Problem Definition

Thetwo operational amplifiers under study area class A amplifier (Figure 8) and a class AB

Figure 8 Class A amplifier schematic

amplifier (Figure9). This is meantas an illustration of DORICs feature of supporting different

choices of topology, and it is understood that designers choose between these two amplifiers

depending on their design application. The performances of interest are the following: power,

gain and their sensitivities to changes in the effective channel length (Ld) and variations in the

30

In*

20/2

Mil
rp

M9E
Vn

id

muI-Z—IImm
""J J ILiO/2

8

huILS—IImm
Bfl/2 I 1 ton

.Out

Ml

12

3

-i-IP"

20/2

M10

j

Chapter 4

In-

Figure 9 Class AB amplifier schematic

thickness of the oxide (Tox); and bandwidth. The varying parameters are the sizes of the differen

tial input (transistors Ml, matched to M2), the sizes of transistors M3 (which is matched to M4),

M8 (matched to M7) and M5 (matched to Ml6). The setting for each numerical parameter were

chosen: the original level Sq, Sq + 1 |im and Sq - l|Lim. The total parameterinput is then 7 numer

ical variables at 3 levels each and one categorical parameter (namely the topology) at 2 levels.

4.2.2 Results

The orthogonal array Ljg was used, meaning that 18 simulation runs are needed to estimate

nominal main effects. Two additional sets of 18 runs were required for perturbations of Tox and

Ld, bringing the total to 54 simulation runs for 8 parameters.

The factor effect plot is shownin Figure 10. It is clear thatthe most important parameter is the

choice of topology. This suggests that amoredetailed studyneeds to be carried out on a particular

circuit topology. Noting the trade-offof more powerconsumption for higher gain and bandwidth

31 Chapter 4

which is apparent in these factor-effect plots, we choose higher gain and bandwidth, therefore set

ting the topology to its second choice (class AB amplifier).

32

This window displays the factor effectvalues of all the
parameters (with various levels) on all the performances.
Qick on a point to select one level for each parameter as
input to a confirmation run.

power

ooo ooo ooo ooo ooo ooo ooo

• ' • • • • • «

wmlwm3wm8wm5 1ml lm8 lmtopology

sens_power_ld

ooo ooo ooo ooo ooo ooo ooo

' ' ' ' • • ' «

wmlwm3wm8wm5 1ml lm8 lmlopology

sensj3ower_tox

ooo ooo ooo ooo ooo ooo ooo

11 • • • • ' • ' ' '
• It 1 I I I

wmlwm3wm8wmS 1ml lm8 lmlopology

gam

OqO OOq M -II
•» • » • ''« •

wmlwm3wm8wmS 1ml lm8 lmlopology

sens_gainjd

oo° ooo \jf~j]
' • • '' * ' • • «•»

wmlwm3wm8wmS 1ml lm8 lmlopology

Chapter 4

33 Chapter 4

sens_gain_tox

ooo ooo ©oo ooo ooo ooo ooo

' • ' ' • « • » • ' • « • • * » ' ' '

wmlwm3wm8wmS 1ml lm8 lmlopology

bandwidth

OOO OOO Ooo OoO OOO °00 OOq

jj. •!• ••! •
'» »*

wmlwm3wm8wmS 1ml lm8 lmlopology

show prediction confirm commit

Figure 10 Factor-effect plots for example 2

A second iteration of this methodology is performed on the class AB amplifier, varying only

the transistor sizes. Figure 11 shows the new set of factor-effect plots. The individual parameter

settings to optimize one function at a time are summarized in Table 7.

Table 7: Optimal parameter settings (for class AB amplifier)

parameter power sens_P_ld sens_P_tox gain sens_GJd sens_G_tox bandwidth optimal

w_ml 3 3 3 3 3 3 1 . 3

w_m3 3 3 3 2 or 3 3 - 1 3

w_m8 - - - - - - 1

w_m5 1 1 1 1 1 1 3

Lml 1 1 1 1 1 1 3

l_m8 - - - 1 - 1 1

l_m3 1 1 1 1 1 1 3

34

This window displaysthe factor effectvalues of all the
parameters (with various levels) on all the performances.
Qick on a point to select one level for each parameter as
input to a confirmation run.

