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Abstract

Logic Synthesis for Field-Programmable Gate Arrays
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Electrical Engineering and Computer Sciences

University of California atBerkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Short turnaround time has become critical inthe design of electronic systems. Software-

programmable components such as microprocessors and digital signal processors have been used
extensively in these systems, since they provide for quick design revisions. However, the inher
ent performance limitations ofsoftware-programmable systems make them inadequate for high-
performance designs. As aresult, designers have turned to amask-programmable hardware so
lution, namely gate arrays. Recendy, user-programmable gate arrays, called field-programmable
gate arrays (FPGAs), have emerged and are changing the way electronic systems are designed and
implemented. FPGAchips are prefabricated as arrays ofidentical programmable logic blocks with
routing resources, and are configured by the user into the desired circuit functionality. The most
popular FPGAarchitectures use either alook-up table (LUT) or amultiplexor-configuration as the
basic building block.

With the growing complexity ofthe logic circuits that can be packed on an FPGAchip,
it becomes important to have automatic synthesis tools that implement logic functions on these
architectures. Conventional synthesis approaches fail to produce satisfactory solutions for FPGAs,
since the constraints imposed by FPGA architectures are quite different. In this thesis, weexplore

the problem of logic synthesis for both LUT- and multiplexor-based architectures. The thesis is
divided into twoparts corresponding tothe twoclasses of architectures.

In the first part, wepropose algorithms tosynthesize combinational logic with aminimum

number of m-input LUTs, where each m-input LUT can realize any Boolean function of up to

m inputs. We use the widely-accepted two-phase paradigm for logic synthesis consisting of
technology-independent optimization followed by technology mapping. Technology-independent



optimization derives a minimal representation (with respect to a cost function), which is then

implemented by themapping phase on thetarget technology, in ourcase LUTs. We present LUT-

specific mapping techniques for implementing a function that has more than m inputs and for

combining functions withless than m inputs into the fewest possible LUTs. Weusethe proposed

algorithms for mapping sequential logic on to a commercial LUT-based architecture containing

sequential elements. We also investigate issues in logic optimization for LUTs. In particular, we

establish the inadequacy ofthe standard cost function andpropose anew one. The newcost function

suggests that for highquality implementations, optimization should notbetechnology-independent,

but rather shouldbe tightly integrated with mapping.

In the first part we also address the theoretical complexity issuesregarding theminimum

number of LUTs needed for a function. We derive complexity upper bounds and demonstrate that

they can beused toquickly and quite accurately predict theLUT-count without doing any mapping.

Finally, algorithms for performance optimizationare presented. Because of theconstraints imposed

by the architecture and programming methodology, the wiring delays canbe a significant fraction

ofthetotal path delay. Lacking placement information, thelogic-level delay modelscannot handle

wiring delays. Ourcontribution is to solvethe problem by coupling logic-level optimization with

timing-driven placement of the LUTs.

In the second part, ourmaincontribution is to demonstrate that forobtaining highquality

solutions on multiplexor-based architectures, the mapping algorithm should use a multiplexor-

based representation for the functions instead of the conventional NAND-based one. Efficient

architecture-specific algorithms to constructandmap the representation aregiven.

Inbothparts ofthe thesis,theoretical results regarding theoptimalityofvarious algorithms

are presented. These algorithms have been implemented in a system called mis-fpga, and are

compared with those developed by other researchers. On average, 10-30% improvement in the

solution quality is obtained, establishing the effectiveness of our techniques.

Pror. AiJDerto sancjiovanni-vincenteiii
Thesis Committee Chairman
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They both disappear into the rabbit's burrow. After a few minutes, the rabbit returns, alone, to his

typewriter and resumes typing. Soon,a wolfcomesalong and stops to watch the hardworking

rabbit.

Wolf: "What's that you're writing?"

Rabbit: "I'm doing a thesis on how rabbits eat wolves."
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Rabbit: "No problem. Do you want to see why?"

1lifted, without permission, from acomputer newsgroup
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Chapter 1

Introduction

1.1 Motivation

When faced with the task of designing the next generation processor, the designers of

company A first comeup withasystemdescription ofthe processor. It includes detailed description

of the instruction set, the interface with the external world, design objectives andconstraints, etc.

Then, using years of expertise in integrated-circuit design, they produce an implementation that

meets the design objectives. In order to verify that the implementation is functionally correct (for

example, on fetching and executing an ADD instruction, the correct sum is produced), sequences

of input values are applied, and it is checked if the desired outputs are generated. Very likely, the

processor is a huge and complex design, and so cannot be tested exhaustively. After achieving a

reasonable degree of confidence in the correctness, the designers send the design for fabrication.

In due time, say a month, the chip comes back from the foundry and is tested again to verify that

it works as expected. This time it is much faster to simulatethe same set of test vectors, so many

more can be used, and more functionality can be tested for. If the chip fails, it is due to either a

manufacturingdefect, in which casethe chip is discarded, or the non-exhaustivetesting doneearlier

on. If the latter,the faulty partof the circuitis identified and fixed, and the modified design is resent

for fabrication.

Consider anotherscenario in which the chip passesall the tests, but duringthe fabrication,

it is decided that one new instructionshouldbe addedto the instructionset. The design-fabrication-

test cycle has to be repeated here as well, as shown in Figure 1.1 (A).

After some iterations, the processor chip is finally ready to be shipped - however, the

entire cycle may have taken a year or two. If a rival company B is also working on a similar
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Figure 1.1: Conventional vs. programmable design methodology

processor, it is crucial for A to have its processor hit the market first. This is in accordance with

acardinal principle of the 20</l century economics, namely, whoever enters the market first (with

the right product) captures it for the first few years at least, when most of the profit is to be made.

It becomes critical then to minimize the design-manufacture-test cycle time. One way of doing

so is to use programmable hardware. The components of this hardware lie uncommitted on an

already fabricated chip, and can be programmed by the user to implement any kind ofdigital circuit.

This methodology eliminates the dependence of the manufacturing/mask process from the design

process. In fact, chip fabrication is removed from the cycle, reducing the cycle time from months

to hours. This alternate methodology is shown in Figure 1.1 (B). Regardless of whether the final

implementation is done on programmablehardware, the entiredesign process is sped up. Moreover,

if the hardware is reprogrammable, the design changes can be made at no added expense.

Although programmability offers significant benefits, it introduces some disadvantages.

The current programming technology (i.e., the method by which connections are formed) requires

much larger area than the metal lines, causing lower logic densities. In addition, it introduces



1.2. DESIGNING VLSI CIRCUITS 3

series resistance and parasitic capacitance, degrading the overall device performance. Given these

inherent limitations, it is not feasible (at least today)to implementa complex,high speed processor

using the programmable technology. However, functional prototyping and design modifications can

be carried out using the programmablehardwarebefore the final design is sent for fabrication.

Now that the manufacturing step has been bypassed effectively (at least in the first few

iterations), the design process itself, which traditionally has been a manual process, can become

a bottleneck. With the growing complexityof the digital circuits, a complete manual design is a

cumbersome and slow process, and is out of question. Therefore, automaticsynthesistools that start

with a specificationof the design and produce a satisfactoryimplementation on the programmable

device are required. This thesis addresses issues in designing such tools, lb put this work in a

proper perspective, we first survey the design process, and then the programmable devices.

1.2 Designing VLSI Circuits

The design of digital systems, especially very large scale integrated (VLSI) systems, is a

complex process, and for convenience's sake, is dividedinto the followingsteps, as shown in Figure

1.2.

Design Specification: The desired behavior of the system is specified at some level of abstraction.

InFigure1.2,a two-bitcomparatorthatcompares a = (a\, 02)and6 = (61,62). andgenerates

out = 1 when a > b, is described by its behavior.

High Level Design: This stage transforms the design specification into a description that uses

memories, adders, register files, controllers, etc. This description is called the register-

transfer level, or RTL,description. If thedesignis toobig, it is partitionedinto smallerpieces

to reduce the overall complexity. Depending on the design objectives and constraints, this

step determines how many functional units (e.g., adders, multipliers, multiplexors (MUXes))

and registers should be used, at what time steps these elements should be exercised (e.g.,

memory reads and writes, selecting the 0 data input of the MUX, etc.). For the comparator,

this step corresponds to generating the Boolean equation specifying the dependence of out

on inputs a and 6.

LogicDesign: The RTL description is firstoptimized for an objective function, such as minimum

chip area, meeting the performance constraints, low power, etc. This step is called opti

mization. The optimized representation is then mapped to some primitive cells present in a
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Figure 1.2: The design process
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library. This final implementation is in terms of interconnections of gates, functional units,

and registers. For the comparator,a simple interconnectionof gates of the library is obtained.

PhysicalDesign: The locationsof variousmodules on the chip are determined (placement), and

the interconnectionsof the circuit are routed betweenor through the placed modules. Also,

the pad locations for inputs and outputs are determined in this step. The final layout is sent

for fabrication.

Someof these stepsmay haveto be iterated on if the final implementation doesnot meetthe design

objectives.

With the growing complexity of the integrated circuits, it becomes essential to use auto

matictoolsforthesesteps. Thesetoolsarenotonlyfaster, butcanalsoexplore largerdesignspaceas

compared to a human designer, potentially generating betterdesigns. As of today, computer-aided

design (CAD) tools exist for highlevel,logic,and physical design.

The subject matter of this thesis pertains to automation of the logic design step, also

called logic synthesis. Logic synthesis takes the circuit description at the register-transfer level

and generates an optimal implementationin terms of an interconnection of logic gates. Typically

synthesis is done for an objective function, such as minimizingthe cost of the design (which may

be measured by the area occupied by the logic gates and interconnect),minimizing the cycle time,

minimizing the power consumed, or making the implementation fully testable.

1.3 Programmable Devices: Field-Programmable Gate Arrays

Short turnaround time has become critical in the design of electronic systems. Software-

programmable components such as microprocessors and digital signal processors have been used

extensively in these systems, since they provide for quick design revisions. However, the inher

ent performance limitations of software-programmable systems makes them inadequate for high-

performance designs. As a result, designers turned to a mask-programmable hardware solution,

namely gate arrays. However, they do not offer the flexibility of user-programmability, and the

manufacturing time is still a bottleneck.

The user-programmable hardware devices are prefabricated as arrays of identical pro

grammable logic blocks with routing resources, and are configured by the user into the desired

circuit functionality. Consequently, turnaround time is much smaller. This makes them attractive

for rapid system prototyping. A subclass of these devices is the reprogrammable devices - those
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Figure 1.3: An m-input LUT

that can be programmed any number oftimes. Reprogrammability reduces the overhead for making

design changes. Broadly speaking, the user-programmable devices can be broadly classified into

two categories:

1. Programmablelogic devices (PLDs), and

2. Field-programmable gate arrays (FPGAs)

t ... •. ^PLDs are typically interconnectionsof programmable logic arrays (PLAs) [11]. Com

monly used PLD architectures are those offered by A.M.D., Altera, and Plus Logic. FPGAs, on

the other hand, have fine-grain logic blocks or gates (gate-array). Examples of such architectures

are the Xilinx [88] and Actel architectures [29].

The basic FPGA architecturesshare a commonfeature: repeated arrays of identical logic

blocks. A logic block (or basic block or logicmodule) is a versatileconfigurationof logic elements

that can be programmed by the user.

13.1 Block Structures

There are two popular categories of FPGA block structures, namely Look-Up Table-

based (LUT) and multiplexor-based; the resultingarchitecturesare called LUT-based and MUX-

based architectures respectively.

Look-Up Table-based Architectures

The basic block of an LUTarchitectureis a look-up table that can implement any Boolean

function of up to m inputs, m > 2. For a given LUT architecture, m is a fixed number. In

commercial architectures, m is typically between3 and 6. Figure 1.3 shows an m-input LUT, also
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Figure 1.4: An SRAM with 3 address lines implements a3-input function f(x\, x2i x3)

written as m-LUT. Anm-LUT is typically implemented bystatic random access memory (SRAM)

that has m address lines and 1 data line. The following example illustrateshow an m-LUT can

implement any Boolean functionof up to m inputs.

Example 13.1 Letm be3. Consider f(x\, x2,33) = xi'xjx^' + x\ x2x^ + xix2x3. Consider an

SRAM that is1 bit wide and has 3 address lines. To implement f, first tie the address lines ofthe

SRAM tox\, X2, andx3, anditssingle-bitoutput data line tof. The entries inthe SRAM arestored

asfollows, f evaluates tolforx\ = 0, xi = 0, and x3 = 0. This corresponds tostoring a 1at the

address (x\, x2,x3) = (0,0,0). This is shown inFigure 1.4. For other input combinations, Os or

Is can bestored appropriately. So, the data line of the SRAM gives the value off corresponding

to the input combinationpresent at theaddress lines.

In commercial LUT-based architectures, each basic block hasoneor more LUTs, along

possibly with other logic elements (such as flip-flops, fast carrylogic, etc.). For example, Figure

1.5 shows the basic block of the Xilinx 3090 architecture, also called a configurable logic block

(CLB). It has 6 external inputs a, 6,c, rf, e, and DIN, andhas twooutputs X and Y. Theheart of

theCLB is the LUT section, which consists oftwo4-input LUTs withoutputs F andG. Since there

are, in all, seven inputs to the LUT section, thetwoLUTs have some common inputs. Thisimposes

constraints on the possiblefunction pairsrealizable by the LUT section. For designing sequential

circuits, the CLB has two flip-flops QX and QY, whose outputsare fed back to the LUT section.

The outputs X and Y of the CLB can be either F or G (i.e., the outputs are unlatched), or QX or

QY (i.e., the outputs are latched).

Multiplexor-based Architectures
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Figure 1.6: Two logic modules from Actel: actl and act2

In the MUX-based architectures, the basicblockis a configuration of multiplexors [29].

Figure 1.6 shows the basic blocks of two architectures, actl and actl, from Actel. actl has three

2-to-l MUXes, configured in a balanced tree, with an OR gate feeding the select line of MUX3.

act2 is similar, except that MUXl and MUX2 share their select lines, which is the AND of two of

the module inputs.

1.3.2 Realizing Interconnections

The interconnections between the blocks have to be programmed in order to realize the

desired circuit connectivity. Interconnectcan be eitherreprogrammable or one-time programmable.
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Direct Interconnect

Figure 1.7: Interconnection structure in Xilinx 3090 architecture

Figure 1.7 shows the three kinds of interconnects present in Xilinx 3090:

1. Directinterconnect: connects the outputof a CLB to an input of the adjacent CLB.

2. Generalpurpose interconnect: realizes arbitrary connections usingmetal segmentsjoined by

reprogrammable pass transistors (switching matrix).

3. Longlines: run across the chip; mainlyused for clocks and global signals.

In the Actel architectures, thereare rowsof logicmodules,which are separatedby routing

channels, as shown in Figure 1.8. The routing channels contain metal segments, which can be

connected by one-time programmable anti-fuses.

1.3.3 Logic Synthesis for Field-Programmable Gate Arrays

The problemof synthesisfor PLDs is similarto the PLA-optimization problem,which is

well-understood and for which good quality software tools exist (e.g. ESPRESSO [11]). Since

FPGA devices are relatively new, the synthesis problem for them has not beenstudied untilvery

recently. The main constraints in synthesizing circuits onto these architectures are:

1. a limited number of blocks on a chip (e.g., the Xilinx 3090 chip has 320 CLBs),

2. the functionality of the block, i.e., what functions can be put on a block, and

3. limited wiring resources.
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Figure 1.8: Actel architecture

Given a circuit description, say in terms of Boolean equations, the problem is to realize

it using basicblocks of the target FPGA architecture, meeting some design objectives. It is this

problem that this thesis addresses.

1.4 Thesis Overview

The thesis is in two parts. The first one addresses the synthesis problem for LUT-based

architectures, andthe secondthe synthesis problem forthe MUX-based architectures. Specifically,

• Chapter 2 first introduces the basic terms used in the thesis, the problem of logic synthesis,

and then motivates this research.

• Chapter3 describes mapping techniques for combinational logic for the smallest design for

LUT-based architectures. A small design is approximated as the one that uses the minimum

number of basic blocks.1 Although most of these techniques target the m-LUT of Figure

1.3, which is the simplest LUT architecture, we also show how to use them as a core in the

techniques for some of the commercial architectures, e.g., Xilinx 3090.

• Chapter4 describes techniques for optimization forcombinational logic forminimum number

of basic blocks for LUT architectures. This work is still in its infancy, and a lot more needs

to be done.

'Thisviewignores routing considerations and pinlimitations.
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• Chapter 5 deals with the problem ofdetermining the minimum number of LUTs needed for a

circuit (called its complexity). Computing the complexity is useful because then the absolute

quality of the FPGA synthesis tools can be ascertained. Unfortunately, this is a difficult

problem. The next best alternativeis to determine lower and upper bounds on the complexity.

If these bounds arereasonablygood, they canbe used to predict the table-count without doing

any technology mapping.

• Chapter 6 addresses the problem of sequential synthesis for LUT-based architectures; in

particular, we describe a few mapping algorithms. Although the algorithms are quite general,

the current implementation is for a specific family, namely Xilinx 3090.

• Chapter 7 presents performance-oriented synthesis methods for LUT architectures. A two-

phase approach is followed. In the first phase, timing driven transformations are applied at

the logic level. An approximate delay model is used. In the second, timing driven placement

and local resynthesis are performed. The delay information is obtained from a more accurate

delay model that takes the wiring delays and fanout loading into account.

• Chapter 8 describes techniques for combinational mapping for minimum number of basic

blocks for MUX-based architectures. Although we primarily deal with Actel's actl architec

ture, same techniques can be used for other architectures, e.g., act2.

• Chapter 9 summarizes the contributions of this work and presents directions for future work.

• Finally, Appendix A briefly describes the commands used in the software system we have

implemented based on the algorithms described in the thesis.
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Chapter 2

Background

2.1 Definitions

First, we define some basic terms pertaining to combinational circuits, namely those

circuits whose outputs donotdepend onthepasthistory, butjuston thecurrent values of theinputs.

Then, we present definitions for sequential circuits, namely those circuits whose outputs depend

on the past as well as current inputs. Sequential circuits need memory elements to remember the

history. They also have a combinational part to compute the output functions based on the current

inputs and the past history.

2.1.1 Logic Functions

Definition 2.1.1 Let B = {0,1}. An n-input, completely specified logic function / isa mapping

f : Bn -> B. Each element in the domain Bn is called a minterm of f. /_1(1) = {v e Bn :

f(v) = \}is the on-set off, and f~l (0) = {v € Bn : f{v) = 0} the off-set off.

If alltheminterms of / areinitson-set, i.e., /(v) = 1forallv e Bn, / isa tautology (oridentically

1),andis alsowritten/ = 1or / = 1. Similarly, if /(v) = 0 forall v e Bn, f = 0, or / is identically

0,or/ = 0.

Definition 2.12 An n-input, incompletely specified logic function / is a mapping f : Bn -»-

{0,1, -}. /-1(-) = {v € Bn : f(v) = -} is the don't care set (or dc-setj off. It contains

mintermsfor which thefunction value is unspecified (i.e., allowed to be either0 or 1).

In this thesis, the term "function" means a logic function.



14 CHAPTER 2. BACKGROUND

Definition 2.13 The complement of a logic function /, denoted f, is a logicfunction obtained

by exchanging theon-set and off-setof f.

Definition 2.1.4 A literal is a variable or itscomplement. Acube or a product term c is aproduct

or conjunction ofone or more literals,such thatifx appearsin theproduct, x' does not,and vice

versa.

A literal a (a') represents thesetof allminterms forwhich thevariable a takeson thevalue 1 (0). A

cube represents the intersection of the sets of minterms represented by all the literals in it If some

variableand its complement are present, the cubebecomesidentically0. Also, if a variable appears

complemented in a cube, it is said to be in the complemented or negative phase. Otherwise, if it is

present uncomplemented, it appears in the uncomplementedor positive phase.

Forexample, considertwo cubes ab and a'b'c' in the variable space {a, 6,c}. The cube ab has 2

literals,namely a and 6, whereas the cube a'b'c' has 3 literals a', 6', and c'. The cube abcontains

twominterms: abc and abc', whereas a'b'c' contains just oneminterm, namely a'b'c'.

Definition 2.1.5 A cube c\ contains another cube c2 (c2 C c\) if theset ofminterms represented

by c2 is a subset ofthe set ofminterms represented by c\.

Definition 2.1.6 An implicant ofafunction is aproduct term that doesnotcontain anyminterm of

theoff-set ofthefunction. Animplicant is prime if it is notcontained byanyotherimplicantofthe

function.

Definition 2.1.7 A sum-of-products (SOP) isa Boolean sum or disjunction ofcubes.

An SOP represents the unionof sets of minterms represented by the cubes in it. For example,

ab' + a'bc' is anSOP with 2 cubes and 5 literals. It contains three minterms in thevariable space

{a, b,c},namely, ab'c, ab'c', and a'bc'.

Definition2.1.8 Acover Cofafunction f is anSOP which contains all the minterms ofthe on-set

off, but nonefrom itsoff-set. A cover Cis a prime coveroff if it consists only ofprimes.

A logic function can have many covers.

Definition 2.1.9 A cube c ofa cover Cofafunction f is a redundant cube ifC - {c} is stilla cover

off, i.e., ifc covers onlythose vertices that are either covered byother cubes ofC, or belong to the

dc-set. A cover Cis a redundant cover ifsomecubein it is redundant, otherwise it is irredundant.
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Definition 2.1.10 A sum term (also an OR term; is a Boolean sum or disjunction of literals. A

product-of-sums (POS; is a product ofsumterms.

Forexample, a + b+ c'anda' + b' + c are sum terms, and (a + 6+ c')(a'+ 6' + c) is a POS.

Definition 2.1.11 The cofactor of a function f(xiix2i...1xn) with respect to a variable x\ is

fxx(*2, •••»z„) = /(l, rc2,..., xn), i.e., / wte x\ is tied to 1. Similarly, fXl>(x2l..., xn) =

/(0, «2,..., xn). The Shannonexpansion off(x\ ,x2,..., xn)with respect to X{ is

f = xtfXi + xi%. (2.1)

Definition 2.1.12 Afunction f is monotone increasing in a variable xt if fXi»(P) = 1 implies

fxi(P) = 1for all (3 € Bn~l, i.e., if increasing the value of the variable Xifrom 0 to 1 never

decreases thevalueoff from1 to 0. Similarly, afunction f is monotone decreasing in a variable

xi iffxi(P) = 0 implies /*,•'(/?) = Ofor all (3 € Bn~l. Thefunction f is unate invariable st if
it is either monotone increasing or monotone decreasing in x,-. Otherwise, f is binate in a?t. The

function f is unate if it is unate in all its variables. A cover C is unate in a variable zt if the

variable X{ appears in only onephase, eitherpositiveor negative, butnot both, in C. Otherwise, C

is binate in z,-. A cover C is unate ifit is unate in all the variables.

As shown in [11], a function that has a unate cover is unate. However, a unate function can have a

binate cover. For example, / = ab+ c is unate, but its cover abc+ abc' + c is binate, since c occurs

in it in both positive and negative phases.

Definition 2.1.13 A Booleanfunction f(x\, x2,..., xn) is calledsymmetric (or totally symmet

ric,) if it is invariant under anypermutation of its variables. It is called partially symmetric in

the variables Xi,Xj, 1 < i,j < n, if the interchange of the variables X{, xj leaves thefunction

unchanged.

Forexample, f\ (x, y, z) = x'yz + xy'z+ xyz' is symmetric. f2(x, y, z) = xyz + x'y'z is partially

symmetric in thevariables x and y,since xyz + x'y'z = yxz + y'x'z. However, f2 is notpartially

symmetricin the variablesx and z, because xyz + x'y'z ^ zyx + z'y'x.

Definition 2.1.14 A factored form is defined recursively asfollows:

• a literal is afactoredform,
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• the sum oftwofactoredforms is afactoredform, and

• theproductoftwofactoredforms is afactoredform.

Afactored form isa generalization ofSOP thatallows arbitrary nestingofoperations. Forexample,

(a + 6) + c and ((a + b)c') + (de') are twofactored forms with 3 and 5 literals respectively. In

Chapter 5, we will introduce a more general notion of factored form.

So far, we have been talking about a single logic function. Usually, a circuit has more

than one outputs. This leads us to the notion of multiple-output functions.

Definition 2.1.15 An n-input, Ar-output function / isa mapping f : Bn -»• Bk.

Definition 2.1.16 A multiple-outputfunctionis represented as a Booleannetwork [12]. A Boolean

network -n is a directed acyclic graph (DAG;, with some primary inputs PI(r}),primary outputs

PO(rj), and internal (intermediate) nodes IN(rj). Primaryinputs have noarcs coming into them,

andprimary outputs haveno arcsgoingoutof them. Associated with each internal node i ofthe

network is a variable yi, and representation of a logicfunction fi. The logic at each nodeis stored

typically as a sum-of-productsform. There is a (directed) arcfrom node i to node j in the network

ifj uses yi or y/ explicitly in the representation offj. Inthat case, i is called a fanin of j, and j

a fanout of i. The set offanins of a node i is denoted as FI(i) andthe set offanouts as FO(i).

If there existsa pathfrom node i to nodej, then i is said to be a transitive fanin of j, and j a

transitive fanout ofi. The set of transitivefanins of a node i is denoted as TFI(i), whereas its

transitivefanout set is denoted as TFO(i). The net driven by node i is the setof edges of the type

(hf°),f°ZFO(i).

Figure2.1 showsa networkwith four primary inputsa, 6,c, and d,one primaryoutput z, and three

internal nodes y, w, and z. The primary inputs and output nodes are drawn as squares, and the

internal nodes as circles, a and bare fanins of y, and z is the fanout of y. The function associated

with y is fy (also written y) = ab. TFI(z) = {a,6,c,d, tw, y]. TFO(b) = {w, y, z}.

Definition 2.1.17 The binary decision diagram(BDD; ofafunction f{x\, x2,..., xn) is a rooted

directed acyclic graph (DAG,) with vertex set V containing two types ofvertices. A non-terminal

vertex v has as attributes an argument index(v) G {1,2,..., n], and two children, low(v) and

high(u) € V. A terminal vertex v hasa value, value(v) € {0,1}.
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w = bc

Figure 2.1: A Boolean network

Each vertex of a BDD has a function associated with it. The rootvertex corresponds to

the function /, the terminal vertex with value 0 to the function 0, and the terminal vertex with value

1to the function1. If the functionat a non-terminal vertexv withindexj is g, the functionat low(v)

is gXj>, and at high(v) is gXj. Theedge connecting a non-terminal vertex v with index j to low(v)

carries thelabel 0, indicating that low(y) is obtained from vbysetting xj to0. Similarly, theedge

connectingv to high(v) carries the label 1.

A vertex vof a BDD is a leafvertex(ora leaf) ifeither v is a terminal vertex, or low(v)

and high(v) are terminal vertices withvalues 0 and1respectively (i.e., thefunction associated with

v is simply some input variable). All other vertices are non-leaf vertices.

Definition 2.1.18 A BDD isordered ifthe indicesofthe vertices inallroot-to-terminalvertexpaths

follow afixed order. A BDD is reduced if there is no vertex u with lowfuj = high(u;, andthere

are no two distinct vertices v and w such that the sub-graphs rooted at v and w are isomorphic. A

reduced ordered BDD is called an ROBDD.

Figure2.2 (A) shows an unordered BDD for the function /(a, 6,c,d) = ac-\- a'bd + bc'd'. Figure

2.2 (B)shows an ordered BDD for / with theorderc,a, d,and b, the rootvertex being indexed by

c. This ordered BDD can be reduced by noting that all vertices with index b represent the same

function, namely 6. Merging them all in one node, we get the ROBDD in (Q.

Given an ordering of the variables, the ROBDDrepresentation for a functionis canonical

(unique). This fact was first proved by Bryant in his seminal work [14]. This feature makes

ROBDDs attractive for tautology checking (i.e., is a given function identically 1?) and hence

functional equivalence. Although in the worstcase, the size of an ROBDD can be exponential in
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(A) (B) (C)

Figure 2.2: Example of a BDD, an ordered BDD, and a ROBDD

the number of variables, this representation is often compact. The size depends strongly on the

ordering selected.

Definition 2.1.19 The if-then-else DAG (ITE; for a function f is a DAG with two terminal

vertices with values 0 and 1, and terminal vertices corresponding to inputs. Each non-terminal

vertex v represents a 2-to-l multiplexor, andhas three children: if(v), then(v), ande\se(v). The

interpretation is that the if child is connectedto the control inputof the multiplexor, and the then

and else childrenare connected to the data (signal) inputs1 and 0 ofthe multiplexor.

The //, then, and else edges are denoted by /, T, and E respectively. Note that in a BDD also, a

non-terminal vertex can be regarded as a 2-1 multiplexor whose control input is connected to the

variable associated with the vertex. In the multiplexor corresponding to an ITE vertex, the control

input can be any function. Thus an ITE is more general than a BDD and consequentlycan be more

compact.

Example 2.1.1 Considerfunction f = ab + a'c+ de. As shown in Figure 23, a is selected as

thetopvariable in the BDD. As a result, de gets replicated in both 0 and1 branches. Thiscan be

avoidedin the ITE byfactoring out de before branching on a.

Definition 2.1.20 The support a(f) of a function-representation f, which is either an SOP or

a factored form, is the set of variables appearing in the representation. \<r(f)\ represents the

cardinality ofcr(f). The support ofa set offunction-representations canbesimilarly defined as the
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c + de
b + dc

a b + •' c

d e

Figure 2.3: BDD vs. ITE

union of thesupports of the individualfunction-representations. The support ofa product term is

theset ofvariables appearing in it. Inparticular, thesupport ofaprimeis called prime-support.

For example, if a representation / = abc + ab'd,'a(f) = {a, fc, c,d}, and \o(f)\ = 4. Note that

thesupportdependson thefunction representation used. For example, the last function can also be

written as /i = abc(e + e') + ab'd(e + e'), in which case, <r(/i) = {a, 6,c,d,e}. However, each

completely specified function has a unique minimum support, which is called its true support.

Definition 2.1.21 x € cttU), tne true support ofa function f, if fx ^ fx>. Then, f is said to

essentially depend on x.

If it is known that any representationof the function / handed to us is using only the true support

variables, we can use the term support ofafunction f (or <r(f)) to mean the true supportof /. As

we will shortly see in Section 2.2.1 (in simplification), that is indeed the case if simplification is

applied on the function representation during optimization.

In the context of Boolean networks, it is useful to consider the following two notions

of supports. The local support of the (completely specified) function / at a node n is the set of

fanins of n, whereas the global support of / is in termsof the primaryinputson which / depends

topologically, i.e., the primary inputs that are in the transitive fanin set of n. For example, in Figure

2.1, the local support of z is {c, rf, w, y}, and its globalsupportis {a, 6,c, d).

The following notation is used:
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a(f) local supportof /
aG(f) global supportof /
<7r(/) true local supportof /
otg(I) true global supportof /

Definition 2.1.22 For a given basic block, a function f is feasible if it can be realizedwith one

block. A Boolean network ij is feasible for the block if thefunction at each internal node of rj is

feasible.

A feasible networkcan be directiy implemented on the target FPGA architecture simply by imple

menting each internal node with a block. The final goal of synthesis is then to obtain a feasible

network with fewest nodes or minimum delay, depending on the objective.

Definition 2.1.23 Afunction f is m-feasible if |^t(/)| < m, otherwise it is m-infeasible. A

Boolean networkr\ is m-feasible ifthefunction at each internal node of rj is m-feasible.

The motivation behind this definition is that an m-feasible function can be realized with one m-LUT.

Note that the notion of m-feasibility has been defined in terms of the true support. In an optimized

network, each function / is represented by a prime cover. It is well-known that a prime cover

essentially depends on each variable appearing in the cover, and so is already on the minimum

local support. In this case, instead of the true support, the support of the representation of / can

be used in checking if a function is m-feasible. In many applications, when a prime cover is not

available, the true support may be difficult to compute. Then, we approximate the m-feasibility test

by checking if the support of the representation has at most m variables. This takes time linear in

the representation of the function. As we show next, computing the true support of a function given

an SOP is difficult,in fact NP-hard. The reader is referred to the book by Garey and Johnson [30]

for a comprehensive coverage of NP-completeness and the well-known NP-complete and NP-hard

problems. Define TRUE SUPPORT as the following decision problem:

INSTANCE: Given a cover of a function /, and k > 0.

QUESTION: Is kr(/)| < &» i.e., does the true supportof / haveat most k variables?

To show that TRUE SUPPORT is NP-hard, we use an auxiliary problem TRUE SUPPORT

ZERO:

INSTANCE: Given a cover of a function /.
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QUESTION: Is |<rT(/)| = 0, i.e., is / identically0 or identically 1?

Proposition 2.1.1 TRUE SUPPORTZERO is NP-hard.

Proof It suffices to1\iring-reduce [30] anNP-hard problem to TRUE SUPPORT. For this reduction,

we use the NP-hard TAUTOLOGY problem [30], which is as follows:

INSTANCE: Given a cover of a function /.

QUESTION: Is / a tautology, i.e., identically 1?

The definition of Turing reduction permits a polynomial number of invocations of an oracle (sub

routine) that solves TRUE SUPPORT ZERO (i.e., returns YES if kr(/)| = 0, NO otherwise) in

order to solve TAUTOLOGY.

Note that |crr(/)| = 0 if and onlyif / is eitheridentically 0 or identically 1. Given an

SOP for /, / is identically 0 if and only if the SOP is simply0 (i.e., has no cubes). To answer if /

is a tautology, proceed as follows. Call the oracle for TRUE SUPPORT ZERO.

1. If it returns NO, / is not a tautology.

2. Otherwise, |<tt(/)| = 0. Then thereare two cases: either / is a tautologyor it is identically

0. To differentiate between the two, simply check if the cover of / is 0 (i.e., has no cubes). If

it is, / is not a tautology. Otherwise, / is a tautology.

Proposition 2.1.2 TRUE SUPPORTis NP-hard.

Proof Setting k = 0 makes TRUE SUPPORTequivalentto TRUE SUPPORTZERO, which, from

Proposition 2.1.1, is NP-hard. So TRUE SUPPORT is also NP-hard. •

Definition 2.1.24 An m-feasible Boolean network r\ is m-optimum iff] has k internalnodes,and

there exists no m-feasiblenetwork that realizes all theprimary outputfunctions (PO(r))) infewer

than k internal nodes.
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2.1.2 Representing a Logic Function

A completelyspecifiedlogic function may be represented in many ways, some of which

are as follows:

1. Truth table: It is always exponential in the support n of the function, as there are 2n vertices

mBn.

2. Minterms inthe on-set (oroff-set): Sincea completely specified function partitions the input

space intoon-set andoff-set, it is enough to explicitly giveone set; theotheroneis uniquely

determined. For an incompletely specified function, any two out of the on-set, off-set, and

dc-setneed to beprovided. Althoughtypicallysmallerthan the truth table, this representation

can be exponential in n.

3. SOP: It is typically more compact than the previous two representations, but in the worst

case, it can be exponential. For example, for the EX-OR function

/(Si,S2,...,3„) = Sl©X2©...e*n,

the smallest SOP is exponential in n. The problem of obtaining a minimum SOP of a

Boolean function, or, in general, a minimum-cost SOP whereeach product term has a non-

negative cost, is referred to as the two-level minimization problem. The corresponding

implementationis called a two-level implementation. The most popular form of two-level

implementation is a programmable logic array (PLA). A PLA has two planes - an AND

plane and an OR plane. The AND plane implements the product terms and the OR plane

realizes their OR. In general, a PLAcan have more than one output.

4. Factoredform: It is typicallysmallerthantheSOP, butcan beexponential in n. The factored

form suffers from the fact that it may not be possible in a factored form to share two instances

of the samefunction, or of a function and its complement. This is becauseno signalsexcept

input variables can have multiple fanouts. For example, / = (ab + cd)p + (ab + cd)'q

(which is not a factored form sinceab + cd)' is not allowed) is represented in factored form

as / = (ab + cd)p + (a' + b')(c' + d')q, which has 10literals. A smaller representation is

obtainedby introducing an intermediate variable x = ab+ cd. Then / = xp + x'q. The total

number of literals is then 8, four each for x and /.

5. Boolean network: A Boolean network is the most general representation of a Boolean

function, single- or multiple-output, in that there is a one-to-one correspondence between a
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circuit realization and the Boolean network. It is more general than the factored form, since

it removes the restriction of the internal nodes having single fanouts. Also, since a signal

may go through many levels of logic, a Boolean network is an example of a multi-level

representation.

6. BDD

7. ITE

2.13 Finite State Machines

Definition 2.1.25 A completely specified Mealy Finite State Machine FSM is a six-tuple

(S,I,OJ,\,R),where

• S is a finite set ofstates ofthe FSM,

• J is a finite set o/inputs to the FSM,

• 0 is afinite set ofoutputs ofthe FSM,

• 6 is a mappingfrom I x S toS, andis calledthetransition function,

• Ms a mappingfrom I xStoO, andis calledthe output function, and

• R is the initial (or resetj state.

In this thesis, since we will deal only with Mealy FSMs, we will call them FSMs. An FSM can

also be represented as a directed graph, called the state transition graph where:

• each vertex is associated with a state, and

• each edge is labeled with an input/outputpair, and is directed from the presentstatevertex to

the next state vertex.

Example 2.1.2 Figure 2.4 shows an FSM implementing a mod-3 counter. It has 3 states: S =

{#, 5, i], one input a, and two outputs bandc. The machine starts from the reset state R, with

the outputs bandc both set to0. Irrespective ofwhich state the machine is in, if the input a is 1,

the machine counts up1 (modulo 3) andmakes a transition to another state. If a is 0, the outputs

remainthe same and machine stays in thesame state.
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a-^a = 1/ be = 01/—^,- \r) ^rsTJ a=0/be =01
\ /a=1/be =00V_^X a=!/bc =10

3
a = 0/bc=10

Figure 2.4: A finite state machine

Example 2.1.3 As another example, consider a controller of a microprocessor, with states S =

{Si, 52,..., Sk}. Assume that the controller is in state S\ when itfetches the instruction "ADD

Rl R2"from the memory. Afterexecuting the instruction, the controllermoves over to state S2. In

orderto execute the instruction, the controller has tofetch the two operandsfrom the registers Rl

and R2, send a controlsignal to the adderto compute thesum,and enable the load signal ofRl to

storetheresult inRl. Inotherwords, thecontroller takes thepresent state (S\) andexternal inputs

(the instruction ADD and the names of the registers Rl and R2), and generates control signals

(READ signal to Rl and R2, transferring theircontents on the bus(ses), ADD signal to the adder,

andfinallyLOAD signal to Rl) and computes thenext state(S2).

The Encoding Problem

Many descriptions of the logic systems include variables that, instead of being 0 or 1,

take values from a finiteset. In Example2.1.2, the FSM has three symbolic states: R, s, and t. To

obtain a digital circuit from the FSM, the states have to be assigned binary codes, since a signal

in a digital circuit can only take values 0 and 1. The size of the circuit depends strongly on the

codes assigned to the states. This leads to the problem of assigning binary codes to the states of

the FSM such that the final gate implementationafter encoding and a subsequent optimization is

small. It is called the state-encoding (or state-assignment) problem. Note that it entails encoding

of both symbolic inputs (present state variables) and symbolic outputs (next state variables). In

other words, it is an input-output encoding problem. The optimization after encoding may be

two-level if we are interested in a two-level implementation, or multi-level, otherwise. This gives

rise to state-assignment techniques for two-level[20,58,89,84] and for multi-level implementations
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[19,49,33,46] respectively.

One parameter in most state-assignment algorithms is the number of bits used to encode

the set of statesof the FSM. If thereare k states,the extreme valuesof this parameter are:

1. (log2(&)l: R corresponds to the minimum-code length scheme. Since each encoding

bit corresponds to a flip-flop, this scheme uses the minimum number of flip-flops, and is,

therefore, attractive. The way in which codes are assigned to the states affects the size of the

combinational logic needed to compute the outputs and the next state functions.

2. k: The most well-known representative of thisclass is the one-hot encoding scheme, which

uses one variable per state. This variable is 1 if and only if the machine is in that state.

The number of flip-flops used is k, many more than the minimum-length scheme. The

combinationallogicresulting from theone-hotschemeis independentof thevariables assigned

to the states.

Before proceeding any further, we define the concept of a multi-valued function.

Definition 2.1.26 A multi-valued function with n inputs is a mapping T: P\ x P2x •••x Pn -* B,

where Pi = {0,1,... ,p< - 1}, pi being the number ofvalues that iih (multi-valued) variable may
take on.

An example of a multi-valued variable is S, the set of states of a controller. Analogous to the

Boolean case, we can define the notion of a multi-valued product term and cover. Correspondingly

we have the problem of determininga minimum-costcoverof a multi-valuedfunction. This problem

is referred to as multi-valued minimization problem.

A problem that is simpler than state-encodingis the one where just the inputs are symbolic.

For example, assigning op-codes to the instructions ofa processor so that the decoding logic is small,

falls in this domain. This is known as the input encoding problem. If the objective is to minimize

the number ofproduct terms in a two-level implementation, the algorithm first given by De Micheli

et al. [58] can be used. It views encoding as a two-phase process. In the first phase, a multi-valued

minimized representation is obtained, along with a set of constraints on the codes of the values of

the symbolic variables. In the second, an encoding that satisfies the constraints is determined. If

satisfied, the constraints are guaranteed to produce an encoded binary representation of the same

cardinality as the multiple-valued minimized representation. Details of the two phases are as

follows:
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1. Constraintgeneration: The symbolic description is translated intoa multi-valued description

using positional cube notation. For example, let S be a symbolic input variable that takes

values inthe set{S\, 52,..., 5*}. Let x beabinary input, and y the only (binary) output. In

positional cube notation (also called 1-hot notation), a column is introduced for each 5t. Let

us assume that a possible behaviorof the system is: if S takes value S\ or S2 and re is 1, then

y is 1. This behavior can be written as:

x S\ S2 S3 ... 5*-i Sk y
1 1 0 0 ... 0 0 1

1 0 1 0 ... 0 0 1

Amulti-valued logicminimization is applied on theresulting multi-valued description so that

the numberof product terms is minimized. The effectof multi-valuedlogic minimizationis

to group together symbols that are mapped by some input to the same output. The number of

productterms in the minimized description is the same as the minimumnumberof product

termsin any encoded final implementation, provided that the symbolsin each product term

in this minimizedcover are assignedto oneface (or subcube) of a binary cube, and no other

symbol is on that face. These constraints are called the face or input constraints. For

example, for the behavior just described,

x S\ S2 S3 ... Sk-i Sk y
1 1 1 0 ... 0 0 1

is a product term in the minimumcover. This corresponds to a face constraint that says there

should be a face with only S\ and 52. This face constraint can also be written as a set of

dichotomies [89]: (S\S2\ S3),..., (5i52;5,),..., (5i52;Sk), which says thatanencoding

bit b{ must distinguish S\ and 52 from 5,- for 3 < t < k.

Also,each symbolshouldbe assigned a different code. These are knownas the uniqueness

constraints, and are handled by addingextradichotomies. For example, to ensure that the

code of S\ is distinct from othersymbols, dichotomies (S\\ S2),(S\\ 53),..., (S\\ Sk) are

added.

2. Constraint satisfaction: An encoding is determined that satisfies all the face and uniqueness

constraints. De Micheli et al. proposed a satisfaction method based on the constraint matrix

(which relates the faceconstraints to thesymbolicvalues). Yang andCiesielski [89] proposed

an alternate scheme based on dichotomiesand graph coloring for solving the constraints. It

was later improved by Saldanha et al. [69].
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2.2 Background

2.2.1 Logic Synthesis

Logic synthesis takes the circuit specification at the Boolean level and generates an

implementation in terms of an interconnection of logic gates. Typically synthesis is done for an

objectivefunction,such as minimizingthe costof the design,satisfyingthe performanceconstraints,

minimizing the power consumed, or making the implementation more testable. The cost of the

design may be measured by the area occupied by the logic gates and the interconnect

Since synthesis is a difficultprocess, it is typicallyseparatedinto two phases: technology-

independent optimization phase (alsocalledlogic optimization),followedby a technology map

ping phase [12]. The optimizationphase attempts to generate an optimumabstractrepresentation

of the circuit. For example, for area minimization,the most commonly used measure is the number

of literals of the network in some factored form, which is the sum over all the internal nodes of the

network of the number of factored form literals of each node. This cost measure has been found to

have a good correlation with the cost of an implementationof the network in various technologies,

e.g., standard cells or CMOS gate matrix. In the second phase, this optimized representation is

mapped onto a pre-defined library of gates, misll [12] is a multi-level logic synthesis system that

incorporates this two-phase approach.

Technology-Independent Optimization

The techniques used for optimization of Boolean networks are classified into two cate

gories: restructuring and node minimization.

Restructuring operations massage the network and generate a structure that uses smaller

number of literals (for area minimization), or has better delay characteristics (for performance

optimization). The main idea in restructuring for area minimization is to generate sub-functions

that can be shared by many functions in the network, thereby reducing the size of the network. To

generate and use these sub-functions, the notion of division is a key one, and we review it next.

Definition 2.2.1 An algebraic expression is a sum-of-products representationofa logic function

that is minimal with respect to single cube containment (i.e., no cube contains another).

For example, ab + abc+ cd is not an algebraicexpression (since abcontains abc), but ab+ cd is.
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Definition 222 The product oftwo expressions f and g, fg, isa Y^ij Cidj where f = {ci},g =

{dj}, made irredundant using containment operation (e.g., ab + a = a). The product is algebraic

when f andg have disjoint supports. Otherwise, it is a Boolean product.

Forexample, (a + b)(c+ d) = ac -f ad+ be + bd is analgebraic product, whereas (a + b)(a+ c) =

aa + ac + ab+ be = a + 6c is a Boolean product

Definition 2.23 An operation OP is called divisionif,given two expressions f andp, itgenerates

q (quotient; and r (remainder) such that f = pq + r, where p is called the divisor. Ifpq is an

algebraic product, OP is calledan algebraic division. Otherwise, pq is a Boolean product, and

OP is called a Boolean division.

Although Boolean division is more powerful, most of the logic optimization tools use algebraic

division. The reasons are as follows.

1. The number of Boolean divisors is typically too many and it is computationally difficult to

exploit them in optimization. It is much easier to choosedivisorsfrom the restricted algebraic

domain.

2. Fast and efficient algorithms are known for algebraicmanipulation [10], primarily because

logic functions can then be treated as polynomials.

3. Although optimality is not guaranteed, the results obtained using algebraic techniques are

encouraging [85,12].

Weak division is a specific example of algebraic division that yields unique quotient and

remainder.

Definition2.2.4 Given two algebraic expressions f andp,a division is calledweak division if

1. it generates q and r such thatpq is an algebraicproduct,

2. r has asfew cubes as possible, and

3. pq + r and f are thesame expression (i.e., have thesameset ofcubes).

f/p denotes thequotient qof weakdividing / byp. Given theexpressions / andp, it canbe shown

that q and r generated by weak division are unique.
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For example, if / = abc + ade + kl, weak-dividing / by a gives quotient q = f/a =

be + de,and remainder r = fc/. Similarly, weak-dividing / by ab gives f/(ab) = c andremainder

r = ade + /:/.

If n is the totalnumberof product terms in / andp, an 0(n log ra) algorithm proposed by

Braytonand McMullen [10] can be used to find the q and r for weak division. The next question

is how to find good candidate divisors p, which serve as sub-expressions common to two or more

expressions. The notion of kernels ofanalgebraic expression was introduced in [10] to address this

question.

Definition 225 Anexpression is cube-free ifnocube divides theexpression evenly.

For example, ab -f c is cube-free, but ab + ac is not cube-free since the cube a divides ab + ac

evenly. Since any cube divides itself evenly, a cube-free expression must have at least two cubes.

So abc also is not cube-free.

Definition 2.2.6 The primary divisors ofan expression / aretheset ofexpressions

V(f) = {f/c\cisacube}.

Definition 2.2.7 The kernels of an expression / aretheset ofexpressions

£(/) = {9 I9 € P(/) andg is cube-free).

In other words, the kernels of an expression / are the cube-free primary divisors of /. Note that the

division used here is weak division.

Definition 22& A cube c usedtoobtain the kernel k = f/c is calleda co-kernel of k.

Example 2.2.1

/ = adh + aeh + bdh + beh+ cdh + ceh + g

= (a + b+ c)(d + e)h + g

All thekernels and corresponding co-kernels of f as expressed aboveareshownbelow.

kernel co-kemel

a + 6 + c dh, eh
d + e ah, bh, ch
(a + b+ c)(d+e)h + g 1
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Division is used in most of the restructuring operations. The restructuring operations

include decomposition, extraction, substitution, and elimination.

1. Decomposition is the process of expressing a given logic function in terms ofnew, hopefully

simpler functions. For example, if

/ = abc + abd+ a'c'd! + b'c'd',

one way to decompose / is as follows.

/ = xy + x'y'

x = ab

y = c + d.

An alternate way of decomposing / is:

/ = w+x+y+z

w = abc

x = abd

y = a'c'd'

z = b'c'd

2. Extraction is an operation closely related to decomposition and is applied to many functions.

It is the process of identifying and creating some intermediate functions and variables, and re-

expressing the original functions in terms of the original as well as the intermediate variables.

This operation identifies common sub-expressions among different logic functions forming

a network. New nodes are created, and each of the logic functions in the original network is

simplified as a result of the introduction of the new nodes. The optimization problem then

is to find a set of intermediate functions such that the resulting network is optimum in an

appropriate sense. For example, extraction applied to the following functions

/ = (a + 6)cd+e

g = (a + b)e

h = cde
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gives

/ = xy + e

g = xe

h = ye

x — a + b

y = cd.

Note that new multiple-fanout nodes x and y have been created.

3. Substitution of a function g intoa function / is the process of re-expressing / in terms of g.

For example, if

g = a + b

f = a + be,

substitution of g into / gives

/ = g(a + c).

Substitution can be looked at as a divisionoperation, where we are dividing / by g.

4. Collapsing (also called elimination) a function g into / is the process of re-expressing /

without explicitly using g. For example, if

f = ga + g'b

g = c + d,

after collapsing, we get

/ = ac + ad + c'd'b.

Collapsing is analogous to multiplication of polynomials, except that Boolean identities

have to be used (e.g., aa = a and not a2). Note that collapsing is the inverse process of

decomposition. Typically, collapsing is applied in two ways. First, nodes which do not

save any literals in the network are collapsed. Second, to get away from a locally optimum

structure, a node is collapsed even if it was saving a few literals.
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In decompositionand extraction,kernels are used as divisors. Given a set of expressions

corresponding to the node functions of the network, kernels are extracted for each function. If

extracting a kernel khelpsin reducing thecost (say, number of literals), a newnodecorresponding

to k is added to the network, and is substituted into all the nodes that had A: as a kernel.

Simplification (also called node minimization) attempts to reduce the complexityof a

given network by using two-level minimization techniqueson its node functions. However, if the

node functions are treated as independentof each other, much optimizationis potentially lost In

fact, the inputs of the Boolean function at a node n are related to each other by the nodes of the

network that precede n and hence are not free to take any combination of values. In addition, for

some values of the primary inputs of the network, the output of a node may not be observable at

the primary outputs of the network (i.e., each primary output remains unchanged if the node value

is toggled from 0 to 1 and vice versa). In both cases, the values of the inputs that can never occur

at the input of the node function and the values of the primary inputs for which the outputs of the

nodes are not observable at the primary outputs are don't cares for the two-level minimization of

the node. The first kind of don't cares is called the satisfiability don't care (SDO) set, while the

second is called the observability don't care (ODG) set.

An example of SDCs is as follows. If the node n of a network has associated with it the

Boolean function f(x,y) where x = a + 6, y = ab + c, and a, b, c are the primary inputs of the

network, thenx ^ (a + b) = x(a + b)'+ x'(a + b)and y # ab+ c = y(ab+ c)' + y'(ab+ c) are

SDCs. In other words, the SDCs represent combinationsof variablesof the Boolean network that

can never occur because of the structure of the network.

Unfortunately, the SDCs and the ODCsmaybe very large and it may be impossible to

compute them. In that case, a suitablychosen subsetof SDCs and ODCs is used to optimizethe

two-level representation at the node [12]. Simplification has been proven to be effective for a wide

variety of cases [72].

We must mention that simplification returns a prime cover, which is known to use the

minimum local support. Since this is the cover handed to technology mapping, checking for m-

feasibility of the function (whichwas defined in termsof the true support)in LUTmapping reduces

to checking if the support of the prime cover is at most m, a much simpler problem.

The restructuring and simplificationoperationsare applied on an unoptimized, raw net

work in some order until the cost function does not improve.



2.2. BACKGROUND 33

Cost = 2 Cost = 3 Cost=1

Figure 2.5: An example cell library

Technology Mapping

The network obtained after the optimization phase is implemented using a set ofgates that

form a library. Each gate has a cost that represents its area or delay. First, a set of base functions

is chosen such as a two-input NAND gate and inverter. The optimized network is converted into a

graph whereeach vertex is restricted to one of the base functions. This graphis called the subject

graph, and this decomposition is called technology decomposition. The logic function for each

library gate is likewiserepresented using the base functions. This generates pattern graphs. There

may be more than one way to represent the gate function and so more than one pattern graph may

result from a gate. A cover of the subject graph (not to be confusedwith the coverofa function)is

a collection of pattern graphs such that everynode of the subject graph is containedin one (or more)

of the pattern graphs. The cover is furtherconstrained so that each primaryoutput is an outputof

somepatterngraph,andeach input required by a patterngraphis either a primaryinputor anoutput

of some other patterngraph. For minimum area, the cost of a cover is the sum of area costs of the

gates in the cover. The technology mapping problem may be viewed as the optimization problem

of finding a minimum cost cover of the subjectgraph by choosing from the collection of pattern

graphs for all gatesin thelibrary. Thisproblem is hard - in factNP-hard, though efficient heuristics

exist. A commonlyused heuristicdividesthe subject-graph into treesandcovers the treesoptimally

by tree patterns in polynomial time usinga dynamicprogramming approach. Typical examples are

DAGON [41] and mis 11 [18].

The only requirement imposedon the libraryis that it be complete, i.e., an arbitrary logic

function should be realizable in terms of the gates in this set. Although two-input NAND gates

and inverters form a complete set, it is desirable to put more gates in the library so as to get better

results.

Example 122 Figure 2.5 shows a simple cell (gate) library with three gates: a 2-input NAND

gatewith a costof 2 units, a 3-input NAND gate with a costof 3 units, andan inverter with a cost
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Figure 2.6: Pattern graphs for the gates in the cell library

of 1 unit. The pattern graphs for these gates using 2-input NAND gates and inverter are shown in

Figure2.6. Note that the 3-input NAND gate has a single pattern. Let us say we are interested in

finding the minimumcost mapping ofa 4-inputNAND gate, shown in Figure 2.7. First, we derive

its subject graph in terms of 2-input NAND gates and inverters. Many such subject graphs are

possible, and we choose the one shown in Figure2.7. Wewish to find a minimumcost cover ofthis

subject graph with the pattern graphs ofFigure2.6. Figure2.8 shows two covers, (A) and (B), of

the subject graph. The chosen patterns are shown as dotted rectangles. Note that (A) has a cost of

8 units: it uses three 2-input NAND gates and two inverters, whereas (B) has a cost of6: it uses a

2-input NAND gate, a 3-input NAND gate, and an inverter, and is the best possible cover. To see

that this indeed is the best cover, consider the root 2-input NAND gate of the subject graph. Two

patterns can be rooted at it:

1. A 2-input NAND gate: the best cover of the subject graph in this case is this 2-input NAND

gate, along with the least-cost covers ofeach of the sub-trees rooted at the two inputs ofthe

NAND gate. Considering all possible patterns rooted at these inputs recursively leads to the

cover (A), which has a cost of8 units.

2. A 3-inputNAND gate: the best cover of the subject graph then corresponds to this 3-input

NAND gate, along with the best possible covers ofeach of the sub-trees rooted at the three

inputsofthis NAND gate. Twoofthe inputsare primary inputs. So we recursively carry out

the algorithm on the third NAND gate input. Thisfinally leads to the cover (B) with a cost of

6.

The coverwith theminimum cost is picked, i.e., (B). This, inbrief, is howthedynamic programming

algorithm works on trees.
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Figure 2.7: A4-input NAND gate and one ofits subject graphs

(B) Cost = 6

Figure 2.8: Technology mapping: two covers

2.3 Logic Synthesis for Field-Programmable Gate Arrays

Suppose we are interested in minimizing the number of FPGA blocks needed for a
combinational circuit. Let us first ask if this problem is any different from the conventional logic
synthesis problem, which first minimizes the number of literals (optimization) and then maps the
resulting optimized network on to alibrary of cells (technology mapping). First let us consider
logic optimization.
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Example 23.1 Assume that the targetarchitecture is basedon5-LUT.s. Consider twofunctions f\

and f2:

f\ = abcdeg,

f2 = abc+ b'de+ a'e' + c'd'.

The representation of f\ has6 literals and that of f2 10 literals. Both these representations are

optimal, inthatthemisll optimizationscript(scnptmgged)[73] doesnotfurther improve theliteral

counts. Thus, f\ is "simpler" than f2. However, f\ requires two5-LUT.s, whereas f2 requires only

one. This example shows that number of literals is not the best costfunction for optimizationfor

LUT architectures.

Now consider technology mapping. Since traditionalmappers use a library of gates, it is

natural to ask if we can use a library for FPGA synthesis,and ifso, how. For the LUTarchitectures,

wecanviewan LUT as a collection of thosegates thatcanbe realized by it bypossibly tyingsome

of its input pins to constants 0 or 1. These gates can be put into the library and assigned a unit cost,

indicating that the gate canberealized with one LUT. But the resultant library has 22m gates, which

is the total number of Boolean functions on m inputs. Even for m = 4, the library has over 64K

gates. Currently, mapperscannothandlesuchabiglibrary. If weallowrenaming of the inputs(input

permutations),many functionsbecomeequivalentto eachother (calledP-equivalent). For instance,

/i (a, b,c) = a'b + ac and f2(a, b,c) = b'a + be are P-equivalent, since f\ (a,b,c) = f2(b, a, c).

3984 non-P-equivalent functions are possible for m = 4 [24]. Only one function out of all the P-

equivalentfunctionsneeds to be put in the library, thus reducingthe size of the libraryconsiderably.

However, the library is still large. But its size canbe furtherreducedby notingthat along with input

permutations, an LUT also allows inversions at its inputs and outputs, i.e., if an m-LUT realizes

f(x\, x2,..., xm),it can also realize f(x\, xi,...,^), where xi denotes eithera?,- or a;,-' (samefor

/). This reduces thenumberofpossibilities to 232for m = 4 [24] (thisnotionofequivalence, which

captures input permutations, input inversions, and output inversion, is called NPN-equivalence).

However, the size of the library still grows as a double exponential, and for m > 5, this number is

verylarge. Moreover, since each library function is represented in all possibletree configurations

in terms of the base functions, the total number of configurations (or pattems) is much more. The

complexity of the tree-based mapping is proportional to the total number of patterns. Since we are

interested in techniques for general m-LUT architectures, a library-based approach is not viable.

Of course, one way to reduce the size of the library is to select a reasonable subset of

the set of all m-feasible functions. However, a possible match may be missed, resulting in an
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optimization loss. This necessitates exploring new methods for technology mapping that are not

library-based, but instead, directiy map onto the basic block.

ForMUX-based architectures, e.g„actl and act2, thenumbers ofnon-P-equivalent func

tionsare702 and766. The corresponding numbers of pattern graphs arehuge, so the library-based

approach becomes impractical.

Library-based methodssufferfrom anotherproblem. Mostof thesemethods[41,12] work

on subject graphs andpattern graphs thataretrees. If a library gateis complex (which canhappen

since, for instance, an m-LUT can implement any function of up to m inputs) and is represented

only with trees, significantoptimizationmay be lost

This motivates a fresh look at the synthesis problem for FPGAs. First, we convince

ourselves that this problem is indeed difficult. We say thata function / is realizable by k m-LUTs

if thereexists a single-outputBooleannetwork 77 that is functionally equivalent to / and has at most

k internalnodes, each havingat most m fanins. Given a function /, we wantto knowthe minimum

number of m-LUTs needed to realize /. We prove that thisis anNP-hard problem [30], given that

we start from a sum-of-products representation. This implies that no polynomial timealgorithm to

solve this problem is known, justifying the heuristic approaches we will use in the rest of the thesis.

The MINIMUM LUTS problem,statedas a decision problem, is as follows:

INSTANCE: Given a cover of a function / of n variableshaving c cubes, m > 2, and k > 0.

QUESTION: Is / realizable with k m-LUTs?

We show that MINIMUM LUTS is NP-hard. We first show that the following problem, ZERO

LUTS, is NP-hard.

INSTANCE: Given a cover of a function / of n variables with c cubes, and m > 2.

QUESTION: Is / realizable with zero m-LUTs?

Proposition 2.3.1 ZERO LUTS is NP-hard.

Proof It suffices to Turing-reduce TAUTOLOGY to ZERO LUTS. The definition of TXiring reduc

tion permits a polynomial number of invocations of an oracle (subroutine) that solves ZERO LUTS

(i.e., returns YES if / is realizable with zero LUTs,NO otherwise) in order to solve TAUTOLOGY.
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First, note thata function / canbe realized with zero LUTsif andonly if it is identically

0, or identically 1, or identically equal to some input Let x\, x2,..., xn be the set of inputs of /.

To answerif / is a tautology, proceedas follows.

1. If the SOP is just 0 (i.e., has no cubes), / is not a tautology.

2. Otherwise, callthe oracle forZERO LUTS.If it returns NO, / is not a tautology. Otherwise,

there aretwo cases: either / is a tautologyor it is identicallyequal to one of its inputs, lb

differentiate between the two possibilities, evaluate / on the input vector (x\ ,x2,...xn) =

(0,0,..., 0). If / evaluates to 0, it is not a tautology, otherwise it is. This is becauseif /

were equal to one of the inputs, it cannot evaluate to 1 on the vector (0,0,..., 0). So if /

evaluates to 1 on this vector,it must be atautology. Note that / can be evaluated on aninput

vector in time that is polynomial in n and c.

Corollary 232 MINIMUM LUTS is NP-hard.

Proof Restricting k to 0, we get an instance of ZERO LUTS, which is NP-hard, as proved in

Proposition 2.3.1. •

Note that the above result is valid for any m-LUT (m > 2). The above proof does not

reallyuse the fact that the basic block to be used is an LUT. Consequently, the same proof works

foranybasic block,e.g., a MUX-based block. In fact, it also worksif / were to be mappedon to a

library of gates, each gate having a positive cost, and the objective were to minimize the cost of the

mapped solution.

Sincewe nowknow thatthe synthesisproblem forFPGAs is difficult,ourhope is to come

up with techniques that do well in practice. At the same time, wherever possible, we should try to

prove optimality of these techniques for specialclassesof functions (given the intractabilityof the

general case). The next chapter describes mapping techniques for LUT architectures, and the one

after that addresses the logic optimization problem.
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Look-Up Table (LUT) Architectures
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Chapter 3

Mapping Combinational Logic

3.1 Introduction

An important problem in synthesis is to minimizethe cost of a design, where the cost

is measured by the numberof chips needed. This includes the routing considerations within and

pin constraints of a chip. Since it is difficult to incorporate all these factors during synthesis, and

only limitedsuccess has beenachieved so far, for instance, in combining synthesis and routability

[65], we approximate this cost by the numberof blocks needed. Minimizing the numberof blocks

may be an overkill. However, leaving as many blocks unused as possibleenables the designer to

use the unused logic for improving the propertiesof the design. In addition, as we will show in

Chapter 7, minimizing the number of blocks helps in reducing the circuit delay in a placed and

routed implementation of the circuit. This is because the blocks can be placed close to each other,

reducing the wiring delays considerably. However, as we saw in the last chapter, minimizing the

number ofblocks is a difficult problem.

Recall that an m-LUT can implement any Boolean function ofup to m inputs.

Example 3.1.1 A5-LUTcanimplement, among so many otherfunctions, f\ or f2 or h, where

f\ — abcde,

f2 = abcde + a'b'c'd'e',

f3 = ab' + a'b.

Since an LUT is an essential component ofall the LUT-based architectures (e.g., Xilinx 3090), first

we will target the synthesis algorithms for an m-LUT. In some sense, this is the easiest problem.

Then we will extend the algorithms forthe commercial LUT-based architectures, e.g., Xilinx 3090.
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We assume that the Boolean network has already been optimized appropriately. The

problem is tomap the optimized network onto the target LUT architecture (consisting of m-LUTs)

such thatthefinal implementation uses the minimum.numberofLUTs. Inorderto solvethisproblem,

first, m-infeasible functions should be made m-feasible. Each node function in the resulting network

can thenbe realized by one m-LUT. However, it maybe possible to reduce thenumber of m-LUTs

if the nodes in the resulting network are small,i.e., more than one can be implemented by the same

m-LUT. This is called block count minimization (BCM).

This chapter is organized as follows. To put everything in perspective, the history of

LUT mapping is summarized in Section 3.2. Section 3.3 discusses techniques for converting

an m-infeasible function into a set of m-feasible functions. This corresponds to the technology

decomposition stepof theconventional mappers. Section 3.4describes BCM, which corresponds to

the coveringstep of the conventionalmappers. It turns out that for efficiencyreasons, the two steps

should not follow one another, but should be interleaved. Section 3.5 gives the details. Experimental

results are presented in Section3.6. All thesetechniques targetan m-input,singleoutputLUT. The

commercial LUT-based architectures are more complex, and typically have two or more outputs.

In Section 3.7, we apply our techniques to complex architectures. Finally, Section 3.8 evaluates the

overall approach from different angles.

3.2 History

hi 1989, when we first started looking at the synthesis problem for these architectures, no

work had been reported in the literature.

3.2.1 Library-based Technology Mapping

As discussed in Section 2.3, a library-based approach is not viable for LUT-based archi

tectures, simplybecause the sizeof the library and, therefore, the numberof patterngraphs become

huge.

