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Abstract

Logic Synthesis for Field-Programmable Gate Arrays

by

Rajeev Murgai

Doctor of Philosophy in
Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Short turnaround time has become critical in the design of electronic systems. Software-
programmable components such as Microprocessors and digital signal processors have been used
extensively in these systems, since they provide for quick design revisions. However, the inher-
ent performance limitations of software-programmable systems make them inadequate for high-
performance designs. As a result, designers have tumned to a mask-programmable hardware so-
lution, namely gate arrays. Recently, user-programmable gate arrays, called field-programmable
gate arrays (FPGAs), have emerged and are changing the way electronic systems are designed and
implemented. FPGA chips are prefabricated as arrays of identical programmable logic blocks with
routing resources, and are configured by the user into the desired circuit functionality. The most
popular FPGA architectures use either a look-up table (LUT) or a multiplexor-configuration as the
basic building block.

With the growing complexity of the logic circuits that can be packed on an FPGA chip,
it becomes important to have automatic synthesis tools that implement logic functions on these
architectures. Conventional synthesis approaches fail to produce satisfactory solutions for FPGAs,
since the constraints imposed by FPGA architectures are quite different. In this thesis, we explore
the problem of logic synthesis for both LUT- and multiplexor-based architectures. The thesis is
divided into two parts corresponding to the two classes of architectures.

In the first part, we propose algorithms to synthesize combinational logic with a minimum
number of m-input LUTs, where each m-input LUT can realize any Boolean function of up to
m inputs. We use the widely-accepted two-phase paradigm for logic synthesis consisting of
technology-independent optimization followed by technology mapping. Technology-independent



optimization derives a minimal representation (with respect to a cost function), which is then
implemented by the mapping phase on the target technology, in our case LUTs. We present LUT-
specific mapping techniques for implementing a function that has more than m inputs and for
combining functions with less than m inputs into the fewest possible LUTs. We use the proposed
algorithms for mapping sequential logic on to a commercial LUT-based architecture containing
sequential elements. We also investigate issues in logic optimization for LUTs. In particular, we
establish the inadequacy of the standard cost function and propose a new one. The new cost function
suggests that for high quality implementations, optimization should not be technology-independent,
but rather should be tightly integrated with mapping.

In the first part we also address the theoretical complexity issues regarding the minimum
number of LUTSs needed for a function. We derive complexity upper bounds and demonstrate that
they can be used to quickly and quite accurately predict the LUT-count without doing any mapping.
Finally, algorithms for performance optimization are presented. Because of the constraints imposed
by the architecture and programming methodology, the wiring delays can be a significant fraction
of the total path delay. Lacking placement information, the logic-level delay models cannot handle
wiring delays. Our contribution is to solve the problem by coupling logic-level optimization with
timing-driven placement of the LUTs.

In the second part, our main contribution is to demonstrate that for obtaining high quality
solutions on multiplexor-based architectures, the mapping algorithm should use a multiplexor-
based representation for the functions instead of the conventional NAND-based one. Efficient
architecture-specific algorithms to construct and map the representation are given.

In both parts of the thesis, theoretical results regarding the optimality of various algorithms
are presented. These algorithms have been implemented in a system called mis-fpga, and are
compared with those developed by other researchers. On average, 10-30% improvement in the
solution quality is obtained, establishing the effectiveness of our techniques.

Prof. Alberto Sangiovanni-vincentelll
Thesis Committee Chairman
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Taking a slight detour from the norm, I start with a story.!

Scene: It's a fine sunny day in the forest, and a rabbit is sitting outside his burrow, tippy-tapping

on his typewriter. Along comes a fox, out for a walk.

Fox: “What are you working on?”

Rabbit: “My thesis.”

Fox: “Hmm. What is it about?”

Rabbit: “Oh, I'm writing about how rabbits eat foxes.”

(Incredulous pause)

Fox: “That’s ridiculous! Any fool knows that rabbits don’t eat foxes!”
Rabbit: “Sure they do, and I can prove it. Come with me!”

They both disappear into the rabbit’s burrow. After a few minutes, the rabbit returns, alone, to his
typewriter and resumes typing. Soon, a wolf comes along and stops to watch the hardworking
rabbit.

Wolf: “What'’s that you’re writing?”
Rabbit: “I'm doing a thesis on how rabbits eat wolves.”

(Loud guffaws)

Wolf: “You don’t expect to get such rubbish published, do you?”
Rabbit: “No problem. Do you want to see why?”

!Jifted, without permission, from a computer newsgroup
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The rabbit and the wolf go into the burrow, and again the rabbit returns by himself, after a few
minutes, and goes back to typing.

Scene: Inside the rabbit’s burrow. In one corner, there is a pile of fox bones. In another corner, a
pile of wolf bones. On the other side of the room a huge lion is belching and picking his teeth.

THE END
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Chapter 1

Introduction

1.1 Motivation

When faced with the task of designing the next generation processor, the designers of
company A first come up with a system description of the processor. It includes detailed description
of the instruction set, the interface with the external world, design objectives and constraints, etc.
Then, using years of expertise in integrated-circuit design, they produce an implementation that
meets the design objectives. In order to verify that the implementation is functionally correct (for
example, on fetching and executing an ADD instruction, the correct sum is produced), sequences
of input values are applied, and it is checked if the desired outputs are generated. Very likely, the
processor is a huge and complex design, and so cannot be tested exhaustively. After achieving a
reasonable degree of confidence in the correctness, the designers send the design for fabrication.
In due time, say a month, the chip comes back from the foundry and is tested again to verify that
it works as expected. This time it is much faster to simulate the same set of test vectors, so many
more can be used, and more functionality can be tested for. If the chip fails, it is due to either a
manufacturing defect, in which case the chip is discarded, or the non-exhaustive testing done earlier
on. If the latter, the faulty part of the circuit is identified and fixed, and the modified design is resent
for fabrication.

Consider another scenario in which the chip passes all the tests, but during the fabrication,
itis decided that one new instruction should be added to the instruction set. The design-fabrication-
test cycle has to be repeated here as well, as shown in Figure 1.1 (A).

After some iterations, the processor chip is finally ready to be shipped - however, the
entire cycle may have taken a year or two. If a rival company B is also working on a similar
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Figure 1.1: Conventional vs. programmable design methodology

processor, it is crucial for A to have its processor hit the market first. This is in accordance with
a cardinal principle of the 20** century economics, namely, whoever enters the market first (with
the right product) captures it for the first few years at least, when most of the profit is to be made.
It becomes critical then to minimize the design-manufacture-test cycle time. One way of doing
so is to use programmable hardware. The components of this hardware lie uncommitted on an
already fabricated chip, and can be programmed by the user to implement any kind of digital circuit.
This methodology eliminates the dependence of the manufacturing/mask process from the design
process. In fact, chip fabrication is removed from the cycle, reducing the cycle time from months
to hours. This alternate methodology is shown in Figure 1.1 (B). Regardless of whether the final
implementation is done on programmable hardware, the entire design process is sped up. Moreover,
if the hardware is reprogrammable, the design changes can be made at no added expense.
Although programmability offers significant benefits, it introduces some disadvantages.
The current programming technology (i.e., the method by which connections are formed) requires
much larger area than the metal lines, causing lower logic densities. In addition, it introduces
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series resistance and parasitic capacitance, degrading the overall device performance. Given these
inherent limitations, it is not feasible (at least today) to implement a complex, high speed processor
using the programmable technology. However, functional prototyping and design modifications can
be carried out using the programmable hardware before the final design is sent for fabrication.

Now that the manufacturing step has been bypassed effectively (at least in the first few
iterations), the design process itself, which traditionally has been a manual process, can become
a bottleneck. With the growing complexity of the digital circuits, a complete manual design is a
cumbersome and slow process, and is out of question. Therefore, automatic synthesis tools that start
with a specification of the design and produce a satisfactory implementation on the programmable
device are required. This thesis addresses issues in designing such tools. To put this work in a
proper perspective, we first survey the design process, and then the programmable devices.

1.2 Designing VLSI Circuits

The design of digital systems, especially very large scale integrated (VLSI) systems, is a
complex process, and for convenience’s sake, is divided into the following steps, as shown in Figure
1.2.

Design Specification: The desired behavior of the system is specified at some level of abstraction.
InFigure 1.2, a two-bit comparator that compares a = (a;, a) and b = (by, &), and generates
out = 1 when a > b, is described by its behavior.

High Level Désign: This stage transforms the design specification into a description that uses
memories, adders, register files, controllers, etc. This description is called the register-
transfer level, or RTL, description. If the design is too big, it is partitioned into smaller pieces
to reduce the overall complexity. Depending on the design objectives and constraints, this
step determines how many functional units (e.g., adders, multipliers, multiplexors (MUXes))
and registers should be used, at what time steps these elements should be exercised (e.g.,
memory reads and writes, selecting the 0 data input of the MUX, etc.). For the comparator,
this step corresponds to generating the Boolean equation specifying the dependence of out
on inputs a and b.

Logic Design: The RTL description is first optimized for an objective function, such as minimum
chip area, meeting the performance constraints, low power, etc. This step is called opti-
mization. The optimized representation is then mapped to some primitive cells present in a



CHAPTER 1. INTRODUCTION

2-bit comparator
[ out=1 iff (al,a2) > (b1,b2) ]

Lhigh—level design |

RTL-description
[out=2l bl’ +(al bl +al’bl")a2 b2’ ]

Cell Library _

A

| logic synthesis |——

al

b2 —>o——+

22—

J

partition &
physical design

&

CHIPS, BOARDS

Figure 1.2: The design process



1.3. PROGRAMMABLE DEVICES: FIELD-PROGRAMMABLE GATE ARRAYS S

library. This final implementation is in terms of interconnections of gates, functional units,
and registers. For the comparator, a simple interconnection of gates of the library is obtained.

Physical Design: The locations of various modules on the chip are determined (placement), and
the interconnections of the circuit are routed between or through the placed modules. Also,
the pad locations for inputs and outputs are determined in this step. The final layout is sent
for fabrication.

Some of these steps may have to be iterated on if the final implementation does not meet the design
objectives.

With the growing complexity of the integrated circuits, it becomes essential to use auto-
matic tools for these steps. These tools are not only faster, but can also explore larger design space as
compared to a human designer, potentially generating better designs. As of today, computer-aided
design (CAD) tools exist for high level, logic, and physical design.

The subject matter of this thesis pertains to automation of the logic design step, also
called logic synthesis. Logic synthesis takes the circuit description at the register-transfer level
and generates an optimal implementation in-terms of an interconnection of logic gates. Typically
synthesis is done for an objective function, such as minimizing the cost of the design (which may
be measured by the area occupied by the logic gates and interconnect), minimizing the cycle time,
minimizing the power consumed, or making the implementation fully testable.

1.3 Programmable Devices: Field-Programmable Gate Arrays

Short turmaround time has become critical in the design of electronic systems. Software-
programmable components such as microprocessors and digital signal processors have been used
extensively in these systems, since they provide for quick design revisions. However, the inher-
ent performance limitations of software-programmable systems makes them inadequate for high-
performance designs. As a result, designers turned to a mask-programmable hardware solution,
namely gate arrays. However, they do not offer the flexibility of user-programmability, and the
manufacturing time is still a bottleneck.

The user-programmable hardware devices are prefabricated as arrays of identical pro-
grammable logic blocks with routing resources, and are configured by the user into the desired
circuit functionality. Consequently, turnaround time is much smaller. This makes them attractive
for rapid system prototyping. A subclass of these devices is the reprogrammable devices - those
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Figure 1.3: An m-input LUT

that can be programmed any number of times. Reprogrammability reduces the overhead for making
design changes. Broadly speaking, the user-programmable devices can be broadly classified into
two categories:

1. Programmable logic devices (PLDs), and
2. Field-programmable gate arrays (FPGAs)

. .« . sPLDs are typically interconnections of programmable logic arrays (PLAs) [11]. Com-
monly used PLD architectures are those offered by A.M.D., Altera, and Plus Logic. FPGAs, on
the other hand, have fine-grain logic blocks or gates (gate-array). Examples of such architectures
are the Xilinx [88) and Actel architectures [29].

The basic FPGA architectures share a common feature: repeated arrays of identical logic
blocks. A logic block (or basic block or logic module) is a versatile configuration of logic elements
that can be programmed by the user.

1.3.1 Block Structures

There are two popular categories of FPGA block structures, namely Look-Up Table-
based (LUT) and multiplexor-based; the resulting architectures are called LUT-based and MUX-
based architectures respectively. '

Look-Up Table-based Architectures

The basic block of an LUT architecture is a look-up table that can implement any Boolean
function of up to m inputs, m > 2. For a given LUT architecture, m is a fixed number. In
commercial architectures, m is typically between 3 and 6. Figure 1.3 shows an m-input LUT, also
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Figure 1.4: An SRAM with 3 address lines implements a 3-input function f(z, 22, z3)

written as m-LUT. An m-LUT is typically implemented by static random access memory (SRAM)
that has m address lines and 1 data line. The following example illustrates how an m-LUT can
implement any Boolean function of up to m inputs.

Example 1.3.1 Let m be 3. Consider f(z1,22,23) = z1'22'z3' + 2125'23 + 21 2273. Consider an
SRAM that is 1 bit wide and has 3 address lines. To implement f, first tie the address lines of the
SRAM 10 z,, x2, and 3, and its single-bit output data line to f. The entries in the SRAM are stored
as follows. f evaluates to 1 for zy = 0,23 = 0, and 3 = 0. This corresponds to storing a 1-at the
address (z1,z2,z3) = (0,0,0). This is shown in Figure 1.4. For other input combinations, Os or
Is can be stored appropriately. So, the data line of the SRAM gives the value of f corresponding
to the input combination present at the address lines.

In commercial LUT-based architectures, each basic block has one or more LUTs, along
possibly with other logic elements (such as flip-flops, fast carry logic, etc.). For example, Figure
1.5 shows the basic block of the Xilinx 3090 architecture, also called a configurable logic block
(CLB). It has 6 external inputs a, b, c,d,e,and DIN, and has two outputs X and Y. The heart of
the CLB is the LUT section, which consists of two 4-input LUTs with outputs F and G. Since there
are, in all, seven inputs to the LUT section, the two LUTs have some common inputs. This imposes
constraints on the possible function pairs realizable by the LUT section. For designing sequential
circuits, the CLB has two flip-flops @ X and QY', whose outputs are fed back to the LUT section.
The outputs X and Y of the CLB can be either F or G (i.e., the outputs are unlatched), or QX or
QY (i.e., the outputs are latched).

Multiplexor-based Architectures
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In the MUX-based architectures, the basic block is a configuration of multiplexors [29].
Figure 1.6 shows the basic blocks of two architectures, act! and act2, from Actel. actl has three
2-to-1 MUXes, configured in a balanced tree, with an OR gate feeding the select line of MUX3.
act2 is similar, except that MUX1 and MUX2 share their select lines, which is the AND of two of
the module inputs.

1.3.2 Realizing Interconnections

The interconnections between the blocks have to be programmed in order to realize the
desired circuit connectivity. Interconnect can be either reprogrammable or one-time programmable.
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Figure 1.7 shows the three kinds of interconnects present in Xilinx 3090:
1. Direct interconnect: connects the output of a CLB to an input of the adjacent CLB.

2. General purpose interconnect: realizes arbitrary connections using metal segments joined by
reprogrammable pass transistors (switching matrix).

3. Long lines: run across the chip; mainly used for clocks and global signals.

In the Actel architectures, there are rows of logic modules, which are separated by routing
channels, as shown in Figure 1.8. The routing channels contain metal segments, which can be
connected by one-time programmable anti-fuses.

1.3.3 Logic Synthesis for Field-Programmable Gate Arrays

The problem of synthesis for PLDs is similar to the PLA-optimization problem, which is
well-understood and for which good quality software tools exist (e.g. ESPRESSO [11]). Since
FPGA devices are relatively new, the synthesis problem for them has not been studied until very
recently. The main constraints in synthesizing circuits onto these architectures are;

1. alimited number of blocks on a chip (e.g., the Xilinx 3090 chip has 320 CLBs),
2. the functionality of the block, i.e., what functions can be put on a block, and

3. limited wiring resources.
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Given a circuit description, say in terms of Boolean equations, the problem is to realize
it using basic blocks of the target FPGA architecture, meeting some design objectives. It is this
problem that this thesis addresses.

1.4 Thesis Overview

The thesis is in two parts. The first one addresses the synthesis problem for LUT-based
architectures, and the second the synthesis problem for the MUX-based architectures. Specifically,

¢ Chapter 2 first introduces the basic terms used in the thesis, the problem of logic synthesis,
and then motivates this research.

o Chapter 3 describes mapping techniques for combinational logic for the smallest design for
LUT-based architectures. A small design is approximated as the one that uses the minimum
number of basic blocks.! Although most of these techniques target the m-LUT of Figure
1.3, which is the simplest LUT architecture, we also show how to use them as a core in the
techniques for some of the commercial architectures, e.g., Xilinx 3090.

o Chapter 4 describes techniques for optimization for combinational logic for minimum number
of basic blocks for LUT architectures. This work is still in its infancy, and a lot more needs
to be done.

1This view ignores routing considerations and pin limitations.
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¢ Chapter 5 deals with the problem of determining the minimum number of LUTs needed fora
circuit (called its complexity). Computing the complexity is useful because then the absolute
quality of the FPGA synthesis tools can be ascertained. Unfortunately, this is a difficult
problem. The next best alternative is to determine lower and upper bounds on the complexity.
If these bounds are reasonably good, they can be used to predict the table-count without doing
any technology mapping.

e Chapter 6 addresses the problem of sequential synthesis for LUT-based architectures; in
particular, we describe a few mapping algorithms. Although the algorithms are quite general,
the current implementation is for a specific family, namely Xilinx 3090.

¢ Chapter 7 presents performance-oriented synthesis methods for LUT architectures. A two-
phase approach is followed. In the first phase, timing driven transformations are applied at
the logic level. An approximate delay model is used. In the second, timing driven placement
and local resynthesis are performed. The delay information is obtained from a more accurate
delay model that takes the wiring delays and fanout loading into account.

¢ Chapter 8 describes techniques for combinational mapping for minimum number of basic
blocks for MUX-based architectures. Although we primarily deal with Actel’s act! architec-
ture, same techniques can be used for other architectures, e.g., act2.

o Chapter 9 summarizes the contributions of this work and presents directions for future work.

¢ Finally, Appendix A briefly describes the commands used in the software system we have
implemented based on the algorithms described in the thesis.
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Chapter 2

Background

2.1 Definitions

First, we define some basic terms pertaining to combinational circuits, namely those
circuits whose outputs do not depend on the past history, but just on the current values of the inputs.
Then, we present definitions for sequential circuits, namely those circuits whose outputs depend
on the past as well as current inputs. Sequential circuits need memory elements to remember the
history. They also have a combinational part to compute the output functions based on the current
inputs and the past history.

2.1.1 Logic Functions

Definition 2.1.1 Let B = {0, 1}. An n-input, completely specified logic function f is a mapping
f : B* — B. Each element in the domain B" is called a minterm of f. f~'(1) = {v € B" :
f(v) = 1} is the on-set of f, and f~1(0) = {v € B" : f(v) = 0} the off-set of f.

If all the minterms of f are inits on-set, i.e., f(v) = 1forall v € B", f isatautology (oridentically
1), and is also written f =1or f = 1. Similarly, if f(v) = Oforall v € B, f =0, or f isidentically
0,or f=0.

Definition 2.1.2 An n-input, incompletely specified logic function f is a mapping f : B* —
{0,1,-}. f7}(=) = {v € B™: f(v) = -} is the don’t care set (or dc-set) of f. It contains

minterms for which the function value is unspecified (i.e., allowed to be either 0 or 1).

In this thesis, the term “function” means a logic function.
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Definition 2.1.3 The complement of a logic function f, denoted f', is a logic function obtained
by exchanging the on-set and off-set of f.

Definition 2.1.4 A literal is a variable or its complement. A cube or a product term c is a product
or conjunction of one or more literals, such that if = appears in the product, z' does not, and vice

versa.

A literal a (a') represents the set of all minterms for which the variable a takes on the value 1 (0). A
cube represents the intersection of the sets of minterms represented by all the literals in it. If some
variable and its complement are present, the cube becomes identically 0. Also, if a variable appears
complemented in a cube, it is said to be in the complemented or negative phase. Otherwise, if it is
present uncomplemented, it appears in the uncomplemented or positive phase.

For example, consider two cubes ab and a'b’c’ in the variable space {a, b, c}. The cube ab has 2
literals, namely a and b, whereas the cube a’b’c’ has 3 literals a’, b, and ¢’. The cube ab contains
two minterms: abc and abc’, whereas a’b’c’ contains just one minterm, namely a'b’c’.

Definition 2.1.5 A cube ¢, contains another cube c3 (c2 C ¢1) if the set of minterms represented
by ¢z is a subset of the set of minterms represented by c,.

Definition 2.1.6 Animplicant of a function is a product term that does not contain any minterm of
the off-set of the function. An implicant is prime if it is not contained by any other implicant of the

Junction.
Definition 2.1.7 A sum-of-products (SOP) is a Boolean sum or disjunction of cubes.

An SOP represents the union of sets of minterms represented by the cubes in it. For example,
ab’ + a’bc’ is an SOP with 2 cubes and 5 literals. It contains three minterms in the variable space
{a,b,c},namely, ab’c, ab’c’, and a’bc’.

Definition 2.1.8 A cover C of a function f is an SOP which contains all the minterms of the on-set
of £, but none from its off-set. A cover C is a prime cover of f if it consists only of primes.

A logic function can have many covers.

Definition 2.1.9 A cube c of a cover C of a function f is aredundant cube if C — {c} is still a cover
of £, i.e., if c covers only those vertices that are either covered by other cubes of C, or belong to the
dc-set. A cover C is aredundant cover if some cube in it is redundant, otherwise it is irredundant.
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Definition 2.1.10 A sum term (also an OR term) is a Boolean sum or disjunction of literals. A
product-of-sums (POS) is a product of sum terms.

For example, a + b + ¢’ and @’ + b’ + ¢ are sum terms, and (a + b + ¢’)(a’ + b’ + ¢) is a POS.

Definition 2.1.11 The cofactor of a function f(z1,z2,...,%,) with respect to a variable =, is
fr(%2y. . 20) = f(1,22,...,20), i€, f when zy is tied to 1. Similarly, fz,/(2,...,%0) =
f(0,x3,...,2,). The Shannon expansion of f(z1, 22, ...,z,) with respect to z; is

f=zife; + i fopr @1

Definition 2.1.12 A function f is monotone increasing in a variable z; if fz#(8) = 1 implies
fz:(B) = 1forall B € B!, i.e., if increasing the value of the variable z; from 0 to 1 never
decreases the value of f from 1 to 0. Similarly, a function f is monotone decreasing in a variable
z; if fz;(B) = 0 implies f-(B) = 0 for all B € B™~). The function f is unate in variable z; if
it is either monotone increasing or monotone decreasing in ;. Otherwise, f is binate in z;. The
Sunction f is unate if it is unate in all its variables. A cover C is unate in a variable z; if the
variable x; appears in only one phase, either positive or negative, but not both, in C. Otherwise, C
is binate in z;. A cover C is unate if it is unate in all the variables.

As shown in [11], a function that has a unate cover is unate. However, a unate function can have a
binate cover. For example, f = ab + c is unate, but its cover abc + abc’ + ¢ is binate, since ¢ occurs
in it in both positive and negative phases.

Definition 2.1.13 A Boolean function f(zy,22,...,%y) is called symmetric (or totally symmet-
ric) if it is invariant under any permutation of its variables. It is called partially symmetric in
the variables z;,x;, 1 < 1,7 < n, if the interchange of the variables x;, z; leaves the function
unchanged.

For example, fi(z,y,2) = z'yz + zy'z + zy2' is symmetric. fo(z,y, 2) = zyz + z'y'z is partially
symmetric in the variables z and y, since zyz + z'y'z = yzz + y'z’z. However, f, is not partially
symmetric in the variables z and z, because zyz + z'y'z # zyz + 2'y'z.

Definition 2.1.14 A factored form is defined recursively as follows:

o a literal is a factored form,
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o the sum of two factored forms is a factored form, and

e the product of two factored forms is a factored form.

A factored form is a generalization of SOP that allows arbitrary nesting of operations. For example,
(e + b) + c and ((a + b)c’) + (de’) are two factored forms with 3 and 5 literals respectively. In
Chapter 5, we will introduce a more general notion of factored form.

So far, we have been talking about a single logic function. Usually, a circuit has more
than one outputs. This leads us to the notion of multiple-output functions.

Definition 2.1.15 An n-input, k-output function f is a mapping f : B* — B*.

Definition 2.1.16 A multiple-outputfunction is represented as a Boolean network [12]. A Boolean
network 1) is a directed acyclic graph (DAG), with some primary inputs PI(n), primary outputs
PO(n), and internal (intermediate) nodes I N (7). Primary inputs have no arcs coming into them,
and primary outputs have no arcs going out of them. Associated with each internal node : of the
. network is a variable y;, and representation of a logic function f;. The logic at each node is stored
typically as a sum-of-products form. There is a (directed) arc from node i to node j in the network
if j uses y; or y;’ explicitly in the representation of f;. In that case, i is called a fanin of 7, and j
a fanout of i. The set of fanins of a node i is denoted as FI(1) and the set of fanouts as FO(3).
If there exists a path from node i to node j, then i is said to be a transitive fanin of j, and j a
transitive fanout of i. The set of transitive fanins of a node i is denoted as T FI(i), whereas its
transitive fanout set is denoted as T FO(%). The net driven by node 1 is the set of edges of the type
(i, f°), f° € FO(i).

Figure 2.1 shows a network with four primary inputs a, b, ¢, and d, one primary output z, and three
intemnal nodes y, w, and 2. The primary inputs and output nodes are drawn as squares, and the
internal nodes as circles. a and b are fanins of y, and z is the fanout of y. The function associated
with y is f, (also written y) = ab. TFI(2) = {a,b,¢,d,w,y}. TFO(b) = {w, y, 2}.

Definition 2.1.17 The binary decision diagram (BDD) of a function f(z,,z2,...,z,) is a rooted
directed acyclic graph (DAG) with vertex set V containing two types of vertices. A non-terminal
vertex v has as attributes an argument index(v) € {1,2,...,n}, and two children, low(v) and
high(v) € V. A terminal vertex v has a value, value(v) € {0,1}.
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w=bc

Figure 2.1: A Boolean network

Each vertex of a BDD has a function associated with it. The root vertex corresponds to
the function f, the terminal vertex with value 0 to the function 0, and the terminal vertex with value
1 to the function 1. If the function at a non-terminal vertex v with index j is g, the function at low(v)
is 9z;+, and at high(v) is g-;. The edge connecting a non-terminal vertex v with index j to low(v)
carries the label 0, indicating that low(v) is obtained from v by setting z; to 0. Similarly, the edge
connecting v to high(v) carries the label 1.

A vertex v of a BDD is a leaf vertex (or a leaf) if either v is a terminal vertex, or low(v)
and high(v) are terminal vertices with values 0 and 1 respectively (i.e., the function associated with
v is simply some input variable). All other vertices are non-leaf vertices.

Definition 2.1.18 A BDD is ordered ifthe indices of the vertices in all root-to-terminal vertex paths

JSollow a fixed order. A BDD is reduced if there is no vertex u with low(u) = high(u), and there
are no two distinct vertices v and w such that the sub-graphs rooted at v and w are isomorphic. A
reduced ordered BDD is called an ROBDD.

Figure 2.2 (A) shows an unordered BDD for the function f(a,b,¢c,d) = ac + a’bd + bc'd’. Figure
2.2 (B) shows an ordered BDD for f with the order ¢, a, d, and b, the root vertex being indexed by
c. This ordered BDD can be reduced by noting that all vertices with index b represent the same
function, namely b. Merging them all in one node, we get the ROBDD in (C).

Given an ordering of the variables, the ROBDD representation for a function is canonical
(unique). This fact was first proved by Bryant in his seminal work [14]. This feature makes
ROBDD:s attractive for tautology checking (i.e., is a given function identically 1?) and hence
functional equivalence. Although in the worst case, the size of an ROBDD can be exponential in



18 CHAPTER 2. BACKGROUND

* (B) ©

Figure 2.2: Example of a BDD, an ordered BDD, and a ROBDD

the number of variables, this representation is ofien compact. The size depends strongly on the
ordering selected.

Definition 2.1.19 The if-then-else DAG (ITE) for a function f is a DAG with two terminal
* vertices with values 0 and 1, and terminal vertices corresponding to inputs. Each non-terminal
vertex v represents a 2-t0-1 multiplexor, and has three children: if(v), then(v), and else(v). The

* interpretation is that the if child is connected to the control input of the multiplexor, and the then
" and else children are connected to the data (signal) inputs 1 and 0 of the multiplexor.

The if, then, and else edges are denoted by I, T, and F respectively. Note that in a BDD also, a
non-terminal vertex can be regarded as a 2-1 multiplexor whose control input is connected to the

variable associated with the vertex. In the multiplexor corresponding to an ITE vertex, the control
| input can be any function. Thus an ITE is more general than a BDD and consequently can be more
compact.

Example 2.1.1 Consider function f = ab + a’c + de. As shown in Figure 2.3, a is selected as
the top variable in the BDD. As a result, de gets replicated in both 0 and 1 branches. This can be
avoided in the \'TE by factoring out de before branching on a.

Definition 2.1.20 The support o( f) of a function-representation f, which is either an SOP or
a factored form, is the set of variables appearing in the representation. |o(f)| represents the
cardinality of o( f). The support of a set of function-representations can be similarly defined as the
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Figure 2.3: BDD vs. ITE

union of the supports of the individual function-representations. The support of a product term is
the set of variables appearing in it. In particular, the support of a prime is called prime-support.

For example, if a represéntation f = abe + ab'd, o(f) = {a,b,c,d}, and |o(f)] = 4. Noté that
the support depends on the function representation used. For example, the last function can also be
written as f; = abc(e + €') + ab’d(e + ¢’), in which case, o(f) = {a, b, ¢,d,e}. However, each
completely specified function has a unique minimum support, which is called its true support.

Definition 2.1.21 z € o7(f), the true support of a function f, if fz # fx. Then, f is said to
essentially depend on z.

If it is known that any representation of the function f handed to us is using only the true support
variables, we can use the term support of a function f (or o( f)) to mean the true support of f. As
we will shortly see in Section 2.2.1 (in simplification), that is indeed the case if simplification is
applied on the function representation during optimization.

In the context of Boolean networks, it fs useful to consider the following two notions
of supports. The local support of the (completely specified) function f at a node = is the set of
fanins of n, whereas the global support of f is in terms of the primary inputs on which f depends
topologically, i.e., the primary inputs that are in the transitive fanin set of n. For example, in Figure
2.1, the local support of z is {¢, d, w, y}, and its global support is {a, b, ¢, d}.

The following notation is used:
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a(f) local support of f

oc(f) global support of f
or(f) true local support of f

orc(f) true global support of f
Definition 2.1.22 For a given basic block, a function f is feasible if it can be realized with one
block. A Boolean network n is feasible for the block if the function at each internal node of 7 is
feasible.

A feasible network can be directly implemented on the target FPGA architecture simply by imple-
menting each intemal node with a block. The final goal of synthesis is then to obtain a feasible
network with fewest nodes or minimum delay, depending on the objective.

Definition 2.1.23 A function f is m-feasible if |or(f)] < m, otherwise it is m-infeasible. A
Boolean network 1 is m-feasible if the function at each internal node of 1 is m-feasible.

The motivation behind this definition is that an m-feasible function can be realized with one m-LUT.
Note that the notion of m-feasibility has been defined in terms of the true support. In an optimized
network, each function f is represented by a prime cover. It is well-known that a prime cover
essentially depends on each variable appearing in the cover, and so is already on the minimum
local support. In this case, instead of the true support, the support of the representation of f can
be used in checking if a function is m-feasible. In many applications, when a prime cover is not
available, the true support may be difficult to compute. Then, we approximate the m-feasibility test
by checking if the support of the representation has at most m variables. This takes time linear in
the representation of the function. As we show next, computing the true support of a function given
an SOP is difficult, in fact NP-hard. The reader is referred to the book by Garey and Johnson [30]
for a comprehensive coverage of NP-completeness and the well-known NP-complete and NP-hard
problems. Define TRUE SUPPORT as the following decision problem:

INSTANCE: Given a cover of a function f, and k > 0.
QUESTION: Is |o7(f)| < k, i.e., does the true support of f have at most k variables?

To show that TRUE SUPPORT is NP-hard, we use an auxiliary problem TRUE SUPPORT
ZERO:
INSTANCE: Given a cover of a function f.
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QUESTION: Is |or(f)| = 0, i.e., is f identically 0 or identically 1?

Proposition 2.1.1 TRUE SUPPORT ZERO is NP-hard.

Proof It suffices to Turing-reduce [30] an NP-hard problem to TRUE SUPPORT. For this reduction,
we use the NP-hard TAUTOLOGY problem [30], which is as follows:

INSTANCE: Given a cover of a function f.
QUESTION: Is f a tautology, i.e., identically 1?

The definition of Turing reduction permits a polynomial number of invocations of an oracle (sub-
routine) that solves TRUE SUPPORT ZERO (i.e., returns YES if |or(f)| = 0, NO otherwise) in
order to solve TAUTOLOGY.

Note that |or(f)| = 0 if and only if f is either identically O or identically 1. Given an
SOP for f, f is identically 0 if and only if the SOP is simply O (i.e., has no cubes). To answer if f
is a tautology, procéed as follows. Call the oracle for TRUE SUPPORT ZERO.

1. If it retums NO, f is not a tautology.

2. Otherwise, |or(f)| = 0. Then there are two cases: either f is a tautology or it is identically
0. To differentiate between the two, simply check if the cover of f is O (i.e., has no cubes). If
itis, f is not a tautology. Otherwise, f is a tautology.

Proposition 2.1.2 TRUE SUPPORT is NP-hard.

Proof Setting £ = 0 makes TRUE SUPPORT equivalent to TRUE SUPPORT ZERO, which, from
Proposition 2.1.1, is NP-hard. So TRUE SUPPORT is also NP-hard. []

Definition 2.1.24 An m-feasible Boolean network 1 is m-optimum if 7 has k internal nodes, and

there exists no m-feasible network that realizes all the primary output functions (PO(n)) in fewer
than k internal nodes.
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2.1.2 Representing a Logic Function

A completely specified logic function may be represented in many ways, some of which
are as follows:

1. Truth table: 1t is always exponential in the support n of the function, as there are 2" vertices
in B™.

2. Minterms in the on-set (or off-set). Since a completely specified function partitions the input
space into on-set and off-set, it is enough to explicitly give one set; the other one is uniquely
determined. For an incompletely specified function, any two out of the on-set, off-set, and
dc-set need to be provided. Although typically smaller than the truth table, this representation
can be exponential in n.

3. SOP: 1t is typically more compact than the previous two representations, but in the worst
case, it can be exponential. For example, for the EX-OR function

f(wlazb-“’xn) = 21022b...0 7y,

the smallest SOP is exponential in ». The problem of obtaining a minimum SOP of a
Boolean function, or, in general, a minimum-cost SOP where each product term has a non-
negative cost, is referred to as the two-level minimization problem. The corresponding
implementation is called a two-level implementation. The most popular form of two-level
implementation is a programmable logic array (PLA). A PLA has two planes - an AND
plane and an OR plane. The AND plane implements the product terms and the OR plane
realizes their OR. In general, a PLA can have more than one output.

4. Factored form: It is typically smaller than the SOP, but can be exponential in n. The factored
form suffers from the fact that it may not be possible in a factored form to share two instances
of the same function, or of a function and its complement. This is because no signals except
input variables can have multiple fanouts. For example, f = (ab + cd)p + (ab + cd)'q
(which is not a factored form since ab + cd)’ is not allowed) is represented in factored form
as f = (ab+ ed)p + (a’ + b')(¢' + d')q, which has 10 literals. A smaller representation is
obtained by introducing an intermediate variable z = ab 4 ¢d. Then f = zp+ z’q. The total
number of literals is then 8, four each for z and f.

5. Boolean network: A Boolean network is the most general representation of a Boolean
function, single- or multiple-output, in that there is a one-to-one correspondence between a
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circuit realization and the Boolean network. It is more general than the factored form, since
it removes the restriction of the intemnal nodes having single fanouts. Also, since a signal
may go through many levels of logic, a Boolean network is an example of a multi-level
representation.

6. BDD

7. ITE

2.1.3 Finite State Machines

Definition 2.1.25 A completely specified Mealy Finite State Machine FSM is a six-tuple
(8,1,0,6,)\, R),where

o S is a finite set of states of the FSM,
o I is a finite set of inputs to the FSM,

o O is a finite set of outputs of the FSM,

6 is amapping from I x S to S, and is called the transition function,

A is a mapping from I x S to O, and is called the output function, and

R is the initial (or reset) state.

In this thesis, since we will deal only with Mealy FSMs, we will call them FSMs. An FSM can
also be represented as a directed graph, called the state transition graph where:

e each vertex is associated with a state, and

e each edge is labeled with an input/output pair, and is directed from the present state vertex to
the next state vertex.

Example 2.1.2 Figure 2.4 shows an FSM implementing a mod-3 counter. It has 3 states: S =
{R,s,t}, one input a, and two outputs b and c. The machine starts from the reset state R, with
the outputs b and c both set to 0. Irrespective of which state the machine is in, if the input a is I,
the machine counts up 1 (modulo 3) and makes a transition to another state. If a is 0, the outputs

remain the same and machine siays in the same state.
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a=0/bc=10

Figure 2.4: A finite state machine

Example 2.1.3 As another example, consider a controller of a microprocessor, with states S =
{51,82,...,Sk}. Assume that the controller is in state Sy when it fetches the instruction “ADD
R1 R2"” from the memory. After executing the instruction, the controller moves over to state S. In
order to execute the instruction, the controller has to fetch the two operands from the registers R1
and R2, send a control signal to the adder to compute the sum, and enable the load signal of R1 to
store the result in R1. In other words, the controller takes the present state (Sy) and external inputs
(the instruction ADD and the names of the registers Rl and R2), and generates control signals
(READ signal to R1 and R2, transferring their contents on the bus(ses), ADD signal to the adder,
and finally LOAD signal to R1) and computes the next state (S2).

. The Encoding Problem

Many descriptions of the logic systems include variables that, instead of being 0 or 1,
take values from a finite set. In Example 2.1.2, the FSM has three symbolic states: R, s, and t. To
obtain a digital circuit from the FSM, the states have to be assigned binary codes, since a signal
in a digital circuit can only take values 0 and 1. The size of the circuit depends strongly on the
codes assigned to the states. This leads to the problem of assigning binary codes to the states of
the FSM such that the final gate implementation after encoding and a subsequent optimization is
small. It is called the state-encoding (or state-assignment) problem. Note that it entails encoding
of both symbolic inputs (present state variables) and symbolic outputs (next state variables). In
other words, it is an input-output encoding problem. The optimization after encoding may be
two-level if we are interested in a two-level implementation, or multi-level, otherwise. This gives
rise to state-assignment techniques for two-level {20, 58, 89, 84] and for multi-level implementations
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[19, 49, 33, 46] respectively.
One parameter in most state-assignment algorithms is the number of bits used to encode
the set of states of the FSM. If there are k states, the extreme values of this parameter are:

1. [logy(k)]: It corresponds to the minimum-code length scheme. Since each encoding
bit corresponds to a flip-flop, this scheme uses the minimum number of flip-flops, and is,
therefore, attractive. The way in which codes are assigned to the states affects the size of the
combinational logic needed to compute the outputs and the next state functions.

2. k: The most well-known representative of this class is the one-hot encoding scheme, which
uses one variable per state. This variable is 1 if and only if the machine is in that state.
The number of flip-flops used is k, many more than the minimum-length scheme. The
combinational logic resulting from the one-hot scheme is independent of the variables assigned
to the states.

Before proceeding any further, we define the concept of a multi-valued function.

Definition 2.1.26 A multi-valued function with n inputsis amapping ¥ : Pix Pyx---x P, — B,
where P; = {0,1,...,p; — 1}, p; being the number of values that i** (multi-valued) variable may
take on.

An example of a multi-valued variable is S, the set of states of a controller. Analogous to the
Boolean case, we can define the notion of a multi-valued product term and cover. Correspondingly
we have the problem of determining a minimum-cost cover of a multi-valued function. This problem
is referred to as multi-valued minimization problem.

A problem that is simpler than state-encoding is the one where just the inputs are symbolic.
For example, assigning op-codes to the instructions of a processor so that the decoding logic is small,
falls in this domain. This is known as the input encoding problem. If the objective is to minimize
the number of product terms in a two-level implementation, the algorithm first given by De Micheli
et al. [58] can be used. It views encoding as a two-phase process. In the first phase, a multi-valued
minimized representation is obtained, along with a set of constraints on the codes of the values of
the symbolic variables. In the second, an encoding that satisfies the constraints is determined. If
satisfied, the constraints are guaranteed to produce an encoded binary representation of the same
cardinality as the multiple-valued minimized representation. Details of the two phases are as
follows:
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1. Constraint generation. The symbolic description is translated into a multi-valued description

using positional cube notation. For example, let S be a symbolic input variable that takes
values in the set {51, 52,..., Sk}. Let z be a binary input, and y the only (binary) output. In
positional cube notation (also called 1-hot notation), a2 column is introduced for each .5;. Let
us assume that a possible behavior of the system is: if S takes value S} or S, and z is 1, then
y is 1. This behavior can be written as:

z 51 Sz 53 Sk-l Sk Yy
1 1. 0 0 ... O 0 1
1 01 0 ... O 0 1

A multi-valued logic minimization is applied on the resulting multi-valued description so that
the number of product terms is minimized. The effect of multi-valued logic minimization is
to group together symbols that are mapped by some input to the same output. The number of
product terms in the minimized description is the same as the minimum number of product
terms in any encoded final implementation, provided that the symbols in each product term
in this minimized cover are assigned to one face (or subcube) of a binary cube, and no other
symbol is on that face. These constraints are called the face or input constraints. For
example, for the behavior just described,

T Sl Sz 53 Sk-l Sk Y

1 1.1 0 ... O 0 1
is a product term in the minimum cover. This corresponds to a face constraint that says there
should be a face with only 5 and S,. This face constraint can also be written as a set of
dichotomies [89]: (5152; 53),...,(5152 Si),...,(5152; Sk), which says that an encoding
bit b; must distinguish Sj and S, from S;for3 < i < k.

Also, each symbol should be assigned a different code. These are known as the uniqueness
constraints, and are handled by adding extra dichotomies. For example, to ensure that the
code of 5 is distinct from other symbols, dichotomies (Sy; 52), (S1; S3), . . ., (515 Sk) are
added.

. Constraint satisfaction: An encoding is determined that satisfies all the face and uniqueness

constraints. De Micheli et al. proposed a satisfaction method based on the constraint matrix
(which relates the face constraints to the symbolic values). Yang and Ciesielski [89] proposed
an alternate scheme based on dichotomies and graph coloring for solving the constraints. It
was later improved by Saldanha et al. [69].
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2.2 Background

2.2.1 Logic Synthesis

Logic synthesis takes the circuit specification at the Boolean level and generates an
implementation in terms of an interconnection of logic gates. Typically synthesis is done for an
objective function, such as minimizing the cost of the design, satisfying the performance constraints,
minimizing the power consumed, or making the implementation more testable. The cost of the
design may be measured by the area occupied by the logic gates and the interconnect.

Since synthesis is a difficult process, it is typically separated into two phases: technology-
independent optimization phase (also called logic optimization), followed by a technology map-
ping phase [12]. The optimization phase attempts to generate an optimum abstract representation
of the circuit. For example, for area minimization, the most commonly used measure is the number
of literals of the network in some factored form, which is the sum over all the internal nodes of the
network of the number of factored form literals of each node. This cost measure has been found to
have a good correlation with the cost of an implementation of the network in various technologies,
e.g., standard cells or CMOS gate matrix. In the second phase, this optimized representation is
mapped onto a pre-defined library of gates. misll [12] is a multi-level logic synthesis system that
incorporates this two-phase approach.