•o^ °»°

power

ooo

' * « • *
t t t t t

• * * • • •

w mlw m3w m8w mS 1 ml 1 m8 1 m3

sens power Id

•</> <**> ooo ooo \
' • ' ' ' ' ' ' ' ' • •

w mlw m3w m8w mS 1 ml 1 m8 1 m3

sens__power_tox

•^ o*° ooo \\~°\
J-JL • • ' • • •

w mlw m3w m8w mS 1 ml 1 m8 1 m3

\J? °°° oOo

gain

11 ' ' • • ' » • • • «

w_mlw_m3w_m8wjn5 ljnl l_m8 l_m3

sens gainjd

\J* ex/ °<r° \ \ <\/>
• • * ' ' • ' • • • « • * » • • • • • « »

w mlw m3w m8w mS 1 ml 1 m8 1 m3

Chapter 4

35

sens_gain__tox

\jr° 0£x> ooo

* ' • • • • t t t t t t

w mlw m3w m8w mS 1 ml 1 m8 1 m3

bandwidth

•\°-oX /A/
iii t J—L. t t i

' » '

w mlw m3w m8w mS 1 ml 1 m8 1 m3

show prediction confirm commit exit |

Figure 11 Factor-effect plots for example 2, second iteration

Chapter 4

The results of the confirmationrun at our chosen optimal point (3,3,1,1,1,1,1) are presentedin

Figure 12. We confirm that the difference between predicted and measured values is less than the

acceptable error for each performance. Table 8 highlights the improvement of the chosen optimal

design over the original hand-optimized design (2,2,2,2,2,2,2).

Table 8: Improvements for the class AB amplifier

power

(inu.W)

sens_P_ld
(injiW/

um)

sens_P_tox
(in mW/

mm)
gain

sens_GJd
(in /mm)

sens__G_tox
(in/pm)

bandwidth

(in MHz)

(2.2,2,2,2.2)
original

36.2 458.3 1.07 lO"20 126.8 71.92 1.01 10"20 3.71

(3.3,1.1,1.1)
optimal

34.8 378.2 10-20
128.6 73.0 lO'20 3.47

improvement 3.9% 17.5% 6.8% 1.5% 1.5% 0% -6.4%

36 Chapter 4

SELECTION 3 311111

PERFORMANCE PREDICTION MEASUREMENT

Power [34.58558 db [34.58305 db

Sensitivity of Power to delta Ld [8.80666 db 8.60514 db

Sensitivity of Power to delta Tox [234.58558 db 234.58305 db

DC Gain [21.10282 db 21.09083 db

Sensitivity of Gain to delta Ld (-40.07495 db |-27.53883 db

Sensitivity of Gain to delta Tox [221.10282 db 221.09083 db

Bandwidth [65.40026 db

Done

|65.40791 db

I
Figure 12 Predicted versus Measured performances at the optimal design

Chapter 5

Conclusions and Future Plans

In this report, the fundamentals of the Robust Design Method werediscussed and its applica

tion to integrated circuit design was presented. DORIC was developed as theCAD tool to support

circuit optimization based on the Robust Design Method. We showed how this experimental

design method and the use of DORIC helps improve several manufacturability and performance

characteristics of VLSI circuits.

The orthogonal experiment matrix, based on the additive model of factor effects, allows us to

study a large numberof decision variables with a much smaller numberof experiments thanwith

other statistical methods, orby trying all possible combinations of parameter settings. By examin

ingthequality metric of output functions, a few sets of optimal parameter values emerge. Confir

mation runs let the designer explore them and pick the best setting. This approach lets the

designer take into account variations in both design parameters and manufacturing processes.

The Robust Design Method provides circuit designers with an efficient, simple and system

atic way of improving their circuit performance, and increase robustness of their circuits to manu-

38 Chapter 5

facturing variations. DORIC presents a user-friendly CAD environment that supports this

methodology and summarizes the results in a powerful graphical representation.

Two practical examples illustrated the application of RDM to IC design optimization and

showed the improvements obtained as a resultof use of DORIC, over original hand-optimized

designs. Some of the advantages of RDM are the use of a minimal number of simulation runs to

explore a large design space, and the support of optimization over categorical (non-numerical)

parameters, suchastopology choices. Itsmain disadvantage is the assumption of additivity, which

is tested at the laststage of the process. Several solutions wereproposed to address this problem.