3.2.2 mis-fpga

In 1990, we proposed mis-fpga [62], which is embedded in misll [12]. Specifically, it

is the part of misll that pertains to the FPGA architectures - both LUT and MUX-based. This
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includes algorithms, their implementation, and the commands.1 For LUT architectures, mis-fpga

has twophases: decomposition and BCM. In the first, classical Roth-Karp decomposition, kernel-

extraction,andsimple AND-OR decompositionareused to breakeach functioninto a set of feasible

functions. In the BCM phase, the notion of an m-feasible supernode was introduced. All m-

feasible supernodes of the network are generated using maximum flow technique repeatedly. A

binate covering formulation is then used to solve for minimum number of supernodes that realize

the network. A heuristic partition was also used to do greedy covering. It differed from the tree

covering in that it can optimize across multiple fanout points. For Xilinx 3090, the problem of

obtaining amaximum number of pairs of functions of a feasible network that can be placed onthe

same CLBwas formulated as amaximum matching problem.

3.2.3 chortle

At the sametime,Francis etal. proposed chortle [25], which,like conventional mappers,

uses a dynamicprogramming paradigm. It applies a 2-input AND-OR decomposition, breaks the

network into a forest of trees, andthen covers eachof them optimally by a set of pattems. These

patterns are different from the ones used in standard technology mappingin that they just depend

on the number of inputs of the function, and not the function itself - each node in the pattern is a

2-input generic gate, chortle suffered from a lack of optimization across tree boundaries, and also

did not consider the possibility of architecture specific decomposition.

3.2.4 chortle-crf

In 1991, chortle-crf, an improved version of chortle, was proposed [26]. It introduced

an importantdecomposition techniquebasedon bin-packing [30]. It alsoused optimization across

tree boundaries.

3.2.5 Xmap

In 1991, Karplus proposed Xmap [39], which builds an ITE for a function using cofac

toring. Eachnon-terminal vertex in an ITEhas atmost threenon-trivial inputs. So cofactoring can

be looked at as a decompositionmethod. This ITE is covered greedily.

'misll is a tool for combinational logic synthesis, and is subsumed by sis [77, 78], whichis a tool supporting logic
synthesis of sequential circuits.
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3.2.6 HYDRA

All the approachesproposed so far targeted an m-LUT, and targeted two-outputblocks

only in the post-processingphase. HYDRA [23] is a programspecifically targeted to Xilinx3090.

Decomposition and BCM are performedkeepingin mind the structureof the two-outputblock.

3.2.7 VISMAP

The approach used in VISMAP [87] is similarto mis-fpga. The main difference is that

in the BCMphase, VISMAP does not generateall the supernodes,but a subset, and guaranteesthat

no optimality is lost.

3.2.8 ASYL

In 1990-1991, Sicard et al. incorporatedtechnology mapping for LUT architectures into

ASYL synthesis system [80, 1]. A lexicographical factorization based optimization generates an

ordering ofvariables, which is used to insertcut-pointsin the lexicographical trees. These cut-points

determine the m-feasible solutions.

3.2.9 mis-fpga (new)

In 1991,we proposed mis-fpga (new) [63]. It had the followingnew features:

1. It used cube-packing - a decomposition technique first proposed in chortle-crf (but was

called bin-packing), cofactoring, andRoth-Karp decomposition. It was shownthat no single

decomposition technique suffices.

2. It was found beneficial to apply decomposition and BCM on each node, andthenusepartial

collapse to exploit the structure of the network.

3. It proposedthe idea of makingoptimizationspecific to these architectures. Tothis end,kernel

extraction was modified.

4. Anexact BCM algorithm fortheXilinx 3090 architecture was given.

In the rest of thethesis, theterm mis-fpga will be used to refer to thelatest version of thesystem.
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3.2.10 TechMap

In 1992, Sawkar and Thomas [74] proposed a mapping approach based on clique parti

tioning. Both area and delayoptimizations weretargeted.

3.3 Making an Infeasible Function Feasible

An m-infeasible node function / can be made m-feasible either by breaking it up into

a setof m-feasible functions (this is called decomposition), or byexploiting its relationship with

the rest of the network. First, weexamine how various decomposition techniques, many of which

hadbeen already proposed forlogic synthesis, canbeapplied to the LUT decomposition problem.

These include functional decomposition (Section 3.3.1), cube-packing (Section 3.3.2), cofactoring

(Section 3.3.3), kernel extraction (Section 3.3.4), and technology decomposition (Section 3.3.5).

Then, in Section 3.3.6 we describe howto exploitthe structureand functionality of the networkto

make / m-feasible.

3.3.1 Functional Decomposition

The first systematic study on decomposition was done by Ashenhurst [3]. He characterized

the existence of a simple disjoint decomposition of a function. While being seminal, this work

could not be used for functions with more than 10-15 inputs, since it required the construction of a

decomposition chart, a modified form of the truth table for a function. Few years later, Roth and

Karp proposed a technique [36] that does not require building a decompositionchart; instead, it uses

a sum-of-products representation, which is, in general, more compact than a truth table. They also

extended Ashenhurst's work by characterizing non-simple (or general) decompositions and used

this characterization to determine the minimum-cost Boolean network using a library of primitive

gates, each having some cost.

We first summarize the main ideas of these two studies, and then show how to apply them

to the decomposition problem for LUT architectures.

Ashenhurst Decomposition

Ashenhurst [3] gave necessary and sufficient condition for the existence of a simple

disjoint decomposition of a completely specified function f of n variables. A simple disjoint
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Figure 3.1: A simple disjoint decomposition

decomposition of / is of the form:

f(xl,x2,...,xs,yl,...,yn-s) = g(a(xi,x2,...,xs),yi,...,yn-a) (3.1)

where a is a single function, and {x\,...,xs} n{y\,...,yn-s} = <f>- In general, a could be a

vector of functions, in which case the decomposition is non-simple (or general).

Let X = {x\, x2,..., xs} and Y = {y\,..., yn-s}' Then(3.1)can be rewritten as

f(X,Y)=g(a(X),Y) (3.2)

The representation (3.2) is calleda decompositionof /; g is calledthe image of the decomposition.

Theset X = {x\, x2,..., xs] is called theboundset and Y = {y\,..., yn_5} the free set (Figure

3.1). The necessaryand sufficient condition for theexistence of sucha decomposition wasgivenin

terms ofthe decomposition chart2 D(X\Y) for / for the partition X\Y (also written y or (X, Y)).
Adecomposition chart is a truth-table of / where vertices of Bn = {0,1 }nare arranged in a matrix.

The columns of the matrix correspond to the vertices of B3, and its rows to the vertices of Bn~s.

Theentries in D(X\Y) chart arethevalues that/ takes forallpossible combinations.

Example 33.1 Let f(a, b, c) = abc' + a'c + b'c. The decomposition chartfor f for the partition
ab\cis

sh. 00 01 10 11

0 0 0 0 1

1 1 1 1 0

2Ashenhurst called it partition matrix.
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Note that if s = 0,1, or n, a decomposition always exists. These cases correspond to

trivial decompositions. All others, for which 1 < s < n, are called non-trivial.

Ashenhurst proved the following fundamental result, which relates the existence of a

decomposition to the numberof distinct columns in thedecomposition chart:

Theorem 33.1 (Ashenhurst's Fundamental Theorem of Decomposition) Thesimpledisjointde

composition(32) exists ifandonly ifthe correspondingdecomposition charthasatmosttwo distinct

columnpatterns.

Stated differently, thedecomposition (3.2) exists if and only if thecolumn multiplicity (i.e., the

numberof distinct column pattems)of D(X \Y) is at most 2.

We say that two vertices in Bs (i.e., i?1*1) are compatible (written x\ ~ x2) ifthey have
thesamecolumnpattemsinjD(A'|y),i.e.,/(ii,y) = f(x2,y)for ally e B|rL Foran incompletely
specified function, a don't care entry '-' cannot cause twocolumns to be incompatible. In other

words, two columns c, and cj are compatible if foreach row k, either ct(fc) = '-', or cj(k) = '-',

or Ci(k) = cj(k). For a completely specified function /, compatibility is anequivalence relation

on the columns (i.e., x\ ~ x\,x\ ~ x2 => x2 ~ x\ , and x\ ~ x2 A x2 ~ x$ => x\ ~ x$

for all x\,x2, x3 € i?'x|), and the set ofvertices that are mutually compatible (or equivalent) form
an equivalence class. Hence the column multiplicity of the decomposition chart is the number of

equivalence classes. In this subsection, we willconsider only a completely specified function, and

so use compatibility and equivalence interchangeably.

Given that the column multiplicityof D(X\Y) is at most 2, how do we determine a and

gl Since there are at most 2 equivalence classes, and a single a function for a simple decomposition,

the vertices ofone class are placed in the off-set of a, and of the other class in the on-set. g can then

be determined by looking at each minterm in the on-set of / and replacing its bound-part (i.e., the

literalscorresponding to the variables in the bound set X) by either a or a', depending on whether

the bound-part is in the class that was mapped to the on-set of a or the off-set. We illustrate the

decompositiontechnique for the function / of Example3.3.1.

Example 3.3.2 / = abc'+a'c+b'c, andpartition (X\Y) = ab\c. D(ab\c) hastwo distinct column

patterns, resulting in the equivalence classes C\(a, b) = {00,01,10} and C2(a, b) = {11}. Let us

assign C\ to the off-set of a andC2 to itson-set. Then a(a, b) = ab. Since f = abc' + a'c + b'c,

g(a, c) = ac' + a'c + a'c = a®c. The boundpart ofthefirst minterm abc' off is ab, which yields

a = 1. So thisminterm abc' generates ac' in g. Note that ifC\ was assigned to the on-set of a

andC2 to theoff-set, the new a would besimply a', andthe new g(a, c), g(a', c), which hassame
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numberofproduct terms as g. So irrespectiveofhowweencode C\ andC2, theresulting gfunctions

have thesame complexity. However, thingsare different ifthe decompositionis not simple.

Roth-Karp Decomposition

Not every function has a non-trivial simple disjoint decomposition.

Example 333 Consider f(a, b,c) = a'bc + ab'c + abc'. For a non-trivial decomposition, only

\X\ = 2 needs tobeconsidered. For the inputpartition ab\c, the decomposition chart is

ab
00 01 10 11

0 0 0 0 1

1 0 1 1 0

It has 3 distinct column patterns and so a simple disjoint decomposition does not exist for this

partition. Since f is totallysymmetric, itdoesnothavea non-trivialsimpledisjointdecomposition.

Roth and Karp [36] extended the decomposition theory of Ashenhurst by characterizing a general

(non-simple) disjoint decomposition, which is of the following form:

f(X,Y) = g(al(X),a2(X),...,at(X),Y) = g(a(X),Y), (3.3)

where a = (a\, a2,..., at). The theoryof Roth and Karp applies for an incompletely specified

function /. We present a summary of their formulation. Let X,Y, Z, and W be arbitrary finite

sets, and £ be asubset ofXxY. Given afunction /: E -»• Z, we examine the following:

(t) Given a : X -* W,does there exist a function g : W x Y -> Z, such thatforall (x, y) € E,

f(x,y) = g(a(x),y)t! (3.4)

(ii) Underwhatconditionsdo thereexist functions a : X -> W, and g : W x Y -> Z, such that

(3.4) holds?

The answer to (i) may beformulated interms ofarelation ofcompatibility between elements ofX.

Let x\, x2 e X. Then x\ and x2are compatiblewithrespect to / (denoted by x\ ~ x2)if, for all

y € Y such that (xuy), (x2, y) e E, f(xx,y) = f(x2,y); otherwise, xx and x2 are incompatible

(denoted by x\ </> x2). The following proposition from [36] answers (i).

Proposition 332 (Roth and Karp) Given fanda, there exists g such that (3.4) holds ifand only
if,forallx\,x2 6 X,a(x{) - a(x2) => x\ ~ x2,orequivalently, x\ ^ x2 =* a(x\) ^ 0(^2).
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An answerto (ii) may be givennow. The crucial consideration is the number ofelements

in W; for if W has too few elements, it maynotbe possible to produce a function a such that all

elementsof X mappingintothe sameelementofW are compatible. These considerations are made

precise in the next proposition, whichin fact follows from Proposition 3.3.2.

Proposition 333 (Roth and Karp) Ifkis the least integer such that X may bepartitioned into k

classes ofmutually compatible elements, then there exist a and g such that (3.4) holds ifand only
ifW has at least k elements.

In orderto apply Proposition 3.3.3,the only missing link is the number k. Firstconsider

the case when / is completely specified (i.e., is defined at all points in X x Y). Then xx ~ x2 if

and only if for all y e Y, f(xx,y) = f(x2, y). Compatibility is thenanequivalence relation, and k

is simply the numberof equivalence classes. If / is incompletely specified, i.e„ it is undefined for

some elements ofXxY, compatibility is no longeranequivalence relation, andthe determination

of a minimum cover of X by sets ofmutually compatibleelements is nontrivial.

Note that the formulation of Roth and Karp is in terms of arbitrary sets X,Y,Z, etc.,

and functions onthese sets. Itcan Derestricted to theBoolean domain by substituting X =.J5^t

Y = B^Y\ Z = B, etc. The rest of the section uses Boolean domain, and all references to

Propositions 3.3.2 and 3.3.3 should be suitably interpreted.

Let the given Boolean function / be represented by on-set cover C\ = {h,l2,..., lp} and

off-set cover Co ={mi, m2,..., mq},where h, l2,..., lp, m\, m2,..., mq are cubes. Let X bethe

bound set and Y the free set. If Propositions 3.3.2 and 3.3.3 are to be used for the detection of

decompositions, it is necessary to determine the specifications of X that are compatible. If X and

Y aredisjoint, any cube of C\ or Co can be divided into an"X-part" and a "Y-part." Forexample,

consider the cube (3

abed

1012

With X = {a, c] and Y = {6,d], the X-partof (3 is 1 1and the Y-part is 0 2.

The covers C\ and Co can then be written as C\ = {(/x, fy)} and Co = {(mx, "iy)}.

Then the following lemma [36] holds:
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Lemma 3.3.4 (Roth andKarp) Given v\ € B^ and vo € B\x\, vo ^ v\ ifand only if there are
cubes (lx,W) € C\ and(mx,my) € Co such that ly intersects my, andeither lx covers v\ and

mx covers vq,or lx covers vq and mx covers v\.

Inother words, vo and v\ are incompatible if and only if for some y € B^Y', the minterms (vq, y)
and (v\,y) belong to different sets - on and off. This lemma enables the use of the covers of the

on-set and the off-set for determining the compatibilities instead ofusing the truth table. In general,

Lemma 3.3.4 can be applied in two ways:

1. In conjunction with Proposition 3.3.2, it can be used to determine, given f,X,Y, and

{a\ ,a2,..., at}, whether thereis a decomposition of theform (3.3). Thisis donesimply by

determining which incompatibilities exist (usingLemma 3.3.4) and ascertaining whether any

of them violate the conditions of Proposition 3.3.2.

2. In conjunction with Proposition 3.3.3, it can be used to determine, given /, X, Y, and t,

whether there exist functions ai, a2,..., Of such that (3.3) is satisfied. In the language of

Proposition 3.3.3, W, the range of a = (a\,a2,.. .,at), has at most 2* elements, and a

decomposition exists if and only if k < 2', where k is the minimum number of classes of

mutually compatible elements into which the domain of a can be partitioned.

Determining a and g: an encoding problem

Roth and Karp give conditions for the existence of a functions, but do not give a method for

computing them.3 This is because they assume that a library Cofprimitive elements is available,

from which a functions are chosen. Given a choice of a functions,Proposition 3.3.2 may be used

to determine if a valid decomposition exists. If it does not exist, then this particular choice a of

primitiveelements is discarded, and the next one is tried. Otherwise,a valid decomposition exists,

and then g is determined as follows. Eachminterm (x, y) in the on-setof /, where x is the bound

partand y is the free-part, maps into a minterm (a[a^... ai, y) in the on-setof g, where

^ I a,- if adx) = 1
<*j = { , (3.5)\ aj ifaj(x) =0.

The entire procedureis repeatedon g until it becomes equal to some primitiveelement.

In general, a functions are not known a priori. For instance, this is the case when

decomposition is performed during the technology-independent optimization phase, because the

3We believe that they knew how to find these functions, but not how to find "simple" S functions.
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technology library of primitive elements isnot considered. In fact, there are many possible choices
for a functions thatcorrespond to avalid decomposition.

Example 33A Consider thefunction f ofExample 33J.

f - a'bc + ab'c + abc'

As itwas shown earlier, the decomposition chartfor f for the partition ab\chas3 distinct column

patterns (or equivalence classes). This means that t > |"log2(3)l =2. Let uschoose t = 2. Then
there aremany choices of a = (ai, a2), and two of them areshown here.

1. a\(a,b) = ab

a2(a, b) = a'b + ab'

g(a\ ,a2,c) = a\ a2'c' + a\ 'a2c

2. ai(a,b) = a' + b'

a2(a,b) —a'b'

g(ai ,a2,c) = a\ 'a2'c'+ ai a2'c

= a2'(a\'c' + a\c)

Thesecond choice leads to a simplergfunctionandfewer overall literals.

Given that X may be partitioned into k classes of mutually compatible elements, and that t >

|"log2(fc)l» each of the k compatibility classes may be assigned a unique binary codeof length t,

and there are many ways of doing this. Each such assignment leads to different a functions. We

wish to obtain that set of a functions that is simple and makes the resulting function g simple as

well. The measure of simplicity is the size of the functions using an appropriate cost function. For

instance, in the two-level synthesis paradigm,a good cost function is the number of product terms,

whereas in the multi-level paradigm, it is the number of literals in the factored form. The general

problem can then be stated as follows:

Problem 33.1 Given afunction f(X, Y), determine sub-functions a(X) andg(a, Y) satisfying

(33) such that an objectivefunction on thesizes ofa and g is minimized.

This problem has not been addressed in the past to the best of our knowledge. We present an

encoding-based formulation for solving this problem exactly given a standard objective function.
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It seems intuitive to extend Ashenhurst'smethod forobtainingthe a functions. Ashenhurst

placedthe minterms of one equivalenceclass in the on-set of a and of the other in the off-set. In

other words, one equivalence class gets the code a = 1 and the other, a = 0. For more than two

equivalence classes, we can do likewise, i.e., assignunique a-codes to equivalenceclasses. This

leads to the following algorithm:

1. Obtain aminimum cardinality partition V of the space 2?'* Iinto kcompatible classes. This
meansthat no two classes C,- and Cj ofV canbe combinedinto a singleclass C, U C3 such

thatallmintermsof Cx UCj are mutuallycompatible. This meansthat givenanytwo classes

C{ and Cj in V, there exist v,- € C{ and vj e Cj such that v,- ^ vj.

2. Then assign codes to the compatibility classes of V. Since there is at least one pair of

incompatible minterms for each pair of classes, it follows from Proposition 3.3.2 that each

compatibility class must be assigned a unique code. This implies that all the minterms in a

compatibility class are assigned the same code. We will discuss shortly how to assign codes

to obtain simple a and g functions.

Example 33S Forf(a, b, c) = a'bc + ab'c + abc', the decomposition chartfor the partition ab\c

was shown in Example3.33. It has 3 distinct column patterns, i.e., k = 3. Let us choose t = 2.

Suppose we assign thefollowing codes:

This results in

class

Cx = {a'b'}
C2 = {a'b,ab'}
C3 = {ab}

aids

00

01

10

a\(a,b) = ab

a2(a,b) = a'b + ab'

g(a\,a2,c) = a\a2'c'+ a\'a2c

Thisis theapproach taken inevery work (we are aware of) that uses functional decomposition, e.g.,

[62, 43]. However, this is not the most general formulation of the problem. To see why, let us

re-examine Proposition 3.3.2, which gives necessary and sufficient conditions for the existence of

the decomposition. It only constrains two mintenns (in I?'*' space) that are in different equivalence
classes to have different values of a functions. It says nothing about the minterms in the same



3.3. MAKING AN INFEASIBLE FUNCTION FEASIBLE 53

equivalence class. In fact, there isno restriction on the a values that these minterms may take: a
may evaluatesame or differently on these minterms.

To obtain the general formulation, let us examine the problem from aslightly different
angle. In Figure 3.2 is shown a function f(X, Y) that is tobedecomposed with the bound set X
and the free set Y. After decomposition, the vertices in JB1*' are mapped into vertices in B* - the
space corresponding to the a functions. This isshown in Figure 3.3. This mapping can be thought
ofas an encoding. Assume asymbolic variable X. Imagine that each vertex xin BW corresponds
to asymbolic value of X, and is to be assigned an a-code in Bl. This assignment must satisfy the
following constraint: if xux2e #1*1 and xx ^ x2, they must be assigned different a-codes -this
follows from Proposition 3.3.2. Otherwise, we have freedom inassigning them different or same

codes. Hence, instead ofassigning codes to classes, the most general formulation assigns codes to
the minterms inthe I?'*' space.

The problem ofdetermining simple aand gcan be represented as an input-outputencoding
(or state-encoding) problem. Intuitively, this isbecause the a functions created after encoding are
both inputs and outputs: they are inputs to g and outputs of the square block of Figure 3.3.
Minimizing the objective for a functions imposes output constraints, whereas minimizing it for g
imposes input constraints.

There is, however, one main difference between the standard input-output encoding

problem and the encoding problem that we have. Typically input-output encoding requires that

each symbolic value beassigned adistinct code (e.g., in state-encoding), whereas inour encoding
problem some symbols of X may be assigned the same code. This can behandled by a simple

modification to the encoding algorithm. Recall from Section 2.1.3 that an encoding algorithm,

in particular the one based on dichotomies, ensures that the the codes are distinct by explicitly

adding a dichotomy (5,-; Sj) for each symbol-pair {Si, Sj}. This guarantees that the code of 5,

is different from that of Sj in at least one bit. In our problem, let Xi and xj be two symbolic

values of X. If as,- <f> xj, add adichotomy (a;,-; xj). Otherwise, no such dichotomy is added. This

provides additional flexibility to the encoding algorithm: it may assign the same code to two or

more compatible symbols if the resultinga and g aresimpler.

The encoding algorithm has to encode all the 2'x'symbolicvalues ofX. If|X|islarge, the
problem becomes computationally difficult. We can thenuse the approximate methodof assigning

codes to equivalence classes, as described earlier.

Note that t is determined by the encoding algorithm. It is the number of bits used by the

algorithm to encode the vertices in B^x\ orthe equivalence classes if the approximate method is
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Figure 3.2: Function / to be decomposed with the bound set X and free set Y

Figure 3.3: A general decomposition of /

being used. Once the codes are known, the a functions can be easily computed. Then g can be

determined using the procedure described in the last section. The unused codes can be used as don't

cares to simplify g.

Application to LUTarchitectures We have shown that for a givenpartition, the general decom

position problem is an input-output encoding problem. However, for LUT architectures, we are

interested in a particularkind of decomposition:namely, where the bound set X is restrictedto have

at most m variables, i.e., |A"| < m. Since an LUT can implement any function ofupto m inputs,

and a functions are functions of X, we do not carehowlarge the representation of the functions a

is. The only concem from the outputencodingpart is the numberofbits used to encode the classes,
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since bit6t corresponds tothe function a,-. Then each extra bit implies anextra LUT, we would like

to minimize the number ofbits. So we use the minimum number ofbits, i.e., t = \log2k\. Then,
the contribution by the a functions to the objective function disappears. This removes the output
encoding part ofthe formulation, thereby reducing the problem simply to one ofinput encoding.

Since LUTs impose inputconstraints, itis tempting to considerminimizing the supportof
the function gas the objective function in the encoding formulation. However, ifthe code-length is
always chosen to be the minimum possible, the support ofgis already determined, and the encoding
ofa functions do not make any difference. Hence, this objective function is not meaningful.

Applying functional decomposition to LUT architectures

It is now straightforward totranslate the above discussion into analgorithm for decom

position for LUT architectures. This is shown in Figure 3.4. The approximate algorithm, which
encodes classes, is shown in Figure 3.5. Given an m-infeasible function /, apartition (X, Y) of
the support of / ischosen such that \X\ < m. This guarantees that the corresponding a functions
are m-feasible. Lemma 3.3.4 is usedto determine incompatibilities between minterms in X. Then

k, the minimum number ofmutually compatible classes, is determined. Ifk > 2m-1, the partition
is rejected because of the following reason. This partition will result int > m. Then g will have at

least as many inputs as /. If the algorithm isto terminate, itshould create afunction g with strictly
fewer number of inputs than /. Otherwise (i.e., if k < 2m_1), an encoding step is performed to
determine a. Subsequently, g isdetermined. Ifg is m-infeasible, it is recursively decomposed.

We illustrate theapproximate procedure with thefollowing example.

Example 3.3.6

f(a, b,c, d, e) = ab' + ac'+ ad + ae + a'e'

Let m = 4. Let usfix the bound set X to {a, b,c,d}. Then Y = {e}. Although we do notshow

the decomposition chart (since it is big), it has three equivalence classes Co, C\, and C2. Let the

corresponding symbolic representationfor the on-set ofg be:

e class 9

1 Co 1

1 Cx 1

0 c2 1

0 Co 1
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/* t) is a network */

/* m is the number of inputs to the LUT */

functional-decomposition.for_LUT (77, m)

{
while (nodes with support > m exist in r)) do {

n = get-an_m-infeasible.node (rj) ;

(X,Y) = get.input-partition(n);

classes = determine.compatibility-classes (n, X, Y) ;

if (# (classes) >2m"1) {

call an alternate decomposition(n);

continue;

};

codes = encode{n, X);

a = determine.a (codes);

g = compute.</(n, codes);

g = simplify-flf-using-DCtfl', a, codes);

add a nodes to t);

replace n by g

}

Figure 3.4: Functional decomposition for LUT architectures
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/* 7] is a network */

/* m is the number of inputs to the LUT */

approximate-functional-decomposition.for_LUT (77, m)

{
while (nodes with support > m exist in rj) do {

n = get-an_m-infeasible_node(7?);

(X,Y) = get-input-partition (n) ;

classes = determine-compatibility.classes (n, X, Y);

if (# (classes) >2m_1) {
call an alternate decomposition(n);

continue;

codes = encode(n, classes);

a = determine.a(classes, codes, X);

g - compute-<7(n, classes, codes, X);

g = simplify-P-using-DC(0f classes, codes);

add a nodes to rj;

replace n by g

}

)

Figure 3.5: Approximate method for decomposition for LUT architectures
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Let us assume that we are minimizing the numberofproduct terms in g. Then after a multi-valued )

minimization [11], we get thefollowing cover:

e Co C\ C2 g
1110 1

0 10 11

This corresponds to thefollowing face constraints:

Co C\ C2
1 1 0

1 0 1

To these, uniqueness constraints are added. These constraints are handed over to the constraint

satisfier [69]. Thefollowing codes are generated:

class a\a2

Co 00
Cx 10
C2 01

Note that Co and Cx are on aface, namely a2 = 0. Similarly,Co and C2 are on theface

ax = 0. Let a\ and a2 be the encoding variables used. Then it can be seen from the minimized

multi-valued cover that

9 = e'(C0 + C2) + e(Co + Cx)

=3> g = e'ax' + ea2

Also, it turns out that Co, Cx and C2 are such that

ax = abed

a2 = a'

This simplifies to

g = e'ax' + ea

ax = abed

Had we done a dumb encodingofthe equivalenceclasses, as is the case in [62], we would

have obtained thefollowing decomposition,

g = axa2'e + ax'a2 + ax'e'

ax — abed

a2 = ab' -f ac' + ad,
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which usesonemore function andmany more literals than theprevious one. This shows that the

choice ofencoding doesmake a difference inthe resultant implementation.

Note thatunless an alternate decomposition is used, thisprocedure is not complete, i.e.,

it does notalways guarantee that finally anm-feasible network will result This happens when for
the chosenpartition, k > 2m_1.

Example 33.7 Consider the function ofExample 333, f(a, b,c) = a'bc + ab'c + abc'. Letm be

2. To generate non-trivial decompositions, it suffices to consider boundsets with two elements. As

shown earlier, the decomposition chartfor f forthe partition (ab\c) has a column multiplicity of3,

which isgreater than 2m_1 = 22"1 = 2. So our procedure will throw away this partition. Since
thefunction is totally symmetric, any partition with the bound set having twoelements will result

inthe same decomposition chart andhence would have column multiplicity of3. Soourprocedure

will fail to generatea valid disjoint decompositionfor f.

In sucha case, an alternate decomposition strategy is used. Forexample, a non-disjoint decompo

sitionalways exists, and, therefore, an m-feasible implementation can always be obtained for any

m-infeasible function. Two such techniques, cube-packing and cofactoring, will be described in

Sections 3.3.2 and 3.3.3 respectively.

Choosing a partition lb obtain the best possibledecomposition, all partitions (X, Y) shouldbe

explored. This may not be computationallyviable, since there are exponentiallymany choices. Our

current implementation includes two options:

1. Pick an arbitrary bound set X. Although fast, this strategy may miss good partitions, as the

following example shows.

Example 3.3.8 Consider thefunction

f = abc + degh + ij

Let m = 5. To make thisfunction 5-feasible, the bestpartition is (abcij\degh), resulting in

the following decomposition:

f = p+ degh

p = abc + ij
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However, ifwepicka partition, say (abcde\ghij), weget thefollowing:

f = qr+ q'r's + rs'

p = abc

q = a'de+ b'de + c'de

r = p'gh + p'ij

s = p + ghi' + 5^/

T/u'sdecomposition, with 5 sub-functions, isfar offfrom the best one.

2. Go through all the partitions and pick the best one. Ideally, the best partition is the one that

results in the fewest feasible functions. This is not easy to find ifg is infeasible and has to be

recursivelydecomposed: all partitions haveto be tried for g as well. So, we approximatethe

best partitionto be the one that gives the minimum number ofcompatible classes.

If |X u Y |is large, generating allpartitions and computing thecompatibility classes becomes

computationally infeasible. We present a simple result to prune the search. It holds for

completely specified functions. The ideabehind it is that the number of equivalence classes

for the partition (X\dY) (which is the same as CX"|{a} UY)) is related to that for (aX\Y).

If thenumber ofequivalence classes for thepartition (aX \Y) is known,it may be possible to

tell, without computingthe equivalence classes for (X\aY), whether(X\aY) will generate

fewer equivalence classes than the minimum seen thus far.

Let v € I?'*', and av and a'v be the corresponding vertices in the extended space 2?'*l+1
with a = 1 and a = 0 respectively.

Proposition 335 Let p(aX\Y) and p(X\aY) be the column multiplicities ofthe decompo
sition charts D(aX\Y) andD(X\aY) respectively. Then

p(aX\Y)/2 < p(X\aY) < p(aX\Y)2. (3.6)

Moreover, these bounds aretight, i.e., there exist decomposition charts onwhich these bounds

hold as equalities.

Proof We prove the inequalities oneby one.
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• p(aX\Y)/2 < p(X\aY): Consider the decomposition chart D(X\aY). Without loss

of generality, each column v of the chart can be divided into two halves, with the top

halfcorresponding to the half-space a = 1, and the bottom halfcorresponding to a = 0.

When a is moved from the free set to the bound set X, the column v of D(X\aY) splits

into two columns, av and a'v, where av is the top-half of v and a'v the bottom-half.

If there are p(X\aY) distinct column patterns in D(X \aY), there cannot be morethan

2p(X\aY) distinct column patterns in D(aX\Y).

• p(X\aY) < p(aX\Y)2: Consider D(aX\Y). Let cx,c2,...,c^aX\Y) be its distinct
column pattems. When a is moved from the bound set aX and added to the free set

Y, the column a'v of D(aX\Y) aligns itself below the column av and results in the

column v in the new chart D(X\aY). A columnof D(X\aY) is then of the form c;

concatenated withcj where ct- and cj are columns of D(aX\Y). The worst case iswhen

eachdistinct column pattern of D(aX\Y) gets aligned with anyothercolumnpattern,

thus resulting in p(aX\Y)2 distinct column pattems in D(X\aY).

It is easy to construct examples of the decomposition charts where the bounds hold as

equalities. •

How canthis resultbe applied? Assume we are generating partitions one by one, computing

the numberof equivalence classes, and saving the best partition seen so far. Let there be 5

equivalence classes inthebest partition seen sofar. LetD(aX\Y)have20equivalenceclasses.

There isnoneed to generate thechart for D(X \aY), since ithasatleast 10equivalence classes

(using Proposition 3.3.5). Similarly, if D(X\bY) has 30 equivalence classes, D(bX\Y) has

atleast \y/30] = 6 classes, and need notbegenerated.

To conclude, it remains anopen problem to find a good partition quickly. Hwang et al.

[35] did some work onthis using apartitioning algorithm similar tothe one proposed byKemighan

and Lin [40]. The cost function is the number of pattems corresponding to this partition. They

first generate an input partition randomly, and then move the input variables across partitions and
recompute the cost function. The strategy ofaccepting apartition is the same as in the Kemighan-Lin
algorithm. Hwang et al. showed that this technique generates good results. Out of14 benchmarks,
it computes optimum partitions for 11. But this conclusion has to be taken with apinch of salt.
Their benchmark setconsists mainly of symmetric and arithmetic circuits. For symmetric circuits,

any bound set ofagiven cardinality is the same, and arithmetic circuits exhibit group-symmetry.
For adefinitive answer, general benchmark circuits should be chosen and studied.
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3.3.2 Cube-packing

Before describing cube-packing,it is useful to define the following two notions.

Definition 33.1 A supercube ofa cubec is a cubethatcontains c.

Forexample, ab'd, ade, ab'd and dare some supercubes ofthe cube ab'de.

Definition 3.3.2 A sub-function ofafunction f = cx + c2 + ... + cnis afunctionwhosecoveris

a subset of the setof cubes {c\ ,c2,..., c„}.

For example, if / = abc+deg'h+kl', then abc, abc+deg'h, abc+kl' are some ofthesub-functions

of /. Note that in the rest of the thesis, the term sub-function of a function / is used somewhat

loosely to mean a function that is derived from / in some way. Forthis subsection, a sub-function

is as defined in the last definition.

Cube-packing as a method of decomposition for LUT architectures was first suggested

in chortle-crf [26]. The basic idea is to approximate the problem of decomposing a function as

that of decomposing an SOP of the function. This is unlike Roth-Karp decomposition, which

being a functional technique, is independent of the function representation. Cube-packing uses

bin-packing, a well studied problem [30]. We are given items with weights and bins of fixed

capacity. The objeaive is to pack all the itemsusinga minimumnumber of bins without violating

the capacityof any bin. Here, the used capacityof a bin is the sum of the weights of the items in

the bin.

If each cube in the SOP of the function / is treated as an item with weight equal to its

literalcount, and an LUTas a bin with capacity m, the problemofdecomposing the SOP of / into

a minimum number of m-LUTs can be seen as a bin-packing problem, although the two are not

exactly the same (as explained later). We call this formulation a cube-packing problem.

The decision version of bin-packing is NP-complete, [30], and same is true of cube-

packing, as shown later in the section. However, there exist efficient heuristics for bin-packing,

which can be modified for cube-packing. One such heuristic is the best fit decreasing (BFD). It is

modified for cube-packing as follows:

1. Extract m-input AND gates from each cube c until it has at most m literals. Two methods to

select the AND gates are studied:

(a) regular: Order the inputsof the function (arbitrarily). A literal whose corresponding

input is earlier in the order is extracted earlier from the cube.
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(b) smart: Order the inputs in the increasing order of occurrence in the sum-of-products

expression. Again, a literal earlier in the order is extracted earlier from a cube. The idea

is that a literal in the final expression (after all the cubes have become m-feasible), will

be in many cubes. This gives more opportunity for sharing of the supports and hence

for placing more cubes in each LUT.

The experimental results for these methods are shown in Section 3.6.

2. Order the cubes in non-increasing order of weights.

3. Pick the largest unplaced cube c and try placing it in the bins that have been already used. If

it fits in more than one, choose the best bin. Weexperimented with two definitions of the best

bin for a cube c:

(a) minimum support: The support of a partially filled bin is defined as the union of the

supports of the cubes placed in it. According to this definition, the best bin for c is the

one that has the least support of all bins after c has been placed.

(b) minimum increment in the support: According to this criterion, the bin whose support

increases by the least amount when c is placed in it is the best bin for c.

If c does not fit in any of the partially filled bins, generate a new bin and place c in it. When

all cubes have been placed, the binmostfull is "closed." That is, it is removed from the list of

partially filledbins, generatinga singleliteral cube (equivalently, an item of weight 1),which

is added to the list ofunpacked items. Repeat this step until only a single item of weight 1 is

left.

Note that an LUT with more than one cube in it realizes their OR.

We illustratethis approach for m = 5 usingminimum increment insupportas thecriterion

for defining the best bin.

Example 33.9 Let

f = abed + a'b' + ktr + r'p (3.7)

Let

cx = abed,
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c2 = a b,

C3 = klr,

C4 = t p

be thefour cubes. Since there is no cube with more than5 literals, step 1 is skipped. Next,we sort

the cubes in non-increasing order ofnumberofliterals. This results in the order c\, C3, c2,c4. The

cube cx is placed in bin 1. Thecube C3 cannotfit inbin 1 ascx andc$ togetherhave 7 inputs. So C3

isplaced ina newbin2. Cubec2is next. It canfit inbothbins1 and2. Ifput inbin1 with cx, it does

not use any leftovercapacity (inputs) ofbin 1, whereas ifput in bin 2, it uses two additional units

of capacity. Therefore it is placed in bin 1. Finally, c*can be placed only in bin 2. The resulting

configuration is shownin Figure 3.6. We close thebin that is mostfull. Both the bins are usinga

capacityof4; so we arbitrarily close bin 1. This generates a new single literal cube x, which is

then put in bin2, since bin 2 had an unassigned inputpin.

Note the following features:

1. The cubes can share inputs, i.e., the sum ofthe weights of two cubes may be greaterthan the

weight of the cubes merged together. For instance, the weight of c\ is 4 and the weight of c2

is 2, but that of q + c2 is 4. This is in contrast with the standardbin-packing problem, where

the items do not share weights.

2. Every bin, except the final one (the one realizing /), generates an item of weight 1. This

is because each bin realizes a sub-function of /, which later has to combine with other sub-

functions to generate /. To handle this, we generate a single literal cube as soon as a bin is

closed and make this new cube a new item.

3. BFD is a polynomial time heuristic.

A property of cube-packing

The cube-packing algorithm as described above has an interesting property. We have

shown that/or m < 5, it generates an optimum m-feasible tree network for a function consisting

ofcubes with disjoint supports.4 This isuseful since many functions inan optimized multi-level
network satisfy the disjoint support property.

4We proved this result using an explicit ordering ofthe cubes, not recognizing that we were in fact using the BFD
method for bin-packing. Inother words, wecame upwith an algorithm to generate the bestfeasible tree implementation
for such a function. Later, when chortle-crf [26] was published, werecognized that ouralgorithm was thesame asthe
BFDheuristic. [26] alsoindependently proved thisresult.



3.3. MAKING ANINFEASIBLE FUNCTION FEASIBLE

binl bin 2

ta» "X
C2

Cl

C4

C3

X = C£T-C ~
= al)ca + a'b'

f=c3+c4+x
= klr + r'p + x
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Figure 3.6: Anexample ofcube-packing

Let the function / =c, +c2 +... +cn, where a and <y have mutually disjoint supports
(i.e., ala) no(cj) =*) for all 1<i,j <n,t ^ j. LetC ={cuc2,...,cn}. Let Tbe any tree
realization of / using look-up tables. It is convenient in what follows to treat the literals in Cas
the primary inputs and refer to the support of acube a in terms of its literals instead of variables
(in other words, we are assuming, without loss of generality, that all variables appear in the positive
phase). This implies that for an internal node tof the tree T, owW is asubset of the literals in C.
We assume that

1. there are no constant inputs to any ofthe LUTs. If there were, we can always propagate them
to the output, and

2. each immediate faninof an LUT sinTbelongs to the true supportofthe function implemented
bya(otherwise, itcan be deleted).

The proofofoptimal tree realization is in two steps.

1 We first determine T'S structure. It is shown in Proposition 3.3.9 that each node ofTeither
implementsasupereubeofsomecubeei.ormecomplememofasupereute.orasub-function
of /, or the complementofasub-function.

2. Using the structure ofthe tree determined in the first step, we then show in Theorem 3.3.10
that the algorithm generates an optimum tree.

The proofofProposition3.3.9 rests onLemma3.3.6,Lemma3.3.7,andProposition3.3.8.
Lemma 33.6 is just arestatement of the fact mat if all me children of each LUT are in its true
support, then the primary inputs in the TFI of each LUT are also in its global true support.
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1
w
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u

Figure3.7: / e <ttg{u)&u€ ut(w) => / € otg{w)

Lemma 33.6 Let T have an LUT s with output w (Figure 3.7) such that u e gt(vj). Then

I 6 cttg(u>) => I € o"tg(w).

Proof Using Shannon expansion of w w.r.t. u,

w = wuu + wuiu'

= xu + yu', where a: = wu,y = uv.

=»«?/= xui + yu{

and w// = xu\> + yujf

(3.8)

(3.9)

(3.10)

(3.11)

Note that (3.10)and (3.11)hold becausex and yareindependentof / (x = «?u andthereforedepends

on the inputs of s that are to the right of u in Figure 3.7. Since T is a tree, these inputs cannot have /

in their support. Same argument works for y.). For the sake of contradiction, assume that the global

function of w is independent of /, i.e.,

W\ = Wf

Substituting (3.10) and (3.11) in (3.12), we get,

xui + yu\

(xui + yu\) © (xuv + yu'v)

xu\i + yu\i

0

(3.12)

(3.13)

(3.14)
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Multiplying andreorganizing terms,

(ui ©uv)(x ©y) = 0 (3.15)

For some point v e £M*M«>lf x(v) ± y(v) (since u€ crT(w)). Then *(w) ©y(v) = 1. Since
T is atree, w/ and uv do not share supports with either x or y. Hence v is independent of the
assignment of inputvalues to u\ and up. So (3.15) becomes

(ui © u/#) = 0

This implies wis independent of /. A contradiction. •

Next, we state alemma that is the key toderiving T's structure. Recall that for aset S of

functions, <r{S) denotes the union of supports ofthe functions in S. Also, n is the number of cubes
in the SOP off.

Lemma 33.7 For a cube c„ 1< i < n, there exists an LUT block t in Tsuch that itispossible to
partitiontheinputsoftintotwosetsItandIIt,IIt £ <f>ifn > 2,suchthatGTG(IIt)r\aTG{ci) = <f>
andoTG{h) = 0"tg(c,).

Proof Ifthere isonly one cube inthe SOP of/, the output LUT ofT isthe desired t (with IIt = <t>)
and weare done. Now, assume there are at least two cubes, i.e., n > 2. To get the desired t, traverse

the tree T from its root towards the inputs. Say during the traversal, we are at an LUT s whose

output is r. The LUT s satisfies two invariants:

otg(t) n <TTG(ci) ^ <f>, and

oTg(t) n otgU - ct) ¥" &

where / - ct- = cx + c2 + ... + c,-_i + c,-+1 + ... + cn. Note that the root of T satisfies these

invariants. If 5 has a child v such that

otg(v) n oTg{cx) # <f>, and <ttg(v) n aTG(/ - a) ^ <j>, (3.16)

sets to the LUT that generates v (v isnotaprimary input if it satisfies (3.16)). Clearly, noleaf LUT

ofT (aleafLUT is onethathasonly primary inputs as its children) hassuchaninputv. So we will

eventually reach an LUT t realizing function w suchthatallof the following are satisfied:

<ttg(w) n <ttg(c{) + <i>,

<ttg(vj)noTgU-ci) ^ <f>,

otg(v) PI (ttg(ci) = (f>, or <?tg(v) HotgU - c;) = & Vv Go-j(w)



68 CHAPTER 3. MAPPING COMBINATIONAL LOGIC

Figure 3.8: Structure ofthe tree T: 0TG(It) = <*(ci) and OTG(Ht) n a(ct) = <f>

Form the set lit by putting in it all the inputs v of t that satisfy otg(v) n otg(ci) = 0 (so

otg(v) n <ttg(/ - cj) ^ ^). The restofthe inputs u of <satisfy<ttg{v) n <rr<?(/ - ct) = 0 and

constitute It. IIt is non-empty, since otg(w) n ^rG(/ - c,-) ^ <£. Similarly, J* is non-empty.

Clearly <ttg(IU) n otg(c{) = <£and OTG(It) Q^tg(c{).

Suppose (ttg(Ii) is a'proper subset of 0TG(ci)« Make ct- = 0 by setting some variable

in otg(U) to an appropriate value (i.e., 0 or 1). As a result, somelocal functions may become

constants (Os or Is). Propagate these constants as far as possible towards the root of T. This

propagation stops at or before t, i.e., the new local function implemented by t, say w, is non-trivial

(i.e., non-0, non-1). This is because of the following reason. Now T implements a new global

function, f = f - a. Therefore /depends on ajG(//*)• Since lit # <f>, the only way that is

possible is if w is non-trivial. Let f = T - {t} - TF\(t), and S = otg(c{) - otgW- The
last observation then implies that the local function at each LUT in f remains unchanged. Now,
consider S. Byassumption, S ^ <j>. Also, the inputs inS fan out only toLUTs in f. Itthen follows

from Lemma 3.3.6 that S C otg(7)- This leads to acontradiction, since / = / - c, does not
depend on c,-. Hence, otg(U) = ^tg(c{). m

Figure 3.8 shows the resulting structure.

Proposition 33.8 If an LUT s ofT implements thefunction r, either
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(1) crG(r) C o(ci) for some cube c, 6 C, or

(2) oG(r) = Uc.e£<T(ci)forC CC.

Proof There are two possibilities. Either r is a function ofvariables from just one cube, say c,-,
which gives (1), or it is a function ofvariables from at least two cubes ct- and cj ofC. Then
c(cj) n oG(r) ^ <f>. For contradiction, assume that o(a) n aG(r) = S, where 5 is anon-empty
proper subset of <7(ct). Now consider the LUT t for the cube c„ as given by Lemma 3.3.7. Since

*(ct) £ *g(w) (w is the function implemented by t), and T is a tree, t is in the TFO of s. Let

u bethe input to t such that s is in the TFI of u. Since o-g(u) contains variables from a as well

as cj, partition (/«,//«) ofinputs of t with the property crG(It) = aG(ct) cannot be formed. This
contradicts Lemma 3.3.7. Hence, a(c,) C oG(r). Arguing over all the cubes whose supports
intersectoG(r), we get (2). a

Thenext question is regarding theglobal functions implemented byan LUT s e T. The
following proposition answers it.

Proposition 33.9 If an LUTsofT implements thefunction r, either

1. visa supercube ofsome cube ct-, orthe complement ofa supercube, or

2. risa sub-function of f, or the complement ofa sub-function of f.

Proof First we note that thetree Tcorresponds toaseries ofsimple disjoint decompositions onthe

function /. Inparticular, todetermine r,we considerapartitionofthe form (crG(r), aG(f) - oG(r)).
This is shownin Figure3.9. By Proposition 3.3.8, two possibilities arise:

1. <rG(r) C o(a) for some cube c; 6 C: then we form a decomposition chart for / for the

partition (oG(r),o(f) - oG(r)). We illustrate the proof technique with an example; the

general proof is based on exactiy the same arguments and is omitted. Let / = abc + de.

Let oG(r) = {a,b}. Then the decomposition chart of Figure 3.10 is formed. It is a

superimpositionof two charts, as shown in Figures 3.11 and 3.12. The first chart (Figure

3.11) shows the values that / takes on the cube abc. Note that the bound set is a subset of

the support of abc. So the entries are 1 only when fx = abc = 1, i.e., a = b = c = 1.

This corresponds to Is appearing in a single column, say v. In the example, v corresponds to

a = 1,6= 1. The second chart shows the rest of the function f2 = / - fx = de. It has the

property that Is occur in it only as complete rows. We superimpose the two charts to obtain
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m
•o»-"ow

77m
<^<r)

Figure 3.9: Determining r using the theory of simple disjoint decomposition

ab_
cde 00 01 10 11

000 0 0 0 0

001 0 0 0 0

010 0 0 0 0

011 1 1 1

100 0 0 0

101 0 0 0

110 0 0 0

111 1 1 1

Figure 3.10: Decomposition chart for f = abc + de forthe partition (ab,cde)
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ab
cdt>. 00 01 10 11

000 0 0 0 0

001 0 0 0 0

010 0 0 0 0

on 0 0 0 0

100 0 0 0 1

101 0 0 0 1

110 0 0 0 1

111 0 0 0 1

Figure 3.11: Decomposition chart for fx = abc for the partition (ab, cde)

ab_
r.dt> 00 01 10 11

000 0 0 0 0

001 0 0 0 0

010 0 0 0 0

011 1 1 1 1

100 0 0 0 0

101 0 0 0 0

110 0 0 0 0

111 1 1 1 1

Figure 3.12: Decomposition chart for f2 = de for thepartition (ab, cde)
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the chart for / (shownin Figure 3.10), i.e., if foranentry, onechart hasa 1,andthe otherhas

a0, thechart for / has a 1 for that entry. This isbecause f = fx+ fi. There are exactly two

distinct columns in the chart for /. This can be seenif therows ofFigure 3.10are rearranged

suchthat the rowsof 1s corresponding to f2's chart appear atthe top. The reason is as follows.

There is at least one entry that has a 1 in fx's chartand a 0 in /2's (since fx- hi=- 0). One

of the two distinct columns corresponds to v andthe other,to any other column of the chart.

Tb determine r, we use Ashenhurst's technique described in Section 3.3.1. We put v in the

on-set of r and get r = ab. Had we put v in the off-set of r, r = (ab)'. So r is either a

supercube or the complement of a supercube. Note that if / had only one cube, / = /1 and

f2 —0. It is easy to see that / has exactiy two distinct column patternshere too.

2. OG(r) = Uc -r0{ci) for C C C. This case is similar to the previous one, except that here
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Figure 3.13: Determining w(r, c) usingthe theory of simpledisjoint decomposition

the chart for fx corresponds to the subcoverC, and has Is occurring as complete columns.

If these columns are put in the on-set of r, r = ]Cc.6c c,-, a sub-function of /. On the other
hand, if these columns are put in the off-set ofr, r = (£c.6c Ci)'» which is the complement
of a sub-function.

Having determined the possibilities fortheglobal functions implementedby eachLUT,the

next step is to determine the correspondinglocal functions. This will complete our understanding of

T's structure. The local function r implementedby an LUT s in T is in terms ofits immediate fanins

{w,}. Given {w,} alongwith theirglobal functions andthe global function r, the local function r is

unique. This follows from Corollary 5.3.5, since neither «, nor «,-' is 0 for all i. We illustrate this

using the previousexample. Figure3.13 shows a tree implementation T for / = abc + de. We are

interested in the local function implemented by the LUT t. The immediate fanins of t are {r, c}.

Let r = (ab)'. First, determine the global function w(a, b,c) implemented by t. From Proposition

3.3.9, either w = abc or w = (abc)'. Let w = abc. Since r = (a&)', from Ashenhurst's theory,

we get w(r, c) = r'c. Moreover, since neither r nor r' is0, from Corollary 5.3.5, w(r, c)is unique.

Similarly, if w(a, b,c) = (abc)', w(r, c) = r -f- d. In general, a series of decomposition steps are

needed to determine the local function. For instance, to determine the local function f(w, z) in

Rgure 3.13, first f(w, d, e) is determined (since the global functions f(a, b,c,d,e) and w(a, b,c)

are known). Then z(d, e) is determined using Proposition 3.3.9, and finally f(w, z) is determined.

This completes the discussion on determining the structure ofT. This result is an extension

ofthe AND-OR boundary lemma proved by Wang [85]. The AND-OR boundary lemma is aboutthe

structure ofa treedecompositionof / using2-input NAND gates andinverters, where / consistsof
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cubes with disjoint supports. It says that for each cube ct, there is some NAND gate inthe tree that

realizes the complement ofct. However, derivation ofthe lemma issimplerthan that ofProposition
3.3.9, because

• therelationship between inputs and the output ofthe gate is known - it is aNAND function,
and

• each gate has only 2 inputs.

When we first proved Proposition 3.3.9, we used arguments similar to, but more complicated than,
the ones used inthe proofof AND-OR boundary lemma. The proof based on Ashenhurst't theory
presentedhere is much simpler.

This result is in confoimity with the natural way of generating atree realization for / -

building itcube bycube. We will use the structure ofT inproving that the BFD algorithm generates

an optimum feasible tree structure for /. We restrict ourselves to the case m = 5. The proofs for

the caseswhen m < 5 can be similarlyderived. First we make a few remarks.

1. If T is an optimum tree implementation of /, then we can get an alternate optimum tree

implementation T of f such that all the logic blocks in f realize either asupercube of some
cube cj orasub-function of /. This isdone by pushing inverters and appropriately changing

thelocal functions. From nowon, werestrict ourselves tosuchoptimum tree implementations

only. Note that for such atree T, thelocal and theglobal functions ateach LUT are unique.

The only significant thing is the structure of T, i.e., which inputsgo to an LUT.

2. Without loss ofgenerality, we assumethat no cube of / has more than4 literals. If it had, we

can repeatedly extract 5 literals untilthiscondition is satisfied. It follows from Proposition

3.3.9 that any feasible tree implementation of / must have such a structure. Moreover, since

allthe inputsof a cube are similar(i.e., havesamephase), we do not lose anyoptimalitythis

way.5

We cannowshowthatanLUT cannot besaved by splitting a5-feasible cube, i.e.,partitioning

its inputs into two or more sets, each set fanning out to a separate LUT. An example suffices.

If there is an optimum implementation T with a split-cube, say ct- = abed, then an alternate

optimum implementation T can be obtained with c, not split -just move all the inputs to fan

out to the first LUT encountered in a depth-first search (DFS) of T. This is shown in Figure

5No optimality is lost even when some inputs are in negative phase, since inverters are essentially free in LUT
realizations.
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Figure 3.14: Splitting a4-feasible cubedoes nothelp for a5-feasible implementation

3.14. The movement of inputs can be performed without changing the global function. In

Figure 3.14 the LUT t realizes a sub-function of /, and after the inputmovement, the local

functions of s and t change to ensure that t realizes the same global function as before. It

follows that there exists an optimum implementationToff such that all the logic blocks in f
realizea sub-function of /. We can get ridof those LUTs of T that realizedpropersupercube

functions.

Let / be a function whose cubes have mutually disjoint supports and none of them has

more than 4 literals. It is convenient to use the terms items, weights, and bins, instead of cubes,

number ofliterals, and LUTs respectively. Firstwe classify allthe items (cubes) by weight (number

of literals). We explicitly list first few steps ofthe cube-packingalgorithm for m = 5.

1. Pairitems of weight 3 with items of weight 2, until one of them runs out. Each such pair is

put into a bin (LUT), whose output is treated as an item of weight 1.

2. Pair items of weight 4 with items of weight 1. Each such pairis put into a bin, whose output

is treated as an item of weight 1. This, in turn, can be used in a pair involving an item of

weight 4. Repeat the mergings until one of them runs out.

3. We are now left with one of the following weight combinations: Is, or 2s, or 3s, or 4s, or

Is and 2s, or Is and 3s, or 2s and 4s, or 3s and 4s. We apply the BFD algorithm on each of

these combinations. For instance, for the first combination, repeatedly place five Is in each

bin until no unplaced items remain. For thecase whenthe only items are of weight2, place

two items in onebin, closeit, and then place two itemsof weight2 and the item of weight 1

generated when last bin was closed. Repeat this process.
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Theorem 33.10 The above algorithm generates an optimum feasible tree implementationfor a

function f whose cubes have mutually disjointsupports.

Sketch of Proof Let the tree generated by the algorithm be 5. Let T be an optimum tree imple

mentation whose each LUT realizes a sub-function of /. We will transform T by changing its edge

connections such that finally we obtain S, without increasing the number of LUTs. We do so by

simulating the steps ofthe above algorithm on T. Consider step 1. If it merged cubes c, = hh

and cj = /3/4/5, we locate these cubes on T. Let {h,h} and ft, U, h} beinputs to LUTs s and t
respectively. If s = t, nothingneedsto be done. Otherwise, threecases arise:

1. LUTs s and t do not occur in the same path to the root (Figure 3.15): swap cube cj with

other inputs of s, such that cj is nowwith c,. This swapis always possible,since there were

at most 3 other inputs to s, namely o,p and q. They can be moved to the three vacant input

spotscreated by h»U and Is at t. Note thatthiscanalways bedoneas each LUT of T realizes

a sub-function of / (Remarks 1 and 2).

2. t is on the path from s to the root (Figure 3.16): swap cj with the other inputs (o, p and q) of

s.

3. s is on the path from t to the root: swap c* with the other inputs of t.

We repeat this process for all the cubes merged in step 1 of the algorithm. In the end, we have

generated T\, which has as many blocks as T and matches with S on inputs to LUTsthat involve

cubes of step 1. It is important to note that the matched LUTs(i.e., to which swaps were made in

the simulation, e.g., s in the cases 1 and 2, and *in 3) correspond to the bins closed in this step of

the simulation, and their inputs correspond to items that have been placed in the bins. These LUTs

will not be involved in any swapping in the simulation process to follow.

We now simulate step 2 on Tx and generate T2. Carrying on the simulation, we finally

generate Tz that matches 5 on all the LUTs of S. So S is a sub-tree of Tz. Since we never added

LUTs intheentireprocess, thenumberof LUTs in Tz isnomore thanthatinT. Since T isoptimum,

Tz is optimum. This implies that 5 is optimum as well. That is, Tz- S. u

We have been somewhat sketchy in the last proof. For instance, consider a case that can

arise during simulation, but is not mentioned in the proof. Assume that we are about to simulate

the step 3 on a tree, say 7*. and that we onlyhave items of weight 1 and 2. Also assume that there

are twoitems q and c2 of weight 2. The BFD algorithm will place ct and c2 along with an item,
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\ifPt

Figure 3.17: cx and c4 cannotbe inputs to the same LUT

say C3, of weight1. Let cx and c2 be inputs to LUTs s and t respectively in Tk,s^t (Figure 3.17).

Simulatingthe step 3, c\, c2 and c$ will be made inputsof the same LUT, say 5. Then c2 will need

to be moved to 5. But what if s has as input another cube c4 with 3 literals o,p and ql Cube c4

needs to be moved to t. However, t may not be able to accommodate c4; it may have the other three

input spots occupied (Figure 3.17). Fortunately, this situation cannothappen. The LUT s cannot

have c4, a 3-literal cube, as its input. By now, all 3-literal cubes have been taken care of in step 1

- they are secure in bins that have been closed. In fact, in this case step 1 terminated exactly when

we ran out of 3-literal cubes. So the order in which the items are placed in the bins is important.

The same arguments can be applied for m < 5.

A similarresultholds if / hasa POS representation consistingofsum-termswith disjoint

supports. We now pack sum-terms in the bins.

Theorem 33.11 For m < 5, the BFD algorithm operating on sum-terms generates an optimum

m-feasible tree implementation for a function with a POS consisting of sum-terms with disjoint

supports.

Proof Follows from Theorem 3.3.10 using duality, i.e., replace AND with OR and OR with AND

everywhere. •
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Complexity of cube-packing

We have seen that for m < 5, the BFD algorithm generates an optimum m-feasible

tree implementation for a functionconsistingof cubes withdisjoint supports. Note that BFD is a

polynomialtime algorithm. It is natural to ask the following questions.

1. Isthe BFD algorithm optimum fora function / consisting ofcubes with disjoint supports for

arbitrary m? If not, whatis the complexity ofthe cube-packing problem, i.e., of minimizing

the LUTcount for / using the cubes as items?

2. What can we say about an arbitrary function?

We mayassume that all the cubeshave at most m literals.6 Let CUBE-PACKINGbe the decision

version of the corresponding cube-packing problem for a general function. As mentioned earlier,

it is similar to the bin-packing problem. Since bin-packingis NP-complete [30], we are inclined

to believe that CUBE-PACKING is also NP-complete. That is indeed the case. To see this, we

restrict the function in the CUBE-PACKING problem to one consisting of cubes with mutually

disjoint supports. Let us call this problem DISJOINT SUPPORT CUBE-PACKING. Also note

that DISJOINT SUPPORT CUBE-PACKINGis the same as obtaining a feasible tree realization of

such a function with a minimum number of LUTs. Stated as a decision problem, it becomes:

INSTANCE: Finite set U ofitems, weight w(u) 6 Z+, the setofpositive integers,for each u eU,

bincapacity m € Z+, anda positive integer K. Also, each bin(except the "last" one) generates

an additional item ofweight <!.

QUESTION: Can all the items be "packed" in at most K bins, where the sum ofthe weights of

items in each bin is m or less?

We were not precise in defining the problem; the phrase each bin (except the "last" one)

generates an additionalitem ofweight1 was looselyused. A precise way would be to annotate the

final packingwitha directed graph G. The vertices of G arethe binsused in the packing, and there

is an edge from a vertex u to vertex v if the single-literal item generatedfrom the bin u is placed in

v. A packingis validonly if G is acyclic withsingle root In fact, for a minimal packing(i.e.,each

newitemis placedin exactlyone bin), G is a rooted tree. We havepreferred to sacrifice preciseness

for simplicity.

6Ifwe showarestricted version of someproblem to beNP-complete, the general problem is also NP-complete.
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We show that DISJOINT SUPPORT CUBE-PACKING is NP-complete using a transfor

mation from PARTTTION-l, which is:

INSTANCE: Finite set A anda weight w(a) e Z^ for each a e A.

QUESTION: Is there a subset AC A suchthat

5>(a) = ( £ 10(a))+ 1 (3.17)
a£A a£A—A

First we show that PARTTTION-l is NP-complete.

Lemma 33.12 PARTTTION-l is NP-complete.

Proof Given a solution, i.e., subset A, it is easy to check that (3.17) is satisfied in polynomial

time. This shows that the problem is in NP. We transform PARTITION, which is known to be

NP-complete[30], into PARTITION-1. The PARTITION problemis:

INSTANCE: Finite set B anda weight s(b) e Z+for each b € B.

QUESTION: Is there a subset BCB such that

X>(6)= y, <h) <3-18>
66B beB-B

From B, we constructthe set A as A = B U{a}, where a is a new item with w(a) = 1. For each

6 € B, let w(b) - 3s(6). Suppose thereexists B C B that satisfies (3.18). Form A = B U{a}. It

is easy to see that A satisfies (3.17). Conversely, assume that an A exists satisfying (3.17). Then

a € A. This is because if a € A - A, then the weight ofthe set A (which is the sum ofthe weights

ofthe items in A) is two more than the weightof the set A - A —{a). This is not possible,since

all the items in these two sets have weights that are multiples of 3. Then it is easy to see that

B = A - {a}. B satisfies(3.18). •

Theorem 33.13 DISJOINT SUPPORT CUBE-PACKING is NP-complete.

Proof That it is in NP is easy to see. We transform PARTITION-1 to DISJOINT SUPPORT

CUBE-PACKING. The set U is thesame as set A, andthe itemshave the same weight in set U as

in set A. Set m= ^aqA2w °— and K=2. If there exists asubset Aof Athat satisfies (3.17),
then put the itemsof A in the first bin. This generates an item a of weight 1. Put the elements of
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(A - A) U{5} in the second bin. Notethat thetotal weight of itemsin each ofthe two binsis m

(unless there is justoneitem,withweight 1,inwhich case m =1,and onebinsuffices). Conversely,

giventhatthe items canbe packedin two bins, there is abin B\ thatgenerates an additional item of

weight 1. All the items in Bx form set A. It is easy to check that A satisfies(3.17). Note that the

itemscanbe packed in one bin if andonly if U has only one item, andthathas a weight of 1. A

then has just that item, and (3.17) is still satisfied. •

Corollary 33.14 CUBE-PACKING is NP-complete.

Proof That CUBE-PACKING is inNPiseasy to see. NP-completeness follows by noting that each

instance ofDISJOINT SUPPORT CUBE-PACKING is also an instance ofCUBE-PACKING. Thus

DISJOINT SUPPORT CUBE-PACKING is just a restricted version of CUBE-PACKING. •

From the above discussion, we may suspect that the BFD algorithm presented earlier,

which takes polynomial time, is not optimum for some m for a function consisting of cubes with

mutually disjoint supports. This is indeed the case. Forsimplicity,consider m = 4000. Let there be

6 cubes each with 2002,1004, and 1002 literals and let there be 12 cubes with 995 literals. The BFD

algorithm will pair cubes of sizes2002 and 1004, using six binsto pack these. Then, it will pack 3

1002-literal cubes in a bin, using two more bins. Finally, it will pack 4 995-literal cubes in a bin,

needing three bins for the 12 items. Note that enough space is left over in the bins to take care of the

single-literal cubes generated on closingthe bins. The totalnumberofbins used is 11. The optimal

decomposition (packing) is as follows. Place one 2002, one 1002, and one 995-literal cube in a

bin. Six bins are needed for all such items. Then pack two 1004 and two 995-literal cubes in a bin,

using three more bins. Again, each bin has enough leftover capacity to accommodate the additional

single-literalcubes. The number of bins needed is 9. This counterexample is a slight modification

of anexample presented in [30] to show that BFDis not alwaysoptimum forbin-packing.

33.3 Cofactoring

Although cube-packing works reasonably well for functions with cubes having disjoint

supports, it may perform poorly if cubes share many variables.

Example 33.10 Consider thefunction f(a,b, c,d) = abc' + ab'd + a'cd + bed'. Let mbe 3. The

BFD procedure wouldpack one cube in each LUT and that gives an LUT count of6. However, a

cofactoring procedure gives an LUT count of3. Performing Shannon cofactoring of f with respect
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f = v f + v'f
Vx, Vx'

(A) m>2

g=x1f_

(B) m = 2

Figure 3.18: Using cofactoring for decomposition
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f=g + h

to a, we get

fa = be' + b'd+ bca",

fai = cd + bed',

f = afa + a'fai.

All the three sub-functions shown above are3-feasible, andhence generate a realization off using

three 3-LUTs.

We constructa cofactor-tree for f(xx ,x2,..., xn) by decomposing it as follows:

f = xxfXl+xx'fXl. (3.19)

Both /xi and fXl> are functions of at most n - 1variables. If /x, (/Xl0 is m-feasible, we

stop, otherwise we recursivelydecompose it. Form > 2, we need one LUT to realize / as in (3.19)

(Figure 3.18 (A)), whereas for m = 2, we need 3 LUTs (Figure3.18 (B)).