Technology-Independent Optimization

The techniques used for optimization of Boolean networks are classified into two cate-
gories: restructuring and node minimization.

Restructuring operations massage the network and generate a structure that uses smaller
number of literals (for area minimization), or has better delay characteristics (for performance
optimization). The main idea in restructuring for area minimization is to generate sub-functions
that can be shared by many functions in the network, thereby reducing the size of the network. To
generate and use these sub-functions, the notion of division is a key one, and we review it next.

Definition 2.2.1 An algebraic expression is a sum-of-products representation of a logic function

that is minimal with respect to single cube containment (i.e., no cube contains another).

For example, ab + abc + cd is not an algebraic expression (since ab contains abc), but ab + ¢d is.
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Definition 2.2.2 The product of two expressions f and g, fg,is a 3, ; cid; where f = {c;},g9 =
- {d;}, made irredundant using containment operation (e.g., ab + a = a). The product is algebraic
when f and g have disjoint supports. Otherwise, it is a Boolean product.

For example, (a + b)(c+ d) = ac+ ad + be + bd is an algebraic product, whereas (a + b)(a +¢) =
aa + ac + ab + bec = a + be is a Boolean product.

Definition 2.2.3 An operation OP is called division if, given two expressions f and p, it generates
q (quotient) and r (remainder) such that f = pq + r, where p is called the divisor. If pq is an
algebraic product, OP is called an algebraic division. Otherwise, pq is a Boolean product, and
OP is called a Boolean division.

Although Boolean division is more powerful, most of the logic optimization tools use algebraic
division. The reasons are as follows.

1. The number of Boolean divisors is typically too many and it is computationally difficult to
exploit them in optimization. It is much easier to choose divisors from the restricted algebraic
domain.

2. Fast and efficient algorithms are known for algebraic manipulation [10), primarily because
logic functions can then be treated as polynomials.

3. Although optimality is not guaranteed, the results obtained using algebraic techniques are
encouraging (85, 12].

Weak division is a specific example of algebraic division that yields unique quotient and
remainder.

Definition 2.2.4 Given two algebraic expressions f and p, a division is called weak division if
1. it generates q and r such that pq is an algebraic product,
2. 7 has as few cubes as possible, and
3. pq + T and f are the same expression (i.e., have the same set of cubes).

f/p denotes the quotient ¢ of weak dividing f by p. Given the expressions f and p, it can be shown
that ¢ and r generated by weak division are unique.
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For example, if f = abc + ade + ki, weak-dividing f by a gives quotient ¢ = f/a =
bc + de, and remainder r = kl. Similarly, weak-dividing f by ab gives f/(ab) = c and remainder
r = ade + kl.

If n is the total number of product terms in f and p, an O(7n log ») algorithm proposed by
Brayton and McMullen [10] can be used to find the ¢ and = for weak division. The next question
is how to find good candidate divisors p, which serve as sub-expressions common to two or more
expressions. The notion of kernels of an algebraic expression was introduced in [10] to address this
question.

Definition 2.2.5 An expression is cube-free if no cube divides the expression evenly.

For example, ab + c is cube-free, but ab + ac is not cube-free since the cube a divides ab + ac
evenly. Since any cube divides itself evenly, a cube-free expression must have at least two cubes.
So abc also is not cube-free.

Definition 2.2.6 The primary divisors of an expression f are the set of expressions
D(f)={f/c| cis acube}.
Definition 2.2.7 The kernels of an expression f are the set of expressions
K(f)={9|9 € D(f) and g is cube-free}.

In other words, the kemels of an expression f are the cube-free primary divisors of f. Note that the
division used here is weak division.

Definition 2.2.8 A cube c used to obtain the kernel k = f/c is called a co-kernel of k.
Example 2.2.1

f = adh+ aeh + bdh+ beh + cdh + ceh + g
= (a+b+c)(d+e)h+g

All the kernels and corresponding co-kernels of f as expressed above are shown below.

kemel co-kemel
at+b+e dh, eh
d+e ah, bh, ch
(a+bdb+c)d+eh+g |1
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Division is used in most of the restructuring operations. The restructuring operations
include decomposition, extraction, substitution, and elimination.

1. Decomposition is the process of expressing a given logic function in terms of new, hopefully
simpler functions. For example, if

f =abc+abd+ad'cd +bcd,

one way to decompose f is as follows.

f = zy+a'y
z = ab
y = c+d.

An alternate way of decomposing f is:

f = wtzt+y+z

w = abe

z = abd
y = ddd
z = bd

2. Extraction is an operation ¢losely related to decomposition and is applied to many functions.
Itis the process of identifying and creating some intermediate functions and variables, and re-
expressing the original functions in terms of the original as well as the intermediate variables.
This operation identifies common sub-expressions among different logic functions forming
a network. New nodes are created, and each of the logic functions in the original network is
simplified as a result of the introduction of the new nodes. The optimization problem then
is to find a set of intermediate functions such that the resulting network is optimum in an
appropriate sense. For example, extraction applied to the following functions

f = (a+b)ed+e
= (a+be

= cde



2.2. BACKGROUND 31

gives
f= ay+e
g = ze
h = ye
z = a+b
¥y = cd

Note that new multiple-fanout nodes = and y have been created.

3. Substitution of a function g into a function f is the process of re-expressing f in terms of g.
For example, if

g = a+b
= a+ be,
substitution of g into f gives
f = glate).

Substitution can be looked at as a division operation, where we are dividing f by g.

4. Collapsing (also called elimination) a function g into f is the process of re-expressing f
without explicitly using g. For example, if

f
g = c+d,

ga+g'b

after collapsing, we get
f = ac+ad+c'db.

Collapsing is analogous to multiplication of polynomials, except that Boolean identities
have to be used (e.g., aa = a and not a?). Note that collapsing is the inverse process of
decomposition. Typically, collapsing is applied in two ways. First, nodes which do not
save any literals in the network are collapsed. Second, to get away from a locally optimum
structure, a node is collapsed even if it was saving a few literals.
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In decomposition and extraction, kemels are used as divisors. Given a set of expressions
corresponding to the node functions of the network, kemels are extracted for each function. If
extracting a kernel & helps in reducing the cost (say, number of literals), a new node corresponding
to k is added to the network, and is substituted into all the nodes that had & as a kemel.

Simplification (also called node minimization) attempts to reduce the complexity of a
given network by using two-level minimization techniques on its node functions. However, if the
node functions are treated as independent of each other, much optimization is potentially lost. In
fact, the inputs of the Boolean function at a node n are related to each other by the nodes of the
network that precede n and hence are not free to take any combination of values. In addition, for
some values of the primary inputs of the network, the output of a node may not be observable at
the primary outputs of the network (i.e., each primary output remains unchanged if the node value
is toggled from O to 1 and vice versa). In both cases, the values of the inputs that can never occur
at the input of the node function and the values of the primary inputs for which the outputs of the
nodes are not observable at the primary outputs are don’t cares for the two-level minimization of
the node. The first kind of don’t cares is called the satisfiability don’t care (SDC) set, while the
second is called the observability don’t care (ODC) set.

An example of SDCs is as follows. If the node n of a network has associated with it the
Boolean function f(z,y) where = a + b, y = ab + ¢, and a, b, c are the primary inputs of the
network, thenz # (e + b) = z(a + b)' + z'(a+b)and y # ab+ ¢ = y(ab+ ¢)' + y'(ab + c) are
SDCs. In other words, the SDCs represent combinations of variables of the Boolean network that
can never occur because of the structure of the network.

Unfortunately, the SDCs and the ODCs may be very large and it may be impossible to
compute them. In that case, a suitably chosen subset of SDCs and ODCs is used to optimize the
two-level representation at the node [12]. Simplification has been proven to be effective for a wide
variety of cases [72].

We must mention that simplification retums a prime cover, which is known to use the
minimum local support. Since this is the cover handed to technology mapping, checking for m-
feasibility of the function (which was defined in terms of the true support) in LUT mapping reduces
to checking if the support of the prime cover is at most m, a much simpler problem.

The restructuring and simplification operations are applied on an unoptimized, raw net-
work in some order until the cost function does not improve.
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Cost=2 Cost=3 Cost=1

Figure 2.5: An example cell library

Technology Mapping

The network obtained after the optimization phase is implemented using a set of gates that
form a library. Each gate has a cost that represents its area or delay. First, a set of base functions
is chosen such as a two-input NAND gate and inverter. The optimized network is converted into a
graph where each vertex is restricted to one of the base functions. This graph is called the subject
graph, and this decomposition is called technology decomposition. The logic function for each
library gate is likewise represented using the base functions. This generates pattern graphs. There
may be more than one way to represent the gate function and so more than one pattern graph may
result from a gate. A cover of the subject graph (not to be confused with the cover of a function) is
a collection of pattern graphs such that every node of the subject graph is contained in one (or more)
of the pattern graphs. The cover is further constrained so that each primary output is an output of
some pattem graph, and each input required by a pattem graph is either a primary input or an output
of some other pattern graph. For minimum area, the cost of a cover is the sum of area costs of the
gates in the cover. The technology mapping problem may be viewed as the optimization problem
of finding a minimum cost cover of the subject graph by choosing from the collection of pattern
graphs for all gates in the library. This problem is hard - in fact NP-hard, though efficient heuristics
exist. A commonly used heuristic divides the subject-graph into trees and covers the trees optimally
by tree patterns in polynomial time using a dynamic programming approach. Typical examples are
DAGON [41] and misli [18].

The only requirement imposed on the libfary is that it be complete, i.e., an arbitrary logic
function should be realizable in terms of the gates in this set. Although two-input NAND gates
and inverters form a complete set, it is desirable to put more gates in the library so as to get better
results.

Example 2.2.2 Figure 2.5 shows a simple cell (gate) library with three gates: a 2-input NAND
gate with a cost of 2 units, a 3-input NAND gate with a cost of 3 units, and an inverter with a cost
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Figure 2.6: Pattern graphs for the gates in the cell library

of 1 unit. The pattern graphs for these gates using 2-input NAND gates and inverter are shown in
Figure 2.6. Note that the 3-input NAND gate has a single pattern. Let us say we are interested in
finding the minimum cost mapping of a 4-input NAND gate, shown in Figure 2.7. First, we derive
its subject graph in terms of 2-input NAND gates and inverters. Many such subject graphs are
possible, and we choose the one shown in Figure 2.7. We wish to find a minimum cost cover of this
subject graph with the pattern graphs of Figure 2.6. Figure 2.8 shows two covers, (A) and (B), of
the subject graph. The chosen patterns are shown as dotted rectangles. Note that (A) has a cost of
8 units: it uses three 2-input NAND gates and two inverters, whereas (B) has a cost of 6. it uses a
2-input NAND gate, a 3-input NAND gate, and an inverter, and is the best possible cover. To see
that this indeed is the best cover, consider the root 2-input NAND gate of the subject graph. Two

patterns can be rooted at it:

1. A 2-input NAND gate: the best cover of the subject graph in this case is this 2-input NAND
gate, along with the least-cost covers of each of the sub-trees rooted at the two inputs of the
NAND gate. Considering all possible patterns rooted at these inputs recursively leads to the
cover (A), which has a cost of 8 units.

2. A 3-input NAND gate: the best cover of the subject graph then corresponds to this 3-input
NAND gate, along with the best possible covers of each of the sub-trees rooted at the three
inputs of this NAND gate. Two of the inputs are primary inputs. So we recursively carry out
the algorithm on the third NAND gate input. This finally leads to the cover (B) with a cost of
6.

The cover with the minimum cost is picked, i.e., (B). This, in brief, is how the dynamic programming
algorithm works on trees.
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Figure 2.7: A 4-input NAND gate and one of its subject graphs

(B) Cost =6

Figure 2.8: Technology mapping: two covers

2.3 Logic Synthesis for Field-Programmable Gate Arrays

Suppose we are interested in minimizing the number of FPGA blocks needed for a
combinational circuit. Let us first ask if this problem is any different from the conventional logic
synthesis problem, which first minimizes the number of literals (optimization) and then maps the
resulting optimized network on to a library of cells (technology mapping). First let us consider
logic optimization.



36 CHAPTER 2. BACKGROUND

Example 2.3.1 Assume that the target architecture is based on 5-LUTs. Consider two functions f,
and fz.‘

fi = abcdeg,
fo = abc+bde+ade +cd.

The representation of f has 6 literals and that of f, 10 literals. Both these representations are
optimal, in that the misl| optimization script (script.rugged) (73] does not further improve the literal
counts. Thus, fi is “simpler” than f,. However, f\ requires two 5-LUTs, whereas f, requires only
one. This example shows that number of literals is not the best cost function for optimization for
LUT architectures.

Now consider technology mapping. Since traditional mappers use a library of gates, it is
natural to ask if we can use a library for FPGA synthesis, and if so, how. For the LUT architectures,
we can view an LUT as a collection of those gates that can be realized by it by possibly tying some
of its input pins to constants 0 or 1. These gates can be put into the library and assigned a unit cost,
indicating that the gate can be realized with one LUT. But the resultant library has 22™ gates, which
is the total number of Boolean functions on m inputs. Even for m = 4, the library has over 64K
gates. Currently, mappers cannot handle such a big library. If we allow renaming of the inputs (input
permutations), many functions become equivalent to each other (called P-equivalent). For instance,
fi(a,b,¢) = a'b + ac and fo(a,b,c) = b'a + be are P-equivalent, since fi(a,d,c) = f(b,a,c).
3984 non-P-equivalent functions are possible for m = 4 [24]. Only one function out of all the P-
equivalent functions needs to be put in the library, thus reducing the size of the library considerably.
However, the library is still large. But its size can be further reduced by noting that along with input
permutations, an LUT also allows inversions at its inputs and outputs, i.e., if an m-LUT realizes
f(z1,22,. .., 2m), it can also realize f(Z7,%3,. .., T ), where Z; denotes either z; or z;’ (same for
/). This reduces the number of possibilities to 232 for m = 4 [24] (this notion of equivalence, which
captures input permutations, input inversions, and output inversion, is called NPN-equivalence).
However, the size of the library still grows as a double exponential, and for m > 5, this number is
very large. Moreover, since each library function is represented in all possible tree configurations
in terms of the base functions, the total number of configurations (or patterns) is much more. The
complexity of the tree-based mapping is proportional to the total number of pattemns. Since we are
interested in techniques for general m-LUT architectures, a library-based approach is not viable.

Of course, one way to reduce the size of the library is to select a reasonable subset of
the set of all m-feasible functions. However, a possible match may be missed, resulting in an
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optimization loss. This necessitates exploring new methods for technology mapping that are not
library-based, but instead, directly map onto the basic block.

For MUX-based architectures, e.g., act! and act2, the numbers of non-P-equivalent func-
tions are 702 and 766. The corresponding numbers of pattern graphs are huge, so the library-based
approach becomes impractical.

Library-based methods suffer from another problem. Most of these methods [41, 12] work
on subject graphs and pattern graphs that are trees. If a library gate is complex (which can happen
since, for instance, an m-LUT can implement any function of up to m inputs) and is represented
only with trees, significant optimization may be lost.

This motivates a fresh look at the synthesis problem for FPGAs. First, we convince
ourselves that this problem is indeed difficult. We say that a function f is realizable by k¥ m-LUTs
if there exists a single-output Boolean network 7 that is functionally equivalent to f and has at most
k internal nodes, each having at most m fanins. Given a function f, we want to know the minimum
number of m-LUTs needed to realize f. We prove that this is an NP-hard problem [30], given that
we start from a sum-of-products representation. This implies that no polynomial time algorithm to
solve this problem is known, justifying the heuristic approaches we will use in the rest of the thesis.
The MINIMUM LUTS problem, stated as a decision problem, is as follows:

INSTANCE: Given a cover of a function f of n variables having ¢ cubes, m > 2,and & > 0.
QUESTION: Is f realizable with k¥ m-LUTs?

We show that MINIMUM LUTS is NP-hard. We first show that the following problem, ZERO
LUTS, is NP-hard.

INSTANCE: Given a cover of a function f of n variables with ¢ cubes, and m > 2.
QUESTION: Is f realizable with zero m-LUTs?

Proposition 2.3.1 ZERO LUTS is NP-hard.

Proof It suffices to Turing-reduce TAUTOLOGY to ZERO LUTS. The definition of Turing reduc-
tion permits a polynomial number of invocations of an oracle (subroutine) that solves ZERO LUTS
(i.e., returns YES if f is realizable with zero LUTs, NO otherwise) in order to solve TAUTOLOGY.
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First, note that a function f can be realized with zero LUTs if and only if it is identically
0, or identically 1, or identically equal to some input. Let z;, 22, ..., Z, be the set of inputs of f.
To answer if f is a tautology, proceed as follows.

1. If the SOP is just O (i.e., has no cubes), f is not a tautology.

2. Otherwise, call the oracle for ZERO LUTS. If it returns NO, f is not a tautology. Otherwise,
there are two cases: either f is a tautology or it is identically equal to one of its inputs. To
differentiate between the two possibilities, evaluate f on the input vector (21, 23,...25,) =
(0,0,...,0). If f evaluates to 0, it is not a tautology, otherwise it is. This is because if f
were equal to one of the inputs, it cannot evaluate to 1 on the vector (0,0,...,0). So if f
evaluates to 1 on this vector, it must be a tautology. Note that f can be evaluated on an input
vector in time that is polynomial in » and c.

Corollary 2.3.2 MINIMUM LUTS is NP-hard.

Proof Restricting k to 0, we get an instance of ZERO LUTS, which is NP-hard, as proved in
Proposition 2.3.1. ]

Note that the above result is valid for any m-LUT (m > 2). The above proof does not
really use the fact that the basic block to be used is an LUT. Consequently, the same proof works
for any basic block, e.g., a MUX-based block. In fact, it also works if f were to be mapped on to a
library of gates, each gate having a positive cost, and the objective were to minimize the cost of the
mapped solution.

Since we now know that the synthesis problem for FPGA:s is difficult, our hope is to come
up with techniques that do well in practice. At the same time, wherever possible, we should try to
prove optimality of these techniques for special classes of functions (given the intractability of the
general case). The next chapter describes mapping techniques for LUT architectures, and the one
after that addresses the logic optimization problem.
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Chapter 3
Mapping Combinational Logic

3.1 Introduction

An important problem in synthesis is to minimize the cost of a design, where the cost
is measured by the number of chips needed. This includes the routing considerations within and
pin constraints of a chip. Since it is difficult to incorporate all these factors during synthesis, and
only limited success has been achieved so far, for instance, in combining synthesis and routability
[65], we approximate this cost by the number of blocks needed. Minimizing the number of blocks
may be an overkill. However, leaving as many blocks unused as possible enables the designer to
use the unused logic for improving the properties of the design. In addition, as we will show in
Chapter 7, minimizing the number of blocks helps in reducing the circuit delay in a placed and
routed implementation of the circuit. This is because the blocks can be placed close to each other,
reducing the wiring delays considerably. However, as we saw in the last chapter, minimizing the
number of blocks is a difficult problem.

Recall that an m-LUT can implement any Boolean function of up to m inputs.

Example 3.1.1 A 5-LUT can implement, among so many other functions, f, or f, or f3, where

fi = abcde,
fo = abede+ d'b'dd'e
fi = ab’ + a'b.

Since an LUT is an essential component of all the LUT-based architectures (e.g., Xilinx 3090), first
we will target the synthesis algorithms for an m-LUT. In some sense, this is the easiest problem.
Then we will extend the algorithms for the commercial LUT-based architectures, e.g., Xilinx 3090.
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We assume that the Boolean network has already been optimized appropriately. The
problem is to map the optimized network on to the target LUT architecture (consisting of m-LUTs)
such that the final implementation uses the minimumnumber of LUTs. In order to solve this problem,
first, m-infeasible functions should be made m-feasible. Each node function in the resulting network
can then be realized by one m-LUT. However, it may be possible to reduce the number of m-LUTs
if the nodes in the resulting network are small, i.e., more than one can be implemented by the same
m-LUT. This is called block count minimization (BCM).

This chapter is organized as follows. To put everything in perspective, the history of
LUT mapping is summarized in Section 3.2. Section 3.3 discusses techniques for converting
an m-infeasible function into a set of m-feasible functions. This corresponds to the technology
decomposition step of the conventional mappers. Section 3.4 describes BCM, which corresponds to
the covering step of the conventional mappers. It tumns out that for efficiency reasons, the two steps
should not follow one another, but should be interleaved. Section 3.5 gives the details. Experimental
results are presented in Section 3.6. All these techniques target an m-input, single output LUT. The
commercial LUT-based architectures are more complex, and typically have two or more outputs.
In Sectiqn 3.7, we apply our techniques to complex architectures. Finally, Section 3.8 evaluates the
overall approach from different angles.

3.2 History

In 1989, when we first started looking at the synthesis problem for these architectures, no
work had been reported in the literature.
3.2.1 Library-based Technology Mapping

As discussed in Section 2.3, a library-based approach is not viable for LUT-based archi-
tectures, simply because the size of the library and, therefore, the number of pattern graphs become
huge.

322 mis-fpga

In 1990, we proposed mis-fpga [62], which is embedded in misl! [12]. Specifically, it
is the part of misll that pertains to the FPGA architectures - both LUT and MUX-based. This
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includes algorithms, their implementation, and the commands.! For LUT architectures, mis-fpga
has two phases: decomposition and BCM. In the first, classical Roth-Karp decomposition, kemel-
extraction, and simple AND-OR decomposition are used to break each functioninto a set of feasible
functions. In the BCM phase, the notion of an m-feasible supemode was introduced. All m-
feasible supernodes of the network are generated using maximum flow technique repeatedly. A
binate covering formulation is then used to solve for minimum number of supernodes that realize
the network. A heuristic partition was also used to do greedy covering. It differed from the tree
covering in that it can optimize across multiple fanout points. For Xilinx 3090, the problem of
obtaining a maximum number of pairs of functions of a feasible network that can be placed on the
same CLB was formulated as a maximum matching problem.

3.2.3 chortle

At the same time, Francis et al. proposed chortle [25], which, like conventional mappers,
uses a dynamic programming paradigm. It applies a 2-input AND-OR decomposition, breaks the
network into a forest of trees, and then covers each of them optimally by a set of pattems. These
patterns are different from the ones used in standard technology mapping in that they just depend
on the number of inputs of the function, and not the function itself - each node in the pattemn is a
2-input generic gate. chortle suffered from a lack of optimization across tree boundaries, and also
did not consider the possibility of architecture specific decomposition.

3.24 chortle-crf

In 1991, chortle-crf, an improved version of chortle, was proposed [26]. It introduced
an important decomposition technique based on bin-packing [30]. It also used optimization across
tree boundaries.

3.2.5 Xmap

In 1991, Karplus proposed Xmap (39], which builds an ITE for a function using cofac-
toring. Each non-terminal vertex in an ITE has at most three non-trivial inputs. So cofactoring can
be looked at as a decomposition method. This ITE is covered greedily.

'misll is a tool for combinational logic synthesis, and is subsumed by sis [77, 78], which is a tool supporting logic
synthesis of sequential circuits.
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3.26 HYDRA

All the approaches proposed so far targeted an m-LUT, and targeted two-output blocks
only in the post-processing phase. HYDRA [23] is a program specifically targeted to Xilinx 3090.
Decomposition and BCM are performed keeping in mind the structure of the two-output block.

3.2.7 VISMAP

The approach used in VISMAP [87] is similar to mis-fpga. The main difference is that
in the BCM phase, VISMAP does not generate all the supernodes, but a subset, and guarantees that
no optimality is lost.
3.2.8 ASYL

In 1990-1991, Sicard ez al. incorporated technology mapping for LUT architectures into
ASYL synthesis system [80, 1]. A lexicographical factorization based optimization generates an
ordering of variables, which is used to insert cut-points in the lexicographical trees. These cut-points
determine the m-feasible solutions.
3.29 mis-fpga (new)

In 1991, we proposed mis-fpga (new) [63]. It had the following new features:

1. It used cube-packing - a decomposition technique first proposed in chortle-crf (but was
called bin-packing), cofactoring, and Roth-Karp decomposition. It was shown that no single
decomposition technique suffices.

2. It was found beneficial to apply decomposition and BCM on each node, and then use partial
collapse to exploit the structure of the network.

3. It proposed the idea of making optimizationspecific to these architectures. To this end, kernel
extraction was modified.

4. An exact BCM algorithm for the Xilinx 3090 architecture was given.

In the rest of the thesis, the term mis-fpga will be used to refer to the latest version of the system.
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3.2.10 TechMap

In 1992, Sawkar and Thomas [74] proposed a mapping approach based on clique parti-
tioning. Both area and delay optimizations were targeted.

3.3 Making an Infeasible Function Feasible

An m-infeasible node function f can be made m-feasible either by breaking it up into
a set of m-feasible functions (this is called decomposition), or by exploiting its relationship with
the rest of the network. First, we examine how various decomposition techniques, many of which
had been already proposed for logic synthesis, can be applied to the LUT decomposition problem.
These include functional decomposition (Section 3.3.1), cube-packing (Section 3.3.2), cofactoring
(Section 3.3.3), kernel extraction (Section 3.3.4), and technology decomposition (Section 3.3.5).
Then, in Section 3.3.6 we describe how to exploit the structure and functionality of the network to
make f m-feasible.

3.3.1 Functional Decomposition

The first systematic study on decomposition was done by Ashenhurst [3]. He characterized
the existence of a simple disjoint decomposition of a function. While being seminal, this work
could not be used for functions with more than 10-15 inputs, since it required the construction of a
decomposition chart, a modified form of the truth table for a function. Few years later, Roth and
Karp proposed a technique [36] that does not require building a decomposition chart; instead, it uses
a sum-of-products representation, which is, in general, more compact than a truth table. They also
extended Ashenhurst’s work by characterizing non-simple (or general) decompositions and used
this characterization to determine the minimum-cost Boolean network using a library of primitive
gates, each having some cost.

We first summarize the main ideas of these two studies, and then show how to apply them
to the decomposition problem for LUT architectures.

Ashenhurst Decomposition

Ashenhurst [3] gave necessary and sufficient condition for the existence of a simple
disjoint decomposition of a completely specified function f of n variables. A simple disjoint
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Figure 3.1: A simple disjoint decomposition

decomposition of f is of the form:

f(xl,va s sy Y1y o ~ayn-.s) = g(a(xl)z27' . 'sxs)ayls' . °7yn—3) (3.1)

- where «a is a single function, and {z1,...,2:} N {¥1,...,Yn-s} = ¢. In general, a could be a
vector of functions, in which case the decomposition is non-simple (or general).
Let X = {21,23,...,2,}and Y = {y1,...,¥n—s}. Then (3.1) can be rewritten as

f(X,Y) = g(a(X),Y) (3.2

The representation (3.2) is called a decomposition of f; g is called the image of the decomposition.
The set X = {z1,22,...,2,} iscalled the bound set and Y = {y,...,yn—,} the free set (Figure
' 3.1). The necessary and sufficient condition for the existence of such a decomposition was given in
terms of the decomposition chart? D(X|Y) for f for the partition X |Y (also written %,‘- or(X,Y)).
A decomposition chart is a truth-table of f where vertices of B® = {0, 1}" are arranged in a matrix.
The columns of the matrix correspond to the vertices of B*, and its rows to the vertices of B"~,
The entries in D(X|Y) chart are the values that f takes for all possible combinations.

Example 3.3.1 Let f(a,b,c) = abc’ + a'c + b'c. The decomposition chart for f for the partition
ab|cis

2100 01 10 11
00 0 0 1
1{1 1 1 0

2Ashenhurst called it partition matrix.
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Note that if s = 0, 1, or n, a decomposition always exists. These cases correspond' to
trivial decompositions. All others, for which 1 < s < n, are called non-trivial,

Ashenhurst proved the following fundamental result, which relates the existence of a
decomposition to the number of distinct columns in the decomposition chart:

Theorem 3.3.1 (Ashenhurst’s Fundamental Theorem of Decomposition) The simple disjoint de

composition(3.2) exists if and only if the corresponding decomposition chart has at most two distinct
column patterns.

Stated differently, the decomposition (3.2) exists if and only if the column multiplicity (i.e., the
number of distinct column pattems) of D(X|Y') is at most 2.

We say that two vertices in B* (i.e., BIX!) are compatible (written z; ~ z,) if they have
the same column pattems in D(X[Y), i.e., f(z1,y) = f(z2,y)forally € BIY), Foranincompletely
specified function, a don’t care entry ‘—’ cannot cause two columns to be incompatible. In other
words, two columns ¢; and c; are compatible if for each row k, either ¢;(k) = ‘—*, or ¢;(k) = ‘-,
or ¢;(k) = c;j(k). For a completely specified function f, compatibility is an equivalence relation
on the columns (ie., z; ~ 71,71 ~ 23 > 22 ~ 21, and ) ~ 22 A Ty ~ 23 => ) ~ 23
for all 71,2, 23 € BIX1), and the set of vertices that are mutually compatible (or equivalent) form
an equivalence class. Hence the column multiplicity of the decomposition chart is the number of
equivalence classes. In this subsection, we will consider only a completely specified function, and
0 use compatibility and equivalence interchangeably.

Given that the column multiplicity of D(X|Y’) is at most 2, how do we determine o and
g? Since there are at most 2 equivalence classes, and a single o function for a simple decomposition,
the vertices of one class are placed in the off-set of a, and of the other class in the on-set. g can then
be determined by looking at each minterm in the on-set of f and replacing its bound-part (i.e., the
literals corresponding to the variables in the bound set X) by either a or o/, depending on whether
the bound-part is in the class that was mapped to the on-set of a or the off-set. We illustrate the
decomposition technique for the function f of Example 3.3.1.

Example 3.3.2 f = abc'+d’c+b'c, andpartition (X|Y) = ablc. D(abd|c) has two distinct column
patterns, resulting in the equivalence classes Cy(a,b) = {00,01,10} and C»(a,b) = {11}. Let us
assign C to the off-set of a and C; to its on-set. Then a(a,b) = ab. Since f = abc’ + a’c + Ve,
g(a,c) = ac’ + a'c+ o'c = a @ c. The bound part of the first minterm abc’ of f is ab, which yields
a = 1. So this minterm abc’ generates ac’ in g. Note that if Cy was assigned to the on-set of a

and C; to the off-set, the new & would be simply o, and the new §(a, c), g(¢',c), which has same
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number of product terms as g. So irrespective of how we encode Cy and C,, the resulting g functions
have the same complexity. However, things are different if the decomposition is not simple.

Roth-Karp Decomposition
Not every function has a non-trivial simple disjoint decomposition.

Example 3.3.3 Consider f(a,b,c) = a’bc + ab'c + abc’. For a non-trivial decomposition, only
| X | = 2 needs to be considered. For the input partition ab|c, the decomposition chart is
100 01 10 11

00 0 O 1
1{0 1 1 O

It has 3 distinct column patterns and so a simple disjoint decomposition does not exist for this
partition. Since f is totally symmetric, it does not have a non-trivial simple disjoint decomposition.

Roth and Karp [36] extended the decomposition theory of Ashenhurst by characterizing a general
(non-simple) disjoint decomposition, which is of the following form:

f(X,Y) = g(a1(X),0(X),...,(X),Y) = g(&(X),Y), 3.3)

where @ = (a1, 032,...,a;). The theory of Roth and Karp applies for an incompletely specified
function f. We present a summary of their formulation. Let X ,f’, 2, and W be arbitrary finite
sets, and E be a subset of X x Y. Given a function f : £ — Z, we examine the following:

(¢) Givena: X — W, does there exist a function g : W x ¥ — Z, such that for all (z,9) € E,
f(z,9) = g(a(z),y)? (34

(#¢) Under what conditions do there exist functions « : X - W, and g : Wx¥V -2 , such that
(3.4) holds?

The answer to (¢) may be formulated in terms of a relation of compatibility between elements of X.
Let 2,29 € X. Then z1 and z; are compatible with respect to f (denoted by z; ~ z5) if, for all
y € ¥ such that (21,9), (22,9) € E, f(z1,9) = f(22,y); otherwise, z; and =, are incompatible
(denoted by z; % z3). The following proposition from [36] answers ().

Proposition 3.3.2 (Roth and Karp) Given f and «, there exists g such that (3.4) holds if and only
if.forall z1,z2 € X, a(z,) = a(z2) = z1 ~ x9, Or equivalently, z, % 23 = a(z)) # o(z2).
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An answer to (#7) may be given now. The crucial consideration is the number of elements
in W; for if W has too few elements, it may not be possible to produce a function o such that all
elements of X mapping into the same element of W are compatible. These considerations are made
precise in the next proposition, which in fact follows from Proposition 3.3.2.

Proposition 3.3.3 (Roth and Karp) If k is the least integer such that X may be partitioned into k
classes of mutually compatible elements, then there exist a and g such that (3.4) holds if and only
if W has at least k elements.

In order to apply Proposition 3.3.3, the only missing link is the number k. First consider
the case when f is completely specified (i.e., is defined at all points in X x }7). Then z; ~ z5 if
and only if forall y € ¥, f(z1,9) = f(22,). Compatibility is then an equivalence relation, and
is simply the number of equivalence classes. If f is incompletely specified, i.c., it is undefined for
some elements of X x 17, compatibility is no longer an equivalence relation, and the determination
of a minimum cover of X by sets of mutually compatible elements is nontrivial.

Note that the formulation of Roth and Karp is in terms of arbitrary sets X ,?, 2, etc.,
and functions on these sets.- It.can be-restricted to the Boolean domain by substituting X =..BX!,
Y = B\, Z = B, etc. The rest of the section uses Boolean domain, and all references to
Propositions 3.3.2 and 3.3.3 should be suitably interpreted.

Let the given Boolean function f be represented by on-set cover Cy = {l1,,...,!,} and
off-set cover Co = {m1, my, ..., m,}, where l, b3, ..., 1, m1, my, ..., mq are cubes. Let X be the
bound set and Y the free set. If Propositions 3.3.2 and 3.3.3 are to be used for the detection of
decompositions, it is necessary to determine the specifications of X that are compatible. If X and
Y are disjoint, any cube of C; or Cg can be divided into an “ X -part” and a “Y -part.”” For example,
consider the cube

abed
1012

With X = {a,c}and Y = {b,d}, the X-part of Bis 1 1 and the Y-part is 0 2.
The covers C; and Cp can then be written as Cy = {(Ix,ly)} and Cp = {(mx,my)}.
Then the following lemma [36] holds:
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Lemma 3.3.4 (Roth and Karp) Given v, € B\X| and vg € BYX|, vy o vy if and only if there are
cubes (Ix,ly) € Cy and (mx,my) € Co such that ly intersects my, and either lx covers v\ and
mx covers vo, or Ix covers vo and mx covers vy.

In other words, v and v»; are incompatible if and only if for some y € BIY1, the minterms (v, v)
and (v;,y) belong to different sets - on and off. This lemma enables the use of the covers of the
on-set and the off-set for determining the compatibilities instead of using the truth table. In general,
Lemma 3.3.4 can be applied in two ways:

1. In conjunction with Proposition 3.3.2, it can be used to determine, given f,X,Y, and
{ay,0a2,...,0¢}, whether there is a decombosition of the form (3.3). This is done simply by
determining which incompatibilities exist (using Lemma 3.3.4) and ascertaining whether any
of them violate the conditions of Proposition 3.3.2.

2. In conjunction with Proposition 3.3.3, it can be used to determine, given f, X,Y, and ¢,
whether there exist functions a;, a3, ..., 0; such that (3.3) is satisfied. In the language of
Proposition 3.3.3, W, the range of a = (ay,a3,...,a;), has at most 2! elements, and a
decomposition exists if and only if k& < 2, where k is the minimum number of classes of
mutually compatible elements into which the domain of « can be partitioned.

Determining @ and g: an encoding problem

Roth and Karp give conditions for the existence of & functions, but do not give a method for
computing them.3 This is because they assume that a library L of primitive elements is available,
from which & functions are chosen. Given a choice of & functions, Proposition 3.3.2 may be used
to determine if a valid decomposition exists. If it does not exist, then this particular choice & of
primitive elements is:discarded, and the next one is tried. Otherwise, a valid decomposition exists,
and then g is determined as follows. Each minterm (z, y) in the on-set of f, where z is the bound
part and y is the free-part, maps into a minterm (@;a; . . . &3, ) in the on-set of g, where
{ o; ifaj(z)=1

o) ifaj(z)=0.

®)

(3.5)

t

The entire procedure is repeated on g until it becomes equal to some primitive element.
In general, & functions are not known a priori. For instance, this is the case when
decomposition is performed during the technology-independent optimization phase, because the

3We believe that they knew how to find these functions, but not how to find “simple” & functions.
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technology library of primitive elements is not considered. In fact, there are many possible choices
for & functions that correspond to a valid decomposition.

Example 3.3.4 Consider the function f of Example 3.3.3.
f =d'bc+ ab'c + abe’

As it was shown earlier, the decomposition chart for f for the partition ab|c has 3 distinct column
patterns (or equivalence classes). This means thatt > [log,(3)] = 2. Let us choose t = 2. Then
there are many choices of & = (ay, @3), and two of them are shown here.

1. al(a, b) =ab
ax(a,b) =d'b+ad

g(alv a2ac) = C'1‘12,‘3l + ax'azc

2. afed) =d+¥
_ ofed)  =d¥
g(ar,e,¢) =a'a)'d + qad’c

= a'(ey'c + ay¢)
The second choice {eads to a simpler g function and fewer overall literals.

Given that X may be partitioned into k classes of mutually compatible elements, and that ¢ >
[log,(k)], each of the k compatibility classes may be assigned a unique binary code of length ¢,
and there are many ways of doing this. Each such assignment leads to different & functions. We
wish to obtain that set of & functions that is simple and makes the resulting function g simple as
well. The measure of simplicity is the size of the functions using an appropriate cost function. For
instance, in the two-level synthesis paradigm, a good cost function is the number of product terms,
whereas in the multi-level paradigm, it is the number of literals in the factored form. The general
problem can then be stated as follows:

Problem 3.3.1 Given a function f(X,Y), determine sub-functions &(X) and g(&,Y) satisfying
(3.3) such that an objective function on the sizes of & and g is minimized.

This problem has not been addressed in the past to the best of our knowledge. We present an
encoding-based formulation for solving this problem exactly given a standard objective function.
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It seems intuitive to extend Ashenhurst’s method for obtaining the & functions. Ashenhurst
placed the minterms of one equivalence class in the on-set of a and of the other in the off-set. In
_other words, one equivalence class gets the code a = 1 and the other, @ = 0. For more than two
equivalence classes, we can do likewise, i.e., assign unique &-codes to equivalence classes. This
leads to the following algorithm:

1. Obtain a minimum cardinality partition P of the space B!X| into k¥ compatible classes. This
means that no two classes C; and C; of P can be combined into a single class C; U C; such
that all minterms of C; U C;; are mutually compatible. This means that given any two classes
C; and C; in P, there exist v; € C; and v; € VCj such that v; % v;.

2. Then assign codes to the compatibility classes of P. Since there is at least one pair of
incompatible minterms for each pair of classes, it follows from Proposition 3.3.2 that each
compatibility class must be assigned a unique code. This implies that all the minterms in a
compatibility class are assigned the same code. We will discuss shortly how to assign codes
to obtain simple & and g functions.

"Example 33.5 For f(a,b,c) = a'bc + ab'c + abc’, the decomposition chart for the partition ab|c
was shown in Example 3.3.3. It has 3 distinct column patterns, i.e., k = 3. Let us choose t = 2.
Suppose we assign the following codes:

class I ajon
C, = {d't'} 00
Cy = {d’b,ab’} | 01
Cg = {ab} 10

This results in

aj(a,b) = ab
a(a,b) = a'b+ab

[ !
glay,a,¢) = ajo'cd + ay’aze

This is the approach taken in every work (we are aware of) that uses functional decomposition, e.g.,
[62, 43]. However, this is not the most general formulation of the problem. To see why, let us
re-examine Proposition 3.3.2, which gives necessary and sufficient conditions for the existence of
the decomposition. It only constrains two minterms (in B1X! space) that are in different equivalence
classes to have different values of & functions. It says nothing about the minterms in the same
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~equivalence class. In fact, there is no restriction on the & values that these minterms may take: &
may evaluate same or differently on these minterms.

To obtain the general formulation, let us examine the problem from a slightly different
angle. In Figure 3.2 is shown a function f(X,Y’) that is to be decomposed with the bound set X
and the free set Y. After decomposition, the vertices in B'X| are mapped into vertices in Bt - the
space corresponding to the & functions. This is shown in Figure 3.3. This mapping can be thought
of as an encoding. Assume a symbolic variable .X'. Imagine that each vertex z in BIX| corresponds
to a symbolic value of X, and is to be assigned an &-code in B*. This assignment must satisfy the
following constraint: if z;,z, € B/X| and 71 9% z2, they must be assigned different &-codes - this
follows from Proposition 3.3.2. Otherwise, we have freedom in assigning them different or same
codes. Hence, instead of assigning codes to classes, the most general formulation assigns codes to
the minterms in the B1X! space.

The problem of determining simple & and g can be represented as an input-output encoding
(or state-encoding) problem. Intuitively, this is because the & functions created after encoding are
both inputs and outputs: they are inputs to g and outputs of the square block of Figure 3.3.
Minimizing the objective for & functions imposes output constraints, whereas minimizing it for g
imposes input constraints.

There is, however, one main difference between the standard input-output encoding
problem and the encoding problem that we have. Typically input-output encoding requires that
each symbolic value be assigned a distinct code (e.g., in state-encoding), whereas in our encoding
problem some symbols of X’ may be assigned the same code. This can be handled by a simple
modification to the encoding algorithm. Recall from Section 2.1.3 that an encoding algorithm,
in particular the one based on dichotomies, ensures that the the codes are distinct by explicitly
adding a dichotomy (S; S;) for each symbol-pair {S;, 5;}. This guarantees that the code of S;
is different from that of §; in at least one bit. In our problem, let z; and z; be two symbolic
values of A, If z; ¢ x;, add a dichotomy (z;; z;). Otherwise, no such dichotomy is added. This
provides additional flexibility to the encoding algorithm: it may assign the same code to two or
more compatible symbols if the resulting & and g are simpler.

The encoding algorithm has to encode all the 2!X| symbolic valuesof X. If | X|islarge, the
problem becomes computationally difficult. We can then use the approximate method of assigning
codes to equivalence classes, as described earlier.

Note that # is determined by the encoding algorithm. It is the number of bits used by the
algorithm to encode the vertices in B!X|, or the equivalence classes if the approximate method is
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|

Figure 3.2: Function f to be decomposed with the bound set X and free set Y’

|
Figure 3.3: A general decomposition of f

being used. Once the codes are known, the & functions can be easily computed. Then g can be
determined using the procedure described in the last section. The unused codes can be used as don’t
cares to simplify g.

Application to LUT architectures We have shown that for a given partition, the general decom-
position problem is an input-output encoding problem. However, for LUT architectures, we are
interested in a particular kind of decomposition: namely, where the bound set X is restricted to have
at most m variables, i.e., | X| < m. Since an LUT can implement any function of up to m inputs,
and & functions are functions of X, we do not care how large the representation of the functions &
is. The only concem from the output encoding part is the number of bits used to encode the classes,
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since bit b; corresponds to the function a;. Then each extra bit implies an extra LUT, we would like
to minimize the number of bits. So we use the minimum number of bits, i.e., t = [logak]. Then,
the contribution by the & functions to the objective function disappears. This removes the output
encoding part of the formulation, thereby reducing the problem simply to one of input encoding.

Since LUTs impose input constraints, it is tempting to consider minimizing the support of
the function g as the objective function in the encoding formulation. However, if the code-length is
always chosen to be the minimum possible, the support of g is already determined, and the encoding
of & functions do not make any difference. Hence, this objective function is not meaningful.

Applying functional decomposition to LUT architectures

It is now straightforward to translate the above discussion into an algorithm for decom-
position for LUT architectures. This is shown in Figure 3.4. The approximate algorithm, which
encodes classes, is shown in Figure 3.5. Given an m-infeasible function f, a partition (X,Y) of
the support of f is chosen such that | X'| < m. This guarantees that the corresponding o functions
are m-feasible. Lemma 3.3.4 is used to determine incompatibilities between minterms in X. Then
k, the minimum number of mutually compatible classes, is determined. If k > 2™~!, the partition
is rejected because of the following reason. This partition will result in ¢ > m. Then g will have at
least as many inputs as f. If the algorithm is to terminate, it should create a function g with strictly
fewer number of inputs than f. Otherwise (i.e., if K < 2™~'), an encoding step is performed to
determine &. Subsequently, g is determined. If g is m-infeasible, it is recursively decomposed.