Several issues remain to be explored, some of which arehighlighted next. The following

points deal with methods for betterevaluating the additivity assumption and obtaining a measure

of the validity of the models:

• "Dummy level" technique: when parameter Pis defined at p levels is assigned to an orthog

onal array column C that can fit c levels, and p<c, theadditional levels (p-c) are called "dummy"

levels. They are usually assigned randomly to oneof the p"real" levelsof P. For example, if P has

2 levels (pi and p2) and is fit in a column of 3 levels (cl, c2 and c3), the third level c3 is set for

instance to p2. To calculate the factor-effect FE of parameter P set at level 2, the orthogonal array

rows containing c2 are usually considered. In thiscase, therows containing c3 are also mapped to

level p2 and should ideally give a factor-effect FE* equal to FE, if all parameters were trulyinde

pendent. A discrepancy between FE and FE' is an indication of the presence of interactions that

need to be identified and quantified, to get a measure of the validity of the model.

• Orthogonal array with unused columns: there are two subtleties in this point. First, some

orthogonal arrays are accompanied with interaction tables that identify which columns are con

founded with the interaction of two other columns. Such an interaction-confounding column can

strategically be picked to remain unusedin order to obtain some measure of parameter interaction,

and use it as a measure of the validity of the model. The second pointis thatany unused column

of an orthogonal array (regardless of whether it is an interaction-confounding column) can be

39 Chapter 5

viewed as representing a parameter where all the levels areequal. Thus, the "dummy level" tech

nique can be applied to all the levels which should ideally give identical factor-effect values.

The next points relate to adding general constraints to the circuits and dealing with sub-circuit

topology changes:

Adding circuit constraints: It is currently possible to assign matching circuit devices to any

parameter, such as two transistor sizes have to remain identical throughout the design search.

Sizes of matching devices aretreated as one parameter. This idea needs to be expanded to include

not just equality between the sizes but also setting a constant ratio between devices sizes that are

to be considered as one parameter. Taking this one step further, one can use this ratio as an addi-

Wtional design variable. Another form of device size constraints is specifying ratios y for agiven

transistor.

• Sub-circuit topologies: although DORIC proved successful at taking topology choices into

consideration, it has only been applied to an entire circuit topology change. A more useful feature

would be to allow selective replacement of independent sub-circuit topologies. To make this tran

sition seamless, additional functionality needs to be developed. Specifically the issue of identify

ing functionally equivalent circuit elements across topologies needs to be addressed.

We believe that DORIC sets the basis for a powerful methodology that will help bridge the

gapbetween design and manufacturing and facilitate the creation of more robust designs, whether

used as a stand-alone tool or integrated in a CAD framework.

References 40

References

[1] R. K. Brayton, G. D. Hechtel and A. L. Sangiovanni-Vincentelli, "A Survey of Optimization
Techniques for Integrated Circuit Design," Proc. IEEE, Vol. 69, No. 10, pp 1334-1363,
1981.

2] R. Spence and R. S. Soin, "Tolerance Design of Electronic Circuits," Addison Wesley, 1988.

3] J.W. Bandler and H. L. Abdel-Malek, "Optimal centering, tolerancing, and yield determina
tion via updated approximations and cuts," IEEE Trans. Circuits Syst., vol. CAD-25, pp.
853-871, Oct. 1978.

4] S. W. Director andG. D. Hachtel, "The simplicial approximation approach to design center
ing," IEEE Trans. Circuits Syst, vol. CAS-24, pp. 363-372, July 1977

5] S. W. Director and L. M. Vidigal, "Statistical Circuit Design: a somewhat biased survey,"
Proc. Eur. Conf. Cct. TheoryDesign (ECCTD), The Hague, pp 15-24,1981.

6] R. Spence, L. Gefferth, A. I. Ilumoka, N. Maratos and R. S. Soin, "The Statistical Explora
tion Approachto Tolerance Design,"Proc. IEEE Int. Conf. Ccts. Computers, New York, pp
582-585,1980.

7] W. Maly, A. J. Stojwas and S.W. Director, "VLSI Yield Prediction and Estimation: A Uni
fied Framework," IEEE Trans, on Computer-Aided Design, vol. CAD-5, no.l, pp. 114-130,
January 1986.

8] P. Cox, P. Yang, S. S. Mahant-Shetti and P. Chatterjee, "Statistical Modeling of Efficient
Parametric Yield Estimation of MOS VLSI Circuits," IEEE Journal ofSolid-State Circuits,
Vol. 20, No. 1, February 1985.