Cofactoring is a special case of disjoint decomposition, which was described in Section

3.3.1. Cofactoring a function f(x\, x2,..., xn) withrespect to xx can also bedone using adisjoint

decomposition on/with theinput partition (<r(/)- {xx},{xx}) = ({x2,X3,...,xn},{xx}). The

column multiplicity of the corresponding decomposition chart is at most 4, since the chart hasjust

two rows, in which case, the only column patterns possible are 00,01,10, and 11. This is shown in

Figure 3.19, where Ct- (0 < i < 3)denotes theequivalence class of those columns whose pattem isa

two-bitbinaryrepresentation of i. These four classes canbe encoded usingtwo encoding variables:

ai and a2. Assigning thecodes to theclasses by thescheme of Figure 3.20, we seethat fXl> = ax

and /r, = a2.
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X2X%...Xn

Xi
Co Cx C2 C$

0
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0 0 11

0 10 1

Figure 3.19: Cofactoring as a special case ofdisjoint decomposition: possible equivalence classes

equivalence class Ctx Ct2

Co 0 0

Cx 0 1

c2 1 0

C3 1 1

Figure 3.20: Cofactoring as a special case of disjoint decomposition: assigning codes

Since each cofactoring step generates functions with supports strictly smaller than the

original function, cofactoring is used to derive upper bounds on the number of LUTs needed to

implement a function. The complete details are in Chapter 5.

3.3.4 Kernel Extraction

Kernels ofan infeasible node function / are enumerated, and the best kernel k is extracted.

A new node corresponding to k is created and substitutedinto /. The process is repeated on the

new / and k recursively. It may happen that / is infeasible and has no non-trivial kernels. For

example, let m be 5. Then / = abc-\- deg cannotbe made 5-feasibleby kernel extraction. In this

case, we resort to either cube-packing or technology decomposition (to be described next). Both

these techniques are guaranteed to return a feasiblerepresentation.

3.3.5 Technology Decomposition

Technologydecompositionbreakseachnode functioninto two-inputAND and OR gates,

thereby generating an m-feasible network for any m > 2.

Example 33.11 Consider f = abc + deg. After applying technology decomposition intotwo-input

AND and ORgates, we obtain

x\ — ab
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n=cw+dy n=cw+y

w = bc
y = ab y = abd

(A) (B)

Figure 3.21: Using support reduction to obtain feasibility

x2 = xxc

y\ = de

V2 = y\9

f = x2 + y2.
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w = bc

To generate a good implementation for m-LUTs, m > 2, one has to rely on BCM, which follows

decomposition. One disadvantage of this technique is that the resulting network can have too many

nodes, and running BCM in exact mode may not be possible. Even the BCM heuristics may not

produce good quality solutions.

3.3.6 Using Support Reduction to Achieve Feasibility

The techniques described in Sections 3.3.1 through 3.3.5 lie in the realm ofdecomposition,

in that they break an infeasible function into a set of feasible functions. We now describe a

technique that tries to achieve feasibility by reducing support ofthe function using the structure and

functionality ofthe network. The following example explains the idea.

Example 33.12 Consider the network 77 shown in Figure 3.21 (A). Let m be 3. Since w and y

are 3-feasible and n is not, the decomposition step only breaks n. The local function at n needs
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two 3-LUT.s (one way is tofirst realize x = cw and then n = x + dy). So, the total number of

LUTs neededfor 77 isfour. However, ifwe move the input dofn overto y, n becomes 3-feasible,

withoutdestroying 3-feasibilityofy. The resulting network, shown inFigure 321 (B), isfunctionally

equivalent to rj,and uses three LUTs.

The ideais to try to reduce the support ofaninfeasible function repeatedly untilit becomes feasible.

During the process, no feasible function ofthe network ismade infeasible. lb seeif the support of

an infeasiblenode n can be reduced, the following algorithm is used:

1. If n has a fanin G that isnotaprimary input and fans outonlyto n,collapse G into n to get
n.

2. Redecompose n using one of the decomposition techniques described earlier. If redecom-

position results in two m-feasible functions, report success. Otherwise, find another G that

satisfies the above properties.

This procedure is shown in action for the networkof Example 3.3.12 in Figure 3.22. Note that

G = y.

An approximation ofthe above idea is tomove thefanins. Here weexplore thepossibility

of moving a fanin F of function n over to the fanin G of n, without changing the functionality of

the network. This is illustrated in Figure 3.23. Further, after F moves over to G, G should remain

feasible. The same procedure as described abovemay be used with an additional constraint that F

is finally movedoverto G. This is ensured by using functional decomposition, with F in thebound

set. If thereare at most two equivalence classes, n canbe redecomposed into G and n.

In literature, some support reduction methods have been proposed. Two such are by

Halatsis and Gaitanis [34], and Savoj et al. [71]. These methods use the don't care information to

express the node function at n on a minimum support; functions at other nodes ofthe network are

not changed. However, in ourmethod,besides n, functions atothernodes change as well.

If a function is infeasible but canbe made feasible by repeated applications of the above

technique, it is better than decomposing the function. This is because the numberof functions in the

network does not increase using support reduction, whereas decomposition introduces new nodes

in thenetwork. However, it may not always be possible to makea function feasible using support

reduction techniques.
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/Sn =cw+dy n=cw+y

y = ab
w = bc

y = abd w = bc

n=cw+dab

w = bc

Figure 3.22: Collapse y into n and redecompose n
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Figure 3.23: CollapseG into n and redecompose n with F in the bound set
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3.3.7 Summary

We studied various decomposition techniques - functional, cube-packing, cofactoring,

kemel extraction, and simple AND-OR decomposition. A question to ask is: "When shouldwe apply

a particulartechnique?" Unfortunately, we do not have a complete understanding of the general

case yet. However, for some special classes of functions, it is possible to predict the techmque that

givesbest results. For instance, cube-packinggeneratesoptimumtree implementations for functions

having cubes with disjoint supports for m < 5. Similarly, functional decomposition works well

for symmetric functions, since findinga good input partition is easy for such functions. However,

for an arbitrary function, it is not known a priori which method would work well. By choosing

functions appropriately, we have shown that no single method works in all cases. In Section 3.6,

we will see that applying cube-packing on both SOP and factored form, and picking the better of

the two gives reasonably good results.

3.4 Block Count Minimization

After decomposition/support reduction, an m-feasible network is obtained, which can be

implemented straightaway on the LUTs by mapping each node to an LUT. This strategy, however,

yields sub-optimal results.

Example 3.4.1 Consider thefollowing optimizednetwork r\,with oneprimaryoutput f,fiveprimary

inputs a, b,c, d,and e, and three internal nodes x, y and f:

f = abx' + a'b'x;

x = cy + c'y';

y = d'+ e';

Let m be 5. Nowmap r\ ontothetarget LUT architecture. Sinceeachfunction in r\ is 5-feasible,

decomposition andsupport reduction have no effect on 77. So we need3 LUTs. However, if y is

collapsed intox, andthen x is collapsed into f, weget

f = abcde + abc'd' + abc'e' + a'b'cd' + a'b'ce' + a'b'c'de,

which is 5-feasible. So, one LUT is required.

We study two transformations that reduce the number of feasible nodes.
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1. Collapse nodes into their fanouts while maintaining feasibility. This is called covering.7

2. Move the fanins of the nodes to createopportunities for collapsing. This is called support

reduction.

3.4.1 Covering

The covering problem can be stated as:

Problem 3.4.1 Givenanm-feasibleBoolean network tj,iteratively collapsenodesintotheirfanouts

suchthat the resulting network rjis m-feasibleand the number ofnodes in rjis minimum.

By iteratively, wemeanthata nodecanbecollapsed intoits fanouts, which,in rum,canbecollapsed

into their fanouts, and so on. Also, a node may be collapsed into some or all of its fanouts. We first

present an exact method and then some heuristics.

Exact formulation ofthe covering problem

We first introduce the notion of a supernode.

Definition 3.4.1 Given a graph G = (V, E) and U C V, the induced subgraph of G on U is

(U,Ex), where Ex = {(v>x,u2)\ux,u2 € U and (ux,u2) e E}. In other words, (U,Ex) is G

restricted to U.

Definition 3.4.2 A supernode corresponding to a node n ofthe network r\ is an induceddirected

subgraph S oft], witha single rootn such thatS doesnotcontain anyprimary input node ofrj.

Let us now define the support of a supernodeby considering its inputs. Recall that a node

v is aninput toa DAG G = (V, E) if v g V and there exists a u e V such that(v, u) e E. Inother

words, v is aninput to G if it isoutside G and hasanedge incident on G. Thesetof allinputs to G

forms the support a of G. This alsodefines thesupport of a supernode, sincea supernode is also a

graph.

One interpretation ofthe support of a supernode corresponding to a node n in the context

of a network rj can be stated as follows. Add a dummy node s to r\. Add edges from s to all the

primary inputs. Then the nodes in o form an (s, n) node cut-set, i.e., any path from s to n goes

through some node in o.

7This usage does notfurther overload cover. Asshown inSection 3.4.1, the collapsing problem isthe same as that of
deriving a minimum cost cover ofthe subject graphin the standard technologymapping.
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Figure 3.24: A node (e.g., n) can have more than one supernode

Definition 3.43 A supernode S is m-feasible if its supportcardinality is at most m, i.e., \<r(S)\ <

m.

A node may have more than one m-feasible supemode. Forexample, the node n ofFigure

3.24 has the following 5-feasible supernodes:

supemode support

{n,j} {i,d,k}
{n,k} {d,e,g,j}
{n,j,k} {i,d,e,g}
{n,j,i} {a,b,c,d,k}

Note that {n, j, k, i] is not a5-feasible supemode, sinceits supporthas6 members: a, b,c, d, e,and

g. Also, {n, i, k] is not a supemode, sinceit has two roots- n and i.

Being an induced subgraphof rj, S is completely determined by its set of nodes, and we

will use these two terms interchangeably. Also, given <S, its support is uniquely determined - it is

simply the set of inputs to S. As the following proposition shows, the converse is also true, i.e., a

supemode is completely determined by its root and its support.

Proposition 3.4.1 Given two supernodes Sx andS2, both rooted at n andhaving support sets ax

and o2 respectively, ox = <*i => «$i = $i>

Proof Suppose Sx ^ S2. Without loss of generality, there is a node p € Sx - S2. Consider a

directed path P from p to n that lies within Sx (such a pathexists since n is the only rootof S). Let
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Figure 3.25: Given the root n andsupport ofthe supemode S, S is unique

qbe the node on P that is closestto n and is in Sx butnot in S2. Since q ^ n, let r be the fanout of

qon thispath (Figure 3.25). r is in bothSx and62. Thenq 6 <r2 - *!. resulting in a contradiction.

Given the root n and the support a of a supemode S, the procedure of Figure 3.26

determines thesetof nodes in S. It traverses thetransitive fanin of n until it hitsa support node, or

a primary inputnot in the support, in which casenosupemode is possible. FromProposition 3.4.1,

this set ofnodes is unique.

One way of solving Problem 3.4.1 is the following.

1. Enumerate all possible m-feasible supernodes.

2. Select a minimum subset of these supernodes that covers the network.

Enumerating m-feasible supernodes One way is to first generate, for each node n, all sets o

having at mostm nodes, all from theTFI of n. Then, using the algorithm of Figure 3.26, check for

each set 0 whether it corresponds to some supemode rooted at n. If so, the algorithm returns the

supemode S. Note thateven if thealgorithm ofFigure 3.26 returns a supemode S, o may notbe

a supemode support, o may have a node i that isnotneeded forS, i.e., i does nothave a path to

n. The correct subset of a canbe found by first determining S and thenfinding the support of S.

This formulation requires generating all possible sets with atmost mnodes and then checking their

validity for supemode support.
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/* Given the root n € rj and the support a of S, determine S */

/* initialize S ={n} */

/* assume all the nodes are unmarked in the beginning */

determine_supernode-from_support (n, a)

{
FI(n) = set of fanins (n);

for each F e FI(n)

{
if (Fe<r) continue;

if (F 6 PI(r})) return '*no supernode possible'' ;

if F is marked continue;

S = SU{F};

mark F;

determine-supernode-f rorrusupport (Fr <r) ;

}

}

Figure 3.26: Determining a supemode from its root and support
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(A) (B)

Figure 3.27: Constructing the flow network (B) for a Boolean network (A)

An alternate solution is based on network flows and generates only the valid supemode

supports. Let 77(71) represent 77 restricted to thetransitive fanin of n. We obtaina flow network T(n)

by modifying 77(71) as follows. Let n = nx = 712. We add a new node s, called the source. Each

node j (j 4- s,j' ^ ri) is split into nodes jx and j2. An edge (k,j) in 77(71) is replaced by (k2,jx)

and is assigned a capacity of 00. Anedge (Juh) is added with a capacity of 1. Foreach primary

input i, an edge (s, i\) is addedwitha capacity of 00. The node n, alsocalled t, is designated as the

sink in the flow network. Let thecapacity of anyedge e = (u, v) bedenoted as c(e) = c(u, v). For

the network of Figure 3.24, which is reproduced in Figure 3.27 (A), the flow network T is shown

in Figure 3.27 (B).

A cut in a flow network is a partition ofthe nodes (X,~X) such that s e X,t e~X. The
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capacity of acut (X, X) is defined as >

C(X,X)= £_c(u,t>)

Define the support set o of a node n to be a set of nodes in the transitive fanin of n such

that n can be expressed in terms of the nodes in o. A support set a need not be minimal, i.e., it

may have a proper subset a that is also a supportset of n. We now show that there is a one-to-one

correspondence between the support sets of anode n of anetwork 77 and the finite-capacity cutsin

the corresponding flow network T(n).

Proposition 3.4.2 There isa one-to-one correspondence between the support setsofa node n ofa

network 77 andthefinite-capacity cuts in the correspondingflownetwork F(n).

Proof Given a support set o for n, it is straightforward to construct a finite-capacity cut. First we

construct the supemode S in 77 using the procedure of Figure 3.26. Let o be the support of S (note

that o Co, where the equality holds if and only if o is minimal). Then let

X = {n}U{ix\i^n,ieS}\J{i2\i^n,ieS}U{j2\jeo}

X = F(n)-X

This is a finite-capacity cut, since the only edges going from X toX are of the form (jx, j2), j € o,
and are of acapacity 1. In fact, C(X,~X) - |3f|.

Conversely, given a finite-capacity cut(X,~X), we can generate a

<r = {j\hex,j2ex}

First note that since (X,"X) has finite capacity, and the only edges with finite capacity inT(n) are

of the form (ii, i2), it makessense to define 0. The function at n can be represented using just the

variables in o, since any path from s to n passes through some j in a (if therewere a path P from s

to n that did not passthroughany j in 0, it canbe shownusing finiteness of the capacity of the cut

thateither s e~Xome X). m

In fact, there is a one-to-one correspondence between the minimal support sets of n

and the minimal finite-capacity cuts in the flow network (a finite-capacity cut is minimal if the

corresponding o is minimal). The minimal support sets of n of the Boolean network 77 of Figure

3.27 (A) andthe corresponding-finite-capacity cuts of F(n) of Figure 3.27 (B) are as follows:
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Figure3.28: Minimal supportsets of n do not generate all supernodes

minimal support set X of thecorresponding minimal finite-capacity cut (X, ~X)
{hk} {nj2ik2}
0\ d, e, g} {n, j2,k\, k2, d2, e2, g2}
{i, d, k} {n,Jx,J2, «2, d2, k2}
{i, d, e,g] {nJxJz, &i> &2> *2> d2, e2,g2}
{a, b,c,d, e,g] {n,JxJ2, ^1^2?«i, «2» aiyh, c2, d2, e2,g2}

We will use an algorithm to generate finite-capacity cuts that are minimal. This means that only

minimal support sets areconsidered. Since our goal is to generate all feasible supernodes, we can

ask if all minimal support sets of n generate all supernodes rooted at n. The answer is no. For

example, considerthe network of Figure 3.28. The only minimal support set of n is {a, b}, and

it corresponds to the supemode {n,c}. The supemode {n} is not generated, since its support is

{a, b,c},which isnotminimal. It rums outthat the optimality of thesolution is unaffected if only

the minimal support sets of n areconsidered. The reason is explained shortly.

We repeatedly invoke a maxflow-mincutalgorithm [47] to generate different minimal cuts

and minimal support sets therefrom. This is done by the algorithmof Figure 3.29. First, a flow

networkT is generated forthe entire network. For each noden, the flow networkF(n) is obtained

by designating nx as the sink node in T and therefore only considering the TFI of nx in T. The

maxflow-mincut algorithm is invoked on T(n). If the value ofthe maximum flow / is at most m,

the corresponding support set a is derived from the minimum cut using the method in the proof

of Proposition 3.4.2 and added to T, the set of support sets. Note that or is a minimal support set,

since the cut generated by the flow algorithm is a minimum cut. To generate other support sets, a

forward edge (going from X to ~X) is suppressed, i.e., its capacity is set to oo. This makes sure

that the edge is not included in the cur generated in the next invocation of the maxflow-mincut
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procedure, and so the new cut is different. If the value of the maximum flow is higherthan m,

all the edge capacities in F(n) are re-initialized to the values they had when F(n) was formed.

A suppress-matrix SM = (sij) is formed. It represents therelationship between thesupport sets

(generated sofar) andthenodes ofthe Boolean network. Each row corresponds toa support setand

each column to a node of the Booleannetwork. Eachentry is defined as follows:

J1 jif support set i includes node j
(3.20)

otherwise

At any point in the algorithm, we do not want to generate a support set that has already been

generated, lb this end, a columncoverC of SM is derived. It represents a set of nodes j such that

suppressing theedges (jx,j2)ensures thateach support setinTis suppressed, i.e., nosupport setin

T is generated in the next invocation ofthe maxflow-mincut procedure.

The complexityofthe maxflow algorithm is 0(1^11^1 log ^Sr) using Goldbergand Tarjan
method[32], where \V\ and \E\are thenumbersofnodes and edges intheflow network respectively.

The next proposition ensures that all m-feasible, minimal support sets are generated.

Proposition 3.43 Theprocedure generate-all-feasible-minimal.support-sets (77,

n, m) returns in T all the m-feasible, minimalsupport sets for the node n.

Proof We observe the following.

1. Each invocationofthe maxflow-mincut procedure generates a minimum cut in T(n), with

some edges possibly suppressed, i.e., it generates the minimum number of forward edges

from X to X given the suppressed edges. This implies that the corresponding support set is

minimal.

2. Just before generate.all_feasible-minimal-support-sets returns T, it goes

through all the column coversof SM, each generatinga cut of capacity greater than m.

Assume, for the sake of contradiction, that at the end ofthe procedure, some m-feasible,

minimal support set o is not generated. A support set o € T can be suppressed without including

any node of o, because otherwise, o does not have any nodes different from o, which implies that o

is not minimal, contradicting the first observation. Repeating this for all support sets in T, we get a

column cover C of SM that does not include any node of o. The invocation of maxflow-mincut on

T (with edges corresponding to C suppressed) cannot return a minimum cut with capacity greater
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generate_all-feasible-minimal_support-sets (77, n, m)

{
/* T is the set of feasible support sets */

r = <£

T = derive_flow.network (77, n)

while (TRUE) {

(/, cut) = maxflow-mincut (J")

if (|/|>m) {

reinitialize-edge.capacities (F)

SM = f orm-suppress-matrix (T)

flag = 0

foreach-column-cover-C_of-SM {

suppress.edges{C, F)

(f, cut) = maxflow-mincut (.F)

if (|/|<m) {

flag = 1

break

}

unsuppress.edges(C, T)

}

if {flag==0) {

/* no more feasible support sets */

return T

}

}

o = generate.support.set (cut)

r = ru{<r}

suppress-a_forward-edge_in_cut (cut)

}

/* notreached */

}

Figure 3.29: Generating all m-feasible support sets for n
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than m, since at least one cut with capacity at most m exists in T. This contradicts the second
observation. B

From T, we generate m-feasible supernodes. Given that there are pnodes inthe network
(including primary inputs and primary outputs), the maximum number ofm-feasible supernodes
for one node is C(p, m) (which is the notation for the number of all possible ways of choosing m
objects out ofp). The total numberofm-feasible supernodes is bounded by pC(p, m). Since mis a
constant, this numberisapolynomial in the size ofthe network. Although our supemode generation
algorithm isnot one ofthe most efficient, we found it to be quite fast even on large networks.

Selecting aminimum subset Having generated the set ofall feasible supernodes (more precisely,
thesubset corresponding to theminimal support sets), ourtask istoselect a minimum subset M of
supernodes that satisfies the following constraints:

1. output constraints: for each primary output p°, at least one supemode with p° as the root
must be chosen.

2. implication constraints: ifasupemode S is in M,each inputofS should be either aprimary
inputor an outputof some supemode in M.

Note that the cost ofeach supemode isone, since itcan be implemented by one LUT. That iswhy
weare interested in selecting a minimum subset ofthe supernodes. This problem is known as the

binate covering problem. This formulation is similar to the one used by Rudell for technology
mapping in his thesis [68].8 There is one difference however. In addition to the two types of
constraints, Rudell*s formulation requires a covering constraint to be satisfied for each internal

node ofthe network. Thecovering constraint foraninternal node n requires that n must belong to

some supemode in M, i.e., some supemode in M must cover n. It is easy to see that thecovering

constraints are not necessary.

Proposition 3.4.4 Satisfaction oftheoutput and implication constraints guarantees satisfaction of

the covering constraints.

Proof Let M satisfy the output and implicationconstraints for a network 77. Consider an internal

node n ofthe Boolean network 77. If n fans out to a primary output node p°, its covering is ensured

8For thegeneral problem of technology mapping, theterm match is used instead ofsupernode; wewill usethetwo
interchangeably.
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(A) (B)

Figure 3.30: The coveringconstraints arenot needed

by the outputconstraint forp°. Otherwise, there is atleast one path P from n to someoutput p° of

77 (if none exists, n can be deleted from 77). Since M satisfies the output constraints, there exists

a supemode S € M with root p°. Either S includes n, as shown in Figure 3.30 (A) - in which

case the covering constraint for n is satisfied, or there exists a node q lying on P that belongs to

the support of S. Since q € TFO(n), it is not a primary input (Figure 3.30 (B)). The implication

constraints require that some supemode with root q be in M. Repeatingthis argument, eventually

n will be coveredby some supemode in M. This means that M satisfiesthe coveringconstraints.

However, experiments show that adding the covering constraints helps the heuristics in

obtaining somewhat better approximate solutions. Of course, their presence does not affect the

exact solution. Therefore, in the following discussion, the covering constraints are treated along

with the output and implication constraints.

We cannow explain why anon-minimalsupport setof n canbe ignoredwithout affecting

the quality of the covering solution. Let o = {a, b,c,d] be a non-minimal support for n, and S,

the corresponding supemode. Let <tj = {a, b,c} be a minimal support subset of o, and Sx, the

corresponding supemode. We are better off selecting S\ as compared to S because the selection

of S in the final cover imposes the following constraint:, if d is not a primary input, one of the

supernodes that has d as the root must be selected. Clearly, selection of Sx does not impose this

constraint.
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Formulation ofbinate covering The constraints are represented in a 0-1 matrix B. The columns

of B correspond to the supernodes (or matches), and the rows to the nodes ofthe network. Let n be

a node of the network and S a supemode. Let i be the row of B corresponding to n, and j be the

columncorrespondingto S. B(i, j) = 1 if and only if S covers n. Wethen say that the column j

covers the row i. We do likewise for each node n of the network. This takes care of the covering

constraints. This part of the matrix can be deleted if the covering constraints are not considered

explicitly.

To handle the implication constraints, additional rows and columns are added to B. For

each supemode S, consider all its inputs. For each input n, an additional row Tis added. B($,J)

is set to 1 for all the columns (supernodes) J that have n as the root. The implicationconstraint

imposes that whenever S is selected in M, Thas to be coveredby some column in B. However, the

covering problem is formulated in such a way that all the rows of B have to be covered by some

column in anycase. It suffices to ensurethatTis covered automatically if S is not selected. This is

done by introducing an extra column k (called an anti-supernode or anti-match) for the match S,

whichhas a cost of 0. Weset B(J,k) = 1. Note that the cost ofthe match S is 1.

Finally, the output constraints are handled by adding a row for each primary output. Let

i be the row for the outputp°. Then B(i, j)= 1 if the supemode corresponding to the columnj is

rooted atp°. Otherwise, B(i, j) = 0.

The problem then is to find a minimumcost cover of B by the columns such that out of a

column and its anti-match, exactly one is selected. One way of deriving the exact cover is to use

a branch and bound technique. Lower and upper bounds on the optimum cover are derived. If a

supemode S is selected, the rows it covers are deleted, and the problem is solved recursivelyon the

resultingsub-matrix. This solutionis compared with the best one obtained if S is not selectedand

the better one is picked.

The binate covering problem can also be formulated as that ofobtaining a minimum-cost

implicant of a satisfiability problem [68], where an uncomplemented literal has a cost of 1 and a

complemented literal has a cost of 0. For each supemode «S„ a Booleanvariable z, is introduced.

The constraints generate clauses (sum terms) of a Boolean function as follows:

• Covering constraints: If a node is covered by supernodes S2, Ss, and S$, write a clause

(x2 + xs + £9). Repeatthis for eachnode ofthe network.

• Output constraints: Given a primary output 7i,-, let Sn ,Si2,..., Sij be thesupernodes rooted

at n,. Then theoutputconstraint for n,- can be expressed by (a?,i + X{2 -\ 1- x,j).
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• Implication constraints: Let supemode <S,- have nodes n^,..., nlp as p inputs. If <St- is

chosen, oneofthe supernodes that realizes ni] mustalso bechosen for each input j that is not

aprimary input. Let N%] bethedisjunctive expression in thevariables Xk giving thepossible

supernodes thatrealize nt> as anoutput node. Selecting supemode Si implies satisfying each

ofthe expressions JVtj for j = 1,2,..., p. Thiscan bewritten as

xi^(NilNi2'-Nip)

# x'i + (NilNi2^-Nip)

# (x,i + Nil)(x'i + Nil)...te + Nip).

The clauses are generated for each supemode likewise.

Take the product of all the clauses generated above to form a product-of-sums expression. Any

satisfying assignment to this expression is a solution to the binate covering problem. Finding a

satisfying assignment with the least total cost is the same as finding a least cost prime. Mathony

has proposed a branch and bound technique [54] for generating all the primes of a function. It uses

efficient pruning ofthe search tree. This technique can be used to find a prime with the minimum

cost. This is the techniqueimplementedin sis by Lavagno [45], andused by us. Recently,Lin and

Somenzi [50] showedthat the leastcost primeof a function / canbe determined by constructing a

ROBDD for / (with any inputordering) andthen finding the shortest path(one with the minimum

number ofuncomplemented edges) from its root to the terminal 1 vertex.

Heuristic methods Binatecoveringis anNP-completeproblem. The exact formulations presented

above aretime-intensive even on moderate-sizenetworks. Enumerating all feasible supernodes is

fast; the hard part is selecting the minimum subset that satisfies all the constraints. So we resort to

heuristic methods.

1. The most straightforward heuristic is a greedy one. It selects a supemode that covers the

maximum number of rows of the matrix B and deletes the rows covered by the supemode

andthe columns corresponding to the supemodeandthe corresponding anti-supemode. The

procedureis repeated on the reduced matrix.

2. This heuristic is a simple variationofthe previousone. It has two phases.

• Phasel: satisfaction ofthe covering andthe output constraints.
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• Phase2: satisfaction ofthe implication constraints.

Phase 1: We satisfy the covering and the output constraints in the best possible way, i.e.,
using the minimum numberofsupemodes (matches). This is the well-known unate covering
problem. Ithas been studied extensively in the context ofsolving the two-level minimization
problem. Although itisNP-complete, rather efficient ways to solve it are known [31, 68].
Letthesolution to theunate covering be thesetofmatches M.

Phase 2: Mgenerates aset ofimplication constraints, constraining the union ofthe inputs of
the supemodes in At to be the outputs (ofasupemode). Ifalready some ofthese constraints
are satisfied by supemodes in M, they are deleted. If no more constraints are left, the
procedure terminates. Otherwise, a score Afor each supemode S $ M is calculated as
follows. Let sel(S)bethe number ofremaining constraints that are satisfied ifS isselected
(these constraints correspond to the outputs of5), and not.sel(S) the number ofconstraints
that are satisfied ifS isnot selected (these constraints correspond to the inputs ofS). Then

X(S) = sel(S) - not.sel(S)

The supemode with the maximum score isselected and added inAt. We update the constraint
set, and repeat this process until all the implication constraints are satisfied. This heuristic

gave better results on most ofthe benchmarks as compared tothe greedy heuristic.

3. Partition The heuristics presented above generate all feasible supemodes, and make fast
and possibly non-optimal selections for the supemodes. Partition generates only a subset of
feasible supemodes - those formed by collapsing anode into its immediate fanout(s). Hence,
it looks only one level ahead.

Definition 3.4.4 Acollapse (n, f°), f° afanout ofn, is called an m-feasible collapse iff0
is m-feasibleafter n is collapsedintoit.

Some ofthe criteria that partition uses while collapsing nodes are asfollows.

(a) Anode n iscollapsed into all ofits immediate fanouts, provided all the collapses are
feasible.
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a b

Figure 3.31: Creation of new edges on collapsing

(b) This option is targeted for routing. Let n be a node and f° be one of its fanouts. If this

collapse is feasible, a pair (n, f°) is formed. All pairs for the entire network are formed

likewise. A cost is associated with each pair. It is the number of new edges created

after the collapse. This is the same as the faninsof n which are not fanins of f°. Figure

3.31 shows the creation of new edges when n is collapsed into / and g. At each step of

the algorithm, the pair with the least cost is selected and collapsed. This may render a

collapse that was feasible earlier infeasible. So the costs are revised after each collapse.

Note that this option does not really target the minimization of the number of blocks.

From now on in this chapter, we will use the term cover or covering to mean the binate covering

formulation.

3.4.2 Support Reduction

The covering problemdescribed in the lastsectionis structural, in that it ignoresthe logic

function present at a node. The only information it uses is the number of fanins of each node and

the node connectivity. Support reduction is fundamentally different, in that it is both structural and

functional. It also makes use ofthe function present at a node. It is based on the same idea as that

of Section 3.3.6. Consider a node n that cannot be collapsed into its fanouts during partition,as

some ofits fanoutsbecomeinfeasible. If the local supportof n can be reducedsuch that n collapses

feasibly into its fanouts, n can be deleted from the network, thereby reducing the number of feasible
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y =.b
w = bc

y =abd w = bc

y=«bd

Figure 3.32: Support reduction by fanin movement toachieve collapsing

nodes.

Example 3.42 Consider the network ofFigure 332. It is a slight variation ofthe example of
Figure 321 - an extra node pis present. Let mbe 4. The network is 4-feasible. Consider node
n - itcannot befeasibly collapsed into p. However, ifthe support ofn is reduced, aswas done in
Example 33.12, we get n = cw + y. Now, ncan be collapsed into p, thus reducing the number of

nodes by 1.

This method has been integrated mth partition, such thatif a node n cannot be feasibly

collapsed into all its fanouts, an attempt is made to reduce its support, so that itcan be collapsed.
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Technology Independent Optimization

Making the network feasible

Figure 3.33: A straightforwardmapping approach

3.5 The Overall Algorithm

Having presented the two main componentsof the mapping algorithm, we address the

issue of how to use them in a complete synthesis framework. As shown in Figure 3.33, one

straightforward way is to first make all infeasible nodes feasible (say, by decomposing them), and

thenapplyblockcountminimizationon the resulting network. However, this approach suffersfrom

the following problems:

1. If the network is large, in the BCM stepexact covering methods cannot be applied to the

entirenetwork. Eventheheuristic methods meetwithlimitedsuccess. Lackinga globalview

ofthe network, they make greedy, non-optimal decisions.

2. The covering technique is limited in its applicability: it works only on feasible networks. It

will be better if somehow it could be extended to an infeasible network.

It turns out that an interleaving approach, in which decomposition and block count

minimization are applied node-by-node, which is then followed by partial collapse, gives better

results than the approach of Figure 3.33. This is shown in Figure 3.34. Block count minimization

on the sub-networkresultingfromdecomposition of a nodecan be often appliedin the exactmode,

sincethesub-network isgenerally small. However, thenode-by-node mapping paradigm alone does
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unoptimized network

Technology independentoptimization

infeasible network

Initialmappingofeachnode

Partial Collapse

feasible network

Global Block Count Minimization

optimized feasiblenetwork

Figure 3.34: The overall algorithm

not exploit the structural relationship between the nodes ofthe network. Partial collapse achieves

exactly that by collapsing each node into its fanouts, remapping the fanouts (i.e., decomposing them

and minimizing the block count), and computing the gain from this collapse.

Example 3.5.1 An example ofpartial collapsing is given in Figure3.35. Let m be 5. Node d is

collapsed intoitsfanout nodes i andj. Letthe costof node i before thecollapsebe 3 LUTs. After

the collapse, let its cost remain unchanged (after collapsing, i has 6 inputs and can be realized

with 3 5-LUT.y usingcofactoring). Nodes d andj have a costofl eachbefore collapsing, as they

are 5-feasible. Also, j remains feasible after the collapse. The total gain from this collapse is

(1+3 + 1)-(3 + 1) =1. Note that partition would nothave accepted the collapse ofnode dinto

i, since i remains infeasible after the collapse.

How canwe formulatethepartial collapseproblem? First, considerthe problemin its full generality:

Problem 3.5.1 Given a possibly infeasible network 77 and a procedure LUT.cost (/, m) that

computes the costofafunction f in terms ofm-UJTs needed to implement it, collapse nodes such

that the cost ofthe resultingnetwork is minimum.
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Before Collapse

total cost of d, i, and j = 3 +1 +1 = 5
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After Collapse

a b

total cost of i and j = 3 +1 = 4

Figure 3.35: Partial collapse and forming clusters

This problem is a generalization ofthe covering problem, since it operates on infeasible networks

as well. Note that it is more difficult than covering. The basic unit in covering is an m-feasible

supemode, characterized by its support a, which should have at most m elements. However,

determining if it is beneficial in an infeasible network to treat a subgraph rooted at a node as one

(infeasible) supemode is not an easy task - we have to evaluatethe cost ofthe supemode by mapping

it.

An exact way of solving Problem 3.5.1 is as follows.

1. Enumerate all m-feasible and m-infeasible supemodes ofthe network 77. Foreach supemode

S, do the following. If / is the global function corresponding to S, i.e., / is expressed using

the supportof S, determine the cost of S using LUT.cost(/, m).

2. Solve a binate covering problem, similar to the one in Section 3.4, except that instead of

selecting a minimum subset of supemodes, select a subset with the minimum cost.

Although a network has only a polynomial number of m-feasible supemodes, it can have

an exponentialnumber of supemodes. Forexample,a complete binary tree with root r and p nodes

Jias 0(2P) supemodes rooted at r.9 Solving abinate covering problem of this sizeis hard. So we

look forapproximations. Forexample, we may consider only a proper subsetof supemodes. One

possibility is to consider only supemodes with a bounded depth. The simplest case is a bound of

two, whichmeans a node and all its fanins. An interesting formulation is obtained using a simple

variation: collapseanode into its fanouts. Let u>(i) be the LUTcost of an internal node i. Foreach

'Enumerating all the supemodes in anetwork is the same as finding all the (singly) rooted subgraphs of a directed
acyclic graph.
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fanout j of i that is not a primaryoutput,we introducea 0-1 variable z,j defined as follows:

{1 if t is selected for collapsing into j, ^ ^ v
(3.21)

0 otherwise.

Let u(i, j) denote the cost of the node j after i has been collapsed into it. Let

S(iJ) = u(3)-Z(iJ) (3.22)

6(i, j) denotes the reduction in the costof j after i is collapsed intoit. Notethat w(i, j), and hence

6(i,j), depend on the logic functions at j and i. Our goal is to select node-fanout pairs (i,j)

that can be simultaneously collapsed such that the resulting gain is maximized. However, arbitrary

collapses are not allowed - the following constraints need to be satisfied:

1. If we decide to collapse t into j, we shouldnot choose to collapse a node k € FI(i) into

i. This is because both the collapses involve node i. After k is collapsed into i, the logic

function at i changes, and so does the cost of t: u(i) becomes 0(k, i). As a result, 6(i,j)

changes. This is not taken into account in our simultaneous-collapse-based formulation.

2. For the same reason, simultaneous collapses ofthe kind (i,j) and (j,k),k e FO(j), are

prohibited.

3. Simultaneous collapses of the kind (k, i) and (/, i), where k, I e FI(i), are prohibited.

Note that if a node i is collapsed into all its fanouts, it can be deleted from the network, resulting in

an additionalgainof u(i). The aimthen is to maximize thegain by selectingnodesfor simultaneous

partialcollapse subjectto theaboveconstraints. Thisleadsto thefollowing non-linearprogramming

formulation:

maximize Yl K X! ^(«»J>y) + ( II ^iW*)]
t'e/N(T>) j€FO(i)MN(n) jeFO(i)r\IN(v)

subject to

Xki + Xij < l,Vt,i,fc

3

*ij € {0,1}
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This is a 0-1 integer program with a non-linear objective function. It may be converted

into a non-linear program by replacing the 0-1 constraint by an equivalent quadratic constraint

x% = x»j' Tte modified program is:

maximize £ [( £ *(*>J>y) + ( II **iM01
ieiN(u) ieFO(i)n/N(n) jeFO(i)MN(t})

subject to

sjw+ *ij < 1» Vi,j,&

j

A linear integer programming formulation is obtained ifinstead of forming (node, fanout)

pairs, we group a node n and all its non-primary-output fanouts in one cluster C(n). Wesay that

C(n) corresponds to n. Eithern is collapsed intoall its fanouts (in which case, we say that C(n)

has been collapsed), orinto none. The cost ofacluster C(n), u(C(n)) = £,€c(n)w(0- After n is
collapsed into its fanouts, the saving in the cost is

6(C(n)) = «(C(n)) - £ u(n,j) (3.23)
j€FO(n)nIJV(7,)

If 6(C(n)) > 0, C(n) is calleda goodcluster and n is a candidate for collapsing. We computethe

cost savings for every cluster and then retain only the good clusters.

Let x{ be the 0-1 variablecorresponding to a goodclusterC(i).

_ C(i) isselected forpartialxollapse,
otherwise.

i 1 if*

[ 0 oti

.Let A = (aij) be the node-cluster incidence matrix, i.e.,

{1 ifnode i belongs to good cluster C(j),

0 otherwise.

The problem can then be formulated as

maximize ^ ^(C(i)) Xi
i s.t.c(i) is good
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subject to

X) aiJX3 ^ l V*
3

There are \IN(r])\ clusters, one clustercorresponding to each internal node. So there

are at most |/JV*(77)| good clusters, andhence variables. Since at most one constraint is generated

foreachinternal node of 77, the linear integer program has atmost \IN(rj)\ variables andasmany

constraints. The solution of this program generates clusters that should be partialxollapsed for

maximum gain. In the solution, if an a,- is 1, the node n,- to which the cluster Ci corresponds, is

partiallyxollapsed into its non-primary-output fanouts. After collapsingall such clusters,we get a

new network 77 and can apply partial collapseon rj. The processcan be repeated until no more gain

is possible.

The formulations presented so far are either non-linear or linear integer programs. In

general, both are intractable problems [30]. So we resort to simple heuristics, one of which is

to select good clusters in some order, say topological - from inputs to outputs. If the cluster

corresponding to the node being visited is good, it is collapsed. After finishing one pass over the

network, the procedure is repeated until no good clusters remain. For the sake of efficiency, we

do not visit each node of the network in the next iteration. We keep track of the potential nodes

for future collapsing. For example, consider a node n that does not have a good cluster in some

iteration, but one of its fanouts gets collapsed. In the next iteration, it is possible that n has a good

cluster by virtue ofthe modified fanout set. It is easily seen that when n is collapsed into its fanouts,

the following nodes are affected as far as the chances of further collapses are concerned: the fanins

ofn, the fanouts ofn, and the faninsofthe fanoutsofn. This is called the affected_set(n). In Figure

3.35, affected-set(d) = {a, b,c, i,j, e, f, g, h}. Say, after one pass, S is the set ofnodes collapsed.

Then only the nodes in Unes affected-set(Ti) are considered for collapse in the next iteration.

A slight improvement of the above greedy strategy is the following. Instead ofcollapsing

a node i either into all the fanouts or into none, we allow for the possibility of afiner granularity

collapse. Given a node i, we partition the set of its fanouts into two subsets:

1. the goodset G consisting of allthe fanouts j of i suchthat6(i, j) > 0, and

2. the bad set B consistingof fanouts j suchthat 6(i, j) < 0.

It makes senseto collapse i into j when j € G. In general, i should not be collapsed into j,j € B.

However, if i is collapsed intoeach fanout in B, i can bedeleted from thenetwork (assuming i did
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Cj-fj +e' g'+h* i'

f=ibc+deg+hi

Figure 3.36: A simple networkto illustrate LUTmapping

not fan out to a primary output), resulting in a saving of w(i). Notethat i is collapsed intoeach

good fanout in any case. In other words,we shouldcollapse i into B if and only if i does not fan

out to a primary output and

w(0+£*(M)>°-

We make the following remarks.

1. partialcollapse explores morealternatives \hmpartition, sinceit alsoexplores collapsesinto

fanout nodes that become infeasible after the collapse. This routine may be thought of as an

LUTanalogue of eliminate -1 in misll.

2. We discovered that in all the benchmark examples we used, only the collapsing of feasible

nodes contributed to the gain. This reduces the number of nodes that need to be considered

for partial collapse. The run time is cut down without significantlydegradingthe quality of

the results.

3. We found that a greedy heuristic like the one proposed above is much faster than an integer-

programmingbased method and does not sacrifice quality of results in general.

3.5.1 An Example

We illustrate some of the techniques described in this chapter with the help of a simple

example network 77 ofFigure 3.36. Thenetwork 17 has eight primary inputs -a,b,c,d,e,g,h, i,one
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fj=x +y +z
i°ibc
yodeg

COSt a 4
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f^fj+e' g' +h' i'(f£\ cost-1

f =abc +deg +hi

Figure 3.37: After initialdecomposition

primary output h, and two internal nodes - f\ and h. Letm be5. Assume that the representations

shown for f\ and fz are optimized ones. Inthemapping phase, we carry outthe following steps:

1. Map each node

(a) Make each function 5-feasible: Nothing needs to be done to h, since it is already

5-feasible. However, K/i)| =8, so f\ needsto be made5-feasible. If we were to apply

cube-packing on it, we obtain the optimumtree realization

x = deg + hi

f\ = abc + x.

For the purpose of illustration, suppose we did not apply cube-packing, but chose a

simple AND-OR decomposition, which creates a sub-function for eachcube and then

ORs the sub-functions. The following decomposition is generated:

x — abc

y = deg

z — hi

f\ = x + y + z.

This sub-network, call it 771, is attached with /j. The resulting configuration is shown

in Figure 3.37. The cost of 771 is 4 LUTs, and that of 77 is 5.
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fjofj +e'g'+h'i'/^N „«„!

fj«abc +y +z
yadeg

f *»abc + deg + hi

cost =>3

Figure 3.38: After block countminimization (covering)

£oabc+y

y=dcg+hi

cost o 2

f^fj +e' g' +h'i'/^V cost=l

f=abc +deg +hi jf
1 C i

Figure 3.39: After block countminimization (support reduction andcollapsing)
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(b) Block count minimization: On 771, we first apply covering. This causes x to collapse

into /1 resulting in 772 (Rgure 3.38):

y = deg

z = hi

f\ = abc + y + z.

No more collapses are possible. So we try to reconfigure 772 by applying the support

reduction techniques. Without going through all the intermediate steps (which are

similar to those of Figure 3.32), it is seen that the connection from z to f\ can be

removed and replaced by a connection from z to y. As a result, the functions at f\ and

y change:

y = deg + z

z = hi

fx = abc + y.

Now, z can be collapsed into y, yielding the configurationof Figure3.39:

y = deg + hi

/1 = abc + y.

Note that for this example the resulting decomposition is the same as generated by

cube-packing on f\.

2. Partial collapse: To exploit the relationship between the nodesof 77, f\ is collapsed into fa.

The resulting configuration is shown in Figure 3.40. Carrying out a similarmapping stepon

the new fa, we find out that it can be realized in two 5-LUTs. Since the cost of the network

has improved as a result, the collapse is accepted. Note that this is anoptimum solution for

this examplenetwork, since \ogtUi)\ > 5.

3.6 Experimental Results

3.6.1 Description of Benchmarks

For validating various, ideas and algorithms presented in thisand other chapters, we use

a benchmark set. The circuits in this set come from the 1991 MCNC logic synthesis benchmark
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f-se'g'+h'i' +
abc+deg+hi

cost = 2

Figure 3.40: After partial collapse: the final network

set [90]. Table 3.1 provides some information about these benchmarks. If the functionality of a

benchmark is not known, the word "Logic" is used. The last three columns in the table refer to

numbers of nodes, edges, and literals in the factored form in the area-optimized networks. The

optimized networksare obtainedby runningtwicethe multi-level optimizationscriptscripurugged

[73]providedwithsis [78], with a timeout limit of 1hour foreach run. Unlessmentionedotherwise,

these optimized benchmarks are the ones used in this thesis for combinationalmapping.

We first show results for decomposition,then for decompositionfollowedby block count

minimization, and finally for partial collapse.

3.6.2 Decomposition

Cube-packing

We ran cube-packing on the optimized benchmarks using different options mentioned in

Section3.3.2. A 5-LUTwas chosen as the target. The resultsare shownin Table3.2. No significant

difference in the quality of results is seen between all the options, although using the minimum

increment in the supportdefinition for the best bin, along with the smart literal extraction gives

slightly better results than the rest of the options.

3.6.3 Decomposition and Block Count Minimization

Here, the results obtained after decomposition and BCMare presented.
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example origin function Pi po nodes edges Iits (fac)

5xpl MCNC-d Logic 7 10 18 77 114

9sym MCNC-ti Count Ones 9 1 12 46 145

C1355 MCNC-ml Error Correcting 41 32 162 344 552

C1908 MCNC-ml Error Correcting 33 25 146 383 535

C2670 MCNC-ml ALU and Control 233 140 152 528 748

C3540 MCNC-ml ALU and Control 50 22 225 1076 1264

C432 MCNC-ml Priority Decoder 36 7 52 209 219

C5315 MCNC-ml ALU and Selector 178 123 374 1335 1763

C6288 MCNC-ml 16-bit Multiplier 32 32 113 2829 3367

C7552 MCNC-ml ALU and Control 207 108 499 1490 2288

alu2 MCNC-ml ALU 10 6 54 273 347

alu4 MCNC-ml ALU 14 8 59 495 893

apex2 MCNC-tl Logic 39 3 43 219 268

apex3 MCNC-tl Logic 54 50 200 1361 1567

apex7 MCNC-ml Logic 49 37 61 218 243

b9 MCNC-ml Logic 41 21 30 115 124

bw MCNC-tl Logic 5 28 35 155 160

clip MCNC-tl Logic 9 5 16 82 117

cordic MCNC-ml Logic 23 2 11 43 64

dalu MCNC-ml Dedicated ALU 75 16 120 778 881

des MCNC-ml Data Encription 256 245 508 2661 3319

duke2 MCNC-tl Logic 22 29 81 392 428

e64 MCNC-tl Logic 65 65 116 253 253

ex4 MCNC-tl Logic 128 28 51 241 456

f51m MCNC-ml Arithmetic 8 8 16 50 80

k2 MCNC-ml Logic 45 45 134 1254 1343

misex2 MCNC-tl Logic 25 18 25 103 104

rd84 MCNC-tl Logic 8 4 18 71 148

rot MCNC-ml Logic 135 107 167 597 664

sao2 MCNC-tl Logic 10 4 18 93 131

spla MCNC-tl Logic 16 46 130 570 598

t481 MCNC-tl Logic 16 1 11 26 36
vg2 MCNC-tl Logic 25 8 10 65 88
z4ml MCNC-ml 2-bit Add 7 4 9 32 43

Table 3.1: Descriptionof example circuits

origin sourceof the example (ti = two-level, ml = multi-level)
function description of thecircuitfunction (whenavailable)
pi numberof primary inputs
po number of primary outputs
nodes number of internal nodes in theoptimized network
edges numberof edges in the optimized network
Iits(fac) number of literals in factored form in theoptimized network

115
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example regular-order smart-order

sup incr sup incr

5xpl 31 31 31 31

9sym 46 46 46 46

C1355 164 164 164 164

C1908 154 154 153 153

C2670 290 289 282 281

C3540 477 475 477 475

C432 93 93 92 92

C5315 477 477 477 477

C6288 1161 1161 1161 1161

C7552 705 705 705 705

alu2 102 102 101 101

alu4 286 285 280 280

apex2 101 100 98 98

apex3 500 500 500 500

apex7 68 68 68 68

b9 47 47 47 47

bw 46 46 46 46

clip 31 31 31 31

cordic 17 17 17 17

dalu 281 281 281 281

des 951 949 950 949

duke2 138 137 138 137

e64 116 116 116 116

ex4 216 216 224 224

f51m 19 19 19 19

k2 402 401 397 397

misex2 33 33 33 33

rd84 43 43 43 42

rot 223 223 224 224

sao2 47 47 46 46

spla 202 202 202 202

t481 11 11 11 11

vg2 24 24 24 24

z4ml 12 12 12 12

total 7514 7505 7496 7490

Table 3.2: Issues in implementing cube-packing

regular-order order inputsarbitrarily
smart-order order inputs based on frequency of occurrence
sup bestbin is theonewith minimum support
incr best bin is the one with minimum increment in the support
total sum of 5-LUT counts over all examples
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Roth-Karp decomposition and partition

On the optimized networks, the mapping scriptused is Roth-Karp decomposition, fol

lowed by partition with support reduction. The following two implementations of Roth-Karp

decomposition are compared:

• serialencoding: The equivalence classes are encoded serially, that is, the equivalence class

Cj is assigned thecode corresponding to thebinary representation of j.

• goodencoding: Aninputencoding algorithm [69] isusedtoencode theclasses. Thealgorithm

is run with a cost function of minimizing the number of literals. Unused codes are used as

don't cares to simplify the image ofthe decomposition,g.

Roth-Karp decomposition is invoked on anyfunction withgreaterthan5 inputs. It chooses the first

partition (X, Y) such that \X\ < 5. If a disjoint decomposition is not found, the implementation

switches to another decomposition method that guarantees feasibility.

Table 3.3 shows the comparison. The good encoding scheme gives 8.4% overall better

results. Also, there are benchmarks where it completes, and the serial one does not. Note that

most ofthe improvementis on larger benchmarks. This is because in the smaller benchmarks,most

functions are simple, with small numberof inputs. So the functiong obtained after decomposition

is mostly m-feasible, and encodingscheme does not make much difference. On the other hand, in

the larger benchmarks, typically functions have more inputs, so g is infeasible. Then doing a good

encoding does help when g is further decomposed.

Although not reported, the number of literals is also minimized in roughly the same

proportion as the number of LUTsusing the encoding formulation.

Cube-packing and partition

The mapping script was cube-packing followed bypartitionwith support reduction. Three

experiments were performed.

• sop: Applied the mapping script on the optimized networks.

• fac: td: Applied the mapping script after applying decomp -g; tech-decomp -a 2 -o 2 on

the optimized networks, decomp -g (i.e., good decomposition)produces a factored form of

each node, and tech-decomp -a2-o2 (technology decomposition) breaksup each node into
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example good enc serial enc

5xpl 34 41

9sym 41 41

C1355 92 92

C1908 103 103

C2670 298 353

C3540 518 641

C432 119 124

C5315 597 642

C6288 536 542

C7552 540 562

alu2 136 129

alu4 318 -

apex2 89 98

apex3 - -

apex7 58 60

b9 52 57

bw 60 58

clip 71 87

cordic 14 14

dalu .249 249

des 1059 1127

duke2 256 304

e64 81 81

ex4 243 224

f51m 27 25

k2 700 -

misex2 33 34

rd84 39 51

rot 269 285

sao2 75 90

spla 318 450

t481 5 5

vg2 28 29

z4ml 14 14

total 7072 6612

subtotal 6054 6612

Table 3.3: Encoding schemes for Roth-Karp decomposition

good enc Roth-Karp decomp. with good encoding, thenpartition
serial enc Roth-Karp decomp. with serial encoding, then partition

could not finish

subtotal sum of 5-LUT counts for examples where both complete
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2-input AND and OR gates. Cube-packing does nothing on these networks, since they are

already 5-feasible.

• fac: no td: Applied the mapping script after applying decomp -g on the optimized networks.

This, in essence, means that cube-packing is applied on the factored form ofeach node.

Table 3.4 shows the 5-LUT counts after mapping. Clearly, factoring helps. This is as expected,

since cube-packing operateson an SOP, whichcouldbe considerablylarger than the factoredform.

Also, as seen fromfac:td, it is not a good idea to break down the network into two-input gates. As

already pointed out in Section 3.3.5, one reason is that there may be too many two-input gates, and

BCM algorithms cannot handle large networks. These experimentsalso showthat it is a good idea to

use a decomposition method (such as cube-packing)targetedspecifically for the LUTarchitectures.

Improved decomposition and partition

In the last set of experiments, cube-packing and technology decomposition were the

decomposition techniques used. If better or more or both decomposition techniques are applied,

better quality results may be produced, lb test this hypothesis, for each internal node n, first a

network 77(71) is constructed. 77(71) has one primaryoutput, one internal node corresponding to n,

and as many primary inputs as there are fanins of n. Varioustechniques, including cube packing on

the SOP, cube packing on the factored form (using decomp -g), and cofactoring are used to make

77(71) m-feasible. Let the resulting network be 77^(71) for eachdecomposition technique t. BCM is

invoked on ^(n), yielding 77^(71). Thebestfeasible implementation outof all 771(71) is selected (this

is the one with the minimum number of m-feasiblenodes) and replaces node n. After all the nodes

have been processed, BCM is applied on theentire network to exploit the relationship among the

nodes ofthe network.

The results are shown in Table 3.5. The followingnotation is used:

• fac cpack: Use decomp -g before using the mapping script, which is cube-packing followed

bypartition with support reduction. Snapshots of the mapper are taken after cube packing

(column decomp) and then afterpartition (column partition). The column partition is the

same as the column fac: no td ofTable 3.4.

• best decomp: For each node n, use various decomposition techniques on 77(71). For this

set of experiments, cube packing on SOP, cube packing after decomp -g, and cofactoring
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example sop fac

td notd

5xpl 29 29 26

9sym 46 39 39

C1355 100 102 76

C1908 102 137 100

C2670 237 180 149

C3540 422 449 305

C432 90 63 64

C5315 371 544 366

C6288 467 766 510

C7552 553 685 409

alu2 101 124 99

alu4 279 309 210

apex2 95 102 79

apex3 496 608 483

apex7 54 60 54

b9 45 37 36

bw 37 37 37

clip 30 30 25

cordic 13 11 10

dalu 262 358 232

des 865 1478 855

duke2 132 148 128

e64 81 82 81

ex4 224 156 143

f51m 14 18 17

k2 390 457 362

misex2 30 32 29

rd84 42 46 39

rot 206 202 177

sao2 44 37 37

spla 188 213 178

t481 5 5 5

vg2 24 23 23

z4ml 8 10 L_ 6
total 6082 7578 5389

Table 3.4: Cube packing and partition

sop apply cube-packing andpartition
fac: td apply decomp -g; tech-decomp -a2-o2 before partition
fac: no td apply decomp -g before cube-packing andpartition
total sum of 5-LUT counts over all the examples
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example fac cpack best decomp
decomp partition decomp partition

5xpl 34 26 30 28

9sym 43 39 40 39

C1355 168 76 164 100

C1908 165 100 151 99

C2670 225 149 196 147

C3540 416 305 351 299

C432 83 64 73 67

C5315 545 366 469 362

C6288 1391 510 1161 467

C7552 697 409 568 403

alu2 110 99 100 100

alu4 269 210 211 210

apex2 94 79 85 82

apex3 532 483 489 484

apex7 82 54 68 54

b9 50 36 41 39

bw 48 37 46 37

clip 37 25 31 30

cordic 15 10 14 10

dalu 288 232 254 229

des 980 855 945 861

duke2 148 128 133 128

e64 116 81 116 81

ex4 180 143 149 149

f51m 25 17 19 14

k2 406 362 361 360

misex2 34 29 32 29

rd84 42 39 40 40

rot 243 177 201 180

sao2 45 37 40 37

spla 209 178 191 179

t481 11 5 11 5

vg2 28 23 23 23

z4ml 14 6 11 7

total 7773 5389 6814 5379

Table 3.5: Cube packing on factored form vs. best decomposition

fac cpackidecomp
fac cpackipartition
best decompidecomp
best decompipartition
total

snapshotafter decomp -g and cube-packing
afterdecomp -g, cube-packing, and partition
snapshot after best decomp
after bestdecomp and global partition
sumof 5-LUTcounts over all the examples

121



122 CHAPTER 3. MAPPING COMBINATIONAL LOGIC

were used. Snapshots were taken immediately afterreplacing eachnode n by the best 77(71)

(column decomp) andthenafterglobal BCM - in thiscase partition (column partition).

As expected, the resultsfor bestdecomp beforepartition is invoked are much better than

forfac cpack before partition - the total LUT count of 6814 as compared to 7773. Surprisingly,

afterpartition, this advantage is lost, and the results are almost identical.

3.6.4 Combining Everything: Usingpartial collapse

Finally, to couple decomposition and BCM more tightly, we usepartial collapse. The

following algorithm is used:

1. Doaninitial mapping: First asub-network 77(71) isformed from each node n. Cube-packing is

applied onit - both ontheSOP and onthefactored form obtained bydecomp -g. Then, cover

in the exact mode is applied on each resulting sub-network if it has no more than 50 nodes.

Otherwise,partition with support reduction is applied. The better of the two is selected.

2. Apply partial collapse. If eachnode of thenetwork is considered forcollapsing,partial col-

lapse becomes time-intensive. Soanissuetoaddress is: "Which nodes shouldbecollapsed?"

We experimented with three options - collapse nodes with a cost of 1 LUT, at most 2 LUTs,

and at most 3 LUTs.

3. If the circuit is small,collapseit and carryout Roth-Karp decomposition. This step helps if

a function is symmetric,since symmetricfunctions are not checked forper se.

4. Apply global BCM in the exact mode if the networkhas at most 60 nodes, and in the heuristic

mode if it has at most 200 nodes. Otherwise, do nothing.

5. Finally, partition equipped with support reduction is applied.

It turns out that in partialcollapse, whenonly the nodes with cost one are collapsed, the

results are almost identical to the case when nodes with cost at most two or three are also considered

for collapsing. Difference in the quality of results is below 0.1%.

In Table 3.6, the LUT counts after partial collapse are compared with the best results

we have thus far (column best-decomp (partition) of Table 3.5). Although partial collapse does

not finish on some examples, it gives about 5% overall better results on those it finishes. On some

benchmarks, e.g., 9symand rd84, the results obtainedare muchbetter. This is because these circuits

are symmetric, and Roth-Karp decompositionworkswell on symmetric circuits.
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example part-coll best decomp

5xpl 21 28

9sym 7 39

C1355 70 100

C1908 96 99

C2670 138 147

C3540 291 299

C432 61 67

C5315 356 362

C6288 481 467

C7552 372 403

alu2 97 100

alu4 - 210

apex2 79 82

apex3 - 484

apex7 54 54

b9 38 39

bw 28 37

clip 25 30

cordic 10 10

dalu - 229

des 844 861

duke2 124 128

e64 81 81

ex4 139 149

f51m 11 14

k2 - 360

misex2 28 29

rd84 13 40

rot 177 180

sao2 35 37

spla 173 179

1481 5 5

vg2 22 23

z4ml 6 7

total 5379

subtotal 3882 4096

Table 3.6: Comparing partial collapse with best decomp

part coll use partial collapse - collapse nodes with cost 1
best decomp the best-decomp column ofTable 3.5

partial collapse ran out ofmemory
total sum of 5-LUTcounts over all the examples
subtotal sum of 5-LUTcounts over examples where part coll finishes
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3.6.5 Relating Factored Form Literals and LUTs

lb see the relationship between the number of factored form literals and LUT-count, we

plotinFigure 3.41 thenumberof5-LUTs obtained inthelasttable usingpartialcollapse against the

number of literals in the optimized benchmaiks, as reported in Table 3.1. Onlythose benchmarks

are considered forwhichpartial collapse could finish. It canbeseen thatthe relationship is nearly

linear, although many benchmarks lie below the best linear fit The linear relationship can be

explained by the fact thatmost of the techniques used in mis-fpga (forinstance, cube-packing,

partition, and covering) work on an optimized representation of the function. In the optimized

representation, each variable appears nearly once on average,10 and so each literal appears only
once. The mapping techniques for LUTthen pack m literals in each m-LUT.

To explain the deviant behavior shown by some benchmarks, we observe that out of

the larger benchmarks, C6288, C7552, and C5315 lie below the linear fit. From their function

description in Table 3.1, it is seen that these benchmarks contain circuitry to perform arithmetic,

which is efficiently represented using EX-OR gates. Traditional optimization techniques do not

work well for such functions, whereas LUT-mapping handles them well, thus resulting in better

implementations.

Interestingly,the average number of literals that can be placed in one 5-LUT is 4.8.

3.6.6 Comparing with Other Systems

In Table 3.7, the results from mis-fpga are compared with chortle-crf [26] and Xmap,

an improved versionof [39]. The starting optimized networks are identical for the systems. On

benchmarks where allsystems finish, looking attherowall-finish, mis-fpgausingpartialcollapse is

9.6% better than chortle-crf and 16.8% better than Xmap. Ifwecompute thepercentage difference

for each example, and then take the average of these differences over all examples, mis-fpga is

14.2% better than chortle-crf and about 16.1% betterthan Xmap. Figure 3.42 depicts the results

graphically.

10The average number, 1.01, is obtained bydividing the total number of factored form literals by the total number of
edges over all the benchmarks ofTable 3.1.
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example mis-fpga chortle-crf Xmap
part-coll best decomp

5xpl 21 28 28 25

9sym 7 39 38 40

C1355 70 100 106 70

C1908 96 99 106 96

C2670 138 147 156 259

C3540 291 299 292 305

C432 61 67 62 62

C5315 356 362 376 427

C6288 481 467 604 658

C7552 372 403 456 488

alu2 97 100 95 103

alu4 - 210 203 214

apex2 79 82 78 83

apex3 - 484 468 527

apex7 54 54 56 64

b9 38 39 36 39

bw 28 37 36 -

clip 25 30 23 25

cordic 10 10 12 10

dalu - 229 218 257

des 844 861 852 928

duke2 124 128 124 131

e64 81 81 81 83

ex4 139 149 139 150

f51m 11 14 17 19

k2 - 360 356 355

misex2 28 29 29 30

rd84 13 40 38 41

rot 177 180 - 198

sao2 35 37 33 38

spla 173 179 173 -

1481 5 5 11 5

vg2 22 23 23 23

z4ml 6 7 7 9

total - 5379 - -

part-coll-subtotal 3882 4096 - -

chortle-subtotal - 5199 5332 -

Xmap-subtotal - 5163 - 5762

all-finish 3504 3700 3878 4211

Table 3.7:'Comparing various systems

total sum of 5-LUT counts over all the examples
all-finish sum of 5-LUT counts over examples where every tool completes
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Figure 3.43: Example of mergeable functions

3.7 Targeting Xilinx 3090

The main focus of our work is to target a basic block with a single LUT. But commercial

architectures come in slightly different flavors. For example, if we ignore the feedback paths from

the flip-flops to the LUT-section (since we are targeting only combinationallogic in this chapter) in

Figure 1.5, a Xilinx 3090 CLB can implementeither:

1. a 5-feasible function /, or

2. two4-feasible functions / andg provided \<r(f) Ua(g)\ < 5. / andg arethencalled merge

able. These conditions on the supports of the two functions are called the combinational

mergeability conditions (CMCs). Figure3.43showstwo mergeable functions.

For areaminimization,the objectiveis to minimize the numberof CLBsneeded for a network. How

do we handle the possibilityof placingtwo functions in a CLB? Our approach is to firstobtain a

fc-feasible network tj (k = 4 or 5) using the techniques described in Section 3.3, and then apply a

rmodifiedblock count minimization.The BCM problem for Xilinx 3090 architecture is as follows:

Problem 3.7.1 Givena k-feasible Booleannetwork rj, iteratively collapsenodesorpair mergeable

nodesordo both suchthattheresulting network is m-feasible andthenumber of3090 CLBsneeded

is minimum.

Tb solve it, we modify the binate covering formulation used in Section 3.4.1. We generate all the

k-feasible supemodes for each internal node of r/ as before. Recall that in the binate covering
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matrix B built earlier, there is a column for each feasible supemode s, and a row for each internal

node of rj (there are additional rows to take care of the binate covering constraints). There is a 1

in the position B(k, i) if the node corresponding to row k is containedin the supemode s,-. In the

modified procedure, we start with 5, and append additional columns to it as follows. Consider a

pair of 4-feasible supemodes <S,-,i and Sj^ of nodes n\ and n-i. If the supemodes are mergeable

(i.e., the union of their supports has at most 5 inputs), we add a column to B corresponding to the

supemode pair. This column corresponds to a match that covers all the nodes in the union of the

two supemodes. We repeat this for all the supemode pairs for nodes n\ and n2 and then process all

the node pairs likewise. Finally we solve a binate covering problem on the new matrix B to get an

optimum solution.

Note that thenew matrix Bmay have c = c2 columns inthe worst case, where c=number

of columns of B. For reasonably sized networks, this exact approach may be computationally

expensive. We proposean approximation that speeds up BCMby separating collapsing and pairing

steps. On the ^-feasible network rj, we first apply the BCM procedure of Section 3.4 and get a

fc-optimal network r). Then we searchfor maximum numberof pairs of mergeable functions in rj.

Eachsuchpair is placedon a CLB. Eachunpaired fimction is assigned a separate CLB. The problem

can be formulated as follows:

Problem 3.7.2 Given a k-feasible network rj,find the largest set of disjoint pairs of mergeable

functions.

Note that we do not lose any optimality by imposing that the pairs be disjoint. From an optimum

solution that replicates functions in many pairs, another optimum solution can be constructed that

only uses disjoint pairs.