We illustrate the approximate procedure with the following example.

Example 3.3.6
f(a,b,e,d,e)=ab' + ac’ + ad + ae + a'¢’

Let m = 4. Let us fix the bound set X to {a,b,c,d}. ThenY = {e}. Although we do not show
the decomposition chart (since it is big), it has three equivalence classes Cy, Cy, and Cs. Let the
corresponding symbolic representation for the on-set of g be:

e class g
1 C 1
1 ¢ 1
0 C 1
0 Cp 1
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/* n is a network */
/* m is the number of inputs to the LUT */

functional._decomposition_for LUT (y, m)

{

while (nodes with support >m exist in 7) do {
n = get_an.m~-infeasible_node (7);
(X,Y) = get_input._partition(n);
classes = determine._compatibility-classes(n, X, Y);
if (# (classes) >2™ 1) {
call an alternate decomposition(mn):;
continue;
};
codes = encode(n, X):;

-

a

]

determine.é@(codes) ;
g = compute_g(n, codes):

g
add & nodes to 7;

simplify_g-using DC(g9, @, codes):;

replace n by ¢

Figure 3.4: Functional decomposition for LUT architectures
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/* 1§ is a network */
/* m is the number of inputs to the LUT */
approximate_functional-decomposition_for_LUT(17, m)
{
while (nodes with support >m exist in 7) do {
n = get.an-m-infeasible_node(7);
(X,Y) = get_input.partition(n):
classes = determine.compatibility-classes(n,
if (# (classes) >2m71) {
call an alternate decomposition(n);
continue;
}:
codes = encode(n, classes);
& = determine-d@ (classes, codes, X):
g = compute.g(n, classes, codes, X):
g = simplify.g-using.DC(g, classes, codes) ;
add @ nodes to 7;

replace n by ¢

Figure 3.5: Approximate method for decomposition for LUT architectures

57

XI Y):'



58 CHAPTER 3. MAPPING COMBINATIONAL LOGIC

Let us assume that we are minimizing the number of product terms in g. Then after a multi-valued

minimization [11], we get the following cover:

€ Co C 1 Cg g9
1 1 1 0 1
o1 0 1 1

This corresponds to the following face constraints:

Co C G
1 1 0
1 0 1

To these, uniqueness constraints are added. These constraints are handed over to the constraint
satisfier [69]. The following codes are generated:

class oy
Co 00
C 10
Cy 01

Note that Co and C) are on a face, namely oy = 0. Similarly, Co and C> are on the face
a1 = 0. Let o) and o3 be the encoding variables used. Then it can be seen from the minimized
multi-valued cover that

€'(Co+ C2) + ¢(Co + C1)

=>g = e'al' + eaz'

g

Also, it turns out that Co, Cy and C, are such that

a; = abed
a = d
This simplifies to
g = oy’ +ea
a; = abed

Had we done a dumb encoding of the equivalence classes, as is the case in [62], we would
have obtained the following decomposition,
g = oqa’etai’oy+ay’e
a; = abed

a; = ab +ac +ad,
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which uses one more function and many more literals than the previous one. This shows that the

choice of encoding does make a difference in the resultant implementation.

Note that unless an alternate decomposition is used, this procedure is not complete, i.e.,

it does not always guarantee that finally an m-feasible network will result. This happens when for
the chosen partition, k£ > 2™~1,

Example 3.3.7 Consider the function of Example 3.3.3, f(a,b,c) = a'bc + ab’c + abc’. Let m be
2. To generate non-trivial decompositions, it suffices to consider bound sets with two elements. As
shown earlier, the decomposition chart for f for the partition (ab|c) has a column multiplicity of 3,
which is greater than 2™~ = 22-1 = 2. So our procedure will throw away this partition. Since
the function is totally symmetric, any partition with the bound set having two elements will result
in the same decomposition chart and hence would have column multiplicity of 3. So our procedure
will fail to generate a valid disjoint decomposition for f.

In such a case, an altenate decomposition strategy is used. For example, a non-disjoint decompo-
sition always exists, and, therefore, an m-feasible implementation can always be obtained for any
m-infeasible function. Two such techniques, cube-packing and cofactoring, will be described in
Sections 3.3.2 and 3.3.3 respectively.

Choosing a partition To obtain the best possible decomposition, all partitions (X, Y) should be
explored. This may not be computationally viable, since there are exponentially many choices. Our
current implementation includes two options:

1. Pick an arbitrary bound set X. Although fast, this strategy may miss good partitions, as the
following example shows.

Example 3.3.8 Consider the function
f = abc + degh + i

Let m = 5. To make this function 5-feasible, the best partition is (abcij|degh), resulting in
the following decomposition:

f = p+degh
p = abc+ij
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However, if we pick a partition, say (abcde|ghij), we get the following:

f = qr+4gr's+rs

p = abc

g = dde+bde+c'de
r = poh+p'ij

s = p+ghi'+ ghj’

This decomposition, with 5 sub-functions, is far off from the best one.

. Go through all the partitions and pick the best one. Ideally, the best partition is the one that

results in the fewest feasible functions. This is not easy to find if g is infeasible and has to be
recursively decomposed: all partitions have to be tried for g as well. So, we approximate the
best partition to be the one that gives the minimum number of compatible classes.

If | X UY| is large, generating all partitions and computing the compatibility classes becomes
computationally infeasible. We present a simple result to prune the search. It holds for
completely specified functions. The idea behind it is that the number of equivalence classes
for the partition (X |aY’) (which is the same as (X |{a} U Y)) is related to that for (aX|Y).
If the number of equivalence classes for the partition (a.X |Y') is known, it may be possible to
tell, without computing the equivalence classes for (X |aY), whether (X |aY') will generate
fewer equivalence classes than the minimum seen thus far.

Let v € B, and av and a'v be the corresponding vertices in the extended space BIX|+1
with @ = 1 and a = 0 respectively.

Proposition 3.3.5 Let p(a X [Y') and p(X |aY') be the column multiplicities of the decompo-
sition charts D(aX|Y') and D(X |aY') respectively. Then

p(aX|Y)/2 < p(X|aY) < p(aX|Y 2. (3.6)

Moreover, these bounds are tight, i.e., there exist decomposition charts on which these bounds
hold as equalities.

Proof We prove the inequalities one by one.



3.3. MAKING AN INFEASIBLE FUNCTION FEASIBLE 61

o p(aX|Y)/2 < p(X|aY): Consider the decomposition chart D(X|aY’). Without loss
of generality, each column v of the chart can be divided into two halves, with the top
half corresponding to the half-space a = 1, and the bottom half corresponding to a = 0.
When a is moved from the free set to the bound set X, the column v of D(X |aY’) splits
into two columns, av and a’v, where av is the top-half of v and a’v the bottom-half.
If there are p(X |eY’) distinct column pattemns in D(X |aY’), there cannot be more than
2p(X|aY) distinct column patterns in D(aX|Y').

¢ p(X|aY) < p(aX|Y)*: Consider D(aX|Y). Let ¢1,¢3,...,Cyax|y) be its distinct
column patterns. When a is moved from the bound set aX and added to the free set
Y, the column a’v of D(eX|Y) aligns itself below the column av and results in the
column v in the new chart D(X|aY). A column of D(X|aY) is then of the form ¢;
concatenated with c; where ¢; and c; are columns of D(a X |Y’). The worst case is when
each distinct column pattern of D(aX|Y") gets aligned with any other column pattern,
thus resulting in p(a X |Y)? distinct column patterns in D(X |aY).

It is easy to construct examples of the decomposition charts where the bounds hold as
equalities. =
How can this result be applied? Assume we are generating partitions one by one, computing
the number of equivalence classes, and saving the best partition seen so far. Let there be 5
equivalence classes in the best partition seen so far. Let D(a X [Y') have 20 equivalence classes.
There is no need to generate the chart for D(X |aY’), since it has at least 10 equivalence classes
(using Proposition 3.3.5). Similarly, if D(X|bY) has 30 equivalence classes, D(bX|¥) has
at least [v/30] = 6 classes, and need not be generated.

To conclude, it remains an open problem to find a good partition quickly. Hwang et al.
[35) did some work on this using a partitioning algorithm similar to the one proposed by Kemighan
and Lin [40]. The cost function is the number of pattems corresponding to this partition. They
first generate an input partition randomly, and then move the input variables across partitions and
recompute the cost function. The strategy of accepting a partition is the same as inthe Kemighan-Lin
algorithm. Hwang et al. showed that this technique generates good results. Out of 14 benchmarks,
it computes optimum partitions for 11. But this conclusion has to be taken with a pinch of salt.
Their benchmark set consists mainly of symmetric and arithmetic circuits. For symmetric circuits,
any bound set of a given cardinality is the same, and arithmetic circuits exhibit group-symmetry.
For a definitive answer, general benchmark circuits should be chosen and studied.
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3.3.2 Cube-packing

Before describing cube-packing, it is useful to define the following two notions.
Definition 3.3.1 A supercube of a cube c is a cube that contains c.
For example, ab'd, ade, ab'd and d are some supercubes of the cube ab'de.

Definition 3.3.2 A sub-function of a function f = ¢; + ¢2 + .. .+ ¢ is a function whose cover is
a subset of the set of cubes {cy,¢2, - - -,¢n}.

For example, if f = abc+deg’h+ k', then abe, abc+ deg'h, abe + kI’ are some of the sub-functions
of f. Note that in the rest of the thesis, the term sub-function of a function f is used somewhat
loosely to mean a function that is derived from f in some way. For this subsection, a sub-function
is as defined in the last definition.

Cube-packing as a method of decomposition for LUT architectures was first suggested
in chortle-crf [26]). The basic idea is to approximate the problem of decomposing a function as
that of decomposing an SOP of the function. This is unlike Roth-Karp decomposition, which
being a functional technique, is independent of the function representation. Cube-packing uses
bin-packing, a well studied problem [30]. We are given items with weights and bins of fixed
capacity. The objective is to pack all the items using a minimum number of bins without violating
the capacity of any bin. Here, the used capacity of a bin is the sum of the weights of the items in
the bin.

If each cube in the SOP of the function f is treated as an item with weight equal to its
literal count, and an LUT as a bin with capacity m, the problem of decomposing the SOP of f into
a minimum number of m-LUTSs can be seen as a bin-packing problem, although the two are not
exactly the same (as explained later). We call this formulation a cube-packing problem.

The decision version of bin-packing is NP-complete, [30], and same is true of cube-
~ packing, as shown later in the section. However, there exist efficient heuristics for bin-packing,
which can be modified for cube-packing. One such heuristic is the best fit decreasing (BFD). It is
modified for cube-packing as follows: |

1. Extract m-input AND gates from each cube c until it has at most m literals. Two methods to
select the AND gates are studied:

(a) regular: Order the inputs of the function (arbitrarily). A literal whose corresponding
input is earlier in the order is extracted earlier from the cube.
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(b) smart: Order the inputs in the increasing order of occurrence in the sum-of-products
expression. Again, a literal earlier in the order is extracted earlier from a cube. The idea
is that a literal in the final expression (after all the cubes have become m-feasible), will
be in many cubes. This gives more opportunity for sharing of the supports and hence
for placing more cubes in each LUT.

The experimental results for these methods are shown in Section 3.6.
2. Order the cubes in non-increasing order of weights.

3. Pick the largest unplaced cube c and try placing it in the bins that have been already used. If
it fits in more than one, choose the best bin. We experimented with two definitions of the best
bin for a cube c:

(@) minimum support. The support of a partially filled bin is defined as the union of the
supports of the cubes placed in it. According to this definition, the best bin for ¢ is the
one that has the least support of all bins after ¢ has been placed.

(b) minimum increment in the support: According to this criterion, the bin whose support
increases by the least amount when c is placed in it is the best bin for c.

If ¢ does not fit in any of the partially filled bins, generate a new bin and place c in it. When
all cubes have been placed, the bin most full is “closed.” That is, it is removed from the list of
partially filled bins, generating a single literal cube (equivalently, an item of weight 1), which
is added to the list of unpacked items. Repeat this step until only a single item of weight 1 is
left.

Note that an LUT with more than one cube in it realizes their OR.
We illustrate this approach for m = 5 using minimum increment in support as the criterion
for defining the best bin.

Example 3.3.9 Let

f = abed + o't + kir + r'p 3.7

¢ = abed,
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ca = dVb,
€G3 = ke r,
s = r'p

be the four cubes. Since there is no cube with more than S literals, step 1 is skipped. Next, we sort
the cubes in non-increasing order of number of literals. This results in the order c,, c3, ¢2, cs. The
cube ¢, is placed in bin 1. The cube c3 cannot fitin bin 1 as ¢1 and c3 together have 7 inputs. So ¢3
isplacedinanew bin2. Cube c, is next. It can fit in both bins 1 and 2. If put in bin 1 with ¢, it does
not use any leftover capacity (inputs) of bin 1, whereas if put in bin 2, it uses two additional units
of capacity. Therefore it is placed in bin 1. Finally, c4 can be placed only in bin 2. The resulting
configuration is shown in Figure 3.6. We close the bin that is most full. Both the bins are using a
capacity of 4; so we arbitrarily close bin 1. This generates a new single literal cube z, which is

then put in bin 2, since bin 2 had an unassigned input pin.
Note the following features:

1. The cubes can share inputs, i.e., the sum of the weights of two cubes may be greater than the
weight of the cubes merged together. For instance, the weight of c; is 4 and the weight of ¢,
is 2, but that of ¢; + ¢ is 4. This is in contrast with the standard bin-packing problem, where
the items do not share weights.

2. Every bin, except the final one (the one realizing f), generates an item of weight 1. This
is because each bin realizes a sub-function of f, which later has to combine with other sub-
functions to generate f. To handle this, we generate a single literal cube as soon as a bin is
closed and make this new cube a new item.

3. BFD is a polynomial time heuristic.

A property of cube-packing

The cube-packing algorithm as described above has an interesting property. We have
shown that for m < 5, it generates an optimum m-feasible tree network for a function consisting
of cubes with disjoint supports.* This is useful since many functions in an optimized multi-level
network satisfy the disjoint support property.

“We proved this result using an explicit ordering of the cubes, not recognizing that we were in fact using the BFD
method for bin-packing. In other words, we came up with an algorithm 1o generate the best feasible tree implementation
for such a function. Later, when chortle-crf [26] was published, we recognized that our algorithm was the same as the
BFD heuristic. [26] also independently proved this result.
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bin 1 bin 2
- X
Ca
Cs3
X=C#+¢C f=C.+C,+ X
—abcd+a’t’ =lglrir’p+x

Figure 3.6: An example of cube-packing

Let the function f = ¢; + ¢z + ...+ cp, Where ¢; and ¢; have mutually disjoint supports
(.., o(c;)No(cj) = ¢)foralll < i,j<mi#j LetC= {e1,¢2,...,¢n}. Let T be any tree
realization of f using look-up tables. It is convenient in what follows to treat the literals in C as
the primary inputs and refer to the support of a cube ¢; in terms of its literals instead of variables
(in other words, we are assuming, without loss of generality, that all variables appear in the positive
phase). This implies that for an internal node t of the tree T, or(t) is a subset of the literals in C.
We assume that

1. there are no constant inputs to any of the LUTs. If there were, we can always propagate them
to the output, and

2. eachimmediate fanin of an LUT sin T belongs to the true support of the functionimplemented
by s (otherwise, it can be deleted).

The proof of optimal tree realization is in two steps.

1. We first determine T"s structure. It is shown in Proposition 3.3.9 that each node of T either
implements a supercube of some cube ¢;, or the complement of a supercube, or a sub-function
of f, or the complement of a sub-function.

2. Using the structure of the tree determined in the first step, we then show in Theorem 3.3.10
that the algorithm generates an optimum tree.

The proof of Proposition 3.3.9 rests on Lemma 3.3.6, Lemma3.3.7, and Proposition 3.3.8.
Lemma 3.3.6 is just a restatement of the fact that if all the children of each LUT are in its true
support, then the primary inputs in the TF! of each LUT are also in its global true support.
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|11

Figure 3.7: | € org(u) & u € or(w) = | € orc(w)

Lemma 3.3.6 Let T have an LUT s with output w (Figure 3.7) such that v € or(w). Then
I € org(u) = 1 € org(w).

Proof Using Shannon expansion of w w.r.t. u,

W = Wt + wyt (3.8)

= zu + yu', where T = wy, y = wy. 3.9)

=> w =z + Yy (3.10)
and wp =zup+ yup (3.11)

Note that (3.10) and (3.11) hold because = and y are independent of ! (x = w,, and therefore depends
on the inputs of s that are to the right of « in Figure 3.7. Since T is a tree, these inputs cannot have /
in their support. Same argument works for y.). For the sake of contradiction, assume that the global
function of w is independent of /, i.e.,

wy = wy (312)
Substituting (3.10) and (3.11) in (3.12), we get,

sy +yy = zup+ yuh (3.13)
(zus + yu)) @ (zup +yup) = O (3.19)
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Multiplying and reorganizing terms,
(uduw)(zdy) = 0 (3.15)

For some point v € Bl(*)~{v}l, 5(v) # y(v) (since u € o7(w)). Then z(v) @ y(v) = 1. Since
T is a tree, w and up do not share supports with either z or y. Hence v is independent of the
assignment of input values to «; and uy. So (3.15) becomes

(wmdur) = 0
=>U = up
This implies u is independent of . A contradiction. [ ]

Next, we state a lemma that is the key to deriving T"s structure. Recall that for a set S of
functions, o(S) denotes the union of supports of the functions in S. Also, n is the number of cubes
in the SOP of f.

Lemma 3.3.7 For a cube c;, 1 < i < n, there exists an LUT block t in T such that it is possible to
partition the inputs of tintotwo sets Iy and I1,, I'I; # ¢ifn > 2, such that or(I1,)N org(c;) = ¢
and org(I;) = org(c:).

Proof If there is only one cube in the SOP of f, the output LUT of T is the desired ¢ (with I], = 1))
and we are done. Now, assume there are at least two cubes, i.e., » > 2. To get the desired ¢, traverse
the tree 7' from its root towards the inputs. Say during the traversal, we are at an LUT s whose
outputis 7. The LUT s satisfies two invariants:
org(r)Norg(c;) # ¢, and
org(r)Norc(f—c) # ¢,
where f —¢c; =¢1+c2+ ...+ ¢io; + €41 + ... + ¢,. Note that the root of T satisfies these
invariants. If s has a child v such that
orc(v) Norg(ci) # ¢, and org(v) Nor(f — &) # ¢, (3.16)
set s to the LUT that generates v (v is not a primary input if it satisfies (3.16)). Clearly, no leaf LUT
of T (aleaf LUT is one that has only primary inputs as its children) has such an input v. So we will
eventually reach an LUT ¢ realizing function w such that all of the following are satisfied:
org(w)Norg(e;) # ¢,
org(w)Norg(f —ci) # ¢,

org(v) Norg(ei) = @, ororg(v)Norg(f —¢i) = ¢, Vv € or(w)
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Figure 3.8: Structure of the tree T: org(L) = a(c¢;) and org(I) No(c;) = ¢

Form the set I, by putting in it all the inputs v of ¢ that satisfy o7g(v) N org(c;) = ¢ (so
orG(v) Norg(f — ¢i) # ¢). The rest of the inputs v of ¢ satisfy o7g(v) N ora(f — ¢;) = ¢ and
constitute I;. II; is non-empty, since org(w) N org(f — ¢;) # ¢. Similarly, I; is non-empty.
Clearly org(I11;) N org(c;) = ¢ and org(ly) C org(c:).

Suppose orc(1:) is a proper subset of org(c;). Make ¢; = 0 by setting some variable
in org(I;) to an appropriate value (i.e., 0 or 1). As a result, some local functions may become
constants (Os or 1s). Propagate these constants as far as possible towards the root of 7. This
propagation stops at or before ¢, i.e., the new local function implemented by ¢, say @, is non-trivial
(i.e., non-0, non-1). This is because of the following reason. Now T implements a new global
function, f = f — ¢;. Therefore f depends on org(I1;). Since II; # ¢, the only way that is
possible is if @ is non-trivial. Let T = T — {t} — TFI(t), and § = or¢(ci) - o7c(l;). The
last observation then implies that the local function at each LUT in 7 remains unchanged. Now,
consider S. By assumption, S # . Also, the inputsin § fan out only to LUTs in T. It then foliows
from Lemma 3.3.6 that S C aTc(f). This leads to a contradiction, since f = f — ¢; does not
depend on ¢;. Hence, org(I;) = org(c;). .
Figure 3.8 shows the resulting structure.

Proposition 3.3.8 If an LUT s of T implements the function v, either



3.3. MAKING AN INFEASIBLE FUNCTION FEASIBLE 69

(1) og(r) C o(c;) for some cube ¢; € C, or

(2) og(r) = U6i€3—a(c;)for5§ C.

Proof There are two possibilities. Either r is a function of variables from just one cube, say c;,
which gives (1), or it is a function of variables from at least two cubes ¢; and c; of C. Then
o(cj) N og(r) # ¢. For contradiction, assume that o(c;) N og(r) = S, where S is a non-empty
proper subset of o(c;). Now consider the LUT ¢ for the cube c;, as given by Lemma 3.3.7. Since
o(ei) € og(w) (w is the function implemented by ?), and T is a tree, ¢ is in the TFO of s. Let
u be the input to ¢ such that s is in the TFI of u. Since og(x) contains variables from ¢; as well
as ¢;, partition (I, 11;) of inputs of ¢ with the property oc(I;) = og(c;) cannot be formed. This
contradicts Lemma 3.3.7. Hence, o(c;) C og(r). Arguing over all the cubes whose supports
intersect og(r), we get (2). [

The next question is regarding the global functions implemented by an LUT s € T. The
following proposition answers it.

Proposition 3.3.9 If an LUT s of T implements the function r, either
1. ris a supercube of some cube c;, or the complement of a supercube, or

2. 7 is a sub-function of f, or the complement of a sub-function of f.

Proof First we note that the tree T" corresponds to a series of simple disjoint decompositions on the
function f. In particular, to determine r, we consider a partition of the form (og(7), o6(f)—0og(r)).
This is shown in Figure 3.9. By Proposition 3.3.8, two possibilities arise:

1. ag(r) C o(c;) for some cube ¢; € C: then we form a decomposition chart for f for the
partition (0G(r),o(f) — og(r)). We illustrate the proof technique with an example; the
general proof is based on exactly the same arguments and is omitted. Let f = abc + de.
Let og(r) = {a,b}. Then the decomposition chart of Figure 3.10 is formed. It is a
superimposition of two charts, as shown in Figures 3.11 and 3.12. The first chart (Figure
3.11) shows the values that f takes on the cube abe. Note that the bound set is a subset of
the support of abc. So the entries are 1 only when f; = abc = 1,ie,a=b=¢c= 1.
This corresponds to 1s appearing in a single column, say v. In the example, v corresponds to
a = 1,b = 1, The second chart shows the rest of the function f, = f — f; = de. It has the
property that 1s occur in it only as complete rows. We superimpose the two charts to obtain
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Figure 3.9: Determining r using the theory of simple disjoint decomposition
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Figure 3.10: Decomposition chart for f = abc + de for the partition (ab, cde)
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Figure 3.11: Decomposition chart for f; = abc for the partition (ab, cde)

200 01 10 1n
00[0 0 0 O
0W1I|0 0 0 O
000 0 0 O
o111 1 1 1
10000 0 0 ©
101/f0 0 0 O
1100 0 0 0
mi1tr 1t 1 1

Figure 3.12: Decomposition chart for f, = de for the partition (ab, cde)

the chart for f (shown in Figure 3.10), i.e., if for an entry, one chart has a 1, and the other has
a0, the chart for f has a 1 for that entry. This is because f = f; + f,. There are exactly two
distinct columns in the chart for f. This can be seen if the rows of Figure 3.10 are rearranged
such that the rows of 1s corresponding to f,’s chart appear at the top. The reason is as follows.
There is at least one entry thathas a 1 in f;’s chart and a 0 in f>’s (since f; — f» # 0). One
of the two distinct columns corresponds to v and the other, to any other column of the chart.
To determine r, we use Ashenhurst’s technique described in Section 3.3.1. We put v in the
on-set of r and get 7 = ab. Had we put v in the off-set of r, » = (ab). So r is either a
supercube or the complement of a supercube. Note that if f had only one cube, f = f; and
f2 = 0. Itis easy to see that f has exactly two distinct column patterns here too.

2. og(r) = U, eC~r7(c,-) for C C C. This case is similar to the previous one, except that here
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Figure 3.13: Determining w(r, ¢) using the theory of simple disjoint decomposition

the chart for f; corresponds to the subcover C, and has 1s occurring as complete columns.
If these columns are put in the on-set of r, 7 = Zq ccCina sub-function of f. On the other
hand, if these columns are put in the off-set of 7, 7 = (Ec‘, €5'c.-)' , which is the complement
of a sub-function.

[ ]

Having determined the possibilities for the global functions implemented by each LUT, the

next step is to determine the corresponding local functions. This will complete our understanding of

" T’s structure. The local function implemented by an LUT sin T is in terms of its immediate fanins
" {u;}. Given {u;} along with their global functions and the global function r, the local function r is
unique. This follows from Corollary 5.3.5, since neither u; nor u;’ is 0 for all . We illustrate this

- using the previous example. Figure 3.13 shows a tree implementation T for f = abc + de. We are
interested in the local function implemented by the LUT ¢. The immediate fanins of ¢ are {r,c}.

- Let 7 = (ab)'. First, determine the global function w(e, b, ¢) implemented by ¢. From Proposition
3.3.9, either w = abc or w = (abc)’. Let w = abec. Since r = (ab)’, from Ashenhurst’s theory,
we get w(r, ¢) = r'c. Moreover, since neither  nor 7’ is 0, from Corollary 5.3.5, w(r, ¢)is unique.
Similarly, if w(a, b, ¢) = (abc)’, w(r,c) = v + ¢’. In general, a series of decomposition steps are
needed to determine the local function. For instance, to determine the local function f(w,z) in
Figure 3.13, first f(w,d, €) is determined (since the global functions f(a, b, ¢, d, e) and w(a, b, c)
are known). Then z(d, €) is determined using Proposition 3.3.9, and finally f(w, z) is determined.
This completes the discussion on determining the structure of T'. This result is an extension

of the AND-OR boundary lemma proved by Wang [85]. The AND-OR boundary lemma is about the
structure of a tree decomposition of f using 2-input NAND gates and inverters, where f consists of
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cubes with disjoint supports. It says that for each cube ¢;, there is some NAND gate in the tree that
realizes the complement of ¢;. However, derivation of the lemma is simpler than that of Proposition
3.3.9, because

o the relationship between inputs and the output of the gate is known - it is a NAND function,
and

¢ cach gate has only 2 inputs.

When we first proved Proposition 3.3.9, we used arguments similar to, but more complicated than,
the ones used in the proof of AND-OR boundary lemma. The proof based on Ashenhurst’t theory
presented here is much simpler.

This result is in conformity with the natural way of generating a tree realization for f -
building it cube by cube. We will use the structure of T in proving that the BFD algorithm generates
an optimum feasible tree structure for f. We restrict ourselves to the case m = 5. The proofs for
the cases when m < 5 can be similarly derived. First we make a few remarks.

L. If T is an optimum tree implementation of f, then we can get an alternate optimum tree
implementation T of f such that all the logic blocks in T realize either a supercube of some
cube ¢; or a sub-function of f. This is done by pushing inverters and appropriately changing
thelocal functions. From now on, we restrict ourselves to such optimum tree implementations
only. Note that for such a tree T', the local and the global functions at each LUT are unique.
The only significant thing is the structure of T, i.e., which inputs go to an LUT.

2. Without loss of generality, we assume that no cube of f has more than 4 literals. If it had, we
can repeatedly extract 5 literals until this condition is satisfied. It follows from Proposition
3.3.9 that any feasible tree implementation of f must have such a structure. Moreover, since
all the inputs of a cube are similar (i.e., have same phase), we do not lose any optimality this

way.’

We can now show that an LUT cannot be saved by splitting a 5-feasible cube, i.e., partitioning
its inputs into two or more sets, each set fanning out to a separate LUT. An example suffices.
If there is an optimum implementation T’ with a split-cube, say ¢; = abed, then an altemate
optimum implementation T can be obtained with ¢; not split - just move all the inputs to fan
out to the first LUT encountered in a depth-first search (DFS) of T'. This is shown in Figure

5No optimality is lost even when some inputs are in negative phase, since inverters are essentially free in LUT
realizations.
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abc abcd
Figure 3.14: Splitting a 4-feasible cube does not help for a 5-feasible implementation

3.14. The movement of inputs can be performed without changing the global function. In
Figure 3.14 the LUT ¢ realizes a sub-function of f, and after the input movement, the local
functions of s and ¢ change to ensure that ¢ realizes the same global function as before. It
follows that there exists an optimum implementation T of f such that all the logic blocks in T
realize a sub-function of f. We can get rid of those LUTs of T that realized proper supercube
functions.

Let f be a function whose cubes have mutually disjoint supports and none of them has
" more than 4 literals. It is convenient to use the terms items, weights, and bins, instead of cubes,
.. number of literals, and LUTs respectively. First we classify all the items (cubes) by weight (number
~ of literals). We explicitly list first few steps of the cube-packing algorithm for m = 5.

1. Pair items of weight 3 with items of weight 2, until one of them runs out. Each such pair is
put into a bin (LUT), whose output is treated as an item of weight 1.

2. Pair items of weight 4 with items of weight 1. Each such pair is put into a bin, whose output
is treated as an item of weight 1. This, in tumn, can be used in a pair involving an item of
weight 4. Repeat the mergings until one of them runs out.

3. We are now left with one of the following weight combinations: 1s, or 2s, or 3s, or 4s, or
1s and 2s, or 1s and 3s, or 2s and 4s, or 3s and 4s. We apply the BFD algorithm on each of
these combinations. For instance, for the first combination, repeatedly place five 1s in each
bin until no unplaced items remain. For the case when the only items are of weight 2, place
two items in one bin, close it, and then place two items of weight 2 and the item of weight 1
generated when last bin was closed. Repeat this process.
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Theorem 3.3.10 The above algorithm generates an optimum feasible tree implementation for a

Junction f whose cubes have mutually disjoint supports.

Sketch of Proof Let the tree generated by the algorithm be S. Let T be an optimum tree imple-
mentation whose each LUT realizes a sub-function of f. We will transform T' by changing its edge
connections such that finally we obtain S, without increasing the number of LUTs. We do so by
simulating the steps of the above algorithm on T'. Consider step 1. If it merged cubes ¢; = 112
and ¢; = l3l4ls, we locate these cubes on T Let {l1,} and {l3,14,1s} be inputs to LUTs s and ¢
respectively. If s = ¢, nothing needs to be done. Otherwise, three cases arise:

1. LUTs s and ¢ do not occur in the same path to the root (Figure 3.15): swap cube c; with
other inputs of s, such that ¢; is now with ¢;. This swap is always possible, since there were
at most 3 other inputs to s, namely o, p and ¢. They can be moved to the three vacant input
spots created by I3, [4 and !5 at t. Note that this can always be done as each LUT of T realizes
a sub-function of f (Remarks 1 and 2).

2. tis on the path from s to the root (Figure 3.16): swap c; with the other inputs (o, p and q) of

s.
3. sison the path from ¢ to the root: swap c; with the other inputs of .

We repeat this process for all the cubes merged in step 1 of the algorithm. In the end, we have
generated 7}, which has as many blocks as T' and matches with S on inputs to LUTs that involve
cubes of step 1. It is important to note that the matched LUTs (i.e., to which swaps were made in
the simulation, e.g., s in the cases 1 and 2, and £ in 3) correspond to the bins closed in this step of
the simulation, and their inputs correspond to items that have been placed in the bins. These LUTs
will not be involved in any swapping in the simulation process to follow.

We now simulate step 2 on T and generate T5. Carrying on the simulation, we finally
generate T, that matches S on all the LUTs of S. So S is a sub-tree of T,. Since we never added
LUTs in the entire process, the number of LUTs in T, is no more than that in T". Since T is optimum,
T, is optimum. This implies that S is optimum as well. Thatis, T, = S. ]

We have been somewhat sketchy in the last proof. For instance, consider a case that can
arise during simulation, but is not mentioned in the proof. Assume that we are about to simulate
the step 3 on a tree, say T}, and that we only have items of weight 1 and 2. Also assume that there
are two items ¢; and c; of weight 2. The BFD algorithm will place ¢; and ¢, along with an item,
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Figure 3.15: Tree before and after the swap - case 1
f f
x’3l415 Dl xopq
c.
J
Illzopq 1112131415
c. c.
% i

Figure 3.16: Tree before and after the swap - case 2
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Figure 3.17: ¢; and ¢4 cannot be inputs to the same LUT

say c3, of weight 1. Let ¢; and ¢, be inputs to LUTs s and ¢ respectively in Ty, s # t (Figure 3.17).
Simulating the step 3, ¢;, ¢z and ¢3 will be made inputs of the same LUT, say s. Then ¢ will need
to be moved to s. But what if s has as input another cube ¢4 with 3 literals o, p and q? Cube c4
needs to be moved to t. However, £ may not be able to accommodate cg4; it may have the other three
input spots occupied (Figure 3.17). Fortunately, this situation cannot happen. The LUT s cannot
have ¢4, a 3-literal cube, as its input. By now, all 3-literal cubes have been taken care of in step 1
- they are secure in bins that have been closed. In fact, in this case step 1 terminated exactly when
we ran out of 3-literal cubes. So the order in which the items are placed in the bins is important.

The same arguments can be applied for m < S.

A similar result holds if f has a POS representation consisting of sum-terms with disjoint
supports. We now pack sum-terms in the bins.

Theorem 3.3.11 For m < S, the BFD algorithm operating on sum-terms generates an optimum
m-feasible tree implementation for a function with a POS consisting of sum-terms with disjoint
supports.

Proof Follows from Theorem 3.3.10 using duality, i.e., replace AND with OR and OR with AND
everywhere. u



78 CHAPTER 3. MAPPING COMBINATIONAL LOGIC

Complexity of cube-packing

We have seen that for m < 5, the BFD algorithm generates an optimum m-feasible
tree implementation for a function consisting of cubes with disjoint supports. Note that BFD is a
polynomial time algorithm. It is natural to ask the following questions.

1. Is the BFD algorithm optimum for a function f consisting of cubes with disjoint supports for
arbitrary m? If not, what is the complexity of the cube-packing problem, i.e., of minimizing
the LUT count for f using the cubes as items?

2. What can we say about an arbitrary function?

We may assume that all the cubes have at most m literals.? Let CUBE-PACKING be the decision
version of the corresponding cube-packing problem for a general function. As mentioned earlier,
it is similar to the bin-packing problem. Since bin-packing is NP-complete [30], we are inclined
- 1o believe that CUBE-PACKING is also ‘NP-complete. That is indeed the case. To see this, we
restrict the function in the CUBE-PACKING problem to one consisting of cubes with mutually
disjoint supports. Let us call this problem DISJOINT SUPPORT CUBE-PACKING. Also note
that DISJOINT SUPPORT CUBE-PACKING is the same as obtaining a feasible tree realization of
such a function with a minimum number of LUTs. Stated as a decision problem, it becomes:

INSTANCE: Finite set U of items, #éight w(u) € 2, the set of positive integers, for each u € U,
~ bin capacitym € Z*,and a posiﬁye integer K. Also, each bin (except the “last” one) generates
an additional item of weight d . ‘

QUESTION: Can all the items be “packed” in at most K bins, where the sum of the weights of
items in each bin is m or less?

We were not precise in defining the problem; the phrase each bin (except the “last” one)
generates an additional item of weight 1 was loosely used. A precise way would be to annotate the
final packing with a directed graph G. The vertices of G are the bins used in the packing, and there
is an edge from a vertex u to vertex v if the single-literal item generated from the bin w is placed in
v. A packing is valid only if G is acyclic with single root. In fact, for a minimal packing (i.e., each
new item is placed in exactly one bin), G is a rooted tree. We have preferred to sacrifice preciseness

for simplicity.

SIf we show a restricted version of some problem to be NP-complete, the general problem is also NP-complete.
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We show that DISJOINT SUPPORT CUBE-PACKING is NP-complete using a transfor-
mation from PARTITION-1, which is:

INSTANCE: Finite set A and a weight w(a) € Z for each a € A.
QUESTION: Is there a subset A C A such that

Ywe)=( ¥ w@)+1 (.17

acA acA-A

First we show that PARTITION-1 is NP-complete.
Lemma 3.3.12 PARTITION-1 is NP-complete.

Proof Given a solution, i.e., subset 4, it is easy to check that (3.17) is satisfied in polynomial
time. This shows that the problem is in NP. We transform PARTITION, which is known to be
NP-complete [30], into PARTITION-1. The PARTITION problem is:

INSTANCE: Finite set B and a weight s(b) € 2% for each b € B.
QUESTION: Is there a subset B C B such that

2s(b) = 3 ~.s(b) (3.18)

beB beB-B
From B, we construct the set A as A = B U {@}, where @ is a new item with w(@) = 1. For each
b € B, let w(b) = 33s(b). Suppose there exists B C B that satisfies (3.18). Fom A = Bu {@}. It
is easy to see that A satisfies (3.17). Conversely, assume that an A exists satisfying (3.17). Then
@ € A. Thisisbecause if @ € A — A4, then the weight of the set A (which is the sum of the weights
of the items in A) is two more than the weight of the set A — A — {@}. This is not possible, since
all the items in these two sets have weights that are multiples of 3. Then it is easy to see that
B = A — {@). B satisfies (3.18). .

Theorem 3.3.13 DISJOINT SUPPORT CUBE-PACKING is NP-complete.

Proof That it is in NP is easy to see. We transform PARTITION-1 to DISJOINT SUPPORT
CUBE-PACKING. The set U is the same as set A, and the items have the same weight in set U as
inset A. Set m = [—M and K = 2. If there exists a subset A of A that satisfies (3.17),
then put the items of A in the first bin. This generates an item a of weight 1. Put the elements of
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(A — A) U {@} in the second bin. Note that the total weight of items in each of the two bins is m
(unless there is just one item, with weight 1, in which case m = 1, and one bin suffices). Conversely,
given that the items can be packed in two bins, there is a bin B) that generates an additional item of
weight 1. All the items in B, form set A. It is easy to check that A satisfies (3.17). Note that the
items can be packed in one bin if and only if U has only one item, and that has a weight of 1. A
then has just that item, and (3.17) is still satisfied. [ ]

Corollary 3.3.14 CUBE-PACKING is NP-complete.

Proof That CUBB-PACKING is in NP is easy to see. NP-completeness follows by noting that each
instance of DISJOINT SUPPORT CUBE-PACKING is also an instance of CUBE-PACKING. Thus
DISJOINT SUPPORT CUBE-PACKING is just a restricted version of CUBE-PACKING. [ |

From the above discussion, we may suspect that the BFD algorithm presented earlier,
which takes polynomial time, is not optimum for some m for a function consisting of cubes with
mutually disjoint supports. This is indeed the case. For simplicity, consider m = 4000. Let there be
6 cubes each with 2002, 1004, and 1002 literals and let there be 12 cubes with 995 literals. The BFD
algorithm will pair cubes of sizes 2002 and 1004, using six bins to pack these. Then, it will pack 3
1002-literal cubes in a bin, using two more bins. Finally, it will pack 4 995-literal cubes in a bin,
needing three bins for the 12 items. Note that enough space is left over in the bins to take care of the
single-literal cubes generated on closing the bins. The total number of bins used is 11. The optimal
decomposition (packing) is as follows. Place one 2002, one 1002, and one 995-literal cube in a
bin. Six bins are needed for all such items. Then pack two 1004 and two 995-literal cubes in a bin,
using three more bins. Again, each bin has enough leftover capacity to accommodate the additional
single-literal cubes. The number of bins needed is 9. This counterexample is a slight modification
of an example presented in [30] to show that BFD is not always optimum for bin-packing.

3.3.3 Cofactoring

Although cube-packing works reasonably well for functions with cubes having disjoint
supports, it may perform poorly if cubes share many variables.

Example 3.3.10 Consider the function f(a,b,c,d) = abc' + ab'd + a’cd + bed'. Let m be 3. The
BFD procedure would pack one cube in each LUT and that gives an LUT count of 6. However, a

- cofactoring procedure gives an LUT count of 3. Performing Shannon cofactoring of f with respect
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(A) m>2 B) m=2

Figure 3.18: Using cofactoring for decomposition

10 a, we get

fo = b +b'd+bed,
foo = cd+bed,
[ = aefa+ a'f al

All the three sub-functions shown above are 3-feasible, and hence generate a realization of f using
three 3-LUTs.

We construct a cofactor-tree for f(z,22,...,2%,) by decomposing it as follows:
f=a1fa, + 21 far (3.19)

Both f, and f;,s are functions of at most n — 1 variables. If f,(f;,s) is m-feasible, we
stop, otherwise we recursively decompose it. For m > 2, we need one LUT to realize f asin (3.19)
(Figure 3.18 (A)), whereas for m = 2, we need 3 LUTs (Figure 3.18 (B)).

Cofactoring is a special case of disjoint decomposition, which was described in Section
3.3.1. Cofactoring a function f(z1, z2, ..., %) with respect to ; can also be done using a disjoint
decomposition on f with the input partition (o(f) — {z1}, {1}) = ({z2,%3,...,2x}, {z1}). The
column multiplicity of the corresponding decomposition chart is at most 4, since the chart has just
two rows, in which case, the only column patterns possible are 00, 01, 10, and 11. This is shown in
Figure 3.19, where C; (0 < ¢ < 3) denotes the equivalence class of those columns whose patternis a
two-bit binary representation of . These four classes can be encoded using two encoding variables:
@) and a3. Assigning the codes to the classes by the scheme of Figure 3.20, we see that f;, = a
and fz, = o3.
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T2T3...Tn CO Cl CZ 03
0 0 0 1 1
1 0O 1 0 1

Figure 3.19: Cofactoring as a special case of disjoint decomposition: possible equivalence classes

equivalence class | o ap
Co 0 o
Cy 0 1
Cy 1 0
C3 1 1

Figure 3.20: Cofactoring as a special case of disjoint decomposition: assigning codes

Since each cofactoring step generates functions with supports strictly smaller than the
original function, cofactoring is used to derive upper bounds on the number of LUTs needed to
implement a function. The complete details are in Chapter 5.

3.3.4 Kemel Extraction

Kemels of an infeasible node function f are enumerated, and the best kernel £ is extracted.
A new node corresponding to k is created and substituted into f. The process is repeated on the
new f and k recursively. It may happen that f is infeasible and has no non-trivial kemels. For
example, let m be 5. Then f = abc + deg cannot be made 5-feasible by kemel extraction. In this
case, we resort to either cube-packing or technology decomposition (to be described next). Both
these techniques are guaranteed to return a feasible representation.

3.3.5 Technology Decompaosition

Technology decomposition breaks each node function into two-input AND and OR gates,
thereby generating an m-feasible network for any m > 2.

Example 3.3.11 Consider f = abc + deg. After applying technology decomposition into two-input
AND and OR gates, we obtain

z; = ab
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&) (B)

Figure 3.21: Using support reduction to obtain feasibility

T3 = z|C

n = de

2 = g

f = zm+unp.

To generate a good implementation for m-LUTs, m > 2, one has to rely on BCM, which follows
decomposition. One disadvantage of this technique is that the resulting network can have too many
nodes, and running BCM in exact mode may not be possible. Even the BCM heuristics may not
produce good quality solutions.

3.3.6 Using Support Reduction to Achieve Feasibility

The techniques described in Sections 3.3.1 through 3.3.5 lie in the realm of decomposition,
in that they break an infeasible function into a set of feasible functions. We now describe a
technique that tries to achieve feasibility by reducing support of the function using the structure and
functionality of the network. The following example explains the idea.