9] E. D. Boskin and C. J. Spanos, "A Method for Modeling the Manufacturability of IC
Designs," Proceedings ofIEEE Int. Conf. on Microelectronic Test Structures, vol. 6, March
1993.

10] T. K. Yu, S. M. Kang, I. N. Hajj and T. N. Trick, "iEDISON: An Interactive Statistical
Design Tool for MOS VLSI Circuits," Proceedings of Int. Conf. on Computer-Aided
Design, 1988

11] S. R. Nassif, A. J. Stojwas and S. W. Director, "Fabrics II: A Statistically Based IC Fabrica
tion Process Simulator," IEEE Trans, on CAD, Vol. 3, No. 1, pp 40-47, January 1984.

12] D. A. Antoniadis, S. E. Hansen and R. W. Dutton, "SUPREMII - A Program for IC Process
Modeling and Simulation," Report 5019-2, Stanford University, 1978.

13] J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn, "Design and Analysis of Computer
Experiments," Statist. Set, Vol. 4, pp 409-435, November 1989.

14] Meta-Software, Inc., "HSPICE Users Manual H9001," 1990.

15] G. E. P. Box, W. G. Hunter and J. S. Hunter, "Statistics for Experimenters," John Wiley and
Sons Inc., 1978.

16] C. R. Rao,"Factorial Experiments Derivable from Combinatorial Arrangements of Arrays,"
Journal ofRoyal Statistical Society, Series B, Vol. 9, pp 128-139,1947.

17] M. S. Phadke, R. N. Kackar, D. V. Speeney andM. J. Grieco, "Off-Line Quality Control in
Integrated Circuit Fabrication Using Experimental Design," The Bell System Technical

References 41

Journal, Vol. 62, No. 5, pp 1273-1309, May-June 1983.

[18] M. S. Phadke, "Quality Engineering using Robust Design," Prentice Hall, AT&T Bell Lab
oratories, 1989.

[19] M. C. Bernardo, R. Buck, L. Liu, W. A. Nazaret, J. Sacks andW. J. Welch, "Integrated Cir
cuit Design Optimization Using a Sequential Strategy," IEEE Trans, on CAD, Vol. 2, No. 3,
March 1992.

[20] Z. Daoud and C. J. Spanos, "Using Stochastic Functions for Modeling Computer-Based
Experiments," Special Issues in Semiconductor Manufacturing, Memorandum No. UCB/
ERL M92/84, chapter 8, August 1992.

[21] W. J.Welch, T. K. Yu, S. M. Kang andJ. Sacks,"Computerexperiments for quality control
by parameter design," Journal of QualityTechnology, Vol. 22, No. 1, pp 15-22,1990.

Appendix I

Orthogonal Array L18

liable 1: Experiment Matrix L18

trial topology width_out length_out widthjn

1 1 1 1 1

2 1 1 2 2

3 1 1 3 3

4 1 2 1 1

5 1 2 2 2

6 1 2 3 3

7 1 3 1 2

8 1 3 2 3

9 1 3 3 1

10 2 1 1 3

11 2 1 2 1

12 2 1 3 2

13 2 2 1 2

14 2 2 2 3

15 2 2 3 1

16 2 3 1 3

17 2 3 2 1

18 2 3 3 2

Appendix II

Quality metric definitions

Quality metrics (QM) are a measure of the quality of the performance. They are defined such

that the QM is always maximized when the performance is optimized. For example, a smaller

delay value is more desirable, so the QM is a function of the inverse of the delay.

QMspeed=10xlog(nominai delay}

QMarea=10xlog(iJL)

QMpower^Ox^gC^)
QMgain = 10 x log (gain)

QMbandwidth = 10 x log (bandwidth)

QMphase margin = 10 x log (phase margin)

To calculate the quality metric of the sensitivity of speed to variations in the thickness of the

oxide (Tox) or the effective channel length (Ld), first the sensitivity is defined as the ratio of the

change in delay to the change in Tox (or Ld).

... .. . , tox delay-nominal delay
sensitivity to tox = r : -

change m tox

Then QM of sensitivity of speed to variations in tox (or ld) is:

^sensitivity ofspeed to tox = *>' sens to tox

Similarly, to define the sensitivity of a performance to variations in the Tox or Ld, first the

sensitivity to Tox orLd is defined asthe ratio of thechange in the performance overthe change in

Tox (or Ld). Then the QM is defined with the performance to maximize on the numerator and the

sensitivity to minimize on the denominator.