Weshow that Problem 3.7.2 can be formulatedas the problem of maximum cardinality

matching ina certain graph G(V, E),u which is built asfollows. Corresponding toeach internal

node of rj, there is a vertex v e V. Edge (v, w) € E if and only if in r\ the functions at the

nodes corresponding to v and w are mergeable. Thenthe Problem 3.7.2 can be solved by finding

a maximum cardinality matching in G. Each edge (v, w) in the matching means that the nodes

corresponding to v and w should be placed on the same CLB. Each node at which no matched

edge is incident is placed in a separate CLB. Ingeneral, G is a non-bipartite graph, i.e, it canhave

cycles with an odd number of edges. This makes the problem slightly harder.12 Even though a

"Themaximum cardinality matching problem in agraph isto find the largest set ofedges no two ofwhich share an
end point

12For abipartite graph, asimple network flow-based technique can be used to solve the matching problem.
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polynomial-timealgorithm (in fact 0(\V|2-5)) exists [57], itisdifficult toimplement and its running
time can be long for large networks. We initially formulated this problem as a 0-1 linear integer

program as follows. Define

xj = selection variable for edge j of G,

A = (o,j) = incidence matrix of G

where

and

— I113 \ 0 c

f 1 ifii
a{j = <

[ 0 oth

if edge j is in the matching,

otherwise

' in G the edge j is incidenton vertex Vi,

otherwise

The maximum cardinality matching problem now becomes:

maximize y^Sj
j

subject to

X>;;*j<l Vi (3.25)
3

(3.25) constrains every vertex v{ of G to be an end-point of at most one edge of the matching.

We solve for xjs. The edges j for which xj is 1 are in the matching. This is a pure 0-1 integer

linear programming problem, which is NP-complete [30]. However,for the size ofproblems we are

dealing with, its solution does not normally requireexcessivecomputer time. The basic advantage

of using an integer programming formulation is that it is simple and, more important, it provides a

wider framework for potential extensions of the mergingproblem. Among them is the merging of

threeormorefunctions intooneCLB, whichmaybeafeature insomefuture architecture. Providing

these flexibilitieshelps to accommodatenew architectures if a general tool for FPGAs is to be built.

Currently, we use a simple heuristic that greedily pairs two adjacent vertices of G that

have minimum number of edges incident on them. Then it deletes these two vertices from G.

These steps are repeated until no more pairs canbe found. The idea is that vertices that havemany

neighbors in the beginning will very likely havesome neighbors towards the end and can still be

paired at the end. Such greedymatchingalgorithms do not guarantee to find an optimumsolution,

but it has been observed empirically that they are not far from one. Moreover, they are fast. This

heuristic was first proposed in [39,87].
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3.7.1 Experimental Results

The aforementioned technique has been implemented inacommand mergein mis-fpga.

First, A:-feasible networks are generated for two values of k: 4 and 5. Then, merge is applied to

obtain maximum number of pairs of mergeable functions. If k = 4, it is possible that an unpaired

function can becollapsed into itsunpaired fanouts without causing any infeasibility. For example,

consider two functions / and g: f - abcd,g = fe. Although / and g are notmergeable, / can

be collapsed into g, yielding a 5-feasible function, merge exploits this possibility by invoking a

collapsing step ontheunpaired functions atthe end. We found that some, though not significant,

improvement is obtained as a result of this collapsing. In Table 3.8, the results of the experiments

are shown. It turns out thatthe two values of k givecomparable results.

InTable 3.9,we compare the performance of mis-fpga (using k =5), Xmap, chortle-crf,

and HYDRA On the subset ofexamples where all the tools can finish, onaverage mis-fpga is9.1 %

better than Xmap, 9.6% better than chortle-crf, and 11.7%better than HYDRA.

Relating factored form literals and CLBs

To see the relationship between the numberof factored form literals and CLB-count, we

plot in Figure 3.44 the number of CLBs obtained in the Table 3.8 in the column 5 against the

number of literals in the optimized benchmarks, as reported in Table 3.1. Onlythosebenchmarks

are considered for which mis-fpga could finish. Itcan beseen that therelationship isnearly linear,

although manybenchmarks lie below thebestlinear fit. The average number of literals thatcan be

placed in one CLB is 6.02.

3.8 Discussion

We proposed algorithms for minimizingthe numberofm-LUTs needed to realize acircuit.

Two key steps - making a network feasible and block count minimization - were identified. One

maindifference with theconventional mappers is that decomposition is specific to the architecture.

This indeed yields good results. Various decomposition techniques - functional, cube-packing,

cofactoring, kernel extraction, and simple AND-OR decomposition were studied. Sometimes it

is possible to predict the technique that gives best results. For instance, it was proved that cube-

packing generates optimum tree implementations for functions having cubes withdisjoint supports

for m < 5. Similarly, functional decomposition works well for symmetric functions, since finding
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example 4 5

5xpl 17 17

9sym 11 7

C1355 61 67

C1908 77 81

C2670 132 111

C3540 251 262

C432 52 51

C5315 331 304

C6288 287 288

C7552 299 295

alu2 84 83

alu4 - -

apex2 68 64

apex3 - -

apex7 38 44

b9 29 28

bw 33 27

clip 19 21

cordic 10 10

dalu - -

des 687 686

duke2 109 103

e64 45 54

ex4 104 113

f51m 12 10

k2 - -

misex2 24 23

rd84 13 12

rot 122 137

sao2 26 28

spla 136 142

t481 5 5

vg2 18 21

z4ml 5 6

subtotal 3105 3100

Table3.8: Xilinx3090 CLBcountsfor mis-fpga

4 do mapping onto 4-LUTs, then applymerge
5 do mapping onto 5-LUTs, then applymerge
subtotal sum of CLB counts overexamples where completed

LUT script did not finish
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example mis-fpga Xmap chortle-crf HYDRA

5xpl 17 19 21 20

9sym 7 31 32 41

C1355 67 54 83 63

C1908 81 78 84 66

C2670 111 162 122 212

C3540 262 251 243 285

C432 51 48 48 62

C5315 304 297 297 278

C6288 288 462 596 474

C7552 295 339 335 370

alu2 83 76 73 74

alu4 - 173 172 188

apex2 64 63 59 68

apex3 - 394 376 384

apex7 44 46 41 40

b9 28 29 27 24

bw 27 - 31 31

clip 21 20 21 23

cordic 10 10 10 13

dalu - 199 195 199

des 686 692 635 661

duke2 103 98 95 92

e64 54 59 58 43

ex4 113 129 113 159

f51m 10 13 14 10

k2 - 287 301 288

misex2 23 23 21 23

rd84 12 30 30 32

rot 137 135 124 125

sao2 28 30 29 31

spla 142 - 125 127

t481 5 5 7 6

vg2 21 20 20 21

z4ml 6 7 7 5

total - - 4445 4538

all-finish 2931 3226 3245 3321

Table 3.9: Xilinx 3090 CLB counts: comparing various systems
mis-fpga apply mis-fpga with partial collapse
chortle-crf apply chortle-crf
Xmap apply Xmap
HYDRA apply HYDRA
total sum of CLB countsover all the examples
all-finish sum of CLB countsoverexamples whereevery tool completes
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a good input partitionis easy for such functions. However, for an arbitrary function, it is not known

a priori which method would work well. No singlemethod works in all cases. Empirically, it was

observedthat applying cube-packing on both SOP and factored form and picking the betterofthe

two gives reasonably good results. Anothermethod based on support reduction was proposed to

make the network feasible. While studying functional decomposition, we proposed an encoding-

basedsolutionto the problemofoptimallyobtaining simplea andg functions. This hasimplications

not only for synthesis for LUT architectures, but also forlogic synthesis in general. In block count

minimization, an exaa method for solving the covering problem was presented. The key notion

was that of a feasible supemode. The exact method is computationally expensive. So heuristic

approaches were proposed. The idea of reducing the support of a node function such that the node

can be eliminated from the network by collapsing it into its fanouts was also explored. The two

steps of decomposition and BCM were coupled tightly in partial collapse.

Some issues have not been addressed explicitly in the techniques described thus far:

1. Routingconsiderations: Almost all the algorithmspresented do not consider the routability

ofthe final implementation. Since routing resources ofthe chip may be scarce, as in Xilinx

3090, it is crucial that routabilitybe given due considerationduring synthesis. One measure

of routability is the number of edges in the Boolean network. So one way of addressing

routability during synthesis is to minimize the number ofnewly created edges during decom

positionand BCM. As described earlier, this is considered in thepartition stepof mis-fpga.

Recently, some approaches have been proposed that do routing-driven synthesis. Bhat and

Hill [8] have proposed aplacking algorithmthat integrates synthesis, placement, and packing

(or mapping) in a tight loop. A similar approach proposed by Schlag, Kong, and Chan [76]

considers covering and merging simultaneously, with an objective ofminimizing the number

of edges in the resulting network.

2. Mapping a multi-output function: mis-fpga maps one function at a time. Better results

may be obtained if many functions are mapped simultaneously. Forexample, when making

the network feasible, if, instead of decomposing a single function, multiple functions are

decomposed collectively, good common divisors or sub-functions can be extracted, thus

reducing the overall block count.

3. Mapping with don't cares: In the spiritof conventional technology mapping, the algorithms

described here assume that the functionbeing mapped is completely specified. Typically there
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are don't cares associated with eachnode function of the network,which canbe beneficially

used in mapping. MailhotandDe Micheli showed one way of doingit in their seminalworic

[52]. This ledto animproved approach by Savoj etal. [71]. These approaches canbe applied

to FPGA mapping as well.

4. Determining a good inputpartition infunctional decomposition.
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Chapter 4

Logic Optimization

4.1 Introduction

The goal of synthesis is to convert a design specification into an implementation. Since

it is a complex task, it is divided into two phases. The first phase is technology-independent

optimization (orlogic optimization),in which aminimal representation ofthe design is sought. The

minimality criterion may be either the number of product terms (if a PLA-like implementation is

desired) or the number of literals in a factored form (if a standard-cell implementation is desired).

The second phase is technology mapping, in which the minimal representation is mapped onto the

target technology/architecture. The quality of the final implementation depends on the minimal

representation generated by the optimization phase.

The last few yearshave seenatremendous surgein the design anddevelopment ofmapping

algorithms targeted for LUT architectures [25,26,62,63,23,39,80,87]. Almost all of these tools

start from a representation of the circuit optimized for the number of literals in the factored form.

Since the LUT architectures impose constraints on the synthesis process that are different from

those imposed by PLAs or standard-cells, it is not clearif such cost functions aregood measuresof

the complexity of a design for LUT architectures. Consider the followingtwo examples.

Example 4.1.1 Let m be 5. Considertwofunctions f\ and fa:

f\ — abcdeg,

f2 = abc + b'de + a'e' + c'd'.

The representation of f\ has 6 literals, and that of fa 10 literals. Both these representations are

optimal, in that the misll optimization script (scriptruggedj does notfurther improve the literal
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counts. Ifthecomplexity (or cost) is measured usingliterals, h is more complex than f\. However, i

f\ requires two5-LUT.s, whereas h onlyone. So f\ is costlierthan hfor 5-LUT architecture.

Example 4.1.2 Let mbe2. Considerthefollowing representation offunction f.

f = ab' + a'c'+ be.

This representation remains unchanged afterapplying script.rugged. Moreover, this is the SOP

withtheminimum number ofcubesandliteralsfor thisfunction. Now, ifcube-packing wereapplied

on thisSOP, we get thefollowing decomposition withfive 2-LUTs.

ti = ab'

t2 = a'c'

*3 = 6c

U — h + h.

f = ts+U-

No improvement is obtained after applying the block count minimization step. Now consider the

following alternaterepresentation off:

/ = a6/ + a,6+ 6c+ 6V.

It uses one more cube and two more literals than the minimum representation. However, cube-

packing yields

<i = ab'+ a'b

t2 =bc+ b'c'

f =*l+«2,

which uses twofewer LUTs.

3Both of these examples underscore theneed for targeting optimization phase for LUT architectures.

Let us examine varioussteps in the optimizationphase andsee whatcanbe done in eachstep. There

are three main steps in optimization:

1. Kernel-extraction

2. Elimination

3. Simplification
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4.2 Kernel-extraction

Certain kinds ofsub-functions that are common to many nodes ofthe network are extracted

and implemented once, thereby resulting in a smaller network representation. There may be many

choices for kernels to be extracted. Tb evaluate the best kernel, the notion of value of a kernel

was introduced [12]. It is the number of literals saved in the network if the kernel is used. To

target LUT architectures, the value of a kernel is redefined as the number of LUTs saved by the

kernel. How do we compute the new value? In the original definition, value-computation was easy

- count the number of literals in the factored forms of the kemel and of the affected nodes before

and after extracting the kernel, and compute the savings. In the new definition, the LUT-counts

corresponding to the kemel and the affectednode-functionshave to be computed. This means that a

mapping step has to be applied on these nodes. Since such computation is repeated for each kernel,

the mapping step should be fast. We use cube-packing as a fast mapping technique.

The results ofthe experiments are not reported here. We modified gkx, the original kernel-

extraction routine in misll. Later, a faster algorithm# was implemented. The new optimization

script used in the thesis, scriptrugged, does not use gkx, butfx. We have yet to modify/* for LUTs.

4.3 Elimination

Elimination is a process that is the inverse of kernel-extraction. It collapses a node n

into its fanouts if the value of the function at n is no more than a specified threshold. For LUT

architectures, the value of a node can be redefined, exactly as in kernel-extraction.

4.4 Simplification

In simplification, for each node of the network, an appropriate don't care set is computed

and a two-level minimizer is applied, resulting in a smaller representation.

Fujita and Matsunaga [28] modify simplificationto target LUT architectures such that the

support of each node of the network is minimized. Each node n is simplified as follows. First,

candidate nodes that may be used as fanins of n are selected. From these, sets of minimal supports

for n are computed using the algorithm of Halatsis and Gaitanis [34]. Finally, an irredundant cover

for n is computed using a minimal support. The basic idea in choosing the minimal support as

the cost function is that if this support is at most m, a minimum-LUTimplementation of the node
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function is obtained. However, if this support is greater, the cost function may not be appropriate.

T\vofunctions with the same support can have different LUTcosts. Moreover, a function with fewer

inputs can have a higher cost.

Example 4.4.1 Letm = 2. Consider

f\ (a, b,c) = abc,

f2(a, b,c) = ac -f be+ ab+ a'b'c',

fe(a,b,c,d) = abed.

f\ andf2 have the same support- {a, b,c}. Theminimum-LUT implementation off\ hastwo LUTs,

whereas thatof f2 hasfour, as will be proved inLemma 53.11. Also, \o(h)\ = 4, and it canbe

implemented using three LUTs,whereas \<r(f2)\ = 3, andthecost of f2 isfour.

Tb target simplification for LUT architectures, we should examine LUT mapping tech

niques that woric on an SOP. One such technique, which has proved effective, is cube-packing,

as described in Section 3.3.2. Cube-packing groups the cubes of an SOP into minimum number

of LUTs. The number of LUTs obtained depends on the SOP under consideration. Since there

are many possible SOPs for a function, the natural question to ask is: "How shouldwe obtain

an SOP or a two-level representation of a function that yields better LUT implementation after

cube-packing?" Let us first describe the standard two-level minimization problemand one way to

solve it.

4.4.1 Two-level Minimization

The two-level minimization problem, in its simplest form, is that of obtaining an SOP

representation of a function / with minimum number of cubes (or literals). The classical solution

consists of three steps:

1. Generate all the primes of/.

2. Form the covering (or prime implicant) table C.

3. Derive a minimum cover of C.

The covering table Chas a row for each minterm in the on-setof / and a columnfor each prime.

C(hi) = 1if andonlyif theprimej covers (contains) minterm i. Thenwesaythatcolumn j covers
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abc a'c' a'b 6c b'c' ac ab'

000 1 0 0 1 0 0

010 1 1 0 0 0 0

Oil 0 1 1 0 0 0

111 0 0 1 0 1 0

101 0 0 0 0 1 1

100 0 0 0 1 0 1
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Table 4.1: The covering table C

row i, or equivalentiy, row i is covered by column j. The problem of selecting a minimum-cube

cover, i.e.,a minimum subset ofprimes thatcover alltheminterms intheon-setof /, is thusmapped

into the problem ofselecting aminimum column coverofC} This isthe well-known unate covering

problem. The formulation can be modified easily to generate an SOP with minimum number of

literals. Witheach prime, a weightequalto the numberof literalsis associated. The problem then

is one of choosing a minimum-weighted cover ofC.

Example 4.4.2 Consider

/ = a6, + a,6-|-6c + 6V

f has 6 primes: a'd, a'b, be,b'c', ac, ab'. The covering tablefor f is shown in Table 4.1. The

minimum-cube cover is obtainedby pickingtheprimes a'c',be,and ab'.

For large PLAs, it is not feasible to build the covering table. Instead, an iterative im

provement strategy is used. ESPRESSO [11] is sucha heuristic minimizerthatproduces excellent

quality solutions.

We first examine what happens if a standard two-level minimizer is used before cube-

packing. In other words, we study if minimum-cube or minimum-literal SOPs are good for

cube-packing.

4.4.2 Are Minimum-cube and Minimum-literal SOPs Good for Cube-packing?

Givena function /, theSOP representation useddictates heavily the LUT countobtained

after cube-packing. A two-level minimizer typically uses a cost function, which is the number of

'A column cover of C is a setof columns of C such that each row of C is covered by somecolumn in this set. A
minimum column cover is a column cover with minimum number of columns.
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ab oo 01 11 10

1 1 1

1 1 1

ab oo 01 11 10

c 3 fl
C j> y

(B): Minimum cube (literal) solution:

f=ab*+ a'c* + bc

(A)

ab 00 01 11 10

3 (\ ft\&3> tJ
(C): Solution best suited for 2-input cube-packing:

f=ab' + a* b + b' c* + bc

Figure 4.1: Two-level minimization and LUT decomposition

cubes (sometimes it may be the number of literals). A multi-level optimizer minimizes the number

of literals in factored form. Since cube-packing operates on anSOP representation, we concentrate

on two-level mimmization, and therefore on the corresponding cost functions - the numberofcubes

or literals. With the help of a simple example, we show that these may not be appropriate cost

functions.

Example 4.4J Letm-2. Consider thefunction

f(a, b, c) = a'c' + a'b + be + b'c' + ac+ ab'. (4.1)

The Karnaugh mapfor f is shown inFigure 4.1 (A). Applying cube-packing onthis SOP yields

t\ = a'c' + ac

t2 = a'b + ab'

t3 = 6c+ 6V

U = *i + h

f = <3+<4-

This decompositionusesfive 2-LUTj.
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A minimum-cube cover off is shown in Figure 4.1 (B) and is

f = ab' + a'c' + be. (4.2)

Note that this is also a minimum literalsolution, since all thesix primes off (all are present in

(4.1))have two literalseach. Applying cube-packing on thiscover, we get thefollowing:

<i = ab'

t2 = a'c'

<3 = be

U — h +12

f = h+t*.

It takesfive 2-LUT.s to realize f - no improvement over the starting configuration. Let us consider

anotherrepresentation off, shown inFigure 4.1 (C):

f = ab' + a'b + bc + b'c'. (4.3)

This representation uses one more cube and two more literals than the minimum solution of(42).

After applying cube-packing, we get:

t\ = ab' + a'b

t2 =bc + b'c'

f =*l+«2.

Thisdecomposition uses three2-LUT.s, two less than theprevious covers. This improvement comes

from the relationship between the supports of primes in (4.3). Primes ab'and a'b have the same

support; so theycanbe placed in one2-LUT.Similarly, beand b'c' areplaced in one2-LUT. One

extra LUT is needed to realize the ORofthe resulting sub-functions. Incontrast,theminimum-cube

cover of(4.2) is suchthat no two primes canfit in one2-LUT, implying that three LUTs are needed

to realize the threeprimes, and then two extra LUTsto realize the ORs.

This simple example underscores the need for a different formulation of the two-level

minimization problem for the LUT architectures.
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abc a'c' a'b be b'c' ac ab'

000 1 0 0 1 0 0

010 1 1 0 0 0 0

Oil 0 1 1 0 0 0

111 0 0 1 0 1 0

101 0 0 0 0 1 1

100 0 0 0 1 0 1

Table 4.2: The covering table C

4.4.3 Targeting Two-level Minimization for Cube-packing

Let us examine the covering table C for the function / of (4.1). It is shown in Table

4.2.2 Themintenns of the on-set of / are the rows of the table and the primes are the columns.

The problem is to select a subset ofprimes such that the resulting SOP yields good resultsafter

cube-packing.

If we decide to put prime a'c' in the final cover, we can put ac also in the cover without

increasing the number of LUTs generated by cube-packing. The reason is as follows. Assume that

cube-packing places a'c'in an LUT T. It canthenplace ac in T without usinganyleftover capacity

of T. This is because the supportof the cube ac is contained in that of a'c' (in fact, the supports

are the same). The minterms 111 and 101 contained in ac are thereby covered free ofcost. It is the

case then that the inclusion of a prime p\ affects the cost of inclusion of another prime Pi whose

support is contained in that of p\. In general, the total cost of selecting a set of primes can be less

than the sum of the costs of the primes selected because of support-sharing. For example, if / is to

be implemented using 3-LUTs, the combined cost of all the primes is one LUT, whereas the sum

of the costs of the primes in the minimum-cube cover is three. Note that the standard formulation

- of the covering problem works only if the columns have independent, fixed costs (weights). It

~does not allow a dynamic relationship among the costs of the columns. We next show that it is

*possibleto solvethe problem at handby transforming it intoanothercovering problem in whichthe

costs ofthe columns are fixed and independent In the modified formulation, not all columns are

primes; some correspondto sets ofprimes. These sets are generated by taking all possible unions

-of the prime-supports and including a union if it has at most m variables. If a prime p is such

that \o(p)\ > m,p will be excluded from the unionprocess. Of course, it will be included in the

2It is the same as Table 4.1.
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modified covering table as a singleton set.

The modified formulation consists of the following three steps:

1. Generateall the primesof /. Then, generate a set U ofall possibleunions of prime-supports

where each union has at most m variables.

2. Using U, build the modified coveringtableC from the original tableC.

3. Solve C.

Generation of unions of prime-supports

Let V denote the set of primes ofthe function /. Our goal is to generateli, where

U = {s : s = UpeC a(p), QCV, suchthat \s\ < m) (4.4)

Depending on the supports of the primes, we divide V into two sets: V<m and V>m.

V<m = {p€V:\<r(p)\<m}

V>m = V-V<m

To generate U, it suffices to consideronly Q C V<m. We systematically take union of supports

of primes in V<m as follows. First, we generate the set of supports So = {s : s = o(p) for some

P € ^<m}. With each support s, we maintain a tag of primes P(s) = {p e V<m : cr(p) C s),

i.e., P(s) is the set of those primes whose support is contained in s? Let S\ be a duplicate copy

of So, and Sj = <f> for j > 1. The algorithm proceeds in iterations. In iteration j, for each s € So,

and t € Sj, it computes u = s U t. If |u| > m, it is discarded. If u has already been generated,

P(u) = P(u)uP(s)uP(t). Otherwise, it is added to 5J+i withP(w) = P(s)uP(t). This process

is repeated until a fixed point is reached. The final set of supports islt = SoU S2\J S3.. .U Sjt+i.

where k is the final iteration. Since S\ is same as So, it is not included.

This algorithm is quite fast. Forall the benchmarks we tried, four iterations were sufficient

to generate the entireU for m = 5. We illustrate the workingofthe algorithm with the following

example. Let V<m be {po, p\, p2, &, P4}. Let the prime-supports be as follows:

3Initially, foreachs € 5b,P(s) = {p € V<m ' o"(p) = s}. Asthealgorithm proceeds, primes whose supports are
subsetsof s get addedin P(s).
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support prime
{a,b} Po

{a,b} P\

{a, c} Pi

{a,b,c} Pi

{d,e,g} 7>4

Let us also assume that m - 5. We generate Sq and tag each support with the corresponding

prime(s).

Next, Si, a copy of So, is generated.

support

{a,b}
{a,c}
{a,b,c}
{d,e,g}

prime tag

Pq,P\

Pi

Pi

Pa

set support prime tag
{a,b} Po,P\

So {a,c} Pi

{a,b,c} Pi

{d,e,g} P4

{a, 6} POiPl

Si {a,c} Pi

{a,b,c} Pi

{d,e,g} P*

We pick t = {a, 6} € Si and vary s over So. First, s = {a, b}. Since s = t, no new support

is generated and the prime tags also remain unchanged. Next, 5 = {a, c}. Then u = {a, b,c],

which is already in S0. We set P(u) = P(u) UP(s) UP(t), i.e., P({a,b,c}) = {p3,po,pi,pi}.

Next, s = {a, b,c}, for which u = {a, b,c}, already present in So. P(u) remains same. Finally,

s = {d, e, g], and we generate u = {a, b,d, e,g). This is anew support andis added in S2 with the

t prime tag P(u) = {po,pi, pa). The current supports and thecorresponding tagsare as follows:

set support prime tag

So

{a,b}
{a,c}
{a,b,c}
{d,e,g}

Po>Pi

Pi

Pi,P0)Pi>Pi

P4

Si

{a,b}
{a,c}
{a, b,c}
{d,e,g}

POiPl

Pi

Pi>POiPl,Pl

P4

s2 {a,b,d,e,g} P0,Pl,P4
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Next, t = {a,c} € Si. Repeating the above process, we generate a new support {a,c,d, e,g] with

tag={p2,M-

set support prime tags

So

{a, b}
{a,c}
{a,b,c}
{d,e,g}

Po,P\

Pi

PiiPo,Pi>Pi

Pa

Si
{a,b}
{a,c}
{a,b,c}
{d,e,g}

POiPl

Pi

Pi,P0,Pl,Pl

Pa

Si
{a,b,d,e,g}
{a,c,d,e,g}

P0iPl,PA

Pi,Pa

The next twoelements from Si do not generate anynewsupports of cardinality at most

5. Although a new support{a, b, c, d,e,g} is generated, it is discarded because it has 6 variables.

The last table then marks the end ofthe first iteration.

In the second iteration, we pick elements from S2 and take their unions with the el

ements of So. It can be easily verified that no new supports of cardinality at most 5 are gen

erated. Hence, a fixed point has been reached and the procedure terminates. U - So U S2 =

{{a, b], {a, c}, {a, b, c}, {d, e,g), {a, b,d,e,g}, {a, c,d,e,g}}.

Constructing the modified covering table

LetCbe the original covering table for /. Theentries of the modified covering table C

are determined as follows. The column set of Ccorrespondsto V>m UU, whereas its rows are the

minterms of the on-set of /. The columnin Ccorresponding to a primein V>m is identical to the

corresponding column in C. Next, consider a column, sayj, of Ccorresponding to support s e U.

Then, C(i, j) = 1ifand only ifsome prime p € P(s) covers the minterm of / corresponding torow

t. Inotherwords, column j is theentry-wise union of thecolumns inCcorresponding to primes in

P(s). Note thateach such column j corresponds toa setof primes thatcanbe putononem-LUT.

Each column of C is assigned a weight equal to the cardinality of the corresponding

support. This is because a support «i with 2 elements is less expensive than a support s2 with 5

elements: si can accommodate any other support with at most (m - 2) elements, whereas s2 can

accommodate only a support with at most (m - 5) elements.
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abc {a'c',ac} {«i'b,ab'} {6c, b'c'}
000 1 0 1

010 1 1 0

Oil 0 1 1

111 1 0 1

101 1 1 0

100 0 1 1

Table 4.3: The modifiedcovering table C

Solving the covering table

Given a covering table, selecting a subset of columns of minimum-weight that covers

all the rows is an NP-hard problem. However, efficient heuristics exist that work well even on

reasonably large tables [31,68]. We use one such heuristic [68,11].

We now show how the algorithm works on the example ofTable 4.2. Recall that m = 2 for

this example. Applying first two steps, we find that the modifiedcoveringtable Chas three columns,

withprime tags {a'c',ac},{a'b, ab'}, and {6c, b'c'}. Note thatV>m is empty. Eachcolumn of Cis

formed by merging the corresponding columns of C. Forexample, the column{a'c',ac} has a 1 in

a row whenevereither a'c' or ac has a 1 in that row in the table C. The resulting covering table is

shown in Table 4.3. Each column is assigned a weight of 2. Any two columns cover all the rows of

C. In particular, we can generatethe SOP of (4.3) by pickingthe last two columns.

Interestingly, the algorithm described above has the capability of increasing the number

of cubes too. For instance, in the previous example, if the starting representation is assumed to be

the minimum-cube cover / = ab' + a'c1 + 6c,the algorithm still comes up with the representation

f = ab'+ a'b + 6c + b'c', which has 4 cubes.

4.4.4 The Overall Algorithm

Given a cover of a function /, the overall algorithm works as follows:

1. If \cr(f)\ < m, no minimization is done. This prevents a feasible function from becoming

infeasible after simplification, which could happen because of substitution of a function

outside the support of / into / through the use of don't cares.
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2. The local don't care set d is generatedfor / using the algorithm by Savoj et al. [72]. This is

useful in a multi-level framework.

3. All primesofthe incompletely specified function (/, d) are generated. The prime-generation

algorithm used is the one implemented in ESPRESSO-EXACT [11]; it uses the method

of iterative consensus. While generating them, if it is detected that they are too many (i.e.,

more than a user-specified parameter NUM-PRIME), the generation process stops. Only

NUM.PRIME primes are generated. Then, cubes from the original cover are added to ensure

that the resultingSOP is a coverof (/, d).

4. The covering table Cis built.4 Cis generated, as described in the step 2 of the algorithm.

If C is not too big, it is solved as described in step 3, thus producing a subset of primes

that covers all the rows of C, and hence of C. Otherwise, C is so big that solving it by the

heuristic mentioned for step 3 in the last subsection does not give good results. So, we enter

theREDUCE-EXPAND-IRREDUNDANT ESPRESSO loop, appropriatelymodified. The

modificationis in the procedureIRREDUNDANT [11],which firstgeneratesa coveringtable

C* and then solves it to produce a minimalcover. Typically, C* is much smaller than C or

C. Our modification is an obviousone: insteadof solving C*, we firstgenerate C*, and then

solve it.

5. The cover obtained from the last step is checked againstthe originalcover. Whichevergives

better results after cube-packing is accepted. This step corresponds to a similar one in misll

[12],where a simplified functionreturned fromthe two-level minimizeris acceptedonly if it

improves the cost (typically number of literals in the factored fonn).

4.4.5 Experimental Results

The main claim of this work is that it is possible to obtain a representation of a function

using two-levelminimizationthat is bettersuitedfor cube-packing. The benchmarksshould be such

that we can perform effective two-level mimmization. The MCNC two-level benchmarks (PLAs)

provide such a scenario. Since PLAs generally have multiple outputs and cube-packing operates

on single output functions, we treat each function independently. After appropriate two-level

mimmization (either standard or theone targeting LUTs), we run cube-packing on theminimized

4In ESPRESSO, the rows ofCdo not correspond to the minterms ofthe on-set of/; they, in fact, represent sets of
minterms [11], thus yielding a smaller table size.
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example ESP.CUBES ESP-SOP-LITS ESP.LUT ESP.CUBES
ESP 11 IT

ESP.SOP-LITS
KftPlUT *

5xpl 24 24 11 2.181 2.181

9sym 114 114 HI 1.027 1.027
Z5xpl 25 25 14 1.785 1.785

Z9sym 115 115 72 1.597 1.597
alu4 236 236 226 1.044 1.044

apexl 1266 1265 1255 1.008 1.007

apex2 1118 1159 1118 1.000 1.037

apex3 889 892 874 1.017 1.020

apex4 802 802 736 1.089 1.089

apex5 1116 1116 1117 0.999 0.999

bl2 27 27 25 1.080 1.080

bw 28 28 28 1.000 1.000

clip 64 57 35 1.828 1.628
conl 3 3 3 1.000 1.000

cordic 1127 1127 1125 1.001 1.001

cps 1092 1088 1064 1.026 1.022

duke2 319 314 305 1.045 1.029
e64 545 545 545 1.000 1.000

exlOlO 607 607 574 1.057 1.057

ex4 269 269 274 0.981 0.981

ex5 148 148 143 1.034 1.034

inc 19 19 19 1.000 1.000
misexl 9 9 10 0.900 0.900

misex2 41 39 39 1.051 1.000

misex3 1083 1083 1040 1.041 1.041

misex3c 236 236 227 1.039 1.039

pdc 167 166 166 1.006 1.000

rd53 4 11 3 1.333 3.666

rd73 61 62 56 1.089 1.107

rd84 195 195 132 1.477 1.477

sao2 63 54 42 1.500 1.285

seq 2100 2111 1937 1.084 1.089

spla 592 592 593 0.998 0.998

squar5 13 13 8 1.625 1.625

t481 295 295 295 1.000 1.000

table3 902 902 874 1.032 1.032

table5 832 832 839 0.991 0.991

vg2 22 22 22 1.000 1.000

xor5 1 1 1 1.000 1.000

total 16569 16603 15958 - -

mean - - - 1.126 1.147

Table4.4: Number of 5-input LUTs aftertwo-levelmimmization andcube-packing

ESP.CUBES ESPRESSO loop for minimum cubes, followed by cube-packing
ESP-SOP-LITS ESPRESSO loop for minimum SOP literals, followed by cube-packing
ESP.LUT modified ESPRESSO for LUT architectures, followed by cube-packing
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function and evaluate the LUT count. The cost of a benchmark is the sum of the LUT counts of the

individually minimized functions of the benchmark. For this set of experiments, m = 5. We do

two kinds ofminimization:

• ESP:Apply the two-level minimizer ESPRESSO [11], i.e., invoke the REDUCE-EXPAND-

IRREDUNDANT loop on the function until no furtherimprovement takes place. This is done

for two cost functions:

1. number of cubes (column ESP.CUBES in Table 4.4),

2. number of literals in the SOP (column ESP-SOP-LITS in Table 4.4).

• ESP-LUT:Run the new minimizer described in Section4.4.4. The followingparameters are

set:

1. NUM-PRIME = 20,000.

2. Maximum size ofC = 100 x 2500, i.e., ifChas more than 100 rows and 2500 columns, the

LUT-modifiedREDUCE-EXPAND-IRREDUNDANT loop of ESPRESSO is entered.

The results of these experiments are shown in Table 4.4. The bold entries indicate the minimum

LUT count for the benchmark. On most ofthe benchmarks, ESP-LUT outperforms ESPRESSO

in the LUT count. On a perexample basisandusinggeometricmeans, ESP.CUBES is 12.6%worse

thanour approach, andESP-SOP-LITS, 14.7%. On5xpl, ZSxpl,Z9sym, apex4, clip, rd84, sao2,

seq, and squarS, the difference is significant, andoften as much as 50%. Most of these examples

havea lot of primes with atmost 5 literals, thereby providing ESP-LUT with plentyofopportunity

to generate unions of supports. Though not shown, the numbers of cubes in the covers generated

by ESP-LUT are almostalways higher than those produced by ESP.CUBES or ESP-SOP-LITS.

This is as expected, since ESP.CUBES generates optimumor near-optimum solutions fornumber

ofcubes. This validates ourhypothesisthatneitherofthe two cost functions (numberofliterals and

numberof cubes) is an accurate measure ofthe design complexity for LUTarchitectures.

On some benchmarks,we hardly find any improvement. Moreover, on some, ESP-LUT

gives worse results. One reason isthat sometimes there are not too many unions of prime-supports

with atmost 5 elements, andthe optimizationproblem to be solvedis not different fromthe standard

one. Moreover, in such cases, whenever the covering table is big, the heuristic solution obtained

after solving the covering table does not compare well with the solution generated by the iterative
improvement loop of ESPRESSO.
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With respect to the run times, ESP-LUT is slower than ESP.CUBES and ESP-SOP-LITS,

especially on the benchmarks with large numberof primes. ESP-LUT keeps on generating primes

until it hits the NUM-PRIME limit, atwhich pointit exits prime-generation andvery likely switches

over to the modified minimizationloop. This is becausein the experiments, NUM.PRIME=20,000,

whereas the maximum column limit in C is 2500. On such examples, ESP-LUT is 10-15 times

slower.

4.5 Discussion

In our quest of the right cost function in logic optimization for LUTs, we were led to

look at the mapping step. We modified kernel-extraction and simplification. In kernel-extraction,

the value of a kemel was redefined, whereas in simplification, we targeted a representation suited

for cube-packing. In particular, we showedthatnumber of cubes or literals in a sum-of-products

representationis not the best cost function for cube-packing. In the new formulation, the main idea

is to use the supportof a set of primes as the basic object, as opposed to a prime. The proposed

technique generates around 13% better solutions after cube-packing as compared to a standard

two-level minimizer.

For a benchmark with a large number of primes, it becomes impractical to generate all of

them in ESP-LUT. So we switch to a modified ESPRESSO loop, but typically that too does not

give significant improvement as compared to the standard ESPRESSO loop. Recently, Mcgeer

et al. presented a new formulation of two-level mimmization [55] that generates a covering table

typically smaller than the one generated by conventional two-level minimizers (so it can handle

benchmarks with a largenumber of primes), and guarantees that no optimality is lost in the process.

We will like to incorporateour work in this framework.

Let us see how our approach can be applied in a multi-level environment. Typically,

two-levelmimmization with anappropriate don't care set is applied on the SOP ateachnode ofthe

multi-level networic. It is natural to replace all the invocations of two-level mimmization with our

formulation in a multi-level optimization script. However, we discovered that the modified script,

followed by a LUTmappingscript, doesnot improve the qualityofthe final results formost ofthe

benchmarks. This is somewhatsurprising. We attribute it to the followingtwo factors:

1. We havenot modeled cube-packing in otheroptimizationroutines such as kernel-extraction,

elimination, and resubstitution. By targeting minimum-cube and minimum-literal counts,



4.5. DISCUSSION 153

these routines undo the work of ESP-LUT.

2. We have not modeled decomposition techniques such as Roth-Karp decomposition and co-

factoring, which are alsoused in LUTmapping.

All thisunderscores theneed for atighter coupling ofthe optimization and mapping steps

for LUT architectures. Thisisconceptually simpler for LUT architectures as compared to standard-

cells,because an LUTis easier to characterize than astandard-cell library. The workdescribed here

is a step in this direction, which, we believe,will provide fertile ground for future research.
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Chapter 5

Complexity Issues

5.1 Introduction

As discussed earlier, many synthesis tools for LUT architectures have been proposed

- XNFMAP [88], chortle [25], chortle-crf [26], mis-fpga [62, 63], HYDRA [23], Xmap [39],

VISMAP [87], ASYL [80], flow-map [16] to name a few. We can compare one tool with another

and get an idea of the relative quality of these tools, but there is no way of judging the absolute

quality ofthe solutions generatedby any ofthese tools. This is an important concem, as it is directly

related to the research effort that should go into improving these tools and the solution quality. One

way to answer this question Is to compute the minimum number of LUTs needed for the realization

of a Boolean function. However, as shown in Corollary 2.3.2, this is a difficult problem - in fact,

NP-hard. It is desirable then to at least derive tight lower and upper bounds; with tight bounds one

can evaluate with some confidence how far various synthesis tools are from optimality. Also, if

good upper bounds can be obtained, one canuse them to predictquickly the LUT-countof a circuit

without technology mapping.

This chapter presents some results on the complexity of a function measured in terms

of the number of m-LUTs required to implement it. Previous work is summarized in Section 5.2.

The new results are presented in Section 5.3. The first result is on computing upper bounds on the

complexity of an n-input function. Then the exact complexity of a particularclass of functions,

namely those with (m -f 1) inputs, is derived. The next set of results is on proving upperbounds,

given a representationof the function. TV/o representations are considered: sum-of-products and

factored form. To check how good they are,these bounds arecompared with the synthesized circuits

in Section 5.4. Finally, open problems arediscussed in Section 5.5.
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5.1.1 Definitions

Throughout this chapter, we will use the following generalized notion of factored forms.

Definition 5.1.1 A factored form of a logic function is the generalization of a sum-of-products

form allowing nested parentheses and arbitrary binary operations.

For example, ab'c' + a'bc' + d is an SOP with7 literals,and it can be written in factored form as

((a © b)c') + d with 4 literals. Note that the definition presented in Chapter 2 (Definition 2.1.14)

allows only AND and OR binary operations.

Definition 5.1.2 A leaf-DAG [68] is a rooteddirected acyclic graph in which the only multiple

fanout nodes are possibly the inputs. Thenon-input nodesofthe leaf-DAG are called internal. If

there is an edgefrom a node i to a node j, i is a child ofj, andj the parent ofi. In a leaf-DAG, an

internal node all ofwhose children are inputs is called a leaf-node, or simply a leaf. Every other

internal node is a non-leaf.

A leaf-DAG is a rootedtree (singlefanouts at internal nodes)possiblywithmultiplefanoutpointsat

someinputs. Figure 5.21 showsa leaf-DAG. Notethat the notionof a leaf of a leaf-DAG is slightly

different from that of a leaf of a BDD, as definedjust after Definition 2.1.17. This is because the

context in which the term will be used here is different.

Definition 5.1.3 A Boolean function f(xi ,x2,..., xn) is trivial if it is either identically 0, identi

cally I, X{ or X{' for some i, 1 < i < n. Otherwise f is non-trivial.

Inversion is considered a trivial function because it is essentially free for LUT architectures.

RecallfromDefinition2.1.21 thatafimction f(x,...) essentiallydependson a if/* # fx,.

For example, f(xi, x2, x$) = xix2 + xi'x2 + x^ essentially dependson x2 and x$, but not on xi,

since / can be rewritten as x2 + S3.

Definition 5.1.4 The minimum number of m-LUTs needed to realize a function f is called its

complexity, and is denotedas Cm(f). For a set S offunctions,

Cm(S) = maxCm(/). (5.1)

For example, if / = xix2 + xix$ - xi(x2 + £3), C2(f) = 2. One 2-LUT realizes z(x2,x{) =

x2 + x^, and the other / = x\z. Moreover, two LUTs are necessary, since / essentially depends
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on all the three input variables. Note that the complexity of a function does not depend on the

representation used.

An alternate way of measuring the complexity of a set of functions is to define it as the

sum of the complexities of the functions in the set. We will find this notion useful in Corollary

5.3.29, wherewe are interestedin findingupperboundson the number of LUTsneeded to realize an

entirenetworic. Thenetwork corresponds to a setoflocal nodefunctions. However, in themajority

of the chapter, the notion given in (5.1) will be more appropriate. Also, it is the one we have seen

used in the literature [70].

5.2 Previous Work

TWo typesof resultsrelateto thischapter- LUT-count prediction, whichhas beenentirely

empirical, and theory for lower and upper boundson the complexity.

5.2.1 Prediction of LUT-count

The only prediction work knownto us is by Schlag et al. [75], who optimize benchmark

circuits using misll [12] andmaptheoptimized circuits onto LUT-based architectures. Bycounting

the total number of factored form literals and the number of Xilinx 3090 CLBs needed for the entire

benchmark set (recall thateach CLB caneither implement any function of up to 5 inputs, or two

functions withat most4 inputseach,withno morethan5 inputsin all [88]), theyconcludethat, on

average, roughly 5 literals are packed in a CLB.

Using mis-fpga, resultswithsuperiorqualityareproduced. FromSection3.6.5, it is seen

that,on average, mis-fpga puts4.8 literals in a 5-LUT, and6 literals in a CLB(Section 3.7.1).

Though reasonable, both these approaches are empirical. We would like to provide a

theoretical basis for predicting the LUT-count.

5.2.2 Bound Theory

LetS(n) bethesetof functions whose true support has at most nvariables, i.e., S(n) =

{/ : kr(/)| < n}. Then S(n) - S(n - 1)represents the setof n-input functions that essentially

depend on eachofthe n inputs. We first present lowerbounds andthenupperbounds on Cm(f) for

/ € 5(ti).
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Figure 5.1: A single output, n-input networic

Lower Bounds

Proposition 5.2.1 (Savage [70]) Let f € S(n) - S(n - 1), n > 1. Then Cm(f) > |"S=Vl-
Moreover, thisbound is tight, i.e., there exists afunction f € S(n) - S(n - 1) thatcanbe realized

in \*£\ LUTs.

Proof Consider n, an optimum m-feasible realization of /. This is shown in Figure 5.1. It has

k = Cm(f) internal nodes, n primary inputs, and 1 primary output. There is one distinguished

internal node N that realizes /. The total number of edgesin n is counted in two different ways -

one, by counting the total number of fanins (i.e., the sum of in-degrees) and two, by counting the

total number of fanouts (i.e., the sum of out-degrees). The sum of in-degrees of all the nodes is at

most km+ 1,sincethereareat most m inputsto anyinternal node,and, in addition, thereis an edge

fanning in to the output node from N. Tb count the out-degrees, observe that each internal node

fans out to some other node in n, otherwise it can be deleted, resulting in a smaller realization. This

would contradict the fact that n is an optimum realizationof /. This sums to at least k. Then, since

/ essentially depends on each input, theremustbe at least one outgoing edge from each primary

input node. The sum ofthe out-degrees is then at least k + n.

km + 1 > total in-degree = total out-degree > k + n
n-1

=> k >

Cm(f) >

m — 1

n-1

m - 1
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Since Cm(f) is integral, we can put ceilon the rightside andobtainthe desired result.

The bound is tight,andis metby f(xi ,x2,...,xn)= AND(a?i, x2,..., xn). m

Definition 5.2.1 ([86])The notion "almost allfunctions f ofa class F(n) C S(n) have property

P" standsfor the assertion that

\{feF(n)\fhasP}\
_ .Ifl^-OO.

Using simple counting arguments, Shannon [79] proved that optimum circuits (in terms of any

two-input gates) for almost all functions have exponential size. The reason is that the number of

circuits with small size grows much slower than the number of different Boolean functions. We

make this precise in the next proposition.

Proposition 5.22 ([86]) Almost all n-variablefunctions f satisfy C2(f)> ^.

Proof See [86]. •

Upper Bounds

Proposition 5.2.3

n tot nw / 2n"m+1-l ifm>2,Cm(S(n)) < { (5.2)
{ 2n - 3 ifm = 2.

Proof f(xi ,x2,..., xn) 6 S(n) is decomposed as

f = *ifxl+xi'fxl* (5.3)

As mentioned in Section 3.3.3, for m > 2, we need one LUT to realize / as in (5.3) (Figure 5.2

(A)), whereas for m = 2,we need 3 LUTs (Figure 5.2 (B)). We recursively decompose fXl and /Xl»,

whichare functions of at most n-1 variables. This leadsto the following recurrence inequality:

CWSOO)^2^-1"" ifm>2' (5.4)
1 2Cm(S(n-l)) + 3 ifm = 2.>»<{

The boundary condition is Cm (5( m)) = 1. Solving the recurrence, weget (5.2). •

Later we will improve the bound for m = 2.

We must mentionthe following classical resultby Lupanov [51]. Here, a simple gate is

either an inverter, a two-input AND gate, or a two-input OR gate.
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f=xA+*;fx: f=g + h

h=V*>

(A) m>2 (B) m = 2

Figure 5.2: Using cofactoring for decomposition

Theorem 5.2.4 (Lupanov [51]) Everyfunction ofn variables is realizable with ^ simple gates
for some c.

The proof is constructive and, in the light of Proposition 5.2.2, gives an optimum realization (to

within a constant factor) for almost all functions.

Miscellaneous

The following result shows the effect on complexity when m is changed to k.

Proposition S2S (Savage [70]) Let k and m be twoconstants suchthatk < m. Then

Ck(f) < ACm(f), (5.5)

where A is a constant.

Proof Let r/ be an optimum m-feasible realization of /, so it uses Cm(f) m-LUTs. Let A =

Ck(S(m)). Then,the function implemented byeachm-LUT in ncanbe replaced by a sub-network

with no more than A fc-LUTs. This results in a fc-feasible realization of / using at mostACm(f)

fc-LUTs. •

Thus the complexityremains within a constantwhenthe numberof inputs to the LUT is changed.

5.3 New Results

First, the problem of realizing.an arbitrary n-input function using m-LUTs is addressed.

Section 5.3.1 derives an upper bound on thecomplexityof such a function, which is an improvement
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overthebound inProposition5.2.3. Theexact value ofCm(S(m+1)) ispresented inSection 5.3.2.

The next twosectionsaredevoted toderivingupperboundsonthecomplexity, givena representation

ofthe function. This is useful,sincein a synthesisenvironment, such a representation alreadyexists.

Two representations areconsidered: theSOP and thefactored form. Given anSOP, Section 5.3.3

provides anupper bound interms ofthenumbers ofcubes and literals intheSOP.Finally, Section

5.3.4 provides an upper bound in terms of the number of literals in a given factored form. This

result is extended for a multi-level,multi-output Boolean networic.

5.3.1 Complexity Bound for an n-input Function

Thetechnique presented intheproofofProposition 5.2.3 to realize an n-input function /

results in a structure in which each non-leaf LUT is 3-feasible. It may be possible to collapse some

ofthe LUTs into their fanout LUTs, while maintaining m-feasibility (for m > 4). This improves

the bound for Cm(S(n)). Here, we onlydescribethe result for m = 5.

Proposition 53.1

y 2n_4 - 1- 2-3-=2 for even n.

Proof If we substitute m = 5 in (5.2), we get Cs(S(n)) < 2n~4 - 1. This bound corresponds

to a cofactor tree that is truncated at the leaves when a 5-feasible function is reached. We assume

thatbarring thetruncation at theleaves, thetree is complete, i.e., has exactly 2n_4 - 1nodes. This

means that ifon cofactoring some tree node function with respect to x,-, a function g is obtained that

is independent of s,+i, g is cofactored with respect to x,+i and replicated twice one level below.

First consider the case when n is odd. Let n = 2k + 1. The cofactor tree T for this case is shown

in Figure 5.3. The maximum possible number of inputs in the global support of a node function,

called the label ofthe node, is shown at each level in the tree on the right. At each level, we have

chosen to cofactor withrespect to the same variable.1 Since eachnon-leaf node of T has at most

3 inputs (a leaf node mayhave as many as 5 inputs), someof the nodes of T can be collapsed into

theirparents without destroying 5-feasibility. Thestrategy forcollapsing is thefollowing. Given a

non-leafnode t withan odd label (so its label is at least7), collapse oneof its two children into it.

The resulting node has at most 5 inputs. Each collapsed node is a node saved. The total savings

are then the numberof non-leaf,odd-labeled nodes. T has 1node with label n = 2k + 1,22 nodes

JIt is not necessary for this proof, but for m =6better bound results if this strategy isfollowed.
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2k+l

2k

2k-l

2k-2

Figure 5.3: Cofactor tree for / for m = 5 and n = 2k -f-1

with label n - 2 = 2/: - 1, and 2n"7 nodes with label7.

2,o4Total savings = 1 +2z + 2* + ... + 2>n-7

= l+22 + 24 + ... + 22*-6

(22)*"2 - 1

2n-5 _ j

Hence the number ofnodes in the resulting tree is 2n"4 - 1- 2W"3 -1.
Similar argument is used for even n. •

Similarbounds may be derived for differentvalues of m. However, the cofactoring or collapsing

strategies may need to be modified in order to derive better bounds. For instance, for 6 < m < 11,

cofactoring should be donewith respect to two input variables.

Asymptotically, Lupanov bound of Theorem 5.2.4 isbetter than that of Proposition 5.3.1.

However, for some small values of n, Proposition5.3.1 gives a better bound.
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5.3.2 Implementing (m + l)-input Functions with m-LUTs '

Most optimized multi-level networks have simple node functions - with 3 to 10 inputs.

The entire set of optimized benchmarks of Chapter 3 has a total of 4694 internal nodes. Out of

these node functions, 4131 have at most 7 fanins and 4368 have at most 10. The average number of

fanins to each node is just below 4. Note that in commercial LUTarchitectures, m is small - e.g., 4

or 5. This motivated us to restrict the problem ofdetermining the complexity of arbitrary functions

(which is a hard problem) to that of determining the complexity of the class of (m + fc)-input

functions, where A: is a small constant, say less than 5. Now we solve fork= 1. We show that

for m > 3, three m-LUTs, and, for m = 2, four m-LUTs suffice for an (m + l)-input function.

Moreover, these bounds are tight, i.e., for each m > 2, thereexistsa functionof (m +1) inputs that

cannot be realized with fewer m-LUTs.

Theorem 5 32

Cm(5(m+1)) =
f 3 ifm >
\ 4 ifm =

3

= 2

We use the classical decomposition theory of Ashenhurst [3] to prove this theorem. We

stated the main decomposition result, Theorem 3.3.1, in Chapter 3. This result, however, deals

only with disjoint decomposition, i.e., when the bound set and the free set are disjoint. To prove

our result, we need to consider non-disjoint decomposition as well. We now extend the theory of

Ashenhurst to handle such decompositions.

Consider f(X,Y,Z), whereXnY = XnZ = Yc\Z = </> suchthat thebound set is XuZ

andthefreeset YUZ. So Z is thesetofvariables common to thetwosets. For thedecomposition to

be non-trivial, we require that X,Y ^ <j>. However, to model disjoint decomposition, Z is allowed

to be empty. For example, let f(a,b,c) = abc + a'b'c. Let X = {b},Y = {c}, and Z = {a}.

Then thebound set is {a, b}, and the free set is {a, c}. The corresponding decomposition chart is

shown in Figure 5.4. The columns areindexed by thebound set variables and the rows by the free

setvariables. The "-" entries are don'tcares, since for each of these entries, a takes onconflicting

values in the bound and the free sets. The common variables, Z, ofthe two sets are written before

other variables. Also, we follow the convention that the row and the column numbers start from

0. The assignment ofthe variables Z and Ycorresponding to ith row isobtained from the binary
representation of i using \ZuY\ binary symbols. The same holds forthevariables Z and X forthe

columns. For example, inthe chart ofFigure 5.4,0th row corresponds tothe assignment Z, Y=00,
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ab
ac

00 01 10 11

00 0 0 - -

01 1 0 - -

10 - - 0 0

11 - - 0 1

Figure 5.4: Decomposition chart fora non-disjoint decomposition

ab
ar.

00 01

00 0 0

01 1 0

Figure 5.5: Bq

i.e., a = 0, b= 0, whereas the first row corresponds to theassignment Z,Y = 01, i.e.,a = 0,6 = 1.

Given these conventions, it is easily seen that the meaningful entries of the decomposition chart

consists of diagonal blocks (not necessarily square), the non-diagonal blocks being "-". Each

diagonal block corresponds to an assignment to the Z variables. Forexample, thechart of Figure

5.4 hastwodiagonalblocks. The blockat the topleft, Bq, corresponds to Z = a = 0, andthe second

one, Bi, to Z = a = 1. This is shownin Hgures5.5 and5.6 respectively. Note that if Z = <f>, the

entirechart is a diagonal block. Also note that the columns in a diagonal blockcorrespond to all

possible vertices inB^x\ and the rows to all possible vertices inB^Y\
Next, we introduce the notion of a trivial row of a decomposition chart or a diagonal

block.

Definition 53.1 A rowofa decomposition chart(ora diagonalblock) is trivial ifall its entriesare

zerosor ifall its entriesare ones. Otherwise, it is said to be non-trivial.

sk
ac

10 11

10 0 0

11 0 1

Figure 5.6: Bi
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It rums out that the characterizationof (possibly non-disjoint) decomposition is similar to

that ofdisjoint decomposition, except that it is in terms ofthe diagonal blocks.

Theorem 533 A simple(possibly non-disjoint) decomposition off(X, Y, Z) with X r\Y = X D

Z = YnZ = <f>,andX,Yj:<t>,

f(X,Y,Z) = g(a(X,Z),Y,Z) (5.7)

exists ifandonlyifeach diagonal block ofthecorresponding decomposition chart D(X UZ\Y UZ)

has a columnmultiplicityofat most2.

Proof If Z - <f>, the complete decomposition chart is one diagonal block, and the theorem reduces

to the disjoint decomposition case, i.e., Theorem 3.3.1. So let Z ^ <j>. Our proof is an extension of

the proof of Ashenhurst's Fundamental Theorem of Decomposition (Theorem 3.3.1) [3].

(=$•): We are given that

f(X,Y,Z) = g(a(X,Z),Y,Z),

where a is a single-output Boolean function. For the sake of contradiction, assume that a

diagonal block B = (6tJ) of the decomposition chart D has more than 2 distinct column

pattems. Let B correspond to the assignment Z = z. We index Z?'s columns with X and

rows with Y (so the 0th row of B corresponds to Y = 0, and so on). Since B has more

than 2 distinct column patterns, it has two non-trivial rows i and j (corresponding to Y = i

and Y = j respectively) that areneitheridenticalnor complementary. Then there exist two

columns k and / such that

bik = bu = A, and (5.8)

*>jk ? bjh (5.9)

where A is a constant - either 0 or 1. These conditions can be rewritten as

f(k,i,z) = f(l,i,z) = A, and (5.10)

f(k,j,z) ^ f(l,j,z). (5.11)

An example is shown in Figure 5.7, with A = 0. Two cases arise:
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X
Y

k . . 1

i

j

0 . . 0

0 . . 1

Figure 5.7: A portionofthe diagonal block B

zx

Bq
Bi

Bi
Bi

Figure 5.8: Diagonal blocks in a portion ofthe decomposition chart D

1. a(k,z) = <*(/, 2): Then,

f(k,j,z) = g(a(k,z),j,z)

= 9(oc(l,z),j,z)

A contradiction to (5.11)!

2. a(k, z) ± a(l, z) (one is0 and theother is 1): Consider acolumn of Bcorresponding to

X = p. Since a(p, z) = 0 or 1,either a(p, z) = a(k, z) or a(p, z) = a(/, z). Without

loss of generality, assume ct(p,z) = a(l, z). Then

ffaiiz) = 9(<*(p,z),i,z)

= flr(a(/,2r),i,*)

= A.

Since p was chosen arbitrarily, this means that the row i of B is constant, i.e., trivial.

This contradicts the fact that the row t is non-trivial!
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(«$=): Figure 5.8 shows some diagonal blocks in the decompositionchart D(ZX\ZY) for /. For

each Z - z, diagonal block Bz has at most two distinct column pattems. Then, it follows

from a lemma proved by Ashenhurst [3] that Bz has at most four distinct row patterns: 0,1,

ttz, az'.2 The row 0(1)means thatall theentries in thatrow are Os(ls). Each az is a function

of the variables -X". For the chartof Figure 5.4, if we label the non-zero row of Bq (Figure

5.5) as ctQ and the non-zero rowof Bi (Figures 5.6) as ai, it is easilyseenthat <*o = &' and

Qi = 6. Define

a(X,Z)= £ (Z*az(X)), (5.12)
zeBW

where Zz, borrowed from Brown [13], is defined as follows. For a Boolean variable x, and

a e {0,1}, define xa as

x° = x', xl = x. (5.13)

The notation is extended to vectors as follows. For X = (xi,xi,...,xn), x{ Boolean

variables, and A = (ai, ai,..., an) € {0,1}", define XA as

XA = xia> x2a2 •••sna". (5.14)

Then, interpreting z as a binary n-tuple, Zz becomes meaningful in (5.12). Note that when

Z = z, a(X, Z) = a2(X), since for Z = z, all Zz, z ^ z, evaluate to 0, and Zz evaluates to

1. For the chart of Figure 5.4, a(X, Z) = a(b,a) = a°a0(b) + a!ai(6) = a'b' + ab.

If for some Bz, only one distinct column exists,whichimpliesthatthe only rowvectors are

0 and 1, define az to be 0.

The final step is todefine g(a, Y, Z) such that (5.7) holds. An assignment Z = z corresponds

to the diagonal blockBz. The assignment of Y fixes the row in Bz. Depending on whether

the row vector is 0, 1, az, or az, g is defined, as in Figure 5.9. It can be checked that the

value of g is the same as that of / for all values of X, Y, and Z. For instance, when the label

of the rowdetermined by (Y, Z) is 0, the rowhas allzerosand / is 0 forthe entirerow. Then,

g is set to 0, irrespective of a. A similarargument works if the labelof row (Y, Z) is 1. For

the row with label az, f is equal to az = a, and so is g. A similar argument works if the

label ofthe row (Y, Z) is az.

In the example of Figure 5.4, g{a,Y,Z) = g(a,c,a) = a'ca + aca - ca. Clearly,

g(a(b, a), c,a) = ca = c(a'b' + ab) = f(a, b,c).

Deciding whether arowpattem is labeled ax oraz' is arbitrary.
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label of row (Y,Z) a *(a,y,3)
0 0 0

0 1 0

1 0 1

1 1 1

olz 0 0

otz 1 1

a,' 0 1

a,' 1 0

Figure 5.9: Defining g for a valid decomposition

The proof is constructive, i.e., it generates functions a and g as a by-product. It also provides

information about all different choices for a. These correspondto the choices made in labeling the

rows of the diagonal blocks. A question that remains unanswered is that of uniqueness of g, given

/ and ct. Next, we present necessary and sufficient conditionsfor g to be unique. Since the result

alsoholds for a non-simpledecomposition (i.e.,whena = a = (ai, a2,..., at)), it is stated in full

generality.

Proposition 5.3.4 Given f(X, Y, Z), a(X, Z) = (a{(X, Z), a2(X, Z),..., at(X, Z)), andthata

decompositionof f existsas

f(X, Y, Z) = g(a(X, Z), Y, Z). (5.15)

Then, g isunique ifand only iffor each v 6 B\ there exists an (x,z)pairfor each z e 2?'z' such
thata(x,z) —v.

Proof (=>) : Assume that for some v € Bl, there is a z € B^ SUCh that for all x e l?'*',
a(x,z) ^ v. Then we can define g such that g(v,y,z) ^ g(v,y,z) (if g(v,y,z) = 0,

g(v, y, z) is set to 1, and vice versa), where y is an arbitrary vertex in i?lyl. On all other
triples, g is defined to be the same as g. Clearly g ^ g. Tb see that g gives a valid

decompositionfor /, i.e.,

f(X,Y, Z) = g(a(X, Z),Y, Z), (5.16)

it suffices to check that (5.16) is satisfied at Y = y, Z - z (on all other points, g agrees with

g, and g satisfies (5.15)). Pick any x e B\x\. Now, a(x, z) = v^v(by assumption). Then,
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using the definition of g,

g(a(x,z),y,z) = g(v,y,z)

= 9(v, V> z) [since v^v]

= 9(^,z),y,z)

= /(s,2/,*).

Thus, (5.16) is satisfied at Y = y, Z = z, and all x € £,x|. This leads to a contradiction,

since only a unique g satisfies (5.15).

(<=) : Let01, & (01 £ 9i)satisfy (5.15). Then for some v,y,z, gx (v,y,z) ^ gi(v,y,z). Consider

anx such that a(x, z) = v, theexistence of such an x being guaranteed by assumption. Then,

/(*> V, z) = 0i(<*(*, *), y, z) = 02(a(*, *), y, z). This implies that <7i(u, y, z) = 02(v, y,z).
A contradiction!

•

For a disjointdecomposition, Z = <f>, and Proposition 5.3.4 reduces to the following.

Corollary 535 Given f(X, Y), a(X) = (a}(X), a2(X),... at(X)), and that a decomposition

of f exists as

f(X,Y) = g(a(X),Y). (5.17)

Then, g is unique ifand only iffor each v € Bl, there exists an xsuch that a(x) = v.
4

In other words, if all the mintenns in the d-space are used, there are no don't cares associated with

g, and so g is unique*If some minterm in the a-space is not used, it is a don't care for g, and g is

no longer unique.

Now we are ready to prove Theorem 5.3.2. We do so by proving Lemmas 5.3.6 and

5.3.11.

Lemma 53.6

Cm(5(m +l))<j3 '/m-3
I 4 ifm = 2
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Proof For m > 3, the desired bound, 3, is obtained by putting n = m +1 in (5.2). The case m = 2

is more complicated. If we substitute n = m + 1 =3 in (5.2), an upper bound of 5 is obtained,

which corresponds to the following decomposition of f(a, b,c):

f = g + h, (5.18)

9 = cfc, (5.19)

h = c'U. (5.20)

The functions fc and /cs being 2-feasible, can be realized with one LUT each. This bound can be

lowered to 4 by showing for each 3-input function a realization that uses 4 LUTs. The technique

used does not show explicitly a realization for all such functions. It removes many functions from

consideration, since the complexity ofthese functions is easily seen to be either at most 4 or at most

the complexity of some function that is not removed from consideration. To prove the bound of4,

considera 3-input function f(a, b, c). It canbe written as

f(a,b,c) = cfc+ c'fc'.

The functions fc and fj depend only on a and b. Since the pair (fc, fc>) determines / uniquely,

to generate all 3-input nmctions, it suffices to consider all ordered pairs of functions that have a

and 6 as inputs. The following proposition removes some functions from consideration if one of its

cofactors is trivial.

Proposition 53.7 Given afunction f(a, b,c),

L fc = 0orfc = l*C2(f)<2.

2. fc = aorfc = borfc = a'or fc = b'=> C2(f) < 4.

Proof 1. fc = 0 => f = c'fc>, which can be realized with two 2-LUTs. If fc = 1, / =

c + c'/c' = c + /c*» which is also realizable with two 2-LUTs.

2. If fc = a or fc - b, fc does not needan LUT. If fc = a' or fc = b', the LUTthat realizes fc

is an inverter and can be removed by absorbingthe inverter into the fanout LUT.

•

So, out of sixteen possible 2-feasible functions, only the following ten need be considered as the

candidates for fc and fe (the case numbers 0 through 9 are used for labeling the functions):

0. ab
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1. ab'

2. a'b

3. a'b'

4. a + b

5. a + b'

6. a' + b

1. a' + b'

8. a&+a'6'

9. a'6 + a6'.

The following labelingnotationis used. Functions have casenumbersas their subscripts. If the

case number for a function / is ij, 0 < i, j < 9, then fc and fc> correspond to the case numbers

i and j respectively in the above list of ten functions. Forexample, /oi(a, b,c) = cab + c'ab' is

obtained from the pair (fc, fc>) = (ab, ab'), which are functions numbered 0 and 1 respectively in

the list.

At this point, there are 100 candidates for /. If fc = /c', then / is independent of c,

it has only two inputs, and therefore is realizable by one 2-LUT. This eliminates all functions /„

from consideration. Hence for a fixed /c, we need to consider 9 choices for fj. Now 90 choices

remain for / = (fc, fc>\ All these choices correspond to non-trivial functions, since each such /

essentially depends on c, and so is not identically 1 or identically 0. Moreover, / ^ c and / ^ c',

because fc ^ 1 and fc ^ 0. Now, we canuse the next proposition to reduce the number ofchoices

by half.