Example 3.3.12 Consider the network 1 shown in Figure 3.21 (A). Let m be 3. Since w and y

are 3-feasible and n is not, the decomposition step only breaks n. The local function at n needs
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two 3-LUTs (one way is to first realize * = cw and then n = z + dy). So, the total number of
LUTs needed for n is four. However, if we move the input d of n over to y, n becomes 3-feasible,
without destroying 3-feasibility of y. The resulting network, shown in Figure 3.21 (B), is functionally
equivalent to 1, and uses three LUTs.

The ideais to try to reduce the support of an infeasible function repeatedly until it becomes feasible.
During the process, no feasible function of the network is made infeasible. To see if the support of
an infeasible node n can be reduced, the following algorithm is used:

1. If » has a fanin G that is not a primary input and fans out only to =, collapse G into = to get

~

n.

2. Redecompose 7 using one of the decomposition techniques described earlier. If redecom-
position results in two m-feasible functions, report success. Otherwise, find another G that
satisfies the above properties.

This procedure is shown in action for the network of Example 3.3.12 in Figure 3.22. Note that
G=y.

An approximation of the above idea is to move the fanins. Here we explore the possibility
of moving a fanin F’ of function n over to the fanin G of n, without changing the functionality of
the network. This is illustrated in Figure 3.23. Further, after F' moves over to G, G should remain
feasible. The same procedure as described above may be used with an additional constraint that F
is finally moved over to G. This is ensured by using functional decomposition, with F in the bound
set. If there are at most two equivalence classes, 7 can be redecomposed into G and 7.

In literature, some support reduction methods have been proposed. Two such are by
Halatsis and Gaitanis [34], and Savoj et al. [71). These methods use the don’t care information to
express the node function at » on a minimum support; functions at other nodes of the network are
not changed. However, in our method, besides n, functions at other nodes change as well.

If a function is infeasible but can be made feasible by repeated applications of the above
technique, it is better than decomposing the function. This is because the number of functions in the
network does not increase using support reduction, whereas decomposition introduces new nodes
in the network. However, it may not always be possible to make a function feasible using support
reduction techniques.
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Figure 3.22: Collapse y into » and redecompose n

85
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() —_’ ()
=] [®] [] [4] EB‘E’G

Figure 3.23: Collapse G into » and redecompose n with F in the bound set
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3.3.7 Summary

We studied various decomposition techniques - functional, cube-packing, cofactoring,
kemnel extraction, and simple AND-OR decomposition. A questionto askis: “When shouldwe apply
a particular technique?” Unfortunately, we do not have a complete understanding of the general
case yet. However, for some special classes of functions, it is possible to predict the technique that
gives best results. For instance, cube-packing generates optimum tree implementations for functions
having cubes with disjoint supports for m < 5. Similarly, functional decomposition works well
for symmetric functions, since finding a good input partition is easy for such functions. However,
for an arbitrary function, it is not known a priori which method would work well. By choosing
functions appropriately, we have shown that no single method works in all cases. In Section 3.6,
we will see that applying cube-packing on both SOP and factored form, and picking the better of
the two gives reasonably good results.

3.4 Block Count Minimization

After decomposition/support reduction, an m-feasible network is obtained, which can be
implemented straightaway on the LUTs by mapping each node to an LUT. This strategy, however,
yields sub-optimal results.

Example 3.4.1 Consider thefollowing optimized network 1, with one primary output f, five primary
inputs a,b, c,d,and e, and three internal nodes =,y and f:

f = abz' +d't'z;

z = cy+cy';
d +¢€;

Y

Let m be 5. Now map 1 onto the target LUT architecture. Since each function in 7 is 5-feasible,
decomposition and support reduction have no effect on 1. So we need 3 LUTs. However, if y is

collapsed into x, and then z is collapsed into f, we get
f = abcde+ abc'd + abc'e’ + a'b'cd' + a'blce’ + a'b'cde,
which is 5-feasible. So, one LUT is required.

We study two transformations that reduce the number of feasible nodes.
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1. Collapse nodes into their fanouts while maintaining feasibility. This is called covering.’

2. Move the fanins of the nodes to create opportunities for collapsing. This is called support
reduction.

34.1 Covering
The covering problem can be stated as:

Problem 3.4.1 Given an m-feasible Boolean network 1, iteratively collapse nodes into their fanouts
such that the resulting network 1} is m-feasible and the number of nodes in 7j is minimum.

By iteratively, we mean that a node can be collapsed into its fanouts, which, in turn, can be collapsed
. into their fanouts, and so on. Also, a node may be collapsed into some or all of its fanouts. We first
present an exact method and then some heuristics.

Exact formulation of the covering problem
We first introduce the notion of a supemode.

Definition 3.4.1 Given a graph G = (V,E)and U C V, the induced subgraph of G on U is
(U, Ey), where Ey = {(u1,u2)|u1,uz € U and (u1,u3) € E}. In other words, (U, E,) is G
restrictedto U.

Definition 3.4.2 A supernode corresponding to a node n of the network 1 is an induced directed
subgraph S of 1, with a single root n such that S does not contain any primary input node of 1.

Let us now define the support of a supemnode by considering its inputs. Recall that a node
visaninputtoa DAG G = (V, E)if v ¢ V and there existsa u € V such that (v, u) € E. In other
words, v is an input to G if it is outside G' and has an edge incident on G. The set of all inputsto G
forms the support o of G. This also defines the support of a supernode, since a supemnode is also a
graph.

One interpretation of the support of a supemnode corresponding to a node = in the context
of a network 7 can be stated as follows. Add a dummy node s to 7. Add edges from s to all the
primary inputs. Then the nodes in o form an (s, ») node cut-set, i.e., any path from s to n goes
through some node in o.

"This usage does not further overload cover. As shown in Section 3.4.1, the collapsing problem is the same as that of
deriving a minimum cost cover of the subject graph in the standard technology mapping.
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Figure 3.24: A node (e.g., ) can have more than one supemode

Definition 3.4.3 A supernode S is m-feasible if its support cardinality is at most m, i.e., |o0(S)| <
m.

A node may have more than one m-feasible supemode. For example, the node = of Figure
3.24 has the following 5-feasible supemnodes:

supemode support

{n} {7, k}

{n,7} {i,d,k}
{n,k} {d,e,9,5}
{n,5,k} {i,d,e,g}
{n)j’ i} {a’ b’ c,d7 k}

Note that {n, j, k, ¢} is not a 5-feasible supernode, since its support has 6 members: a, b, ¢, d, e, and
g. Also, {n,1, k} is not a supernode, since it has two roots - » and i.

Being an induced subgraph of 7, S is completely determined by its set of nodes, and we
will use these two terms interchangeably. Also, given S, its support is uniquely determined - it is
simply the set of inputs to S. As the following proposition shows, the converse is also true, i.e., a
supemode is completely determined by its root and its support.

Proposition 3.4.1 Given two supernodes Sy and S,, both rooted at n and having support sets o,
and o; respectively, 6y = 0 = 51 = Sz,

Proof Suppose S; # S;. Without loss of generality, there is a node p € S; — S;. Consider a
directed path P from p to = that lies within S; (such a path exists since = is the only root of S). Let
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Figure 3.25: Given the root » and support of the supernode S, S is unique

¢ be the node on P that is closest to » and is in ) but not in S>. Since ¢ # =, let r be the fanout of
¢ on this path (Figure 3.25). r is in both §) and S;. Then g € o3 — 03, resulting in a contradiction.
[ ]

Given the root n and the support o of a supemode S, the procedure of Figure 3.26
determines the set of nodes in S. It traverses the transitive fanin of » until it hits a support node, or
a primary input not in the support, in which case no supemnode is possible. From Proposition 3.4.1,
this set of nodes is unique.

One way of solving Problem 3.4.1 is the following.

1. Enumerate all possible m-feasible supernodes.

2. Select a minimum subset of these supemodes that covers the network.

Enumerating m-feasible supernodes One way is to first generate, for each node n, all sets o
having at most m nodes, all from the TFI of n. Then, using the algorithm of Figure 3.26, check for
each set o whether it corresponds to some supemode rooted at n. If so, the algorithm retumns the
supemnode S. Note that even if the algorithm of Figure 3.26 returns a supernode S, o may not be
a supemnode support. o may have a node ¢ that is not needed for S, i.e., ¢ does not have a path to
n. The correct subset of o can be found by first determining S and then finding the support of S.
This formulation requires generating all possible sets with at most m nodes and then checking their
validity for supemode support.



3.4. BLOCK COUNT MINIMIZATION

/* Given the root n €7 and the support o of 8, determine S */
/* initialize S = {n} */
/* assume all the nodes are unmarked in the beginning */

determine.supernode_from support (n, o)

{
FI(n) = set of fanins(n);
for each F € FI(n)
{
if (F €o0) continue;
if (F € PI(n)) return ‘‘no supernode possible’’;
if F is marked continue;
S=8SU{F};
mark F;
determine_supernode_from support (F, o);
}
}

Figure 3.26: Determining a supernode from its root and support

91
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()
(1D (8

(A) (B)

Figure 3.27: Constructing the flow network (B) for a Boolean network (A)

An alternate solution is based on network flows and generates only the valid supemode
supports. Let 7(n) represent 7 restricted to the transitive fanin of n. We obtain a flow network F(n)
by modifying n(n) as follows. Let n = n; = ny. We add a new node s, called the source. Each
node j (j # s,j # n) is split into nodes j; and j>. Anedge (k, j)in n(n) is replaced by (k2, /1)
and is assigned a capacity of co. An edge (Ji, j2) is added with a capacity of 1. For each primary
. input ¢, an edge (s, ¢;) is added with a capacity of co. The node =, also called ¢, is designated as the
sink in the flow network. Let the capacity of any edge e = (u, v) be denoted as ¢(e) = ¢(u, v). For
the network of Figure 3.24, which is reproduced in Figure 3.27 (A), the flow network F is shown
in Figure 3.27 (B).
A cut in a flow network is a partition of the nodes (X, X) such that s € X,t € X. The
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capacity of a cut (X, X) is defined as )

cx,X)= > _c(u, v)
uwEX,veX
Define the support set o of a node = to be a set of nodes in the transitive fanin of n such
that » can be expressed in terms of the nodes in . A support set o need not be minimal, i.e., it
may have a proper subset & that is also a support set of . We now show that there is a one-to-one
correspondence between the support sets of a node = of a network 7 and the finite-capacity cuts in
the corresponding flow network F(n).

Proposition 3.4.2 There is a one-to-one correspondence between the support sets of a node n of a
network 1 and the finite-capacity cuts in the corresponding flow network F(n).

Proof Given a support set o for =, it is straightforward to construct a finite-capacity cut. First we
construct the supernode S in 7 using the procedure of Figure 3.26. Let & be the support of S (note
that & C o, where the equality holds if and only if o is minimal). Then let

>
I

{n}u{ili # n,i € S}U{5]i # n,i € S} U {52lj € 7}
F(n)-X

This is a finite-capacity cut, since the only edges going from X to X are of the form (ji, j2), 7 € &,
and are of a capacity 1. In fact, C(X, X) = |7|.
Conversely, given a finite-capacity cut (X, X ), we can generate a

o={jlh € X,j2€ X}

First note that since (X, X) has finite capacity, and the only edges with finite capacity in F(n) are
of the form (4, ¢2), it makes sense to define o. The function at » can be represented using just the
variables in o, since any path from s to n passes through some j in o (if there were a path P from s
to n that did not pass through any j in o, it can be shown using finiteness of the capacity of the cut
that either s € X or n € X). n
In fact, there is a one-to-one comespondence between the minimal support sets of n
and the minimal finite-capacity cuts in the flow network (a finite-capacity cut is minimal if the
corresponding ¢ is minimal). The minimal support sets of n of the Boolean network 7 of Figure
3.27 (A) and the corresponding finite-capacity cuts of F(n) of Figure 3.27 (B) are as follows:
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Figure 3.28: Minimal support sets of » do not generate all supernodes

minimal support set X of the corresponding minimal finite-capacity cut (X, X)

{j1 k} {na j2’ k2}

{ja d’ E,g} {naj27 khk2a d2a €2, 92}

{ia d’ k} {n3jl’j2, i2’d2, k2}

{is da €, g} {najl7j2, kl)kZ, iZa d27 32’92}

{a', b’ c d, €, g} {n$ jl’jZ’ kla k2, i1, 13, az, b2’ €2, d2’ €2, gZ}

We will use an algorithm to generate finite-capacity cuts that are minimal. This means that only
minimal support sets are considered. Since our goal is to generate all feasible supernodes, we can
ask if all minimal support sets of » generate all supernodes rooted at n. The answer is no. For
example, consider the network of Figure 3.28. The only minimal support set of n is {a, b}, and
it corresponds to the supemnode {n,c}. The supemode {n} is not generated, since its support is
{a, b, c}, which is not minimal. It turns out that the optimality of the solution is unaffected if only
the minimal support sets of n are considered. The reason is explained shortly.

We repeatedly invoke a maxflow-mincut algorithm [47] to generate different minimal cuts
and minimal support sets therefrom. This is done by the algorithm of Figure 3.29. First, a flow
network F is generated for the entire network. For each node n, the flow network F(n) is obtained
by designating n as the sink node in F and therefore only considering the TFI of n; in . The
maxflow-mincut algorithm is invoked on F(=n). If the value of the maximum flow f is at most m,
the corresponding support set o is derived from the minimum cut using the method in the proof
of Proposition 3.4.2 and added to T’, the set of support sets. Note that ¢ is a minimal support set,
since the cut generated by the flow algorithm is a minimum cut. To generate other support sets, a
forward edge (going from X to X) is suppressed, i.e., its capacity is set to co. This makes sure
. that the edge is not included in the cut generated in the next invocation of the maxflow-mincut
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procedure, and so the new cut is different. If the value of the maximum flow is higher than m,
all the edge capacities in F(n) are re-initialized to the values they had when F(n) was formed.
A suppress-matrix SM = (s;;) is formed. It represents the relationship between the support sets
(generated so far) and the nodes of the Boolean network. Each row corresponds to a support set and
each column to a node of the Boolean network. Each entry is defined as follows:

1 if 1t set ¢ includ de j
5 = { if support set 7 includes node j (3.20)

0 otherwise

At any point in the algorithm, we do not want to generate a support set that has already been
generated. To this end, a column cover C of S M is derived. It represents a set of nodes j such that
suppressing the edges (J1, j2) ensures that each support set in T" is suppressed, i.e., no support set in
I is generated in the next invocation of the maxflow-mincut procedure.
The complexity of the maxflow algorithmis O(|V|| E| log IIYEIF ) using Goldberg and Tarjan
method [32], where |V| and | E| are the numbers of nodes and edges in the flow network respectively.
The next proposition ensures that all m-feasible, minimal support sets are generated.

Proposition 3.4.3 The procedure generate_all_feasible_minimal_-support-sets (7,
n, m) returns in I all the m-feasible, minimal support sets for the node n.

Proof We observe the following.

1. Each invocation of the maxflow-mincut procedure generates a minimum cut in F(n), with
some edges possibly suppressed, i.e., it generates the minimum number of forward edges
from X to X given the suppressed edges. This implies that the corresponding support set is
minimal.

2. Just before generate_all_feasible.minimal_support-sets retums I, it goes
through all the column covers of SM, each generating a cut of capacity greater than m.

Assume, for the sake of contradiction, that at the end of the procedure, some m-feasible,
minimal support set & is not generated. A support set o € T can be suppressed without including
any node of &, because otherwise, o does not have any nodes different from &, which implies that &
is not minimal, contradicting the first observation. Repeating this for all support sets in I', we get a
column cover C of S M that does not include any node of . The invocation of maxflow-mincut on
F (with edges corresponding to C suppressed) cannot return a minimum cut with capacity greater
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generate._all_.feasible.minimal_support-sets(n, n, m)

o

/* T is the set of feasible support sets */
r=¢
F = derive_flow.network(n, n)
while (TRUE) {
(f,cut) = maxflow-mincut (F)
if (|fl>m) {
reinitialize_edge_capacities (F)
SM = form suppress-matrix(T)
flag=0
foreach_column-cover-C of.SM {
suppress_edges (C, F)
(f,cut) = maxflow-mincut (F)
if (fl<m) {
flag=1
break
}
unsuppress-edges (C, F)
}
if (flag==0) {
/* no more feasible support sets */
return I
}
}
0 = generate.support.-set (cut)
r=ru{s}
suppress.a-.forward-edge.in.cut (cut)
}
/* notreached */
}

Figure 3.29: Generating all m-feasible support sets for »
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than m, since at least one cut with capacity at most m exists in F. This contradicts the second
observation. [ ]
From I, we generate m-feasible supemnodes. Given that there are pnodes in the network
(including primary inputs and primary outputs), the maximum number of m-feasible supermodes
for one node is C(p, m) (which is the notation for the number of all possible ways of choosing m
objects out of p). The total number of m-feasible supemodes is bounded by pC (p,m). Since misa
constant, this number is a polynomial in the size of the network. Although our supemode generation
algorithm is not one of the most efficient, we found it to be quite fast even on large networks.

Selecting a minimum subset Having generated the set of all feasible supemnodes (more precisely,
the subset corresponding to the minimal support sets), our task is to select a minimum subset M of
supernodes that satisfies the following constraints:

1. output constraints: for each primary output p°, at least one supemnode with p° as the root
must be chosen.

2. implication constraints: if a supemode S is in M, each input of S should be either a primary
input or an output of some supemnode in M.

Note that the cost of each supemode is one, since it can be implemented by one LUT. That is why
we are interested in selecting a minimum subset of the supemnodes. This problem is known as the
binate covering problem. This formulation is similar to the one used by Rudell for technology
mapping in his thesis [68).2 There is one difference however. In addition to the two types of
constraints, Rudell’s formulation requires a covering constraint to be satisfied for each internal
node of the network. The covering constraint for an intemal node n requires that » must belong to
some supernode in M, i.e., some supemode in M must cover n. It is easy to see that the covering
constraints are not necessary.

Proposition 3.4.4 Satisfaction of the output and implication constraints guarantees satisfaction of

the covering constraints.

Proof Let M satisfy the output and implication constraints for a network 7. Consider an intemnal
node 7 of the Boolean network 7. If » fans out to a primary output node p°, its covering is ensured

8For the general problem of technology mapping, the term match is used instead of supernode; we will use the two
interchangeably.
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m

(A (B)

Figure 3.30: The covering constraints are not needed

" by the output constraint for p°. Otherwise, there is at least one path P from n to some output p° of
7 (if none exists, n can be deleted from 7). Since M satisfies the output constraints, there exists
a supernode S € M with root p°. Either S includes », as shown in Figure 3.30 (A) - in which
case the covering constraint for n is satisfied, or there exists a node ¢ lying on P that belongs to
the support of S. Since ¢ € TFO(n), it is not a primary input (Figure 3.30 (B)). The implication
constraints require that some supernode with root g be in M. Repeating this argument, eventually
n will be covered by some supernode in M. This means that M satisfies the covering constraints.
[

However, experiments show that adding the covering constraints helps the heuristics in
obtaining somewhat better approximate solutions. Of course, their presence does not affect the
exact solution. Therefore, in the following discussion, the covering constraints are treated along
with the output and implication constraints.

We can now explain why a non-minimal support set of n can be ignored without affecting
the quality of the covering solution. Let o = {a,),¢,d} be a non-minimal support for n, and S,
the corresponding supemode. Let oy = {a,b, ¢} be a minimal support subset of o, and S, the
corresponding supemode. We are better off selecting S; as compared to S because the selection
of § in the final cover imposes the following constraint:. if d is not a primary input, one of the
supemnodes that has d as the root must be sclected. Clearly, selection of S; does not impose this
constraint.
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Formulation of binate covering The constraints are represented in a 0-1 matrix B. The columns
of B correspond to the supemodes (or matches), and the rows to the nodes of the network. Let n be
a node of the network and S a supernode. Let i be the row of B corresponding to n, and j be the
column corresponding to S. B(%,j) = 1 if and only if S covers n. We then say that the column j
covers the row . We do likewise for each node = of the network. This takes care of the covering
constraints. This part of the matrix can be deleted if the covering constraints are not considered
explicitly.

To handle the implication constraints, additional rows and columns are added to B. For
each supernode S, consider all its inputs. For each input 7, an additional row 7 is added. B(3,7)
is set to 1 for all the columns (supemodes) 7 that have = as the root. The implication constraint
imposes that whenever S is selected in M, 7 has to be covered by some column in B. However, the
covering problem is formulated in such a way that all the rows of B have to be covered by some
column in any case. It suffices to ensure that 7 is covered automatically if S is not selected. This is
done by introducing an extra column k (called an anti-supernode or anti-match) for the match S,
which has a cost of 0. We set B(z, k) = 1. Note that the cost of the match S is 1.

Finally, the output constraints are handled by adding a row for each primary output. Let
i be the row for the output p°. Then B(%, 7) = 1 if the supemode corresponding to the column j is
rooted at p°. Otherwise, B(%,7) = 0.

The problem then is to find a minimum cost cover of B by the columns such that out of a
column and its anti-match, exactly one is selected. One way of deriving the exact cover is to use
a branch and bound technique. Lower and upper bounds on the optimum cover are derived. If a
supernode S is selected, the rows it covers are deleted, and the problem is solved recursively on the
resulting sub-matrix. This solution is compared with the best one obtained if S is not selected and
the better one is picked.

The binate covering problem can also be formulated as that of obtaining a minimum-cost
implicant of a satisfiability problem [68], where an uncomplemented literal has a cost of 1 and a
complemented literal has a cost of 0. For each supernode S;, a Boolean variable z; is introduced.
The constraints generate clauses (sum terms) of a Boolean function as follows:

o Covering constraints: If a node is covered by supemnodes Sz, Ss, and Sy, write a clause
(z2 + =5 + x9). Repeat this for each node of the network.

o OQutput constraints: Given a primary output z;, let S;y, Siz, . . . , Si; be the supernodes rooted
at n;. Then the output constraint for n; can be expressed by (z;; + zi2 + - - - + zi;).
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e Implication constraints: Let supemode S; have nodes n;,,...,n;, as p inputs. If S; is
chosen, one of the supemnodes that realizes n;; must also be chosen for each input j that is not
a primary input. Let N;; be the disjunctive expression in the variables z giving the possible
supemnodes that realize n;; as an output node. Selecting supemode S; implies satisfying each
of the expressions N;; for j = 1,2,. .., p. This can be written as

z; = (NyNiy -+ - Ny,)
Ao w$+(Ni1Niz"’Nip)
& (zh+ Ni)(zh+ Niy)---(2h + Ny,).

The clauses are generated for each supernode likewise.

Take the product of all the clauses generated above to form a product-of-sums expression. Any
satisfying assignment to this expression is a solution to the binate covering problem. Finding a
satisfying assignment with the least total cost is the same as finding a least cost prime. Mathony
has proposed a branch and bound technique [54] for generating all the primes of a function. It uses
efficient pruning of the search tree. This technique can be used to find a prime with the minimum
cost. This is the technique implemented in sis by Lavagno [45], and used by us. Recently, Lin and
Somenzi [50] showed that the least cost prime of a function f can be determined by constructing a
ROBDD for f (with any input ordering) and then finding the shortest path (one with the minimum
number of uncomplemented edges) from its root to the terminal 1 vertex.

Heuristic methods B}nate covering is an NP-complete problem. The exact formulations presented
above are time-intensive even on moderate-size networks. Enumerating all feasible supemodes is
fast; the hard part is selecting the minimum subset that satisfies all the constraints. So we resort to
heuristic methods.

1. The most straightforward heuristic is a greedy one. It selects a supemode that covers the
maximum number of rows of the matrix B and deletes the rows covered by the supemode
and the columns corresponding to the supemode and the corresponding anti-supemode. The
procedure is repeated on the reduced matrix.

2. This heuristic is a simple variation of the previous one. It has two phases.

e Phase 1. satisfaction of the covering and the output constraints.
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¢ Phase 2: satisfaction of the implication constraints.

Phase 1: We satisfy the covering and the output constraints in the best possible way, i.e.,
using the minimum number of supemnodes (matches). This is the well-known unate covering
problem. It has been studied extensively in the context of solving the two-level minimization
problem. Although it is NP-complete, rather efficient ways to solve it are known [31, 68].
Let the solution to the unate covering be the set of matches M.

Phase 2. M generates a set of implication constraints, constraining the union of the inputs of
the supemodes in M to be the outputs (of a supernode). If already some of these constraints
are satisfied by supemodes in M, they are deleted. If no more constraints are left, the
procedure terminates. Otherwise, a score A for each supemode S ¢ M is calculated as
follows. Let sel(S) be the number of remaining constraints that are satisfied if S is selected
(these constraints correspond to the outputs of S), and not_sel(S ) the number of constraints
that are satisfied if S is not selected (these constraints correspond to the inputs of S). Then

A(S) = sel(S) — not_sel(S)

The supernode with the maximum score is selected and added in M. We update the constraint
set, and repeat this process until all the implication constraints are satisfied. This heuristic
gave better results on most of the benchmarks as compared to the greedy heuristic.

3. Partition The heuristics presented above generate all feasible supernodes, and make fast
and possibly non-optimal selections for the supernodes. Partition generates only a subset of
feasible supernodes - those formed by collapsing a node into its immediate fanout(s). Hence,
it looks only one level ahead.

Definition 3.4.4 A collapse (n, f°), f° afanout of n, is called an m-feasible collapse if f°
is m-feasible after n is collapsed into it.

Some of the criteria that partition uses while collapsing nodes are as follows.

(@ A node = is collapsed into all of its immediate fanouts, provided all the collapses are
feasible.
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Figure 3.31: Creation of new edges on collapsing

(b) This option is targeted for routing. Let n be a node and f° be one of its fanouts, If this
collapse is feasible, a pair (n, f°) is formed. All pairs for the entire network are formed
likewise. A cost is associated with each pair. It is the number of new edges created
after the collapse. This is the same as the fanins of n which are not fanins of f°. Figure
3.31 shows the creation of new edges when 7 is collapsed into f and g. At each step of
the algorithm, the pair with the least cost is selected and collapsed. This may render a
collapse that was feasible earlier infeasible. So the costs are revised after each collapse.
Note that this option does not really target the minimization of the number of blocks.

From now on in this chapter, we will use the term cover or covering to mean the binate covering
formulation. "

342 Support Reduction

The covering problem described in the last section is structural, in that it ignores the logic
function present at a node. The only information it uses is the number of fanins of each node and
the node connectivity. Support reduction is fundamentally different, in that it is both structural and
functional. It also makes use of the function present at a node. It is based on the same idea as that

of Section 3.3.6. Consider a node = that cannot be collapsed into its fanouts during partition, as
| some of its fanouts become infeasible. If the local support of n can be reduced such that » collapses
feasibly into its fanouts, » can be deleted from the network, thereby reducing the number of feasible
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Figure 3.32: Support reduction by fanin movement to achieve collapsing

nodes.

Example 3.4.2 Consider the network of Figure 3.32. It is a slight variation of the example of
Figure 321 - an extra node p is present. Let m be 4. The network is 4-feasible. Consider node
n - it cannot be feasibly collapsed into p. However, if the support of n is reduced, as was done in
Example 3.3.12, we get n = cw + y. Now, n can be collapsed into p, thus reducing the number of
nodes by 1.

This method has been integrated with partition, such that if a node n cannot be feasibly
collapsed into all its fanouts, an attempt is made to reduce its support, SO that it can be collapsed.
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Y

Technology Independent Optimization

Y
Making the network feasible

Y
Block Count Minimization

|

optimized feasible network

Figure 3.33: A straightforward mapping approach

3.5 The Overall Algorithm

Having presented the two main components of the mapping algorithm, we address the
issue of how to use them in a complete synthesis framework. As shown in Figure 3.33, one
straightforward way is to first make all infeasible nodes feasible (say, by decomposing them), and
then apply block count minimization on the resulting network. However, this approach suffers from
the following problems:

1. If the network is large, in the BCM step exact covering methods cannot be applied to the
entire network. Even the heuristic methods meet with limited success. Lacking a global view
of the network, they make greedy, non-optimal decisions.

2. The covering technique is limited in its applicability: it works only on feasible networks. It
will be better if somehow it could be extended to an infeasible network.

It turns out that an interleaving approach, in which decomposition and block count
minimization are applied node-by-node, which is then followed by partial collapse, gives better
- results than the approach of Figure 3.33. This is shown in Figure 3.34. Block count minimization
on the sub-network resulting from decomposition of a node can be often applied in the exact mode,
since the sub-network is generally small. However, the node-by-node mapping paradigm alone does
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unoptimized network

Technology independent optimization

infeasible network
Y

Initial mapping of each node

i
Partial Collapse

’feasible network

Global Block Count Minimization

Y

optimized feasible network

Figure 3.34: The overall algorithm

not exploit the structural relationship between the nodes of the network. Partial collapse achieves
exactly that by collapsing each node into its fanouts, remapping the fanouts (i.e., decomposing them
and minimizing the block count), and computing the gain from this collapse.

Example 3.5.1 An example of partial collapsing is given in Figure 3.35. Let m be 5. Node d is
collapsed into its fanout nodes i and j. Let the cost of node i before the collapse be 3 LUTs. After
the collapse, let its cost remain unchanged (after collapsing, i has 6 inputs and can be realized
with 3 5-LUTs using cofactoring). Nodes d and j have a cost of 1 each before collapsing, as they
are 5-feasible. Also, j remains feasible after the collapse. The total gain from this collapse is
(1+3+1)-(3+1) = 1. Note that partition would not have accepted the collapse of node d into
i, since t remains infeasible after the collapse.

How can we formulate the partial collapse problem? First, consider the problem in its full generality:

Problem 3.5.1 Given a possibly infeasible network n and a procedure LUT _cost (f,m) that
computes the cost of a function f in terms of m-LUTs needed to implement it, collapse nodes such
that the cost of the resulting network is minimum.
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Before Collapse Afier Collapse

— —— — —

total costof d,i,andj=3+1+1=5 totalcostofiandj=3+1=4

Figure 3.35: Partial collapse and forming clusters

This problem is a generalization of the covering problem, since it operates on infeasible networks
as well. Note that it is more difficult than covering. The basic unit in covering is an m-feasible
supemnode, characterized by its support o, which should have at most m elements. However,
determining if it is beneficial in an infeasible network to treat a subgraph rooted at a node as one
(infeasible) supernode is not an easy task - we have to evaluate the cost of the supemode by mapping
it.

An exact way of solving Problem 3.5.1 is as follows.

1. Enumerate all m-feasible and m-infeasible supernodes of the network 7. For each supemode
S, do the following. If f is the global function corresponding to S, i.e., f is expressed using
the support of S, determine the cost of S using LUT_cost(f, m).

2. Solve a binate covering problem, similar to the one in Section 3.4, except that instead of
selecting a minimum subset of supernodes, select a subset with the minimum cost.

Although a network has only a polynomial number of m-feasible supemodes, it can have
an exponential number of supernodes. For example, a complete binary tree with root 7 and p nodes
‘has O(2P) supemodes rooted at 7.° Solving a binate covering problem of this size is hard. So we
look for approximations. For example, we may consider only a proper subset of supernodes. One
possibility is to consider only supemnodes with a bounded depth. The simplest case is a bound of
two, which means a node and all its fanins. An interesting formulation is obtained using a simple
variation: collapse a node into its fanouts. Let w(7) be the LUT cost of an internal node ¢. For each

Enumerating all the supernodes in a network is the same as finding all the (singly) rooted subgraphs of a directed
acyclic graph.

14
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fanout j of ¢ that is not a primary output, we introduce a 0-1 variable z;; defined as follows:

1 if ¢ is selected for collapsing into 7,
xij = (3.21)
0 otherwise.
Let &(%, ) denote the cost of the node j after ¢ has been collapsed into it. Let
6(i, 5) = w(4) - &(3, 7) (3.22)

(i, 7) denotes the reduction in the cost of j after ¢ is collapsed into it. Note that &(4, j), and hence
4(i,7), depend on the logic functions at j and i. Our goal is to select node-fanout pairs (,j)
that can be simultaneously collapsed such that the resulting gain is maximized. However, arbitrary
collapses are not allowed - the following constraints need to be satisfied:

1. If we decide to collapse ¢ into j, we should not choose to collapse a node k£ € FI(i) into
i. This is because both the collapses involve node . After k is collapsed into ¢, the logic
function at ¢ changes, and so does the cost of i: w(¢) becomes &(k,?). As a result, (%, j)
changes. This is not taken into account in our simultaneous-collapse-based formulation.

2. For the same reason, simultaneous collapses of the kind (i, j) and (j,k),k € FO(j), are
prohibited.

3. Simultaneous collapses of the kind (&, ¢) and (!, ¢), where k,! € FI(%), are prohibited.

Note that if a node ¢ is collapsed into all its fanouts, it can be deleted from the network, resulting in
an additional gain of w(). The aim then is to maximize the gain by selecting nodes for simultaneous
partial collapse subject to the above constraints. This leads to the following non-linear programming
formulation:

maximize > (Y $Giep)+( JI =) w(@)]

t€IN(n) jEFO(i)NIN(n) JEFO()NIN(n)

subject to

it zi; < 1, Vi 5k
1, Vi

{0,1}

\g
s,
A

K3,
[eid
m
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This is a 0-1 integer program with a non-linear objective function. It may be converted
into a non-linear program by replacing the 0-1 constraint by an equivalent quadratic constraint
=% = z;;. The modified program is:

maximize Z [( Z 6(3,5)z:5) + ( H zi;) w(i))

i€IN(n) FEFO()NIN(n) JEFO()NIN(n)
subject to

zritzi; <1, Vi g5k
ij; <1, Vi
]

2 _- . . .
xij —ng, Vt,J

A linear integer programming formulation is obtained if instead of forming (node, fanout)
pairs, we group a node n and all its non-primary-output fanouts in one cluster C(n). We say that
C(n) corresponds to n. Either = is collapsed into all its fanouts (in which case, we say that C(n)
has been collapsed), or into none. The cost of a cluster C(n), w(C(n)) = Liec(n) w(?). After n is
~ collapsed into its fanouts, the saving in the cost is

§(C(n))=w(Cm)- Y,  @&(nj) (3.23)

JEFO(n)nIN(n)

If §(C(n)) > 0, C(n) is called a good cluster and n is a candidate for collapsing. We compute the
cost savings for every cluster and then retain only the good clusters.
Let z; be the 0-1 variable corresponding to a good cluster C(z).

(3.24)

= 1 if C(2) is selected for partial_collapse,
' 0 otherwise.

.Let A = (a;;) be the node-cluster incidence matrix, i.e.,

i = 1 ifnode ¢ belongs to good cluster C(j),
Y 0 otherwise.

The problem can then be formulated as

maximize > §(C(0))
i 8.1.c(3) is good
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subject to
Za,-,-a:j <1 Vi
J

There are |[IN(n)| clusters, one cluster corresponding to each internal node. So there
are at most | N (n)| good clusters, and hence variables. Since at most one constraint is generated
for each intemal node of 7, the linear integer program has at most |/ N (7)| variables and as many
constraints. The solution of this program generates clusters that should be partial.collapsed for
maximum gain. In the solution, if an z; is 1, the node »; to which the cluster C; corresponds, is
partially_collapsed into its non-primary-output fanouts. After collapsing all such clusters, we get a
new network 77 and can apply partial collapse on 7. The process can be repeated until no more gain
is possible.

The formulations presented so far are either non-linear or linear integer programs. In
general, both are intractable problems [30]. So we resort to simple heuristics, one of which is
to select good clusters in some order, say topological - from inputs to outputs. If the cluster
corresponding to the node being visited is good, it is collapsed. After finishing one pass over the
network, the procedure is repeated until no good clusters remain. For the sake of efficiency, we
do not visit each node of the network in the next iteration. We keep track of the potential nodes
for future collapsing. For example, consider a node n that does not have a good cluster in some
iteration, but one of its fanouts gets collapsed. In the next iteration, it is possible that » has a good
cluster by virtue of the modified fanout set. It is easily seen that when n is collapsed into its fanouts,
the following nodes are affected as far as the chances of further collapses are concerned: the fanins
of n, the fanouts of =, and the fanins of the fanouts of n. This is called the affected_set(n). In Figure
3.35, affected_set(d) = {a,b,¢,i,j,¢, f, g, h}. Say, after one pass, S is the set of nodes collapsed.
Then only the nodes in Up¢s affected_set(n) are considered for collapse in the next iteration.

A slight improvement of the above greedy strategy is the following. Instead of collapsing
a node ¢ either into all the fanouts or into none, we allow for the possibility of a finer granularity
collapse. Given a node ¢, we partition the set of its fanouts into two subsets:

1. the good set G consisting of all the fanouts 5 of ¢ such that (¢, ) > 0, and
2. the bad set B consisting of fanouts j such that é(¢, 7) < 0.

It makes sense to collapse ¢ into j when j € G. In general, ¢ should not be collapsed into j,j € B.
However, if ¢ is collapsed into each fanout in B, ¢ can be deleted from the network (assuming i did
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!

Figure 3.36: A simple network to illustrate LUT mapping

not fan out to a primary output), resulting in a saving of w(z). Note that i is collapsed into each
good fanout in any case. In other words, we should collapse ¢ into B if and only if ¢ does not fan
out to a primary output and
w(@i)+ Y 8(i,5) > 0.
j€B
We make the following remarks.
1. partial coliapse explores more alternatives than partition, since it also explores collapses into
fanout nodes that become infeasible after the collapse. This routine may be thought of as an
LUT analogue of eliminate -1 inmisll.

2. We discovered that in all the benchmark examples we used, only the collapsing of feasible
nodes contributed to the gain. This reduces the number of nodes that need to be considered
for partial collapse. The run time is cut down without significantly degrading the quality of
the results.

3. We found that a greedy heuristic like the one proposed above is much faster than an integer-
programming based method and does not sacrifice quality of results in general.
3.5.1 AnExample

We illustrate some of the techniques described in this chapter with the help of a simple
example network 7 of Figure 3.36. The network 7 has eight primary inputs - a, b, ¢, d, e, g, h,,0ne
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fi=x+y+z
xﬂabc
y=deg
z=hi

cost=d

Figure 3.37: After initial decomposition

primary output f, and two internal nodes - fi and f,. Let m be 5. Assume that the representations
shown for f; and f; are optimized ones. In the mapping phase, we carry out the following steps:

1. Map each node

(a) Make each function S-feasible: Nothing needs to be done to fz, since it is already
5-feasible. However, |o( f1)| =8, so fi needs to be made 5-feasible. If we were to apply
cube-packing on it, we obtain the optimum tree realization

z = deg+hi
fi = abc+z.
For the purpose of illustration, suppose we did not apply cube-packing, but chose a

simple AND-OR decomposition, which creates a sub-function for each cube and then
ORs the sub-functions. The following decomposition is generated:

z = abe
y = deg
z = hi
i = z+y+ta

This sub-network, call it 7, is attached with f;. The resulting configuration is shown
in Figure 3.37. The cost of 7, is 4 LUTs, and that of  is 5.
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ﬁ-abc+y+z

y=deg
zshi

coste3

R

Figure 3.38: After block count minimization (covering)

fi=abecty
y=deg+hi

Figure 3.39: After block count minimization (support reduction and collapsing)
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(b) Block count minimization: On 7, we first apply covering. This causes z to collapse
into fi resulting in 7, (Figure 3.38):
y = deg
z = hi
fi = abc+y+ =
No more collapses are possible. So we try to reconfigure 7, by applying the support
reduction techniques. Without going through all the intermediate steps (which are

similar to those of Figure 3.32), it is seen that the connection from z to fi can be
removed and replaced by a connection from z to y. As a result, the functions at f; and

y change:
y = deg+z2
z = hi
fi = abe+y.
Now, z can be collapsed into y, yielding the configuration of Figure 3.39:
y = deg+hi
H = abc+y.

Note that for this example the resulting decomposition is the same as generated by
cube-packing on f;.

2. Partial collapse: To exploit the relationship between the nodes of 7, f; is collapsed into f5.
The resulting configuration is shown in Figure 3.40. Carrying out a similar mapping step on
the new f>, we find out that it can be realized in two 5-LUTs. Since the cost of the network
has improved as a result, the collapse is accepted. Note that this is an optimum solution for
this example network, since [ogr(f2)| > 5.

3.6 Experimental Results

3.6.1 Description of Benchmarks

For validating various, ideas and algorithms presented in this and other chapters, we use
a benchmark set. The circuits in this set come from the 1991 MCNC logic synthesis benchmark
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L=e'g+hi' +
abct+deg+hi

§=x+abc

x=e'g’+h'i’ +deg+hi

Figure 3.40: After partial collapse: the final network

set [90]. Table 3.1 provides some information about these benchmarks. If the functionality of a
benchmark is not known, the word “Logic” is used. The last three columns in the table refer to
numbers of nodes, edges, and literals in the factored form in the area-optimized networks. The
optimized networks are obtained by running twice the multi-level optimization script script.rugged
[73] provided with sis [78], with a timeout limit of 1 hour for each run. Unless mentioned otherwise,
these optimized benchmarks are the ones used in this thesis for combinational mapping.

We first show results for decomposition, then for decomposition followed by block count

minimization, and finally for partial collapse.

3.6.2 Decomposition
Cube-packing

We ran cube-packing on the optimized benchmarks using different options mentioned in

Section 3.3.2, A 5-LUT was chosen as the target. The results are shown in Table 3.2. No significant

difference in the quality of results is seen between all the options, although using the minimum

increment in the support definition for the best bin, along with the smart literal extraction gives
- slightly better results than the rest of the options.

3.6.3 Decomposition and Block Count Minimization

Here, the results obtained after decomposition and BCM are presented.
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| example | origin | function | pi| po | nodes | edges [ lits (fac) |
5xpl MCNC-l | Logic 7({ 10 18 77 114
9sym MCNC-1 | Count Ones 9 1 12 46 145
C1355 MCNC-ml | Error Correcting 41| 32 162 | 344 552
C1908 MCNC-m1 | Error Correcting 33| 25 146 | 383 535
C2670 | MCNC-ml | ALU and Control | 233 | 140 152 | 528 748
C3540 MCNC-ml | ALU and Control | 50| 22 225 | 1076 1264
C432 MCNC-ml | Priority Decoder 36 7 52| 209 219
C5315 MCNC-ml | ALU and Selector | 178 | 123 374 | 1335 1763
C6288 MCNC-ml | 16-bit Multiplier 32| 32 113 | 2829 3367
C7552 | MCNC-ml | ALU and Control | 207 | 108 499 | 1490 2288
alu2 MCNC-ml | ALU 10 6 54| 273 347
alud MCNC-ml | ALU 14 8 59| 495 893
apex2 MCNC-tl | Logic 39 3 43| 219 268
apex3 MCNC-l | Logic 54| 50| 200| 1361 1567
apex7 MCNC-m! | Logic 49 | 37 61 218 243
b9 MCNC-m! | Logic 41| 21 30 115 124
bw MCNC-tl | Logic 5| 28 35 155 160
clip MCNC-tl | Logic 9 5 16 82 117
cordic MCNC-ml | Logic 23 2 11 43 64
dalu MCNC-ml | Dedicated ALU 751 16 120 778 881
des MCNC-ml ( Data Encription | 256 | 245 508 | 2661 3319
duke2 MCNC-l | Logic 221 29 81 392 428
e64 MCNC-tl | Logic 65| 65 116 | 253 253
ex4 MCNC-l | Logic 128 | 28 51 241 456
fS1m MCNC-ml | Arithmetic 8 8 16 50 80
k2 MCNC-ml | Logic 45 | 45 134 | 1254 1343
misex2 | MCNC-tl | Logic 251 18 25 103 104
rd84 MCNC-tl | Logic 8 4 18 71 148
rot MCNC-ml | Logic 135 | 107 167 | 597 664
sao2 MCNC-1 | Logic 10 4 18 93 131
spla MCNC-t | Logic 16 | 46 130 | 570 598
t481 MCNC-tl | Logic 16 1 11 26 36
vg2 MCNC-tl | Logic 25 8 10 65 88
z4ml MCNC-ml | 2-bit Add 7 4 9 32 43
Table 3.1: Description of example circuits

origin source of the example (tl = two-level, ml = multi-level)

function description of the circuit function (when available)

pi number of primary inputs

po number of primary outputs

nodes number of intemnal nodes in the optimized network

edges number of edges in the optimized network

lits (fac) number of literals in factored form in the optimized network
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example || regular-order || smart-order

sup | _incr || sup | incr
5xpl 31 31 31] 31
9sym 46 46 46 46
C1355 164 164 || 164 | 164
C1908 154 154 || 153 | 153
C2670 290 289 || 282 | 281
C3540 || 477| 475| 477| 475
C432 93 93 92 92
C5315 477 477 || 477 | 477
C6288 1161 1161 || 1161 | 1161
C7552 705 705 || 705 70s
alu2 102 102 )| 101 | 101
alu4 286 285 || 280 | 280
apex2 101 100 98 98
apex3 500 500 || s00 | 500

apex7 68 68 68 68
b9 47 47 47 47
bw 46 46 46 46
clip 31 31 31 31
cordic 17 17 17| - 17
dalu . 281 281 || 281 | 281
des 951 949 | 950 | 949
duke2 138 137 || 138} 137
e64 116 116 | 116 | 116
ex4 216 216 || 224 | 224
f51m 19 19 19 19
k2 402 401 || 397 | 397
misex2 33 33 33 33
rd84 43 43 43 42
rot 223 223 || 224 | 224
$a02 46 46
spla 202 | 202
t481 11 11
vg2 24 24
z4ml 12

12| 12
[total  [[7514 [ 7505 [[ 7496 | 7490 ]

Table 3.2: Issues in implementing cube-packing

regular-order order inputs arbitrarily

smart-order  order inputs based on frequency of occurrence

sup best bin is the one with minimum support

incr best bin is the one with minimum increment in the support
total sum of 5-LUT counts over all examples
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Roth-Karp decomposition and partition

On the optimized networks, the mapping script used is Roth-Karp decomposition, fol-
lowed by partition with support reduction. The following two implementations of Roth-Karp
decomposition are compared:

e serial encoding: The equivalence classes are encoded serially, that is, the equivalence class
C; is assigned the code corresponding to the binary representation of j.

e good encoding. Aninputencoding algorithm [69] is used to encode the classes. The algorithm
is run with a cost function of minimizing the number of literals. Unused codes are used as
don’t cares to simplify the image of the decomposition, g.