Appendix HI

DORIC's software low-level design

There are 3 main parts to DORIC's system architecture (shown in Figure 1): the front end

graphical user interface, implementedin Tcl/Tk, the core implementedin C, and the back end

graphical user interface in Tcl/Tk.

From a functional point of view, the front end inputs the user problem definition, selects the

appropriate orthogonal array to use, and submits the job to the core. The core creates the SPICE

wirelists according to the orthogonal array's specifications, submits them to HSPICE, collects the

results of HSPICE, performs the analysis to come up with models and factor effect plots, and

returns to the front end. The backend is theninvoked to display the factoreffectplots and execute

the user specified confirmation runs. The pseudo-code belowillustrates how the program control

starts with the front end GUI, who calls the C-core and then calls the back end GUI. Once the

back end is invoked, the control is relinquished from the front end to the back end GUI, in order to

support event driven programs. The backend GUI is then userdriven to call specific portions of

the C code to execute the confirmation runs.

- DORIC front end (Tcl/Tk)

• creates a menuto helptheuserdefine theproblem: readsin thespicefile name(s), the per

formance^) to optimize and the parameters to vary.

• when the user is done defining the problem and wants to submit it to the core, the number

of simulation runs is estimated by selecting the appropriate orthogonalarray and the user is

prompted to acknowledge the problem definition. The results of the definition phase are written

into a file ("Inputfile").

• the problem is submitted to the core (to create_model.c), in the form of the definition file

created above ("Inputfile"). When the core program is done, it returns the factor effect plots.

• factor effect plots are submitted to the back end GUI (mkPlot.tcl) and the control is relin

quished to it.

•exit.

Table 2: DORIC front end menu choices

menu choice actions calls

SPICEFILES Specify the number of circuits to optimize and
the names of the corresponding spicefiles.

mkTopology.tcl

PARAMETERS Identify varying parameters (sizes of transistors,
resistors and capacitors), the incremental values
and their matching devices (if any)

mkSize.tcl

mkLevels.tcl

PERFORMANCES Specify performances of interest among a given
menu of traditional performances (speed,
power) and sensitivity performances (sensitivity
of speed to changes in tox)

mkPerformance.tcl

LAUNCH Submit the problem to the core program, and
when that returns, it calls up the back end for
display of factor effect plots.

mklnputConfirm.tcl
mkFilelnterface.tcl

create_model.c
mkPlot.tcl

CANCEL Exit from the entire program.

HELP Additional information

- DORIC back end (Tcl/tk)

• displays the factoreffectplotsandwaitsfor theuser inputin event-driven mode. Depending

on the user input, it calls back_end.c procedures to execute various actions: predict, confirm, com

mit or exit.

• programis exitedwhenthe userpresses on"commit"or "exit". Commitcreatesa final design

(spicefile) reflecting the user's choice, then exits, and the "exit" button simply exits.

The back end GUI calls mkSelection.tcl to read the input the user has highlighted by clicking

on the screen. It then call back_end.c with a different code for each action (code predict, code

commit, etc.). Back_end.c shares many of the procedures of create_model.c (such as parsing

spicefile inputs and outputs, etc.)

Table 3: DORIC's back end menu choices

button action

PREDICT Get the predicted values for every performance based on the models
previously derived by the Robust Design Method.

CONFIRM Creates a spicefile, runs it, gathersthe actual values of performances,
and compares then to the predicted values.

COMMIT Create a final design reflecting the user choices and exit.

EXIT Exit from the entire program.

- Core program (in C)

There are two parts in the core program that share many procedures. The first part is create_-

model.c is the one invoked from the front end in order to actually apply the Robust Design

Method implementation (run spice, create models, generate factor effect plot, etc.) The second

partis back_end.c is called from the back endGUI menus to predict, confirm or commit a design

choice. A listing of the procedures invoked by each part follows:

Table 4: Contents of the core program

calls actions

create_

model.c

inputc reads the problem definition file and creates the data structures
needed for the rest of the program

matrix_colu
mn_assign.c

assign parameters to the columns of the orthogonal array being
used.

create_

model.c

and

back_
end.c

generate_sp

icefiles.c

creates all the spicefilesby parsing and modifying the original spice
files to reflectthe orthogonal array entry levels for each parameter.
Also create the tox and ld versions of the same files if needed.