Proposition 53& Let f(a,b,c) be a non-trivial function. Let g(a,b,c) = cfc' + c'fc. Then

C2(g) = C2(f).

Proof f = cfc + c'fc*. Let H(a,b) = fc,I(a,b) = fd. Then,

f(a,b,c) = cH(a,b) + c'I(a,b),

g(a,b,c) = cI(a,b) + c'H(a,b),

^g(a,b,c) = f(a,b,cf).
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Since inverters are free in LUT architectures for a non-trivial function, the result follows. •

This proposition allows us to consider only the two-element sets of two-input functions as the

candidates for (fc, /c0 rather than orderedpairs.

Further, we can eliminate from consideration functions satisfying the condition of the

next proposition.

Proposition 53.9 If fe = fc for afunction f(a, b,c), then f canberealized with two 2-LUTs.

Proof Sincef(a, b, c) = cfc + c'fc> = cfc+ c'fj = f(c, fc). Both/and fc needatmostone LUT

each, and so / can be realized with two 2-LUTs. •

Proposition 53.10 A(generalized)factoredform with 1(1 > 1)literals canberealized with (£-\)

2-LUTs.

Proof There are (I - 1) binary operations in the factored form, and one 2-LUT suffices for each

such operation. •

Now, we are ready to show 2-feasible realizations ofthe remaining 3-input functions. In

the following analysis, Proposition 5.3.10willbe thedefault reason for the upperboundon C2(f).

01. / = abc + ab'c'. Since fa> = 0 =$> C2(f) < 2 (Proposition 5.3.7)

02. / = abc + a'bc'. Since fh» = 0 => C2(f) < 2 (Proposition 5.3.7)

03. / = abc + a'b'c' = (a'b' + ab)(a'c' + ac) = (a©6)(a©c)3 => C2(f) < 3 (Proposition 5.3.10)

04. / = abc + (a + b)c' = ab + ac'+ be' = a(b+c') + be' => C2(f) < 4

05. f = abc + (a + b')c' = ab+ b'c' ^ C2(f) < 3

06. / = abc + (a' + b)c' = ab + a'c' =» C2(f) < 3

07. f = abc + (a' + b')c'. FromProposition 5.3.9, C2(f) < 2

08. / = abc + (ab+ a'b')c' = ab+ a'b'c' => C2(f) < 4

09. / = abc + (ab' + a'b)c' = (ab®c)(a + b)=> C2(f) < 4

Cases 12 to 19 can be derived from appropriate cases 01 to 09 by replacing 6 by b'. For ex

ample, fn(a,b,c) = ab'c + a'bc' = fvs(a,b',c). Similarly, cases 23 to 29 can be derived by

replacing a by a', and 34 to 39 by replacing a and 6by a' and b' respectively, in cases01 to 09.

3m© denotes EX-NOR operation.
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Figure 5.10: The configuration for two LUTs

45. / = (a + b)c + (a + b')c' = a + (bc + b'c') = a + (&0c) =* C2(f) < 2

46. / = (a + b)c + (a'+ b)c' = (ac+ a'c') + b= (a®c) + b=> C2(f) < 2

47. / = (a + b)c + (a'+ b')c' = (ac+ a'c') + (be + b'c1) = (a@c) + (b®c) =*• C2(f) < 3

48. / = (a + b)c + (ab + a'b')c' = ab + ac+ be + a'b'c' = (a + b)®c' + ab =s> C2(f) < 4

49. / = (a + b)c + (ab' + a'b)c' = ab' + a'b + bc= (a®b) + bc=> C2(f) < 3

Cases 56 through 59, 67 through 69, and 78 through79 can be derived from 45 through 49 by

replacing a or 6or both by a', b' appropriately.

89. / = (ab + a'b')c + (ab' + a'b)c'. From Proposition 5.3.9, C2(f) < 2

This proves Lemma 5.3.6. •

Lemma 53.11

Cm(S(m+l))>
3 ifm > 3,

4 ifm = 2.

Proof We prove the lemma by first proving a few propositions.

Proposition 53.12 Consider a configuration of two m-LUTs Ta and Tb (Figure 5.10), which

realizes afunction f € S(m + 1) that essentially depends on allm+\ inputs. Then at least two

inputs of f areonlyconnected to Ta, andat leastone input onlyconnected to Tb.
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Figure 5.11: A portionof the decomposition chart for /

Proof As shown in Figure 5.10, let C be the (possiblyempty) set of common inputs to both TA and

Ts, and Ra (Rb) be the rest of the inputsof TA(TB). Then,

\C\ + \Ra\ < m, (sinceTa can haveonly m inputs), (5.21)

IC| + I£bI < m-1, (sinceone input of TB is the output of TA), (5.22)

\C\ + \Ra\ + \Rb\ = m + 1, totalnumberof inputs off (5.23)

From (5.21)and (5.23), \RB\ > 1, and from(5.22) and (5.23), \RA\ > 2. •

Proposition53.13 For each m > 2, there exists a function of (m + 1) inputs that cannot be

realized with two m-LUTs.

Proof Consider

f(xi,X2, ...,Xm+i) = Xi'x2-. .Xm+i +X1X2 ...Xm+i + ... + XiX2...Xm+i/

Note that / is a totally symmetric function. Also,it essentiallydepends on all (m + 1) inputs and,

hence, cannot be realized with one m-LUT. Let / have a realization with two m-LUTs Ta and Tb

of Figure 5.10. This corresponds to a simpledecomposition of / with the bound set C URa, and the

free set C URb. From Proposition 5.3.12, withoutloss of generality,let xi and X2 be the inputs of

/ that are connected only to Ta, and X3 be the input connected only to Tb. The bound set can then

be writtenas C... xix2, and the free set as C... X3. Consider the portionof the decomposition

chart for / corresponding to the assignment (x4,x5,..., xm+i) = (1,1,..., 1) (i.e., all Is), and all

possiblevalues for xi,x2, and X3 (shownin bold inFigure5.11). This portion, shown in Figure 5.11,

is a part of a diagonal block, and has three distinct column patterns. This leads to a contradiction,

since the configuration ofFigure 5.10 implies the existenceofa simple decomposition. Recall from

Theorem 5.3.3 that for a function to have a simple decomposition, each diagonal block must have

at most 2 distinct column patterns. Hence / cannotbe realized with two m-LUTs. •
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Figure 5.12: Checking if / is realizable with two 2-LUTs
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Figure 5.13: Possible cases for two LUTs
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This establishes the lemma for m > 3, since we have shown that Cm(S(m + 1)) > 3.

For m = 2, we have to show that there exists a 3-input function that cannot be realized with less

than four 2-LUTs. Considerthe function f(a, b,c):

hjjf(a, b,c) = ac + be+ ab + abc

Once again, / is totally symmetric and essentiallydepends on all the variables. Our proof strategy

is to assume that / can be realized with two and then three 2-LUTs and reach a contradiction.

1. Two LUT realizability: As Figure 5.13 shows, there are three ways in which inputs can be

assigned to the pins of the LUTs. However, since / is totally symmetric, only one need

be considered. We examine (i). Here, the decomposition chart corresponds to the partition

ab\c and is shown in Figure 5.12. There arethree distinct column patterns, resulting in a

contradiction.

2. Three LUT realizability: This is a difficult case to analyze, since many configurations are

possible. Furthermore, for eachconfiguration, there aremany assignmentsto the pins of the

LUTs. We first enumerate all possibleconfigurations for three LUTs, then assign the inputs

of / to the pins ofthe LUTs,and finally check if the conditions foravalid decomposition are

satisfied.
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Figure 5.15: Ti feeding into T2 is an unnecessary case

Findingall possible configurations: We claim that only two configurations, shown in Figure

5.14, need to be considered. This can be seen as follows. Consider the root node T3 of the

configuration. It either has

(a) oneinputfrom another LUT, T2, and theother one from aninputof /. Thennecessarily

T2 receives one input from Ti and the other from /. Clearly, Ti hasboth its input pins

tied to some inputs of /. This is the configuration 1, or

(b) bothinputs from LUTs, Ti and T2. If 7\ was providing an inputto T2 as well (Figure

5.15 (A)), / can be realized withtwo LUTs (collapse T2 into T3), as shown in Figure

5.15 (B). Hence Ti and T2 receiveboth their inputs from inputs of /. This results in the

configuration 2.
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Comment: No LUT may have just a single input, otherwise / can be realized with fewer

LUTs.

We now consider each configuration, and assignthe inputs of / to the pins of the LUTs.

Configuration 1: All possible cases are shown in Figure 5.16. We do not need to consider

cases where the same input feeds two adjacent LUTs (say, T{ and T2), because / could

be realized with fewer LUTs (remove Ti by collapsing it into T2). We just consider (A).

The rest follow from symmetry. Let ai be the output of T\. Figure 5.16 (A) implies that

/ = ab+ ac + be+ a'b'c' hasadecomposition ofthe form f(a, b,c) = g(at(a, b), a, c). This

corresponds to the bound set {a, b} and the free set {a, c}. The decomposition chart for /

with these sets is shown in Figure 5.17. We first derive all possible candidates for a\. Since

the maximum number of distinct columns in both diagonal blocks is 2, a\ exists. There are

four choices for <*i, two of them being trivial, namely ai = b and c*i = b'. These can be

ignored, sincethey correspond to Ti usingonly one input,in which caseTi canbe collapsed
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Figure5.17: Checking if / canbe realizedby configuration 1 (A)
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Figure 5.18: Decomposition chart for g

into T2, yielding a smaller realization of /. The non-trivial choices are

(a) ai = a'b' + ab.

(b) ai = ab' + a'b.

Since these two are related to each other by an inversion, we need to consider only one, say

ai = a'b' + ab. Then, using therules of Figure 5.9, g(ai,a, c) = a'c'ai + a'ca\ + aai +

aca\ = c'ai + ca\ + aai. It can be checked that ai satisfies the conditions of Proposition

5.3.4 and hence, g is unique. Figure 5.16 (A) corresponds to the decomposition of g of the

form

g(aua,c) = h(a2(ax,c),a) (5.24)

The decomposition chartof g is shown in Figure 5.18. 3 distinct column pattems indicate

that this decomposition is not possible. A contradiction! So / cannot be realized with three

2-LUTs using configuration 1.

Configuration 2: As shown in Figure 5.19,thereare three possibleways to assigna, b,and c

tothepins ofthe LUTs. Once again, using symmetry, weonlyconsider (A). Letg(ai, a2)be

the function realized by T3. Then / = g(ai(a, b),a2(a,c)). The functions ai and g are the

same as those for the configuration 1 (A).

ai = a b + ab,
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Figure 5.20: Checkingif / can be realized by configuration2 (A)

g(ai ,a,c) = c'ai + ca\ + aax.

Figure 5.19 (A) corresponds to a decompositionof g ofthe form

g(aua,c) = h(a2(a,c),ai)

The corresponding decomposition chart for g is shown in Figure 5.20. 3 distinct column

pattems indicate that this decomposition is not possible. A contradiction! So / cannot be

realized with three 2-LUTs using configuration2.

Hence, / cannot be realized with three 2-LUTs.

This completes the proof of Lemma 5.3.11. •

Comment: This lemma also shows that there exists a 3-input function that has a minimum (gener

alized) factored form of more than 4 literals.

Theorem 5.3.2 follows immediately from Lemmas 5.3.6 and 5.3.11.

Two Applications

One application is to use the theorem to improvethe upper bound on C2(S(n)) as given

in Proposition 5.2.3.
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Corollary 53.14

C2{S(n)) < 2n_1 + 2n_2 + 2n"3 - 3 (5.25)

Proof Use the recurrence inequality (5.4) for m = 2.

C2(S(n))<2C2(S(n-l)) + 3

While solving the recurrence, insteadof terminating at a 2-input functionwith C2(S(2)) = 1, use

Theorem5.3.2 to now tenninate at a 3-inputfunction with C2(S(3)) = 4. This yields (5.25). •

Thisbound is better than thatof Proposition 5.2.3 (for m = 2) by 2n~3. However, for large n,

Lupanov's bound (Theorem 5.2.4) is better.

The secondapplication is to find a lowerboundon C$(f) in terms of C2(f).

Corollary 53.15

<*(/)<4 <C3(f) <C2(f)

Proof From Theorem 5.3.2, we know that C2(S(3)) = 4. The result follows from Proposition

5.2.5 by substituting A = C2(S(3)) = 4,k = 2,m = 3. *

As will be shown in Corollary 5.3.22, the upper bound can be tightened for a special case.

5.3.3 Complexity Bound Given an SOP Representation

We are normally given a sum-of-products representation ofthe function. The following

proposition derives a simple upper bound on the complexity ofthe function based on the numbers

ofliterals and cubes in the SOP.

Proposition 53.16 For afunction f with £ > 1 literals andc cubes ina sum-of-products represen

tation,

Cm(/)<^-1 +̂_11)(""2)J- (5-26)
Proof Realize / by realizing all cube functions and then ORing them together. If a cube i has U

literals, itcan be realized with ["^Eyl m-LUTs (from Proposition 5.2.1). Then, all the cubes can be
realized with YL\=i \%E\] m-LUTs. Ifacube j has just one literal (i.e., Ij = 1), it is left as such,
consistent with its 0 contribution to the sum. Tb OR these c cube functions together, additional

r^rfl m-LUTs are needed. This gives
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CmU) < Er^M-i +r-M-ir-f m- 1 m-1

c

r[ m-1 m-1 m-1 m-1

- B=^-i)+(c+1)!^+c-i
m — 1 m — 1 m — 1

r + (c + 1) r + 7
m—1 m —1 m—1

l-l + (c+l)(m-2)
m — 1

Since Cm(f) is an integer,we can take thefloor ofthe righthand side, and obtain the desired result.

•

Note that the bound also holds for £ = 1 when m > 2. However, it fails for m = 2 and £ = 1. This

bound uses one term. A slight improvement is possible if two terms are used.

Proposition 53.17 Forafunction f with £ > 1 literalsandc cubesin a sum-of-products represen

tation,

cwstl+^j +r^Li (5,7)
Proof Inthe lastproof, donottouch |";SE/fl; justmanipulate the first term. •

This bound does not hold for £ = 1 - when the function is a simple inversion.

5.3.4 Complexity Bound Given a Factored Form

Since a factored form representation is generally smaller than a sum-of-products repre

sentation and is more closely related to the area ofthe circuit implemented (e.g., in a standard-cell

methodology), it is natural to ask ifwe can find an upper bound on the complexity in terms ofliterals

in the factored form.4 For m = 2, it is easy. For an ^-literal factored form, (£ - 1) 2-LUTs suffice

(Proposition 5.3.10). So we focus on m > 2. Our main resultis the following:

4Recall thatwe are usinga generalized notion of a factored form, in whichthebinary operations are notrestricted to
just ANDand OR. All tenbinary operations including NAND, NOR, EX-OR, EX-NOR, etc., are allowed. Thisallows
potentially smaller factored forms. However, if onlyANDand OR are allowed, all theresults presented here continue to
hold.
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/WWabed a

Figure 5.21: Convertinga factoredform to a 2-feasible leaf-DAGTl

Theorem 53.18 For afunction f with £ literals in afactoredform,

C3(/) < [?^\(for£>2)
C4(f) < l^\(for£>3)
C5(f) < l™jl\(f0r£>4)
C6(f) < l^-\(for£>4)

This theorem states, for example, that any factored form having 10 literals can be realized by six

3-LUTs, or four 4-LUTs, or three 5-LUTs, or three 6-LUTs. Note thatcomputation ofthe bounds

does not require thefactoredform to be known, butjust the number ofliterals in it.

The proof has three main steps:

1. Given an ^-literal factored form (£> 1),obtain a 2-feasible leaf-DAG Tl with T = (£ - 1)

internal nodes. This derivation was described in Proposition 5.3.10. Note that an m-feasible

leaf-DAG implementation of / is a leaf-DAG whoseinternalnodesare m-LUTs(andso have

at most m children) realizing m-feasible functions. In addition, the root node realizes /.

Example 53.1 Consider

f = ((a + b)(c + d)) + (da')

The 2-feasibleleaf-DAG corresponding to f is shown inFigure 521.

(5.28)
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2. Convert Tl into an m-feasible (leaf-DAG) implementation Tl. The basic strategy here is to

place the LUT nodes of Tl in rooted, disjoint, connected groups, such that each group is

realizable by one m-LUT. We restrict ourselves to disjoint groups, since for a leaf-DAG,

there always exists anoptimum grouping (cover) that isdisjoint. The algorithm used to group

the nodes is key in deriving good bounds.

3. Derive boundson the size of H in termsof thatof Tl.

We assume thatno intemalnode(LUT) of Tlhas onlyone child(input). If there is suchan LUT, it

is either a bufferoraninverter, which can be suitably absorbed in the fanout (parent).

If Tl is aleaf-DAG oratree, dynamic programming based exact algorithms thatminimize

the number of nodes in the resulting m-feasible implementation H are known [25, 41]. These

algorithms, however, do not provide any bounds on the sizeof Tl. Therefore different techniques

have to be resorted to. First, we solve for m = 3,4,5, and 6. Then, we present a technique for

general m. Since step 1 will be identical for all m, in the following arguments, we start from the

second step with a 2-feasible leaf-DAG Tl generated from the first step. In the following, r will

refer to the root ofthe leaf-DAG Tl, T (f) to the number of LUTs (intemal nodes) inthe leaf-DAG
Tl (Tl), and A = T - f, to the reduction in the LUT count after converting Tl to U. Also, unless
stated otherwise, "visiting or grouping anodeof a DAG"will meanvisitingorgrouping an LUTor

an internal node.

2-feasibility to 3-feasibility

A 2-feasible leaf-DAG Tl isconverted into a3-feasible leaf-DAG Hby forming parent-
child pairs. Each such pairhas no more than3 inputs and hence can be realized with a 3-LUT. First,

we examine a simple top-down traversal,which pairs nodes starting from the root of Tl. Then, we

show how to obtain an improved bound by traversing the DAG bottom-up.

Proposition 53.19 Given a 2-feasible leaf-DAG realization Tl of a function f with T internal

nodes, it ispossible toobtain a 3-feasible leaf-DAG realization Tloff thathas at most(3T +1 )/4

internal nodes.

Proof We give a simple algorithm to pair the LUTs of Tl. Traverse Tl topologically from top (root)

to bottom (leaf LUTs), i.e., visit a parentbefore any of its children. If an unpaired non-leaf LUT

vertex is encountered, pairit with one of its LUTchildren; ties arebroken by pairingthe vertex with
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Figure 5.22: Converting Tl into Tl using the top-down pairing algorithm

its left child. The working of the algorithm is illustrated for the leaf-DAG of Figure 5.21 in Figure

5.22. The number inside an LUT denotes the order in which the LUT is visited; so LUT 1 is visited

first and LUT 5 last. LUT 1 is paired with 2, and then no more pairings are possible. This gives a

reductionofone LUT in the resulting3-feasible DAG, i.e., A = 1.

Analysis ofthe algorithm: It is easy to see that after the algorithm is applied, all non-leaf LUTs

get paired. Since each pair can be implemented with one 3-LUT, a3-feasible implementation His
obtained after collapsing the pairs appropriately.

Let I be the number of leaf LUTs in H. The number of non-leaf LUTs is then T - L.

Since all the non-leafLUTs are paired, the numberof pairs (i.e., A) is atleast (T - L)/2. Since the

numberofnon-leafnodes in a 2-feasible leaf-DAG is at least L - 1, L < (T + l)/2. So

f = T-A

< T-(T-L)/2

= (T + L)/2

< (T + (T + \)/2)/2

= (3T+l)/4

Since f is integral, f < [(3T + 1)/4j. IfT is even, f < [(3T)/4J. •
This bound is tight given that we use the top-down pairing algorithm described above.

Tightness means that there is a leaf-DAG on which the algorithm cannot do any better than the

bound. Considerthe leaf-DAG Tl of Figure 5.23. Tl contains p copies ofthe sub-structure S. So
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Figure 5.23: Tightness of bound given the top-down pairing algorithm

T = 4p. On applying the pairing algorithm, the root nodeof S gets paired with its left child (as

shown). None of theleaves of S canbe unpaired. This holds for allthe p copies. So all2pleaves of

Tl remain unpaired. The numberofpairs is p, and hence f =3p =3T/4. This argument, however,
does notdiscount the possibility of another strategy resulting in an improved bound. In fact, aswe

show next, abottom-up traversal of Tl yields asaving of atleast (T - 1)/3.

Proposition 53.20 Given a 2-feasible leaf-DAG realization Tloff with T internal nodes, it is

possible to obtain a 3-feasible leaf-DAG realization Uof f that has atmost (2T + l)/3 internal

nodes.

Proof Traverse Tl bottom-up, i.e., visit an LUT before its parent. Initially, all LUT nodes are

ungrouped. When visitingavertex v, the following possibilities arise:

1. v is already grouped: do nothing.

2. v is ungrouped: if v = r, donothing. Otherwise, lettheparent of v be w. If w is ungrouped,

group v with w, as shown inFigure 5.24 (A). If w is grouped already (the only way that can

happen is that w is paired with itsother child x (Figure 5.24 (B)), do nothing.

Letus apply this algorithm onthe leaf-DAG of Figure 5.21. The pairings are shown in

Figure 5.25. Note that T = 5. LUT 1isvisited first and the root r, the last. Two pairs are formed
- first {1, 3} and then {4,5}. This means that for each such pair, Tl will have one LUT node. So
f = 3. Note that this is betterthanwhatis obtained by a top-downtraversal.
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(A) (B)

Rgure 5.24: Converting a 2-feasible leaf-DAG into a 3-feasible leaf-DAG

abed

Figure5.25: Example: converting a 2-feasibleleaf-DAG into a 3-feasible leaf-DAG

Analysisofthe algorithm: Assume that k nodes remain unpaired after the algorithm. The number

of paired nodesis then (T - k), so A is (T - k)/2. At least (k-l) unpaired nodesare non-root

nodes and have parents. Consider such a node v. The only reasonit was not pairedwas that at the

time it wasvisited, its parent w was already paired (this pairhasroot w). We call this pairproblem

pair(v). For instance, in Figure 5.25, problem pair(2) ={1,3}. It is easy to see that if u and v are

two distinct, non-root, unpaired nodes,theirproblem pairs are disjoint. So thereare atleast2{k-l)

paired nodes.

(T-k) > 2(k-l)

=>* < (T + 2)/3

A = (T-k)/2

> (T-(T + 2)/3)/2
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Case 2

Figure 5.26: Covering a balanced tree

= CT-l)/3

Therefore, f =T - A < (2T + l)/3. •
As the following proposition shows, this bound is tight, i.e., there exists a leaf-DAG on which no

more than one-third size-reduction is possible,allowing any pairings.

Proposition 53.21 Let Tl be a balanced2-feasible tree with Tinternal nodes, and Ha 3-feasible
tree with f internal nodes obtained by covering Tl optimally. Then, A= T- f < \(T -\ )/3].

Proof Let Tl have D levels. Then T = 2D - 1. Let A^ = T - f. We show byinduction on D
thatAtt<p£p2-|.
Basis: Since D = 1 is trivially satisfied, consider D = 2 as the basis. By collapsing either of the

two leaf nodes into the root r, an optimum His obtained. Then, At* = 1< f(3 - 1)/3]
Induction hypothesis: For allbalanced trees Tl withdepth d < D, the proposition is true.

Induction step: Considera balanced tree Tl with D > 2 levels. Let r be the rootof Tl, v and w,

the two children of r, and V and W, the sub-trees rooted at v and w respectively. V and >V have

(D-l) levels each. Theroot r can becovered inone ofthe following two ways (Figure 5.26):

1. r remains a singleton: Then the reduction is obtainedonly in V and W.

Total reduction = Av + Aw
(2^-1 - l)- 1

< 21" —— ][Induction hypothesis]

2D~X - 2
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There are two sub-cases: either 2D_1 - 2 isamultiple of 3,orit is of the form (3k - 1).5 In

the first case,

2D-4
Total reduction <

3

2D-4 ^= I"—3—1 [2D - 4is amultiple of 3]

< r—3—i

In the second case, 2D~l - 2 isofthe form (3k - 1). Then,

2D~l - 2
Total reduction < 2\ 1

2D_1 - 2 1

2D-4 2
= (--

3 3

2p-2

3

2D-2
= f—a—1 PD ~ 2isamuldple of3]

2. r is paired with v (the other case when r is paired with w is symmetric): Let x and y be

the two children of v, and /V and y, the trees rooted at them respectively. X and y have

D - 2(> 1) levels. Then, the total reduction is one more than the sum of the maximum

reductions in X, y and W (the additional reduction ofone being obtained from pairing r and

v):

Total reduction = Ax + Ay + Avv + 1

2D~2 —2 2D~l - 2
< 2\ 1+ f 1 + 1[Inductionhypothesis]

Once again, consider two sub-cases. When (2D 2- 2)isamultiple of 3, we get

2D-2 _ 2 2D~l - 2
Total reduction < 2[ 1+ \ 1 + 1

yD-2 _ n 2D~* —2 1
= 2( . )+ =—r + - + 1[2D_1 -2 isof the form (3k + 2)]

5Itis easyto seethatit is never of theform (3k —2).
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2P-i_4 2p-1+2

3 3

2p-2

3

2^-2
= f——1 [2D - 2 isa multiple of 3]

When (2D~2 - 2) isofthe forai (3k - 1),we get

2D~2 —2 2D~l —2
Totalreduction < 2f - 1 + \ 1 + 1

nD-2 _ 2 i 2°-1 —2
= 2( +3) + 3—i +l[2D-1-2isamultipleof3]

9D-I _o 9D-I _ 9

= - + - - + 1
3 3

2P-1

3

2D -2= r—3—1 [2D - 1is amultiple of 3]

An is the maximum ofthe total reductions obtained in all the cases. Hence A^ < f^p2!. This
completes the induction step. •

In fact, for abalanced tree, the reduction \^f^] is achievable. This should be clear from
Propositions5.3.20 and 5.3.21. An alternative is to use the dynamicprogramming argumentofthe

proof of Proposition 5.3.21 itself.

We use Proposition 5.3.20 to tighten the upper bound of Corollary 5.3.15 for a special

case.

Corollary 53.22 If there exists an optimum 2-feasible implementation of f that is a leaf-DAG,
then

^P <<h(f) <\0JJ)+\ (5.29)
Proof Immediate from Corollary 5.3.15 andProposition 5.3.20. •

2-feasibility to 4-feasibility

Proposition 53.23 Given a 2-feasible leaf-DAG realization Tloff with T > 2 internal nodes, it
ispossible to obtain a4-feasible leaf-DAG realization Tloff that has atmost T/2 internal nodes.
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(A) (B)

Figure 5.27: Converting a 2-feasible leaf-DAG into a 4-feasible leaf-DAG

Proof At most 3 nodes are allowed in a group. Once again, traverse Tl bottom-up. Initially, all

LUT nodes areungrouped. When visiting a vertex v, thefollowing cases arise:

1. v is already grouped: do nothing.

2. v is ungrouped: there are two sub-cases:

i. v = r: if somechild of v is involved in a pair, merge v in this pair to get a triple.

Otherwise, do nothing.

ii. c/r: group v withits parent w. If w was initially ungrouped, the grouping looks as

in Figure 5.27 (A). If w was groupedalready, the only way that can happen is that w is

paired with its other child x (Figure 5.27 (B)). Place v in the group.

Analysis ofthealgorithm: Afterall thenodes have beenvisited, all LUT nodesof Tl, exceptpossibly

r, are grouped. Let there be p triples (i.e., groups with three nodes, as in Figure 5.27 (B), the group

with x, v, and w) and q doubles (or pairs). Each triple gives a saving of two LUTs, and double, a

saving ofone LUT. There are two possibilities:

1. The root r is grouped: then

T = 3p + 2q

A = 2p + q

> l.5p+q

= T/2



5.3. NEWRESULTS 191

2. The root r is ungrouped: then

T = 3p + 2q+\

A = 2p + q

If T = 2, clearly A = 1 = T/2. For T > 2, some child x of r must be involvedin a triple,

otherwise r would have been grouped with z in the step 2 i). This implies p > 1.

A = 2p + 9

> (1.5p+l/2) + 9

= T/2

Hence, the 4-feasible Hhas at most T/2 nodes. •
Next, we prove that this bound is tight.

Proposition 53.24 Let Tl be the2-feasibletreeshownin Figure5.28 with T = 4p, and Tl be the

4-feasible tree with f LUT nodes obtainedby covering Tl optimally. Then A= T-f <2p = T/2.

Proof Tl has 2p copies of the basic sub-structure S. Assign labelsto the nodes of Tl as in Figure

5.28. Consider all possible types of groups (or matches) rooted at a given node v. If v is an

even-numbered node, the only possibility is that the group is a singleton, and, hence, no savings

are obtained. Let v be an odd-numbered node, say 1. In all, six matches are possible, as shown in

Figure 5.28. It is easy to see that for each match, we cannot obtain a reduction of more than 50%

on the portion affected by the match. Forexample, if the match 5 is selected, node 4 has to remain

a singleton, and this eliminates two out ofthe four affected nodes (i.e., nodes 2 and 3 out of 1,2,3

and4). Applying this argument to an optimum (disjoint) coverof Tl by these six types ofmatches,

we get the desired result. •

2-feasibility to 5-feasibility

Using similar but more complicated arguments, we show that a 60% reduction in T can

result whenwe go from a 2-feasible implementation to a 5-feasible implementation.
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Figure 5.28: 2-feasibility to 4-feasibility: proving tightness

Proposition 53.25 Given a 2-feasibleleaf-DAG realization Tloff with T internal nodes,T>3,

it ispossible toobtain a 5-feasible leaf-DAG realization Tloff thathasatmost (2T+1 )/5 internal

nodes.

Proof We put at most 4 nodes in a group. As in the earlier proofs, we visit the LUT nodes of

Tl bottom-up and considerthem for covering. Initially, all the LUT nodes are ungrouped. When

^visiting anode v, there are twocases:

1. v is ungrouped: consider the three sub-cases:

i. v is a leaf-node (i.e., both its children are inputs): ifv^r, group v with its parent p.

If p is already in a group, put v in the same group. As we shall show in Claim 2, this

grouping with the parent results in either a double or a triple. Note that v = r cannot

happen, since T > 3.



5.3. NEWRESULTS

1 " vi

rn i \LM-~r__^n "

Figure 5.29: Case v already grouped: v is the root of a double and so is y
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ii. v is a non-leaf node, and its one child, x, is in a double: group v with £ to get a triple.

iii. v is a non-leaf node, andnone of its LUT childrenis in adouble: ifv^r, group v with

its parent. This generates either a double or a triple. Otherwise, do nothing.

2. v is already grouped: then v is root of either a triple, or a double. It cannot be part of a

quartet, as will be shown in Claim 1 momentarily.

i. v is the root of a triple: do nothing.

ii. v is the root of a double: let x be the child of v with which v forms a double. If the

other child y of v is an LUT node and is in a double, merge the two doubles to form a

quartet as shown in Figure 5.29. Otherwise, do nothing.

Analysis ofthe algorithm: We first make a few claims:

Claim 7: If a vertex w was already in a group G when it was visited, G can only contain w and

some of its children.

Proof: w canbe grouped beforebeingvisitedonly in cases 1 i) and 1iii), and, hence, only with its

children(when they were singletons). In anycase,eithera doubleor a tripleis generated, and w is

the root of the group in either case.

Claim 2: While v is beingvisitedin case 1,whenever v is grouped with its parent p (i.e., sub-cases

i and iii), either a double or a triple is generated.

Proof: If p isungrouped atthetimeof visiting v, adouble containing v and p is generated. The case

that p is already grouped can happen only when the other child of p, say w, was single atthetime

w was visited and had tobe grouped with p. When v isadded into this double, atriple containing
v, w and p is created.
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Figure 5.30: p gets mergedwith a doubleto form atriple

Claim 3: After vertex v is visited (v ^ r), it is grouped.

Proof: If v is not already grouped, the case 1 ofthe algorithm will group it.

It follows that after r hasbeenvisited, allthe LUT nodes of Tl, except possibly r, are grouped.

Claim 4: After r has been visited, foreachdouble (except the one containing r (if it exists)), we

can associate a unique triple.

Proof: Let v be the root of such a double. By assumption, v ^ r; so let p be the parent of v.

Consider the two possible cases:

a. p was ungrouped when visited: Since one of the children v of p is in a double, case 1 tells us

that this can happen only when there is another child x of p that was also in a double at that

time, but on visiting p, p merged in this double generating a triple (shown in Figure5.30).

Since no triple is modified by the algorithm, this triple will be in the final cover, and the one

we will associate with the double rooted at v.

b. p was grouped before it was visited: by Claim 1, at the time of visiting, p can be either in

a double or in a triple. If p were in a double (which is necessarily different from that of v),

then by case 2 ii), the two doubles (rooted at p and v) will be merged to result in a quartet.

This is not possible, since the double at v exists in the final cover. Also, p can be involved in

' a tripleonly with its two children(Claim 1). Since v is in adoublewith its child, this caseis

not possible either.

We have thus associated a triple for each double (that does not involve r). Since this triple is rooted

atthe parent of thedouble's root, it is unique. This proves Claim 4.

We now compute A. Let there be p triples, q doubles and s quartets in the final coverof

Tl. It is convenient to analyze the following cases:
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a. r is in a double: then from Qaim 3, and the disjointedness of the groups, we get T =

4s + 3p + 2q. Also, from Qaim 4, p > q - 1. Since a quartet gives a saving of 3, a triple of

2, and a double of 1, we get

A =3s + 2p + q

=̂ [5s+\0p/3 +5q/3]
=^[5s +3p +p/3 +5q/3]

3
>-[5s + 3p + 2q- l/3](since p > q - 1)

=^[4s +3p +2q +s]
=l[T +s-l/3]

>?T-1
-5 5

b. r is in a triple, or in a quartet: then, T - 4s + 3p + 2q, p > q. Then

A -3s + 2p + q

=|[55+10p/3 +59/3]
=\[5s +3p +p/3+5q/3}

3
> -[5s + 3p + 2g](since p > q)

= -[4s + 3p + 2q + s]

c. r is a singleton. Then T = 4s + 3p + 2q + 1, and p > q. We analyze all possiblecases:

i. Some child of r is in a quartet: Then s > 1.

A =3s + 2p + q

=̂ [5s +l0p/3 +5q/3]
=ll5s +3p +p/3 +5q/3]

3r
>-z[5s + 3p + 2g](since p > q)
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=^[4s +3p +2q +s]
3r

> •= [4s + 3p+ 2q+ l](sinces > 1)

ii. No child of r is in a quartet, but a child, x, is in a triple: then, as a post-processing

step, we can merge r in this tripleto get a quartet. Since we arereducingthe number of

triples in the final cover, p > q - 1, and s > 1 where p, q and 5 are the values obtained

after post-processing. Also, T =4s + 3p + 2q. This case then is same as a.).

iii. No child of r is in a quartet, or a triple: then r's child(ren) is (are) partof a double. But

then, 1 i) of the algorithm would have combined r in this double. So this case is not

possible.

Hence the number ofnodes in the resulting 5-feasible DAG is at most §T + ^. •
We canalsoget a5-feasible implementationby convertingfirst Tl to a3-feasibleleaf-DAG

TV, and then TV to a5-feasible leaf-DAG H. Then, the size ofHisbounded above by 1/2 the size
of Tl - a weaker bound as compared to that of Proposition 5.3.25.

We now show that like previous propositions, this bound is also tight.

Proposition 53.26 Let Tl be the 2-feasible tree shown in Figure 531 with T - 5p. Let Tl be a

5-feasible tree with f internal nodes obtained by covering Tl optimally. Then A= T-f<3p =
(3T)/5.

Proof There are p copies of S in Tl. We assign a label k to each - the copy with the nodes

{1,2,3,4,5} is assigned k = 1, and the root copy is assigned k = p. Let Tl(i) be the sub-tree

rooted at node i, and An(i) die optimum reduction in the size for Tl(i) when it is converted to a

5-feasible %(%). There are7 possiblepatterns forconverting Tl into K, asshown in Figure 5.32. In

this figure, no distinction is made between the left and the right children. For instance, the pattem 2

does not imply that the left child ofthe rootofthe pattern is an LUT,just thatone child ofthe root

is an LUT. Each of these pattemscanbe implemented asa5-LUT.

Define Q(k): An{5k-A) <3k-2, An(sk-2) < 3fc.
Itsuffices toprove Q(p), since Q(p) implies A^(5p_2) < 3p. We prove Q(k)byinduction

on k.
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Figure5.31: 2-feasibility to 5-feasibility: proving tightness

n

CD

\
\

Figure 5.32: All possible patterns for getting a 5-feasible leaf-DAG



198 CHAPTER 5. COMPLEXITY ISSUES

Basis Q(l): It iseasy tosee that An(i) < L Also, since nomatch with 5 nodes (which results in a

reduction by 4) is possible, a saving of at most 3 is possible (e.g., by covering nodes 1 and 2 with

pattem 2, and 3,4 and 5 with pattem 4). This proves that An{3) < 3.

Induction hypothesis: Q(kf) is true forall k' < k.

Induction step: Wehave to prove that Q(k + 1)is true. We prove An{s(k+i)-4) < 3(k + 1) - 2.

The proofof A^(5(jt+i)_2) < 3(k+ 1) issimilar. Figure 5.33 shows all matches i.j rooted at node

5(k +1) - 4 = 5fc + l, where i is the corresponding pattem number from Figure 5.32, and j

is an index for the match. For example, corresponding to the pattem 1, there is only one match,

1.1, whereas corresponding to the pattem 2, there are two matches, namely 2.1 and 2.2. Given a

match i.j rooted at 5k + 1, we compute the best possible savings for the inputs to the match, and

then sum them up along with the saving due to thematch to obtain the total saving An(5k+\){i-j)

for the sub-tree Tl(5k + 1). An(Sk+i) is the maximum over all i,j of An(5k+i)(i'j)- For each

match, we also show the best way to cover the left children fanning in to the match, and are left

children of some node in the match. The best cover for the right children is obtained from the

induction hypothesis. This asymmetry arises because the subtree rooted at the left child ofa node is

simple, and its optimum cover can be obtained from inspection. From Figure 5.33 and the induction

hypothesis, we have

Aft(5M-i)(l-l) = 0 + 0 + An(5k-i)

< 3k

Arc(5Jt+l)(2-i) = 1+Ak(5*_2)

< 3*+l

A*(5Jk+i)(2.2) = l+0+l+A*(5fc-4)

< 2+ (3*-2)

= 3k

Aft(5jfc+1)(3.1) = 2+ 1+An(Sk-4)

< 3 + (3fc-2)

= 3fc+l

A*(5fc+i)(4.1) = 2 + 0 + 0 +An(Sk-t)

< 2 +(3k-2)

= 3k
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Figure 5.33: 2-feasibility to 5-feasibility: proving tightness
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Aft(5*+i)(4-2) = 2 +0 + l+0 + Afc(5jk_7)

< 3 + 3(fc-l)

= 3*

Arc(5M-i)(5.1) = 3+0 + An(5k-4)

< 3 + (3k -2)

= 3fc+l

A?i(5fc+i)(5.2) = 3 + 1+0 + Att(5jt_7)

< 4 + 3(fc-l))

= 3k + l

Ak(5*+i)(6.1) = 3 + 0 + 0 + 0 + AnSk-i)

< 3 + 3(A:- 1))

= 3*

Aft(5fc+i)(7.1) = 3 +0 + A7e(5jt_4)

< 3 + (3*-2)

= 3fc+l

A^(5fc+i)(7.2) = 3 + l+0 + An(5k-i)

< 4 + 3(fc-l))

= 3fc + l

At2(5A+i)(73) = 3+ l+0+l+0 + Arc(5fc_9)

< 5 + (3(*-l)-2)

= 3k

Then

At2(5*+i) = max{Aft(5;t+i)(*'-J)}

< 3* + l

= 3(fc+l)-2

In Figure 5.34, the matches rooted at the node 5(k + 1) - 2 = 5k + 3 are shown. Using similar

arguments, it can beproved that An(sk+3) < 3(fc + 1) (in fact, the proof uses An{5k+\) < 3Ar -h 1,

which we just proved). •
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Figure5.34: 2-feasibility to 5-feasibility: proving tightness
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2-feasibility to 6-feasibility

Proposition 53.27 Given a 2-feasibleleaf-DAG realization Tloff withT internal nodes,T>3,

itispossibletoobtaina 6-feasible leaf-DAG realization Tloff thathasatmostT/3 internal nodes.

Proof We use the same algorithm that was used to convert a 2-feasible leaf-DAG to a 5-feasible

one, except for a slight modification - we add a post-processing step at the end. It was shown in

the proof of Qaim 4 in Proposition 5.3.25 that if there is a double rooted at v (v ^ r), there exists

a triple rooted at the parent of v. Since quintets are allowed while converting a 2-feasible DAG

to a 6-feasible dag, we merge the corresponding doubles and triples to get quintets. Note that this

merging is legal, in that it results in a connectedgroup. As a result, there are only triples, quartets

and quintets in the final grouping, except possibly for a singleton at r, or a double rooted at r. A

triple is the least area-saver per node of Tlas comparedto a quartet or a quintet: it gives a saving

of 2 nodes for every 3. But that sufficesour purpose. A more careful analysis (along with a simple

post-processing step) of the cases when r is a singleton, or is in a double, shows that TV still has at

most T/3 internal nodes. •

Unlike for 3 < m < 5, we do not know if the bound of Proposition 5.3.27 is tight. We conjecture

that itis. The conjecture is based on the forms ofthe bounds: all are ofthe form ^T.

A Unified Technique

While deriving the upper bounds on f, we used different algorithms for different values
of m. Also, it becomes difficult to develop algorithms for m > 6. A natural question to ask is

the following: "Is itpossible to develop a single generic technique thatworksfor all m?" In this

subsection, we attemptto answer this questionby presenting a uniformtechniqueof converting a

2-feasibleleaf-DAG H into an m-feasibleleaf-DAG for any m > 2. This techniquedividesTlinto

sets of levels and covers each set in a top-down fashion. Although it does not improve the bounds

inthegeneral case,6 it does yield better bounds for leaf-DAGs with special structures.

First we define the levelof an LUT in Tl. The levelof an input is 0. The level of an LUT

is 1 + max{levels of itschildren}. Let ki be thenumber of LUTs at level i. In particular, k\ is the

number of leaf-LUTs.

Theorem 53.28 Given a 2-feasibleleaf-DAG realization Tloff with T internal nodessuch that

thenumber ofleaf-LUTs, k\ < T/a, it is possibleto obtain an m-feasibleleaf-DAG realization Tl

6We know from the tightness of the bounds that for m = 3,4, and 5,thebounds cannot beimproved.
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Figure 5.35: Converting a2-feasible leaf-DAG to a4-feasible leaf-DAG usingleveling
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off with at most[(a + m- 2)/(am - a)]Tinternal nodes (plus a small constant).

Proof The argument is based on leveling Tl, and is explained using an example with m = 4 in

Figure 5.35. Grouping three LUTs t\, t2, and t3 corresponds to a 4-LUT and saves two LUTs. A

pair, say U and ts, is valid too andsaves one LUT. The strategy then is to groupan LUT t\ at level

3t with an LUT t2 at (3i - 1) and <3 at (3i - 2), where t2 is achildof t\ and t3 is achildof t2. This

group is a triple and so saves 2 LUTs. Repeating this process for allnodes atlevel3i, thenvarying

i overthe entire DAG (i > 1), and summing up gives total savings of 2(k<$ + k6 + k9 + ...). Note

thatthis is possible sinceTlis aleaf-DAG, and, therefore, kj+i < kj forall j > 1. Next, we look at

all the ungrouped nodes atlevel (3i - 1); there are (fc3t_i - k3i) of them. We pair eachsuchnode

withits child atlevel (3i - 2). Note that none of itschildren had been grouped. Varying i over Tl

andsumming up gives additional savings of (k2 - k3) + (k$ - k^) + .... So

A = 2(k3 + k6 + ...) + (k2-k3 + k5-k6 + ...)

= (k2 + k3)+ (k5 + k6) + ...

The case of general m is similar. For simplicity, we assume that the number of levels D

in Tl is of the form D = b(m - 1) + 1(otherwise, we get anextra constant in the formula below).

We separate Tl into setsoflevels: 1to (m -1), m to 2(m - 1),and soon. Finally, we group nodes

within each set, as we did for m = 4. We get

A = (k2 + k3 +... + km^i) + (km+i + ... + k2{m_1)) + ...
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a m = 3 m = 4 m = 5

2 3/4 2/3 5/8

3 2/3 5/9 1/2

4 5/8 1/2 7/16

5 3/5 7/15 2/5

Table 5.1: (a + m - 2)/(am -a) asa function of a and m

m-2,
> 7P2 + k3 + .•. + km-\ + km) + (km+\ + ... + fc2(m_i) + k2m-x) + ...]

m — 1 x '

(since &,- > fc,+i)
m — 2

m— 1

m-2

m — 1

[T - Ai]

[T-T/a]

Let the resulting m-feasible leaf-DAG Tl have f LUTs. Then,

T = T-A

m-2
< T-

m — 1

a + m —2

(T-T/a)

= T
a(m- 1)

The fraction (a + m - 2)/(am - a) denotes the best bounds the unified technique can

achieve. Tb compare it with the previous bounds, we evaluate this fraction for various values of a

and m in Table 5.1. a = 2 denotes the most general case, since k\ < (T + l)/2 for any leaf-dag.

The unified technique does not fare well for a = 2 as compared to the previous bounds. For

instance, it can never give a (worst-case) reduction (i.e., A) of more than 50% for any m, whereas

the previous techniques could achieve this reduction for m > 4. However, for higher values of a,

we can guarantee more reduction as compared to the previous bounds. For example, for m = 3,

a > 3 gives better bounds than Proposition5.3.20. Similarly, for m = 4, a > 4 gives better bounds

than Proposition 5.3.23.

It is instructive to note that higher values of a correspond to the case when Tl assumes a

more chain-like structure. In the limit, the bound ofthe theorem gives us the best possible size of

Tl, i.e., T/(m - 1). This size is possiblewhen Tl is simply a chain.
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Relating Factored Form and m-feasibility

We are now ready to prove the main result of this section, Theorem 5.3.18.

Proof (of Theorem 5.3.18) For £ > 1, it is possible to construct a 2-feasible leaf-DAG for / with

T = (£-!) 2-LUTs. Substituting T = (£ - 1) in Propositions 5.3.20,5.3.23,5.3.25, and5.3.27,

we get the desired result, since Cm(f) < f for 3 < m < 6and Tl isan m-feasible realization of/.
•

Upper Bound on Complexity of a Network

Theorem 5.3.18 states the upper bounds on complexity of a single function. Since a

general circuit has multipleoutputs,whichcan share logic, it is desirable to extendthe bounds to a

multi-output, multi-level networic rj. The numberof factored form literals in 77 is the sum over all

the internal nodes ofthe factored form literals ofthe function at each node. One way of generating

the complexity upper bound for 77 is to sum the bounds obtained using the factored form of each

node function. However, to get a closed form expression, one technicality has to be dealt with:

Theorem 5.3.18 is stated only for the case when the number of literals in the factored form is greater

than a small constant. However, it is valid if the function is m-infeasible. This implies that we can

apply it to 77 if we are told that 77 has k m-feasiblenodes and that the infeasible portion of 77 (i.e. all

the m-infeasible nodes) has £ literals in factored form.

Corollary 53.29 Givena network rj, with k m-feasible nodesand £factoredform literals in the

m-infeasible portion,

£ Cm(n)<<
neIN(r,)

fc+lfj (m = 3)
*+ljJ (m=4)
fc+LyJ (m = 5)
k+ [fJ (m = 6)

Proof Each m-feasible function of 77 canberealized in one m-LUT. Tbeach m-infeasible function,

apply Theorem 5.3.18 and ignore the additive constants. •

5.4 Experiments
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m N ES ZF EG T.Q
3 1187 12014 8091 6234 6774

4 881 9242 5268 3918 4178

5 727 7800 4017 2821 3068

6 527 6451 2855 2004 2158

Table 5.2: Experimental data

m number of inputs to the LUT
N number of m-infeasible functions over all benchmarics
£ S sum over N fhs. of the SOPbound (Proposition 5.3.16)
£ F sum over N fhs. of the factored form bound (Thm. 5.3.18)
£ G sum over N fhs. of themis-fpga results ingood mode
£ Q sum over N fhs. of themis-fpga results inquick mode

100% }<y>s<Q\00% Vf-Vi
100% ^^jS/q100%"

N

48.1

57.6

63.8

68.9

43.6

54.8

60.7

66.5

22.9

25.6

29.8

29.8

Table5.3: Boundsvs. mis-fpga

16.3

20.7

23.6

24.4

1.6

1.5

1.6

1.6

N

1.1

1.2

1.3

1.4

We conducted experiments tocompare thebounds withthesynthesis results generated by

mis-fpga. Asuite ofMCNC benchmarks optimized for literal count provided the starting point, as

described in Section3.6.1. For eachnodefunction / in a benchmark, the following is done:

1. The numbersof cubes and literals in the givenSOP representation for / are substituted in

Proposition5.3.16 to obtain the S bound on the complexityof / for different values of m.

Also, a factored form is computed using the quick decomposition ofmisl I [12]. This factored

form uses only theAND, OR, and NOT operations.7 The number of literals in this factored

form is used to derive the complexitybounds F for / using Theorem 5.3.18.

2. mis-fpga is run in two modes: good and quick. In the good mode, mis-fpga is nm so as to

obtain the best possible results. Differentdecomposition methods are used. These generate

7TheoTem 53.18 is independent of thebinary operations used in the factored form. It is better tousea generalized
factored foxm (with allbinaryoperations), as we did throughout the chapter, becausepotentially a smallerfactored form
is possible. However, misll creates a factored form only withAND,OR, andNOT operations.
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various feasible realizations of /, on which block count minimization techniques including

covering and support reduction are applied. The best realization is finally chosen. The

number of LUTs in this realization is denotedby G (for good). In the quickmode, a factored

formof / is obtainedusing thequick decomposition. This fonn is decomposed into two-input

AND and OR gates using tech-decomp in misll. Finally, covering is performed. The number

of LUTsobtainedis denotedby Q (forquick). The ideais thatthe bound F wasderived using

a factored form and then applying a simple covering (recall the proof strategy of Theorem

5.3.18). Neither alternate decompositions nor support reduction were used. Since the quick

mode uses a similar method, it providesa fairer comparison for the bounds as compared to

the good mode.

Table 5.2 summarizes the statistics of the block counts obtained from these experiments.

Values of m from 3 to 6 are considered. For each m, the number of m-infeasible functions

encountered over all benchmarks is given in column N. An m-feasible node function is rejected

from consideration, since there is no uncertainty aboutits complexity. Column J2S gives the sum

over all JV functions of the bounds obtained from the SOP using Proposition 5.3.16. Similarly,

column £ F gives the sum of the bounds obtained from Theorem 5.3.18. £ G and £ Q list the

sums ofthe LUT counts forthe mis-fpga synthesized results for the iV functions in good andquick

modes respectively.

Table 5.3 shows the percentage differences between the SOP bounds £ 5 and the syn

thesized results J2G and £ Q in columns2 and 3 respectively. The corresponding differences for

the factored form bounds £ F are shown in columns 4 and 5. Note thatcolumns 2 through 5 give

only the percentage differences between the bounds and the synthesized results taken over all the

examples. Tb obtain betterinformation about each individual function, we compute in columns 6

and 7 the average sumof absolute differences between F and G, and F and Q respectively. This

guards against the following cancelling effectpresent in the othercolumns. If for one function, F

is higher than Q, but for another, it is lower, then simple differences maycancel outover thetwo

functions, giving animpression that on average, the twoquantities are closer to each other.

It can be seen from Tables 5.2 and 5.3 that the bound S from the SOP representation is

weak. The mis-fpga results - Gand Qvalues - are about 40-70% less. This was expected, since
an SOP is not agood indicator ofthe number ofgates or LUTs inmulti-level synthesis. However,
Gand Q are closer to jF. The Qbound is about 16-25% less than the F bound (column 5inTable
5.3). Moreover, the difference grows with m. Tb understand the reason for this behavior, we study
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Figure 5.36: All possible patterns for getting a 3-feasible leaf-DAG

the kinds of groups (or pattems) used inthe algorithms of Propositions 5.3.20,5.3.23,5.3.25, and

5.3.27. Figure 5.36 shows all possible patterns for converting a2-feasible leaf-DAG to a3-feasible

leaf-DAG. The algorithm ofProposition 5.3.20 uses both ofthem. Figure 5.37 shows the pattems
used to obtain a4-feasible leaf-DAG. The algorithm ofProposition 5.3.23 uses all ofthem except
the pattem 4. Theusage of patterns worsens for m = 5 and m = 6. These pattems are shown in

Figures 5.32 and 5.38 respectively. Only the first 5 pattems ofFigure 5.32 are used inProposition

5.3.25, whereas onlythe patterns 1,3,4,5, and 9of Figure 5.38 are used inProposition 5.3.27. So

for m = 6, only 5out of 13 patterns are used. This may be why the factored form bounds for higher

values of m move further away from the synthesized results, which have the freedom of using all

the pattems. Another possible explanation is as follows. There are many factored foims that have

£literals. These result indifferent 2-feasible leaf-DAG structures. The bounds produced using the

covering algorithms presented in the previous propositions hold even for the worst case. It may

be that for a given leaf-DAG Tl, much more reduction in the block count can be obtained when it

is converted to an m-feasible leaf-DAG. The difference increases with m, partially because ofthe

reason given earlier.

From the column 7 of Table 5.3, we see that, on average, the F bound differs from

the Q bound by aboutone LUT. This is indeed encouraging, since F was derived using only the

*' information about theliteral count; thestructure ofthe corresponding leaf-DAG was nottaken into

account.

Tb get an ideaofthe speedofthe prediction (i.e., boundcomputation), we noted the total

times taken for all benchmarks on a DEC 5900 workstation. While mis-fpga took 217 seconds

to synthesize the functions in quick modeand 576seconds in goodmode, only 1.3 seconds were

needed to compute the bounds from the SOP, and 1.6 seconds to compute first the factored forms

and then the factored form bounds for all the functions. This fast prediction capability can be
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Figure 5.37: All possible pattems for getting a4-feasible leaf-DAG

employed also to estimate whether a circuit will fit on an FPGA chip, without performing any

technology mapping. Corollary 5.3.29 may be used to derive the corresponding bounds for the

circuit.

5.5 Discussion

At the beginning of the chapter, we set out to evaluate the quality of a synthesis tool for

LUT architectures. Since it is a hardproblem,we addressed the next most promising problem: that

of determining lower and upper bounds on the complexity of functions. Since the lower bound

theory is weak, the problem of findingtight lower bounds was abandoned,although we did compute

the exact complexity ofthe set S(m + 1).

Since in a synthesis environment, a representation ofthe function is already present, we

addressed the problem of determining upper complexity bounds for a given representation. Two

representations - sum-of-products and factored form, were considered. For m < 5, we proved

that the factored form bounds we derive are tightunderreasonable assumptions. The bounds were

compared with the results produced by mis-fpga (new). Forall the values of m tried, the bounds

were close enough to the synthesized results. This means that the bounds can be used for a fast

prediction of the number of LUTsneededto implementa function.

The following problems remain unsolved:

1. Determining exact values of the complexity ofthe set of (m + fc)-input functions using m-
LUTs for k > 1. Extending the technique for fc = 1tohigher values of k becomes tedious.

This isbecause Cm(S(m + fc)) isanon-decreasing function of fc. Tb prove tightness, ithas

tobe demonstrated that for all p < Cm(S(m + fc)), p m-LUTs cannot implement some fixed
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f e S(m + fc). For each p, allpossible configurations of p LUTs haveto be enumerated. The

numberofconfigurations increases with p, makingthe task formidable.

2. Proving or disproving the tightness ofthe bound ofProposition 5.3.27.

3. Rnding a technique for derivingupperbounds for a factored form for all m. So far, we have

proposed techniques for m < 6. It isdesirable that thebounds betightunder theassumptions

already discussed. We conjecture that ^ isatight upper bound for any m. It isbased on the
fonn ofthe bounds in Theorem 5.3.18.

4. Deriving these bounds for thecommercial LUT-based architectures. For example, the LUT-

section of a Xilinx 3090 CLB can realize two combinational functions, but there are some

restrictions on their inputs.
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Figure 5.38: All possible patterns for getting a 6-feasible leaf-DAG



212 CHAPTER 5. COMPLEXITY ISSUES



213

Chapter 6

Mapping Sequential Logic

6.1 Introduction

Thus far, we discussed synthesis techniques for combinational circuits. In this chapter,

we address how to synthesize sequential circuits on to LUT-based architectures. The problem is

interesting and important for many reasons:

1. Most of the circuits that are designed are sequential in nature.

2. Commercially available architectures,like Xilinx 3090, have sequential elements or flip-flops

(which we had ignored for the combinational case) inside the basic block. These flip-flops

are connected to the LUT-section of theCLB in suchamanner thatmany different waysof

mappingportions of circuit on to the CLB are possible. Finding all possible ways and then

using them in mapping becomes a key problem.

3. The combinational and sequential resources on a chip are fixed. For instance, a Xilinx

3090 chip contains 320 CLBs, each of which has one combinational LUT-section that can

implement two functions, and two flip-flops. Given a digital circuit C with some number

of combinational and sequential elements that does not fit on achip, it may be possible to

transform it into anotherequivalentcircuitC with a different number of combinationaland

sequential elements such that C fits on the chip. Finding these transformations isachallenge
in itself.

A digital circuit may be described at an abstract level bya finite-state machine (FSM),
which isadirected graph with labels on the edges. The vertices represent states ofthemachine, and
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Figure 6.1: Three stepsin sequential synthesis

theedges thetransitions between the states. Thelabel(s) onan edge (u,v) has two parts - an input

partand an output part. The input partdescribes (input) conditionsunder which a transitionoccurs

from state u to state v. The output part specifies values thatthe outputsof the machinetake under

this transition.

Given an FSM description, the aim of synthesis is to translate it to the target LUT

architecture while optimizingsomecost function. This may be the numberofCLBs, delaythrough

thecircuit, oracombination. Oneway ofachieving thisis to dividethe process intothreesteps. The

first step assigns unique codes to the states ofthe FSM, the secondoptimizes the circuitobtained

from the first step, and the third maps the resultto the target architecture. This is shown in Figure

6.1.

State assignment: Most state-assignment tools minimize the number of literals in the

resulting circuit, while not using too many flip-flops. This is achieved using a minimum- or near-

minimum-lengthencoding. A typical LUT architecture provides many flip-flops on a chip (e.g., a

Xilinx 3090 chiphastwice as many flip-flops asCLBs). Hence the state-assignment problem for

. LUT architectures is different, in that the cost of a flip-flop is almost negligible. Some empirical

work on the state-assignment problem for LUTarchitectures doneby Schlag et al. [75] concluded

that one-hot state-assignment gives minimum CLB count. We will have more to say on this in

Section 6.3.1.

Optimization and mapping: A sequential circuit obtained from state-assignment mustbe

optimized and mapped to the target FPGA architecture. More work needs to bedone to optimize
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DIN

Figure 6.2: Xilinx 3090 CLB

thecircuitfor the LUT architectures. Forlackof suchalgorithms, we willusestandard optimization

algorithms, whichminimizethenumberof literals. Ourfocus willbe on the problem of mappingan

optimized sequential circuitonto LUT architectures. We know of onetechnology mapping program

called XNFOPT [88], which supports sequential circuits.1 However, it is a proprietary program,
and details of its algorithms are not known to us. In Section 6.3, we compare our results with

XNFOPT.

The chapter is organized as follows. We give an overview ofthe Xilinx 3090 architecture

in Section 6.1.1, and precisely state the problem in Section 6.1.2. The proposed algorithms for

sequential mapping are described in Section 6.2. Finally, we present results on a number of

benchmark examples in Section 6.3.

6.1.1 Overview of the Architecture

In Figure 6.2, a CLB ofthe Xilinx3090 architecture[88] is shown. The main features of

the CLB are:

1) A combinational section (LUT-section): This sub-block has 7 inputs a,b,c,d,e,QX, and

QY, and two outputs F and G. The inputs a,b, c,d, and e are called logic inputs. The

LUT-section canbeconfigured to implement any oneofthe following.

a) Any single function F (or G) ofup to five inputs. These inputs can be any five outof

the seven inputs.

1XNFOPT isnolonger inthe Xilinx toolkit
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Figure 6.3: Intemal structure ofthe LUT-section

b) Two functions F and G, which satisfycertain conditions, namely, each should have

at most four inputs, one variable a should be common to both functions, the second

variable (to both functions) can be any choice of b, QX, and QY, the third variable -

any choice of c, QX, and QY, and the fourth variable - any choice of d or e. These

conditions are called the sequential mergeability conditions (SMCs) and are shown

in Figure 6.3.

c) Some function F of six or seven inputs. Here input e selects between two functions of

four variables: both functions havecommoninputs a and d and any choice of b,c, QX,

and QY for the remaining two variables.

2) Two D-type flip-flops with outputs QX and QY. Data input for each flip-flop is supplied

from either F or G or direct data input DIN.

3) The CLB has two outputs X and Y. The outputX can be either QX, in which case we say

that X is latched, or F, in whichcase X is unlatched? A similarstatementholds for Y.

The flip-flop outputs QX and QY may be used as inputs to the LUT-section, thereby

providing feedback paths that can be used to implement, within a CLB, the feedback loops of a

sequential circuit.

We are interested in finding all possiblechoices for the CLB outputs X and Y. Let

fL denote the latched value ofthe signal /. From Figure 6.2, DX,DY e {F,G,DIN}, so

2We will usetheterms flip-flop and latch tomean a flip-flop.
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Figure 6.4: A synchronous sequential network

QX, QY e {FL,GL, DINL}. Since X = F orQX, and Y = G orQY, weget

X€{F,FL,GL,I>/JVL}

y e{G,FL,GL,DINL}

As will be explained later, we do not make use of option 1 (c) in this work.

6.1.2 Problem Statement

"Given a sequentialcircuit, represented as blocksofcombinational logic andflip-flops,

and described in terms ofBoolean equations, realize it using the minimum number ofCLBs ofthe

target LUT-based architecture!'

Weaddress this problemfor the Xilinx 3090 architecture. The algorithmsto be described

herewerepublished in an abridged form in [61]. We arenot aware of anyotherpublished workfor

the synthesis of sequential circuits for LUT-based architectures.

217

(6.1)

(6.2)

6.2 Proposed Mapping Algorithms

Figure 6.4 shows the structure of a general synchronous sequential network. We view

it as combinational logicplus sequential elements (flip-flops). Hence, wecan use combinational

techniquesfor the sequential synthesisproblem.

We start with anoptimized sequential network nand map it tothe target LUT architecture.

We assume that rj does not have more than one flip-flop with the same input. If it has, all such

flip-flops except one can be removed and the appropriate connections to the remaining flip-flop can
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Rgure 6.5: Deleting unnecessary flip-flops

be made. This is illustrated in Figure 6.5. No optimality is lost by using this transformation if

a mapping algorithm thatallows logic replication is used. The mapping algorithm has two main

steps.

1. Obtain a fc-optimal networic rj from rj,k<m (for Xilinx 3090, m = 5)using thecombina

tionaltechniques of Chapter3; we experiment with k =4 and k = 5.

2. Ouster (map) the elements of rj subject to the constraints imposed by the structure of the

CLB; these constraints were described in Section 6.1.1. Each cluster is a CLB. So we are

lookingfor aclustering thathastheminimumnumber of clusters. We studytwo approaches

to clustering - mapjogether andmapseparate. Thesemapcombinational logic and flip-flops

together orseparately respectively.3

6.2.1 mapjogether

This approach simultaneouslymapsthecombinational logic and flip-flops ofthe sequential

networic. It is an instance of the standard technology problem (as described in Sections 2.2.1 and

3.4.1). It has three main steps:

1. We first derive a set of pattern graphs, which represent possible ways in which a set of

combinational and sequential elements can be placed together on one CLB. Since this step

depends only on the structure of the CLB, it is performed justonce and is not repeated for

each network.

3These approaches do notuse option 1(c) ofSection 6.1.1, because starting with a fc-feasible network (k < 5), these
just group nodes of the network, and hence cannot generate afunction with greater than 5 inputs. However, option 1(b)
isused inmapjogether, which means that apair of functions with atotal ofmore than 5inputs can beplaced onaCLB.
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2. From rj, we generate all possible candidate matches. A match is a set of combinational and

sequential elements of rj that can be placed on a CLB. Since patterns correspond to all the

ways in which a CLB can be configured, each match has a pattern type (number) associated

with it.

3. Finally, we select a minimum subset of these matches that will realize the networic.

These steps are detailed next.

Pattern Graphs

The pattem graphs are derived from the CLB by considering a subset ofthe features ofthe

CLB. Informally,a pattern graph is a configuration in whicha CLB can be used. In our definition,

a pattem is determined by the following:

1. The number and the names ofthe outputs used. For example, a pattern may use either X or

Y or both - each belonging to the correspondingsets from (6.1) and (6.2).

2. The number of flip-flops used and their inputs. For instance, if one flip-flop is used, is its

input DIN, F, or G?

For example, pattem 1 in Figure 6.6 is the configuration corresponding to the Xilinx 3090 CLB

realizing just one combinational function with at most 5 inputs. Note that different ways of

programming an LUT-section do not generate newpatterns (thereis one exception to this, and will

be pointed out shortly). For example, the same pattem 1 corresponds to the output function of the

CLB being abc or abed + a'b'c'd'e. A pattern is determined by the connections within a CLB,

which, in tum, are determined by how the multiplexors are programmed. If the outputs X and Y of

the CLB aresimply F and G respectively (so theoutputs are unlatched), and DIN is being used,

the corresponding patternsare 15and 16. Then,if the secondflip-flop is alsobeingused, the pattern

is 16; otherwise, it is 15.

Figure 6.6shows 19patternscorresponding tothe Xilinx 3090CLB.4 Apattern isenclosed

in a dotted rectangle. The square withineach patternrepresents the LUT-section and the two, small

rectangles represent the flip-flops. A linegoing across the LUT-section indicates a buffer (pattems

27,28,and 32). Forconvenience, wedonotexplicitly show thelogic inputs a, b, c,d,and e;they are

assumed tofeed the LUT-section. Moreover, we donotshow the multiplexors that realize options

''The unusual pattem numbering is becauseofthe way the patterns weTe derived; see proofofProposition 6.2.1.
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mentioned in Section 6.1.1, because patterns themselves are a result of choosing these options.