Roth-Karp decomposition is invoked on any function with greater than 5 inputs. It chooses the first
partition (X,Y’) such that | X| < 5. If a disjoint decomposition is not found, the implementation
switches to another decomposition method that guarantees feasibility.

Table 3.3 shows the comparison. The good encoding scheme gives 8.4% overall better
results. Also, there are benchmarks where it completes, and the serial one does not. Note that
most of the improvement is on larger benchmarks. This is because in the smaller benchmarks, most
functions are simple, with small number of inputs. So the function g obtained after decomposition
is mostly m-feasible, and encoding scheme does not make much difference. On the other hand, in
the larger benchmarks, typically functions have more inputs, so g is infeasible. Then doing a good
encoding does help when g is further decomposed.

Although not reported, the number of literals is also minimized in roughly the same
proportion as the number of LUTs using the encoding formulation.

Cube-packing and partition

The mapping script was cube-packing followed by partition with support reduction. Three
experiments were performed.

e sop: Applied the mapping script on the optimized networks.

e fac: td:. Applied the mapping script after applying decomp -g; tech-decomp -a 2 -0 2 on
the optimized networks. decomp -g (i.e., good decomposition) produces a factored form of
each node, and tech-decomp -a 2 -0 2 (technology decomposition) breaks up each node into
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| example || good enc | serial enc |

[ 5xpl 34 41
9sym 41 41
C1355 92 92
C1908 103 103
C2670 298 353
C3540 518 641
C432 119 124
C5315 597 642
C6288 536 542
C7552 540 562
alu2 136 129
alu4 318 -
apex2 89 98
apex3 - -
apex7 58 60
b9 52 57
bw 60 58
clip ! 87
cordic 14 14
dalu . 249 249
des 1059 1127
duke2 256 304
e64 81 81
ex4 243 224
f51m 27 25
k2 700 -
misex2 33 34
rd84 39 51
rot 269 285
sao2 75 90
spla 318 450
t481 5 5
28 29

z4m1 4] 14
I' 7072 6612

subtotal 6054 6612

Table 3.3: Encoding schemes for Roth-Karp decomposition
goodenc  Roth-Karp decomp. with good encoding, then partition
serial enc Roth-Karp decomp. with serial encoding, then partition
- could not finish
subtotal  sum of 5-LUT counts for examples where both complete
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2-input AND and OR gates. Cube-packing does nothing on these networks, since they are
already 5-feasible.

e fac: no td: Applied the mapping script after applying decomp -g on the optimized networks.
This, in essence, means that cube-packing is applied on the factored form of each node.

Table 3.4 shows the 5-LUT counts after mapping. Clearly, factoring helps. This is as expected,
since cube-packing operates on an SOP, which could be considerably larger than the factored form.
Also, as seen from fac:d, it is not a good idea to break down the network into two-input gates. As
already pointed out in Section 3.3.5, one reason is that there may be too many two-input gates, and
BCM algorithms cannot handle large networks. These experiments also show that it is a good ideato
use a decomposition method (such as cube-packing) targeted specifically for the LUT architectures.

Improved decomposition and partition

In the last set of experiments, cube-packing and technology decomposition were the
decomposition techniques used. If better or more or both decomposition techniques are applied,
better quality results may be produced. To test this hypothesis, for each intemal node =, first a
network 7(n) is constructed. 7(n) has one primary output, one internal node corresponding to n,
and as many primary inputs as there are fanins of n. Various techniques, including cube packing on
the SOP, cube packing on the factored form (using decomp -g), and cofactoring are used to make
n(n) m-feasible. Let the resulting network be 7;(n) for each decomposition technique t. BCM is
invoked on 7;(n), yielding 7;(n). The best feasible implementation out of all 7;(n) is selected (this
is the one with the minimum number of m-feasible nodes) and replaces node ». After all the nodes
have been processed, BCM is applied on the entire network to exploit the relationship among the
nodes of the network.

The results are shown in Table 3.5. The following notation is used:

e fac cpack: Use decomp -g before using the mapping script, which is cube-packing followed
by partition with support reduction. Snapshots of the mapper are taken after cube packing
(column decomp) and then after partition (column partition). The column partition is the
same as the column fac: no td of Table 3.4.

e best decomp: For each node n, use various decomposition techniques on 5(n). For this
set of experiments, cube packing on SOP, cube packing after decomp -g, and cofactoring
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example || sop fac

td | notd
Sxpl | |"29 26
9sym 46 39 39
C1355 100 || 102 76
C1908 102 | 137 | 100
C2670 237 || 180 ] 149
C3540 422 || 449 | 305
C432 90 63 64
C5315 " 371 || 544 | 366
C6288 467 || 766 | 510
C7552 553 | 685 409
alu2 101 || 124 99
alu4 279 || 309 | 210
apex2 95 || 102 79
apex3 496 || 608 | 483
apex7 54 60 54
b9 45 37 36
bw 37 37 37
clip 30 30 25
cordic 13 11 10
dalu 262 || 358 | 232
des 865 || 1478 | 855
duke2 132 || 148 | 128
€64 81 82 81
ex4 224 || 156 | 143
f51m 14 18 17
k2 390 | 457 | 362
misex2 30 32 29
rd84 42 46 39
rot 206 || 202 | 177
sao2 4 37 37
spla 188 || 213 | 178
1481 5 5 5
vg2 24 23 23
z4ml 10 6

[toal | 6 osz I 757s'|‘sss9 |

Table 3.4: Cube packing and partition
apply cube-packing and partition
apply decomp -g; tech-decomp -a 2 -o 2 before partition
apply decomp -g before cube-packing and partition
sum of 5-LUT counts over all the examples
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example [[  fac cpack | best decomp

| decomp | partition || decomp | partition
Sxpl 34 26 30 28
9sym 43 39 40 39
C1355 168 76 164 100
C1908 165 100 151 99
C2670 225 149 196 147
C3540 416 305 351 299
C432 83 64 73 67
C5315 545 366 469 362
C6288 1391 510 1161 467
C7552 || 697 409 || 568 403
alu2 110 99 100 100
alu4 269 210 211 210
apex2 94 79 85 82
apex3 532 483 489 484
apex7 82 54 68 54
b9 50 36 41 39
bw 48 37 46 37
clip 37 25 31 30
cordic 15 10 14 10
dalu 288 232 254 229
des 980 855 945 861
duke2 148 128 133 128
e64 116 81 116 81
ex4 180 143 149 149
fSIm 25 17 19 14
k2 406 362 361 360
misex2 34 29 32 29
rd84 42 39 40 40
rot 243 177 201 180
$a02 45 37 40 37
spla 209 178 191 179
1481 11 5 11 5
ve2 28 23 23 23
z4ml 14 6 11 7

(ol || 7773 5389 6814] 5379 ]

Table 3.5: Cube packing on factored form vs. best decomposition

fac cpack:decomp

fac cpack:partition
best decomp:decomp
best decomp:partition

total

snapshot after decomp -g and cube-packing
after decomp -g, cube-packing, and partition

snapshot after best decomp

after best decomp and global partition
sum of 5-LUT counts over all the examples
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were used. Snapshots were taken immediately after replacing each node n by the best 7(n)
(column decomp) and then after global BCM - in this case partition (column partition).

As expected, the results for best decomp before partition is invoked are much better than
for fac cpack before partition - the total LUT count of 6814 as compared to 7773. Surprisingly,
after partition, this advantage is lost, and the results are almost identical.

3.64 Combining Everything: Using partial collapse

Finally, to couple decomposition and BCM more tightly, we use partial collapse. The
following algorithm is used:

1. Do aninitial mapping: First a sub-network n(n ) is formed from each node n. Cube-packing is
applied on it - both on the SOP and on the factored form obtained by decomp -g. Then, cover
in the exact mode is applied on each resulting sub-network if it has no more than 50 nodes.
Otherwise, partition with support reduction is applied. The better of the two is selected.

2. Apply partial collapse. If each node of the network is considered for collapsing, partial col-
lapse becomes time-intensive. So an issue to address is: “Which nodes should be collapsed?”
We experimented with three options - collapse nodes with a cost of 1 LUT, at most 2 LUTs,
and at most 3 LUTs.

3. If the circuit is small, collapse it and carry out Roth-Karp decomposition. This step helps if
a function is symmetric, since symmetric functions are not checked for per se.

4. Apply global BCM in the exact mode if the network has at most 60 nodes, and in the heuristic
mode if it has at most 200 nodes. Otherwise, do nothing.

5. Finally, partition equipped with support reduction is applied.

It tumns out that in partial collapse, when only the nodes with cost one are collapsed, the
results are almost identical to the case when nodes with cost at most two or three are also considered
for collapsing. Difference in the quality of results is below 0.1%.

In Table 3.6, the LUT counts after partial collapse are compared with the best results
we have thus far (column best-decomp (partition) of Table 3.5). Although partial collapse does
not finish on some examples, it gives about 5% overall better results on those it finishes. On some
benchmarks, e.g., 9sym and rd84, the results obtained are much better. This is because these circuits
are symmetric, and Roth-Karp decomposition works well on symmetric circuits.
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Table 3.6: Comparing partial collapse with best decomp
use partial collapse - collapse nodes with cost 1

part coll
best decomp
total
subtotal

[ example || part-coll | best decomp

Sxpl 21 28
9sym 7 39
C1355 70 100
C1908 96 99
C2670 138 147
C3540 291 299
c2 || e 67
C5315 356 362
C6288 481 467
C7552 372 403
alu2 97 100
alu4 - 210
apex2 79 82
apex3 - 484
apex7 54 54
b9 38 39
bw 28 37
clip 25 30
cordic 10 10
dalu - 229
des 844 861
duke2 124 128
e64 81 81
ex4 139 149
f51m 11 14
k2 - 360
misex2 28 29
rd84 13 40
ot 177 180
sao2 35 37
spla 173 179
481 5 5
vg2 22 23
| z4ml 6 7
["total II 5379
subtotal 3882 4096

the best-decomp column of Table 3.5

partial collapse ran out of memory
sum of 5-LUT counts over all the examples
sum of 5-LUT counts over examples where part coll finishes
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3.6.5 Relating Factored Form Literals and LUTs

To see the relationship between the number of factored form literals and LUT-count, we
plotin Figure 3.41 the number of 5-LUTs obtained in the 1ast table using partial collapse against the
number of literals in the optimized benchmarks, as reported in Table 3.1. Only those benchmarks
are considered for which partial collapse could finish. It can be seen that the relationship is nearly
linear, although many benchmarks lie below the best linear fit. The linear relationship can be
explained by the fact that most of the techniques used in mis-fpga (for instance, cube-packing,
partition, and covering) work on an optimized representation of the function. In the optimized
representation, each variable appears nearly once on average,'® and so each literal appears only
once. The mapping techniques for LUT then pack m literals in each m-LUT.

To explain the deviant behavior shown by some benchmarks, we observe that out of
the larger benchmarks, C6288, C7552, and C5315 lie below the linear fit. From their function
description in Table 3.1, it is seen that these benchmarks contain circuitry to perform arithmetic,
which is efficiently represented using EX-OR gates. Traditional optimization techniques do not
work well for such functions, whereas LUT-mapping handles them well, thus resulting in better
implementations.

Interestingly, the average number of literals that can be placed in one 5-LUT is 4.8.

3.6.6 Comparing with Other Systems

In Table 3.7, the results from mis-fpga are compared with chortle-crf [26] and Xmap,
an improved version of [39]. The starting optimized networks are identical for the systems. On
benchmarks where all systems finish, looking at the row all-finish, mis-fpga using partial collapse s
9.6% better than chortle-crf and 16.8% better than Xmap. If we compute the percentage difference
for each example, and then take the average of these differences over all examples, mis-fpga is
14.2% better than chortle-crf and about 16.1% better than Xmap. Figure 3.42 depicts the results
- graphically.

¥The average number, 1.01, is obtained by dividing the total number of factored form literals by the total number of
edges over all the benchmarks of Table 3.1.
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Figure 3.41: Relating factored form literals with 5-LUT-count
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total
all-finish sum of 5-LUT counts over examples where every tool completes

example | mis-fpga | chortle-crf | Xmap
| [ partcoll | bestdecomp ||
5xpl 21 28 28 25
9sym 7 39 38 40
C1355 70 100 106 70
C1908 96 99 106 96
C2670 138 147 156 259
C3540 291 299 292 305
C432 61 67 62 62
C5315 356 362 376 427
C6288 481 467 604 658
C7552 372 403 456 488
alu2 97 100 95 103
alu4 - 210 203 214
apex2 79 82 78 83
apex3 - 484 468 527
apex7 ” 54 54 56 64
b9 38 39 36 39
bw 28 37 36 -
clip 25 30 23 25
cordic 10 10 12 10
dalu - 229 218 257
des 844 861 852 928
duke2 124 128 124 131
€64 81 81 81 83
ex4 139 149 139 150
f5Im 11 14 17 19
k2 - 360 356 355
misex2 28 29 29 30
rd84 13 40 38 41
rot 177 180 - 198
sao2 35 37 33 38
spla 173 179 173 -
1481 5 5 11 5
vg2 22 23 23 23
z4ml _6 7 7 9
[ total - 5379 - -
part-coll-subtotal 3882 4096 - -
chortle-subtotal - 5199 5332 -
Xmap-subtotal - 5163 -| 5762
all-finish 3504 3700 3878 | 4211
Table 3.7:"Comparing various systems
sum of 5-LUT counts over all the examples
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Figure 3.43: Example of mergeable functions

3.7 Targeting Xilinx 3090

The main focus of our work is to target a basic block with a single LUT. But commercial

. architectures come in slightly different flavors. For example, if we ignore the feedback paths from

the flip-flops to the LUT-section (since we are targeting only combinational logic in this chapter) in
Figure 1.5, a Xilinx 3090 CLB can implement either:

1. a5-feasible function f, or

2. two 4-feasible functions f and g provided |o(f)Ua(g)| < 5. f and g are then called merge-
able. These conditions on the supports of the two functions are called the combinational
mergeability conditions (CMCs). Figure 3.43 shows two mergeable functions.

For area minimization, the objective is to minimize the number of CLBs needed for a network. How
- do we handle the possibility of placing two functions in a CLB? Our approach is to first obtain a
- k-feasible network 7 (k = 4 or 5) using the techniques described in Section 3.3, and then apply a
- modified block count minimization. The BCM problem for Xilinx 3090 architecture is as follows:

Problem 3.7.1 Given a k-feasible Boolean network 1), iteratively collapse nodes or pair mergeable
nodes or do both such that the resulting network is m-feasible and the number of 3090 CLBs needed
is minimum.

_.To solve it, we modify the binate covering formulation used in Section 3.4.1. We generate all the
k-feasible supernodes for each internal node of 7 as before. Recall that in the binate covering
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matrix B built earlier, there is a column for each feasible supemode s; and a row for each internal
node of 7 (there are additional rows to take care of the binate covering constraints). There is a 1
in the position B(k, ) if the node corresponding to row k is contained in the supemode s;. In the
modified procedure, we start with B, and append additional columns to it as follows. Consider a
pair of 4-feasible supemodes S;,; and S;2 of nodes n, and n,. If the supemodes are mergeable
(i.e., the union of their supports has at most 5 inputs), we add a column to B corresponding to the
supemnode pair. This column corresponds to a match that covers all the nodes in the union of the
two supernodes. We repeat this for all the supernode pairs for nodes n; and n and then process all
the node pairs likewise. Finally we solve a binate covering problem on the new matrix Bto get an
optimum solution.

Note that the new matrix B may have € = ¢? columns in the worst case, where ¢ = number
of columns of B. For reasonably sized networks, this exact approach may be computationally
expensive. We propose an approximation that speeds up BCM by separating collapsing and pairing
steps. On the k-feasible network 7, we first apply the BCM procedure of Section 3.4 and get a
k-optimal network 7;. Then we search for maximum number of pairs of mergeable functions in 7.
Each such pair is placed on a CLB. Each unpaired function is assigned a separate CLB. The problem
can be formulated as follows:

Problem 3.7.2 Given a k-feasible network 1], find the largest set of disjoint pairs of mergeable
functions.

Note that we do not lose any optimality by imposing that the pairs be disjoint. From an optimum
solution that replicates functions in many pairs, another optimum solution can be constructed that
only uses disjoint pairs.

We show that Problem 3.7.2 can be formulated as the problem of maximum cardinality
matching in a certain graph G(V, E),1! which is built as follows. Corresponding to each internal
node of #, there is a vertex v € V. Edge (v,w) € FE if and only if in 7 the functions at the
nodes corresponding to v and w are mergeable. Then the Problem 3.7.2 can be solved by finding
a maximum cardinality matching in G. Each edge (v, w) in the matching means that the nodes
corresponding to v and w should be placed on the same CLB. Each node at which no matched
edge is incident is placed in a separate CLB. In general, G is a non-bipartite graph, i.e, it can have
cycles with an odd number of edges. This makes the problem slightly harder.!? Even though a

" The maximum cardinality matching problem in a graph is to find the largest set of edges no two of which share an
end point.
12For a bipartite graph, a simple network flow-based technique can be used to solve the matching problem.
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polynomial-time algorithm (in fact O(|V [?>)) exists [57], it is difficult to implement and its running
time can be long for large networks. We initially formulated this problem as a 0-1 linear integer
_ program as follows. Define

z; = selection variable for edge j of G,
A = (ai;) = incidence matrix of G
where
1 ifedge j is in the matching,
Z; =
0 otherwise
and

1 ifin G the edge j is incident on vertex v;,
ai; = .
0 otherwise
The maximum cardinality matching problem now becomes:
maximize ) z;
Jj
subject to

Y ez <1 Vi (3.25)
i

(3.25) constrains every vertex v; of G to be an end-point of at most one edge of the matching.
We solve for z;s. The edges j for which z; is 1 are in the matching. This is a pure 0-1 integer
linear programming problem, which is NP-complete [30]. However, for the size of problems we are
dealing with, its solution does not normally require excessive computer time. The basic advantage
of using an integer programming formulation is that it is simple and, more important, it provides a
wider framework for potential extensions of the merging problem. Among them is the merging of
three or more functions into one CLB, which may be a feature in some future architecture. Providing
* these flexibilities helps to accommodate new architectures if a general tool for FPGAs is to be built.
Currently, we use a simple heuristic that greedily pairs two adjacent vertices of G that
have minimum number of edges incident on them. Then it deletes these two vertices from G.
These steps are repeated until no more pairs can be found. The idea is that vertices that have many
- neighbors in the beginning will very likely have some neighbors towards the end and can still be
“paired at the end. Such greedy matching algorithms do not guarantee to find an optimum solution,
but it has been observed empirically that they are not far from one. Moreover, they are fast. This
“heuristic was first proposed in [39, 87].
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3.7.1 Experimental Results

The aforementioned technique has been implemented in a command merge in mis-fpga.
First, k-feasible networks are generated for two values of k: 4 and 5. Then, merge is applied to
obtain maximum number of pairs of mergeable functions. If ¥ = 4, it is possible that an unpaired
function can be collapsed into its unpaired fanouts without causing any infeasibility. For example,
consider two functions f and g: f = abed,g = fe. Although f and g are not mergeable, f can
be collapsed into g, yielding a S-feasible function. merge exploits this possibility by invoking a
collapsing step on the unpaired functions at the end. We found that some, though not significant,
improvement is obtained as a result of this collapsing. In Table 3.8, the results of the experiments
are shown. It turns out that the two values of & give comparable results.

In Table 3.9, we compare the performance of mis-fpga (using & = 5), Xmap, chortle-crf,
and HYDRA. On the subset of examples where all the tools can finish, on average mis-fpga is 9.1%
better than Xmap, 9.6% better than chortle-crf, and 11.7% better than HYDRA.

Relating factored form literals and CLBs

To see the relationship between the number of factored form literals and CLB-count, we
plot in Figure 3.44 the number of CLBs obtained in the Table 3.8 in the column 5 against the
number of literals in the optimized benchmarks, as reported in Table 3.1. Only those benchmarks
are considered for which mis-fpga could finish. It can be seen that the relationship is nearly linear,
although many benchmarks lie below the best linear fit. The average number of literals that can be
placed in one CLB is 6.02.

3.8 Discussion

We proposed algorithms for minimizing the number of m-LUTs needed to realize a circuit.
Two key steps - making a network feasible and block count minimization - were identified. One
main difference with the conventional mappers is that decomposition is specific to the architecture.
This indeed yields good results. Various decomposition techniques - functional, cube-packing,
cofactoring, kemel extraction, and simple AND-OR decomposition were studied. Sometimes it
is possible to predict the technique that gives best results. For instance, it was proved that cube-
packing generates optimum tree implementations for functions having cubes with disjoint supports
for m < 5. Similarly, functional decomposition works well for symmetric functions, since finding
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[example | 4] 5]

5xpl 17 17
9sym 11 7
C1355 61 67
C1908 77 81

C2670 132 111
C3540 251 | 262
C432 52 51
C5315 331 | 304
C6288 287 | 288

C7552 299 | 295
alu2 84 83
alu4 - -
apex2 68 64
apex3 - -
apex7 38 4
b9 29 28
bw 33 27
clip 19 21
cordic 10 10
dalu - -
des 687 | 686
duke2 109 | 103
e64 45 54
ex4 104 | 113
f51m 12 10
k2 - -
misex2 24 23
rd84 13 12
rot 122 | 137
sao02 26 28
spla 136 | 142
1481 5 5
vg2 18 21
z4ml 5 6

| subtotal | 3105 | 3100 |

Table 3.8: Xilinx 3090 CLB counts for mis-fpga

4 do mapping onto 4-LUTs, then apply merge

5 do mapping onto 5-LUTs, then apply merge
subtotal sum of CLB counts over examples where completed
- LUT script did not finish
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| example || mis-fpga | Xmap | chortle-crf | HYDRA |

5xpl I 17 19 21 20
9sym 7 31 32 41
C1355 67 54 83 63
C1908 81 78 84 66
C2670 111 162 122 212
C3540 262 251 243 285
C432 51 43 48 62
C5315 34 297 297 278
C6288 288 462 596 474
C7552 295 339 335 370
alu2 83 76 73 74
alu4 - 173 172 188
apex2 64 63 59 68
apex3 - 394 376 384
apex7 44 46 41 40
b9 28 29 27 24
bw 27 - 31 31
clip 21 20 21 23
cordic 10 10 10 13
dalu - 199 195 199
des 686 692 635 661
duke2 103 98 95 92
e64 54 59 58 43
ex4 113 129 113 159
f51m 10 13 14 10
k2 - 287 301 288
misex2 23 23 21 23
rd84 12 30 30 32
rot 137 135 124 125
sao2 28 30 29 31
spla 142 - 125 127
t481 5 5 7 6
vg2 21 20 20 21
z4ml 6 7 7 5
total - - 4445 4538
all-finish 2931 | 3226 3245 3321

Table 3.9: Xilinx 3090 CLB counts: comparing various systems

apply mis-fpga with partial collapse

sum of CLB counts over all the examples

mis-fpga

chortle-crf apply chortle-crf
Xmap apply Xmap
HYDRA  apply HYDRA
total

all-finish

sum of CLB counts over examples where every tool completes
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OO SOOI ONN SO -
Q... O &
Q...C5315 | 15 5..C6288.
. 3
lits(fac) x 10
0.00 1.00 2.00 3.00

Figure 3.44: Relating factored form literals with CLB-count
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a good input partition is easy for such functions. However, for an arbitrary function, it is not known
a priori which method would work well. No single method works in all cases. Empirically, it was
observed that applying cube-packing on both SOP and factored form and picking the better of the
two gives reasonably good results. Another method based on support reduction was proposed to
make the network feasible. While studying functional decomposition, we proposed an encoding-
based solution to the problem of optimally obtaining simple & and g functions. This has implications
not only for synthesis for LUT architectures, but also for logic synthesis in general. In block count
minimization, an exact method for solving the covering problem was presented. The key notion
was that of a feasihle supemode. The exact method is computationally expensive. So heuristic
approaches were proposed. The idea of reducing the support of a node function such that the node
can be eliminated from the network by collapsing it into its fanouts was also explored. The two
steps of decomposition and BCM were coupled tightly in partial collapse.
Some issues have not been addressed explicitly in the techniques described thus far:

1. Routing considerations: Almost all the algorithms presented do not consider the routability
of the final implementation. Since routing resources of the chip may be scarce, as in Xilinx
3090, it is crucial that routability be given due consideration during synthesis. One measure
of routability is the number of edges in the Boolean network. So one way of addressing
routability during synthesis is to minimize the number of newly created edges during decom-
position and BCM. As described earlier, this is considered in the partition step of mis-fpga.
Recently, some approaches have been proposed that do routing-driven synthesis. Bhat and
Hill [8] have proposed a placking algorithm that integrates synthesis, placement, and packing
(or mapping) in a tight loop. A similar approach proposed by Schiag, Kong, and Chan [76]
considers covering and merging simultaneously, with an objective of minimizing the number
of edges in the resulting network.

2. Mapping a multi-output function. mis-fpga maps one function at a time. Better results
may be obtained if many functions are mapped simultaneously. For example, when making
the network feasible, if, instead of decomposing a single function, multiple functions are
decomposed collectively, good common divisors or sub-functions can be extracted, thus
reducing the overall block count.

3. Mapping with don’t cares: In the spirit of conventional technology mapping, the algorithms
described here assume that the function being mapped is completely specified. Typically there



136 CHAPTER 3. MAPPING COMBINATIONAL LOGIC

are don’t cares associated with each node function of the network, which can be beneficially
used in mapping. Mailhot and De Micheli showed one way of doing it in their seminal work
[52]. This led to an improved approach by Savoj et al. [71]. These approaches can be applied
to FPGA mapping as well.

4. Determining a good input partition in functional decomposition.
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Chapter 4
Logic Optimization

4.1 Introduction

The goal of synthesis is to convert a design specification into an implementation. Since
it is a complex task, it is divided into two phases. The first phase is technology-independent
optimization (or logic optimization), in which a minimal representation of the design is sought. The
minimality criterion may be either the number of producf terms (if a PLA-like implementation is
desired) or the number of literals in a factored form (if a standard-cell implementation is desired).
The second phase is technology mapping, in which the minimal representation is mapped onto the
target technology/architecture. The quality of the final implementation depends on the minimal
representation generated by the optimization phase.

Thelast few years have seen a tremendous surge in the design and development of mapping
algorithms targeted for LUT architectures [25, 26, 62, 63, 23, 39, 80, 87]. Almost all of these tools
start from a representation of the circuit optimized for the number of literals in the factored form.
Since the LUT architectures impose constraints on the synthesis process that are different from
those imposed by PLAs or standard-cells, it is not clear if such cost functions are good measures of
the complexity of a design for LUT architectures. Consider the following two examples.

Example 4.1.1 Let m be 5. Consider two functions fi and f>:
fi = abcdeg,
f» = abc+bdetde +cd.

The representation of fi has 6 literals, and that of f, 10 literals. Both these representations are
optimal, in that the misll optimization script (script.rugged) does not further improve the literal
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counts. If the complexity (or cost) is measured using literals, f> is more complex than fy. However,
fi requires two 5-LUTs, whereas f, only one. So fi is costlier than f> for 5-LUT architecture.

Example 4.1.2 Let m be 2. Consider the following representation of function f.
f=abt +d'c +be.

This representation remains unchanged after applying script.rugged. Moreover, this is the SOP
with the minimum number of cubes and literals for this function. Now, if cube-packing were applied
on this SOP, we get the following decomposition with five 2-LUTs.

t = ab

t, = dd

t3 = be

ts = H+ty
f = ta+is

. No improvement is obtained after applying the block count minimization step. Now consider the

" following alternate representation of f:
f=ab +a'b+bc+bc.

It uses one more cube and two more literals than the minimum representation. However, cube-

packing yields
ti =ab+adbd
ta =bec+ b
f =u+t,
which uses two fewer LUTs.

* Both of these examples underscore the need for targeting optimization phase for LUT architectures.
Let us examine various steps in the optimization phase and see what can be done in each step. There
“are three main steps in optimization:

1. Kemel-extraction
2. Elimination

3. Simplification
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4.2 Kernel-extraction

Certain kinds of sub-functions that are common to many nodes of the network are extracted
and implemented once, thereby resulting in a smaller network representation. There may be many
choices for kemels to be extracted. To evaluate the best kemel, the notion of value of a kernel
was introduced [12). It is the number of literals saved in the network if the kemel is used. To
target LUT architectures, the value of a kemel is redefined as the number of LUTs saved by the
kemel. How do we compute the new value? In the original definition, value-computation was easy
- count the number of literals in the factored forms of the kemel and of the affected nodes before
and after extracting the kemel, and compute the savings. In the new definition, the LUT-counts
corresponding to the kernel and the affected node-functions have to be computed. This means that a
mapping step has to be applied on these nodes. Since such computation is repeated for each kernel,
the mapping step should be fast. We use cube-packing as a fast mapping technique.

The results of the experiments are not reported here. We modified gkx, the original kernel-
extraction routine in misll. Later, a faster algorithm fx was implemented. The new optimization
script used in the thesis, script.rugged, does not use gkx, but fx. We have yet to modify fx for LUTs.

4.3 Elimination

Elimination is a process that is the inverse of kemel-extraction. It collapses a node n
into its fanouts if the value of the function at = is no more than a specified threshold. For LUT
architectures, the value of a node can be redefined, exactly as in kemel-extraction.

4.4 Simplification

In simplification, for each node of the network, an appropriate don’t care set is computed
and a two-level minimizer is applied, resulting in a smaller representation.

Fujita and Matsunaga [28] modify simplification to target LUT architectures such that the
support of each node of the network is minimized. Each node » is simplified as follows. First,
candidate nodes that may be used as fanins of » are selected. From these, sets of minimal supports
for n are computed using the algorithm of Halatsis and Gaitanis [34]. Finally, an irredundant cover
for n is computed using a minimal support. The basic idea in choosing the minimal support as
the cost function is that if this support is at most m, a minimum-LUT implementation of the node
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function is obtained. However, if this support is greater, the cost function may not be appropriate.
Two functions with the same support can have different LUT costs. Moreover, a function with fewer
inputs can have a higher cost.

Example 4.4.1 Let m = 2. Consider

fl (a1 b, C) = abe,
fa(a,b,e) = ac+bc+ab+d'b'c,
f3(a7 b, ¢, d) = abed.

f1 and f> have the same support - {a, b, c}. The minimum-LUT implementation of f, has two LUTs,
whereas that of f> has four, as will be proved in Lemma 5.3.11. Also, |o(f3)| = 4, and it can be
implemented using three LUTs, whereas |o( f2)| = 3, and the cost of f is four.

To target simplification for LUT architectures, we should examine LUT mapping tech-
niques that work on an SOP. One such technique, which has proved effective, is cube-packing,
as described in Section 3.3.2. Cube-packing groups the cubes of an SOP into minimum number
of LUTs. The number of LUTs obtained depends on the SOP under consideration. Since there
are many possible SOPs for a function, the natural question to ask is: “How should we obtain
an SOP or a two-level representation of a function that yields better LUT implementation after
cube-packing?” Let us first describe the standard two-level minimization problem and one way to

solve it.

44.1 Two-level Minimization

The two-level minimization problem, in its simplest form, is that of obtaining an SOP
representation of a function f with minimum number of cubes (or literals). The classical solution
" consists of three steps:

1. Generate all the primes of f.
2. Form the covering (or prime implicant) table C.
3. Derive a minimum cover of C.

The covering table C has a row for each minterm in the on-set of f and a column for each prime.
.C(i,7) = 1if and only if the prime j covers (contains) minterm . Then we say that column j covers
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abc | a'd a'b be b ac ab

[
o1 0 0 1 o0 O
010 1 1 0 0 0 O
o1ty o0 1 1 0 0 O
1m1y o0 o 1 0 1 O
1010 0 0 O 1 1
100 0 0 0 1 0 1
Table 4.1: The covering table C

row ¢, or equivalently, row ¢ is covered by column j. The problem of selecting a minimum-cube
cover, i.e., aminimum subset of primes that cover all the minterms in the on-set of f, is thus mapped
into the problem of selecting a minimum column cover of C.! This is the well-known unate covering
problem. The formulation can be modified easily to generate an SOP with minimum number of
literals. With each prime, a weight equal to the number of literals is associated. The problem then
is one of choosing a minimum-weighted cover of C.

Example 4.4.2 Consider
f=abt +adb+bc+b'c

f has 6 primes: a'c,a’b,bc,b'c’,ac,ab’. The covering table for f is shown in Table 4.1. The
minimum-cube cover is obtained by picking the primes a'c’, be, and ab'.

For large PLAs, it is not feasible to build the covering table. Instead, an iterative im-
provement strategy is used. ESPRESSO [11] is such a heuristic minimizer that produces excellent
quality solutions.

We first examine what happens if a standard two-level minimizer is used before cube-
packing. In other words, we study if minimum-cube or minimum-literal SOPs are good for
cube-packing.

44.2 Are Minimum-cube and Minimum-literal SOPs Good for Cube-packing?

Given a function f, the SOP representation used dictates heavily the LUT count obtained
after cube-packing. A two-level minimizer typically uses a cost function, which is the number of

'A column cover of C is a set of columns of C such that each row of C is covered by some column in this set. A
minimum column cover is a column cover with minimum number of columns.
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ab 00 01 11 10
[
0 1 1 1
1 1 1 1
)
ab 00 o1 11 10 ab 00 01 11 10
c [
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(B): Minimum cube (literal) solution: (C): Solution best suited for 2-input cube-packing:

f=ab'+a’c’'+bec f=ab’+a’b+b'c’+bc
Figure 4.1: Two-level minimization and LUT decomposition

cubes (sometimes it may be the number of literals). A multi-level optimizer minimizes the number
of literals in factored form. Since cube-packing operates on an SOP representation, we concentrate
on two-level minimization, and therefore on the corresponding cost functions - the number of cubes
or literals. With the help of a simple example, we show that these may not be appropriate cost
functions.

Example 4.4.3 Let m = 2. Consider the function
fla,b,c)=a'c' + a'b+bc+b'c +ac+ ab'. @.1)

The Karnaugh map for f is shown in Figure 4.1 (A). Applying cube-packing on this SOP yields

i = dd+ac
t = ab+ab
t3 = be4d'd
s = H+1
f o= t+ts.

This decomposition uses five 2-LUTs.
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A minimum-cube cover of f is shown in Figure 4.1 (B) and is
f=ab +d'c + be. “4.2)

Note that this is also a minimum literal solution, since all the six primes of f (all are present in
(4.1)) have two literals each. Applying cube-packing on this cover, we get the following:

t = ab

t, = dd

t3 = be

ty = h+ty
f = t+ts.

It takes five 2-LUTs to realize f - no improvement over the starting configuration. Let us consider
another representation of f, shown in Figure 4.1 (C):

f=ab +a'b+bc+bc. “4.3)

This representation uses one more cube and two more literals than the minimum solution of (4.2).
After applying cube-packing, we get:

ty, =ab +a'b
t =be+b'e
f =th+t.

This decomposition uses three 2-LUTs, two less than the previous covers. This improvement comes

from the relationship between the supports of primes in (4.3). Primes ab’ and a’b have the same
support; so they can be placed in one 2-LUT. Similarly, bc and b'¢’ are placed in one 2-LUT. One
extra LUT is needed to realize the OR of the resulting sub-functions. In contrast, the minimum-cube
cover of (4.2) is such that no two primes can fit in one 2-LUT, implying that three LUTs are needed
to realize the three primes, and then two extra LUTs to realize the ORs.

This simple example underscores the need for a different formulation of the two-level
minimization problem for the LUT architectures.
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Table 4.2: The covering table C

44.3 Targeting Two-level Minimization for Cube-packing

Let us examine the covering table C for the function f of (4.1). It is shown in Table
422 The minterms of the on-set of f are the rows of the table and the primes are the columns.
The problem is 10 select a subset of primes such that the resulting SOP yields good results after
cube-packing.

If we decide to put prime a’c’ in the final cover, we can put ac also in the cover without
increasing the number of LUTs generated by cube-packing. The reason is as follows. Assume that
cube-packing places a’c’ in an LUT T'. It can then place ac in T without using any leftover capacity
of T. This is because the support of the cube ac is contained in that of a’¢’ (in fact, the supports

" are the same). The minterms 111 and 101 contained in ac are thereby covered free of cost. It is the
) case then that the inclusion of a prime p; affects the cost of inclusion of another prime p, whose
~ support is contained in that of p;. In general, the total cost of selecting a set of primes can be less
than the sum of the costs of the primes selected because of support-sharing. For example, if f is to
be implemented using 3-LUTs, the combined cost of all the primes is one LUT, whereas the sum
of the costs of the primes in the minimum-cube cover is three. Note that the standard formulation

* of the covering problem works only if the columns have independent, fixed costs (weights). It
* does not allow a dynamic relationship among the costs of the columns. We next show that it is
* possible to solve the problem at hand by transforming it into another covering problem in which the
costs of the columns are fixed and independent. In the modified formulation, not all columns are
primes; some correspond to sets of primes. These sets are generated by taking all possible unions
“vof the prime-supports and including a union if it has at most m variables. If a prime p is such
that |o(p)| > m, p will be excluded from the union process. Of course, it will be included in the

21t is the same as Table 4.1.
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modified covering table as a singleton set.
The modified formulation consists of the following three steps:

1. Generate all the primes of f. Then, generate a set 2 of all possible unions of prime-supports
where each union has at most m variables.

2. Using U, build the modified covering table C from the original table C.

3. Solve C.

Generation of unions of prime-supports

Let P denote the set of primes of the function f. Our goal is to generate I/, where
U={s:35=Upega(p), QC P, suchthat |s| < m} 8.4
Depending on the supports of the primes, we divide P into two sets: P<sm, and Py,

Pzm {peP:lo(p)l < m}

To generate U, it suffices to consider only @ C P<,,. We systematically take union of supports
of primes in P<, as follows. First, we generate the set of supports So = {s : s = o(p) for some
P € P<m}. With each support s, we maintain a tag of primes P(s) = {p € P<m : o(p) C s},
i.e., P(s) is the set of those primes whose support is contained in s.3 Let S) be a duplicate copy
of Sp, and S; = ¢ for j > 1. The algorithm proceeds in iterations. In iteration j, for each s € Sp,
and t € Sj, it computes v = sU t. If |u| > m, itis discarded. If u has already been generated,
P(u) = P(u)UP(s)UP(t). Otherwise, it is added to S;4) with P(u) = P(s)UP(t). This process
is repeated until a fixed point is reached. The final set of supportsis&f = Sp U S2 U S3...U Sk4s,
where k is the final iteration. Since .5 is same as Sy, it is not included.

This algorithm is quite fast. For all the benchmarks we tried, four iterations were sufficient
to generate the entire U for m = 5. We illustrate the working of the algorithm with the following
example. Let P<r, be {po, P1, 2, p3, pa}. Let the prime-supports be as follows:

3Initially, for each s € So, P(s) = {p € P<m : (p) = s}. As the algorithm proceeds, primes whose supports are
subsets of s get added in P(s).
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support | prime
{a,b} bo
{a', b} n
{a,c} [m
{a,b,¢} | ;s
{da €9 } P4

Let us also assume that m = 5. We generate Sp and tag each support with the corresponding

prime(s).

support | prime tag

{aa b} Po,P1
{a,c} | p2
{a,b,¢} | p
{d,e, 9} | P4
Next, 51, a copy of S, is generated.
set | support | prime tag
{as b} Do, Py
So {a’ c} y2/]
{a” b? C} p3
{d7 €, g} P4
{aa b} Po, D1
Sl {a’ c} »
{a’ b, c} p3
{d,e,9} | Pa

" We pick t = {a,b} € S} and vary s over So. First, s = {a,b}. Since s = t, no new support

3
-

is generated and the prime tags also remain unchanged. Next, s = {a,c}. Then u = {a,b,¢},
which is already in Sp. We set P(v) = P(u) U P(s) U P(t), ie., P({a,b,c}) = {p3,P0, 11,12}
Next, s = {a, b, c}, for which » = {a, b, c}, already present in Sp. P(u) remains same. Finally,

s = {d, e, g}, and we generate v = {a, b, d, e, g}. This is a new support and is added in S, with the
. prime tag P(u) = {po, P1,Pa}. The current supports and the corresponding tags are as follows:

set | support prime tag
{a’ b} Po, D1

So | {a,c} P
{aa b, C} P3P0 P15 P2
{d,e, g} Ps
{a,b} - Po, 1

Sl {aa C} )
{a, b’c} P3,PosP1, 2
{da €, g} Pa

SZ {aaba da e,g} Po>P1,Pa
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Next, t = {a, c} € §). Repeating the above process, we generate a new support {a, ¢, d, e, g} with
tag = {p2, pa}.

set | support prime tags
{a, b} bo, 1

So | {a, c} y 173
{‘l3b7c} P3P0 P1a P2
{d, €, g} P4
{a, b} Po, 71

Sl {aa c} y 273
{a1b7c} P3P0, P12
{d7 €, g} P4
{a')ba da e,g} Po,P1,P4

52 | {a,c, d,e,g} P2,P4

The next two elements from §) do not generate any new supports of cardinality at most
5. Although a new support {a, b, ¢, d, e, g} is generated, it is discarded because it has 6 variables.
The last table then marks the end of the first iteration.

In the second iteration, we pick elements from S, and take their unions with the el-
ements of So. It can be easily verified that no new supports of cardinality at most 5 are gen-
erated. Hence, a fixed point has been reached and the procedure terminates. & = So U S =
{{a,b},{a,c},{a,d,c},{d,e,g},{a,b,d,e,g},{a,c,d,e,g}}.

Constructing the modified covering table

Let C be the original covering table for f. The entries of the modified covering table C
are determined as follows. The column set of C corresponds to Ps,, U U, whereas its rows are the
minterms of the on-set of f. The column in corresponding to a prime in Ps,, is identical to the
corresponding column in C. Next, consider a column, say 7, of ¢ corresponding to support s € U.
Then, C| (¢,5) = 1if and only if some prime p € P(s) covers the minterm of f corresponding to row
i. In other words, column j is the entry-wise union of the columns in C corresponding to primes in
P(s). Note that each such column j corresponds to a set of primes that can be put on one m-LUT.