run_spice.c submits all the spicefiles to HSPICE.

read_spice_
outputx

parses HSPICE's output files (.mtOand maOfor transient and ac
analysis) looking for raw performances values.

calculate_S
N.c

calculates signal-to-noise ratios (i.e. quality metric) for every per
formance at every run.

create_

modelx

calculate_fa
ctor-

effects.c

calculates factor-effect plots of every parameter at every level, on
each performance.

error_calcul
ation.c

calculates the root-meansquared error for every performance
model. The accepted error is (as a heuristic) three times the r.m.s.

outputx creates output files containing the factor-effect plots.

back_

end.c

setup_confir
mation.c

reads the user selected input from the plots and sets up a one-row
confirmationmatrix similar to the orthogonal array.

Appendix IV

File formats

No comments, no empty lines are allowed.

• Inputfile: problem definition

• Format: line 1: n parameters

• The next n blocks are the descriptions of the n parameters:

the parameter P is a transistor width, length and a resistor or a capacitor size. Each description

contains: on the first line, the parametername (width, length, resistor,capacitor), followed by the

numbers i of incremental values this parameter can take on, followed by its name. On the next i

lines are the i actual incremental values. The last line of this descriptionspecify matching devices

and is of the form "matchings <dl> <d2>..." wheredl, d2, etc. are matching devices to parameter

P.

• next is "topology t" where t is the number of topology choices. The next t lines are the
names of the t spicefiles.

CAUTION: if the topology has more than 1choice, it is then considered a varying parameter

and the number of parameters specified on line 1 must be incremented by one!

• p performanceswherep is thenumberof performances and the next p lines are the names
of the performances.

• then is the line: "file xxx"where xxx is thename of the file containing theappropriate
orthogonal array, followed by a linecontaining the number of rowsin that array.

EXAMPLE:

3 parameters
width 3 ml

-1

0

1

matching m2

length 2 ml

-1

1

matching m2

topology 1
ab.sp

ota731.sp

3 performances
Power

Sens_Power_Ld

Gain

file: 4.3

9 rows

- SN (signal-to-noise) file: factor-effect plots

• line 1 contains only one number n: the number of performances. The next n lines have the
name of the performances, one performance per line.

• then 1 number p: the number of parameters. The next p statements are formed of 2 lines
each: 1 line for the name of the parameter, the other line for the number of levels L this param
eter can take on.

• one line containing: "SN values" followed by n groups of numbers, separated by a line
containing a 0. Each group G defines the factor-effect plot for a given performance.

• Each group G is formed of p subgroups (each subgroup represents the factor effect of a
given parameter on that performance), separated by a line containing a 0.

• Each subgroup is formed of L values whereL is the number of levels the given parameter
can take on. The only exception to that is the first subgroup in each group: it contains L+l
numbers, where the first number is the root mean squared error (which will be used to create
the error bar on the plot for that given performance) and the next L values are the actual factor-
effect values of that parameter at that level on that performance.

EXAMPLE:

2 -> 2 performances: power and sens_power_ld
power

sens_power_Jd
2 -> 2 parameters w_ml and w_m3 at 3 levels each

w ml

3

w_m3

3

SN VALUES:

6.481935e-04

-4.187336e-02

6.632154e-04

4.121015e-02

0

-1.977620e-02

6.134280e-04

1.916277e-02

0

7.239526e-04

-6.692613e-03

-2.221450e-04

6.914758e-03

0

-2.783204e-03

7.154148e-04

2.067789e-03

0

->value of the r.m.s for the power
-> factor effect of w_ml set at level 1 on the power

-> factor effect of w_m3 set at level 1 on the power

-> value of the r.m.s for the sens_power_ld
-> factor effect of w_ml set at level 1 on

sens_power_ld

•> factor effect of w_m3 set at level 3 on

sens_power_ld

Appendix V

Data structures (refer to experrah)

All data structures are dynamically allocated because, either it is not known until run-time the

number of elements in the structure, or the structure needs to be saved after the procedure has

exited (and therefore cannot be a local variable).

- Performances: There is an enumerated type "outputs" which contains the names of the per

formances P. The array of integers "Performance" is set to 1 if Performance[P] has been selected

by the user, and 0 otherwise. For example, if the user selected "Gain" then Performance[Gain] =

1. The size of the array is MAX_NUM_OUTPUTS. Although the size is fixed before run-time,

this structure is allocated because it is needed later on in the program (see "record of pointers").