However, we do show DIN whenever it is used. Also, whenever an output ofa CLB is latched, the

corresponding feedback connectionwithin the CLB may not be actuallyused by the LUT functions

F andG, i.e., the latchedsignalmay not be aninputto eitherF or G. But, if the output is unlatched,

and the corresponding flip-flop is being used, the feedback connection must be used by either F or

G. Finally, if a pattern can be realized in more than one way, we list it just once. For example,

pattern 11 can also be realized without using DIN. We now motivate the choice of this set of

pattern graphs.

Definition 6.2.1 A set S of pattern graphs is complete for an FPGA architecture if for any

sequential network r\, there exists an optimum realization of r\ in terms of the basic block ofthe

architecture, each block configured as some pattern ofS.
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Proposition 6.2.1 The set ofpatterngraphsshown in Figure 6.6 is completefor the Xilinx 3090

architecture.

Proof First, we systematically derive an exhaustive and, therefore, complete set of patterns from

the 3090 CLB. Then, we reduce the numberof pattems withoutdestroyingcompleteness. In the

following, fL denotes the latched value ofthesignal /.

Recall that a pattem is determined by the following.

1. The number and names of the outputs used, and

2. The number of flip-flops used, and their inputs.

We enumerate the complete set ofpatterns by selecting X and Y from the sets in (6.1) and

(6.2). First, we consider patterns with a single output, say X, and then, pattems with two outputs

X and Y. Although there are 16 possibilities for the two-output case, they can be reduced because

of symmetry. For each possibility, all sub-cases based on the number of flip-flops are enumerated.

1. X = F (Figure 6.7): Pattem 1corresponds to the case when no flip-flops are used. Pattems 2

through 4 use exactly one flip-flop and correspond to the three choices for the flip-flop input

- F, DIN, and G. Patterns 5 through7 use two flip-flops. Note that since the network does

not have two flip-flops with the same input, patterns using two flip-flops with the same input

are not considered.

2. X = FL (Figure 6.8): Since X uses one flip-flop, the case of using no flip-flop does not
arise.

3. X = GL: This case issymmetric to X = FL. Since pattern graphs (as we have shown them)

do not carrylabelsat the outputs ofthe CLBandthe LUT-section, pattemsof Figure 6.8 can

be used.

4. X = DINL (Figure 6.9).

5. X = F, Y = G (Figure 6.10).

6. X = F,Y = FL (Figure 6.11).

7. X = F,Y = GL (Figure 6.12).

8. X = F,Y = DINL(Figure6.13).
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Figure 6.7: X = F

9. X = FL,y = FL: since notwo flip-flops in the networic have the same input, this case is

identical to X = FL.

10. X = FL,Y = GL (Figure 6.14).

11. X = FL,Y = DL/VL (Figure 6.15).

12. The other cases are symmetric to the ones already discussed, and since in pattem graphs, we

do not label the outputs of the CLB and LUT-section (seethe figures), samepattems canbe

used in these cases. For example, Y = G is symmetric to X = F; therefore, patterns of

uM

D
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Figure 6.8: X = FL
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Figure6.9:X = DINL
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Figure6.10: X = F,Y = G

Figure 6.7 can be used.

It is easily checked that for each case, all possibilities are generated. And since we

explicitly generated all the cases, this set of pattern graphs is complete. However, there is an

incompatibility between the way pattems arederivedand the way matches aregenerated. A pattern

assumes that F and G are any functions, including the trivial buffer function. As we will see

soon, matches are generated in our mapping algorithms by picking at most two combinational

elements / and g, andtwo flip-flops Q\ and Qifrom thesequential network, and checking if their

interconnection structure is identical to thatofsomepattem. The possibilityof For G beingbuffers

is not considered, because in the sequential networic buffers are not normally present (except for

fanout optimization). We then have two options:

r
D

1

it

IQ

18

L
DIN-JO-

19

1

u

. Figure6.11: X = F,Y = FL
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Figure6.13: X = F,Y = DINL

1. While generating matches, use patterns 1 through 26, and for each pattem, consider the

possibility that F or G could be buffers, or .

2. Explicidy generate patternscorresponding to buffers.

We choose the second option. Doing a complete analysis for the cases - when both F and G are

buffers, and whenexactlyone, say F, is a buffer, yields ninemorepattems, shownin Figure 6.16.

This analysis is more cumbersome than what we just did, because there are 3 choices for a buffer

input: QX, QY, or alogic input(a, b,c, d, e). Details ofenumeration are omitted forbrevity.

Next, we state an observation that reduces the number of patterns needed (with a binate

covering algorithm) without destroying completeness. Let us examine the patterns more closely.

For example, the only difference between pattem 4 and pattern 14 is that 14 uses both outputs,

lol
rt

25

Figure6.14:X = FL,y = GL
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Figure 6.15: X = FL,Y = DINL
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Figure 6.16: Patterns with buffers
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30 31

whereas 4 uses just one. Both use same number of combinational functions and flip-flops, and have

identical interconnection structures. So pattem 4 can be deleted from the pattern set. This leads to

the notion of a pattem covering another pattern.

Definition 622 Pattern i covers pattern j if i and j use the same number of combinational

functions andflip-flops, have identical interconnection structures, except that i has moreoutputs

than j.

So pattem 14 covers pattern 4. Note that pattern 1 is not covered by pattern 13, because

13 uses both combinationalfunctions ofthe LUT-section, whereas 1 usesjust one.

Proposition 622 Let i andj be two patterns in a complete set S ofpatterns such that i covers j.

Then, S - {j} is also complete.

Proof Considera match Mj with the pattemtype j. Let (/, g,Q\, Qi) be the informationattached

withMj, i.e., / andg arethecombinational functions ofthe sequential network chosen tomaponto
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»> x =Dmfl.

35

Rgure 6.17: Pattern 35 canbe implemented by pattem28

F and G, and Q\ and Q2 are the flip-flops chosen to maponto QX and QY of the CLB. Some of

f, 9, Q\ orQ2 maybeNIL.Thenthere exists amatch Mt- withthe pattem type i and withthe same

information (f,g,Q\,Qi). This is because i andj usethe samenumberofcombinational functions

and flip-flops, and have identical interconnection stiuctures, except that i has more output(s). Let

there be anoptimum mapping solution inwhich Mj is present. Then, Mj may be replaced by Af, -

wecan ignore theunused output(s) of Mi. Note that M, has exactly thesame inputs as Mj, and each

input is either a primary input or an output of some match. Since the number of matches remains

the same, the new solution is also optimum.

This process is repeated for all matchesrin the optimum solution with pattern type j,

resulting in an optimum solution without matchesof type j. Thus pattern j can be deleted from S

without destroying the completeness of S. m

Scanning various patterns, it is seenthat pattern 2 is covered by 18,3 by 23,4 by 14,5 by

17,6 by 24,7 by 16,8 by 18,9 by 25,10 by 26,12 by 26,29 by 28,31 by 30,33 by 32,and 34by

30. So pattems 2,3,4,5,6,7, 8,9,10,12,29,31,33, and 34 can be deleted.

As shown in Figure 6.17, pattern 35 can be implemented by 28 if we route the buffered,

latched outputof 28 to the DIN input using routing resources external to the CLB. So pattem 35

can bedeleted. Similarly, pattern 30can beimplemented by 26 by routing the output FL of 26to

the DIN input. So 30 can also be deleted.

This gives us a complete set of 19 pattems, as shown in Figure 6.6. •

Generating Matches

The startingnetwork rjis fc-optimal, k < 5. We systematically generate all the matches

of rj. A match is a set of combinational nodes and flip-flops ofthe sequential network rjthat can be

mapped onto a CLB. Since pattems correspond to allthe ways in which a CLB can be configured,

each match has a pattern type (number) associated with it. For example, if a match has just one
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/* one or both of Qi,Qz may be NIL */

foreach set of candidate flip-flops Q\,Qi

foreach pattern p in pattern set

if (ftgiQuQi) mappable to p &&

(mergeability satisfied(f->g,Q\,Q2,p))

create match with type p

Figure 6.18: Match generation for (/, g)

flip-flop (and no combinational function), its pattern type is 11 (Figure 6.6). However, if it alsohas

one combinational logic function of the networic, its type can be either 18 or 23.

For the Xilinx 3090 CLB, a match cannot contain more than two combinational nodes

andtwo flip-flops from rj. These combinational nodeswill be denoted by / and g, andthe flip-flops

by Qi and Q2. The combinational nodes / and g mapto F and G, and the flip-flops Q\ and Q2

to QX and QY. Therefore, the information attached to a match for (f,g,Q\, Q2) consists of the

following:

1. for F and G, candidate combinational functions / and g,

2. for QX and QY, candidate flip-flops Q\ and Q2,

3. correspondence of the inputs of / and g to the input pins of the LUT-section, LUTf, and

LUTg (Figure 6.3). This is generated only if thematchis finally selected and the final netlist

is desired,

4. outputs X and Y, and

5. the pattem type.

Note that one or more of f,g,Q\, andQ2may be NIL, implying that fewerelements were chosen

from rj for placement on the CLB andso the corresponding element of the CLB will not be used.

Matches are generated by considering the sequential circuit as a set of combinational

nodes and flip-flops. In aCLB, we canplace eitherzero,one, or two combinational nodes (thecase

of zero combinational nodes corresponds to both / and g being NIL, the case ofone combinational

node to exactly one of / and g being NIL, and the case of two to none of / and g beingNIL), and
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either zero, one, or two flip-flops. Cases with zero or one combinational node inside a CLB are

simple. So we just describe the case of a pair of combinational functions (nodes) of the network,

say / and g, and show the pseudo-code for match generation in Figure 6.18. The details of various

steps are as follows.

Generating candidate flip-flop(s) : Given combinational functions / and g of rj, we wish to

determine all possible candidate flip-flops Q\ and Q2such that (/, g, Q\,Qi) is a candidate match.

This is done as follows. / and g can be mapped on functions F and G of a CLB either with or

without the use of DIN. If DIN is not used (for instance,patterns 14 and 17),only those flip-flops

that receive their data inputs from either / or g are candidates for QX and QY. If DIN is used,

flip-flops that fanout to either forg shouldalsobe considered. This is evidentfromthe pattems 15,

16, and 21 in Figure 6.6 - these are the pattems that use DIN and accommodate two combinational

functions of rj.

Mapping(/, g9Qi,Q2) to a patternp : Given(/, g,Q\, Q2), thisstepchecks forthecompatibility

of (/, g, Qu Q2) with each pattem p. Since the matchwill use both / and g, a pattem p that does

not use both F and G cannot generate a match correspondingto (/, g,Q\, Q2). Also, the number

of non-NIL flip-flops in {Qi, Q{\ should be thesame as thatinp. Additionally, in a CLBwhenever

a combinational logicnode / feeds a flip-flop Q, thereare two choices: the corresponding output

of the CLB- X or Y - can be either / or Q. So an (f,g,Q\, Q2) combination may map to many

patterns.

Checking for mergeability conditions : After at most two flip-flops Q\ and Qi have been chosen

to be placedinsidea CLB,and a compatible pattemphasbeenfound,it cannotyetbe concludedthat

(/. 9* Qu Qi) is a matchfor the CLB withpattemtypep. This is because wehavenot yetchecked

if (/» 9f Q\* Q2) satisfy the sequential mergeability conditions, or SMCs, which were described

in Section 6.1.1. If we use SMCs as such for this check, we have to find a correspondence from

the input pins of the LUT-section to the inputs of / and g. This is because SMCs are in terms of

the input pins of the LUT-section. In the worst case, all possiblemappingshave to be tried, which

maybe toomuch work. We nowgive an alternate characterization of SMCsin terms of theinputs

of /, inputs of g,Q\, and Q2 that does not require the correspondence. We first assume that the

outputs of the flip-flops in a CLB are available (i.e., they are connectedto the outputs ofthe CLB)

and hence can be connected to the logic inputs {a,b, c,d,e] of the same CLB using the routing
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resources external to the CLB. Then we characterize the case when the flip-flop outputsare not

available at the CLB outputs. Note that the availability offlip-flop outputs is a pattern-dependent

property. Forexample, in pattem 20, the flip-flopoutput is available,whereas in 14, it is not. Given

a pattemtype, the corresponding characterization shouldbe checked. That is why the mergeability

check in Figure6.18 takes p as an argument.

Proposition623 Given that theflip-flop outputs are available, thefollowing areequivalent:

A. Flip-flops Qi andQ2 are assignedtoQX and QYrespectively, and f andgsatisfysequential

mergeability conditions.

B. I. W(f)\<4,\o(g)\<4,and

2. LetN be thenumber offlip-flops in the CLBwhose outputs aretruly being usedbythe

LUT-section.5 Then

(a) ifN = 0,\o(f)Uo(g)\<5.

(b)ifN = I,\o(f)U(T(g)\<6.

(c) ifN= 2,for i = l,2, define

FLAGj,i = 1 ifQi e o(f), elseFLAG},i = 0,

FLAG9ti = 1 ifQi € cr(g), else FLAGg%i = 0.

LetSUM = E, FLAGfj + £, FLAGg,i.

Then,

W(f)Uo(g)\<
7 if SUM = 2

6 otherwise.

Notes:

• Any of Q\ and Q2 may be NIL.

• In 2 (c), since N = 2, SUM > 2 always.

Forthe proof, we will need the correspondencebetween the inputs pins ofthe LUT-section

and the inputsofthe functions placed on the LUT-section. The following formalism is developed

with that aim in mind.

sFor example, if the outputs of the CLB flip-flops realize functions Q\ and Qz, but only Q\ appears ine(f) u <r{g),
then N = 1.
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Mapping inputs of LUTf and LUTg to inputs ofthe functions

1. Given a partial mapping p from A to B, and S C A,

p(S) - {y\v - P(x)ixe Sand p(x) is defined}

Weshall denote p(A) as ImA(p), and if it is clear which A we have in mind, we will simply

write Im(p).

2. Giventwo (partial) mappings n and 7, theircomposition is defined as (7 0n)(x) = 7(7r(a?)),

if 7r(x)and y(x(x)) are defined. Otherwise, it is undefined.

Let P = {a, b,c, d,e, QX, QY} denote the set of inputpins of the LUT-section, and Pf (Pg) the

4 input pins of LUTf (LUTg). To address the problem of placing two Boolean functions on the

LUT-section, we define two mappings 7 and w.

1. If a Booleanfunction / is placedon the LUT-section, the partialmapping7/ is from the set

of inputpins ofthe LUT-section to the setof inputsof /, i.e., from P to o(f). Let x e P. If

7/ is defined at x, thenpin x of the LUT-section is tiedto the input7/(z) of /. Otherwise, x

is not connected to any input of/. *

Example 6.2.1 Let f = A'BC + D. Then o(f) = {A, B, C, D). If f is to beplaced on

the LUT-section, wecan define 7/(a) = 4,7/(6) = D,ij(c) = B,~if(d) = C. This asserts

thatpins a, b,c,and d ofthe LUT-section shouldbe tiedto theinputs A, D, B, and C off.

If twoBooleanfunctions / andg areto be placedon the LUT-section, we can similarlydefine

7 from P to o(f) Uo(g). This is shownin Figure6.19.

2. n = (7tf, kg) is a mapping defined from Pf and Pg, the input pins of LUTf and LUTg

respectively (i.e. pins 1,2,3,4 in Figure 6.3), to P. This mapping specifies the selection at

the multiplexors of Figure 6.3, and is shown in Figure 6.19. We shall display irwith a table.

Example 622 The table

function

F

G

1

a QX c d
a b QY e

means thatfor LUTf, pin 1 is tiedtopin a ofthe LUX-section, pin 2 to QX,pin 3 to c, and

pin 4 to d. Similarly,for LUTg,pin 1 is tiedtopin a,pin 2 to b,pin 3 to QY, andpin 4 to e.
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Figure 6.19: Mappings it and 7

From SMCsandFigure 6.3,it is clear thatfor 7r = (wp, kg) to bevalid, necessarily

ttf(1) = *g(1) = «; tf(2),ttg(2) € {b,QX,QY}; (6.3)

*f(3), iro(3) € {c,QX, QF}; ttf(4), ttg(4) € {d, e} (6.4)

Without lossof generality, wecanassume that ttf(4) = d, 7tg(4) = e. This is because if pin

4 of LUTf and pin 4 of LUTg are tied to different external inputs x and y G o(f) u o(g)

respectively, define 7(d) = x, and7(e) = y, andif to the sameexternal inputx, connect d

and e pins to x. In other words, set 7(d) = 7(e) = x.

In the course of determining if two functions / and g can be mapped to jF and G

respectively of the LUT-section, we initially assign some inputs of / and g to some pins of the

LUT-section, and some pins ofthe LUT-section to some pins of LUTf and LUTg. In other words,

the mappings 7 and ir are partially determined. It is convenient to display this information in a

composite x - 7 chart.

function

Example 623
1

F a(A) QX(B) c d
G a(A) b QY e(C)

where A,B,C € o(f) Uo(g). Then, inaddition to what the previous table conveyed,

thistablesays thatpin a is tiedtoA, QX to B, ande to C, i.e., 7(a) = A,*y(QX)= B, 7(e) = C.

Nothing is said about7(6), 7(c), 7(d), and*i(QY).

We characterize the sequential mergeability conditions in terms of the existence of the

mappings t and 7.
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Proposition 6.2.4 Thefollowing are equivalent:

1. Flip-flops Q\ andQ2areassignedtoQX andQY respectively, andf andg satisfysequential

mergeability conditions.

2. There existpartialfunctions 7tf, kg, and7 such that (y ° *f)(Pf) 2 <?(f), (l ° ^g)(Pg) 2

o(g), where

(a) ttf, kg satisfy (63) and (6.4),

(b) i(QX) = Qx ifQi is not 'NIL andQx € o(f) Uo(g), and

(c) -r(QY) = Q2 ifQ2 is not 'NIL andQ2 € o(f) Uo(g).

Note the following conventions:

1. IfQi is 'NIL', i(QX) is undefined. Sameholds for Q2.

2. If Q\ is not 'NIL', but Q\ &a(f) Uo(g), i(QX) isundefined. This is primarily because we

assumedthat 7 is from P to <r(f) U a(g). Same holds for Q2.

Sketch of Proof The second statement is amathematicalway of saying that we can connect the set

of pins Pf and Pg to the set of inputs of / and g respectively throughthe pins of the LUT-section

suchthat no pin of LUTf, LUTg, and LUT-section is connected to two different pins/inputs. At

the same time, the conditions in (6.3) and(6.4) are satisfied. These conditions representexactly the

choicesthat areallowedinside the LUT-section through the use ofthe multiplexors, i.e., the SMCs.

•

Proof (of Proposition 6.2.3) (A =* B): Because the CLB is symmetric, we can assume that /

is mapped to F and g is mapped to G. From Proposition 6.2.4, there exist mappings 7, xp, kg

satisfying (6.3) and (6.4), where i(QX) = Q\, i(QY) = Q2 (if Q\ is NIL, i(QX) is undefined).

From SMCs (or Figure 6.3), it canbe seen thatcondition 1 is met, i.e., |<r(/)| < 4 and

W{g)\ < 4. To see that condition 2 is met, we do a caseanalysis on N.

(a) N=0: pins QX andQY ofthe LUT-sectionare not being trulyused by either LUTfor LUTg.

We can, then, safely assume that Im^p) C {a,b,c,d,e}, and Im(wG) C {a,b,c,d,e}.

Im(ir) = Im(7rF)Ulm(TrG) C {a,b,c,d,e}. Sincei(Im(7r)) = o(f)\J<r(g),and |7(T)| <

\T\ forany T C {a, b, c,d,e,QX,QY], we get \a(f) Ua(g)\ < 5 (by letting T = Im(ir)),

which is exactly the condition 2 (a).
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(b) N = l: let Qx be the flip-flop output being used in o(f) Uo(g). This means thatQ2 is not

being used in o(f) u o(g). Since Q2 is assigned to QY, we can assume, without loss of

generality, thatQY £ Im(ir). Then, Jm(7r) C {a, b,c,d,e,QX}. Using similar arguments

as in (a), we get \<r(f)u o(g)\ < 6.

(c) N =2: We do a case analysison StfAf, where2 < SUM < 4.

- SUM = 2: It is always true that Im(w) C {a, b,c, d, e, QX, QY}. It follows that

W/)U<r(<7)|<7.

- SUM = 3: Without loss of generality, / uses both Qx and Q2, and g uses Qx. If we

decide to tie either Qx or Q2, say Qx, toy 6 {a,b,c,d,e} (using routing external to

the CLB - we can do so since the flip-flop outputs are available), we are done, since

7(y) = l(QX) = Q\ (here we used die fact that QX corresponds to Qi), and hence

|cr(/)u o(g)\ < 6. Otherwise, if neither Qx norQ2 is tied to P, both 6,c £ Im(irp).

This is because / is using both Qx and Q2, which is possible only if kf(2) ^ 6 and

ffF(3) # c. Similarly, either 6 or c £ tg). Then, either 6 or c £ Im(ir). Hence

W(f)Uo(g)\<6.

- SUM = 4: Same argument as for SUM = 3.

(B => A): Because of symmetry, we assume, without loss of generality, that / is mapped to F, and

g is mappedto G. Hereafter, fandF will be usedinterchangeably, andso will g and G.

The proof is constructive; it provides the mappings7 - from the pins ofthe LUT-section

to o(f) u o(g), and 7r = (ttf, *g) - from Pf and Pg to the pins ofthe LUT-section. Tb prove that

/ and g satisfy SMCs, it follows from Proposition 6.2.4 that it is enoughto show the existenceof

these mappings.

In the proof, we will repeatedly use the fact that given two sets A and B,

\AUB\ = \A\+ \B\-\AnB\ (6.5)

Our strategy to determine 7 is as follows.

1. If Qx or Q2 appear in o(f) Uo(g), we assign them to certain pins ofthe LUT-section. This

partially determines 7.

2. Then, we construct three ordered lists Lj, Lg, and Lc (C for common), each being a list of

pinnames from {a, b,c,d, e}. The lists tell the order in which the function inputs are to be

assigned to the pins ofthe LUT-section.
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3. Next, we assignthe set of common inputs C = a(f) n a(g) to the pins ofthe LUT-section

using the orderin Lc. If an assigned pin is present in £/ or Lg, it is deleted therefrom.

4. Now, we startwith the remaining(unassigned) inputs of / andassign them to the (unassigned)

pins in the list £/. We delete the assigned pins from Lg.

5. Finally, we assignthe unassigned inputsofg using Lg in a similarfashion.

A few remarks are in order here.

(a) An entry {d, e} appearing in Lc meansthatboth d ande are to be tied together to the same

common input of / and g. Similarsemantics hold for {6, c}.

(b) Lg is not really needed; in the last step of our strategy, we can assign the remaining inputs

of g in any order as long as we assign these inputs to unassigned pins only. For the sake of

clarity, we explicidy give Lg.

The proof is by a case analysis on N.

1. N = 0: Then \a(f) Uo(g)\ < 5. The lists are as follows:

Lc = abc{d,e}

Lf = dcba

Lg = ecba

We consider sub-cases depending onthe value of \C\ = \<r(f) n o(g)\.

(a) \C\ = 0: From (6.5), |a(/)| -f- \a(g)\ < 5. Since o(f) and o(g) are disjoint, it canbe

easily checked that for all |<r(/)| and |^(^)| satisfying |a(/)| + \o(g)\ < 5, \o(f)\ < 4,

and \o(g)\ < 4, a valid pin to input assignment can be obtained. For example, if

|<r(/)| = 2 and \v(g)\ = 3, tie the two inputsof / to pins d and c - the first two items

on Lj, and then tie the inputs of g to pins e, 6, and a. Note that after having assigned

pin c to an input of /, we cannot use it for any input of g. Also note that although a

is common to both LUTf and LUTg, the input connected to a will not appear in the

expression realized by F.

Comment: Had we arbitrarily assigned inputs of / to the pins of the LUT-section, a

matchcouldhavebeenmissed. For example, consider/ andg suchthat N = 0, o(f) =
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{V, W,X}, o(g) = {Y, Z}, and \C\ = 0. fandg satisfy SMCs - in fact, we candefine

7 as: 7(d) = V,*f(c) = W,i(b) = X,i(e) - Y,*f(a) = Z. Then we have a natural

choice for tt: ttf(1) = tg(1) = a,*F(2) = &>*\f(3) = c,7tf(4) = d,7TG(4) = e;

othervalues can be set arbitrarily. This is avalid assignment. However, had we defined 7

as: 7(a) = V,i(b) = W,i(c) = X, theneither 7(d) = Y and 7(e) = Z, or 7(d) = Z

and 7(e) = Y. In eithercase, we will not find a valid match, since pin 4 of LUTg

cannot be connected to both d and e (using map 7tg)

(b) |C| = 1: We will assign the commoninputto pin a, the first item in Lc. Then, fandg

have at most 3 unassigned inputs each, and a total of at most 4 unassigned inputs. Once

again, it is easy to see that in all cases we get valid 7, rrp, and 7rG.

(c) Thecases \C\ = 2, \C\ = 3, and \C\ = 4 are exactly similar.6

2. N = 1: Then |<r(/) Ucr(p)| < 6. Let Qx be the flip-flop outputthat appears in o(f) Uo(g).

Two cases are possible:

(a) Qx occursonly in one function, say /. We let the intemal feedback ofthe CLB through

QX provide Qx at pin 2 of LUTf. In other words, -y(QX) = Qx, ttf(2) = QX. We

can safely eliminate QX and QY from considerationat pins 2 and 3 of LUTg and pin

3 of LUTf. Then the rr - 7 chart looks like:

function 1 3 4

/ a QX(Qx) c d

9 a b c e

The lists are:

Lc = ac{d,e}

Lf = dca

h 1 — ebac

(b) Qx occurs both in / and g. We assign Qx to QX, and QX to pin 2 of LUTf and pin 3

of LUTG; i.e., i(QX) = Qx,*f(2) = ?tg(3) = QX. Then the 7r - 7 chart looks like:

function 1

o QX(Qx) c d
a b QX(Qx) e

6For therest of theproof, wejustgive lists Lc,Lj, and Lg, and leave it tothereader tomakesure that for all possible
values of \C\, a valid assignmentexists.
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The lists are:

Lc = a{d,e}{b,c}

Lj = cda

Lg = bea

.3. N = 2. Let Qx, Q2 be the outputs of the flip-flops. We have three cases:

(a) SUM =2: Then \o(f) U a(g)\ < 7. There are two sub-cases:

i. Qx andQ2areusedby different functions. Letus assume,withoutloss ofgenerality,

that Qx occurs in o(f), and Q2 in 0(g). We assign Qi to pin QX, and QX to

pin 2 of LUTf- Similarly, assignQ2 to pin QY, and QY to pin 3 of LUTg; i.e.,

l(QX) = QxMQY) = Qi,*f(2) = QX,nG(3) = QY. The ?r - 7 chart looks

like

The lists are:

function 1

a QX(Qi) c d
a 6 Q^(Q2) e

Lc = a{d,e}{6,c}

iy = cda

Lg = 6ea

ii. Qi and Q2 are used by the samefunction, say /. We set i(QX) = Qi,7(QF)

Q2,tf(2) = QA", tf(3) = QY. The 7T - 7 chartlooks like

The lists are:

function 1

/ a QX(Qx) QY(Q2) d
9 a b c e

Lc = a{d,e}

Lj = da

Lg — bcea

(b) SUM = 3: \o(f) U o(g)\ < 6. Without loss of generality, we assume that Qx €

o(f) n a(g) and Q2 € o(f) - <r(g). We set i(QX) = QiMQY) = Qi^f(2) =

7tg(2) = QX, 7tf(3) = QY. We thenhave the following w - 7 chart:
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function

The lists are:

1

a QX(QX) QY(Q2) d
a QX(QX) c e

Lc = a{d, e}

Lj = da

La = eca
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(c) SUM =4: Then \o(f) Uo(g)\ < 6. For the first time, we makeuse ofthe assumption

that the flip-flopoutputs areavailable andhence can be tied to logic pins. In fact, we tie

Qx to pin 1 of both LUTf and LUTg. Then we tie Q2 to pin 2 of LUTf and pin 3 of

LUTg; i.e., 7(0) = Qul(QY) = Qi,*f(2) = ttg(3) = QY. We havethe following

7r - 7 chart:

function 1

/
9

a(Qi) Q^(Q2) c d
a(Qx) b QY(Q2) e

The lists are:

Lc = {b,c}{d,e}

Lj = dc

Lg = eb

Remarks:

1. Ifneither ofthe flip-flop outputs areavailable, only condition 2 (c) ofProposition6.2.3 needs

to be changed. It becomes "if N =2, \<r(f) Uo(g)\ < (9 - SUM)."

2. Ifone flip-flop output is availableandthe other is not, condition B ofProposition 6.2.3 remains

unchanged.

3. The preceding characterizations use phrases like "given that the flip-flop outputs are avail

able". What if only one flip-flop is to be placed inside the CLB? In that case, N < 1. Then,

only the conditions 2 (a) and 2 (b) apply. From the preceding remarks, these conditions

remain same for N < 1, irrespectiveofthe availability ofthe flip-flop output.
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4. After a match has been selected for the final implementation, the correspondence between

the LUT pinsand the function inputs is needed to determine thenetiist. A by-product ofthe

proofsofthe abovecharacterizations is a fastalgorithm fordeterminingthis correspondence.

We identify all the pattems that can be matched against the (f,g, Qx,Q2) combination,

andcreate the corresponding matches. If no pattemsmatch,this combination is rejected. We repeat

this process for all combinational function pairs / and g in the network rj.

We now illustrate the match generation process.

Example 6.2.4 Let f and g be twofunctions in rj, and let fL denote the latched value off. Let

f = abcQ

g = c+d+e+Q

Q = fL

Let usconsider (f,g,Q, NIL) asa candidateforthe matches. Note that \<r(f)\ < 4and\a(g)\ < 4,

so the condition B 1 of Proposition 623 is satisfied. In Proposition 6.23, N = 1. Since

W(f) Uo(g)\ = \{a,b,c,d,e,Q}\ = 6, (f,g,Q,NIL) satisfies 2(b) and hence the sequential

mergeability conditions. From remark 3 itfollowsthat the same characterization holds irrespective

ofwhether theflip-flop output isavailable. Next, we identifyallpossiblepatterns that match against

(f,9-> Q> NIL). Only the patterns that use F, G, and exactly one flip-flop need be considered.

It turns out that three matches are possible, as shown in Figure 620. On the other hand, if

(f, g, NIL, NIL) is consideredas a candidate, nomatches are generated. This is because N = 0,

andfrom Proposition 6.23 itfollowsthat tosatisfy the mergeability conditions, \o(f) Uo(g)\ must

be at most 5.
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Selecting a Minimum Subset of Matches

Having generatedall the matches, we are interested in selectinga minimum subset S of

these, becauseeach match corresponds to a CLB.S shouldsatisfythree types of constraints:

1. Covering constraints: Eachnodeof the network, i.e., combinational or sequential (flip-flop)

node, shouldbe covered by somematchin S. A node is covered by a match if it is mapped

to either F, G, QX, or QY ofthe CLB.

2. Implication constraints: If a match is in S, eachexternal inputto the match(i.e.,the inputof

a combinational functionor a flip-flop ofthe matchthat is connected to somepin a, b,c, d,e,

and DIN) shouldbe either a primaryinput or an outputof some match in S.

3. Output constraints: Each primaryoutputof the networkshould be an output of some match

in«S.

As mentionedin Section3.4.1, the covering constraints are subsumed by the implication

and the output constraints, and stricdy speaking, are not needed. However, the heuristics tend to

work better if these constraints are explicitly added in the formulation.

This is once again a binate covering problem and we use algorithms of Section 3.4.1.

If the coveringproblem is solved exactly, we wouldsolve the mappingproblem optimallyfor the

given k-feasible network rj (and not for the functionality represented by rj).

Proposition 6.2.5 Given a feasible sequential network rj, the procedure mapjogether gives the

optimum solution to the technology mapping problem for Xilinx 3090 architecture,1 provided it

employs a complete set ofpatterns (say ofFigure 6.6) and an exact algorithm to solve the binate

coveringformulation.

6.2.2 mapseparate

Though in theory the optimum solution can be computed by mapjogether, in practice

it is a computationally infeasible exercise. In addition, the number of matches and therefore the

size of the binatecovering matrix B is so large (seeTable 6.1) that eventhe heuristics take a long

time. One way of speeding things up is by introducing a shift in the paradigm. Instead of taking

a global view of the network, in which the combinational and sequential elements are considered

simultaneously, we view the networic to be composed of combinational and sequential elements.

7without the capability of option 1(c)of Section 6.1.1
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Firstwe map the combinational logic nodes onto the CLBs andthen attemptthe best placement for

the flip-flops. This approach is the most natural extensionof mis-fpga to sequential mapping.

Given a fc-optimal networic rj, the algorithm works as follows.

1. It first mapscombinational logic onto CLBs. This is doneby running mergeon the combina

tional subnetwork of rj(this subnetwork is obtainedby ignoringthe flip-flops). As explained

in Section 3.7.1, this identifies the maximum number of pairs of functions that satisfy the

combinational mergeability conditions (CMCs) and assigns each pair to a different CLB.

Eachunpaired functionis assignedto anew CLB.

2. It then assigns the flip-flops of the sequential networic to CLBs. An attemptis madeto assign

maximum numberof flip-flops to the CLBs usedin the first step,so thatminimum numberof

new CLBs is used. Each flip-flop is assigned to exactly one CLB. Two methods areused to

solve the assignment problem. One is based on a networic flow formulation and the other is a

greedy heuristic. We describe them next.

A Network Flow Formulation

As Figure6.6 shows, there aremany possible ways in which a flip-flopcan be used inside

a CLB. In this discussion, we will consider only a proper subset of these ways (or patterns). We

will show that using this subset, the optimum assignment of flip-flops to CLBs can be obtained in

polynomial time using networic flow. We impose that a flip-flop is assigned to at most one CLB.

First we define the set of patterns we will allow ourselves. Let C be the set of CLBs in

use after assigningcombinational functions (i.e., after step 1 of mapseparate). Any CLB j e C

uses only the combinational function(s) and has both flip-flops unassigned. Given a flip-flop i of

the networic and a CLB j € C, we considerthe following pattems:

• Type 1: It exists if and only if j has a combinational block / that is connected to the input

of i and / is a single-fanout node. Then, i and j form a pattern as shownin Figure 6.21 (1).

Note that g may or may not be present.

• Type 2: It exists if and only if j has a combinational block / to which i is fanning in and i

fans out to node(s) in j only. Then i and j form a pattem, as shown in Figure6.21 (2). Once

again, g may or may not be present.

• Type 3: It exists if and only if j has a single combinational function. Then i and j form a

pattern as shown in Figure 6.21 (3).
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Figure 6.21: Pattems used in the maxflow formulation

• Type 4: It exists if and only if j has a single combinational function / such that number of

inputs of / is at most 4. Then i and j fonn a pattern as shown in Figure 6.21 (4). Here i is

placed on j using the unused combinational function ofthe LUT as a buffer. Note that in the

type 3 pattem, DIN was used to place i on the CLB.

Definition 623 A flip-flop i of the network and a CLB j € C are associated by pattern k,

1 < k < 4, if i can beplaced on j usinga pattern oftype k.

The above types define how a single flip-flop can be placed on a CLB. However, each

CLB canaccommodate two flip-flops. This is handled by takingcombinations ofthe above pattem

types for the two flip-flops. Forexample, two flip-flops ix and 12 may be assigned to the same CLB

using pattem types 1 and 2 respectively. However, not allcombinations are allowed. Forexample,

two flip-flops ix and ii cannot be assigned to the same CLB using pattern types 2 and 3, since it

implies an overloading of DIN. We now give a complete list ofthe constraintsassociatedwith the

problem:

1. Each flip-flop is assigned to at most one CLB in C.
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Figure 6.22: Constructing maxflow networic

2. EachCLB canaccommodate at most 2 flip-flops.

3. For a CLB j e C, there can be atmostoneassignment of type k for each k e {2,3,4}. Two

assignmentsof type 2 or of type 3 imply anoverloading of DIN, whereas two assignments

of type 4 imply use of three outputs 0 was alreadyusing one output).

4. A CLB j e Ccannot getassigned to two flip-flops ifoneassignment is oftype 2 and theother

of type 3 (otherwise DIN will be overloaded).

5. Similarly, j cannotget assigned to two flip-flops if one assignmentis of type 3 andthe other

of type 4 (otherwise j will use 3 outputs).

The problemis to assignthemaximum numberofflip-flops ofthe sequentialnetworkto the

CLBs inC usingonly thefourpattern typessubjectto theabove constraints. We show how to solve

this problem exactly using maximum flow or maxflow. We construct a maxflow network (a direaed

graph) as follows: thereis avertexw, foreachflip-flop i andavertexvj foreachCLB j € C. For each

i and j thatare associated withamatchoftype 1,there is anedge from «,- to vj (Figure 6.22(A)). For

aCLB j, let lyi»/j3. and Ij* bethesetsof flip-flops associated with j corresponding tomatch types2,

3, and 4 respectively. Addvertices Wj2, w^, wj4, xj , yj, and zj. For each k £ {2,3,4}, add anedge

(ut,wjk) if flip-flop t € Ijk. Add edges (wj2, yj),(wj3, xj), (wj4, zj), (xj, yj), (xj, zj), (yj, vj),

and (zj, vj). This is shown in Figure 6.22 (B). If j contains two combinational fimctions, the
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Figure 6.23: Maxflow network for a simple circuit

structure reduces to Figure 6.22 (Q. This is because edges of type 3 and 4 exist only if CLB j has

one combinational function. Finally, addtwo distinguishedvertices 5 and t, with an edge from s to

each «j and from each vj to t. All the edgesofthe networkhave a capacityof 1 each,except edges

(vj, t), which havea capacity of 2.

A capacity of 1on (s, u,) corresponds to thecondition that flip-flop t cannot be assigned

to more than one CLB, and a capacity of 2 on (vj, t) restricts the maximum number of flip-flop

assignments to aCLB to two. The structure ofFigure 6.22(B) corresponds exactlyto the constraints

3,4, and 5. Vertices Wj2, wj^,and Wj4 (along with the capacities of 1 on edges fanningout of them)

serve to satisfy constraint 3, xj and yj - constraint 4, and xj and zj - constraint 5. Note that xj is

introduced since type 3 association does not go with either type 2 or type 4.

Example 6.2.5 We illustrate the above construction for a simple circuit in Figure 6.23. In this

example, there are 4 primary inputs a,b,c, and d, and one primary output h. CLBs 1 and 2
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implement the three combinationalfunctions f,g, and h. Flip-flops 1,2, and3 are to be assigned

to the CLBs. Note thatnomatch of type1 exists for CLB 1, since f is a multi-fanout node: itfans

out toflip-flop I and CLB 2. Recallfrom thedefinition of a type I patternthat the combinational

function ofthe CLBfeeding theflip-flop should be a single-fanout node. Similarly a match of type

2 betweenflip-flop 3 and CLB 1 does not exist,sinceflip-flop 3fans out to CLB 2 as well. All other

possiblematches existfor CLB 1. For CLB 2, type 1 match exists withflip-flop 2. Type 2 match

cannot exist for fanout reasons. Also, since CLB 2 hastwofunctions g and h, it cannot have any

type 3 or type 4 match. The resultingflow network is shown.

After running a maxflow algorithm, if there is a unit flow on the edge (s, ui), flip-flop i

hasbeenassigned to aCLB. This CLB is determined by traversing the uniquepathfrom ut- to some

vj such that there is a unit flow on each edge ofthe path. Hence the maximum flow corresponds to

the number of assigned flip-flops. The unassigned flip-flops are placed in additional CLBs - two in

each CLB.

For the circuit of Figure 6.23, we get a maxflow of 3. The flip-flop 2 gets assigned to

CLB 2, and flip-flops 1 and 3 to CLB 1.

Therunning time of thealgorithm is0(n3)where n isthetotal number of combinational

and sequential elements in the sequential networic.

Remarks:

1. Sometimes it may be beneficial to replicate flip-flops, i.e., assign one flip-flop to more than

one CLB. We do not know how to solve the problemin polynomial time if the condition of

unique assignment of a flip-flop is relaxed and replication of flip-flops is allowed.

2. We do not know how to obtain a network flow formulation with a set of patterns largerthan

the one being used currently.

3. Although there arejust 4 pattern-types corresponding to assigningone flip-flopto a CLB, an

assignment of two flip-flops to aCLB results in a larger pattern set.

A Greedy Assignment

Inthismethod, flip-flops are assigned toCLBs oneby one. For a flip-flop FF, withinput

D and output Q, we consider two cases:

• If there is no combinational block with output D (i.e., either a primary input or a flip-flop

directly feeds FF), search for a CLB with exactiy one output unused. If found, map FF
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Rgure 6.24: Mapping flip-flops in thegreedy heuristic for mapseparate

using the DIN input of the CLB. Otherwise, assign a fresh CLB to FF using one of the

LUT-section functions as a buffer.

• Otherwise, there is a combinational block g in the network, feeding D. Let this block be

mapped to a CLBC in step 1. We thenconsider the following twocases:

- g is not being used elsewherein the circuit (i.e., g has a single fanout - to FF): at least

one flip-flop in the CLBC is unused. Usethis flip-flop for FF (Figure 6.24A).

- Otherwise, g fans out to other nodes (and hence should remain an output of the CLB

C). If onlyone output of C is being used (forg), tie DIN inputof the CLB C to g

and map FF to one of the flip-flops (Figure 6.24 B). Anotheroption for this case is to

routeg as shownin Figure 6.24C. Otherwise (i.e., if bothoutputsof C arebeingused),

search for a CLB with oneoutput unused. If found, map FF using the DIN input of

the CLB. Otherwise, use a fresh CLB for FF.

6.2.3 Comparing mapjogether and mapseparate

1. Pattern set: mapjogether uses a complete set of patterns whereas the mapseparate for

mulations, both the network flow and the greedy, use a smaller set. It may be possible to

incorporate an enlarged set ofpattems in the greedy heuristic. However, it is not clear how to

obtaina networic flow formulation witha set largerthantheone beingusedcurrently.



246 CHAPTER 6. MAPPING SEQUENTIAL LOGIC

Each pattem type in the flow formulation is restrictive. For example, the pattern type 1 in

Figure 6.21 restricts the number of fanouts of / to 1. The pattems used in mapjogether

impose no such restriction.

2. Feedback inside the CLB: mapseparate does not exploit the feedback inside the CLB. It

ignores QX and QY inputs to the LUT-section. Consequently it is incapableof realizing a

pairof functions with more than5 inputs with one CLB. mapjogetherexploits this feedback.

3. Logic replication: mapjogether allows replicationofcombinational functions and flip-flops,

whereas mapseparate does not allow any replication. Hence the solution space is larger for

mapjogether.

4. Quality: If the binate covering problem is solved exactly, mapjogether gives an optimum

solution. However, the heuristics for the problem arenot known to come close to the optimum.

Moreover, the heuristics are generic, in the sense that they do not exploit the features of the

architecture. On the contrary, the mapseparate approach decomposes the mapping problem

for the sequential network into two sub-problems - combinational pairing and assignment of

flip-flops. It does reasonably well on both of them.

6.3 Experimental Results

The algorithms presented above have been incorporated inside sis [77] and are named

sis-fpga. The experimental set-up is as follows. We use finite statemachine benchmarks in the kiss

format obtained from MCNC [90]. We apply state-assignment using jedi [49] on these symbolic

machines, except on s349, s382, s444, s526, s641, and s838, for which we did not have kiss

description and had to start with the availableencoded networks. The resulting sequential network

is then optimized for minimum number ofliterals by standard methods [77] - we ran script.rugged

twice with atimeout limit of1000seconds foreachrun.The optimized network is used asthe starting

point forboth sis-fpga and XNFOPT. In jedi, we chose minimum-lengthencoding over one-hot,

since the networks obtained after one-hot encoding and subsequent optimization and mapping give

poorerresults (see Section 6.3.1).

For XNFOPT, the number of passes isset to 10.8 For sis-fpga, first fc-optimal networks

(k - 4,5) areobtainedusing the algorithmof Section3.5. The scriptused had three steps:

8The benchmarkkeybh&d tobe interrupted after 9 passes, since XNFOPT was taking toolong.
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example FFs sis-fpga (4-optimal I sis-fpga (5-optimal XOPT

comb,

nodes

tog. sep. comb,

nodes

tog. sep.

CLBsmatches CLBs CLBs matches CLBs CLBs

bbara 4 18 551 11 12 15 235 13 12 11

bbsse 4 37 1206 21 26 29 344 25 25 25

bbtas 3 7 251 6 5 5 60 4 4 5

beecount 3 12 310 8 7 9 126 8 7 7

dkl4 3 24 447 16 16 19 198 16 17 18

dkl5 2 17 209 11 12 7 30 7 7 9

dkl6 5 82 4019 47 60 49 438 47 48 66

dkl7 3 14 254 9 10 6 54 6 6 8

dk27 3 5 198 5 3 5 198 5 3 3

dk512 4 16 983 10 8 7 90 7 7 7

exl 5 78 3527 46 52 65 1741 49 48 57

ex2 5 42 1908 24 29 29 252 30 29 30

ex3 4 18 526 11 12 11 119 10 11 10

ex4 4 19 780 12 11 16 553 12 11 10

ex5 4 16 586 11 10 11 97 11 10 8

ex6 3 25 746 15 14 21 274 16 15 20

ex7 4 16 520 10 10 10 131 10 10 16

keyb 5 68 2635 40 46 54 736 47 45 54

kirkman 5 53 2717 34 36 '43 972 35 33 37

lion 2 3 53 2 2 3 26 2 2 2

lion9 4 5 146 5 4 5 87 6 4 6

planet 6 186 - - 136 144 3884 125 123 157

si 5 75 3270 46 54 55 534 51 50 73

sla 5 67 2855 38 43 57 1101 49 47 54

s349 15 50 5690 32 26 41 2069 35 29 35

s382 21 49 - - 27 37 3923 37 28 31

s386 5 40 1384 23 25 30 298 26 26 29

s420 5 26 1572 16 15 17 257 16 15 15

s444 21 44 6196 32 26 33 3113 37 27 27

s510 6 109 - - 74 84 1972 73 74 77

s526 21 58 - - 32 43 3826 46 34 35

s641 17 64 - - 36 59 - - 37 46

s8 3 10 219 7 8 8 93 7 7 8

s820 5 95 5032 57 62 77 1494 68 64 80

s832 5 92 4239 67 59 74 1724 61 59 72

s838 32 86 - - 49 59 - - 48 55

sand 5 167 - - 123 133 3081 114 111 138

shiftreg 3 3 72 4 3 3 72 4 3 3

styr 5 142 - - 104 113 2765 98 92 110

tbk 6 68 2161 50 49 55 1101 49 44 60

train4 2 3 53 2 2 3 47 2 2 2

total 1328 1274 1516

subtotal1 1243 1264 1189 1415

subtotal 718 747 771 727 867

Table 6.1: Results for Xilinx 3090 architecture
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example FFs sis-fpga (4-optimal sis-fpga (5-optimal) XOPT

comb,

nodes

tog. sep. comb,

nodes

tog. sep.

CLBsmatches CLBs CLBs matches CLBs CLBs

total

subtotal1

subtotal 718

1328

1243

747

1264

771

1274

1189

727

1516

1415

867

Table 6.2: Summary of results

FFs number of flip-flops
tog. using mapjogether
sep. using mapseparate
comb, nodes the number of feasible functionsin the ^-optimal network rj
matches the number of matches generated in mapjogether
CLBs the number of CLBs in the finalimplementation
XOPT using XNFOPT

spaceout or timeout
total: total number of CLBs for all 41 examples
subtotall: total number of CLBs for exampleswheremapjogether (5-optimal) could finish
subtotal: total number of CLBs for exampleswheremapjogether (4-optimal) could finish

1. Partialcollapse, which includes an initial mapping.

2. If the network is small, collapse it and use Roth-Karp decomposition and cofactoring to search

for a better solution.

3. Partition, with support reduction embedded.

On the ^-optimal network, both mapjogetherand mapseparate algorithms are run. We used the

two-phasebinatecoveringheuristic describedin Section3.4.1 to solve the binate coveringproblem

in mapjogether. We used both networic flow andthe greedy heuristicfor mapseparate (on these

benchmarks,both produce the same results).

Table 6.1 reports the results forsis-fpga andXNFOPT. A summary ofthe results, along

with the meaning of the columns, is given in Table 6.2. A "-" indicates that the program ran out

of memory or exceeded a time-limit of 1 hour. The minimum CLB count for each example is

highlighted. Themapseparate (4-optimal and 5-optimal) andXNFOPT algorithms finished on all

benchmarks. However, mapjogethercouldnot (forboth4-optimaland5-optimalcases). In particu

lar, the benchmarkson which4-optimal finished werea subsetof those on which 5-optimal finished.

The row total is for the complete benchmark set and hence gives results only for mapseparate
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(4-optimal), mapseparate (5-optimal), and XNFOPT. The row subtotal! gives the subtotals for

thoseexamples onwhich mapjogether(5-optimal) finished. Itcompares mapseparate (4-optimal),

mapseparate (5-optimal), mapjogether (5-optimal) and XNFOPT. Similarly, the row subtotal

gives the subtotals for those examples on whichmapjogether (4-optimal) finished. It compares

mapseparate (4-optimal), mapseparate(5-optimal), mapjogether (4-optimal), mapjogether (5-

optimal), and XNFOPT.

Onthe completeset (row total), mapseparate (5-optimal) givesthe best results. It is 16%

better than XNFOPT. However, on examples corresponding to the row subtotal, mapjogether

(4-optimal) is betterthanother methods, being slightly better thanmapseparate (5-optimal) and

17% better than XNFOPT. This improvement is partially due to a better combinational synthesis

done by mis-fpga and partially due to the techniques specific to the sequential synthesis. For

instance, we noticed that on dkl6, just for the combinational subnetworic (5-optimal case), mis-

fpga uses 48 CLBs and XNFOPT 58. When the sequential network is considered as a whole,

mapseparate accommodates all the flip-flops in the 48 CLBs, whereas XNFOPT uses 66 CLBs.

Also, in exampleslike bbsse,exl, ex2, dkI6, keyb, si, sia, ands386, mapjogether achieves lower

CLB counts than all othertechniques. Therefore, for these examples, mapping the combinational

logic and flip-flops at the same time helps.

We see fromthe tablethatthe numberofmatches formapjogether dependsheavilyon k.

The numberofmatches for4-optimal case is muchhigherthan5-optimal(and that is why on many

examples, it runs out ofmemory). It generally implies that the number of CLBs used is less. This

is despite the fact that with k =4 option, the full potential of the architecture is not being tapped,

since the networicdoes not have any functions with 5 inputs.

Comparing 4-optimal and 5-optimal cases for mapseparate, the results aremixed. In the

5-optimal case, there are fewer nodes to start with, but the possibilities of pairing are also lower.

Overall, starting from 5-optimal networks gives 4% betterCLB countthanstarting from 4-optimal

networks.

Finally, comparing the mapjogether andmapseparate, it is seen that the results obtained

from mapseparate (5-optimal) are better than those from mapjogether (5-optimal). But results

from mapseparate (4-optimal) are worse than those from mapjogether (4-optimal). So no one

techniqueis a clearwinner. In principle, if we use anexactbinatecovering method, mapjogether

will be at least as good as mapseparate. This is because there are matches that mapjogether will

detect but mapseparate will not. For example, mapjogether can place some function pairs with a

total of 6 or7 inputsin oneCLB.This is beyond thecapabilities of mapseparate. However, since
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we are using a generic heuristic to solve the binate covering problem in mapjogether, the results \

are mixed.

6.3.1 Different Encoding Schemes

We study the effect of two different schemes: one-hot and minimum length. On the

symbolic FSM description, we used jedi to assign codes either in a one-hot mode (using the -eh

option) or the minimum length mode (default). Then, the experiment was conducted exactly the

same way as earlier, except that mapseparate was used to finally cluster the elements of the k-

optimal networic k = 4,5. The results are shownin Table6.3. Note that many large state machines

used in Table 6.1 are missing. This is because we did not have symbolic kiss descriptions of the

missing machines. It turns out that on the benchmarkset ofTable 6.3, the minimum length encoding

scheme gives better results than one-hot. This is in contrast to the results obtained by Schlag et

al. [75]. Their conclusion was that a one-hot encoding scheme is better than others for LUT

architectures. The anomaly may be due to different encoding techniques - they used MUSTANG

[19], different optimization scripts, and different mapping algorithms. In fact, in their table of

results, we observed that the encoding scheme that yields minimum number of literals also yields

minimumnumber of CLBs. This is expected since most LUT mapping techniques woric on the

representation generated by the optimization phase and group the literals or cubes subject to the

fanin constraint In their experiments, it so happens that one-hot gives minimum number of literals

in most ofthe cases. A detailed study needs to bedone to nail down the exact cause ofthe anomaly.

6.4 Discussion

Wepresentedtwo methods for technology mappingof sequential circuits onto a popular

LUT architecture. Both use a ^-optimal networic as the starting networic. In the first, we consider

combinational logic and flip-flops together for mapping. We formulate this as a binate covering

problem. The secondmethod uses a maximum cardinality matching algorithmto place as many

function-pairs togetheron CLBs as possible; each remaining function is assignedto a fresh CLB.

Flip-flops can then be assigned using either a network flow technique or a greedy heuristic. No

single method does well on all the cases. However, both are better than XNFOPT, a commercial

logic sythesistool for LUTs. On the benchmarkexamples tested,we obtainedaverageimprovement

of about 16%overXNFOPTusingmapseparate, and17%usingmapjogether. This improvement
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example 4-o primal 5-0 ptimal
one-hot min-length one-hot min-length

bbara 14 12 17 12

bbsse 26 26 27 25

bbtas 5 5 5 4

beecount 14 7 16 7

dkl4 26 16 28 17

dkl5 19 12 20 7

dkl6 55 60 56 48

dkl7 16 10 17 6

dk27 6 3 6 3

dk512 16 8 17 7

exl 51 52 51 48

ex2 30 29 31 29

ex3 13 12 13 11

ex4 9 11 13 11

ex5 14 10 13 10

ex6 17 14 19 15

ex7 11 10 13 10

keyb 41 46 42 45

kirkman 36 36 34 33

lion 3 2 4 2

lion9 8 4 10 4

si 74 54 74 50

s386 28 25 28 26

s420 18 15 19 15

total 550 479 573 445

Table 6.3: One-hot encoding vs. minimum-length encoding

one-hot use one-hot encodingin the state-assignment step
min-length use minimum-length encoding of jedi in the state-assignment step
4-optimal obtain 4-optimal network, then use mapseparate
5-optimal obtain 5-optimal networic, then use mapseparate
total sum of Xilinx 3090 CLBcounts over all examples

251
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is partially due to a better combinational synthesis done by mis-fpga and partially due to the

techniques specific to the sequential synthesis we have proposed.

Onecontributionofthis woric is a fastmethodofdetermining whethertwo functions,along

with some flip-flops, canbe placed on a singleXilinx 3090CLB. The correspondence ofthe inputs

of the functions with the pins of the CLB can alsobe found out quickly. Another contribution is

provingthatthereexists acomplete setof 19pattems forthe Xilinx 3090CLB. Finally, we presented

a polynomial-time algorithm to obtain the best assignment of flip-flops after combinational logic

elements had already been placed. However, we restricted ourselves to a subset of pattems and

allowed no replication of flip-flops.

Although specific details ofthe algorithm areworked out for the Xilinx 3090 architecture,

the genericalgorithmspresentedhere can be tailored to other configurations of LUT architectures.

The pattern set will change, and with it the heuristics used in mapseparate. mapjogether will be

the same except for the match generation step, which is pattern dependent. The binate covering

formulation will be solved the same way.

An important issue not considered in this woric is that of starting the machine from an

initial state. This requires a propersetting or resettingof the individual flip-flops in the CLBs. In

the Xilinx 3090CLB, a flip-flop canbe reset, butnot set. Appropriate inverting logichasto be used

for flip-flops that need to be initialized to 1.

This work is a first step towards synthesis ofthe sequential circuits for LUT architectures.

We visualize it as the back-end of a complete synthesis system. The front end is a state-assignment

program targeted forLUTarchitectures. A morethorough studyofvariousstate-assignmentmethods

needs to be done. Of great interest is the problem of balancing the combinational and sequential

components ofthe circuit. Any imbalance will cause moreCLBs to be usedthanare necessary. We

have the following approach in mind to solve this problem.

1. Do the state-assignmentand optimization for minimum combinationallogic, irrespectiveof

the number of flip-flops used. Let us say thatcombinational logic uses CLBs distributedover

c chips.

2. If the flip-flops canbe assigned to the CLBs in the c chips, tenninate. Otherwise, the circuit

is moresequential thancombinationalin nature. Try to reduce the number of flip-flops. One

way ofdoing so is by retimingthe circuit(i.e., moving the latches across combinationallogic)

forminimum number of flip-flops, as proposedby Leiserson et al. [48]. Since retiming does

not touch the combinational logic, the mapping ofcombinational logic is unaffected.
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3. If the flip-flops still do not fit, re-encode parts of the FSM such that combinational logic is

traded for sequential logic.

4. When all else fails, use extra chip(s) to accommodate the flip-flops.

Another important area is that of performance optimization for sequential circuits. One

effort in this direction was by Touati et al. [83], who applied retiming on a circuit mapped on to

3090 CLBs to improve the circuit delay. However, due to lack of room for moving latches in a

mapped circuit, the technique did not give encouraging results.
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Chapter 7

Performance Directed Synthesis

7.1 Introduction

Figure7.1 shows atypical sectionofan LUTarchitecture. The interconnections to realize

the circuit are programmed using scarce wiring resources provided on the chip. There are three

kinds of interconnect resources:

1. long lines: run across the chip; mainly used for clocks and global signals.

2. direct interconnect: connects the outputof a CLB to an input of the adjacentCLB.

3. general purpose interconnect: consists of a grid of horizontal and vertical metal segments

running along the edge of each block. Switching matrices join the ends of these segments.

This interconnection is programmed using pass transistors. A typical block delay in the

Xilinx case is 15 ns. Wiring delay could vary from 2 to 80 ns. The main constraints from the

synthesis viewpoint are:

(a) amaximum numberof inputsto aCLB,

(b) limited wiring resources, and

(c) a limited numberof CLBs on achip (e.g. a Xilinx chip may have around 320 CLBs).

Most ofthe work on synthesis for FPGAs mainly focussed on minimizing the numberof

blocks needed to implement a circuit. In this chapter, we address the problemofdelay optimization

for FPGAs.

The chapter is organized as follows. The development of performance optimization for

LUT architectures is presented in Section 7.2. The tenns used in the chapter aredefined in Section
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Direct Interconnect

Figure7.1: Interconnection structure in an LUT architecture

7.3. Section 7.4 describes our two-phase approach. Results and comparisons on benchmarks are

presented in Section 7.5. Finally, some conclusions aredrawn in Section 7.6.

7.2 History

Most ofthe existing logic synthesis techniques for delay optimization are geared towards

designs without dominant wiring delays ([81, 82]). Consequently, these techniqueseither roughly

approximate or ignore wiring delay. In the case of FPGAs, a significant portion of the delay of a

path from an input to an output can be due to wiring delays. Recently, Pedram and Bhat showed one

way of taking into account the wiring delays [66] while mappinga design into a predefined library

of cells.

7.2.1 chortle-d

In 1991, Francis et al. proposed chortle-d [27], which is level-reducing algorithm for

the LUT architectures. Like chortle-crf, it is based on the concept of bin-packing. It generates

reasonably good solutions in terms of the number of levels of LUTs. But it suffers from two

drawbacks. First, the number of levels alone may not be a good objective function for the minimum

delay. The wiring delays can be unpredictable and can cause the total delay of the placed and

routed implementation to vary significantly, even if the number of levels is kept the same. Second,

it achieves the level-reduction at the expense of extra logic. This typicallyintroduces extra routing
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complexity, leading to additional wiring delays.

7.2.2 mis-fpga (delay)

At the same time as chortle-d, we proposedour performanceoptimizer [64]. It does not

suffer from the abovedrawbacks. We solve the problem by a two-phaseapproach: first, we apply

transformations at the logic level using an approximate delay model andthen, couple timing-driven

placement with resynthesis using a more accurate delay model.

7.2.3 DAG-Map

In 1992, Cong and Ding presented DAG-Map [16], a delay minimization algorithm,

which like chortle-d, addressed only the problem of minimizingthe numberof levels at the logic

level, given an m-feasible networic. The significance of this algorithm is that it generates the exact

minimum number of levels, given the original structure of the m-feasible networic, and the only

transfonnation allowed is node collapsing (this is the delay analogue of the covering problem for

minimum block count, Problem 3.4.1).

7.2.4 TechMap-L

In 1992, Sawkar and Thomas [74] proposed a mapping approach for delay optimization,

in which the delay-critical sections of the area optimized network are remapped using clique

partitioning.

7.3 Definitions

Definition 7.3.1 Apath i -£• j isasequence ofalternating nodes and edges in the graph (network),
starting at the node i and endingat the node j.

We assume that each node ofthe networichas some delay associated with it. Also, arrival

times ai ateachprimary input i andrequired times rj ateachprimary output j are given,indicating

the times at which signal becomes available at the inputs and by which it is required at the output.

These times are derived from the performance constraints on the design. They are then used to

compute the arrival time an and required time rn at each node n in the networic. If arrival times

are not specified for some primary inputs, they are assumed to be zero. Similarly, required times
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at primary outputs, if unspecified,are forced to be the maximum required time of an output. If no

required times are specified, we set the required times of all the outputs to the maximum arrival

time ofan output. A forward trace (from inputs to outputs) of the network gives the arrival time at

each node (i.e., at its output). Similarly, a backward trace ofthe network yields the required time

at each node. We can extend the notion of arrival and required times for the edges of the networic

too as follows. If the delaythroughan edge (n, f°), f° e FO(n), is d, then the arrival timeat the

edge (n, f°) is the an + d, and the required time at (n, f°) is the difference betweenthe required

time at f° and the delay through the node f°. Wecompute the slack *,- at each node (edge) i as the

difference between the required time rt- and the arrival time a, at the node (edge), i.e., $,• = rt - a,-.

A node (edge) is ^-critical if its slack is within eof the most negative slack in the networic.

73.1 Problem Statement

Given a circuit, described in terms ofBoolean equations, the arrival times at the inputs

andtherequired timesat theoutputs, obtainanimplementation on thetarget LUTarchitecture that

meets all the timing constraints with the least block count.

7.4 Approach

We propose a two-phase approach:

Placement-independent(P\) phase: It involves transformations at the logic level, which

are guided by an estimate ofthe final delay.

Placement-dependent (PD) phase: It does a synthesis-driven and performance-directed

placement. Delay models that explicitly take into account the wiring delays are used.

7.4.1 Placement-Independent (PI) Phase

Since wiring delays are important, we may often prefer a trade-off between the number

of levels and the number of nodes and edges.1 In this phase, a standard delay reduction script is

used to obtain a delay-optimized networic. The resultingnetworic is in terms of 2-input gates and

hence is m-feasible (since m > 2). The remaining task is to reduce the number of levels in this

network while maintaining feasibility and with a simultaneous control on the number of nodes and

!Weusethenumber of edges inthenetwork as ameasure ofrouting complexity and hence wiring delay.
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(a) (b)

Figure 7.2: Reducingthe level by collapsing

edges. As we shall see in Section7.5, the following algorithm LUT_reduce_depth achieves the

above objective.

LUT-reduce-depth first finds the critical nodes of the networic t/ by a delay trace. The

delay trace assignslevels to each node. The level of a primary input is 0, the level of any other

node is one plus the maximum levelof its fanins. This delay model is also called a unit delay

model. Then it traverses r\ from inputs and tries to collapse each critical node n into a subset S

of its fanouts. S is the set of those fanouts of n whose level is one higher than the level of n.

If a fanout f° € S remains feasible after collapse (Figure 7.2), or becomes infeasible but can be

redecomposed (e.g., by cofactoring, as shownin Figure 7.3) resulting in reduction of the level of

the fanout, then n is collapsed into it. In both these figures, m is assumed to be 5 and the number

beside a node is its level. If after this first pass through S, there exists some fanout f° into which

n could not be collapsed, the algorithm tries to move some non-critical fanins of n as inputs of

some other non-critical fanins of n. The condition under which this can be done can be derived

from functional decomposition theory, e.g., that of Roth and Karp [36]. This fanin movement was

described in Section 3.3.6. Similar fanin movement is tried at the fanout node f° as well. Such

transformations increasethe likelihood of collapsing node n into f°. The wholeprocessis repeated

until critical nodes can no longer be collapsed. A delay trace using the unit delay model is done

aftereachcollapse, so that the algorithm always operates on correct delay values. Let the resulting

network be rj.

If f) hasa smallnumber ofprimary inputs (sayupto 10), wetrytwootherdecompositions.

We first collapse rj into two levels. We then apply cofactoring and the Roth-Karp decomposition

techniques and delay-evaluate the resultingdecompositions. If either of these delay evaluations is
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(a)

fi f1 f1 f1 Eh h f4 5 %
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Figure 7.3: Reducing the level by collapsing and redecomposing

less than that of rj, the best decomposition is accepted. This final check helps in reducing delay in

many examples.

Since the covering step ofthe BCM phase (Section 3.4.1) reduces the number of nodes,

and often edges, without increasing the number of levels in the networic, the partition routine is

called as the final step. It works by collapsing nodes into their fanouts if they remain feasible after

collapsing. This takes care ofthe collapsing of non-critical nodes.

7.4.2 Placement-Dependent (PD) Phase

The starting network for this phase is the one generatedby the PI phase. Wecombine the

techniques of logic synthesis with a placement algorithm. We model the placement as assigning

locations to point modules on a &by fc grid (in the Xilinx 3000 series, k can take values from 8

to 18). We use a simulated annealing based algorithm for placement. At the end ofthe iterations

at each temperature we identify critical sections that are ill-placed. We use logic synthesis and

force-directedplacement techniques to restructureand reposition these sections. The logic synthesis

techniquesusedaredecomposition mdpartialcollapse. Thesetechniquesarelocal, i.e., theyexplore

only the neighborhood of a critical section for a better solution. The algorithm is summarized by

the pseudo-code in Figure 7.4.