Each column of C is assigned a weight equal to the cardinality of the corresponding
support. This is because a support s; with 2 elements is less expensive than a support s, with 5
elements: s; can accommodate any other support with at most (m — 2) elements, whereas s, can
accommodate only a support with at most (m — 5) elements.
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abe | {a'c,ac} {a'b,ab’} {be,b'c'}
000 1 0 1
010 1 1 0
011 0 1 1
111 1 0 1
101 1 1 0
100 0 1 1

Table 4.3: The modified covering table ¢

Solving the covering table

Given a covering table, selecting a subset of columns of minimum-weight that covers
all the rows is an NP-hard problem. However, efficient heuristics exist that work well even on
reasonably large tables [31, 68]. We use one such heuristic [68, 11).

We now show how the algorithm works on the example of Table 4.2. Recall that m = 2 for
this example. Applying first two steps, we find that the modified covering table C has three columns,
with prime tags {a'c’, ac}, {a', ab'}, and {bc, b'c’}. Note that P>, is empty. Each column of C is
formed by merging the corresponding columns of C. For example, the column {ac’,ac} hasa 1in
a row whenever either a’c’ or ac has a 1 in that row in the table C. The resulting covering table is
shown in Table 4.3. Each column is assigned a weight of 2. Any two columns cover all the rows of
~ C. In particular, we can generate the SOP of (4.3) by picking the last two columns.

Interestingly, the algorithm described above has the capability of increasing the number
of cubes too. For instance, in the previous example, if the starting representation is assumed to be
the minimum-cube cover f = ab’ + a’c’ + be, the algorithm still comes up with the representation
f = ab' +a'b+ be + ¢/, which has 4 cubes.

444 The Overall Algorithm

Given a cover of a function f, the overall algorithm works as follows:

1. If |o(f)| £ m, no minimization is done. This prevents a feasible function from becoming
infeasible after simplification, which could happen because of substitution of a function
outside the support of f into f through the use of don’t cares.



4.4. SIMPLIFICATION 149

2. The local don’t care set d is generated for f using the algorithm by Savoj et al. [72]). This is
useful in a multi-level framework.

3. All primes of the incompletely specified function ( f, d) are generated. The prime-generation
algorithm used is the one implemented in ESPRESSO-EXACT [11]; it uses the method
of iterative consensus. While generating them, if it is detected that they are too many (i.e.,
more than a user-specified parameter NUM_PRIME), the generation process stops. Only
NUM-PRIME primes are generated. Then, cubes from the original cover are added to ensure
that the resulting SOP is a cover of ( £, d).

4. The covering table C is built.? Cis generated, as described in the step 2 of the algorithm.
If € is not too big, it is solved as described in step 3, thus producing a subset of primes
that covers all the rows of €, and hence of C. Otherwise, € is so big that solving it by the
heuristic mentioned for step 3 in the last subsection does not give good results. So, we enter
the REDUCE-EXPAND-IRREDUNDANT ESPRESSO loop, appropriately modified. The
modification is in the procedure IRREDUNDANT [11], which first generates a covering table
C* and then solves it to produce a minimal cover. Typically, C* is much smaller than C or
C. Our modification is an obvious one: instead of solving C*, we first generate C*, and then
solve it.

5. The cover obtained from the last step is checked against the original cover. Whichever gives
better results after cube-packing is accepted. This step corresponds to a similar one in misl|
[12], where a simplified function retumed from the two-level minimizer is accepted only if it
improves the cost (typically number of literals in the factored form).

44.5 Experimental Results

The main claim of this work is that it is possible to obtain a representation of a function
using two-level minimization that is better suited for cube-packing. The benchmarks should be such
that we can perform effective two-level minimization. The MCNC two-level benchmarks (PLAs)
provide such a scenario. Since PLAs generally have multiple outputs and cube-packing operates
on single output functions, we treat each function independently.  After appropriate two-level
minimization (either standard or the one targeting LUTs), we run cube-packing on the minimized

“In ESPRESSO, the rows of C do not correspond to the minterms of the on-set of f; they, in fact, represent sets of
minterms [11], thus yielding a smaller table size.
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example || ESP_CUBES | ESP_SOP-LITS | ESP.LUT || £t R A
5xpl 24 24 11 2.181 2.181
9sym 114 114 111 1.027 1.027
Z5xpl 25 25 14 1.785 1.785
Z9sym 115 115 72 1.597 1.597
alu4 236 236 226 1.044 1.044
apex1 1266 1265 || 1255 1.008 1.007
apex2 1118 1159 1118 1.000 1.037
apex3 889 892 874 1.017 1.020
apex4 802 802 736 1.089 1.089
apex5 1116 1116 1117 0.999 0.999
b12 27 27 25 1.080 1.080
bw 28 28 28 1.000 1.000
clip 64 57 35 1.828 1.628
conl 3 3 3 1.000 1.000
cordic 1127 1127 1125 1.001 1.001
cps 1092 1088 1064 1.026 1.022
duke2 319 314 305 1.045 1.029
64 545 545 545 1.000 1.000
ex1010 607 607 574 1.057 1.057
exd 269 269 274 0.981 0.981
ex5 148. 148 143 1.034 1.034
| inc 19 19 19 1.000 1.000
misex1 9 9 10 0.900 0.900
misex2 41 39 39 1.051 1.000
misex3 1083 1083 1040 1.041 1.041
misex3c 236 236 227 1.039 1.039
pdc 167 166 166 1.006 1.000
rd53 4 11 3 1.333 3.666
d73 61 62 56 1.089 1.107
rd84 195 195 132 1477 1477
sao2 63 54 42 1.500 1.285
seq 2100 2111 1937 1.084 1.089
spla 592 592 593 0.998 0.998
+ | squars 13 13 8 1.625 1.625
| 1481 295 295 295 1.000 1.000
"| table3 902 902 874 1.032 1.032
tables 832 832 839 0.991 0.991
vg2 22 22 22 1.000 1.000
-] xor§ 1 1 1 1,000 1.000
[ total 16569 16603 " 15958 " - -
mean - - - 1.126 1.147

Table 4.4: Number of 5-input LUTs after two-level minimization and cube-packing

ESP_.CUBES

ESPRESSO loop for minimum cubes, followed by cube-packing

ESP_SOP-LITS ESPRESSO loop for minimum SOP literals, followed by cube-packing
modified ESPRESSO for LUT architectures, followed by cube-packing

ESP_LUT
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function and evaluate the LUT count. The cost of a benchmark is the sum of the LUT counts of the
individually minimized functions of the benchmark. For this set of experiments, m = 5. We do
two kinds of minimization:

e ESP: Apply the two-level minimizer ESPRESSO [11], i.e., invoke the REDUCE-EXPAND-
IRREDUNDANT loop on the function until no further improvement takes place. This is done
for two cost functions:

1. number of cubes (column ESP_CUBES in Table 4.4),
2. number of literals in the SOP (column ESP.SOP-LITS in Table 4.4).

¢ ESP_LUT: Run the new minimizer described in Section 4.4.4. The following parameters are
set:

1. NUM_PRIME = 20,000.

2. Maximum size of € = 100 x 2500,i.e., if C has more than 100 rows and 2500 columns, the
LUT-modified REDUCE-EXPAND-IRREDUNDANT loop of ESPRESSO is entered.

The results of these experiments are shown in Table 4.4. The bold entries indicate the minimum
LUT count for the benchmark. On most of the benchmarks, ESP_LUT outperforms ESPRESSO
in the LUT count. On a per example basis and using geometric means, ESP_.CUBES is 12.6% worse
than our approach, and ESP_.SOP-LITS, 14.7%. On 5xp1, Z5xp1, Z9sym, apex4, clip, rd84, sao2,
seq, and squar3, the difference is significant, and often as much as 50%. Most of these examples
have a lot of primes with at most 5 literals, thereby providing ESP_LUT with plenty of opportunity
to generate unions of supports. Though not shown, the numbers of cubes in the covers generated
by ESP_LUT are almost always higher than those produced by ESP_-CUBES or ESP_SOP-LITS.
This is as expected, since ESP.CUBES generates optimum or near-optimum solutions for number
of cubes. This validates our hypothesis that neither of the two cost functions (number of literals and
number of cubes) is an accurate measure of the design complexity for LUT architectures.

On some benchmarks, we hardly find any improvement. Moreover, on some, ESP_LUT
gives worse results. One reason is that sometimes there are not too many unions of prime-supports
with at most 5 elements, and the optimization problem to be solved is not different from the standard
one. Moreover, in such cases, whenever the covering table is big, the heuristic solution obtained
after solving the covering table does not compare well with the solution generated by the iterative
improvement loop of ESPRESSO.
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With respect to the run times, ESP_LUT is slower than ESP_CUBES and ESP-SOP-LITS,
especially on the benchmarks with large number of primes. ESP-LUT keeps on generating primes
until it hits the NUM_PRIME limit, at which point it exits prime-generation and very likely switches
over to the modified minimizationloop. This is because in the experiments, NUM_PRIME = 20,000,
whereas the maximum column limit in C is 2500. On such examples, ESP_LUT is 10-15 times
slower.

4.5 Discussion

In our quest of the right cost function in logic optimization for LUTs, we were led to
look at the mapping step. We modified kemel-extraction and simplification. In kemel-extraction,
the value of a kernel was redefined, whereas in simplification, we targeted a representation suited
for cube-packing. In particular, we showed that number of cubes or literals in a sum-of-products
representation is not the best cost function for cube-packing. In the new formulation, the main idea
is to use the support of a set of primes as the basic object, as opposed to a prime. The proposed
technique generates around 13% better solutions after cube-packing as compared to a standard
two-level minimizer.

For a benchmark with a large number of primes, it becomes impractical to generate all of
them in ESP_LUT. So we switch to a modified ESPRESSO loop, but typically that too does not
give significant improvement as compared to the standard ESPRESSO loop. Recently, Mcgeer
et al. presented a new formulation of two-level minimization [55] that generates a covering table
typically smaller than the one generated by conventional two-level minimizers (so it can handle
benchmarks with a large number of primes), and guarantees that no optimality is lost in the process.
We will like to incorporate our work in this framework.

Let us see how our approach can be applied in a multi-level environment. Typically,
two-level minimization with an appropriate don’t care set is applied on the SOP at each node of the
multi-level network. It is natural to replace all the invocations of two-level minimization with our
formulation in a multi-level optimization script. However, we discovered that the modified script,
followed by a LUT mapping script, does not improve the quality of the final results for most of the
benchmarks. This is somewhat surprising. We attribute it to the following two factors:

1. We have not modeled cube-packing in other optimization routines such as kemel-extraction,
elimination, and resubstitution. By targeting minimum-cube and minimum-literal counts,
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these routines undo the work of ESP_LUT.

2. We have not modeled decomposition techniques such as Roth-Karp decomposition and co-
factoring, which are also used in LUT mapping.

All this underscores the need for a tighter coupling of the optimization and mapping steps
for LUT architectures. This is conceptually simpler for LUT architectures as compared to standard-
cells, because an LUT is easier to characterize than a standard-cell library. The work described here
is a step in this direction, which, we believe, will provide fertile ground for future research.
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Chapter 5

Complexity Issues

5.1 Introduction

As discussed earlier, many synthesis tools for LUT architectures have been proposed
- XNFMAP [88], chortle [25], chortle-crf [26], mis-fpga [62, 63], HYDRA (23], Xmap [39],
VISMAP (87}, ASYL [80], flow-map [16] to name a few. We can compare one tool with another
and get an idea of the relative quality of these tools, but there is no way of judging the absolute
quality of the solutions generated by any of these tools. This is an important concern, as it is directly
related to the researc?h effort that should go into improving these tools and the solution quality. One
way to answer this question s to compute the minimum number of LUTs needed for the realization
of a Boolean function. However, as shown in Corollary 2.3.2, this is a difficult problem - in fact,
NP-hard. It is desirable then to at least derive tight lower and upper bounds; with tight bounds one
can evaluate with some confidence how far various synthesis tools are from optimality. Also, if
good upper bounds can be obtained, one can use them to predict quickly the LUT-count of a circuit
without technology mapping.

This chapter presents some results on the complexity of a function measured in terms
of the number of m-LUTs required to implement it. Previous work is summarized in Section 5.2.
The new results are presented in Section 5.3. The first result is on computing upper bounds on the
complexity of an n-input function. Then the exact complexity of a particular class of functions,
namely those with (m + 1) inputs, is derived. The next set of results is on proving upper bounds,
given a representation of the function. Two representations are considered: sum-of-products and
factored form. To check how good they are, these bounds are compared with the synthesized circuits
in Section 5.4. Finally, open problems are discussed in Section S.5.
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5.1.1 Definitions
Throughout this chapter, we will use the following generalized notion of factored forms.

Definition 5.1.1 A factored form of a logic function is the generalization of a sum-of-products
. form allowing nested parentheses and arbitrary binary operations.

For example, ab’c’ + a'be’ + d is an SOP with 7 literals, and it can be written in factored form as
' ((a ® b)) + d with 4 literals. Note that the definition presented in Chapter 2 (Definition 2.1.14)
allows only AND and OR binary operations.

Definition 5.1.2 A leaf-DAG [68] is a rooted directed acyclic graph in which the only multiple
fanout nodes are possibly the inputs. The non-input nodes of the leaf-DAG are called internal. If
there is an edge from a node i to a node j, i is a child of j, and j the parent of i. In a leaf-DAG, an
internal node all of whose children are inputs is called a leaf-node, or simply a leaf. Every other
internal node is a non-leaf.

A leaf-DAG is a rooted tree (single fanouts at internal nodes) possibly with multiple fanout points at
some inputs. Figure 5.21 shows a leaf-DAG. Note that the notion of a leaf of a leaf-DAG is slightly
- different from that of a leaf of a BDD, as defined just after Definition 2.1.17. This is because the
- context in which the term will be used here is different.

. Definition 5.1.3 A Boolean function f(zy,%2,...,%ys) is trivial if it is either identically 0, identi-
cally 1, z; or z{ for some i, 1 < i < n. Otherwise f is non-trivial.

Inversion is considered a trivial function because it is essentially free for LUT architectures.

Recall from Definition 2.1.21 that a function f(z, . . .) essentially dependson z if f, # far.
For example, f(z1,%2,23) = 2122 + z1'z2 + 23 essentially depends on z5 and z3, but not on z;,
since f can be rewritten as 3 + 3.

Definition 5.1.4 The minimum number of m-LUTs needed to realize a function f is called its
complexity, and is denoted as C(f). For a set S of functions,

Cm(S) = r}lgng(f). (5.1)

For example, if f = z122 + 2123 = z1(22 + 23), C2(f) = 2. One 2-LUT realizes z(z,,23) =
z2 + 3, and the other f = z,2. Moreover, two LUTs are necessary, since f essentially depends
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on all the three input variables. Note that the complexity of a function does not depend on the
representation used.

An alternate way of measuring the complexity of a set of functions is to define it as the
sum of the complexities of the functions in the set. We will find this notion useful in Corollary
5.3.29, where we are interested in finding upper bounds on the number of LUTs needed to realize an
entire network. The network corresponds to a set of local node functions. However, in the majority
of the chapter, the notion given in (5.1) will be more appropriate. Also, it is the one we have seen
used in the literature [70].

5.2 Previous Work

Two types of results relate to this chapter - LUT-count prediction, which has been entirely
empirical, and theory for lower and upper bounds on the complexity.

5.2.1 Prediction of LUT-count

The only prediction work known to us is by Schlag et al. [75], who optimize benchmark
circuits using misli [12] and map the optimized circuits on to LUT-based architectures. By counting
the total number of factored form literals and the number of Xilinx 3090 CLBs needed for the entire
benchmark set (recall that each CLB can either implement any function of up to 5 inputs, or two
functions with at most 4 inputs each, with no more than 5 inputs in all [88]), they conclude that, on
average, roughly 5 literals are packed in a CLB.

Using mis-fpga, results with superior quality are produced. From Section 3.6.5, itis seen
that, on average, mis-fpga puts 4.8 literals in a 5-LUT, and 6 literals in a CLB (Section 3.7.1).

Though reasonable, both these approaches are empirical. We would like to provide a
theoretical basis for predicting the LUT-count.

5.2.2 Bound Theory

Let §(n) be the set of functions whose true support has at most = variables, i.e., S(n) =
{f ¢ lor(f)| £ n}. Then §(n) — S(n — 1) represents the set of n-input functions that essentially
depend on each of the n inputs. We first present lower bounds and then upper bounds on C,( f) for
f € 8(n).
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Figure 5.1: A single output, n-input network

Lower Bounds

Proposition 5.2.1 (Savage [70]) Let f € S(n) — S(n— 1), n > 1. Then Cu(f) > [224].
Moreover, this bound is tight, i.e., there exists a function f € S(n) — S(n — 1) that can be realized
in [2=1] LUTs.

Proof Consider 7, an optimum m-feasible realization of f. This is shown in Figure 5.1. It has
k = Cwn(f) intemnal nodes, n primary inputs, and 1 primary output. There is one distinguished
intemal node NV that realizes f. The total number of edges in 7 is counted in two different ways -
one, by counting the total number of fanins (i.e., the sum of in-degrees) and two, by counting the
total number of fanouts (i.e., the sum of out-degrees). The sum of in-degrees of all the nodes is at
most km + 1, since there are at most m inputs to any intemnal node, and, in addition, there is an edge
fanning in to the output node from N. To count the out-degrees, observe that each intemal node
fans out to some other node in 7, otherwise it can be deleted, resulting in a smaller realization. This
would contradict the fact that 7 is an optimum realization of f. This sums to at least k. Then, since
f essentially depends on each input, there must be at least one outgoing edge from each primary
input node. The sum of the out-degrees is then at least k + n.

km+1 > totalin-degree = total out-degree > k + n

Sk > n-—1
m-—1
Cnlf) > 21
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Since Cr( f) is integral, we can put ceil on the right side and obtain the desired result.
The bound is tight, and is met by f(z1,22,...,2,) = AND(z1,22,...,Z5). [ |

Definition 5.2.1 (/86]) The notion “almost all functions f of a class F(n) C S(n) have property
P” stands for the assertion that
[{f € F(n)| f has P}|
|F(n)|
Using simple counting arguments, Shannon [79] proved that optimum circuits (in terms of any
two-input gates) for almost all functions have exponential size. The reason is that the number of
circuits with small size grows much slower than the number of different Boolean functions. We

—lasn — oo.

make this precise in the next proposition.

Proposition 5.2.2 ([86]) Almost all n-variable functions f satisfy Ca(f) > 22

'

Proof See [86]. [ |
Upper Bounds
Proposition 5.2.3
2 ifm > 2,
C(S(m)) < d 52)
2" -3 ifm=2.

Proof f(z;,%2,...,2,) € S(n)is decomposed as
f=1fo + 21 fay (5.3)

As mentioned in Section 3.3.3, for m > 2, we need one LUT to realize f as in (5.3) (Figure 5.2
(A)), whereas for m = 2, we need 3 LUTs (Figure 5.2 (B)). We recursively decompose f, and f,/,
which are functions of at most » — 1 variables. This leads to the following recurrence inequality:

2Cn(S(n-1))+1 ifm>2,
Cn(S(n)) < { 2Cn(S(n=1)+3 ifm=2. 65

The boundary condition is C,(S(m)) = 1. Solving the recurrence, we get (5.2). [ ]
Later we will improve the bound for m = 2.

We must mention the following classical result by Lupanov [51). Here, a simple gate is
either an inverter, a two-input AND gate, or a two-input OR gate.
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Ay m>2 B) m=2
Figure 5.2: Using cofactoring for decomposition

Theorem 5.2.4 (Lupanov [51]) Every function of n variables is realizable with % simple gates
- for some c.

The proof is constructive and, in the light of Proposition 5.2.2, gives an optimum realization (to
within a constant factor) for almost all functions.
Miscellaneous
The following result shows the effect on complexity when m is changed to k.
Proposition 5.2.5 (Savage [70]) Let k and m be two constants such that k < m. Then
Ck(f) < ACw(f), (5.5)
where A is a constant.

Proof Let 7 be an optimum m-feasible realization of f, so it uses Cp,(f) m-LUTs. Let A =
Ck(S(m)). Then, the function implemented by each m-LUT in 7 can be replaced by a sub-network
- with no more than A k-LUTs. This results in a k-feasible realization of f using at most ACy,( f)
k-LUTs. [ ]

- Thus the complexity remains within a constant when the number of inputs to the LUT is changed.

5.3 New Results

First, the problem of realizing.an arbitrary n-input function using m-LUTs is addressed.
Section 5.3.1 derives an upper bound on the complexity of such a function, which is an improvement
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over the bound in Proposition 5.2.3. The exact value of Cr,(S(m + 1)) is presented in Section 5.3.2.
The next two sections are devoted to deriving upper bounds on the complexity, given a representation
of the function. This is useful, since in a synthesis environment, such a representation already exists.
Two representations are considered: the SOP and the factored form. Given an SOP, Section 5.3.3
provides an upper bound in terms of the numbers of cubes and literals in the SOP., Finally, Section
5.3.4 provides an upper bound in terms of the number of literals in a given factored form. This
result is extended for a multi-level, multi-output Boolean network.

5.3.1 Complexity Bound for an n-input Function

The technique presented in the proof of Proposition 5.2.3 to realize an n-input function f
results in a structure in which each non-leaf LUT is 3-feasible. It may be possible to collapse some
of the LUTs into their fanout LUTs, while maintaining m-feasibility (for m > 4). This improves
the bound for C,,(S(n)). Here, we only describe the result for m = 5.

Proposition 5.3.1
274 —1-23=1 foroddn,

n— 5.6)
2n4 —1 - 23# for even n.

Cs(S(n)) < {
Proof If we substitute m = 5 in (5.2), we get C5(S(n)) < 24 — 1. This bound corresponds
to a cofactor tree that is truncated at the leaves when a 5-feasible function is reached. We assume
that barring the truncation at the leaves, the tree is complete, i.e., has exactly 2"~ — 1 nodes. This
means that if on cofactoring some tree node function with respect to z;, a function g is obtained that
is independent of z;41, g is cofactored with respect to z;4) and replicated twice one level below.
First consider the case when = is odd. Let n = 2k 4 1. The cofactor tree T for this case is shown
in Figure 5.3. The maximum possible number of inputs in the global support of a node function,
called the label of the node, is shown at each level in the tree on the right. At each level, we have
chosen to cofactor with respect to the same variable.! Since each non-leaf node of 7" has at most
3 inputs (a leaf node may have as many as 5 inputs), some of the nodes of T can be collapsed into
their parents without destroying 5-feasibility. The strategy for collapsing is the following. Given a
non-leaf node ¢ with an odd label (so its label is at least 7), collapse one of its two children into it.
The resulting node has at most 5 inputs. Each collapsed node is a node saved. The total savings
are then the number of non-leaf, odd-labeled nodes. T has 1 node with label n = 2k + 1, 22 nodes

"It is not necessary for this proof, but for m = 6 better bound results if this strategy is followed.
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Figure 5.3: Cofactortree for f form =5and n = 2k + 1

" withlabel n — 2 = 2k — 1, and 2"~7 nodes with label 7.

Total savings = 1+22+2%+4... 427
= 1+4224+2%4...42%6
- 3
2"5 -1
- 3

Hence the number of nodes in the resulting tree is 2"~% — 1 — 222=1,
Similar argument is used for even n. [
Similar bounds may be derived for different values of m. However, the cofactoring or collapsing
strategies may need to be modified in order to derive better bounds. For instance, for 6 < m < 11,
cofactoring should be done with respect to two input variables.

Asymptotically, Lupanov bound of Theorem 5.2.4 is better than that of Proposition 5.3.1.
However, for some small values of n, Proposition 5.3.1 gives a better bound.
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5.3.2 Implementing (m + 1)-input Functions with m-LUTs !

Most optimized multi-level networks have simple node functions - with 3 to 10 inputs.
The entire set of optimized benchmarks of Chapter 3 has a total of 4694 internal nodes. Out of
these node functions, 4131 have at most 7 fanins and 4368 have at most 10. The average number of
fanins to each node is just below 4. Note that in commercial LUT architectures, m is small - e.g., 4
or 5. This motivated us to restrict the problem of determining the complexity of arbitrary functions
(which is a hard problem) to that of determining the complexity of the class of (m + k)-input
functions, where k is a small constant, say less than S. Now we solve for k¥ = 1. We show that
for m > 3, three m-LUTs, and, for m = 2, four m-LUTs suffice for an (m + 1)-input function.
Moreover, these bounds are tight, i.e., for each m > 2, there exists a function of (m + 1) inputs that
cannot be realized with fewer m-LUTs.

Theorem 5.3.2

3 fm2>3

We use the classical decomposition theory of Ashenhurst [3] to prove this theorem. We
stated the main decomposition result, Theorem 3.3.1, in Chapter 3. This result, however, deals
only with disjoint decomposition, i.e., when the bound set and the free set are disjoint. To prove
our result, we need to consider non-disjoint decomposition as well. We now extend the theory of
Ashenhurst to handle such decompositions.

Consider f(X,Y, Z),where XNY = XNZ = YNZ = ¢suchthat thebound setis XUZ
and the free set Y U Z. So Z is the set of variables common to the two sets. For the decompositionto
be non-trivial, we require that X,Y # ¢. However, to model disjoint decomposition, Z is allowed
to be empty. For example, let f(a,b,c) = abe + a’b'c. Let X = {b},Y = {c}, and Z = {a}.
Then the bound set is {a, b}, and the free set is {, c}. The corresponding decomposition chart is
shown in Figure 5.4. The columns are indexed by the bound set variables and the rows by the free
set variables. The “-” entries are don’t cares, since for each of these entries, a takes on conflicting
values in the bound and the free sets. The common variables, Z, of the two sets are written before
other variables. Also, we follow the convention that the row and the column numbers start from
0. The assignment of the variables Z and Y corresponding to i** row is obtained from the binary
representation of 7 using | Z U Y| binary symbols. The same holds for the variables Z and X for the
columns. For example, in the chart of Figure 5.4, 0" row corresponds to the assignment Z, Y = 00,
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2100 01 10 11
wfo o - -
011 0 - -
0|- - 0 0
|- - 0 1

Figure 5.4: Decomposition chart for a non-disjoint decomposition

g 100 01
0|0 0
o1|1 O
Figure 5.5: By

i.e, a = 0,b = 0, whereas the first row corresponds to the assignment Z,Y =01,ie.,a = 0,b = 1.
Given these conventions, it is easily seen that the meaningful entries of the decomposition chart
consists of diagonal blocks (not necessarily square), the non-diagonal blocks being “-”. Each
diagonal block corresponds to an assignment to the Z variables. For example, the chart of Figure
~ 5.4 has two diagonal blocks. The block at the top left, By, correspondsto Z = a = 0, and the second
one, By, to Z = a = 1. This is shown in Figures 5.5 and 5.6 respectively. Note that if Z = ¢, the
% entire chart is a diagonal block. Also note that the columns in a diagonal block correspond to all
possible vertices in B!, and the rows to all possible vertices in B!".

Next, we introduce the notion of a trivial row of a decomposition chart or a diagonal
block.

Definition 5.3.1 A row of a decomposition chart (or a diagonal block) is trivial if all its entries are
zeros or if all its entries are ones. Otherwise, it is said to be non-trivial.

Figure 5.6: B;
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It turns out that the characterization of (possibly non-disjoint) decomposition is similar to
that of disjoint decomposition, except that it is in terms of the diagonal blocks.

Theorem 5.3.3 A simple (possibly non-disjoint) decomposition of f(X,Y,Z)with XNY =X N

f(X,Y,2)=g(a(X, 2),Y,2) ()]

exists if and only if each diagonal block of the corresponding decomposition chart D(X U Z|Y U Z)
has a column multiplicity of at most 2.

Proof If Z = ¢, the complete decomposition chart is one diagonal block, and the theorem reduces
to the disjoint decomposition case, i.e., Theorem 3.3.1. So let Z # ¢. Our proof is an extension of
the proof of Ashenhurst’s Fundamental Theorem of Decomposition (Theorem 3.3.1) [3].

(=): We are given that
f(X,Y,2) = g(«(X, 2),Y, Z),

where a is a single-output Boolean function. For the sake of contradiction, assume that a
diagonal block B = (b;;) of the decomposition chart D has more than 2 distinct column
patterns. Let B correspond to the assignment Z = z. We index B’s columns with X and
rows with Y (so the 0** row of B corresponds to Y = 0, and so on). Since B has more
than 2 distinct column pattemns, it has two non-trivial rows ¢ and j (correspondingto Y = ¢
and Y = j respectively) that are neither identical nor complementary. Then there exist two
columns k and ! such that

by = by= A, and (5.8)
bir # by, (5.9)

where A is a constant - either O or 1. These conditions can be rewritten as

f(k,i,2) = f(l,i,2)= A, and (5.10)
f(k,4,2) # f(l,3,2). (5.11)

An example is shown in Figure 5.7, with A = 0. Two cases arise:



166 CHAPTER 5. COMPLEXITY ISSUES

Ll . .1
i |0 . 0
310 1

Figure 5.7: A portion of the diagonal block B

- - - B

Figure 5.8: Diagonal blocks in a portion of the decomposition chart D
1. a(k,z) = o(l,2): Then,

f(kaj’ z) = g(a(k’ Z),j, 2)
9(a(l, 2), 4, 2)
f(l,4,2).

A contradiction to (5.11)!

2. a(k,2) # ofl, z) (one is 0 and the otheris 1): Consider a column of B corresponding to
X = p. Since a(p, z) = 0 or 1, either a(p, 2) = a(k, z) or a(p, z) = a(l, z). Without
loss of generality, assume a(p, z) = a(l, z). Then

f(p,i,2) = g(a(p,2),i,2)
= g(a(l,2),t,2)
= f(l,i,2)
= A

Since p was chosen arbitrarily, this means that the row ¢ of B is constant, i.e., trivial.
This contradicts the fact that the row ¢ is non-trivial!
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(<=): Figure 5.8 shows some diagonal blocks in the decomposition chart D(ZX|ZY') for f. For
each Z = z, diagonal block B; has at most two distinct column pattems. Then, it follows
from a lemma proved by Ashenhurst [3] that B, has at most four distinct row pattemns: 0, 1,
a;,a;’'2 The row 0(1) means that all the entries in that row are Os(1s). Each a is a function
of the variables X. For the chart of Figure 5.4, if we label the non-zero row of By (Figure
5.5) as ag and the non-zero row of B, (Figures 5.6) as «;, it is easily seen that ap = b’ and
a; = b, Define

o(X,2)= Y (Z%a.(X)), (5.12)
P73
where Z*, borrowed from Brown [13], is defined as follows. For a Boolean variable z, and
a € {0, 1}, define z° as

=2, z'=2z. (5.13)

The notation is extended to vectors as follows. For X = (z1,23,...,2z,), z; Boolean
variables, and A = (a1, a3, ...,a,) € {0,1}", define X4 as

XA = 2% 2% ... z,%. (5.14)

Then, interpreting z as a binary n-tuple, Z* becomes meaningful in (5.12). Note that when
Z=2z2,0(X,Z) = a,(X),since for Z = z, all 777 # z, evaluate to 0, and Z* evaluates to
1. For the chart of Figure 5.4, a(X, Z) = a(b, a) = a%ag(b) + alay(b) = a'b’ + ab.

If for some B, only one distinct column exists, which implies that the only row vectors are
0 and 1, define , to be 0.

The final step is to define g(, Y, Z) such that (5.7) holds. An assignment Z = z corresponds
to the diagonal block B.. The assignment of Y’ fixes the row in B,. Depending on whether
the row vector is 0, 1, a., or ./, g is defined, as in Figure 5.9. It can be checked that the
value of g is the same as that of f for all values of X,Y, and Z. For instance, when the label
of the row determined by (Y, Z) is 0, the row has all zeros and f is O for the entire row. Then,
g is set to 0, irrespective of a. A similar argument works if the label of row (Y, Z) is 1. For
the row with label a., f is equal to &, = o, and so is g. A similar argument works if the
label of the row (Y, 2) is a,’.

In the example of Figure 54, g(,Y,Z) = g(a,c,a) = d’ca + aca = ca. Clearly,
g(a(b,a),c,a) = ca = c(a’t’ + ab) = f(a,b,c).

2Deciding whether a row pattem is labeled a; or o’ is arbitrary.
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label of ow (Y, 2) a | g(a,Y, Z)
0 0 0
0 1 0
1 0 1
1 1 1
a; 0 0
Qa, 1 1
a,’ 0 1
a,’ 1 0

Figure 5.9: Defining g for a valid decomposition

[ |
The proof is constructive, i.e., it generates functions a and g as a by-product. It also provides
information about all different choices for . These correspond to the choices made in labeling the
rows of the diagonal blocks. A question that remains unanswered is that of uniqueness of g, given
f and a. Next, we present necessary and sufficient conditions for g to be unique. Since the result
also holds for a non-simple decomposition (i.e., when a = @ = (o, a3, . . ., a¢)), it is stated in full
generality.

Proposition 5.3.4 Given f(X,Y, Z), &(X, Z) = (a1(X, Z), a3(X, Z),. .., (X, Z)), and that a
decomposition of f exists as

f(X,Y,2) = g(&X, 2),Y, Z). (5.15)

Then, g is unique if and only if for each v € B, there exists an (z, z) pair for each z € B?| such
that &(z,z) = v.

Proof (=) : Assume that for some v € B, there is a 2 € B!Z| such that for all z € B/,
&(z,2z) # v. Then we can define § such that g(v,y,2) # ¢(v,¥,2) (f g(v,y,2) = 0,
g(v,y,2)is set to 1, and vice versa), where y is an arbitrary vertex in BY|. On all other
triples, § is defined to be the same as g. Clearly § # g. To see that § gives a valid
decomposition for f, i.e.,

f(X’Y’ Z) = “g-(&(X’ Z)’Y’ Z)’ (5‘16)

it suffices to check that (5.16) is satisfied at Y = y, Z = z (on all other points, g agrees with
g, and g satisfies (5.15)). Pick any z € B!, Now, &@(z, z) = ¥ # v (by assumption). Then,
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using the definition of g,

§la(z,2),9,2) = §(9,y,2)
= ¢(¥,y,2) [since v # 7)
= g(a(z,2),9,2)
= f(z,9,2).

Thus, (5.16) is satisfied at Y = y,Z = z, and all z € B'X|. This leads to a contradiction,
since only a unique g satisfies (5.15).

(«=) : Letg1,92 (g1 # g2) satisfy (5.15). Then for some v, y, z, g1 (v, ¥, 2) # 92(v, ¥, z). Consider
an z such that &(z, z) = v, the existence of such an z being guaranteed by assumption. Then,
f(z,y,2) = g1(&(z, 2), ¥, 2) = 92(&(z, 2), y, 2). This implies that g1 (v, y, 2) = g2(v, ¥, 2).
A contradiction!

For a disjoint decomposition, Z = ¢, and Proposition 5.3.4 reduces to the following.

Corollary 53.5 Given f(X,Y), a(X) = (a1(X), 02(X),...a:(X)), and that a decomposition
of f exists as

f(X,Y) = g(a(X),Y). .17

Then, g is unique if and only if for each v € B, there exists an z such that &(z) = v.
<

In other words, if all the minterms in the @-space are used, there are no don’t cares associated with
g, and so g is unique.*If some minterm in the &-space is not used, it is a don’t care for g, and g is
no longer unique.

Now we are ready to prove Theorem 5.3.2. We do so by proving Lemmas 5.3.6 and
5.3.11.

Lemma 5.3.6

3 fm23

Cn(S(m+1) < { A
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Proof For m > 3, the desired bound, 3, is obtained by puttingn = m 4 1in (5.2). Thecase m = 2
is more complicated. If we substitute n = m + 1 = 3 in (5.2), an upper bound of 5 is obtained,
which corresponds to the following decomposition of f(a, b, c):

f = g+h, (5.18)
g = cfs (5.19)
h = cfa. (5.20)

The functions f. and fo, being 2-feasible, can be realized with one LUT each. This bound can be
lowered to 4 by showing for each 3-input function a realization that uses 4 LUTs. The technique
used does not show explicitly a realization for all such functions. It removes many functions from
consideration, since the complexity of these functions is easily seen to be either at most 4 or at most
the complexity of some function that is not removed from consideration. To prove the bound of 4,
consider a 3-input function f(a, b, c). It can be written as

f(a" b, C) =cfc+ C'fc"

The functions f. and f depend only on a and b. Since the pair (f., fcr) determines f uniquely,
to generate all 3-input functions, it suffices to consider all ordered pairs of functions that have a
and b as inputs. The following proposition removes some functions from consideration if one of its
cofactors is trivial.

Proposition 5.3.7 Given a function f(a,b,c),
1. fo=00r f.=1=Cy(f) <2
2. fe=aorfo.=borfo=a"or fo=b = Cy(f) L4.

Proof 1. f. = 0= f = ¢f+, which can be realized with two 2-LUTs. If f. =1, f =
¢+ ¢ fo = ¢+ fo, whichis also realizable with two 2-LUTs.

2. If f. = aor f. = b, f. does not need an LUT. If f, = a’ or f. = ¥, the LUT that realizes f,.
is an inverter and can be removed by absorbing the inverter into the fanout LUT.

[ |
So, out of sixteen possible 2-feasible functions, only the following ten need be considered as the
candidates for f. and f~ (the case numbers 0 through 9 are used for labeling the functions):

0. ab
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1. ab’

2. a'b

3. a't

4. a+b
5.a+ b

6. a'+b

7. d +V

8. ab+ o't
9. a'b + ab'.

The following labeling notation is used. Functions have case numbers as their subscripts. If the
case number for a function f is ¢j, 0 < ¢,j < 9, then f. and f correspond to the case numbers
¢ and j respectively in the above list of ten functions. For example, fo;(a,b,¢) = cab + c'ab’ is
obtained from the pair ( f., f-) = (ab, ab’), which are functions numbered 0 and 1 respectively in
the list.

At this point, there are 100 candidates for f. If f, = f~, then f is independent of c,
it has only two inputs, and therefore is realizable by one 2-LUT. This eliminates all functions f;;
from consideration. Hence for a fixed f., we need to consider 9 choices for f.. Now 90 choices
remain for f = (f, fo). All these choices correspond to non-trivial functions, since each such f
essentially depends on ¢, and so is not identically 1 or identically 0. Moreover, f # cand f # ¢/,
because f. # 1 and f. # 0. Now, we can use the next proposition to reduce the number of choices
by half.

Proposition 5.3.8 Let f(a,b,c) be a non-trivial function. Let g(a,b,c) = cfo + ¢'f.. Then
Ca(g) = C2(f).

Proof f = cf.+ c'f.. Let H(a,b) = f.,1(a,b) = f. Then,

f(a,b,¢c) cH(a,b)+ c'I(a,b),
g(a,b,e) = cl(a,b)+ c'H(a,b),
= g(a,b,¢) = f(a,b,c).
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Since inverters are free in LUT architectures for a non-trivial function, the result follows. [
This proposition allows us to consider only the two-element sets of two-input functions as the
candidates for (f, f) rather than ordered pairs.

Further, we can eliminate from consideration functions satisfying the condition of the
next proposition.

Proposition 5.3.9 If f» = f.’ for afunction f(a,b,c), then f can be realized with two 2-LUTs.

Proof Since f(a,b,c)=cf.+fo=cf.+c'f! = f(c, fe). Both f and £, need at most one LUT
each, and so f can be realized with two 2-LUTs. [

Proposition 5.3.10 A (generalized) factored formwith £(£ > 1) literals can be realized with (£—1)
2-LUTs.

Proof There are (£ — 1) binary operations in the factored form, and one 2-LUT suffices for each
such operation. |

Now, we are ready to show 2-feasible realizations of the remaining 3-input functions. In
the following analysis, Proposition 5.3.10 will be the default reason for the upper bound on C3( f).

01. f = abe + ab'e’. Since for = 0 = Cy(f) < 2 (Proposition 5.3.7)

02. f = abc + a'be’. Since fyr = 0 = C(f) < 2 (Proposition 5.3.7)

03. f = abe + a'b'e’ = (a't’ + ab)(a'e’ + ac) = (aBb)(aBe)® = Cy(f) < 3 (Proposition 5.3.10)
04. f = abc + (e +b)c' = ab+ac' + b’ = a(b+ ') + b’ = Co(f) < 4

05. f=abc+(a+b) =ab+bc=>Cy(f) <3

06. f = abc + (o' +b)c' = ab+a'c' = Cy(f) < 3

07. f = abc + (@’ + b')¢’. From Proposition 5.3.9, C2>(f) <2

08. f = abc + (ab+ a'b')c’ = ab + a'b'c’ = Cy(f) < 4

09. f = abe + (ab’ + a'b)c’ = (abBc)(a +b) = Co(f) < 4

Cases 12 to 19 can be derived from appropriate cases 01 to 09 by replacing b by b'. For ex-
ample, fiz2(a,b,c) = ab'c + a'bc’ = fo3(a,b’,c). Similarly, cases 23 to 29 can be derived by
replacing a by @', and 34 to 39 by replacing e and b by @’ and b’ respectively, in cases 01 to 09.

3@ denotes EX-NOR operation.
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Figure 5.10: The configuration for two LUTs

45. f=(a+b)c+(a+b) =a+ (be+b'c') =a+ (bBc) = Co(f) <2

46. f = (a+b)c+ (' +b)c’ = (ac+ a'c) + b= (aBc) + b= Co(f) <2

47. f = (a+ b)c+ (a’ + b')c' = (ac+ a'c’) + (be + b'¢') = (a®c) + (bBe) = Ca(f) <3
48. f=(a+b)c+ (ab+ a'V')' =ab+ac+bec+a'bVc =(a+b)Dc' +ab=> Co(f) < 4
49. f=(a+b)c+ (ab’ + a’'b)c’ = ab' + a'b+be=(aDb)+bc=> Co(f) <3

Cases 56 through 59, 67 through 69, and 78 through 79 can be derived from 45 through 49 by
replacing a or b or both by a’, b’ appropriately.

89. f = (ab+ a’d')c+ (ab’ + a'b)c’. From Proposition 5.3.9, Ca(f) < 2

This proves Lemma 5.3.6. . [ |

Lemma 5.3.11

3 ifm23,

C(S(m+1)) 2 { A

Proof We prove the lemma by first proving a few propositions.

Proposition 5.3.12 Consider a configuration of two m-LUTs T4 and Tg (Figure 5.10), which
realizes a function f € S(m + 1) that essentially depends on all m + 1 inputs. Then at least two
inputs of f are only connected to T4, and at least one input only connected to Tg.
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Sam 11,100 1.101 1.110 1.111

0 0 0 0 1
1 0 1 1 0

1.
1.

bued gk |2

Figure 5.11: A portion of the decomposition chart for f

Proof As shown in Figure 5.10, let C be the (possibly empty) set of common inputs to both 7’4 and
Tg, and R4 (Rp) be the rest of the inputs of T4(Ts). Then,

IC]|+ |Ral < m,(since T4 can have only m inputs), (5.21)

|Cl+ |RB| < m — 1,(since one input of T'g is the output of T'4), (5.22)

|C|+ |Ral+ |RB| = m + 1,total number of inputs of f (5.23)

From (5.21) and (5.23), |Rp| > 1, and from (5.22) and (5.23), |R4| > 2. [ ]

Proposition 5.3.13 For each m 2> 2, there exists a function of (m + 1) inputs that cannot be

realized with two m-LUTs.
Proof Consider
. !
f(zy,22,.. -;zm-l-l) =z2;.. Pl 02T B - 2122 .xm+1'

Note that f is a totally symmetric function. Also, it essentially depends on all (m + 1) inputs and,
hence, cannot be realized with one m-LUT. Let f have a realization with two m-LUTs T4 and T
of Figure 5.10. This corresponds to a simple decomposition of f with the bound set CU R 4, and the
free set C' U Rp. From Proposition 5.3.12, without loss of generality, let z; and z; be the inputs of
f that are connected only to T4, and z3 be the input connected only to Tg. The bound set can then
be written as C'...zz3, and the free set as C'...z3. Consider the portion of the decomposition
chart for f corresponding to the assignment (z4, 2s,...,Zm41) = (1,1,...,1) (i.e., all 1s), and all
possible values for z1, 23, and 23 (shownin bold in Figure 5.11). This portion, shownin Figure 5.11,
is a part of a diagonal block, and has three distinct column patterns. This leads to a contradiction,
since the configuration of Figure 5.10 implies the existence of a simple decomposition. Recall from
Theorem 5.3.3 that for a function to have a simple decomposition, each diagonal block must have
- at most 2 distinct column patterns. Hence f cannot be realized with two m-LUTs. ]
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2100 01 10 11
01 0 0 1
10 1 1 1

i g e G
rT T T T

Figure 5.13: Possible cases for two LUTs

This establishes the lemma for m > 3, since we have shown that Cp,(S(m + 1)) > 3.
For m = 2, we have to show that there exists a 3-input function that cannot be realized with less
than four 2-LUTs. Consider the function f(e, b, ¢):

f(a,b,¢) = ac + bc+ ab + a'dt’'¢’

Once again, f is totally symmetric and essentially depends on all the variables. Our proof strategy
is to assume that f can be realized with two and then three 2-LUTs and reach a contradiction.