-Parameters: "Param" is a dynamically allocated array of structures "parameters". The size

of the array is num_param. Each structure contains:

• the name of the factor (which is a string containing "resistor", "capacitor", "width" or
"length");

• the device name which is a string containing the unique HSPICE device name ("Rl",
"m2", etc.);

• the number of the orthogonal array column that this parameter is assigned to;

• the actual number of level settings that the parameter is defined to take on ("real_mim_-
levels");

• the number of levels that the column assigned to this parameter can take on (for example
if a parameter P which has 2 levels is assigned to a column that can take up to 3 levels, P's
real_num_levels = 2, but its num_levels = 3. Dummy levels (such as the third level in this
example, are assigned equal to the last real level; so P's dummy level 3 is equal to its real level
2);

• a dynamically allocated array of doubles (of size num_levels) containing the level values
that the parameter takes on;

• a dynamically allocated array of strings containing the names of the devices that must be
matched to this parameter.

- Spicefile name(s): "Spicefiles" is an array of strings containing the name of the original

HSPICE input files. At least one, maybe more filenames can be specified.

- Output of HSPICE: raw data: a dynamically allocated array of structures containing raw

data information gathered from the output of HSPICE. Each structure contains:

• the name of the HSPICE output ("delay1","delay2", "power", "gain",etc.);
• the performance value at the nominal tox and ld;

• the performance at incremented tox (but nominal ld);

• the performance at incremented ld (but nominal tox).

- Signal-to-Noise ratios (SN): a dynamically allocated array of structures containing the SN

values of the performances. Thesizeof thearray is equal to the actual number of performances

the user has selected, one structure per performanceselected. Each structure contains:

• the name of the performance;

• an array of n doublevalues (where n is the number of experiments), the i-th valueis the
signal-to-noise ratio ofthis performance for experiment i,ascalculated directiy from the output
of HSPICE;

• an array of n double valueswhere the i-th value is the difference between the SN_value
(defined above) and the predicted value (derived from themodel) at the i-th experiment;

• a double valueequal to the rootmean squared errorof the n experiments (calculated as
the average of the square of the n error values (defined above))

- Factor Effect values(FE): a dynamically allocated array ofstructures containing thefactor-

effect values forevery performance. The size of thearray is the number of performances theuser

selected. Each structure contains:

• the name of the performance;

• themean of the factor effect values ofallparameters at alllevels on that performance;
• a pointerto an arrayof p structures (where p is the number of parameters), one structure

per parameter. Each ofthese structures contains the name ofthe parameter and anarray ofL
factor-effect values (where Lis the number oflevels this parameter takes on) of that parameter
on that performance.

- Column mapping: a dynamically allocated array of structures to represent information

regarding the columns of the orthogonal array. Thesizeof the array is the number of columns in

the orthogonal array. Each structure contains:

• the number of levels that are used for "real" parameter levels;

• the maximum number of levels this column can support (the difference between the
"real" levelsand the max number of levelsis by definition the numberof "dummy"levels);

• an identification of the parameter that is assigned to thiscolumn, which is the parame
ter's index in the "param" array.

- Delay signal names: Currentiy, a delay/speed performance is defined as the averageof the

risetimeand the falltime. (I recommend that it be changed to simply be the risetime or falltime at

the user's wish). So each delay signal is identified by two waveform names, so d delay signals

require 2*d waveform names. The delay signal names array contains the names of the 2*d wave

form names in order to identify them when readingHSPICE's output.

- a record of pointers: A number of datastructures need to be shared between the Core pro

gram part 1 (create_modelx) and part 2 (back_endx). The way these structures get passed

through theTelscriptis by encapsulating them in a record of pointers to thesestructures, thatgets

passed as Tcl-specific "ClientData". Thedatastructures created in create_modelx that get passed

to backendx, through this "ClientData" scheme are:

• number of user-specified factors;

• number of user-specified performances;

• number of columns in the orthogonal array;

• number of pairs of delay signals;

• numberof experiments (whichequalsthe numberof rows of the orthogonalarray);
• pointer to the "Performance" array;

• pointer to the "Spicefile names" array;

• pointer to the "delay_names" array;

• pointer to the "Parameters" array;

• pointer to the "factor-effect" array.

	Copyright notice 1993
	ERL-93-90