Wenote that this approach can be incorporatedin any iterative placement techniques, like

the force directed methods, or resistive networicmethods. We chose simulated annealing because

we wanted to model the simulated-annealing based place and route tool of Xilinx.
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/* a = temp factor (a<l); T = current temperature;

Ti = starting temperature for logic synthesis;

m = number of moves per temperature; */

{

T = start-temp;

while (T > final-temp) {

j = 0;

while (j < m) {

get two random locations for swap;

evaluate 6c, change in cost;
_6c

accept swap with probability e t );

if swap accepted, do delay trace;

i++;

}

if (T <Ti) do logic resynthesis and

replacement for delay;

T = T * a;

}

}

Figure 7.4: Simulatedannealing for placementand resynthesis



262 CHAPTER 7. PERFORMANCE DIRECTED SYNTHESIS

Delay Models

The following assumptions are made:

1. There is no capacitance seen into an input pin of a block. This is as per the Xilinx manual

[88].

2. We do not consider the non-linearities of the pass transistors used to connect two routing

segments.

3. We ignore the output resistance of each block (simply because we do not know it). This is

consistent with the way the Xilinx manual suggests the computation ofthe delay through each

edge [88].

4. The delays from a primary input to a node and fiom a node to a primary output are ignored

for want ofproper pad placement.

The delay computation is done as follows. The delay through each block is a constant,

called the block delay. Tb compute the wiring delay,we use two models: Elmore delay model and

Rubinstein-Penfield-Horowitz delay model (RPH) [67].

1. Elmoredelay model: We consider each edge of a net independently. In other words, there is

no affect of other fanouts of n on the delay of the edge (n, f°), f° e FO(n). The model is

simplistic but fast to compute. The delay d through the edge (n, f°) is the time signal takes

to reach from zero volts to vt of its finalvalue at the node f°. The starting time is the time

when the signal becomes availableat the drivernode n. The delay d is given by

d=RC\og—^—
\-vt

where R and C are the resistance and capacitance of the edge (n, f°) respectively. We

compute the RC of the edgeby first computing the length / of the edge. We then compute

RCbyI2 x rcpuJensquared,where rcpuJensquared is thefactor used toconvert from

unit of length squared to unit of delay.

2. Rubinstein-Penfield-Horowitz delay model (RPH): The net driven by the node n is treated

as an RC-tree. We construct a minimum length spanning tree connecting node n and all

its fanouts. Each edge in the spanning tree is modeled as a lumped RC-line. Two bounds

are calculated for each edge (n, f°): a lowerbound and an upper bound. The formulae for
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computation may be found in [67]. The upperbound is used as the delayof the edge. This

model takes into account the loadingeffect due to other fanoutson a fanout f°. A problem

with this model is that it sometimes gives a huge difference between the lower and upper

bounds for edges in the net, implyingthat some of the bounds are not tight. So, by taking

the upper bound, we may be doing a pessimistic analysis. Also, it is computationally more

expensive than the Elmore delay model.

Either model can be used in the delay computations. However, to make computations fast, we use

the Elmore model for evaluating the effect of a transformation on delay. The transformations used

are:

1. a swap of contents of two locations in the simulated annealing step,

2. logic synthesis operations on the critical sections.

The delay models requiretheconstantrcjpuJen^squared, calledthe delayperunitlength

squared. Section 7.5 describes how this constant is computed experimentally.

Cost Function

The change in cost function 6c is computed as a weighted sum of the change in total

interconnectionlength 61and change in the delay 6d through the network.

6c = (1 - a(T)) 61 + a(T) 6d (7.1)

a(T) is a temperature-dependent weight thatincreases asthetemperature decreases. Thereason for

usingtotal interconnection lengthwhile optimizing fordelayis that we would like to get theblocks

closer to each other before tryingto optimize the delay. In our experience, this approach tends to

give better results than when wejustoptimize fordelay alone. Thelength ofanetdriven bya node

n is estimated as the minimum length rectilinear spanning tree connecting the node n and all its

fanouts. Computing 61 is then straightforward; it involves recomputing minimum length rectilinear

spanningtrees for the nets that are affected by the swap. Computation of 6d is more involved and

is described next.

Computing 6d: We estimate 6d, the change in delay of the network, when two nodes

n\ and n2 are considered for swap as follows. We start the delay trace at the fanins of the node

rii. We assume that the arrival times ofthe fanins of n\ remain the same.2 We recompute the new
2This may notbetrue if ?i2 isinthe transitive fanin of m.



264 CHAPTER 7. PERFORMANCE DIRECTED SYNTHESIS

estimate.delay-change (ni) {

change1 = LARGE;

foreach-fanout(n\,f°) {

diff = old-slack (nx, f°) - (min.slack (Af) + c) ;

diff_arr = old-arr (ni,/°)-new-arr (n\,f°) ;

change-delay = diff + diff.arr;

if (diff > 0) && (change-delay > 0)

continue; /*not critical*/

changel = min (change-delay, changel);

}

/*no fanout became critical*/

if (changel == LARGE) changel =0;

}

Figure7.5: Estimating the delay change

delays through all edges (/Sni) and (nuf0), /*' e FI(rn), f° e FO(nx). As stated earlier, we

recompute these delays using Elmore delay model. We use the algorithmof Figure7.5 to estimate

the change in delay, changel, of the networic Afby placing node n\ at the new position. Note

that diff is the available delay before n\ becomes e-critical. We similarly compute change2

for node n2. Tb estimatethe delay change 6d through the networic, we do a worst case analysis.

If changel and change2 areboth negative, 6d is estimatedto be - (changel + change2)

(this case may happen if n\ is in the transitive fanin of n2 or vice-versa); else 6d is estimated as

-min (change 1, change2). By doing a worst case analysis, this approach tries to ensure that

if the actual delay increases afterswap,ourestimate of 6d is non-negative. It shouldbe emphasized

thatwe are tryingto predict the changes in the delay through the entire networic by just examining

the neighborhood of the nodes n\ and n2.

If the swapis finally accepted, delayson someedgeschange, therebychanging the arrival

timesand required timesofvarious nodes in thenetworic. Tb detennine the nets whose delays are

affected, we handle the two delay models separately:
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1. If the delay model is the Elmoredelaymodel, the delayson all the edgesof the type (nj, f°)

or (/*, nj) needto be updated (j =1,2). Here f° 6 FO(nj) and /» € FI(rij).

2. If the delay model is RPH, we need to look at nets instead of edges. The nets affected arethe

ones that aredriven eitherby node nj or by a faninof nj (j" = 1,2).

Next, we need to update the arrival and required times of appropriate nodes. Let 5 be the set of

edges whose delays were updated as a result of swap. Then the arrival times of edges in 5 and

all the nodes and edges in the transitive fanout of an edge in S need to be updated. As for the

required times, theoretically, only the nodes and edges in the transitive fanins of the edges in S

need to have their required times updated. However, if none of the required times were specified

for primary outputs initially, then as per our assumption, the required times of all the outputs were

set to maximum arrival time of an output. As a result of updating the arrivaltimes after swap, this

maximum arrival time may have changed, changing in turn the required times of all the outputs. So

a backward delay trace may need to be done on the entire network.

The analysis is suitably modified if there is no node at a location, i.e., the location is a

vacancy.

Logic synthesis

After a set of critical nodes has been identified in the networic, we use logic resynthesis

to correctthe structureof the network. Then we do a force directed placementof the resynthesized

region. The logic operations are of two kinds, decomposition and collapsing. These operations

change the structure of the mapped networic while preserving the functions at the outputs, and

canbe interpreted astopological changes thatyielda betterplacement. Decomposition introduces

new nodes andnew edges in the networic. Collapsing may causethe numberof edges to increase,

decrease, or remain the same.

Decomposition: Since we start the placement with an m-feasible networic, each node

(block) has atmost m inputs. We use the Roth-Karp decomposition technique to find a suitable

decomposition [36]. In Roth-Karp decomposition, a bound set X is chosen from the fanins ofthe

node ntobedecomposed. The rest oftheinputsof n form the free set Y. Then the decompositionof

nisof theform: f(X, Y) = g(ax(X),a2(X),..., at(X), Y), where g,au a2,..., at are Boolean

functions. As a result of the decomposition, we get a tree of logic blocks for the single block n
that we started with. The new blocks are placed using a force directed technique. This has the

effect of reducing routing congestion, ensuring, at the same time, that the signal at the output of
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Figure 7.6: Decomposition example
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the tree arrives no laterthan the original arrival time at the output of n. The motivation for this

decomposition can be understood by the following simple example. Let g = (a + b) c d e be a

nodein the feasible network. The initial physical placement is shownin Figure 7.6(a). The (arrival,

required) times are shown as the bracketed pair next to each node. The critical paths are shown

with bold lines andthe remaining with dottedones. The block delay is assumedto be 2 units. The

delay along each edgeis shown alongside it. Since the signals a and b arrive late, we should put

them close to the output of the decomposition. Let {c, d, e} be the bound set X and {a, 6} be the

free set Y. We obtain a decomposition as i = cde,g = i(a + b). Figure (b) shows the placement

afterdecomposition. Note thatthe decompositionsatisfies the constraint that the output of / arrives

no later than 18 units of time. A simple move ofnode g from its initial location to its new location

wouldhave increased the lengths of paths c-> g,d-> g,e-* g. A swapbetween the node g and

thevacancy atthenew location ofg couldhavebeenpossiblyconsidered in the simulated annealing

step, but it may have been rejected if the wiring cost was high. Hence this placement is better for

delay. At the same time, the routing penalty is kept low.

Placementofdecompositiontree: Let N be the node to be decomposed (Figure 7.7). Let

r/ denote the set of nodes replacing N after decomposition. We can look at rj as a networic with a

single output driving the fanouts of N. The primary inputs of r?, PI(r}), are the fanins of node N.

We need to determine the locations of the intermediate nodes of r/. The locations of the inputs of

rj andthe fanouts of N are known. We start placing nodes of rj from the inputs in such a way that

when a node n is being placed, the locations of all of its fanins are known. So for n, we can do

a force-directed placement withrespect to the fanins of n, FI(n), and the fanouts of N, FO(N).

For each edgein n, we find the delay thatthe signal can expend passing through it. This is obtained
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Originalnetwork Network with decompositiontree

Figure 7.7: Placement ofthe decomposition tree

from the arrival timesa,-, i € PI(v) andrequired timesrj, j e FO(N). Then,thenoden is placed

closer to those fanins /* or fanouts f° such that delay to be expended along (/', n) and (n, f°) is

small.

Recall that a, is the arrival time, r, the required time and $i the slack at node i. Let p be

a pathfrom a primary input i € PI(rj)of t? to a node j € FO(N). Thenwehave r^ - a, units of

time to distributeover all paths from i to j (there couldbe manysuchpaths). We say an edge-path

pair is valid if the edge lies on the path. We associate witheach validedge-pathpair (e^, p),avalue

of !-i§p» where |p| denotes the number ofedges in the path p. For each edge e*/, define its weight
(wki) to be the minimum value over all paths that contain it.

ri — ai
Wki = mm

VpXktCp \p\

The weight on eachedgegives an estimate ofthe timethata signal canexpend passing through it,

thus bounding the length of the edge in the placed circuit.

Let n e n be the node whose location is to be determined. Construct an undirected

graph Gn(Vn,En) as follows. For every k € FI(n) there is a node kn e Vn. There is a node

corresponding to n, say nn. For each j € FO(N) there is a node jn e Vn. There are edges

between nn and all other vertices, denoted by e£nfcn, kn € Vn, kn ^ nn. Weigh each oftheedges

as follows. The weight ofthe edge joining nn and kn(k € FI(n)), denoted by Wgn, is the same

as theedge weight u>a„ described in theabove paragraph. Theweight of the edge joining nn and

(7.2)
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jn(jn € FO(N)) is approximated as,

Vp:t£j fP\

where p is a path from ze FI(n) to i 6 FO(N) in 77, and node n liesonthepath. Note thata; is

known since fanins of n have been placed. \pnj\ is thenumber ofedges along thepath from n to j

(|Pnil = W-l).

Let thelocation of each node / € Gn(l ^ n„) be given as anordered pair (xt,yt). We

define the co-ordinates of n as

*« = E /(wt)«*+ £ /WW«i
keFI(n) jCFO(N)

Vn = E /WM»+ E /WWw
A€F/(n) j€FO(N)

where / is a function satisfying

1. 0 < /(WS) < 1

2. £*€F/(n) /(^n„) + Ei€FO(iV) /(WJ-) = 1

3. / is a strictlydecreasing function.

The function / serves toweigh theco-ordinates appropriately. Intuitively, / should bea decreasing

function: lesser the amount of time available to expend along a wire, the closer should the location

ofthe node n to its fanin or fanout. The conditions on / above guarantee that (xn, yn) lies in the

convex hull defined by the locations of the fanins of n and the locations of the fanouts of N. If this

location (or nearest integer location) is empty, we can place n at the position obtained. We allow

a tolerance of ±1 units around the location calculatedabove. If we cannot find an empty location,

we discard the decomposition and continue with the algorithm.

We define the function / as follows: Let

Sn = max{WiB : ej,,. € G„}

Fn = e (-wa + £0+ E (-W5 + 5»)
t€FJ(n) jCFO(N)

/(W£) = l W"L+0a> ieFI(n)
(~W2j + sn)

n3) Fn
WZj) = K n> nJ jeFO(N)
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example 1 example 2

Figure 7.8: Collapsing examples

Sn gives the largest weight in the graph Gn. Fn is the normalizing factor. The / so definedsatisfies

the conditions described above. Doing so we guarantee that the location of n is closer to a node that

is connected to n by an edge with lower weight than other nodes.

Partial Collapse: We motivate the collapsingoperation with the help of two examples.

In both examples, node n is collapsed into its fanout f° (Figure 7.8). All the numbers are the arrival

times at nodes and edges. The block delay is assumedto be 2 units. In the firstexample, the benefit

gained from the collapse is due to the removalof node n from the path. In the second, additional

benefits accrue due to a skewed configuration.

We consider a critical node n for collapsing into one of its fanouts f°. If collapsing n

into f° is feasible, we estimate the savings in delay because of this transformation. For this, we

recompute the arrival time at f° by first computing the delay througheach of the edges (/', f°),

where f* is a fanin of n. The pair (n, f°) is ranked with a score equal to the difference between

the old arrival time and new arrival timeat f° if thisdifference is nonnegative; else the pair is not

considered for collapse. Note that the positionof the node f° remains unchanged. This way we

rankall thecritical (node, fanout) pairsin thenetworic thatresultin a feasible collapse. We greedily

select the pairs with large scores.
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7.5 Experimental Results

MCNC benchmarks were used for all the experiments. First, the benchmarks were

optimized for area.3 Then a delay reduction script, script.delay, with speedjq? at the end was

used to obtain delay optimized networks in terms of 2-input NAND gates. In Table 7.1, we report

resultsafter the placement-independent phaseof mis-fpga and chortle-d, using the same starting

networics forboth the programs. We set m to 5. We are restricting ourselvesto single output CLBs,

i.e., m-LUTs. Forchortle-d we used the option -K 5 -r -W -e. Foreach example, we report the

numberoflevels, 5-LUTs, edges and the CPU time (in sec.) on DEC5500 (a 28 mips machine) in

the columns lev, 5-LUTs, edgesandsec. respectively. Out of27 benchmarks, mis-fpga generates

fewer levels on 9 and more on 13. On average (computed as the arithmetic mean of the percentage

improvements for each example), mis-fpga needed 2.9% more levels. The number of blocks and

the number of edges it needs are58.7% and 66.2% respectively, of chortle-d. As shown later, the

numberofnodes and edges may play a significant role in determining delay ofa network. However,

chortle-d ismuch faster than mis-fpga.4

For the placement-dependent phase, the startingnetworks are the ones obtained from the

level reduction algorithms. We conducted three sets of experiments:

1. PI + apr: The networic obtained after the placement-independent phase of mis-fpga was

placed and routed using apr, the Xilinx place and route system [88].

2. chortle-d + apr: The networic obtainedafterchortle-d was placedand routedusing apr.

3. PI+ PD + apr: After the placement-independent algorithm, the placement-dependent phase

of mis-fpga is applied. The resultingplaced network is routedusing apr, with its placement

option disabled. The routing order is based on the slacks computed for the edges: apr is

instructed to route more critical nets first. Logic synthesis is invoked once at each tempera

ture. However, it is started only at a low temperature, the reason being that collapsing and

decomposition may increase the number of edges in the networic. At higher temperatures,

a swap that increases the cost function is accepted with higher probability. A subsequent

synthesis phase at that temperature may decrease the cost function, but increase the routing

3Regrettably, thearea optimization script isnotscriptrugged, which isused inother chapters. Thereason is that the
experimental set-up inthis section usessome proprietary tools, whose license expired sometime ago. Theresults reported
hereare two years old,taken from [64], whichuseddifferent area optimization scripts.

4One reason is thatsincemis-fpga isbasedon misll,alotof timeisspentinallocating (freeing) memoryfor additional
data structures whenever a node is created (freed).
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example mis-fpga -PI chortle-d

lev LUTs edges sec. lev LUTs edges sec.

z4ml 2 10 42 2.1 3 20 74 0.1

misexl 2 17 71 1.7 3 25 99 0.1

vg2 4 39 165 1.7 3 54 206 0.1

5xpl 2 21 88 3.5 4 29 115 0.1

count 4 81 336 5.1 3 102 368 0.1

9symml 3 7 35 9.9 4 76 273 0.1

9sym 3 7 35 15.2 5 130 477 0.2

apex7 4 95 383 8.4 4 131 452 0.2

rd84 3 13 61 9.8 4 69 268 0.2

e64 5 212 857 15.7 4 356 1236 0.6

C880 9 259 1070 39.0 7 383 1437 0.9

apex2 6 116 481 9.8 5 165 578 0.2

alu2 6 122 543 42.6 8 316 1189 0.7

duke2 6 164 685 16.4 4 248 863 0.4

C499 8 199 896 58.8 6 436 1736 1.8

rot 7 322 1312 50.0 6 439 1608 1.0

apex6 5 274 1209 60.0 5 361 1360 0.8

alu4 11 155 648 15.4 8 194 710 0.3

sao2 5 45 189 9.5 4 58 220 0.1

rd73 2 8 36 4.4 4 52 183 0.1

misex2 3 37 160 1.4 2 52 188 0.1

f51m 4 23 100 5.9 5 65 237 0.1

clip 4 54 219 3.7 4 83 281 0.1

bw 1 28 138 8.3 1 28 138 2.6

b9 3 47 199 2.3 3 62 225 0.1

des 11 1397 6159 937.8 9 3024 10928 9.2

C5315 10 643 2826 282.2 9 1221 4509 3.6

Table 7.1: Results for level reduction

lev number of levels in the final network

LUTs number of LUTs in the final networic

edges number of edges in the final network
sec. time taken in seconds (on a DEC5500) to generate the finalnetwork

271
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example mean value of (t^j)
5xpl 0.774

9sym 0.682

9symml 0.767

C499 0.842

alu2 0.649

alu4 0.663

apex2 0.738

apex6 0.609

apex7 0.805

b9 0.940

bw 0.851

clip 0.828

count 1.103

duke2 0.615

f51m 1.306

misexl 0.848

rd84 0.933

rot 0.785

Table 7.2: Calculation of delay per unit length squared

complexity and numberof levels. Thougheach such synthesisphase is good relative to the

current placement state, from an absolute point of view, it may be bad. We found that it is

better to start synthesis at a temperature whenthereare no major hill-climbingswaps. Then

each synthesis phase results in an improvement. Also, we found it helpful to have the total

net length dominate the cost function at higher temperatures. This brings the blocks close to

eachother. As the annealing proceeds, we increase the contribution of delay change 6d in 6c

byincreasing a(T). Rnally, atvery lowtemperatures, a(T) = 1,i.e., onlythedelay appears

in the cost function. The arrival times ofthe primaryinputs are set to 0 and the required times

of the primaryoutputs to the arrival timeofthe latest arriving output. Weused Elmore delay

model in all delay computations.

Tbcompute the delay per unit length squared, apr was run on a set of examples and delay

ofeach edge along with itslength was obtained. From this, the RC/(length2) value for each edge

and then the average values for the networks are computed. These are shown in the Table 7.2 for

some examples. Then the delay per unit length squared is set to the average value 0.82.
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The results ofthe experiments for placement, resynthesis, and routing are shown in Table

7.3. The table shows the delay through the circuits in nanoseconds after placement and routing.

The block delay used is 15 ns. We chose only those benchmarks that could be successfully placed

and routed on one chip. The PI phaseof mis-fpga gives lower delay than chortle-d on most of

the examples. More interestingly, we can study the affect of number of nodes and edges on the

delay. For example, though the number of levels in count for chortle-d is 3 and for mis-fpga

is 4 (Table 7.1), the delay through the circuit for mis-fpga is 3 ns less than chortle-d. In fact,

using the PD phase of mis-fpga makes the difference even larger. For vg2, duke2, alu4 and

misexl, the delays for mis-fpga arehigherthan chortle-d, but the difference in delays is less than

\$(difference in levels). This effect will be more pronounced in examples wherethe numberof

nodes is greater than the capacity of the chip. Then, extra inter-chip delay will be incurred, which

may be an order ofmagnitude higher than the on-chip delay.

It turns out that logic synthesis in the PD gives mixed results on these networks. This

is partially because many networics did not have much room for delay improvement by local

resynthesis. We observed that if we startwith networics that did not use an aggressive block count

minimization during the PI phase, resynthesis improves the delays significantly.

7.6 Discussion

Given an m-feasible network, the goalin the PIphaseis to minimize the number oflevels.

What we presented was a heuristic to solve the problem. The DAG-Map algorithm, proposed

recently by Cong and Ding [16] computes a minimum delay solution if only collapsing of nodes

is allowed. However, in the PI phase of mis-fpga, covering is integrated with resynthesis (e.g.,

functional decomposition) when it is found out that collapsing a node into its fanout is not feasible.

Experimental evidence indicates that two circuits having the same number of levels can

have widely varyingdelaysafterthe final placement and routing. So, the numberoflevels may not

be a good cost function.

The delay model used currently at the logic level is weak. This is because it has no idea

about the wiring delays, which area function ofthe module locations. Better delay models need to

be developed also for placement. The Elmore delay model does not consider fanout loading, and

the Rubinstein-Penfield-Horowitz model gives two delay numbers, which could differ from each

other significantly.
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example mis-fpga PI + apr chortle-d + apr mis-fpga PI + PD + apr
z4ml 33.60 56.00 31.00

misexl 33.10 58.00 36.20

vg2 82.90 76.40 76.30

5xpl 33.60 77.40 35.90

count 88.40 91.88 79.02

9symml 54.00 84.10 53.50

9sym 53.70 110.40 53.50

apex7 97.75 108.00 93.90

rd84 50.70 77.80 54.30

apex2 147.43 134.30 142.50

duke2 125.13 114.70 151.83

alu4 256.35 230.68 _i

sao2 104.00 82.30 96.00

rd73 33.60 85.00 31.00

misex2 53.80 47.80 53.70

f51m 72.60 107.50 76.60

clip 81.10 84.10 84.60

two nets could not be routed.

Table 7.3: Delays after placement and routing
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Chapter 8

Mapping Combinational Logic

8.1 Introduction

In this chapter, we study MUX-based architectures, in which the basic block is a com

bination of multiplexors, with possibly a few additional logic gates such as ANDs and ORs.

Interconnections arerealizedby programmable switches (anti-fuses) that may connea the inputs of

the block to signals coming from other blocks or to the constants 0 or 1, or may bridge together

some of these inputs.

The most popular architecturesareactl and act2 introduced by Actel [29], and are shown

in Figure 8.1. Each module has eight inputs and one output. While actl is a tree configurationof

three 2-to-l multiplexors with an OR gate at the control (select) input of MUX3, ac(2 has three

multiplexors, an OR gate, and an AND gate. These logic blocks can implement a large number of

logic functions. For example, the actl module can implement all two-input functions, most three-

input functions [38], and several functions with more inputs. However, some of these functions are

P-equivalent. In [56], 702 non-P-equivalent functions for actl and 766 for actl were counted.

As in the caseof LUT-based architectures, the numberof blocks on a chip, logic func

tions that these blocks can implement, and the wiring resources are the main constraints. Also,

the architecture-specific mapping typically starts with a network that has been optimized by the

technology-independent operations, hi future, we expect these operations to be driven by the target

technology.

This chapter is organized as follows. A brief history of the MUX-based mapping is

presentedin Section 8.2. BDD-based techniquesaredescribed in Section 8.3. Their extensions to

ITEs, along with the matching algorithms, fonn the complete mapping algorithm,which is outlined
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actl act2

Figure 8.1: Actel architectures: actl and act2

in Section 8.4. The matching algorithms for actl and actl are described in Section 8.5, and the

ITE-based mapping in Section 8.6. Experimental results using these techniques are described in

Section 8.7. The approach is critiqued in Section 8.8.

8.2 History

8.2.1 Library-based

In 1989, when we first started looking at the synthesis problem for MUX-based architec

tures, we knewof only one mappingapproach- theone basedon the creationof a library. The library

can be created with gates that represent functionsobtained from the basic block by connecting the

function inputs to some of the input pins and then tying the remaining pins to constants (0 or 1).

The networic is represented as a subjea graph in termsof a set ofbase functions, typically a 2-input

NAND gate and an inverter. All the functions in the library are also represented in terms ofthe base

functions. These are the pattem graphs. The problem then is to cover the subject graph using the

minimum number of pattern graphs.

An advantage ofthis approach is that it is quite insensitive to the basic block architecture.

The only change needed is the creation of a new library. If we put in all the functions that can be

implemented with the actl or act2 module, the library size will be unmanageable. The size can be

reduced by putting only one out of all P-equivalent functions in the library. Efficient algorithms

that use BDDs can produce all non-P-equivalent functions implemented by a MUX-based block in
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a short time. However, even this number may still be large, although not as large as for the LUT

architectures (706 forthe actl ascompared with 9,014 fora4-input, 1-outputLUT). Also, eachsuch

function is represented in all possible ways, and so the number of pattem graphsis much larger. In

addition, the time to map becomes quite high. One remedy is to select a smaller subset of functions

for the library, say by throwing away less frequently used functions. In general, such a reduction

can result in a loss ofquality of results.

8.2.2 BDD-based

In 1990, we proposedin mis-fpga [62] that for MUX-based architectures, the set of base

functions should be changed from a NAND gate and an inverterto a 2-1 multiplexor, since it is a

more natural representation for the MUX-based architectures. We defined both the subject graph

andthe pattern graphs in termsof BDDs. Recall thateachnon-terminal vertexofa BDDrepresents a

2-1 multiplexor. We used both ordered andunordered BDDs forthe subject graph. A very small set

of pattern graphs was needed,another benefitofthe new function representation. As in the popular

library-based approaches, the underlying mapping algorithm in mis-fpga was basedon dynamic

programming. To further improve the qualityof results, we added an iterative improvement step

after initial mapping; it tries to exploit the relationship between nodes of the networic. It consists

of three main operations: partial collapse, decomposition, and quick-phase (which decides the

phase - positive or negative, in which a functionshould be implemented). Significant gains over the

library-based approach of misll were obtained in the quality of results.

A similar approach was laterused in ASYL [80, 6]. The input ordering for the BDD is

obtainedby lexicographical factorization, thecentral themeofASYL Both area- andspeed-oriented

solutions were presented.

8.2.3 ITE-based

In 1991, Karplus proposed Amap in which he extended the idea of using a MUX-

based representation. Instead of using BDDs, he used if-then-elsedags (ITEs), the most general

representationof a function in terms ofmultiplexors. The selector function at each vertex ofan ITE

canbe a functionof inputs, rather thanbeing aninput,which is the case for BDDs. As pointedout,

one main advantage of ITEs over BDDs is that duplication of cubes can be avoided [38]. Amap

does not give resultsas good as mis-fpga but is much faster.
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%
GF 3>-

OR %
Figure 8.2: Can a 2-1 MUX implement an OR gate?

82.4 Boolean Matching-based

Also in 1991, Ercolani et al. [21] proposed PROSERPINE, an approach based on

Boolean matching, which answers the followingfundamentalquestion: "Can a givenfunctionf be

realized by a gate-function GF, where someofthe gate-inputs maybe tied to constants (i.e„ 0 or

1), or other inputs?"

Example 82.1 In Figure 82, we show that a 2-input OR function f can be realized by a 2-1

multiplexor iftheselectandthe0 input ofthe MUXaretiedto a andbrespectively, andthe1 input

to the constant 1.

PROSERPINE constructs ROBDDs for / and GF and then checks if the ROBDD for

/ is a subgraph of the ROBDD for GF. In the worst case, all possible variable orderings for the

ROBDD for GF have to be considered. The problem is further complicated by the fact that some

inputs of GF may have to be tied to either constantsor other inputs (bridging) to realize the desired

function /. The PROSERPINE paper [21] does not report the CPU times, but we have reasons

to believe that the matching check is expensive. This matching forms the core of the mapping

algorithm, in which sub-functions ofthe networicare extracted and checked for realizability by one

block.

In 1992, Burch and Long proposed matching algorithms using BDDs [15]. Their main

contribution was an algorithm for matching under input negations that takes time polynomial in the

size of the BDDs representing the functions to be matched. This algorithm forms the basis of the

algorithms for matching under input permutations, bridging, and constant inputs.

82.5 Combining Various Approaches

In 1992, following Karplus, we incorporated ITEs in our approach. In addition, we

developed fast matching algorithms for actl and actl. Wecombined both techniques along with the
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iterative improvementstep of mis-fpga in a single framework, andthis yieldedbetterresults [60].

Later, in 1993,we improvedvarious aspects ofthe algorithm, includingthe following:

1. selection of the branchingvariableat each step of the ITE construction,

2. construction of ITEs for functions having cubeswith disjointsupports,

3. coupling between the matching algorithm and the ITE paradigm - it wasmadetighter,

4. useofthe new ROBDD data structure [9], which has complementary edges, and

5. creation of multi-rooted subject graphs.

Note that no approach except the first one uses an explicit library.

8.3 Constructing Subject Graph and Pattern Graphs using BDDs

We consider two BDDrepresentations: ROBDDand unordered BDD (orsimply BDD).

8.3.1 ROBDDs

ROBDDs are attractive as a subject graph representation because they are compact and

do not have any function implemented more than once. The basic idea is to construct an ROBDD

for the function and then cover it by minimum numberof pattern graphs. So we will like to have

an ROBDD that is small. It is wellknown that the ROBDD sizeis sensitive to theordering of the

inputvariables [14]. Unfortunately, no polynomial-time algorithm is known for finding anordering

that results in the smallest ROBDD. However, if the function has a small number of inputs, an

optimum orderingcan be determinedby trying out all possibleorderingsand picking the best one.

In our case, an optimum orderingis one whose corresponding ROBDD canbe covered with fewest

patterns. One way of obtaining functions with small number of inputsis by transforming the given

network rjinto a network rjin which every node has atmost N fanins, where N is a small constant.

The problem of obtaining rj from n is same as the synthesis problem for JV-LUT architectures,and

thetechniques of Chapter 3can beused. For each node, the ROBDDs corresponding to all theinput

orderings are constructed, their costs are evaluated using the covering algorithm (to be described

shortly), and the ordering that yields the minimum cost is picked.

Althoughforanarbitrary function wedonotknowaneasywayofcomputing anoptimum

ordering, for some simple functions we do know how to do it. As the next two propositions show,
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two such classes of functions are: those consisting of only single-literal cubes in their SOP, and

those with just one cube.

Proposition 8.3.1 If afunction f = f(x\, x2,..., Xk, y\, yi,.. •, yi) consists ofonlysingleliteral

cubeswith inputvariables x\,x2,. ..,Xkoccurring inthepositivephaseandy\, jfe,. ..,yi intheneg

ativephase,then theROBDD corresponding tothe ordering xi,y\, x2, x^,yi, x^,X5, y$,x$,xt,...

of input variables results in the minimum number of actl blocks after an optimum covering as

compared to otherorderings,wherethis ordering startsfrom the leaves.

Sketch of Proof For any ordering, the ROBDD for / is a chain, i.e., at least one child of each

non-terminal vertex is a terminal vertex. Since the covering method is based on ROBDDs, the

select lines ofMUXl and MUX2, and the inputs ofthe OR gate can only be the inputs of /. Then,

to cover thechain ROBDD of /, actl canbeconfigured in oneof thefollowing twoways.1

1. The ORgateinputsare tied to zt- and xj (i ^ j), whichare inputsoccurring in positivephase

in /. Then, the data input' V of MUX3 is constant 1, and the input '0' is a sub-function of

/. The select line of MUX2 can be either an x input or a y input.

2. Only one input of the OR gate is tied to an input of /, the other input being constant 0. The

OR gate input can be x,- or yj. If it is Xi, the data input' 1' of MUX3 is constant 1, and the

input*0'is a sub-function of /. Theselea lineof MUX2 canbeeitheran x inputor a y input.

If it is yj, the data input '0' of MUX3 is constant 1, and the input' 1' is a sub-function. The

selea line ofMUXl can be either an x input or a y input.

In the first case, the actl module can "cover" a maximum of three inputs of /; in the second case,

it covers two inputs, the only exception being the actl module that is bottommost in the chain.

This modulecan coveran extra input of / if the datainputof its MUXl (or MUX2)is an x input.

Then, the problemof minimizingthe numberof actl modulesreducesto that of findingan optimum

ordering of the input variables. The x inputs shouldbe used as the inputs to the OR gate as much

as possible, since two of them can be covered by an OR gate. Tb save them for the OR gate, the

MUXl (or MUX2) selea input should be a y input. These simple rules correspond to an ordering

where two x inputs are interleaved with a y input The exceptional case ofthe bottommost module

is handled by putting a positive phase input (say x\) first in the ordering. •

'modulo complementation of some intermediate functions, which does notalter thebasic argument.
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Proposition 8.3.2 If a function f = f(x\ ,x2,...,xk,y\,y2,...,yi) is a single cube with input

variablesx\,x2,...,xk occurring in thepositivephase and 2^1,2^2,2(3, —y/ in the negative phase,

then the ROBDD corresponding to the ordering X\,x2,yi,y2,x2,y2,y4,x4,ys,y6,... of input

variables results in the minimum number ofactl blocksafter an optimum covering as comparedto

otherorderings,wherethisordering startsfrom the leaves.

Proof Similar to that ofProposition 8.3.1. •

Note the following:

1. The first input in both the orderings is alwaysan input in the positivephase. Starting from the

second variable, the orderings follow a repetitionrate of 3: either a positive input followed

by two negative inputs, or a negative input followedby two positive inputs.

2. When inputs of some phase get over, the remaining inputs (of the other phase) are simply

concatenated to complete the ordering.

3. Both orderings are listed so that they start from the terminal vertices and end at the root of

the ROBDD.

Example 83.1 Considerfunctions

f\ = a'bc'de',

h = a' + b+ c' + d+e' + g + h.

From Proposition 8.31, an orderingfor f\ that results in the minimum number of actl blocks is

b,d,a, c, e. Inthe corresponding ROBDD, vertex corresponding toinput e wouldbethe root. Also,

from Proposition8.3.1, the orderingfor f2 is b,a, d, g, c, h, e.

From theperspective of synthesis for MUX-based architectures, the ROBDD representa

tion has the following drawbacks.

1. The input ordering constraintimposed by the ROBDD may be too severeand can result in a

higher block-countafter mapping. For instance, see Example8.3.2.

2. Since an ROBDD has only one copy ofa function, a vertex v can be pointed at by many
vertices - all are parents of v. Since the covering procedure we use is tree-based, the subject

graphis clippedat vertices withmultiple parents. And if there are several suchvertices, the

subject graph gets partitioned into many small trees. Although each tree ismapped optimally,

morethe trees,more is the deviation from a global optimum solution.
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This leads us to consider another representation that does not have these two restrictions.

8.3.2 BDDs

The goal is to construct a BDD (withoutany ordering restrictions)such that the number

of vertices in the BDD is small and the number of vertices with multiple parents is small. The

methodused to construct BDDsis subsumedby the methodfor constructing ITEs - to be described

in Section 8.6. Since ITEs are the representation of choice currently, we do not present the BDD

constructionalgorithmhere. It can be easily derived from that for ITEs. In any case, the reader is

referred to [62].

A drawback of the BDD representation, or at least the heuristic to construct it, is that

some function may be replicated many times in different branches of the BDD.

In general, it is not possible to predict which type of representation, ROBDD or BDD,

will give a lower-cost implementation; we have to construct both the types for a node function and

selea the one with lower cost.

8.3.3 Local versus Global Subject Graphs

Experiments showed that, in general, constructing a subject graph for the entire network

in terms ofthe primary inputs (global subject graph) leads to worse results as compared to when a

subjectgraph for the local function at eachnode ofthe network(local subject graph) is constructed.

This can be explained as follows.

1. The global ROBDD and BDD require all vertices to be indexed by primary inputs. This is

too restrictive; smaller representations are possible if the vertices can be indexed by internal

node functions, precisely what a local subject graph is.

2. Theordering constraint imposed ona global ROBDD cancauseit tobe huge. It is crucial that

the subjea graph be small, so that acceptable mappingsolutionsare generated after covering

it with a small pattern-set(whichwe use). The basic assumptionbehind having a small set of

pattern graphs is that the subject graphis close to optimum. If it is not, then the pattern-set

needs to be enlarged.

So, we constructsubjectgraphsfor each nodeof thenetworic separately.
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8.3.4 Pattern graphs
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Figure 8.4: Patterns for act
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First, consider a simplified version of actl module, act, as shown in Figure 8.3. It is

obtained by ignoring the OR gate of actl. We consider four pattern graphs for the act module, as

shown in Figure 8.4. A circle in a pattemgraph is a 2-1 MUX, whose data input 0 is providedby

the low or 0 child, and input 1 by the highor 1child. If a functionis realizableby one act block, it

either uses onemultiplexor, or two, orallthree multiplexors.2 Thepattem graphs arein one-to-one

correspondence with these possibilities. This small set of pattems suffices to capture all possible

functions realizable by one act block. This is formally stated in Proposition 8.3.3. Note that all

the pattem graphs are leaf-DAGs, as thehanging edges (whose one end-point is not circled) are

allowed to terminate at any vertex ofthe BDD.

In actl, introducing the OR gate at the control input of MUX3 increases the number

of functions realized as compared to act considerably. However, from an algorithmic point of

2If a function does not use any multiplexor, itis either 1,0,or identically equal to an input. Then itcan be realized
without any block.
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Figure 8.5: Patterns for actl

view, it causes some difficulties - number of pattemgraphs increases, the correspondence between

multiplexorusageandthe pattem graphs is destroyed, andsomeofthe pattem graphs are no longer

leaf-DAGs. Currently, we have a set of 8 pattern graphs for actl. They are shown in Figure 8.5.

The pattems0 through 3 are the same as the onesin Figure 8.4. The patterns 4 through7 exploit

the presence of the OR gate. Tb see how, consider the pattern4. Let

r = root vertex of the pattern 4,

R = the variable at r,

s = low(r),

S = the variable at s,

t = high(r) = high(s),

u - low(s),

U = the variable at u,

v = low(u), and

w = high(u).

Then the function g implemented by r in terms of the inputs of the pattem is

g = Rt + R'(St + S'(Vw + U'v))
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= Rt + R'St + R'S'(Uw+ U'v)

= (R+S^ + JZ'S'^w-f-tf'i;)

If R and S are tied to the OR gate inputs of actl (see Figure 8.1), MUXl is configured to realize

t, and MUX2 is configuredto realize Uw -f U'v,g can be realized with one actl module. Similar

derivations can be made for the patterns5 through7. Althoughnon-leaf-DAG pattems (i.e., ones

with internal fanouts) are possible, we do not include them in our set. This is because the covering

algorithm breaks the subject graph into trees and no sub-tree can match against a pattem graph that

has internal fanouts.

8.3.5 The Covering Algorithm

We use the tree-covering heuristic proposed in [41]. The only difference is that in our

case, the subject graph and the pattem graphs are in terms of2-to-l multiplexors. We now justify the

use of the set of pattern graphs for act, as shown in Figure 8.4, by stating the following proposition.

Proposition 8.3.3 For a function f realizable by one act module, there exists a subject graph S

whose non-leafportion is isomorphic to one of thefour pattern graphs ofFigure 8.4, say p. The

covering algorithm willmap S onto p.3

Proof Deferred to Section 8.5.1. •

Later, in Section 8.5.1, we will presentan algorithmto determineif / is realizableby one

act module without constructing all possible ROBDDs.

Since the pattern-set is small, the covering algorithm is fast.

Example832 Consider f = d(ac+ a'b) + d'(ca + c'b). Figure 8.6(A) shows a BDD for f, and

(B) an ROBDD. Afterapplying the covering algorithm, it is seen that 3 aai modules are needed

for the ROBDD, whereas 1 module sufficesfor the BDD. A dotted rectangle denotes a match, i.e.,

an instance <?/actl module, which is configured as oneof thepatterns ofFigure 8.5. Alsonote that

the vertices not covered by any match are the leaf vertices.

8.4 Proposed Mapping Algorithm

'This subject graph 5 is an ROBDD and can be found by constructing ROBDDs for all possible input orderings for
/. Since/ is a function of atmost7 inputs, 7! orderings mayneedto beexamined.
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(A) (B)

Figure 8.6: BDD representations

An outline ofthe overall synthesis algorithm for the MUX-based architectures is shown

in Figure 8.7. It resembles, at this level of abstraction, the algorithm for the LUT architectures of

Figure 3.34. The differences are in thewaysome ofthe specific algorithms (e.g., initial mapping)

woric.

First, the networic is optimized(currently, we use the standard technology-independent

optimization techniques). The mappingalgorithm worics as follows on the optimized network.

1. Initialmappingofeach node: First, we check, using the matching algorithmto be described

in Section 8.5, if the local node function / canbe implemented with one basic block. If not,

we construct an ITE for / (the subject graph) using the procedure of Section 8.6 and map

it, i.e., cover it with the pattern graphs corresponding to the basic block by the tree-based,

dynamic programming algorithm.

After this step, each node of the network has a feasible implementation associated with it.

However, the interconnection structure of the networic remains the same. The cost of a node

is the number ofbasic blocks in its feasible implementation.

2. Iterative improvement: The node-by-node mapping paradigm used in the previous step does

not exploit the relationship between the nodes. Tb do so, we use an iterativeimprovement

phase. Two operations, partial collapse and decomposition, are tried. Partial collapse is the

same as that for the LUT architectures (see Section 3.5), except that the cost of a function

is now measured in terms of the MUX-based blocks. Decomposition uses decomp -g of
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unoptimized network

Optimization

Initialmappingofeach node

PartialCollapse

Decomposition

Last gup

Obtain feasible nodes

Partial Collapse

Build global ROBDD

optimized feasiblenetwork

Figure 8.7: Overview ofthe algorithm

misll [12] to break a node into a set of nodes, which are then mapped. If the cost improves,

the original node is replaced by its decomposition. Partial collapse and decomposition are

repeated for some number of iterations.

3. Last gasp: A node may cost more than one actl block. In last gasp (a term borrowed from

ESPRESSO), we try to reduce this cost usingone or both ofthe following techniques:

(a) Construct an ROBDD for thelocal node function and mapit. If thenodecostimproves,

save the new mapping. Note that so farin the algorithm, ROBDDs had not been used.

(b) From each node n, construct a network r\(n) with one intemal node that is a copy

of n, one primary output, and as many primary inputs as the fanins of n. Apply a

decomposition algorithm on rj(n), generating many smallernodes. Then, invoke the

steps 1and2 ofthisalgorithm ontheresulting networkand detennineits implementation
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Figure8.8: Why does the last iterationhelp?

cost. If this cost is less thanthatof n, replace n by the new network. This last gasp

technique mimics on a node what the first two steps of the algorithmdo on a network.

4. Obtainingfeasible nodes: At thispoint,eachnodehasattached to it a feasible implementation,

which is eitherthe node itself (if the matching algorithm succeeded in step 1),or a mapped

ITE, oramapped BDD. In this step,we replace each nodeby its feasible implementation, so

that the resulting network is feasible with respect to the basic block.

5. Lastiteration: Here we perform one iteration of partialcollapse, asit canpotentially improve

the quality. This can be attributed to two factors.

(a) Partial collapse is now being performed on smaller nodes, each having a cost of one

block. It is possible that two such nodes can be absorbed in one block (for instance, when

these two nodes belong to the feasible implementationsof two nodes of the original

networic,one of them fanning out to the other).

(b) As shown in Figure 8.8, there may be a multiple-fanoutvertex v within a mapped ITE

(just before step 4) that is covered by the patternOofFigure 8.21 (i.e., asingleMUX)and

that can be absorbed in its fanouts. This is possible, for instance, when all the fanouts

of v (in our example, w and x) are roots of some pattem graphs (in our example, 0) in

the cover of the ITE. This happens when the fanouts of v aremultiple-fanout vertices.

So the node corresponding to v in the feasible networic obtained after step 4 can be

collapsed into all its fanouts, thereby reducing the networic cost by 1.

This step was inspiredby [6] and thepartition algorithm for LUT architectures.
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6. Global ROBDD : Sometimes it is beneficial to construct a global subject graph. Since the

algorithmdescribedso far is basedon unordered ITEs andlocal ROBDDs, it is worthwhile to

experiment with a global subject graphthat is ordered. We found ordered ITEs [37,44] to be

ineffective: creating them takes a long time and the quality of the solution is not redeeming

either, and so decided to use ROBDDs. We discoveredexperimentally that global ROBDDs

may improve results when the networic does not have too many primary inputs. Also, for

symmetric circuits, this step works very well, since an n-input symmetric function / can

be realized with 0(n2) multiplexors. Such a realization requires that function-sharing be

detected. Since / is symmetric, an ROBDD for / automatically generates this realization

irrespectiveof the input ordering chosen for the ROBDD.

We used two ROBDD packages:

• old [53]: It does not use complementaryedges (a complementary edge carriesan inverter

to complement the fimction). This conforms to the target architectures actl and act2,

which do not have explicit inverters. However, since different primary outputs are not

allowed to sharevertices in their ROBDDs, the representation provided in this package

is larger than it ought to be.

• new- based on [9]: It uses complementaryedges and permits the ROBDDs fordifferent

primary outputs to sharevertices wherever possible. Due to the presence ofthe inverters

on the complementary edges, the ROBDD is not mapped directly. Instead, it is first

converted into a network of MUXes and inverters, which is then mapped using one

iteration of partial collapse.

The algorithm is flexible, i.e., except for the initial mapping, other steps are optional.

Moreover, they can be reordered. Forexample,right after step 1, step 4 can be applied followed by

step 2. The user is free to experiment with different orders, thus generatingdifferent designs.

The algorithm is applicable for both actl and act2 architectures. However, some

architecture-specific differences are there. The differences arise in the matching algorithm, con

struction of ITEs, and pattem graphs. Since the matching algorithms for actl and actl are quite

different, we present them for both in Section 8.5. For the rest (i.e., construction of ITEs and

corresponding pattern graphs), we focus onactl in Section 8.6; these stepscanbe suitablymodified

for act2.
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Oorb-4

Figure 8.9: An actf-realizable function

8.5 The Matching Problem

In this subsection, we address a fundamental problem in mapping: given a completely

specifiedfunction f andthebasicblockofthearchitecture, is f realizablebya single block? A more

generalversionof this problemis addressed in [21]: givena function / and a gate-function GF, is

/ realizable by GF1 We restrict ourselves to two special gate-functions - those corresponding to

the actl and actl blocks. By this restriction, we hope to have a much faster algorithm.

8.5.1 The Matching Problem for actl

First the matching theory is developed, which is then incorporatedin an algorithm.

Assume that a completely specified function / is realizable by an actl block, and that a

minimum support cover for / isgiven.4 Since actl has 8inputs, assume that 1 < \<r(f)\ < 8(0and

1 functions are triviallyrealizable, so \<r(f)\ = 0 is not considered). Observe that, withoutloss of

generality, one of the inputs of the OR gate can be tied to an input of /. This is because otherwise,

the select input of MUX3 is either constant 0 or constant 1. In either case, if / is realizable by an

actl module,it is realizable by a 2-1 MUX, and hence by MUX3with a non-constant input (i.e., an

input of /) at its select line. Refer to Rgure 8.9 for the rest of the discussion. There are two cases:

1. OneORgate input is a € o(f), andtheother input is 0. Then, / has a decomposition of the

form

f = ag-\-a'h (8.1)

4The optimization phase, by generating aprime cover, guarantees minimum support
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for some input a of /, where g and h are each realizable by a 2-1 MUX. The problem is to

find g and h. Wemay assume, without loss of generality, that g and h are independentofthe

input a. This follows from the following proposition:

Proposition 8.5.1 /// hasa decomposition as in(8.1),where g andh arerealizable bya 2-1

MUX each,then it also hasa decomposition of theform

f = agl+a'h1, (8.2)

where g\ and h\ are realizable bya 2-1 MUX each andare independent ofthe input a.

Proof Since g is realizable by a 2-1 MUX, it can be written as g = CA -f- C'B, A,B,C e

{0,1} Uo(f). Assume g depends on a. Then,if C = a, g = aA + a'B. So,

/ = ag + a'h

= a(aA + a'B) + a'h

= a(A) + a'h.

If A ^ a, set g\ = A, otherwise set g\ = 1. In either case, / = ag\ + a'h, g\ being

independent ofa and realizable (trivially)by a 2-1 MUX. If C ^ a, let A = a (the case B = a

is similar). Then, g = Ca-\- C'B. So,

/ = ag + a'h

= a(Ca+ C'B) + a'h

= a(Cl + C'B) + a'h.

IfB^a, set0i = C + C'B = C + 5. Otherwise, setg\ = C + C = 1. Once again, #i is

independent of a, and realizable by a 2-1 MUX.

In otherwords, if g depends on a, to obtain the desired g\, delete any cube in g having the

literal a'. Also replace each literal a by1. Then, g\ is independent ofa, is realizable bya 2-1

MUX, and satisfies f = ag\+ a'h. Use similar arguments on h to obtain thedesired h\. •

Theproposition tells us thatwhenever / is realizable byoneactl module with a single input

a at the OR gate, and g or h or both depend on a, an alternate realization is possible, as in

(8.2), with g\ and h\ independent of a. Since we are interested only in finding one way of

implementing / rather than all,inthis case (ofsingle input a attheOR gate) theproblem can
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be reduced to the simplerproblem of finding g\ and h\ (or alternately, g and h) which are

independent of a. So, withoutloss of generality, g and h can be assumed to be independent

of a. Then,cofactoring (8.1) withrespect to a and a' yields

g = fa,h = fa,. (8.3)

2. The OR gateinputs aretiedtoa andb,a,be o(f). Then,/ hasa decomposition of the form

f = (a + b)g + a'b'h, (8.4)

where g and h areeachrealizable by a 2-1 MUX. Theproblem is onceagainto find g and h.

The following proposition provides a way to find h.

Proposition8.5.2 If there exists a decomposition of f as in(8.4),with g andh realizable by

a 2-1 MUX each, then there exists another decomposition off oftheform

f = (a + b)g + a'b'hi, (8.5)

where hi is independent ofthe inputs a andbandis realizable bya 2-1 MUX.

Proof The proof is similar to that for Proposition 8.5.1. We first write h as h = C A + C'B

and then observe that any cubes with literals a or 6can be removed from h (since h is ANDed

with a'b' in (8.4)). Also, if present, theliterals a' and b' can be simply deleted from a cube

(i.e., replaced by 1). Let the new function be h\. It satisfies (8.5) and is independentofthe

inputs a and b. It is easy to see that h\ is also realizable by a 2-1 MUX. •

This means that, without loss of generality, we can assume h to be independent of a and

6. Then, from (8.4), h = fa>b>. The problemnow reduces to finding a g that is 2-1 MUX

realizable. We divide it into two cases.

(a) g is independent of a, b. The following proposition gives necessary and sufficient

conditions for this to happen.

Proposition8.5.3 A decomposition of f as in (8.4), with g independent of a and b,

existsifandonly iffa = /»•

Proof Note that

fa = fb if and only if fab = fa'b = fab' (8.6)
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The if part follows from consideringShannon expansion of fa and fb with respect to b

and a respectively. The only if part follows from the fact that fa and fb areindependent

ofboth a, b (since fa = fb).

(=*) Assume

/ = (a + b)g + a'b'h (8.7)

= abg + a'bg + ab'g + a'b'h (8.8)

Cofaaoring(8.8) withrespect to ab, ab', and a'b, and usingthe fact thatg is independent

of a and b,

g = fab = fab' = /a'b (8.9)

From (8.6), the result follows.

(«=) Doing the Shannon expansionof / with respect to a and then 6,

/ = ab/ab + a'b/a'b + ab'faV + a'b'/a,h> (8.10)

Using (8.6) in (8.10),

/ = (ab + a'b + ab')/ab + a'b'/a>b>

= (a + b)g+ a'b'h

where g = fab = fob = fab' and h = /«,'&*. Since /0fe is independent of a and 6, so is

g- •

Then, from (8.4), it follows that g = fa.

(b) # depends on a orb or both. Cofactoring (8.4) with respect to ab,a'b, and ab', we get

gab = fab, 5o'6 = /a'&> Po6' = /o6'- Then, from the Shannon expansion of g,

g = gabab + ga'bdb + gab'ab' + ga>b'a'b' (8.11)

= fabab + faiha'b + fab'ab' + ga>b'a'b' (8.12)

= G+Ha'b'. (8.13)

Here, <? = fabab + /0'6a;6 + /at'06' and H = ga>v. Note that

Ga'b' = 0, (8.14)

Ha'b' = #• (8.15)
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Given / andachoiceof a andb,we are interested in finding a g that is MUX-realizable.

g will be known ifG and H are known. We already know G (sincewe know /), but we

donotknow H. Tb find H, notethatH does notaffea /, since/ isobtained by ANDing

g = G + Ha'b' with (a + 6). So ^ is adon't care for /. However, we are interested in

finding only those choices of H that make g realizable by a 2-1 MUX. Writing g as a

MUX implementation, we getg = CA + C'B, where A, B, C € {0,1} U<r(/). Since

# = ga'bf, we get

# = (CA+ C'5)a/6' = Ca'b'Aa'b' + (Ca'6'),5o'6'. (8.16)

If we use this formula as such to compute H, there could be 224 possibilities (when

k(/)l = 8). However, we observe that at least one of A, B, C e {a, 6} = V. This is

because, by assumption, g depends on a or b. If C € V, then H = -Ba/&». If A e V,

H = C'a'b'Ba'b'- lfBeV,H = Ca'b'Aa'b'. Thus

H 6 {0,1,c,c',cd,c'd}, c,d€o(f) - {a,b}, c ^ d. (8.17)

This reduces the possible choices of H to at most 1 + 1 + 6 + 6+15+ 30 = 59 (when

k(/)l = 8). These canbe reduced further by examining the cases when H = cd and

when H = c'd. When H - cd,g = G + cda'b'. Since # is MUX-realizable, it has at

most 3 inputs. Hence, g does not depend on at least one of a, b, c, d.

i. If g does not depend one,

gc = gc'

Gc -{-dab = Gc>

Gca'b' + d = Gc>a'b'

d = 0 (since Gvb» = 0 from (8.14)),

which is a contradiction. So g depends on c.

ii. Similarly g depends on d.

iii. If ^ does not depend on a,

ga = ga'

Ga = Ga' + cdb'

Gab' — cd

fab> = cd (since Gav = fab')



8.5. THE MATCHING PROBLEM 297

iv. If g does not dependon b, we can similarlyshowthat i

fa'b —ed

So either fa'b = cdor fav = cd. Similarly, if H = c'd, either fav = c'd or /«/& = c'd.

Hence, for the case of a two-input #, wejust examine fav and /a'&. If any of these

are of the fonn cd or c'd, we consider that form for H. This reduces the number of

possibilities from 59 to at most 16.

The Matching Algorithm

We first give a subroutine that checks if a fimction / with a givenprime and irredundant

cover C, is realizable bya 2-1 multiplexor. Such an / should have atmost 3 inputs. Also \C\ < 2.
The check is based on \o(f)\.

1. If W(/)\ < 1, the function is realizable.

2. If \o(f)\ = 2, say x and y are theinputs, then thepossible functions are x + y,x + y', x' +

y, xy, xy', x'y, and these areeasyto checkfor.

3. If \o(f)\ = 3, then / should beofthe form xy + x'z, i.e., there should beexactly two cubes

in C, each with two literals, with one input x occurring inboth positive and negative phases,

and the other two inputs y and z occurring exactlyonce in the positivephase.

We cannowdescribethe matching algorithm foractl. Itsoutiineis shownin Figure8.10.

(0) If \o(f)\ = 0, return thematch fortheconstant function /. If \a(f)\ > 8, no match exists;

quit.

(i) Compute T3(f) = {a\a € o(f), \a(fa)\ < 3}. We can restrict the potential OR gate inputs

to T3(/), i.e., if a € cr(f) is an input to the ORgatefor an acr/-realizable function /, then

a ^ Ts(/). Thisfollows from (8.1) and (8.4) bynoting that /a - ga and g, being realizable

by a 2-1 MUX, has at most 3 inputs.

(ii) Single input at theOR gate: Check if an inputa£T3(/) may be put alongwitha 0 at the OR

gate. The check is performed by seeing if /„ and /a> are each realizable by a 2-1 MUX each

(using (8.3)). If so, report a match and quit. Otherwise, pick another a e T3(/) and check

likewise. When all the choices are exhausted,go to the next step.
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I o (f)l>8?

YES
no match

NO w

Does f have a decomposition of

the form: f = ag + a' h?

NO

YES
save match

Does f have a decomposition of

the form: f = (a + b) g + a' b' h?

NO

no match

YES
save match

Figure 8.10: Matching algorithm for actl

(iii) Twoinputsat the OR gate and g independent ofthese two inputs: Select a pairof inputs a and

b,a,be Ti(f), at the OR gate. From Proposition 8.5.3, /0 shouldbe equal to /&. This check

is fast, since fa and fb are functions of at most 3 inputs. If they are equal, and fa and /a> b'

are each realizable by a 2-1 MUX, we know / is realizable by one actl block. Otherwise,

pick anothera, bpair and do the check.

(iv) Two inputsat theOR gate and g depends onat least oneofthem: Foreach paira, be T$(/),

first check for MUX realizability of /a>b'. If successful, look for g that is realizable by a 2-1

MUX and depends on either a or b. Forthat, go throughall the possibilities(at most 16) for

H oneby one and seeif g = G -f Ha'b' is MUX realizable.

In steps (ii), (iii) and (iv), we first obtain a prime and irredundantcover ofthe candidates

for g and h before calling the subroutine for MUX-realizability, as it is a pre-condition for our
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subroutine. From the discussion, it follows that

Proposition 85.4 If a completely specifiedfunction f is expressed on minimum support, then the

aboveprocedure is completefor actl, i.e., it generates a match ifand only if f is realizable byone

aai module.

Note that if / is not expressedon minimumsupport, the algorithm may not find a match

that otherwise exists. A simple example is the tautology function / = 1 expressed as a function of

greater than 8 variables.

Usingjust the steps (i),(ii) and(iii),wemaymiss amatch. FOr example, / = (a+b)(a'c+

ab)+a'b'(xy+x'z) is realizable byactl, as shown inFigure8.11. However, (ii) and (iii)fail to find

a match. T3(/) = {a, 6}. Step(ii) fails to generate a match. Since fa' = bc + b'(xy + x'z) is not

realizable by a 2-1 MUX, a cannotbe theonlyinputto the ORgate. Similarly, fa = a'(xy + x'z) is

not realizableby a 2-1 MUX, and hence balsocannotbe the only input to the OR gate. So, we move

to step (iii). The only candidatesfor the OR gate inputs are a and 6. However, since fa ^ fb, step

(iii) also fails to generate a match. Thus, / can be matched to actl only when the OR gate inputs

are a and b,and g depends on a or 6or both. This example also demonstrates that a method based

on cofactoring cannot guarantee optimality for mapping a function onto minimum number of actl

modules. This is because after cofactoring / with respect to a and b,the newly-created function g

will be independent of a and 6. However, for the simplifiedact module, which does not have the

OR gate, cofactoringsuffices. For, a function / realizable by one act modulehas a decomposition

ofthe form (8.1), and from Proposition8.5.1,g and h can be assumedindependentof a: g - fa and

h = fa'. Hence there exists a BDD for / whichis isomorphic to one ofthe pattems of Figure 8.4.

We are assuming, of course,that / cannotbe realized with0 modules. This incidentally completes

the proof of Proposition 8.3.3.

8.5.2 The Matching Problem for act2

The act2 architecture (Figure 8.1) is slightly more difficult to handle than actl, because,

unlike actl, MUXl and MUX2 cannot be treatedseparately - they have a common select line, and

the extra AND gate complicates thematching check. This is similar to thecomplications arising

from the presence of the OR gate in the actl block.

Definition 85.1 Twofunctions gandhare common-select MUX realizable ifeach can berealized

witha 2-1 multiplexor, withthesameselect line (which maybe a constant).
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MUX3

Figure 8.11: An actl -realizable functionthat escapes steps (ii) and (iii) ofthe matching-algorithm

(A) (B)

Figure 8.12: Common-select and common-AND-select MUX realizable functions

Such functions have a realization as shown in Figure 8.12 (A).

Definition 852 Twofunctions g andh arecommon-AND-select MUXrealizable ifboth g andh

canbe realizedwith a 2-1 multiplexor each,suchthat theselectlinefor both themultiplexors is the

sameandis equal toAND ofsomeinputs c, d,where c,de o(g) Uo(h), c ^ d(soc andd cannot

bethe constants 0 and Is).

Such functions have a realization as shown in Figure 8.12 (B).

Given two functions g and h, it is natural to ask if they are common-select MUXrealizable

or common-AND-select MUX realizable. We now givemethods that answer these questions.

Problem 85.1 Given twofunctions g and h, arethey common-select MUX realizable?

sThecaseswhentheconstants 0 and1,orc = d are allowed are handledby common-select MUX realizable functions.
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Solution First find out all possible select line inputs Cg under which g can be realized by a

multiplexor. If a function g is MUX-realizable, either

1. there are no restrictions on the selector function, i.e., g is 0,1 or some input, so tie g to 0 and

1 pins ofthe MUX, or

2. there is exactly one candidate, x, for the select line, i.e., g is one of the following forms:

x', x'y, x' + y,xy + x'z, or

3. there are exactly two candidates, x and y, for the select line, i.e., g is ofthe fonn x + y or xy.

These candidates form Cg. Similarly find Ch for h. Compute Ca n Ch. Then CgHCh^ <f> if andonly

if g and h are common-select MUX realizable. •

Problem 85.2 Given twofunctions g and h, are theycommon-AND-select MUX realizable?

Solution Let o(g) and o(h) be the set of inputs of g and h respectively. Let U = a(g) U

a(h). Assume g and h are common-AND_select MUX realizable (Figure 8.12 (B)). Since c,d £

{0,l},|tf|>2. Then,

g = cdk + (c'+ d')l, (8.18)

h = cdm + (c'+ d')n, (8.19)

c,d eU, c^d, andk,I,m,n£UU {0,1} (8.20)

We let c, dvaryover tf-. Given g, h,c,and d,wemayassume fc, m to be independent of c

and d, i.e.,k,m£ {c, d}. If they arenot,wecanreplace them by 1 without changing g, h. We now

present necessary and sufficient conditions for g and h to be common-AND-select MUXrealizable

for a given c, dpair. The corresponding values of k, I, m, and n are also given.

1. gcd 6 {0,1} U (a(g) - {c, d}) (set k = gcd), and

2. hcd e {0,1} U (<r(/i) - {c, d}) (set m = /icd), and

3. Exactly one of the following should hold:

(i) gc' = 0 and g# - c. (Set / = c).

(ii) gc' = 0 and gd> = 0. (Set / = 0).
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(iii) g^ = 1 and gd> = 1. (Set / = 1).

(iv) ge = d and gd> = 0. (Set / = d).

(v) gc> = * and&*' = *• Here z € o-(^r) - {c, d} (Set / = z), and

4. Exactly one ofthe following should hold:

(i) hc> = 0 and hd» = c. (Set n = c).

(ii) fcc' = 0 and hd> = 0. (Set n = 0).

(iii) hc> = 1 and hd> = 1. (Set n = 1).

(iv) hc> = rfand /*<*/ = 0. (Set n = d).

(v) ftc' = 2and/ij/ = z. Here z € o(h) - {c, d}. (Set n = z).

Wejust present a sketch ofthe proof. For necessity, assume (8.18), (8.19), and (8.20). Cofactoring

(8.18) and (8.19) with respect to cd gives the first two conditions. Cofactoring (8.18) with respect

to c' and d', and using the fact that / € U U{0,1}, weget thethird condition. Likewise weget the

fourth one from (8.19). Forsufficiency, do Shannon expansion of g andh with respect to c and d.

g = gcdcd + gcd> cd'+ gc'dc'd + gc>dt c'd'

h — hcdcd -f hcdicd + ^c/jc d + hcidicd

Using the conditions 1-4 in these two equations, it is easy to see that k,l,m, and n can be

appropriately selected, as written parentheticallyabove, to give the desired implementation ofg and

h as (8.18) and(8.19) respectively.

These conditions are easy to check. Since \U\ < 6, in the worstcase, they have to be

checked for all 15 c, d pairs. •

We arenow ready to answerthe original question: given /, is / realizable by one act2

block? The strategy is to assume that / is realizable by one act2 block and derive all possible

functionpairs g and h (Figure 8.13). Then depending on the number of proper(i.e., non-constant)

inputs at the AND gate, check if g and h are common-select MUX realizable or common-AND-

selea MUX realizable. Refer to Figure 8.13 for the rest of this subsection. It suffices to consider

the following five cases:

1. One proper input, a, at the OR gate and at most one proper input, c, at the AND gate: If /

is realizable by a single act2 block, then f = ag + a'h, g = ck + c'l, h = cm + c'n. Note
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act2

Figure 8.13: An jcf2-realizable function /

that g and h are common-select MUX realizable. It is enough to check for the case when g

and h areindependent of a For, if eitherk or / = a, replace it/them by 1. If any of m, n = a,

replace it/them by 0. Then, if c = a,

f = a(ak+ a'l) -f a'(am+ a'n)

= afc + a 7i.