1. Two LUT realizability: As Figure 5.13 shows, there are three ways in which inputs can be
assigned to the pins of the LUTs. However, since f is totally symmetric, only one need
be considered. We examine (i). Here, the decomposition chart corresponds to the partition
ab|c and is shown in Figure 5.12. There are three distinct column pattemns, resulting in a
contradiction.

2. Three LUT realizability: This is a difficult case to analyze, since many configurations are
possible. Furthermore, for each configuration, there are many assignments to the pins of the
LUTs. We first enumerate all possible configurations for three LUTs, then assign the inputs
of f to the pins of the LUTSs, and finally check if the conditions for a valid decomposition are
satisfied.
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T T
1 o 3 T,
b B! T
-l 1 (I
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Figure 5.14: Configurations for three LUTs

Hl
c
b

al
I_T_*f‘_l
a

A) ®

Figure 5.15: T feeding into T3 is an unnecessary case

Finding all possible configurations: We claim that only two configurations, shown in Figure
5.14, need to be considered. This can be seen as follows. Consider the root node T3 of the
configuration. It either has

(a) one input from another LUT, T3, and the other one from an input of f. Then necessarily
T;, receives one input from 7 and the other from f. Clearly, T} has both its input pins
tied to some inputs of f. This is the configuration 1, or

(b) both inputs from LUTs, T} and 7>. If T} was providing an input to 75 as well (Figure
5.15 (A)), f can be realized with two LUTs (collapse T3 into T3), as shown in Figure
5.15 (B). Hence T3 and T receive both their inputs from inputs of f. This results in the
configuration 2.
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Figure 5.16: Possible cases for Configuration 1

Comment: No LUT may have just a single input, otherwise f can be realized with fewer
LUTs.

We now consider each configuration, and assign the inputs of f to the pins of the LUTs.

Configuration 1: A.ll possible cases are shown in Figure 5.16. We do not need to consider
cases where the same input feeds two adjacent LUTs (say, 77 and T3), because f could
be realized with fewer LUTs (remove T by collapsing it into 73). We just consider (A).
The rest follow from symmetry. Let a; be the output of 7). Figure 5.16 (A) implies that
f = ab+ ac+ be + a’b'c’ has a decomposition of the form f(a, b, ¢) = g(a(a,b), a,c). This
corresponds to the bound set {a, b} and the free set {a, c}. The decomposition chart for f
with these sets is shown in Figure 5.17. We first derive all possible candidates for a;. Since
the maximum number of distinct columns in both diagonal blocks is 2, a; exists. There are
four choices for a;, two of them being trivial, namely a; = b and a; = b’. These can be
ignored, since they correspond to T using only one input, in which case T; can be collapsed
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2100 01 10 1

w|j1 o0 - -
orfo 1 - -
0(- - 0 1
myp- - 1 1

Figure 5.17: Checking if f can be realized by configuration 1 (A)

ac |00 01 10 11
00 1 1 0
10 1 1 1

Figure 5.18: Decomposition chart for g

into T, yielding a smaller realization of f. The non-trivial choices are

@) o) = a'bt’ + ab.
®) a; = ab’ + a'b.

Since these two are related to each other by an inversion, we need to consider only one, say
a) = a'b’ + ab. Then, using the rules of Figure 5.9, g(a1,a,¢) = a'ca; + d’caj + aoy +
acaj = c'ay + caj + aay. It can be checked that o, satisfies the conditions of Proposition
5.3.4 and hence, g is unique. Figure 5.16 (A) corresponds to the decomposition of g of the

form
g(al,a’c) = h(O"Z(al,c)’ a) (524)

The decomposition chart of g is shown in Figure 5.18. 3 distinct column pattemns indicate
that this decomposition is not possible. A contradiction! So f cannot be realized with three
2-LUTs using configuration 1.

Configuration 2: As shown in Figure 5.19, there are three possible ways to assign a, b, and ¢
to the pins of the LUTs. Once again, using symmetry, we only consider (A). Let g(a;, a3) be
the function realized by T3. Then f = g(ai(a,b), ax(a, c)). The functions a; and g are the
same as those for the configuration 1 (A).

o = a'b'+ab,
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Figure 5.19: Possible cases for Configuration 2

2100 01 10 11
0[{0 1 0 1
1{1 0 1 1

Figure 5.20: Checking if f can be realized by configuration 2 (A)

g(ar,a,¢) = deq + caj + aa;.
Figure 5.19 (A) corresponds to a decomposition of g of the form
g(ala a, c) = h(“Z(a’ c)a al)

The corresponding decomposition chart for g is shown in Figure 5.20. 3 distinct column
patterns indicate that this decomposition is not possible. A contradiction! So f cannot be
realized with three 2-LUTSs using configuration 2.

Hence, f cannot be realized with three 2-LUTs.

This completes the proof of Lemma 5.3.11. [ ]
Comment: This lemma also shows that there exists a 3-input function that has a minimum (gener-
alized) factored form of more than 4 literals.

Theorem 5.3.2 follows immediately from Lemmas 5.3.6 and 5.3.11.

Two Applications

One application is to use the theorem to improve the upper bound on C(.5(n)) as given
in Proposition 5.2.3.
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Corollary 5.3.14
Cy(S(n)) < 2™ 4272 423 3 (5.25)

Proof Use the recurrence inequality (5.4) for m = 2.
C2(8(n)) <2Cy(S(n-1))+3

While solving the recurrence, instead of terminating at a 2-input function with C>(S5(2)) = 1, use
Theorem 5.3.2 to now terminate at a 3-input function with C2(S(3)) = 4. This yields (5.25). =
This bound is better than that of Proposition 5.2.3 (for m = 2) by 2*~3. However, for large n,
Lupanov’s bound (Theorem 5.2.4) is better.

The second application is to find a lower bound on C3( f) in terms of Ca( f).

Corollary 5.3.15

C
&) < oyny < )

Proof From Theorem 5.3.2, we know that C2(S(3)) = 4. The result follows from Proposition

5.2.5 by substituting A = C»(5(3)) =4,k =2,m=3. [

As will be shown in Corollary 5.3.22, the upper bound can be tightened for a special case.

5.3.3 Complexity Bound Given an SOP Representation

We are normally given a sum-of-products representation of the function. The following
proposition derives a simple upper bound on the complexity of the function based on the numbers
of literals and cubes in the SOP.

Proposition 5.3.16 For a function f with £ > 1 literals and c cubes in a sum-of-products represen-

tation,
=14+ (c+1)(m-2)

m-—1

Cm(f) <1 J- (5.26)

| Proof Realize f by realizing all cube functions and then ORing them together. If a cube i has ¢;

literals, it can be realized with [5'—‘] m-LUTs (from Proposition 5.2.1). Then, all the cubes can be

- realized with 35, [ 5‘—‘] m-LUTs. If a cube j has just one literal (i.e., £; = 1), it is left as such,

consistent with its O contribution to the sum. To OR these c cube functions together, additional
L] m-LUTs are needed. This gives
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l c—l
Catn) < Nrazhyy izl
=1
S -1 m-=-2 c-1 m-=2
<  }
- g( —l+ —1)+m—1+m—1
£ -1) m-2 c—1
< l—l(
< — + (e +1)m 1+m—1
< l- m— 2 11
< —l+(c+1)(m 2)

m-—1

Since Cy.(f) is an integer, we can take the floor of the right hand side, and obtain the desired result.
[ ]

Note that the bound also holds for £ = 1 when m > 2. However, it fails for m = 2 and £ = 1. This
bound uses one term. A slight improvement is possible if two terms are used.

Proposition 5.3.17 For a function f with £ > 1 literals and c cubes in a sum-of-products represen-

tation, . ,
+ ¢(m - -1

Cm(f) <1 ( )J + [ — | (527

l'l just manipulate the first term. -

This bound does not hold for £ = 1 - when the function is a simple inversion.

5.3.4 Complexity Bound Given a Factored Form

Since a factored form representation is generally smaller than a sum-of-products repre-
sentation and is more closely related to the area of the circuit implemented (e.g., in a standard-cell
methodology), it is natural to ask if we can find an upper bound on the complexity in terms of literals
in the factored form.# For m = 2, it is easy. For an £-literal factored form, (£ — 1) 2-LUTs suffice
(Proposition 5.3.10). So we focus on > 2. Our main result is the following:

“Recall that we are using a generalized notion of a factored form, in which the binary operations are not restricted to
just AND and OR. All ten binary operations including NAND, NOR, EX-OR, EX-NOR, etc., are allowed. This allows
potentially smaller factored forms. However, if only AND and OR are allowed, all the results presented here continue to
hold.
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Figure 5.21: Converting a factored form to a 2-feasible leaf-DAG R

Theorem 5.3.18 For a function f with £ literals in a factored form,

o) < X igore22)

o) < 5 Ngore23)
st s X Igore 2
Colf) < |5 Igore 2

This theorem states, for example, that any factored form having 10 literals can be realized by six
3-LUTs, or four 4-LUTs, or three 5-LUTs, or three 6-LUTs. Note that computation of the bounds
does not require the factored form to be known, but just the number of literals in it.

The proof has three main steps:

1. Given an {-literal factored form (£ > 1), obtain a 2-feasible leaf-DAG R with T = (£ — 1)
intemnal nodes. This derivation was described in Proposition 5.3.10. Note that an m-feasible
leaf-DAG implementation of f is a leaf-DAG whose internal nodes are m-LUTs (and so have
at most m children) realizing m-feasible functions. In addition, the root node realizes f.

Example §.3.1 Consider
f=((a+b)(c+d))+ (dd') (5.28)

The 2-feasible leaf-DAG corresponding to f is shown in Figure 5.21.
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2. Convert R into an m-feasible (leaf-DAG) implementation . The basic strategy here is fo
place the LUT nodes of R in rooted, disjoint, connected groups, such that each group is
realizable by one m-LUT. We restrict ourselves to disjoint groups, since for a leaf-DAG,
there always exists an optimum grouping (cover) that is disjoint. The algorithm used to group
the nodes is key in deriving good bounds.

3. Derive bounds on the size of R in terms of that of R.

We assume that no internal node (LUT) of R has only one child (input). If there is such an LUT, it
is either a buffer or an inverter, which can be suitably absorbed in the fanout (parent).

If R is aleaf-DAG or a tree, dynamic programming based exact algorithms that minimize
the number of nodes in the resulting m-feasible implementation R are known [25, 41]). These
algorithms, however, do not provide any bounds on the size of R. Therefore different techniques
have to be resorted to. First, we solve for m = 3,4,5, and 6. Then, we present a technique for
general m. Since step 1 will be identical for all m, in the following arguments, we start from the
second step with a 2-feasible leaf-DAG R generated from the first step. In the following, r will
refer to the root of the leaf-DAG R, T (T') to the number of LUTs (internal nodes) in the leaf-DAG
R (R),and A = T — T, to the reduction in the LUT count after converting R to &%. Also, unless
stated otherwise, “visiting or grouping a node of a DAG” will mean visiting or grouping an LUT or
an internal node.

2-feasibility to 3-feasibility

A 2-feasible leaf-DAG R is converted into a 3-feasible leaf-DAG R by forming parent-
child pairs. Each such pair has no more than 3 inputs and hence can be realized with a 3-LUT. First,
we examine a simple top-down traversal, which pairs nodes starting from the root of R. Then, we
show how to obtain an improved bound by traversing the DAG bottom-up.

Proposition 5.3.19 Given a 2-feasible leaf-DAG realization R of a function f with T internal
nodes, it is possible to obtain a 3-feasible leaf-DAG realization R of f that has at most (3T + 1) /4
internal nodes.

Proof We give a simple algorithm to pair the LUTs of R. Traverse R topologically from top (root)
to bottom (leaf LUTS), i.e., visit a parent before any of its children. If an unpaired non-leaf LUT
vertex is encountered, pair it with one of its LUT children,; ties are broken by pairing the vertex with
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A a/\/

Figure 5.22: Converting R into R using the top-down pairing algorithm

—_————_———

its left child. The working of the algorithm is illustrated for the leaf-DAG of Figure 5.21 in Figure
5.22. The number inside an LUT denotes the order in which the LUT is visited; so LUT 1 is visited
first and LUT 5 last. LUT 1 is paired with 2, and then no more pairings are possible. This gives a
reduction of one LUT in the resulting 3-feasible DAG, i.e., A = 1.
Analysis of the algorithm: 1t is easy to see that after the algorithm is applied, all non-leaf LUTs
get paired. Since each pair can be implemented with one 3-LUT, a 3-feasible implementation R is
. obtained after collapsing the pairs appropriately.

Let L be the number of leaf LUTs in R. The number of non-leaf LUTs is then T — L.
Since all the non-leaf LUTs are paired, the number of pairs (i.e., A) is at least (T' — L)/2. Since the
number of non-leaf nodes in a 2-feasible leaf-DAG is atleast L — 1, L < (T' 4+ 1)/2. So

T = T-A

T-(T-L1)/2
(T+L)/2
(T+(T+1)/2)/2
(3T +1)/4

IA I A

Since T is integral, T < | (3T + 1)/4]. If Tiseven, T < |(3T)/4). m

This bound is tight given that we use the top-down pairing algorithm described above.
Tightness means that there is a leaf-DAG on which the algorithm cannot do any better than the
bound. Consider the leaf-DAG R of Figure 5.23. R contains p copies of the sub-structure S. So
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Figure 5.23: Tightness of bound given the top-down pairing algorithm

T = 4p. On applying the pairing algorithm, the root node of S gets paired with its left child (as
shown). None of the leaves of S can be unpaired. This holds for all the p copies. So all 2pleaves of
‘R remain unpaired. The number of pairs is p, and hence T=3p=3T /4. This argument, however,
does not discount the possibility of another strategy resulting in an improved bound. In fact, as we
show next, a bottom-up traversal of R yields a saving of at least (T — 1)/3.

Proposition 5.3.20 Given a 2-feasible leaf-DAG realization R of f with T internal nodes, it is
possible to obtain a 3-feasible leaf-DAG realization R of f that has at most (2T + 1)/3 internal

nodes.

Proof Traverse R bottom-up, i.c., visit an LUT before its parent. Initially, all LUT nodes are
ungrouped. When visiting a vertex v, the following possibilities arise:

1. v is already grouped: do nothing.

2. vis ungrouped: if v = r, do nothing. Otherwise, let the parent of v be w. If w is ungrouped,
group v with w, as shown in Figure 5.24 (A). If w is grouped already (the only way that can
happen is that w is paired with its other child z (Figure 5.24 (B)), do nothing.

Let us apply this algorithm on the leaf-DAG of Figure 5.21. The pairings are shown in
Figure 5.25. Note that T = 5. LUT 1 is visited first and the root r, the last. Two pairs are formed
- first {1, 3} and then {4, 5}. This means that for each such pair, R will have one LUT node. So
T = 3. Note that this is better than what is obtained by a top-down traversal.
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b ]

Figure 5.25: Example: converting a 2-feasible leaf-DAG into a 3-feasible leaf-DAG

Analysis of the algorithm: Assume that k nodes remain unpaired after the algorithm. The number
of paired nodes is then (T — k), so A is (T — k)/2. At least (k — 1) unpaired nodes are non-root
nodes and have parents. Consider such a node v. The only reason it was not paired was that at the
time it was visited, its parent w was already paired (this pair has root w). We call this pair problem
pair(v). For instance, in Figure 5.25, problem pair(2) = {1, 3}. It is easy to see that if u and v are
- two distinct, non-root, unpaired nodes, their problem pairs are disjoint. So there are atleast2(k —1)
paired nodes.

(T-k) 2 2(k-1)
sk < (T+2)/3
A = (T-k)2

> (T-(T+2)/3)/2
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Figure 5.26: Covering a balanced tree

= (T-1)/3

Therefore, T = T — A < (2T + 1)/3. n
As the following proposition shows, this bound is tight, i.e., there exists a leaf-DAG on which no
more than one-third size-reduction is possible, allowing any pairings.

Proposition 5.3.21 Let R be a balanced 2-feasible tree with T internal nodes, and R a 3-feasible
tree with T internal nodes obtained by covering R optimally. Then, A =T — T < [(T - 1)/3].

Proof Let R have D levels. Then T = 20 — 1. Let Ar = T — T. We show by induction on D
that A < [252).

Basis: Since D = 1 is trivially satisfied, consider D = 2 as the basis. By collapsing either of the
two leaf nodes into the root 7, an optimum 7 is obtained. Then, Ag = 1 < [(3-1)/3]

Induction hypothesis. For all balanced trees R with depth d < D, the proposition is true.
Induction step: Consider a balanced tree R with D > 2 levels. Let r be the root of R, v and w,
the two children of 7, and V and W, the sub-trees rooted at v and w respectively. V and W have
(D — 1) levels each. The root = can be covered in one of the following two ways (Figure 5.26):

1. 7 remains a singleton: Then the reduction is obtained only in V and W.

Total reduction = Ay +Aw

D-1_1y_
< 2 [(—2%] [Induction hypothesis]
2b-1 -2
e
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There are two sub-cases: either 2°-1 — 2 is a multiple of 3, or it is of the form (34 — 1).5 In
the first case,

2D _4
3

20-a_ , . .
=T 3 1(2” - 4 is a multiple of 3]

2D _2
3 1

Total reduction <

<

In the second case, 2P~! — 2 is of the form (3k — 1). Then,

2b-1_2
Total reduction < ZIT]
2b-1_2 1
= A=5—+3)
_ 2D-4+g
-3 3
_ 2Pb-2
)

20-2. o .. .
= [—T][Z — 2 is a multiple of 3]

2. r is paired with v (the other case when r is paired with w is symmetric): Let z and y be
the two children of v, and A" and ), the trees rooted at them respectively. A" and ) have
D — 2(> 1) levels. Then, the total reduction is one more than the sum of the maximum
reductions in X', Y and W (the additional reduction of one being obtained from pairing r and
v):

Total reduction

Ay +Ay+Aw +1
2b2_2  2D-1_2
2f 3 141 3 1 + 1[Induction hypothesis]

IA

Once again, consider two sub-cases. When (2P-2 - 2) is a multiple of 3, we get

2D—2 - 20-1 -2

Total reduction < 2f 3 2] + 3 1+1
D-2 _ D-1 _
= 2(2 3 2)-i-2 3 2+%+1[2”" — 2 is of the form (3k + 2)]

STt is easy to see that it is never of the form (3% — 2).
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2D-1_4 2P142
3 T3
2D -2
3
2D -2

= [ 1120 - 2 is a multiple of 3]

When (2P-2 - 2) is of the form (3k — 1), we get

2D-2_3  ~2D-1_2
Total reduction < 2[ 3 1+1 3 141

2P-2_2 1, 2012

= A5 +3)+ + 1[2P-! — 2 is a multiple of 3]
2b-1_2 2P-1_3

= 3t t1

_ 2P

-3

20-2. o . .
[—3—][2 — 11is a multiple of 3]

Az is the maximum of the total reductions obtained in all the cases. Hence Ax < [2173—‘2]. This
completes the induction step. [

In fact, for a balanced tree, the reduction [T—;—'] is achievable. This should be clear from
Propositions 5.3.20 and 5.3.21. An altemative is to use the dynamic programming argument of the
proof of Proposition 5.3.21 itself.

We use Proposition 5.3.20 to tighten the upper bound of Corollary 5.3.15 for a special
case.

Corollary 5.3.22 If there exists an optimum 2-feasible implementation of f that is a leaf-DAG,
then

C 2 1
) <oy <o+ (529)
4 3 3
Proof Immediate from Corollary 5.3.15 and Proposition 5.3.20. [ |

2-feasibility to 4-feasibility

Proposition 5.3.23 Given a 2-feasible leaf-DAG realization R of f with T > 2 internal nodes, it
is possible to obtain a 4-feasible leaf-DAG realization R of f that has at most T /2 internal nodes.
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Figure 5.27: Converting a 2-feasible leaf-DAG into a 4-feasible leaf-DAG

Proof At most 3 nodes are allowed in a group. Once again, traverse R bottom-up. nitially, all
LUT nodes are ungrouped. When visiting a vertex v, the following cases arise:

1. vis already grouped: do nothing.
2. vis ungrouped: there are two sub-cases:
i. v = r. if some child of v is involved in a pair, merge v in this pair to get a triple.
Otherwise, do nothing.

ii. v # r: group v with its parent w. If w was initially ungrouped, the grouping looks as
in Figure 5.27 (A). If w was grouped already, the only way that can happen is that w is
paired with its other child = (Figure 5.27 (B)). Place v in the group.

Analysis of the algorithm: After all the nodes have been visited, all LUT nodes of R, except possibly
7, are grouped. Let there be p triples (i.e., groups with three nodes, as in Figure 5.27 (B), the group
with z,v, and w) and q doubles (or pairs). Each triple gives a saving of two LUTs, and double, a
saving of one LUT. There are two possibilities:

1. The root r is grouped: then

3p+2¢
2p+g¢q
1.5p+ ¢
T/2

>3
v
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2. The root r is ungrouped: then

= 3p+2g¢+1
A = 2p+g

IfT =2,clearly A = 1 =T/2. For T > 2, some child z of r must be involved in a triple,
otherwise r would have been grouped with z in the step 2 i). This implies p > 1.

>
I

2p+4q
> (15p+1/2)+¢
T/2

Hence, the 4-feasible 7 has at most T'/2 nodes. [
Next, we prove that this bound is tight.

Proposition 5.3.24 Let R be the 2-feasible tree shown in Figure 5.28 with T = 4p, and R be the
4-feasible tree with T LUT nodes obtained by covering R optimally. ThenA =T -T <2p=T /2.

Proof R has 2p copies of the basic sub-structure S. Assign labels to the nodes of R as in Figure
5.28. Consider all possible types of groups (or matches) rooted at a given node ». If v is an
even-numbered node, the only possibility is that the group is a singleton, and, hence, no savings
are obtained. Let v be an odd-numbered node, say 1. In all, six matches are possible, as shown in
Figure 5.28. It is easy to see that for each match, we cannot obtain a reduction of more than 50%
on the portion affected by the match. For example, if the match 5 is selected, node 4 has to remain
a singleton, and this eliminates two out of the four affected nodes (i.e., nodes 2 and 3 outof 1, 2, 3
and 4). Applying this argument to an optimum (disjoint) cover of R by these six types of matches,
we get the desired result. n

2-feasibility to S-feasibility

Using similar but more complicated arguments, we show that a 60% reduction in T can
result when we go from a 2-feasible implementation to a 5-feasible implementation.
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~
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Figure 5.28: 2-feasibility to 4-feasibility: proving tightness

Proposition 5.3.25 Given a 2-feasible leaf-DAG realization R of f with T internal nodes, T > 3,
it is possible to obtain a S-feasible leaf-DAG realization R of f that has at most (2T +1)/5 internal
nodes.

Proof We put at most 4 nodes in a group. As in the earlier proofs, we visit the LUT nodes of
"R bottom-up and consider them for covering. Initially, all the LUT nodes are ungrouped. When

¥ visiting a node v, there are two cases:
1. visungrouped: consider the three sub-cases:

i. v is a leaf-node (i.e., both its children are inputs): if v # r, group v with its parent p.
If p is already in a group, put v in the same group. As we shall show in Claim 2, this
grouping with the parent results in either a double or a triple. Note that v = r cannot
happen, since T' > 3.
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Figure 5.29: Case v already grouped: v is the root of a double and so is y

ii. visanon-leaf node, and its one child, z, is in a double: group v with z to get a triple.

jii. vis anon-leaf node, and none of its LUT children is in a double: if v # r, group v with
its parent. This generates either a double or a triple. Otherwise, do nothing.

2. v is already grouped: then v is root of either a triple, or a double. It cannot be part of a
quartet, as will be shown in Claim 1 momentarily.

i. vis the root of a triple: do nothing.

ii. v is the root of a double: let z be the child of v with which v forms a double. If the
other child y of v is an LUT node and is in a double, merge the two doubles to form a
quartet as shown in Figure 5.29. Otherwise, do nothing.

Analysis of the algorithm: We first make a few claims:

Claim 1: If a vertex w was already in a group G when it was visited, G can only contain w and
some of its children.

Proof: w can be grouped before being visited only in cases 1 i) and 1 iii), and, hence, only with its
children (when they were singletons). In any case, either a double or a triple is generated, and w is
the root of the group in either case.

Claim 2: While v is being visited in case 1, whenever v is grouped with its parent p (i.e., sub-cases
i and iii), either a double or a triple is generated.

Proof: If p is ungrouped at the time of visiting v, a double containing v and p is generated. The case
that p is already grouped can happen only when the other child of p, say w, was single at the time

w was visited and had to be grouped with p. When v is added into this double, a triple containing
v, w and p is created.
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Figure 5.30: p gets merged with a double to form a triple

Claim 3: After vertex v is visited (v # r), it is grouped.

Proof: If v is not already grouped, the case 1 of the algorithm will group it.

It follows that after r has been visited, all the LUT nodes of R, except possibly r, are grouped.
Claim 4. After r has been visited, for each double (except the one containing r (if it exists)), we
can associate a unique triple.

Proof: Let v be the root of such a double. By assumption, » # r; so let p be the parent of v.
Consider the two possible cases:

a. p was ungrouped when visited: Since one of the children v of p is in a double, case 1 tells us
that this can happen only when there is another child z of p that was also in a double at that
time, but on visiting p, p merged in this double generating a triple (shown in Figure 5.30).
Since no triple is modified by the algorithm, this triple will be in the final cover, and the one
we will associate with the double rooted at v.

b. p was grouped before it was visited: by Claim 1, at the time of visiting, p can be either in
a double or in a triple. If p were in a double (which is necessarily different from that of v),
then by case 2 ii), the two doubles (rooted at p and v) will be merged to result in a quartet.
This is not possible, since the double at v exists in the final cover. Also, p can be involved in
a triple only with its two children (Claim 1). Since » is in a double with its child, this case is
not possible either.

We have thus associated a triple for each double (that does not involve 7). Since this triple is rooted
at the parent of the double’s root, it is unique. This proves Claim 4.
We now compute A. Let there be p triples, ¢ doubles and s quartets in the final cover of

R. It is convenient to analyze the following cases:
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a. r is in a double: then from Claim 3, and the disjointedness of the groups, we get T =
4s 4 3p + 2q. Also, from Claim 4, p > g — 1. Since a quartet gives a saving of 3, a triple of
2, and a double of 1, we get

A =3s+2p+gq
= %[Ss+ 10p/3 + 5¢/3]
= %[ss +3p+p/3 +54/3]
> 2[53+ 3p+2¢ - 1/3|(since p > ¢ — 1)
- %[4s+3p+29+3]
=§W+3—Uﬂ
3, 1

p ety
-ST 5

b. risinatriple, orin a quartet: then, T’ = 4s 4+ 3p + 2¢, p > q. Then

A =3s+2p+gq
= g-[S.s +10p/3 + 5¢/3)

= g[Ss +3p+p/3+54/3]
> %[53 + 3p + 2¢](since p > q)
= §[4s+3p+2q+ s]
=§H+ﬂ
> 3r
c. risasingleton. ThenT =4s+3p+2¢+ 1,and p > ¢. We analyze all possible cases:
i. Some child of r is in a quartet: Then s > 1,
A =3s+2p+g
= g[Ss + 10p/3 + 5¢/3]
= %[5s +3p+p/3 +5¢/3]

2 %[53 +3p + 2g)(since p > ¢)
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= §[4s+3p+2q+s]

> %[43 +3p +2¢ + 1](since s > 1)

3
==T
5

ii. No child of 7 is in a quartet, but a child, z, is in a triple: then, as a post-processing
step, we can merge  in this triple to get a quartet. Since we are reducing the number of
triples in the final cover, p > ¢ — 1, and s > 1 where p, g and s are the values obtained
after post-processing. Also, T' = 4s + 3p + 2¢. This case then is same as a.).

iii. No child of r is in a quartet, or a triple: then r’s child(ren) is (are) part of a double. But
then, 1 i) of the algorithm would have combined r in this double. So this case is not
possible.

Hence the number of nodes in the resulting 5-feasible DAG is at most %T + % [ ]
We can also get a 5-feasible implementation by converting first R to a 3-feasible leaf-DAG
R/, and then R’ to a 5-feasible leaf-DAG . Then, the size of R is bounded above by 1/2 the size
of R - a weaker bound as compared to that of Proposition 5.3.25.
We now show that like previous propositions, this bound is also tight.

Proposition 5.3.26 Let R be the 2-feasible tree shown in Figure 5.31 with T = Sp. Let R be a
S-feasible tree with T internal nodes obtained by covering R optimally. Then A =T - T < 3p =
(3T)/5.

Proof There are p copies of S in R. We assign a label & to each - the copy with the nodes
{1,2,3,4,5} is assigned ¥ = 1, and the root copy is assigned £ = p. Let R() be the sub-tree
rooted at node ¢, and Ag(;) the optimum reduction in the size for R(¢) when it is converted to a
5-feasible R(i ). There are 7 possible pattems for converting R into ﬁ, as shown in Figure 5.32. In
this figure, no distinction is made between the left and the right children. For instance, the pattern 2
does not imply that the left child of the root of the pattern is an LUT, just that one child of the root
is an LUT. Each of these patterns can be implemented as a 5-LUT.

Define Q(k): Ar(sk—4) < 3k — 2, Ap(sk-2) < 3k.

It suffices to prove Q(p), since Q(p) implies Ag(s,_3) < 3p. We prove Q(k) by induction
on k.
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Figure 5.31: 2-feasibility to 5-feasibility: proving tightness

T

1 2

NN
A £

Figure 5.32: All possible patterns for getting a 5-feasible leaf-DAG
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Basis Q(1): It is easy to see that Ag(1) < 1. Also, since no match with 5 nodes (which results in a
" reduction by 4) is possible, a saving of at most 3 is possible (e.g., by covering nodes 1 and 2 with
pattem 2, and 3, 4 and 5 with pattern 4). This proves that Az(3) < 3.

Induction hypothesis: Q(k') is true for all &’ < k.

Induction step: We have to prove that Q(k + 1) is true. We prove Ag(s(x+1)-4) < 3(k+1) — 2.
The proof of Ar(s(k+1)-2) < 3(k + 1) is similar. Figure 5.33 shows all matches :.j rooted at node
5(k+1)—4 = 5k + 1, where 1 is the corresponding pattem number from Figure 5.32, and j
is an index for the match. For example, corresponding to the pattern 1, there is only one match,
1.1, whereas corresponding to the pattemn 2, there are two matches, namely 2.1 and 2.2. Given a
match .5 rooted at Sk + 1, we compute the best possible savings for the inputs to the match, and
then sum them up along with the saving due to the match to obtain the total saving Ag(sk4+1)(¢-5)
for the sub-tree R(Sk + 1). Ag(sk+1) is the maximum over all 4, j of Ag(sk41)(2.5). For each
match, we also show the best way to cover the left children fanning in to the match, and are left
children of some node in the match. The best cover for the right children is obtained from the
induction hypothesis. This asymmetry arises because the subtree rooted at the left child of a node is
simple, and its optimum cover can be obtained from inspection. From Figure 5.33 and the induction
hypothesis, we have

0+0+ Ar(sk-2)
3k

Ar(sk+1)(1.1)

IA

Ar(sk+1)(2-1) 1 +Ar(sk-2)

3k+1

140+ 1+Arsig)
2+ (3k-2)

3k

2+ 14 Ar(sk-a)
34 (3k-2)

3k+1

240+ 0+Ar(ske)
24 (3k —2)

3k

IA

AR(5k+1)(2-2)

IA

Ar(sk41)(3.1)

N IA

Ar(sk+1)(4.1)

IA
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Figure 5.33: 2-feasibility to 5-feasibility: proving tightness
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Ar(sk+1)(4:2)

IA

Ag(sk+1)(5-1)

N IA

Ar(sk+1)(5:2)

A

Ar(sk41)(6.1)

I IA

Ar(sk+1)(7-1)

IA

Ar(sk+1)(7.2)

IA

AR(sk+1)(7-3)

IA

Then

AR(sk+1)
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2+0+1+0+Ag(si—y)
34+3(k-1)

3k

3+0+ Ar(sk-4)

3+ (3k—2)

3k+1
3+1+4+0+Arsk-7)
4+3(k-1))

3k+1
3+0+0+0+Ar(se-7)
3+3(k-1))

3k

3+0+ Ar(sk-4)

34+ (3k-2)

3k+1
3+1+40+Ar(sk-7)
4+43(k-1))

3k+1
3+1+0+1+0+Ag(sk-9)
54+4(3(k-1)-2)

3k

- n‘;gx{AR(SkH)(i-j )}
3k+1
3(k+1)-2

IN

I

In Figure 5.34, the matches rooted at the node 5(k + 1) — 2 = 5k + 3 are shown. Using similar

arguments, it can be proved that Ag(sk43)
which we just proved).

< 3(k + 1) (in fact, the proof uses Ar(si41) < 3k +1,
[ ]
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2-feasibility to 6-feasibility

Proposition 5.3.27 Given a 2-feasible leaf-DAG realization R of f with T internal nodes, T > 3,
itis possible to obtain a 6-feasible leaf-DAG realization R of f that has at most T /3 internal nodes.

Proof We use the same algorithm that was used to convert a 2-feasible leaf-DAG to a 5-feasible
one, except for a slight modification - we add a post-processing step at the end. It was shown in
the proof of Claim 4 in Proposition 5.3.25 that if there is a double rooted at v (v # r), there exists
a triple rooted at the parent of v. Since quintets are allowed while converting a 2-feasible DAG
to a 6-feasible dag, we merge the corresponding doubles and triples to get quintets. Note that this
merging is legal, in that it results in a connected group. As a result, there are only triples, quartets
and quintets in the final grouping, except possibly for a singleton at r, or a double rooted at 7. A
triple is the least area-saver per node of R as compared to a quartet or a quintet: it gives a saving
of 2 nodes for every 3. But that suffices our purpose. A more careful analysis (along with a simple
post-processing step) of the cases when 7 is a singleton, or is in a double, shows that R’ still has at
most 7'/3 internal nodes. [ ]
Unlike for 3 < m < 5, we do not know if the bound of Proposition 5.3.27 is tight. We conjecture
that it is. The conjecture is based on the forms of the bounds: all are of the form 2T

A Unified Technique

While deriving the upper bounds on 7, we used different algorithms for different values
of m. Also, it becomes difficult to develop algorithms for m > 6. A natural question to ask is
the following: “Is it possible to develop a single generic technique that works for all m?” In this
subsection, we attempt to answer this question by presenting a uniform technique of converting a
2-feasible leaf-DAG R into an m-feasible leaf-DAG for any m > 2. This technique divides R into
sets of levels and covers each set in a top-down fashion. Although it does not improve the bounds
in the general case.® it does yield better bounds for leaf-DAGs with special structures.

First we define the level of an LUT in R. The level of an input is 0. The level of an LUT
- is 1 + max{levels of its children}. Let k; be the number of LUTs at level <. In particular, ; is the
number of leaf-LUTs.

Theorem 5.3.28 Given a 2-feasible leaf-DAG realization R of f with T internal nodes such that
the number of leaf-LUTs, ky < T/a, it is possible to obtain an m-feasible leaf-DAG realization R
SWe know from the tightness of the bounds that for m =3, 4, and 5, the bounds cannot be improved.
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Level 2
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Figure 5.35: Converting a 2-feasible leaf-DAG to a 4-feasible leaf-DAG using leveling

of f with at most [(a + m — 2)/(am — a)]T internal nodes (plus a small constant).

Proof The argument is based on leveling R, and is explained using an example with m = 4 in
Figure 5.35. Grouping three LUTs t;,1;, and 3 corresponds to a 4-LUT and saves two LUTs. A
pair, say 4 and {5, is valid too and saves one LUT. The strategy then is to group an LUT ¢; at level
3iwithan LUT ¢, at (3¢ — 1) and ¢3 at (37 — 2), where ?; is a child of ¢; and #3 is a child of ;. This
group is a triple and so saves 2 LUTs. Repeating this process for all nodes at level 3¢, then varying
¢ over the entire DAG (i > 1), and summing up gives total savings of 2(ks + ke + kg + ...). Note
that this is possible since R is a leaf-DAG, and, therefore, k;4+; < k; forall 7 > 1. Next, we look at
all the ungrouped nodes at level (3¢ — 1); there are (k3;—; — k3;) of them. We pair each such node
with its child at level (37 — 2). Note that none of its children had been grouped. Varying i over R
and summing up gives additional savings of (k3 — k3) + (ks — kg) +.... So

A 2ks+ks+.. )+ (ko —k3+ ks —ke+...)

= (ka+ks3)+(ks+ks)+...
The case of general m is similar. For simplicity, we assume that the number of levels D
in R is of the form D = b(m — 1) + 1 (otherwise, we get an extra constant in the formula below).

We separate R into sets of levels: 1to (m — 1), mto 2(m — 1), and so on. Finally, we group nodes
within each set, as we did for m = 4. We get

A — (k2+k3+---+km—l)+(km+l+---+k2(m—1))+“‘
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[a]m=3|m=4|m=5|
2 3/4 2/3 5/8
3( 23| 5P 12
4 5/8 12| N6
5 351 15 2/5

Table 5.1: (a + m — 2)/(am — a) as a function of ¢ and m

-2
2 ::__l[(k2+k3+“'+km—l+km)+(km+|+...+k2(m_1)+k2m_1)+...]
(since k; > kit+1)
m-2
= moa -kl

m-—2
2 ——[T-T/d]

Let the resulting m-feasible leaf-DAG R have T LUTs. Then,

~

T = T-A
m-2,
< LN,
< T- 2241 -1/0)
_ a+m-2
- a(m-1)

[ |

The fraction (a + m — 2)/(am — a) denotes the best bounds the unified technique can

achieve. To compare it with the previous bounds, we evaluate this fraction for various values of a

and m in Table 5.1. ¢ = 2 denotes the most general case, since k; < (T + 1)/2 for any leaf-dag.

The unified technique does not fare well for a = 2 as compared to the previous bounds. For

instance, it can never give a (worst-case) reduction (i.e., A) of more than 50% for any m, whereas

the previous techniques could achieve this reduction for m > 4. However, for higher values of a,

we can guarantee more reduction as compared to the previous bounds. For example, for m = 3,

. @ > 3 gives better bounds than Proposition 5.3.20. Similarly, for m = 4, a > 4 gives better bounds

than Proposition 5.3.23.

It is instructive to note that higher values of a correspond to the case when R assumes a

more chain-like structure. In the limit, the bound of the theorem gives us the best possible size of
R, ie., T/(m — 1). This size is possible when R is simply a chain.
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Relating Factored Form and m-feasibility

We are now ready to prove the main result of this section, Theorem 5.3.18.

Proof (of Theorem 5.3.18) For £ > 1, it is possible to construct a 2-feasible leaf-DAG for f with
T = (£ — 1) 2-LUTs. Substituting T' = (£ — 1) in Propositions 5.3.20, 5.3.23, 5.3.25, and 5.3.27,
we get the desired result, since C,(f) < T for3 < m < 6and R is an m-feasible realization of f.
]

Upper Bound on Complexity of a Network

Theorem 5.3.18 states the upper bounds on complexity of a single function. Since a
general circuit has multiple outputs, which can share logic, it is desirable to extend the bounds to a
multi-output, multi-level network 7. The number of factored form literals in 7 is the sum over all
the internal nodes of the factored form literals of the function at each node. One way of generating
the complexity upper bound for 7 is to sum the bounds obtained using the factored form of each
node function. However, to get a closed form expression, one technicality has to be dealt with:
Theorem 5.3.18 is stated only for the case when the number of literals in the factored form is greater
than a small constant. However, it is valid if the function is m-infeasible. This implies that we can
apply it to 77 if we are told that 7 has k m-feasible nodes and that the infeasible portion of 7 (i.e. all
the m-infeasible nodes) has £ literals in factored form.

Corollary 5.3.29 Given a network 1, with k m-feasible nodes and ¢ factored form literals in the
m-infeasible portion,
k+|%] (m=3)

k+13] (m=4)
Cm(n) < 2
nGIEN(n) k+ l.%l.' (m =3)

k+ %] (m=6)

Proof Each m-feasible function of 7 can be realized in one m-LUT. To each m-infeasible function,
apply Theorem 5.3.18 and ignore the additive constants. [ |

5.4 Experiments
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Im| N [¥S[EF[XG[xQ
3 [ 1187 ] 12014 [ 8091 | 6234 | 6774 |
4 | 881 | 9242 | 5268 | 3918 | 4178
5 | 727 | 7800 | 4017 | 2821 | 3068
6 | 527 | 6451 | 2855 | 2004 | 2158

Table 5.2: Experimental data

m  number of inputs to the LUT
N number of m-infeasible functions over all benchmarks

2§ sumover N fns. of the SOP bound (Proposition 5.3.16)
2 F sumover N fns. of the factored form bound (Thm. 5.3.18)
> G sumover N fns. of the mis-fpga results in good mode
2@ sumover N fns. of the mis-fpga results in quick mode
m | &5~ 100% | 2329100 || 2521009 | 2521009 | LT [ T
3 48.1 43.6 229 163 1.6 1.1
4 57.6 548 25.6 20.7 1.5 1.2
5 63.8 60.7 29.8 23.6 1.6 1.3
6 68.9 66.5 29.8 244 1.6 14

Table 5.3: Bounds vs. mis-fpga

We conducted experiments to compare the bounds with the synthesis results generated by
mis-fpga. A suite of MCNC benchmarks optimized for literal count provided the starting point, as
described in Section 3.6.1. For each node function f in a benchmark, the following is done:

1. The numbers of cubes and literals in the given SOP representation for f are substituted in
Proposition 5.3.16 to obtain the S bound on the complexity of f for different values of m.
Also, a factored form is computed using the quick decomposition of misll [12]. This factored
form uses only the AND, OR, and NOT operations.” The number of literals in this factored
form is used to derive the complexity bounds F for f using Theorem 5.3.18.

2. mis-fpga is run in two modes: good and quick. In the good mode, mis-fpga is run so as to
obtain the best possible results. Different decomposition methods are used. These generate

"Theorem 5.3.18 is independent of the binary operations used in the factored form. It is better to use a generalized
factored foxm (with all binary operations), as we did throughout the chapter, because potentially a smaller factored form
is possible. However, misll creates a factored form only with AND, OR, and NOT operaﬁons.
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various feasible realizations of f, on which block count minimization techniques including
covering and support reduction are applied. The best realization is finally chosen. The
number of LUTs in this realization is denoted by G (for good). In the quick mode, a factored
form of f is obtained using the quick decomposition. This form is decomposed into two-input
AND and OR gates using tech-decomp in misl|. Finally, covering is performed. The number
of LUTs obtained is denoted by @ (for quick). The idea is that the bound F’ was derived using
a factored form and then applying a simple covering (recall the proof strategy of Theorem
5.3.18). Neither alternate decompositions nor support reduction were used. Since the quick
mode uses a similar method, it provides a fairer comparison for the bounds as compared to
the good mode.