If 5i = k and fy = n, then g\, h\ are common-select MUX realizable, are independentof a,

and can replace g and /i without changing /. Then g = fa,h = fa>. Finally check if g and ft

are common-select MUX realizable.

2. Oneproper input,a, at theOR gateandtwoproper inputs, c and d, at theANDgate, c ^ d: If

/is realizable by asingleact2 block,/ = ag+a'h,g = cdk+(c'+d')l,h = cdm+(c'+d')n.

Again, without loss of generality, we can assume that g, h are independent of a. For, if

k,l,m,n = a, they may be replaced by appropriate constants 0 or 1. Then if c = a (case

d = a is handled similarly), we get

/ = a(adfc + (a' + d')/)+ a'(adm+ (a' + rf')n)

= a(dk + d'/) + a'n.

Set g\ = dfc + d'l, hi = n = dn + d'n. Then replacing # and /i by #i and hi respectively

results in a decomposition covered by case 1. So, g, h can be assumed independent of a.

Then g = fa,h = fa>. Finally check if g and h arecommon-AND-select MUX realizable.
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3. Two properinputs, a andb,at theORgate,a^b, andat mostoneproperinput, c,at theAND

gate: If /is realizable by asingleactl block,/ = (a+b)g+a'b'h,g = ck-\-c'l,h = cm+c'n.

h may be assumed independent of a, b. For, if either m or n e {a, b}, they may be replaced

by 0. Then if c € {a,b}, h may be replaced by hi = n, which is independent of a,b

andis common-select MUX realizable with any MUX realizable function. This implies that

h = /o'6'. For g, we need to consider two cases:

• g is independent ofa, b: Then fa should be equal to /&, andg = /0 (Proposition 8.5.3).

We then check if g and h are common-select MUX realizable.

• g depends on either a orb or both: As shown earlierin (8.13), g = G + Ha'b'. Then,

as before, for g to be MUX-realizable, we have at most 16 choices for H. For each such

choice, we compute the corresponding g and check if g and h are common-select MUX

realizable. We quit if we get a match (i.e, a yes answer), otherwise we consider the next

choice of H and repeatthis step.

4. Two properinputs, a and b,at theORgate,a^b, andtwoproperinputs, c andd, at theAND

gate, c ^ d: If / is realizable by a single act2 block,

/ = (a + b)g+ a'b'h (8.21)

g =cdk + (c' + d')l (8.22)

h = cdm + (c' + d')n. (8.23)

h may be assumed independent of a, b. For, m, n can be made independent of a, b. Then, if

c = a,

f = (a + b)g + a'b'h

= (a + b)g + a'b'(adm + (a' + d')n)

= (a + b)g + (a'b'n + a'b'd'n)

= (a + b)g + a'b'n.

Then h may be replaced by hi —n, which is independentof a, bandis common-AND-select

MUX realizable with any g of (8.22).

This implies that h - fa'b'- Forg, we need to considertwo cases:

• g is independent of a, b: Then fa should be equal to fb andg = fa (Proposition 8.5.3).

We check if g and h arecommon-AND-select MUX realizable.



8.5. THE MATCHING PROBLEM 305

• g depends on eithera or b: As done earlier, we see that g = G + Ha'b'. Also, from

(8.22), g = cdk + (c' + d')l. Here, c,d € <r(/) and fc,/ e {0,1} U a(/). Since

Ga'b' = 0, and # = ga'b' is independent of a, b,we get

17 = Ca'b'da'b'ka'b' + (ca'b' + d0/y)/<»'&'•

Since </ depends on {a, 6} = V, we consider the following cases:

(a) If c e V, ca'b' = 0. Then H = la'b'. Similarly handle the case d € V.

(b) Otherwise,

-iffcev,ir = (c'o,6, + d'o,60U'.

- if / G V, -ff = Ca'b'da'b'ka'b''

We then get

H £{0,\,x,x'y,x' + y',(x' + y')z,xy,a;yz}, (8.24)

x,y,zeo(/)-V, (8.25)

x^y,y^z,x^z (8.26)

As in the algorithm for actl, we investigate the cases H = xyz and # = (x' + y');?." Let

H = xyz. Then # = G 4- xyza'b'. But # has atmost 4 inputs. So, g must be independent of

at least one of x, y, z, a, 6. We can then show that either /ab> = syz or /a>b = zy*.

(a) If g does not depend on x, we get

5x = gx>

Gx+ yza'b' = Gv

Gxa'b' + yz = Gx'a'b'

yz = 0

Not possible. Hence g depends on x.

(b) Similarly # depends on y and z.

(c) If g does not depend on a,

Ga = Ga' + xyzb'

Gab' = xyz

/ab' = xyz
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Similarly, if g does not depend on 6, fa>b = xyz.

Similarly, if H - (x' + y')z, either fab> = (x' + y')z or fa>b = (x' + y')z. Hence, for a

three-input H, we justneedto examine fav and /a'6. Only if anyofthese are ofthe form xyz

or(x' + y')z, weneed to consider that form for H. This reduces the possible choices of H
to at most 1 + 1 + 6 + 30 + 15 + 1 + 15 + 1 = 70. For each such H, we obtain a g and check

if g and h are common-AND-select MUX realizable.

5. The output ofthe OR gate is a constant (0 or 1): So / = g or / = h. Then if / is realizable

by a single act2 block, either / = x (x € <7(/)), or / = c& + c'l,or / = cdfc + (c' + d')l =

c(d& -f- d'l) + c'/. All these subcases are covered by case 1.

Note that in each of the above cases, we need to vary a,b over T*(f) = {x|x e

°(/)-> \a(/x)\ < 4}, and c,d over o(/), wherever appropriate. Also note that as for actl, each

timeweobtain asub-function of /, we first derive aprime and irredundant cover before performing

any checks. From the above discussion, it follows that

Proposition 855 I/a completely specifiedfunction f is expressed onminimum support, then the

aboveprocedureis completefor act2.

8.6 Constructing Subject Graph and Pattern Graphs using ITEs

We construct anunordered ITE for a function keeping in mind that it is to be mapped to

actl. Sayweare given thecover (or SOP)Cofa function /. Theoverall procedure for constmcting

the ITE for / is as follows:

1. If / is identically 0 or 1, its ITE is just one vertex, which is a terminal vertex with value 0 or

1.

2. If / is a singlecube,orderthe variables asperProposition 8.3.2. If it is a sum of single-literal

cubes, order the variables as per Proposition 8.3.1. In either case, construct the chain ITE.

3. Check if / can be realized by a single actl block. This is done by invoking the matching

algorithm of Section 8.5.1. If / is realizable, construct its ITE appropriately: each MUXof

actl is represented by a non-terminal vertex in the ITE. The OR gate of actl can also be

represented in the ITE, as will be shown in Section 8.6.5.
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4. If all the cubes in the cover C of f have mutually disjoint supports, use the procedure of

Section 8.6.1 to construct the ITE.

5. IfC is unate, construct the ITE using the method of Section 8.6.2.

6. C is binate. First selea variables that occur in all the cubes in the same phase. Next, a

branching variable x is selected. Computethe three algebraiccofactors of / with respect to

x and construct their ITEs recursively using this procedure. These ITEs are combined to get

the ITE for /. The details are in Section 8.6.3.

We now present details of the steps 4,5, and 6. The rest of the steps are either straight

forward or have been described already.

8.6.1 Creating ITE for a Function with Disjoint Support Cubes

In any tree implementationof/, the cubeshaveto be realized firstand then ORedtogether.

So one way to construct the ITE for / is to first construct an ITE for each cube, and then OR the

cube-function^. The ITE for each cube may beconstructed using Proposition 8.3.2. The subsequent

ORing can then be done using Proposition 8.3.1. This procedure, however, ORs the cube ITEs

arbitrarily. Better results are possible if the cube ITEs are combined carefully. The improved

procedure is as follows.

1. Construct an ITE for each cube functionusing Proposition 8.3.2.

2. Determine for each cube whether after mapping its ITE, the output multiplexor, MUX3, of

the root actl module is used, i.e., some input of the OR gate is a proper input of the cube. If

both the inputs to the OR gate are constants,the cube can be realized without the OR gate and

MUX3. For instance, as shownin Figure 8.15,MUX3 is unused for the cube ab (the inputs

to the OR gate at MUX3 are constant) and is used for the cube cde. Determining if MUX3

will be used is easy and the correspondingprocedure is given in Figure 8.14. It is a function

of numbers of positive andnegative literals in thecube. Theprocedure mimicsITEmapping.

The procedure is initially called with count = 0, which means that no module has been

used yet. Some positive and negative literals are selected for each actl module. The count

is set to 1 when at least one module has been used. From then on, it remains 1. The case

count = 1 is handled separately, because for a cube function there is a slight difference in

the way a leafactl is handled as compared to other actl modules.



308 CHAPTERS. MAPPING COMBINATIONAL LOGIC

After this step, the cubes (and hence their ITEs) are partitioned into two sets: free - those

with the root multiplexor unused, and used - those with the root multiplexor used.

3. One ITE from the free set and two from the used set are picked and ORed together.

The ITEs correspondingto the used cubes are mapped to the inputs of the OR gate of the

actl block whose output multiplexor is unused. The free ITE is an input to this output

multiplexor. The resulting ITE is placed in the used set.

If the required number of free or used ITEs are not available, suitable modifications are

made. For example, if no free ITEs are present, four used ITEs are picked and ORed.

This corresponds to using an extra actl module: two ITEs feed the OR gate of the new actl

module and the other two, MUX2. On the other hand, if no used ITEs are present, three

free ITEsare picked. This correspondsto using the OR gate inputsofthe root actl module

of one ofthe ITEs. In either case, the resultant ITE is placed in the used set.

This step is repeated until just one ITE is left unpicked.

Example 8.6.1 Consider f = ab -f cde + g'h'ij'. Let ci = ab,C2 = cde, c$ - g'h'if. For

cuP = 2,q = 0. Then, from Figure 8.14, it can be seen that ci is in free. Similarly, for ci,

p = 3 and q = 0, so ci belongs to used. For c$,p= 1 and q = 3, so c^ is in used as well. The

corresponding realizationsfor the three cubesareshownin Figure8.15. Thenextstep is to realize

f usingtheserealizations. Figure8.16 shows howtheunusedMUX3 ofci's blockis used to realize

f by connecting ci and c^ to the OR gate inputs of block 1. Note thatto realize the desiredOR of

C2 + C3 with c\t ci switchesfrom MUXl toMUX2.

8.6.2 Creating ITE for a Unate Cover

In the spirit of the unate recursive paradigm of ESPRESSO [11], a unate cover is

handled specially. Oneof the following methods is usedto generate an ITEfor a unatecoverCof

the function /.

1. usefactored form: Generate a factored form of /, say by using decomp -g on the SOP

C. Unless the SOP consists of cubes with disjoint supports, there will be at least two sub-

functions in the resulting decomposition. This process is repeated until each ofthe resulting

sub-covers consists of either a single cube or a set of cubes with disjoint supports. In either

case, ITEs are constructed as described earlier. These ITEs are combined to get the ITE for /.
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/* return 1 if the top mux is unused, else return 0 */

/* p = number of +ve literals,

q = number of -ve literals in a cube */

int is_top_mux_unused(p, q, count)

int p, q, count;

{

int q_3 = q % 3;

if (p == 0 && q == 0) return 0;

if (count ==0) {

if (p == 1 && q == 0) return 0;

if (q == 0)

if (p == 2) return 1; else return ((p - 3) % 2);

if (p == 0)

rif (q_3 == 0 || q_3 == 2) return 0; else return 1;

if (q == 1)

if (p == 1) return 1; else return ((p - 2) % 2);

if (P == 1)

if (q_3 == 0 || q_3 == 2) return 0; else return 1;

return is_top_mux_unused(p - 2, q - 2, 1);

}

if (q == 0) return (p % 2);

if (p == 0)

if (q_3 == 0 || q_3 == 2) return 0; else return 1;

if (q == 1) return ((p - 1) % 2);

return is_top_mux_unused(q - 2, p -1 , 1);

}

Figure8.14: Fora cube, is the top multiplexor unused?
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block 1 block 2

cde

block 3

Figure 8.15: Example: realizing the three cubes
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block 2

block 3

cde

block 1

^

MUXl

MUX2

*r

g'h'ij' I.

MUX3

Figure 8.16: Example: using MUX3 of block 1 to realize /

311
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Forexample, let us assumethatthe resulting decomposition for / leads to two new functions

G and F(G,...). ITEs for G and F are created. Then, in the ITE for F, all the pointers to

the variableG arereplaced by pointersto the ITE for G, andthis yields the ITE for /.

2. use column cover: If / is constant-1 or 0, retum the corresponding ITE constant 1 or 0. If

\C\ = 1,construct ITE for the singlecube usingthe variable orderingofProposition 8.3.2. If

C consistsof single-literal cubes,use the variable ordering ofProposition8.3.1 to get the ITE

for /. Otherwise, construct a0-1 matrixB=(6tJ) forthe unatecoverC,wherethe rowsof B

correspond to cubes, the columns correspond to the variables, and

. . if the variable xj appears inthee"1 cube ofC,
bn =

otherwise.

xj may beinthe positive phase orthe negative phase.6 A minimal/minimum weight column
coverCC forB is thenobtained [11] (see Section4.4.1). CC contains somevariables {xj} of

/. For eachvariable xj in CC, a sub-cover SCj is constructed using cubesof C thatdepend

on xj. Each cube is put in exactlyone suchsub-cover (ties are broken arbitrarily). From the

sub-cover SCj, xj (orx/) is extracted outto yield amodified sub-cover MSCj.

c = £ sc>
XjG.CC

= ( £ *jMSCj) + ( £ x/MSCj)
xjzcc, xj pos. binate xjecc, x, neg. binate

In MSCj, xj is a don't care. This corresponds to creating an ITE vertex Vj for SCj with

the if child corresponding to xj, the then child corresponding to MSCj, andthe else child

corresponding to 0. Then vj represents anAND operation. This is the case if xj appears in C

in the positive phase. If it appears in the negativephase,just swap the then and else children

of vj. The columncovers for MSCj are recursively obtained. The ITE of Cis thenobtained

by ORing repeatedly pairs of ITEscorresponding to the sub-covers SCj.

The weight of a positive unate variable is chosen slightly more than the weight of a negative

unate variable. Tb see why, suppose / = ab' + ac'+ c'd. If all the variables were given

equal weights, we may obtain a column cover CCi = {a,d}. Let xi = a,x2 = d. Then

SCi = ab' + ac',SC2 = c'd. Then we factor / as / = a(b'+ c') + d(c'). MSCX =

6Recall thatsinceC is aunate cover, eachvariable x} appears in it in either the positive phase or thenegative phase,
but not both.
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b' + c',MSC2 = c'. Since MSCi and MCS2 satisfy thebase cases (they are either a single

cube or sum ofsingle-literal cubes), their ITEs are constructed. The ITE for / is constructed

from them as shown in Figure 8.17 (A). While ORing SCi and SC2, pointers pointing to

the terminal 0 in say SC2 are changed to pointto the ITEfor SC\. Aftermapping usingthe

pattems to be described in Section 8.6.5, we get the cost as 3 blocks (the dotted rectangle

standsfor an actl block). The reason is that we end up withc',an inverted input,at the leaf

ofthe ITE, anda multiplexor is used up to realize this inversion. However, if theweight of a

positiveunate variable is slightlymore than that of a negative unate variable, we obtain the

columncoverCC2 = {b', c'}. These variables appear as the if children of some ITEvertex

that implements AND operationand hencetheir complements are automatically realized. /

is then factored as / = b'(a) + c'(a + d). Thecorresponding ITE is shown in Figure 8.17

(B). Note that d appears in the positive phase towards the bottom of the ITE and does not

need a multiplexor. As a result, a cost of 2 is incurred after mapping.7 Bygiving lower

weights to the negative unate variables, negative variables tend not to be at the leaves of the

sub-cover ITEs. We choosethe weights such that if the cardinality of a columncover is t,

then each cover of size greater than t should have weight greater than t. It is easy to see that

weight(negative unate variable) = 1, weightijpositive unatevariable) = 1 + 1/n, where / is a

function of n variables, satisfy this property.

3. use the methodfor binate cover: In this method, C is treated as if it were binate. A variable

is selected at each step, and the algebraic cofactors are computed, for which the ITEs are

constructed recursively. The method of selecting the branching variable is described in

Section 8.6.3.

8.6.3 Creating ITE for a Binate Cover

Given the binate cover C for /, we first selea variables that occur in all the cubes in the

same phase. Next, at each step a branchingvariablex is selected. One of the following procedures

is used to selea x:

1. mostbinate [11]: Select the variable that occurs most often in the SOP. Priority is givento

a variable that occurs in all the cubes in the same phase. Subsequently, ties are broken by

'incidentally, this function can berealized byone block. The match isdiscovered bythe matching algorithm described
in Section 8.5.1.
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aCb' + c')

ry + c'

(A) (B)

Figure 8.17: Positiveunate variables shouldhave higher weights

selectingthe variable that occurs nearly equal numberof times in the positiveand negative

phases.

2. quick map: For each input variable v, compute the three algebraic cofactors Co, Ci, and C2

of / with respect to v as follows:

/ = Civ + C0v'+ C2

Example 8.62 Let f = abc+ a'de + gh + ac'd+ g'k, and v = a. Then,

Ci = bc+ c'd,

Co = de,

C2 = gh-\-g'k.

(8.27)

Compute the cost of each algebraic cofaaor by constructing an ITE for it using the most

binate variable selection heuristic,8 and then mapping it without any iterative improvement.
Finally, sum up the costs of all the cofactors to obtain the cost corresponding to selecting v

as the branching variable. Then x is the minimum cost variable.

One could use quick map recursively on the cofactor,but the computation becomes time-intensive.



8.6. CONSTRUCTING SUBJECT GRAPH AND PATTERN GRAPHS USING ITES

x Ci Q)

Figure 8.18: Obtaining algebraiccofactors with ITE

After x has been selected,compute the algebraic cofaaors of / with respect to x:

f = Cix-\- Cox' + C2

315

(8.28)

If we were to construct a BDD for /, fx and fx> would have to be computed. fx = Ci + C2 and

fx> = Co + C2. So C2 is replicated inboth. While C2 can be shared between fx and fx> in theory,

in practice it may not always. The currently used heuristics for constructing unordered BDDs do

not have an inbuiltmechanism fordetectionof sharing. As of ROBDDs, a bad input ordering can

thwart opportunity for a complete sharing. However, as pointed out by Karplus [38], ITEs avoid

the duplication. As shown in Figure 8.18, we can represent / as if C2 then 1 else (if x then Ci else

Co). This way we do not have to duplicate any literal of C2. We illustrated thisearlier in Example

2.1.1, but repeat it here for convenience.

Example 8.63 Considerfunction f = ab+ a'c+ de. InFigure 8.19, we showthat if a is selected

as the top variable in the BDD, C2 = de gets replicatedin both 0 and 1 branches. This is avoided

in the ITE byfactoring out de beforebranching on a.

Werecursively construa ITEs for Co, Ci, and C2 until theybecome unate, inwhich case techniques

from Section 8.6.2 are usedto construct the ITEs. For two special cases, however, weuseaslightly

different realization. When C2 = a'orC2 = a'b', where a,6are inputs of /, we realize / as if C2

then (if x then Ci else Co) else 1. This is shown in Figure 8.20. Such a realization allows us to

save aninverter when C2 = a', and use the OR gate ofactl when C2 = a'b'.

Note that this procedure targets actl and would have to be modified for other architectures,

say act2.
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c+de
b + dc

Figure 8.20: Modifying algebraic cofaaoring for a special case

8.6.4 Comparing with Karplus's Construction

Ourmethod of constructing the ITEfora function / borrows from Karplus [38] the idea

of usingalgebraic cofactors insteadof cofactors. However, we construct the ITEsfor specialcases

differently. We use different techniques to construct the ITE for a singlecube,sumof single-literal

cubes, cubes having disjoint supports, unate cover, and feasible functions (for which we use the

matching algorithm).

8.6.5 Pattern Graphs for ITE-based Mapping
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Figure 8.21: Patterngraphs for actl

The pattern graphs are also ITEs. As shownin Figure 8.21, we use 9 pattem graphs for

obtaining a feasible realization of an infeasible function onto actl. The first four pattem graphs

(from 0 to 3) correspond to the actl without the OR gate and using one, two, or all the three

multiplexors. The next four pattems (from 4 to 7) are the same as the first four except that the

patterns 4 to 7 use the OR function at the if child of the root vertex. The OR function is detected

by the presence ofthe constant 1 atthe then childof the if childofthe root vertex. Pattem graph 8

represents a special casederivable from the basicblock and uses the OR gate. Note the string of 3

MUXes, which as such cannot be implemented by oneactl module, since theactl module has only

two levels of MUXes. But it may be possibleto juggle some inputs. Let

r = root vertex of the pattern 8,

s = if(r),

u = then(r) = then(else(r)),

t = if(else(r)),

v = if(else(else(r))),

w = then(else(else(r))), and

x = else(else(else(r))).
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Then the fimction g implemented by r

g = su + s'(tu + t'(vw -f- v'x))

= su + s'tu+ s't'(vw+ v'x)

= su + tu + $'t'(vw+ v'x)

= (s + *)u+ sY(vtt; -f- v'z)

whichis realizable by oneactl moduleif s and t aremapped to the OR gate inputs.

Notethat if wedo a technology decomposition eitherinto2-inputANDand ORgatesor

into2-1 MUX gates, each function becomes feasible foractl, thus obviating the need for pattem

graphs. We can thensimplyuse a matching algorithm that is embedded in the covering algorithm.

In our paradigm,this is the same as applying one iteration ofpartialcollapse. However, as we will

show in Section 8.7, much better results are possible if we use the completealgorithm of Section

8.4.

8.7 Experimental Results

First we experiment with simpleroptions and then apply increasingly sophisticated ones

for betterquality. The startingnetworks arethesameas thoseobtainedafteroptimizationin Section

3.6.1.

8.7.1 Without Iterative Improvement

This is the simplest option. For each node of the network, an ITE is constructed and

thenmapped usingthe pattemgraphs. This corresponds to the step 1 ofthe mapping algorithm of

Section 8.4. The results are shown in the column ite-map of Table 8.1.

However, it maybepossible tocollapse some nodes intotheirfanouts without increasing

the fanout costs. This transfonnation corresponds to global covering and is implemented using

the steps 1, 4, and 5 of the mapping algorithm of Section 8.4. In other words, for each node of

the networic, a feasible implementation is determined. Then each node is replaced by its feasible

implementation. Finally, one iteration of partial collapse is applied on the resulting network to

mimic the global covering of the networic. The results are shownin the column ite-map + cover

and, on comparing with the column ite-map, establish that thecovering stepis useful in reducing

the block-count.
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example ite-map ite-map + cover

5xpl 46 42

9sym 54 53

C1355 166 164

C1908 176 156

C2670 377 340

C3540 552 502

C432 102 92

C5315 658 588

C6288 1226 988

C7552 813 755

alu2 142 134

alu4 352 335

apex2 120 113

apex3 714 697

apex7 94 85

b9 60 56

bw 63 55

clip 45 41

cordic 26 22

dalu 401 366

des 1399 1279

duke2 186 170

e64 116 90

ex4 208 192

f51m 25 23

k2 570 545

misex2 41 37

rd84 56 55

rot 270 246

sao2 60 55

spla 266 246

t481 15 10

vg2 35 33

z4ml 16 13

total 9450 8578

Table 8.1: actl count without iterative improvement

ite-map step 1of the algorithm of Section 8.4
ite-map + cover steps 1,4, and 5 of the algorithm of Section 8.4
total sum of actl counts over all the examples
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Initial decomposition

Tb test the hypothesisthat a technologydecompositioninto two input AND and OR gates

is not the best alternative, we performed an experiment using threedecomposition techniques.

1. nanddecomp: Apply decomp -g to create a factored representation and then use tech-decomp

-a 2-o 2 to derive a representationin terms of 2-input AND and OR gates.

2. MUX decomp: Foreachnode,construct an ITE and breakit up into MUX nodes.

3. LUT decomp: It seems a good idea to use the synthesis techniques for LUT architectures

to obtain a 3-feasible network. Initially, the motivation was that for functions with a small

numberof inputs,onecouldconstruct ROBDDs for all possibleinputorderings andpick the

best one. Wesuggested this first in [62]. Karplus,noting that an actl module can implement

most ofthe 3-input functions, used the same idea in [38]. Whatever the motivation, the idea

is good, as the experiments will prove.

While the first two techniquesgenerate an acf/-feasible network, the third, LUTdecomp, may not,

since not all 3-input functions can be realized with an actl module. So, in this case, an ITE is

constructed and mapped, resulting in a feasible implementation.

On the feasiblenetworkgeneratedusingeach technique,an iterationof partial collapse is

applied to mimic the covering step. The results obtained thereafter are shown in Table 8.2. About

10% improvement is attained from MUX decomp overnand decomp. LUT decomp yields the best

results, attributable to superior LUT mapping techniques. As wedemonstrate next, it is possible to

further improve the quality by means ofthe iterative improvement phase.

8.7.2 Iterative Improvement Without Last Gasp

Weuse steps 1,2,4, and 5 of the algorithm. A binate cover is mapped using the most

binate variable option, and a unate cover, using thefactoredform option. Just one iteration is used

in the iterative improvement step, i.e., in step 2. Tbmake thepartial collapse more effective, a node

is considered for partial collapse only if it satisfies all ofthe following conditions:

1. Its cost is at most 3 actl modules,

2. it has at most 7 fanins, and

3. after collapsing it into the fanouts, each of its fanouts has at most 50 fanins.
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example nand decomp MUX decomp LUT decomp

5xpl 48 43 43

9sym 79 63 19

C1355 216 200 202

C1908 219 195 182

C2670 330 305 238

C3540 618 605 489

C432 123 114 83

C5315 798 766 555

C6288 1458 1264 1079

C7552 1097 905 712

alu2 185 167 152

alu4 475 443 321

apex2 133 129 120

apex3 799 769 -

apex7 104 90 84

b9 56 56 56

bw 65 62 60

clip 59 46 41

cordic 25 23 26

dalu 487 449 385

des 1617 1563 1222

duke2 210 191 184

e64 97 97 90

ex4 233 221 221

f51m 37 31 26

k2 739 660 536

misex2 48 47 45

rd84 78 67 43

rot 287 288 251

sao2 64 61 52

spla 301 291 251

t481 11 10 10

vg2 39 33 34

z4ml 16 18 16

total 11151 10272 -

subtotal 10352 9503 7828

Table 8.2: Initial decomposition

nand decomp apply decomp-g and then tech-decomp -a 2 -o 2; then cover
MUX decomp decompose into MUX nodes; then cover
LUT decomp get a 3-feasible networic; then cover
total sum of actl counts over all the examples
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Also, in the decomposition step of iterative improvement,only those nodes are considered that have

at least 4 fanins. In the rest of the section, all parameters in the mapping algorithm take on same

values as just described.

The results are shown in Table 8.3 in the column ite-map + iter, imp., and are compared

with the column ite-map + cover of Table 8.1. They are, on average, 6% better, confirming the

usefulness of iterative improvement.

Constructing ITE for a unate cover

We experiment with all the three techniques of Section 8.6.2 for handling unate covers:

usefac, use columncover, and use the methodfor binate cover, and report the results in Table 8.4.

For the binate cover,the mostbinatevariable heuristic is applied. The techniques give comparable

results, the factored form being slightly better than the other two.

Constructing ITE for a binate cover

We experiment with both branching variable selection methods of Section 8.6.3: most

binate and quick map. The results are shown in Table 8.5. On dalu and des, quick map ran out of

memory. On the rest of the examples, it is 0.5% better than mostbinate, but many times slower.

This slight improvement is probably not worth the time penalty to be paid.

8.7J Iterative Improvement with Last Gasp

So far, last gasp (step 3) was skipped in all the experiments. It is put to use for the

first time, and is applied right after the iterative improvement step. The results obtained thus are

compared with iterative improvement and no last gasp (column ite-map + iter. imp. of Table 8.3).

The results, compiled in Table 8.6, show that last gasp is ineffective. We believe this is because the

mapping solution generated by iterative improvement without last gasp is close to the best attainable

with our techniques.

8.7.4 Using Global ROBDDs

For networics with small number of inputs (for this experiment, at most 15), we construct

global ROBDDs, i.e.,step6 ofthe algorithm, and check if it improves uponthe solution generated

using iterative improvement (column ite-map + iter. imp. of Table 8.3). Last gasp was not used,

since it is not beneficial. We used both old and new ROBDD packages. The results are shown



8.7. EXPERIMENTAL RESULTS

example ite-map +iter. imp. ite-map + cover

5xpl 40 42

9sym 53 53

C1355 164 164

C1908 155 156

C2670 205 340

C3540 472 502

C432 89 92

C5315 519 588

C6288 988 988

C7552 651 755

alu2 130 134

alu4 308 335

apex2 106 113

apex3 697 697

apex7 82 85

b9 56 56

bw 54 55

clip 37 41

cordic 21 22

dalu 361 366

des 1216 1279

duke2 164 170

e64 90 90

ex4 191 192

f51m 23 23

k2 526 545

misex2 37 37

rd84 52 55

rot 236 246

sao2 52 55

spla 242 246

t481 10 10

vg2 32 33

z4ml 14 13

total 8073 8578

Table 8.3: actl count with basic iterative improvement

ite-map + iter. imp. steps 1,2,4, and 5 of the algorithm ofSection 8.4
ite-map + cover steps 1,4, and 5 of the algorithm of Section 8.4
total sum of actl counts over all the examples
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example use fac column cover as binate

5xpl 40 40 40

9sym 53 53 53

C1355 164 164 164

C1908 155 156 156

C2670 205 205 205

C3540 472 472 473

C432 89 85 86

C5315 519 520 519

C6288 988 989 988

C7552 651 657 655

alu2 130 129 130

alu4 308 304 305

apex2 106 110 112

apex3 697 692 699

apex7 82 83 82

b9 56 55 55

bw 54 54 54

clip 37 37 37

cordic 21 21 21

dalu 361 363 361

des 1216 1216 1218

duke2 164 168 166

e64 90 90 90

ex4 191 199 197

f51m 23 23 23

k2 526 527 522

misex2 37 36 37

rd84 52 52 52

rot 236 236 238

sao2 52 52 53

spla 242 243 242

t481 10 10 10

vg2 32 32 32

z4ml 14 14 14

total 8073 8087 8089

Table 8.4: Handling unate covers

use fac obtain a factored form for the unate cover

col cover use a column covering procedure to construct ITE for the unate cover
binate handle the unate cover exacdy like a binate cover
total sum ofactl counts over all the examples
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example most binate quick map

5xpl 40 38

9sym 53 52

C1355 164 164

C1908 155 156

C2670 205 202

C3540 472 463

C432 89 88

C5315 519 503

C6288 988 989

C7552 651 657

alu2 130 131

alu4 308 300

apex2 106 110

apex3 697 692

apex7 82 82

b9 56 52

bw 54 55

clip 37 35

cordic 21 22

dalu 361 -

des 1216 -

duke2 164 163

e64 90 90

ex4 191 203

f51m 23 24

k2 526 522

misex2 37 37

rd84 52 50

rot 236 238

sao2 52 53

spla 242 239

t481 10 10

vg2 32 31

z4ml 14 14

total 8073 -

subtotal 6496 6465

Table 8.5: Variable selection method

most binate selea the most binate variable at each step
quick map select the minimum-costvariable: compute cost by

mapping algebraic cofactors
total sum of actl counts over all the examples
subtotal sum of actl counts when quick map finishes
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example last gasp no last gasp

5xpl 40 40

9sym 53 53

C1355 164 164

C1908 154 155

C2670 205 205

C3540 472 472

C432 89 89

C5315 519 519

C6288 988 988

C7552 651 651

alu2 130 130

alu4 308 308

apex2 107 106

apex3 698 697

apex7 82 82

b9 55 56

bw 54 54

clip 37 37

cordic 21 21

dalu 361 361

des 1216 1216

duke2 163 164

e64 90 90

ex4 191 191

f51m 23 23

k2 524 526

misex2 36 37

rd84 52 52

rot 236 236

sao2 52 52

spla 242 242

t481 10 10

vg2 30 32

z4ml 14 14

total 8067 8073

Table 8.6: Last Gasp

last gasp apply last gasp withiterative improvement
no last gasp do not apply last gasp - only iterative improvement
total sum ofactl counts over all the examples
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example init oldbdd new bdd

5xpl 40 51 51

9sym 53 17 14

alu2 130 131 111

bw 54 112 86

clip 37 105 96

f51m 23 39 53

rd84 52 36 37

sao2 52 67 77

Table 8.7: Using global ROBDDs

init starting block count
old bdd constructROBDDusingthe old package and then map
new bdd construct ROBDDusingthenewpackage and thenmap

327

in Table 8.7. Some improvement is obtained in examples 9sym, alu2, and rd84. These are either

completely symmetric or partially symmetric benchmarks. As mentioned earlier, global ROBDDs

provide a compact representation for such functions. On the rest ofthe benchmarks, the results are

worse and therefore rejected. Also, the new ROBDD packageis seen to be slightly better than the

old one. This is possibly because ofthe sharing of complement functions in the new package.

8.7.5 Treating Node as the Image of the Network

This idea explores the possibility of extending the last gasp paradigm. Recall that last

gasp attempts to improve the solution quality towards the end ofthe mapping algorithm, but fails

since iterative improvement produces good-quality results. Here, we embed last gasp at the node-

mapping level. For each node n ofthe networic 77, insteadof constructingan ITEand mappingit, we

constructa network 77(71), whichhas oneprimary output,one internalnodecorresponding to n, and

as manyprimaryinputsas the faninsof n. Then,on 77(71) we applythe algorithmof Section8.4 (with

iterative improvement). This results in a networic 77(71). We replace ti in 77 by its implementation

77(71). After this step has been performed for each node n, 77 gets converted into a new networic,

say rj. Each intermediate node in rj can be implemented by an actl module. Hence, the number of

intemal nodes in 77 gives the number of actl modules needed for 77. Finally, we construct a global

ROBDD for the network and map the ROBDDon actl modules. If we get a better block count than

thatof rj, we accept the ROBDD decomposition. These results are shown in thecolumn best-map
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ofTable 8.8 and are compared with those obtained after iterative improvement (Table 8.3, column

ite-map + iter, imp.) and then building global ROBDDs (Table 8.7), as reproduced in the column

prevbest. There is a slight improvement in the result quality. But it is at the expense of enormous

run-time.

8.7.6 Comparing Various Systems

Here we compare mis-fpga with the library-based mapper in misll [18] and Amap -

actually an improved version of [38]. The starting optimized networks are identical for all the

systems. For mis-fpga, we use the results from prev bestcolumnof Table 8.8, since it completes

on all the examples, is just 1% worse than the best-map option, and is much faster.

InTable8.9, we compare Amap withourapproach. It can be seen that mis-fpga generates

much better results as compared to Amap, on average 18.5% (using the row subtotal). Using the

average of percentage difference for each example as the measure, we get 20.5% improvement.

Although boththetoolsuse ITE-based representation, mis-fpga usesa differentwayof constructing

ITEs. Also, it uses an iterative improvement step, which accounts for better results. Not only that, as

can be seen from ite-map columnof Table8.1, mis-fpga withno iterative improvement is slightly

better than Amap. The results ofTable 8.9 are pictorially shown in Figure 8.22.

Tb compare mis-fpga with the library-based approach of misll, we created two libraries:

1. complete: it consists of all 702 non-P-equivalent functions that can be realized with one actl

module,

2. actel manual: it consists of all the cells in the Actel manual [2], which are about 90.

Table 8.10 shows the results. It turns out that usinga complete library helps - by 6.7% on average.

However, the mapping is slow - in fact, about 7-10times slowerthan in the case ofpartial library. The

mis-fpga results as shown in the previoustable are about 12.5%better than the complete library's

and 18.2% than the partial library's. Using the measure of average of percentage improvement

for each example, mis-fpga is 13.7% better than the completelibrary and 19.7% better than the

partial one. It reaffirms the thesis that better qualitycan be achievedby using architecture-specific

algorithms. The results are compared graphically in Figures 8.23 and 8.24.
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example best-map prev best

5xpl 37 40

9sym 14 14

C1355 164 164

C1908 149 155

C2670 200 205

C3540 439 472

C432 86 89

C5315 503 519

C6288 990 988

C7552 621 651

alu2 111 111

alu4 293 308

apex2 104 106

apex3 696 697

apex7 80 82

b9 54 56

bw 54 54

clip 36 37

cordic 21 21

dalu 340 361

des - 1216

duke2 166 164

e64 90 90

ex4 187 191

f51m 23 23

k2 527 526

misex2 36 37

rd84 37 37

rot 232 236

sao2 50 52

spla 238 242

t481 11 10

vg2 30 32

z4ml 14 14

total - 8000

subtotal 6633 6784

Table 8.8: actl count: treating node as the image ofthe network

best-map do the best mapping of each node - use all the steps
of the algorithm of Section 8.4 except last gasp

prev-best all the steps of the algorithm ofSection 8.4 except last gasp
total sum of actl counts over all the examples

out of memory
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example amap mis-fpga

5xpl 47 40

9sym 60 14

C1355 142 164

C1908 172 155

C2670 398 205

C3540 541 472

C432 104 89

C5315 631 519

C6288 1224 988

C7552 820 651

alu2 163 111

alu4 356 308

apex2 129 106

apex3 789 697

apex7 98 82

b9 64 56

bw - 54

clip 45 37

cordic 27 21

dalu 429 361

des 1527 1216

duke2 204 164

e64 120 90

ex4 243 191

f51m 30 23

k2 567 526

misex2 49 37

rd84 63 37

rot 296 236

sao2 63 52

spla - 242

t481 12 10

vg2 39 32

z4ml 18 14

total - 8000

subtotal 9470 7704

Table 8.9: mis-fpga vs. Amap

amap using Amap
mis-fpga prev best column ofTable 8.8
total sum ofactl counts over all the examples

segmentation fault
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# actl blocks

le+03

le+02

le+01

Amap_
mis-fpga

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Example number

Figure 8.22: Comparing mis-fpga with Amap
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example library-based mis-fpga
complete actel manual

5xpl 45 52 40

9sym 57 61 14

C1355 182 174 164

C1908 181 188 155

C2670 282 297 205

C3540 485 516 472

C432 91 92 89

C5315 621 682 519

C6288 1425 1456 988

C7552 816 855 651

alu2 137 152 111

alu4 329 372 308

apex2 104 114 106

apex3 650 695 697

apex7 89 101 82

b9 53 62 56

bw 68 74 54

clip 49 50 37

cordic 22 23 21

dalu 361 420 361

des 1339 1446 1216

duke2 173 188 164

e64 116 116 90

ex4 197 210 191

f51m 28 33 23

k2 507 546 526

misex2 45 46 37

rd84 58 65 37

rot 276 305 236

sao2 54 59 52

spla 237 257 242

t481 13 13 10

vg2 40 43 32

z4ml 18 18 14

total 9148 9781 8000

Table8.10: Library-based approach vs. mis-fpga
complete use the complete library
actel manual use the library provided by Actel
mis-fpga prey bestcolumnof Table 8.8
total sum of actl counts over all the examples
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Figure 8.23: Comparing mis-fpga with the completelibrary
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Figure 8.24: Comparing mis-fpga with the partial library provided by Actel
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8.7.7 Using Multi-rooted ITEs

The subjea graph in our algorithm is either a BDD or an ITE, and is constructed and

mapped for eachnode functionseparately. It lookspromisingto explorea subjectgraphthat is global

and at the same time does not suffer from the ordering constraint of global ROBDDs. Then, the

mappingalgorithm would havea largergraph tomap,potentially yielding bettermapping solutions.

A naturalchoice for such a representation is a multi-rooted unordered ITE. It has as many rootsas

the primary outputsofthe networic, and is constructedby composingthe ITEsofthe individualnode

functions. Tb handle the new representation, we made appropriate modifications in our mapping

algorithm.

Tb test the new representation, a multi-rooted ITE is constructed for the entire network

and mapped withoutany iterativeimprovement. The results are presentedin the columnmroot-ite

ofTable 8.11, and are comparedin the column ite-map withthose obtainedafter constructing ITEs

for each node and mapping them withoutany iterative improvement (this column is a copy of the

column ite-map of Table 8.1). It turns out the results for the two columns are almost identical. We

believe this is because of the tree-based nature ofthe mapper. In an optimized network, each node

is saving some literals, i.e., the number of literals in the networic will increase if the node-were

eliminated from the network. So, very likely, the root vertex of the node ITE, after composition

of the local ITEs, fans out to more than one ITE vertex in the the multi-rooted ITE. The mapper

breaks up this ITE into trees by clippingthe ITEat all multiple-fanout vertices, and maps each tree

separately. The problem then is no different from that of mapping singly rooted ITEs. However,

if an exact mapper (e.g., one based on an exact binate covering solver) were to be used, we expect

multi-rooted ITE to be superior.

8.8 Discussion

Our basic premise was that in the mapping step for MUX-based architectures, instead

of a NAND-based representation, a MUX-based representation should be used. We started with

a BDD-based representation and later switched over to a more general ITE-based representation.

Table 8.10 shows that an ITE-based approach does much better than a library-based approach that

uses the NAND-gate representation, thus establishing the premise.

Comparingvariousrepresentations, ROBDD has only one copy of a logic function, but it

suffersfromunnecessary orderingconstraint, and the results dependstronglyon the ordering. BDD
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example mroot-ite ite-map

5xpl 46 46

9sym 54 54

C1355 166 166

C1908 176 176

C2670 381 377

C3540 550 552

C432 101 102

C5315 661 658

C6288 1226 1226

C7552 818 813

alu2 142 142

alu4 352 352

apex2 120 120

apex3 715 714

apex7 94 94

b9 61 60

bw 63 63

clip 45 45

cordic 26 26

dalu 401 401

des 1398 1399

duke2 186 186

e64 116 116

ex4 208 208

f51m 25 25

k2 566 570

misex2 41 41

rd84 56 56

rot 273 270

sao2 60 60

spla 264 266

t481 14 15

vg2 35 35

z4ml 16 16

total 9456 9450

Table 8.11: Multi-rootedITEsvs. singly rooted ITEs

mroot-ite createmulti-rooted ITE for the networic andmap it
ite-map step 1 of the algorithmof Section 8.4
total sum of actl counts over all the examples
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does not have any ordering problem, but it can have multiple copies ofthe same function.

On cofactoring,both these representations canreplicateproductterms in the two branches.

However, as shown in [38], ITEs avoid this replication by using algebraic cofactors.

We believe that the best quality resultsare obtainedif the subject graph is created keeping

in mind the targetarchitecture. As we demonstrated, approaches like ours thatdirecdy map on to the

architecture can create such a subjea graph. Since a library has many gate functions, library-based

approaches areunable to construct subjea graphs that aregood for the architecture.

Iterative improvement is essential in getting good quality results.

We targeted primarily actl module. At a time when there is a surge of new block

architectures, it is difficult for synthesis to keep up. So our guiding philosophy was to fix an

architecture, strive for the best quality results, and hope that the algorithms developed for this

architecture can be appropriately modified for other architectures. For instance, to come up with

a good mapper for act2, pattem graphs have to be derived. Ideally, the subject graph construction

should also be tailored. We proposed a matching algorithm for act2. Then, the same core of initial

mapping, iterative improvement, etc., canbe used.
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Chapter 9

Conclusions

9.1 Contributions

This thesis addressed the problem of synthesizing circuits on field-programmable gate

array architectures. When westarted thework, nosynthesis algorithms had been published forthe

most popular FPGA architectures such aslook-up table- and multiplexor-based architectures.

Weshowed that the synthesis problem for these architectures is different from thatsolved

by the conventional, standard-cell based logic synthesis tools. Both optimization and technology-

mapping, the two main steps of logic synthesis paradigm, need to be modified in order to obtain

high quality results.

9.1.1 Synthesizing Combinational Logic

For mapping, we considered two objective functions - minimum area, approximated by

the minimumnumberof basic blocks,andminimum delay. Most of our effortwasdirectedtowards

producing a circuit with the minimum number of blocks. Even computing this number for an
arbitrary Boolean function is an NP-hard problem. So good heuristics are needed. We divided
mapping into two main steps: breaking infeasible functions into sets offeasible functions, and then
minimizing the number of feasible functions.

For LUTarchitectures,we examined variousdecompositionstrategies,as well as variable

support reduction, for the first step. We were the first to apply the classical functional decomposition
forthese architectures. We showed thattheproblem ofobtainingsmall functions afterdecomposition

can be exactly formulated as an encoding problem -an input-outputencoding problem, to be precise.
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Previous formulations encoded the equivalence classes. We showed that this is not the most general

formulation. We presented the most general formulation, which encodes the vertices in the Boolean

space corresponding to the bound set such that vertices in different equivalence classes are assigned

different codes. This result is in the context ofthe general functional decomposition algorithm, and,

as such, is architecture-independent. We appliedit to LUT architectures and showed that an input

encoding formulation suffices. We also studied decomposition using cube-packing. We proved

that for look-up tables with at most 5 inputs, cube-packing gives optimum tree implementation for

functions consisting of cubes with mutually disjoint supports. We also showed that, in general,

finding an optimum cube-packing solution is NP-hard. Other decomposition techniques such

as cofactoring and AND-OR decomposition were also studied. For MUX-based architectures,

the decomposition step generates a networic in terms of 2-to-l multiplexors, since it is a more

natural representation for such architectures. Either BDDs or ITEs may be used as the basic

representation. An important problem in mapping is the matching problem, i.e., determining if a

function can be implemented by a module. We proposed matching algorithms for the actl and

act2 modules. Exploitation of the module-structures makes the algorithms fast. Note that in

conventional technology-mapping, just before the covering step, the network is decomposed into

two-input NAND gates. In principle, we could apply the covering (block count mimmization) step

on anetworkofNANDs. However, decomposition thatexplicitly targets FPGA architectures yields

better results after covering. This is one contribution ofour work.

We devised two strategies for minimizing the number of functions in a feasible network.

The first is a covering method, similar to that used in the conventional technology-mapping. A

binatecovering formulation is used. ForLUT architectures, we defined the notion of an m-feasible

supemode, which is the basic object in the coveringalgorithm. Optimum and heuristic algorithms

were used/developed to solve the problem. The second strategy, specific to LUT architectures, is

based on reducing the support of a node function so that the node can be absorbed in other nodes.

These two block count mimmization strategieswere coupled into one algorithm.

Forboth LUT and MUX-based architectures, making the entirenetworic feasible andthen

minimizing the block count is not as effective as applying these operations on each node of the

networic separately and then exploiting the structural relationshipbetween the nodes of the network

in apartial collapse operation.

We also examined the optimization issues for FPGAs. In particular, we have modified

kernel extraction for LUT architectures, and are exploringsimplification. We have shown how to

modifytwo-level minimization soasto obtain an SOP that is better suited for cube-packing.
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9.1.2 Mapping Sequential Logic

For sequential circuits, we focussed only on LUT architectures. The actl and actl

MUX-based architectures do not have any flip-flops, and so two modules have to be configured

appropriately using feedback to realize a flip-flop. Then the problem of mapping presents no new

challenges. However, the commercially available LUT architectures have flip-flops. For instance,

the Xilinx 3090 CLB is a complex blockwith two flip-flops and can be configured in many ways.

One contribution of this thesis was showing that 19 configurations suffice. Another one was

developing a fast algorithm to answer the following question: "Can a given set of combinational

functions andflip-flops ofthe sequential circuitfit on one CLB ?" This is crucial since it forms

the basis of a mapping technique we proposed, in which combinational functions and flip-flops are

mapped simultaneously. An alternate and faster way is to map the combinational functions first and

then the flip-flops. A flow-based polynomial time algorithm for the best placement of flip-flops in

the already used CLBs was presented. Thisis optimum undersomeassumptions. Bothtechniques

build on and use the combinational mapping techniques proposed earlier.

9.1.3 Complexity Issues

Questions like how good various FPGA tools are and how much more they can be im

proved led us to examine theoretical complexity issues. We were able to detennine the exact

complexity for a subset of functions for LUT architectures. Unfortunately, the problem of deter

mining the complexity of a function (i.e., the minimum number of blocks needed to realize the

function) is a hard one. The next best alternative is to detennine bounds on the complexity. The

thesis explored how to compute upper bounds for a function, and a networic in general, given some

representation. Two representations - SOP and factored form - were considered. Most of these

bounds were proven tight under some simplifyingassumptions. These bounds can be used to predict

quickly the block count for a circuit withoutdoing any technology mapping, and we provided some

experimental evidence for the accuracyof these estimates.

We did not derive similar bounds for the MUX-based architectures. The main reason is

that an LUT is easy to charaaerize - simplyby the number of inputs. However,the basic blocks for

other architectures cannot be characterized so easily, making the bound derivation hard.
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9.1.4 Performance Directed Synthesis

All ofthe above approaches were related to obtaining a minimum-area circuit. This thesis

also addresses performanceoptimizationfor LUTarchitectures. Becauseofthe constraintsimposed

by the architecture and programming methodology, the wiring delays can be unpredictable and can

be a significant fraction of the total path delay. Lacking placement information, the logic-level

delay models cannot handle wiring delays. Our contribution is to solve the problem by a two-phase

approach: first, apply transformations at the logic level using an approximate delay model and then,

couple timing-driven placement with resynthesis using a more accurate delay model.

All of these techniques, including those for minimum block count and minimum delay,

have beenimplemented in mis-fpga andsis-fpga, which arebuilton topof sis. Theyarecurrently

being used in both academic and industrial environments. An average improvement of 10-30% over

other systems can be expected, though at the cost of longer run times.

9.2 Future Work

9.2.1 Improving the Implementation

The primary goal of this thesis was to obtain the best quality results. The run-time of

the algorithms was a secondary consideration. Consequently, there is reason to believe that the

current implementations of mis-fpga andsis-fpga can be speeded up significantly. One wayis to

first identify the critical sections of the code through profiling and then speed them up. Another

is through memoization. Right now, the mapping algorithm is applied afresh on each function /

under consideration. It may be the case that either / or another function g equivalent to / (NPN-

equivalent for LUT and P-equivalent for MUX-based architectures) were encountered earlier and

therefore already mapped. If storedin a hashtable, thesemappings can be used for /, thus avoiding

unnecessary computation. One benefit to accme from this speed up is that for the same CPU time

spent, more computation can be performed, potentially translating to better results.

9.2.2 Using Don't Cares

The mapping techniques proposed in this thesis dealt only with completely specified

functions. In general, because of the structure ofthe networic, each node function has a don't care

setassociated withit, which canbeused toderive a representation thatis better suited formapping.

In a general mapping framework, the useof don't cares wasinitiated by Mailhot andMicheli [52],
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and later extendedby Savojetal. [71]. Their ideascan be appliedto FPGA mappingtechniques. In

faa, recendy Lai et al. [43] have implemented a BDD-basedversion of Roth-Karp decomposition

for incompletely specified functions.

9.23 Logic Optimization

We have just started targeting the logic optimization phase for FPGAs, in particular for

LUTarchitectures. We modeled cube-packingin a two-levelminimizer and showedhow to obtain

a sum-of-products representation that is suited for cube-packing. This is yet to be incorporated in a

multi-level environment. We believe that other FPGA mapping techniques need to be modeled in

various optimization steps and only then can success be attained in this venture.

9.2.4 Delay Optimization and Modeling

The delay model used currently at the logic level is weak. This is because it has no idea

about the wiring delays, which are a function ofthe module locations. Better delay models need to

be developed also for placement. The Elmore delay model does not consider fanout loading, and

the Rubinstein-Penfield-Horowitz model gives two delay numbers, which could differ from each

other significantly.

9.2.5 Area-Delay Trade-offs

During synthesis, we did not take into account the capacity of chips. It may be the case

that the circuit fits on one chip, with some blocks unused. By modifying the circuit such that

the unused resources are used, we may be able to improve circuit speed. Similarly, the circuit

may meet the performance constraints, and it may be possible to recover area without violating

the constraints. Recendy Cong et al. [17] and Bhat [7] have proposedsome techniques for LUT

architectures. Bhat's approach is particularly attractive, since it modifies an existing library-based

mapperand thusmakesavailable the whole wealth of techniques developed already [82].

9.2.6 Synthesis for Routability

In Xilinx 3090 architecture, routing is a bottleneck. A smaller implementation may not

necessarily be easier to route. Synthesis algorithms that take routing constraints into account have

to be devised. This thesis does not directly address routing issues, except that one of the block
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count minimization heuristics approximates routability by the number of edges in the network.

When there is a choice of nodes to collapse into fanouts, the one that creates the least extra edges

is selected. Although it promises better routability, there are no guarantees. Woric by Schlag et al.

[76] is similar in that they also model routability with the number of edges in the networic. They

modify the cost fimction of the covering algorithm for routing and target the 2-output CLB of the

Xilinx 3090 architecture directly. Recently, Bhat and Hill [8] proposed an algorithm that couples

synthesis, placement, and routing in a tight loop.

9.2.7 Sequential Circuits

Although we addressed the problem ofmapping for sequential circuits on to LUT-based

architectures, we did not devote much attention to the state-assignment and optimization problems.

Given a chip that has some number of combinational and sequential components, the synthesis

algorithm is assigned the task of fitting the circuit on a minimum number of chips. Synthesis has to

be carried out under the constraintof fixed resources. State-assignment can trade-off combinational

and sequential elements, thus producing a design that matches the architectural constraints.

9.2.8 Partitioning Issues

If a design is too large to fit on one chip, it has to be partitioned into many chips. If a

minimum cost solution is desired, i.e., using minimum number of chips, the standard partitioning

algorithms, e.g., of Kemighan and Lin [40], can be used. If the minimum delay is the primary

objective, an algorithm described in [59] may be used. This problem is interesting because every

time a signal crosses chip boundaries, an extra delay called inter-chip delay is incurred, which

could be much more than the delay on a signal that lies completely within a chip. However, this

algorithm does not consider pin constraints ofthe chip. So a few extensions need to be made.

Another interesting partitioning problem arises because of the existence of different LUT

architecture-families (e.g., Xilinx 2000, Xilinx 3090, Xilinx 4000). Since the cost, capacity, pins,

and performance differ for the families, the following question assumes great importance: "Given

a cost objective and a performance constraint (alternatively, a performance objective and a cost

constraint), howmany chips ofeachfamily should be used, andhowshould thedifferent partsof

the circuit be assigned to these families?" Recently, Kuznar et al. [42] proposed a multi-way

partitioning algorithm based on a recursive application of the Fiducia-Mattheyses bipartitioning

heuristic [22] to address a restricted problem (without performance issues).
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In our current approach, partitioning constraints are ignored during synthesis. Recent

work by Beardsleeet al. [4,5] addresses logic partitioning subject to pin limitations. The number

of wires going across chips is minimizedat the cost of extra encodinglogic, thus trading off area

for pins. This work is in a generalsynthesisframework and can be appliedin the FPGA domain.

9.2.9 Targeting New Architectures

NewFPGAarchitectures arebeing proposed. Forinstance, thenewXilinx4000CLB has

three LUTs - twofour-input LUTs feeding a three-input LUT. Ourtechniques, being architecture-

specific, haveto be modified to be applicable to a newarchitecture. Is it realistic to deviseseparate

algorithmsfor separate architectures? Thoughbetterresults are possible,it may not be viable from

a business viewpoint. We propose an integrated approach, which uses a fast matching algorithm

for eacharchitecture andprovides a common coreof synthesis operations andtransformations (e.g.,

the partial collapse, decomposition, etc.) for all the architectures. Its motivation comes from the

way mis-fpga evolved for LUT and MUX-based architectures. Initially the techniques were quite

different for the two architectures, but finally they converged. This approach, however, does not

consider the following:

1. Technology-independent optimization: Although the number of literals in a factored form is,

in general, a reasonable cost function, it may not be the best one, as was shown in Chapter 4

for LUTarchitectures. For such cases, should we embed a quick mapper in the optimization

steps to determine if the cost has improved? The cost computation should be fast, since it has

to be performed many times. Some researchers consider the support of a function as its cost

[28]. Though easy to compute, it may not be a good cost function, since functions with the

same support can require widely varying number of blocks.

2. Technology-decomposition: Architecture-specificdecomposition generally yields betterqual

ity results. A representation that is more suitable for the architecture is desired. One solution,

of course, is to consider a 2-input decomposition as a starting point irrespective of the archi

tecture.

As long as some quality-hit is acceptable (which is reasonable given the alternativeof developing

different algorithms for different architectures), this approach is attractive.
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9.2.10 What is a Good Architecture?

The last few years have seen a proliferation of FPGA architectures, which vary in the

basic block stmcture, the routing architecture, the programming technology, etc. Given this wide

variety, is some architecture better than others? Although no satisfaaory answer is available, a few

comments can be made.

1. An architecture is only as good as the synthesis algorithm targeting it. An otherwise good

architecture may remain underutilized if good synthesis algorithms cannot be developed for

it. Non-uniformity of the architectures, such as the Xilinx 4000, makes the development

of synthesis algorithms hard. There is a need to have architectures that are good from the

synthesis perspective.

2. A finer grain block is more efficient in terms of area, but not in terms of the number of

levels of blocks needed to implement a function. Moreover, each time a new level is needed,

some delay through the programmableswitchmay be incurred, thus making a very fine-grain

architecture unattractive.
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Appendix A

mis-fpga

A.1 Introduction

The techniques described in this thesis are implementedin misll, now a part of sis. The

term mis-fpga is used to refer to the part of misll that pertainsto the FPGA architectures. This

includes the algorithms, implementation, and the commands.

In particular, combinational circuits can be synthesized for both LUT and MUX-based

architectures. Area minimization for both architectures and delay minimization for LUT architec

tures are supported. The unplementationfor sequential synthesis,sis-fpga, is not being distributed

currently, but we hope to make it availablein the next sis release.

This appendix briefly describes the commands corresponding to the algorithms described

in the thesis to map on to LUT and actl architectures. Detailed descriptions are provided only for

those commands that have user-controlled options. For a complete description of each command

and the correspondingoptions, help <command-name> should be used within sis.

A.2 Synthesis for LUT Architectures

Only the mapping algorithms are currently distributed. A standard optimization script

such as scriptsugged [73] should therefore be used beforeinvokingthe commandsdescribedbelow.

A.2.1 Making an Infeasible Network Feasible

The following is a summary of various decomposition commands to make m-infeasible

networks feasible.
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xl_ao cube-packing on an infeasible networic
xl-k-decomp apply Roth-Karp decomposition
xl-split modified kernel extraction
tech-decomp existing technology decomposition
xlJmp apply different decomposition schemes and pick the best

Tb get the best possible decomposition in xl-k-decomp,all possible choices ofinput parti

tions have to be tried. This is made possible with the options -e and -£. Then, the decomposition

with the minimum number of nodes is selected.

xl-splitextracts kernels from an m-infeasiblenode. This procedure is recursivelyapplied

on the kemel and the node, until either they become m-feasible or no more kernels can be extracted,

in which case a simple AND-OR decomposition is performed.

xlJmp tries to obtain the best possible decomposition for the network. It applies a set of

decomposition techniques on each m-infeasible node n ofthe network. These techniques include

cube-packing on the sum-of-products form ofn, cube-packing on the factored form of n, Roth-Karp

decomposition, and kernel extraction. The best decomposition result - the one which has a minimum

number of m-feasible nodes - is selected. There are options to control which techniques to use.

techjdecomp is a command which already existed in misll and is used typically just

before technology mapping. It takes two parameters -a AND-limit and -o OR-limit, and

decomposes the SOP at eachnodeinto AND andORnodes, the fanins of eachnodebeinglimited

from above by the AND-limit and OR-limit respectively.

One command which does not necessarily generate an m-feasible network, but reduces

the infeasibility of a networic is xl-absorb. This is based on the support reduction technique of

Section 3.3.6. Infeasibility of a networic is measured as the sum of the number of fanins of the

infeasible nodes. The commandxl-absorb moves the fanins of the infeasible nodes to feasible nodes

so as to decrease the infeasibility ofthe networic. Roth-Karp decomposition is used to detennine if

a fanin of a node could be made to fan in to another node.

A.2.2 Block Count Minimization

The following commands are used.
xl-cover use binate covering
xl-partition collapse nodes into immediate fanouts

xlxover corresponds to the covering technique of Section 3.4.1. Mathony's algorithm

[54] isused tosolve this formulation exactly. For large networics, this algorithm iscomputationally
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intensiveand we have developed severalheuristics for fast approximate solutions. The -h option

provides a means to select the exact or a heuristic method. The options -e and -u enable the

program to automatically switchbetweenthe exactand the heuristicbasedon the numberof nodes

in the network. If this number is no more than the one specifiedby the -e option, the exaa method

is applied, if it is more than the one specified by the -u option,xlxover doesnothing,otherwise, it

works as per the -h option.

xl-partition corresponds to partition heuristic of Section 3.4.1, which tries to reduce the

numberofnodes by collapsingtheminto theirsomeor all the immediatefanouts. It can alsotake into

accountextra nets created. In the defaultmode, it collapsesa node into its fanout only ifthe resulting

fanout is m-feasible. It associates a cost with each (node, fanout) pair which reflects the extra edges

generated in the network if node is collapsedinto the fanout. It then selects pairs with lowest costs

and collapsesthem. With-t option, a node is considered for collapsinginto all the fanouts,and is

collapsed if all the fanouts remain m-feasible after collapsing. The node is then deleted from the

network. Further optimization can be obtainedby considering the technique of support reduction,

described in Section 3.4.2. This techniqueis applied as follows. Before consideringthe collapseof

a node n into its fanout(s), we check if any fanin F of n could be moved to G - another fanin of

n. This increases the chances of n being collapsed into its fanout(s). Moreover, it may later enable

some other fanin of n to be collapsed into n. This technique is invokedusing the -m option.

A.2.3 The Overall Algorithm

The command xl-part-coll corresponds to thepartial collapseof Section 3.5, except for

one difference. It also performs initial mapping for each node. So it invokes decomposition and

block count mimmization routines. The -g value option specifies which representation to use

for mapping a node. A value of 0 just maps the SOP, value 1 maps a factored form, andvalue 2

maps both and picks the better of the two. The -c optionputs an upper limit on the number of

nodes for the exaa cover. Partitionis also invoked and brings the -m option along with it.

The followingscript was used to generate the resultsof Table3.6.

xl-part-coll -m -g 2 -c 50

xl-coll.ck

xl.cover -e 60 -u 200

xl-partition -m
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xl-coll-ck collapses a feasible networic if the number of primary inputs is small (this

numbercanbe specified by -c option), applies Roth-Karp decomposition andcofactoring schemes,

picksthe better of the two, and compares it withthe original network (before collapsing). If the

numberofnodes is smaller in the newnetworic, theoriginalnetworkis replacedwith the newone. If

-k optionis specified, Roth-Karp decomposition isnot applied; onlycofaaoring is used. Currently,

m = 2 is not supported in xlxollxk.

Intermediate solutions in the quality versus run-time trade-off curve can be obtained by

suitably choosing the scripts. For example, to get reasonably good results in a short time, the

following script may be used:

xl_ao

xl_partition -tm

In all the commands, the defaultvalueof m is5. It can be changedby specifyingthe new

value using -n option for each command.

Oneuseful command not described thus far is -xl_nodevalue -v support. It printsnodes

that have at least support fanins. This command is used to make sure that a feasible networkhas

indeedbeen obtained. For example, if m = 5, .xljiodevalue -v 6 prints the 5-infeasiblenodes.

A.2.4 Targeting Xilinx 3090

For the Xilinx 3090 CLB, mis-fpga hastwo special commands:
xl-merge identify function-pairs to be placed on the same block
xl-decomp-two cube-packingtargeted for two-output CLB's

The approach currently followed is to minimize first the number of single-output blocks

using the script(s) described above and then usexljnerge as a post-processing step to place a

maximum number of mergeable function-pairs inone CLB each. Theconditions formergeability

of twofunctions can be specified by placingupperbounds on the numberof inputsto eachfunction,

the number of common inputs, and the total number of inputs. This problem can be formulated

as the maximum cardinality matching problem. An exact solution can be generated using Undo,

an integerlinearprogramming package. If Undo is not found in the path,xljnerge switches to a

heuristic to solve the matching problem.

A different approach that sometimes gives better results is the following. First obtain

a 4-feasible networic (by running any oneof theabove scripts with -n 4) and thenusexljnerge



A3. SYNTHESISFORMUX-BASEDARCHITECTURES 351

without -F option. Since there are no nodes with 5 inputs, all nodes can potentially pair with

other nodes. As a result the numberof matches is higher. When -F option is not used, xljnerge

first finds maximum number of mergeable functionpairs and then applies block minimization on

the subnetwork consisting of unmatched nodes ofthe network. This sometimes results in further

savings. We recommend that theuserrunthescripts forboth4-feasible and5-feasible cases, apply

xljnerge, and pick the network that uses fewer CLBs.

The command xl-decompjwo doesdecompositionof thenetwork targeted for two-output

CLBs. It is a modification ofthe cube-packing approach. However, it does notguarantee a feasible

network; otherdecompositioncommands should berunafterwards to ensure feasibility. Thedetails

ofthe algorithm corresponding to xl-decompjwo are not described in the thesis.

A.2.5 Performance Optimization

xl_rl performs placement-independent logic optimizations for performance. Given an

m-feasible network (preferably generatedby speedjup, the delay optimization command in sis that

generates a 2-feasible network), xlsl reduces the number of levels of LUTs used in the networic.

Then, any block count mimmization command (e.g., xlxover, xljyartition (without -m option)) can

be applied to reduce the number of LUTs without increasing the number of levels. The code for

placement-dependent phase is not distributed.

A.3 Synthesis for MUX-based Architectures

We have implemented mapping algorithms for Actel's actl architecture. The command

currently available is called act-map. The simpler architecture act of Figure 8.3 (that is, actl with

the OR gate removed) is also supported. No library needs to be read. The algorithm of Section

8.2.2 is used. The user may specify the numberof iterations to be used in the iterative improvement

phase, limits on the numbers of fanins of nodes for collapsing or decomposition, etc. He also has

the option to write out for the final mapped networica net-list file in a format similar to that ofbdnet.

Each node ofthe mapped networic is realizable by one basic block.

Currently, the method based on ITEs is not distributed.
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