Table 5.2 summarizes the statistics of the block counts obtained from these experiments.
Values of m from 3 to 6 are considered. For each m, the number of m-infeasible functions
encountered over all benchmarks is given in column N. An m-feasible node function is rejected
from consideration, since there is no uncertainty about its complexity. Column }_ S gives the sum
over all N functions of the bounds obtained from the SOP using Proposition 5.3.16. Similarly,
column Y~ F gives the sum of the bounds obtained from Theorem 5.3.18. 3 G and }_ @ list the
sums of the LUT counts for the mis-fpga synthesized results for the NV functions in good and quick
modes respectively.

Table 5.3 shows the percentage differences between the SOP bounds Y S and the syn-
thesized results 3 G and ) @ in columns 2 and 3 respectively. The corresponding differences for
the factored form bounds }_ F are shown in columns 4 and 5. Note that columns 2 through 5 give
only the percentage differences between the bounds and the synthesized results taken over all the
examples. To obtain better information about each individual function, we compute in columns 6
and 7 the average sum of absolute differences between F and G, and F and Q respectively. This
guards against the following cancelling effect present in the other columns. If for one function, F
is higher than @, but for another, it is lower, then simple differences may cancel out over the two
functions, giving an impression that on average, the two quantities are closer to each other.

It can be seen from Tables 5.2 and 5.3 that the bound .$ from the SOP representation is
weak, The mis-fpga results - G and Q values - are about 40-70% less. This was expected, since
an SOP is not a good indicator of the number of gates or LUTs in multi-level synthesis. However,
G and @ are closer to F.. The @ bound is about 16-25% less than the F bound (column 5 in Table
5.3). Moreover, the difference grows with m. To understand the reason for this behavior, we study
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Figure 5.36: All possible patterns for getting a 3-feasible leaf-DAG

the kinds of groups (or patterns) used in the algorithms of Propositions 5.3.20, 5.3.23, 5.3.25, and
5.3.27. Figure 5.36 shows all possible patterns for converting a 2-feasible leaf-DAG to a 3-feasible
leaf-DAG. The algorithm of Proposition 5.3.20 uses both of them. Figure 5.37 shows the pattems
used to obtain a 4-feasible leaf-DAG. The algorithm of Proposition 5.3.23 uses all of them except
the pattemn 4. The usage of pattemns worsens for m = 5 and m = 6. These pattemns are shown in
Figures 5.32 and 5.38 respectively. Only the first 5 patterns of Figure 5.32 are used in Proposition
5.3.25, whereas only the pattems 1, 3, 4, 5, and 9 of Figure 5.38 are used in Proposition 5.3.27. So
form = 6, only 5 out of 13 patterns are used. This may be why the factored form bounds for higher
values of m move further away from the synthesized results, which have the freedom of using all
the pattemns. Another possible explanation is as follows. There are many factored forms that have
e literals. These result in different 2-feasible leaf-DAG structures. The bounds produced using the
covering algorithms presented in the previous propositions hold even for the worst case. It may
be that for a given leaf-DAG R, much more reduction in the block count can be obtained when it
is converted to an m-feasible leaf-DAG. The difference increases with m, partially because of the
reason given earlier.
From the coiumn 7 of Table 5.3, we see that, on average, the F bound differs from
" the @ bound by about one LUT. This is indeed encouraging, since F' was derived using only the
“* information about the literal count; the structure of the corresponding leaf-DAG was not taken into
account.
To get an idea of the speed of the prediction (i.¢., bound computation), we noted the total
~ times taken for all benchmarks on a DEC 5900 workstation. While mis-fpga took 217 seconds
to synthesize the functions in quick mode and 576 seconds in good mode, only 1.3 seconds were
needed to compute the bounds from the SOP, and 1.6 seconds to compute first the factored forms
and then the factored form bounds for all the functions. This fast prediction capability can be
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Figure 5.37: All possible pattemns for getting a 4-feasible leaf-DAG

employed also to estimate whether a circuit will fit on an FPGA chip, without performing any
technology mapping. Corollary 5.3.29 may be used to derive the corresponding bounds for the

circuit.

5.5 Discussion

At the beginning of the chapter, we set out to evaluate the quality of a synthesis tool for
LUT architectures. Since it is a hard problem, we addressed the next most promising problem: that
of determining lower and upper bounds on the complexity of functions. Since the lower bound
theory is weak, the problem of finding tight lower bounds was abandoned, although we did compute
the exact complexity of the set S(m + 1).

Since in a synthesis environment, a representation of the function is already present, we
addressed the problem of determining upper complexity bounds for a given representation. Two
representations - sum-of-products and factored form, were considered. For m < 5, we proved
that the factored form bounds we derive are tight under reasonable assumptions. The bounds were
compared with the results produced by mis-fpga (new). For all the values of m tried, the bounds
were close enough to the synthesized results. This means that the bounds can be used for a fast
prediction of the number of LUTs needed to implement a function.

The following problems remain unsolved:

1. Determining exact values of the complexity of the set of (m + k)-input functions using m-
LUTs for £ > 1. Extending the technique for k¥ = 1 to higher values of k¥ becomes tedious.
This is because Cra(S(m + k)) is a non-decreasing function of k. To prove tightness, it has
to be demonstrated that for all p < C,(S(m + k)), p m-LUTs cannot implement some fixed
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f € §(m + k). For each p, all possible configurations of p LUTSs have to be enumerated. The
number of configurations increases with p, making the task formidable.

. Proving or disproving the tightness of the bound of Proposition 5.3.27.

Finding a technique for deriving upper bounds for a factored form for all m. So far, we have
proposed techniques for m < 6. It is desirable that the bounds be tight under the assumptions
already discussed. We conjecture that % is a tight upper bound for any m. It is based on the
form of the bounds in Theorem 5.3.18.

. Deriving these bounds for the commercial LUT-based architectures. For example, the LUT-

section of a Xilinx 3090 CLB can realize two combinational functions, but there are some
restrictions on their inputs.
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Chapter 6
Mapping Sequential Logic

6.1 Introduction

Thus far, we discussed synthesis techniques for combinational circuits. In this chapter,
we address how to synthesize sequential circuits on to LUT-based architectures. The problem is
interesting and important for many reasons:

1. Most of the circuits that are designed are sequential in nature.

2. Commercially available architectures, like Xilinx 3090, have sequential elements or flip-flops
(which we had ignored for the combinational case) inside the basic block. These flip-flops
are connected to the LUT-section of the CLB in such a manner that many different ways of
mapping portions of circuit on to the CLB are possible. Finding all possible ways and then
using them in mapping becomes a key problem.

3. The combinational and sequential resources on a chip are fixed. For instance, a Xilinx
3090 chip contains 320 CLBs, each of which has one combinational LUT-section that can
implement two functions, and two flip-flops. Given a digital circuit C with some number
of combinational and sequential elements that does not fit on a chip, it may be possible to
transform it into another equivalent circuit C with a different number of combinational and
sequential elements such that € fits on the chip. Finding these transformations is a challenge
in itself.

A digital circuit may be described at an abstract level by a finite-state machine (FSM),
which is a directed graph with labels on the edges. The vertices represent states of the machine, and
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Figure 6.1: Three steps in sequential synthesis

the edges the transitions between the states. The label(s) on an edge (u, v) has two parts - an input
part and an output part. The input part describes (input) conditions under which a transition occurs
from state u to state v. The output part specifies values that the outputs of the machine take under
this transition. '

Given an FSM description, the aim of synthesis is to translate it to the target LUT
architecture while optimizing some cost function. This may be the number of CLBs, delay through
the circuit, or a combination. One way of achieving this is to divide the process into three steps. The

" first step assigns unique codes to the states of the FSM, the second optimizes the circuit obtained
from the first step, and the third maps the result to the target architecture. This is shown in Figure
6.1.

State assignment: Most state-assignment tools minimize the number of literals in the

resulting circuit, while not using too many flip-flops. This is achieved using a minimum- or near-

* minimum-length encoding. A typical LUT architecture provides many flip-flops on a chip (e.g., a

Xilinx 3090 chip has twice as many flip-flops as CLBs). Hence the state-assignment problem for

- LUT architectures is different, in that the cost of a flip-flop is almost negligible. Some empirical

" work on the state-assignment problem for LUT architectures done by Schlag et al. [75] concluded

that one-hot state-assignment gives minimum CLB count. We will have more to say on this in
Section 6.3.1.

Optimization and mapping: A sequential circuit obtained from state-assignment must be
optimized and mapped to the target FPGA architecture. More work needs to be done to optimize
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Figure 6.2: Xilinx 3090 CLB

the circuit for the LUT architectures. For lack of such algorithms, we will use standard optimization
algorithms, which minimize the number of literals. Our focus will be on the problem of mapping an
optimized sequential circuit onto LUT architectures. We know of one technology mapping program
called XNFOPT [88], which supports sequential circuits.! However, it is a proprietary program,
and details of its algorithms are not known to us. In Section 6.3, we compare our results with
XNFOPT.

The chapter is organized as follows. We give an overview of the Xilinx 3090 architecture
in Section 6.1.1, and precisely state the problem in Section 6.1.2. The proposed algorithms for
sequential mapping are described in Section 6.2. Finally, we present results on a number of
benchmark examples in Section 6.3.

6.1.1 Overview of the Architecture

In Figure 6.2, a CLB of the Xilinx 3090 architecture [88] is shown. The main features of
the CLB are:

1) A combinational section (LUT-section): This sub-block has 7 inputs a,b,c,d,e, Q X, and
QY, and two outputs F' and G. The inputs a,b,¢,d, and e are called logic inputs. The
LUT-section can be configured to implement any one of the following.

a) Any single function F (or G) of up to five inputs. These inputs can be any five out of
the seven inputs.

!XNFOPT is no longer in the Xilinx toolkit.
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Figure 6.3: Intemal structure of the LUT-section

b) Two functions F' and G, which satisfy certain conditions, namely, each should have
at most four inputs, one variable a should be common to both functions, the second
variable (to both functions) can be any choice of b, @ X, and QY, the third variable -
any choice of ¢, @X, and QY and the fourth variable - any choice of d or e. These
conditions are called the sequential mergeability conditions (SMCs) and are shown
in Figure 6.3. " |

c) Some function F' of six or seven inputs. Here input e selects between two functions of
four variables: both functions have common inputs a and d and any choice of b,¢,Q X,
and QY for the remaining two variables.

2) Two D-type flip-flops with outputs @ X and QY. Data input for each flip-flop is supplied
from either F or G or direct data input DIN.

3) The CLB has two outputs X and Y. The output X can be either @ X, in which case we say
that X is latched, or F, in which case X is unlatched.? A similar statement holds for Y.

The flip-flop outputs QX and QY may be used as inputs to the LUT-section, thereby
providing feedback paths that can be used to implement, within a CLB, the feedback loops of a
sequential circuit.

We are interested in finding all possible choices for the CLB outputs X and Y. Let
fL denote the latched value of the signal f. From Figure 6.2, DX,DY € {F,G,DIN}, so

2We will use the terms flip-flop and latch to mean a flip-flop.
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QX,QY € {FL,GL,DINY}. Since X = ForQX,andY = Gor QY we get

X € {F,FL,Gt,DINT} 6.1
Y € {G,FL,Gt, DIN%} (6.2)

As will be explained later, we do not make use of option 1 (c) in this work.

6.1.2 Problem Statement

“Given a sequential circuit, represented as blocks of combinational logic and flip-flops,
and described in terms of Boolean equations, realize it using the minimum number of CLBs of the
target LUT-based architecture.’

We address this problem for the Xilinx 3090 architecture. The algorithms to be described
here were published in an abridged form in [61]. We are not aware of any other published work for
the synthesis of sequential circuits for LUT-based architectures.

6.2 Proposed Mapping Algorithms

Figure 6.4 shows the structure of a general synchronous sequential network. We view
it as combinational logic plus sequential elements (flip-flops). Hence, we can use combinational
techniques for the sequential synthesis problem.

We start with an optimized sequential network 7 and map it to the target LUT architecture.
We assume that 7 does not have more than one flip-flop with the same input. If it has, all such

flip-flops except one can be removed and the appropriate connections to the remaining flip-flop can
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Figure 6.5: Deleting unnecessary flip-flops

be made. This is illustrated in Figure 6.5. No optimality is lost by using this transformation if
a mapping algorithm that allows logic replication is used. The mapping algorithm has two main
- steps.

1. Obtain a k-optimal network 7 from 7, k¥ < m (for Xilinx 3090, m = 5) using the combina-
tional techniques of Chapter 3; we experiment with k=4 and k= S.

2. Cluster (map) the elements of 7 subject to the constraints imposed by the structure of the
CLB; these constraints were described in Section 6.1.1. Each cluster is a CLB. So we are
looking for a clustering that has the minimum number of clusters. We study two approaches
to clustering - map_together and map_separate. These map combinational logic and flip-flops
together or separately respectively.

6.2.1 map_together

This approach simultaneously maps the combinational logic and flip-flops of the sequential
network. It is an instance of the standard technology problem (as described in Sections 2.2.1 and
+ 3.4.1). It has three main steps:

1. We first derive a set of pattern graphs, which represent possible ways in which a set of
combinational and sequential elements can be placed together on one CLB. Since this step
depends only on the structure of the CLB, it is performed just once and is not repeated for

each network.

3These approaches do not use option 1 (c) of Section 6.1.1, because starting with a k-feasible network (k < ?), these
just group nodes of the network, and hence cannot generate a function with greater than 5 inputs. However, option 1 (b)
is used in maptogether, which means that a pair of functions with a total of more than 5 inputs can be placed on a CLB.
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2. From 7, we generate all possible candidate matches. A match is a set of combinational and
sequential elements of 7 that can be placed on a CLB. Since patterns correspond to all the
ways in which a CLB can be configured, each match has a pattern type (number) associated
with it. '

3. Finally, we select a minimum subset of these matches that will realize the network.

These steps are detailed next.

Pattern Graphs

The pattern graphs are derived from the CLB by considering a subset of the features of the
CLB. Informally, a pattern graph is a configuration in which a CLB can be used. In our definition,
a pattern is determined by the following:

1. The number and the names of the outputs used. For example, a pattern may use either X or
Y or both - each belonging to the corresponding sets from (6.1) and (6.2).

2. The number of flip-flops used and their inputs. For instance, if one flip-flop is used, is its
input DIN, F, or G?

For example, pattemn 1 in Figure 6.6 is the configuration corresponding to the Xilinx 3090 CLB
realizing just one combinational function with at most S inputs. Note that different ways of
programming an LUT-section do not generate new patterns (there is one exception to this, and will
be pointed out shortly). For example, the same pattern 1 corresponds to the output function of the
CLB being abc or abed + a'b'c’d’'e. A pattern is determined by the connections within a CLB,
which, in turn, are determined by how the multiplexors are programmed. If the outputs X and Y of
the CLB are simply F and G respectively (so the outputs are unlatched), and DIN is being used,
the corresponding patterns are 15 and 16. Then, if the second flip-flop is also being used, the pattern
is 16; otherwise, it is 15.

Figure 6.6 shows 19 patterns corresponding to the Xilinx 3090 CLB.* A pattern is enclosed
in a dotted rectangle. The square within each pattern represents the LUT-section and the two, small
rectangles represent the flip-flops. A line going across the LUT-section indicates a buffer (pattemns
27,28, and 32). For convenience, we do not explicitly show the logic inputs a, b, ¢, d, and e; they are
assumed to feed the LUT-section. Moreover, we do not show the multiplexors that realize options

“The unusual pattern numbering is because of the way the patterns were derived; see proof of Proposition 6.2.1.
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Figure 6.6: A complete set of pattemn graphs

mentioned in Section 6.1.1, because pattemns themselves are a result of choosing these options.
However, we do show DIN whenever it is used. Also, whenever an output of a CLB is latched, the
corresponding feedback connection within the CLB may not be actually used by the LUT functions
F and G, i.e., the latched signal may not be an input to either F or G. But, if the output is unlatched,
and the corresponding flip-flop is being used, the feedback connection must be used by either F or
G. Finally, if a pattern can be realized in more than one way, we list it just once. For example,
pattern 11 can also be realized without using DIN. We now motivate the choice of this set of
pattern graphs.

Definition 6.2.1 A set S of pattern graphs is complete for an FPGA architecture if for any
sequential network 7, there exists an optimum realization of 7 in terms of the basic block of the

architecture, each block configured as some pattern of S.
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Proposition 6.2.1 The set of pattern graphs shown in Figure 6.6 is complete for the Xilinx 3090

architecture.

Proof First, we systematically derive an exhaustive and, therefore, complete set of pattemns from
the 3090 CLB. Then, we reduce the number of patterns without destroying completeness. In the
following, f L denotes the latched value of the signal f.

Recall that a pattemn is determined by the following.

1. The number and names of the outputs used, and
2. The number of flip-flops used, and their inputs.

We enumerate the complete set of pattemns by selecting X and Y from the sets in (6.1) and
(6.2). First, we consider patterns with a single output, say X, and then, patterns with two outputs
X and Y. Although there are 16 possibilities for the two-output case, they can be reduced because
of symmetry. For each possibility, all sub-cases based on the number of flip-flops are enumerated.

1. X = F (Figure 6.7): Pattemn 1 corresponds to the case when no flip-flops are used. Patterns 2
through 4 use exactly one flip-flop and correspond to the three choices for the flip-flop input
- F,DIN, and G. Patterns 5 through 7 use two flip-flops. Note that since the network does
not have two flip-flops with the same input, patterns using two flip-flops with the same input
are not considered.

2. X = FL (Figure 6.8): Since X uses one flip-flop, the case of using no flip-flop does not
arise.

3. X = GZ: This case is symmetricto X = FL, Since pattemn graphs (as we have shown them)
do not carry labels at the outputs of the CLB and the LUT-section, patterns of Figure 6.8 can
be used.

4, X = DINL (Figure 6.9).

5. X = F,Y = G (Figure 6.10).
6. X = F,Y = FL (Figure 6.11).
7. X = F,Y = GL (Figure 6.12).

8. X = F,Y = DIN" (Figure 6.13).
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Figure 6.7: X = F
9. X = FLY = FL: since no two flip-flops in the network have the same input, this case is
identical to X = FL,
10. X = FL|Y = GL (Figure 6.14).
11. X = FLY = DINZ (Figure 6.15).

12. The other cases are symmetric to the ones already discussed, and since in pattern graphs, we
do not label the outputs of the CLB and LUT-section (see the figures), same patterns can be
used in these cases. For example, Y = G is symmetric to X = F; therefore, patterns of

Figure 6.8: X = FL
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Figure 6.7 can be used.

It is easily checked that for each case, all possibilities are generated. And since we
explicitly generated all the cases, this set of pattern graphs is complete. However, there is an
incompatibility between the way patterns are derived and the way matches are generated. A pattern
assumes that F and G are any functions, including the trivial buffer function. As we will see
soon, matches are generated in our mapping algorithms by picking at most two combinational
elements f and g, and two flip-flops Q) and Q3 from the sequential network, and checking if their
interconnection structure is identical to that of some pattern. The possibility of F or G being buffers
is not considered, because in the sequential network buffers are not normally present (except for
fanout optimization). We then have two options:

. Figure 6.11: X = FY = FL
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Figure 6.13: X = F,Y = DINEL

1. While generating matches, use pattems 1 through 26, and for each pattemn, consider the
possibility that F' or G could be buffers, or -

2. Explicitly generate patterns corresponding to buffers.

We choose the second option. Doing a complete analysis for the cases - when both F' and G are
~ buffers, and when exactly one, say F', is a buffer, yields nine more patterns, shown in Figure 6.16.
This analysis is more cumbersome than what we just did, because there are 3 choices for a buffer
input: @X, QY, or alogic input (a, b, ¢, d, €). Details of enumeration are omitted for brevity.
Next, we state an observation that reduces the number of patterns needed (with a binate
covering algorithm) without destroying completeness. Let us examine the patterns more closely.
For example, the only difference between pattem 4 and pattern 14 is that 14 uses both outputs,

Figure 6.14: X = FLY = GL
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Figure 6.16: Patterns with buffers

whereas 4 uses just one. Both use same number of combinational functions and flip-flops, and have
identical interconnection structures. So patten 4 can be deleted from the pattern set. This leads to
the notion of a pattem covering another pattern.

Definition 6.2.2 Pattern i covers pattern j if i and j use the same number of combinational

Junctions and flip-flops, have identical interconnection structures, except that i has more outputs
than j.

So pattern 14 covers pattern 4. Note that pattern 1 is not covered by pattern 13, because
13 uses both combinational functions of the LUT-section, whereas 1 uses just one.

Proposition 6.2.2 Let i and j be two patterns in a complete set S of patterns such that i covers j.
Then, S - {j} is also complete.

Proof Consider a match M; with the pattem type j. Let (f, g, Q1, @2) be the information attached
with M, i.e., f and g are the combinational functions of the sequential network chosen to map onto
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28 35

Figure 6.17: Pattern 35 can be implemented by pattern 28

F and G, and Q) and Q; are the flip-flops chosen to map onto Q X and QY of the CLB. Some of
f,9,@Q1 or @, may be NIL. Then there exists a match M; with the pattem type i and with the same
information ( f, g, @1, @2). This is because ¢ and j use the same number of combinational functions
and flip-flops, and have identical interconnection structures, except that ¢ has more output(s). Let
there be an optimum mapping solution in which M; is present. Then, M; may be replaced by M; -
we can ignore the unused output(s) of M;. Note that M; has exactly the same inputs as M;, and each
input is either a primary input or an output of some match. Since the number of matches remains
the same, the new solution is also optimum.

This process is repeated for all matches'in the optimum’ sohition with pattern type j,
resulting in an optimum solution without matches of type j. Thus pattern j can be deleted from S
without destroying the completeness of S. n

Scanning various patterns, it is seen that pattern 2 is covered by 18, 3 by 23,4 by 14, 5 by
17, 6 by 24, 7 by 16, 8 by 18, 9 by 25, 10 by 26, 12 by 26, 29 by 28, 31 by 30, 33 by 32, and 34 by
30. So pattems 2, 3, 4,5, 6, 7, 8,9, 10, 12, 29, 31, 33, and 34 can be deleted.

As shown in Figure 6.17, pattern 35 can be implemented by 28 if we route the buffered,
latched output of 28 to the DIN input using routing resources external to the CLB. So pattern 35
can be deleted. Similarly, pattern 30 can be implemented by 26 by routing the output FL of 26 to
the DIN input. So 30 can also be deleted.

This gives us a complete set of 19 pattems, as shown in Figure 6.6. [ ]

“ Generating Matches

The starting network 7 is k-optimal, k < 5. We systematically generate all the matches
of 7. A match is a set of combinational nodes and flip-flops of the sequential network 7 that can be
mapped onto a CLB. Since patterns correspond to all the ways in which a CLB can be configured,
each match has a pattern type (number) associated with it. For example, if a match has just one
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/* one or both of @Q;,Q; may be NIL */
foreach set of candidate flip-flops @;,Q2
foreach pattern p in pattern set
if (f,9,Q1,Q2) mappable to p &&
(mergeability satisfied(f,g,Q1,Q2,p))
create match with type p

Figure 6.18: Match generation for (f, g)

flip-flop (and no combinational function), its pattern type is 11 (Figure 6.6). However, if it also has
one combinational logic function of the network, its type can be either 18 or 23.

For the Xilinx 3090 CLB, a match cannot contain more than two combinational nodes
and two flip-flops from 7. These combinational nodes will be denoted by f and g, and the flip-flops
by @1 and Q2. The combinational nodes f and g map to F and G, and the flip-flops Q; and Q,
to QX and QY. Therefore, the information attached to a match for (f, g, @1, Q2) consists of the
following: |

1. for F and G, candidate combinational functions f and g,
2. for QX and QY candidate flip-flops @, and Q»,

3. comrespondence of the inputs of f and g to the input pins of the LUT-section, LUTr, and
LUT ¢ (Figure 6.3). This is generated only if the match is finally selected and the final netlist
is desired,

4. outputs X and Y, and
5. the pattern type.

Note that one or more of f, g, @1, and @2 may be NIL, implying that fewer elements were chosen
from 7} for placement on the CLB and so the corresponding element of the CLB will not be used.
Matches are generated by considering the sequential circuit as a set of combinational
nodes and flip-flops. In a CLB, we can place either zero, one, or two combinational nodes (the case
of zero combinational nodes corresponds to both f and g being NIL, the case of one combinational
node to exactly one of f and g being NIL, and the case of two to none of f and g being NIL), and
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either zero, one, or two flip-flops. Cases with zero or one combinational node inside a CLB are
' simple. So we just describe the case of a pair of combinational functions (nodes) of the network,
say f and g, and show the pseudo-code for match generation in Figure 6.18. The details of various
steps are as follows.

Generating candidate flip-flop(s) : Given combinational functions f and g of 7, we wish to
. determine all possible candidate flip-flops @ and @ such that (f, g, @1, @) is a candidate match.
This is done as follows. f and g can be mapped on functions F and G of a CLB either with or
without the use of DIN. If DIN is not used (for instance, patterns 14 and 17), only those flip-flops
that receive their data inputs from either f or g are candidates for QX and QY. If DIN is used,
flip-flops that fan out to either f or g should also be considered. This is evident from the patterns 15,
16, and 21 in Figure 6.6 - these are the patterns that use DI N and accommodate two combinational
functions of 7.

Mapping(f, g,Q1, @2)toapatternp : Given(f, g, @1, Q2), this step checks for the compatibility
of (f, g, @1, @2) with each pattem p. Since the match will use both f and g, a pattern p that does
not use both F' and G cannot generate a match cofﬁesponding to (f, g, @1, Q2). Also, the number
of non-NIL flip-flops in {@Q1, @2} should be the same as that in p. Additionally,in a CLB whenever
a combinational logic node f feeds a flip-flop @, there are two choices: the corresponding output
of the CLB - X or Y - can be either f or Q. So an (f, g, @1,Q2) combination may map to many
pattemns.

Checking for mergeability conditions : After at most two flip-flops @; and @ have been chosen
to be placed inside a CLB, and a compatible pattem p has been found, it cannot yet be concluded that
(f, 9, @1, Q2) is a match for the CLB with pattem type p. This is because we have not yet checked
[if (f, 9, @1, @2) satisfy the sequential mergeability conditions, or SMCs, which were described
in Section 6.1.1. If we use SMCs as such for this check, we have to find a correspondence from
the input pins of the LUT-section to the inputs of f and g. This is because SMCs are in terms of
the input pins of the LUT-section. In the worst case, all possible mappings have to be tried, which
may be too much work. We now give an alternate characterization of SMCs in terms of the inputs
of f, inputs of g, @), and @ that does not require the correspondence. We first assume that the
outputs of the flip-flops in a CLB are available (i.e., they are connected to the outputs of the CLB)
and hence can be connected to the logic inputs {a, b, ¢,d,e} of the same CLB using the routing
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resources external to the CLB. Then we characterize the case when the flip-flop outputs are not
available at the CLB outputs. Note that the availability of flip-flop outputs is a pattern-dependent
property. For example, in pattern 20, the flip-flop output is available, whereas in 14, it is not. Given
a pattern type, the corresponding characterization should be checked. That is why the mergeability
check in Figure 6.18 takes p as an argument.

Proposition 6.2.3 Given that the flip-flop outputs are available, the following are equivalent:

A. Flip-flops Q1 and Q2 are assignedto QX and QY respectively, and f and g satisfy sequential
mergeability conditions.

B. 1 |o(f)|<4,lo(9)l <4,and
2. Let N be the number of flip-flops in the CLB whose outputs are truly being used by the
LUT-section.> Then
(@) f N=0,|o(f)uo(g) <5.
(b) ifN =1,|o(f)uc(g) <6.
(c) if N =2,fori=1,2,define
FLAGyi=1ifQ;i € o(f), else FLAG;; =0,
FLAG,; = 1ifQ; € o(g), else FLAG,,; = 0.
Let SUM = y_; FLAGy: + Y_; FLAG, ;.
Then,

[o() Ua()l < { T yUM=2
6 otherwise.
Notes:
¢ Any of @, and @, may be NIL.
¢ In2 (c), since N = 2, SUM > 2 always.

For the proof, we will need the correspondence between the inputs pins of the LUT-section
and the inputs of the functions placed on the LUT-section. The following formalism is developed
with that aim in mind.

SFor example, if the outputs of the CLB flip-flops realize functions Q, and Q,, but only @, appears in o(f) U o(g),
then N=1.
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Mapping inputs of LUTr and LUT to inputs of the functions
1. Given a partial mapping p from Ato B, and S C A,
p(8) = {yly = p(z),z € S and p(z) is defined}

We shall denote p(A) as I'm 4(p), and if it is clear which A we have in mind, we will simply
write I'm(p).

2. Given two (partial) mappings 7 and v, their composition is defined as (v o 7)(z) = (7 (z)),
if #(z) and y(7(z)) are defined. Otherwise, it is undefined.

Let P = {a,b,c,d,e,QX,QY} denote the set of input pins of the LUT-section, and Pr (FPg) the
4 input pins of LUTF (LUTg). To address the problem of placing two Boolean functions on the
LUT-section, we define two mappings v and «.

1. If a Boolean function f is placed on the LUT-section, the partial mapping < ; is from the set
of input pins of the LUT-section to the set of inputs of f, i.e., from Pto o(f). Letz € P. If
7y is defined at z, then pin z of the LUT-section is tied to the input 7;(z) of f. Otherwise, z

-
B

is not connected to any input of f.

Example 6.2.1 Let f = A'BC + D. Then o(f) = {A,B,C,D}. If f is to be placed on
the LUT-section, we can define vs(a) = A,77(b) = D,v4(c) = B,v4(d) = C. This asserts
that pins a, b, ¢, and d of the LUT-section should be tied to the inputs A,D,B,and C of f.

If two Boolean functions f and g are to be placed on the LUT-section, we can similarly define
+ from P to o(f) U o(g). This is shown in Figure 6.19.

2. # = (np,7g) is a mapping defined from Pr and Pg, the input pins of LUTr and LUTg
respectively (i.e. pins 1, 2, 3, 4 in Figure 6.3), to P. This mapping specifies the selection at
the multiplexors of Figure 6.3, and is shown in Figure 6.19. We shall display = with a table.

Example 6.2.2 The table

function [1 2 3 4
F e QX ¢ d
G |a b QY e

means that for LUT g, pin 1 is tied to pin a of the LUT-section, pin 2 to QX , pin 3 to ¢, and
pin4 to d. Similarly, for LUTg, pin 1 is tied to pin a, pin2 to b, pin 3 to QY , and pin4 to0 e.
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Figure 6.19: Mappings 7 and

From SMCs and Figure 6.3, it is clear that for 7 = (7, 7g) to be valid, necessarily

mr(1) =76(1) = ¢; 7r(2),76(2) € {6,QX,QY}; 6.3)
7r(3),7c(3) € {¢,@X,QY}; nr(4),7c(4) € {d, e} 6.4)

Without loss of generality, we can assume that 77(4) = d, 7g(4) = e. This is because if pin
4 of LUTF and pin 4 of LUTg are tied to different external inputs = and y € o(f) U o(g)
respectively, define 7(d) = z, and 7(e) = v, and if to the same external input z, connect d
and e pins to z. In other words, set y(d) = y(e) = =.

In the course of determining if two functions f and ¢ can be mapped to F and G
respectively of the LUT-section, we initially assign some inputs of f and g to some pins of the
LUT-section, and some pins of the LUT-section to some pins of LUTr and LUT¢. In other words,
the mappings v and = are partially determined. It is convenient to display this information in a
composite 7 — v chart.

function | 1 2 3 4
Example 6.2.3 F a(A) QX(B) ¢ d

G a(A) b QY ¢(C)
where A,B,C € a(f) U o(g). Then, in addition to what the previous table conveyed,

this table says that pin a is tiedto A, QX to B,and e to C,i.e., v(a) = A,7(QX) = B,v(e) = C.
Nothing is said about v(b),v(c),7(d), and 7(QY).

We characterize the sequential mergeability conditions in terms of the existence of the
mappings 7 and 7.
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Proposition 6.2.4 The following are equivalent:

1. Flip-flops Q1 and Q3 are assignedto QX and QY respectively, and f and g satisfy sequential
mergeability conditions.

2. There exist partial functions 7,7 g, and vy such that (y o xg)(Pr) 2 o(f), (v o n¢)(Pg) 2
o(g), where

(a) ©F,7G satisfy (6.3) and (6.4),
(b) ¥(QX)= Q1 ifQisnot ‘NIL' and @, € o(f)U o(g),and
(c) 7(QY) = Q2 if Q2 is not ‘NIL and @, € o(f) U a(g).

Note the following conventions:
1. If @) is ‘NIL’, 7(@QX) is undefined. Same holds for Q.

2. If @ isnot ‘NIL’, but @; € o(f) U o(g), 7(QX)is undefined. This is primarily because we
assumed that 7 is from P to o(f) U o(g). Same holds for Q-.

Sketch of Proof The second statement is a mathematical way of saying that we can connect the set
of pins Pr and Pg to the set of inputs of f and g respectively through the pins of the LUT-section
~ such that no pin of LUTr, LUT¢, and LUT-section is connected to two different pins/inputs. At
." the same time, the conditions in (6.3) and (6.4) are satisfied. These conditions represent exactly the
choices that are allowed inside the LUT-section through the use of the multiplexors, i.e., the SMCs.
]

Proof (of Proposition 6.2.3) (A = B): Because the CLB is symmetric, we can assume that f
is mapped to F and g is mapped to G. From Proposition 6.2.4, there exist mappings v, g, 7g
 satisfying (6.3) and (6.4), where 7(Q@X) = @1,7(QY) = Q2 (if @ is NIL, 7(Q X ) is undefined).
From SMCs (or Figure 6.3), it can be seen that condition 1 is met, i.e., |o(f)| < 4 and

lo(g)] < 4. To see that condition 2 is met, we do a case analysis on N.

(a) N =0: pins QX and QY of the LUT-section are not being truly used by either LUT ror LUT¢.
We can, then, safely assume that Im(7r) C {a,b,c,d,e}, and Im(wg) C {a,d,c,d,e}.
Im(m) = Im(xp)UIm(ng) C {a,b,c,d,e}. Since y(Im(r))= o(f) Uo(g),and |(T)| <
|T|forany T C {a,b,c,d,e,QX,QY}, we get |o(f) U o(g)] < 5 (by letting T = I'm(x)),
which is exactly the condition 2 (a).
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() N =1: let @ be the flip-flop output being used in o(f) U o(g). This means that Q- is not
being used in o(f) U o(g). Since Q7 is assigned to QY, we can assume, without loss of
generality, that QY ¢ I'm(x). Then, Im(x) C {a,d,¢,d, e, @ X}. Using similar arguments
as in (a), we get |o(f) U o(g)] < 6.

(¢) N =2: We do a case analysis on SUM, where 2 < SUM < 4.

~ SUM = 2: It is always true that Im(7) C {a,b,c,d,e,QX,QY}. It follows that
lo(f)u o(g) < 7.

- SUM = 3: Without loss of generality, f uses both Q; and @, and g uses Q;. If we
decide to tie either @, or @2, say @y, to y € {a,b, ¢, d, e} (using routing external to
the CLB - we can do so since the flip-flop outputs are available), we are done, since
7Y(y) = 7(QX) = @1 (here we used the fact that QX corresponds to Q;), and hence
lo(f) U a(g)| < 6. Otherwise, if neither @, nor Q; is tied to P, both b,c & Im(nF).
This is because f is using both @, and @, which is possible only if 7#(2) # b and
nr(3) # c. Similarly, either b or ¢ ¢ 7g). Then, either b or ¢ ¢ Im(r). Hence
le(f)ua(g)l < 6.

~ SUM =4: Same argument as for SUM = 3.

(B = A): Because of symmetry, we assume, without loss of generality, that f is mapped to F, and
g is mapped to G. Hereafter, f and F' will be used interchangeably, and so will g and G.

The proof is co;xstmctive; it provides the mappings < - from the pins of the LUT-section
too(f)Uo(g),and 7 = £7I'F, 7g) - from Pr and Pg to the pins of the LUT-section. To prove that
f and g satisfy SMCs, it follows from Proposition 6.2.4 that it is enough to show the existence of
thesc mappings.

In the proof, we will repeatedly use the fact that given two sets A and B,

|AU B} =|A|+|B| - |ANn B| (6.5)
Our strategy to determine 7 is as follows.

1. If @, or Q> appear in o( f) U o(g), we assign them to certain pins of the LUT-section. This
partially determines 7.

2. Then, we construct three ordered lists Ly, L, and L¢ (C for common), each being a list of
pin names from {a, b, ¢, d, e}. The lists tell the order in which the function inputs are to be
assigned to the pins of the LUT-section.
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3. Next, we assign the set of common inputs C = o(f) N o(g) to the pins of the LUT-section
using the order in L¢. If an assigned pin is present in Ly or L, it is deleted therefrom.

4. Now, we start with the remaining (unassigned) inputs of f and assign them to the (unassigned)
pins in the list Ly. We delete the assigned pins from L,.

5. Finally, we assign the unassigned inputs of g using L, in a similar fashion.
A few remarks are in order here.

(a) Anentry {d, e} appearing in Lc means that both d and e are to be tied together to the same
common input of f and g. Similar semantics hold for {b, c}.

(b) L, is not really needed; in the last step of our strategy, we can assign the remaining inputs
of g in any order as long as we assign these inputs to unassigned pins only. For the sake of
clarity, we explicitly give L,.

The proof is by a case analysis on N.

1. N =0: Then |o(f) U-o(g)| < 5. The lists are as follows:

Lc = abe{d,e}
Ly = dcba
L, = echa

We consider sub-cases depending on the value of [C| = |o(f) N o(g)|.

(@) |C| = 0: From (6.5), |o(f)| + |o(g)l < 5. Since o(f) and o(g) are disjoint, it can be
easily checked that for all |o(f)| and |o(g)| satisfying |o(f)| + |o(g)| < 5,|o(f)] < 4,
and |o(g)| < 4, a valid pin to input assignment can be obtained. For example, if
lo(f)] =2 and |o(g)| = 3, tie the two inputs of f to pins d and c - the first two items
on Ly, and then tie the inputs of g to pins e, b, and a. Note that after having assigned
pin ¢ to an input of f, we cannot use it for any input of g. Also note that although a
is common to both LUT and LUTg, the input connected to a will not appear in the
expression realized by F.

Comment. Had we arbitrarily assigned inputs of f to the pins of the LUT-section, a
match could have been missed. For example, consider f and g suchthat N = 0,0(f) =
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{V,W,X},0(g9) = {Y,Z},and |C| = 0. f and g satisfy SMCs - in fact, we can define
v as: 7(d) = V,4(c) = W,v(b) = X,v(e) = Y,v(e) = Z. Then we have a natural
choice for 7: #p(1) = ng(1) = a,7p(2) = b,7r(3) = ¢,7r(4) = d,7g(4) = €
other values can be set arbitrarily. This is a valid assignment. However, had we defined v
as: 7(a) = V,7(b) = W,v(c) = X, theneither y(d) = Y and y(e) = Z,ory(d) = Z
and 7(e) = Y. In either case, we will not find a valid match, since pin 4 of LUT¢
cannot be connected to both d and e (using map 7g)

() |C| = 1: We will assign the common input to pin a, the first item in Lc. Then, fand g
have at most 3 unassigned inputs each, and a total of at most 4 unassigned inputs. Once
again, it is easy to see that in all cases we get valid v, 7, and 7g.

(c) The cases |C| = 2, |C| = 3, and |C| = 4 are exactly similar.

2. N =1: Then|o(f) U o(g)| < 6. Let @, be the flip-flop output that appears in o(f) U o(g).
Two cases are possible:

(a) @ occurs only in one function, say f. We let the internal feedback of the CLB through
QX provide @, at pin 2 of LUTF. In other words, v(QX) = Q1,7r(2) = QX. We
can safely eliminate @ X and QY from consideration at pins 2 and 3 of LUT¢ and pin
3 of LUT . Then the 7 — 4 chart looks like:

function | 1 2 3 4
f e QX(@) ¢ d
c €

g a b
The lists are:
Lc = ac{d,e}
L; = dca
L, = ebac

(b) @) occurs bothin f and g. We assign @ to @QX, and QX to pin 2 of LUTr and pin 3
of LUTg; i.e., 7(QX) = @Q1,7F(2) = mg(3) = QX. Then the = — 7 chart looks like:
function | 1 2 3 4

f e QX@Qv ¢ d
g a b QX@Q) e

SFor the rest of the proof, we just gi;/e lists Lc, Ly, and Ly, and leave it to the reader to make sure that for all possible
values of |C], a valid assignment exists.
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The lists are:
Lc = a{d,e}{b, c}
Ly = cda

L, = bea
3. N =2. Let @), Q2 be the outputs of the flip-flops. We have three cases:

(a) SUM =2: Then |o(f) U o(g)| < 7. There are two sub-cases:

i. @ and @, are used by different functions. Let us assume, withoutloss of generality,
that @; occurs in o(f), and Q> in o(g). We assign @ to pin QX, and QX to
pin 2 of LUTF. Similarly, assign @ to pin QY, and QY to pin 3 of LUTg; ie.,
7(Q@X) = Q1,7(QY) = Q2,7F(2) = QX,76(3) = QY. The 7 — 7 chart looks

like
function | 1 2 3 4
f e QX(Q1) c d
g9 |e b QY(@Q2) e
The lists are:

Le = a{d,e}{d,c}
Ly = cda
L, = bea

ii. @) and @, are used by the same function, say f. We set 7(Q@X) = @1,7(QY) =
@2, 7r(2) = @QX,mr(3) = QY. The m — « chart looks like

function | 1 2 3 4
[ e @X(@) QYW@ d
g a b c €
The lists are:
Lc = a{d,e}
Ly = da
L, = bcea

(b) SUM = 3: ' le(f) U o(g)| < 6. Without loss of generality, we assume that Q; €

o(f)No(g) and Q2 € o(f) — o(g). We set 7(QX) = Q1,7(QY) = Q2,7r(2) =
16(2) = QX,wr(3) = QY. We then have the following 7 — -+ chart:
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function | 1 2 3 4
f o le QX@Q) QY(@Q2) d
9 |e QX(@Qn c €

The lists are:
LC = a{d3 e}
L f = da
L, = eca

(c) SUM =4: Then |o(f) U o(g)| < 6. For the first time, we make use of the assumption
that the flip-flop outputs are available and hence can be tied to logic pins. In fact, we tie
@1 to pin 1 of both LUTF and LUTg. Then we tie @ to pin 2 of LUT # and pin 3 of
LUTg; ie., 7(a) = @1,7(QY) = @2,7F(2) = 7¢(3) = QY. We have the following

T — 7 chart:
function | 1 2 3 4
f a(@1) QY (Q2) c d
g a(@1) b QY(@Q2) e

The lists are:

Le = {b,c}{d,e}
Ly = dec
L, = eb

Remarks:

1. If neither of the flip-flop outputs are available, only condition 2 (c) of Proposition 6.2.3 needs
to be changed. It becomes “if N =2, [o(f)Uo(g)| < (9 - SUM)”

2. Ifone flip-flop output is available and the other is not, condition B of Proposition 6.2.3 remains
unchanged.

3. The preceding characterizations use phrases like “given that the flip-flop outputs are avail-
able”. What if only one flip-flop is to be placed inside the CLB? In that case, N < 1. Then,
only the conditions 2 (a) and 2 (b) apply. From the preceding remarks, these conditions
remain same for N < 1, irrespective of the availability of the flip-flop output.
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Figure 6.20: An example of match generation

4. After a match has been selected for the final implementation, the correspondence between
the LUT pins and the function inputs is needed to determine the netlist. A by-product of the
proofs of the above characterizations is a fast algorithm for determining this correspondence.

We identify all the pattemns that can be matched against the (f, g, @1, @2).combination,
and create the corresponding matches. If no pattems match, this combination is rejected. We repeat
this process for all combinational function pairs f and g in the network 7.

We now illustrate the match generation process.

Example 6.2.4 Let f and g be two functions in 7j, and let f* denote the latched value of f. Let

f = abeQ
g = c+d+e+@Q
Q = f*

Let us consider (f,9,@Q, N1L)as a candidatefor the matches. Note that |o(f)| < 4and|o(g)| < 4,
50 the condition B 1 of Proposition 6.2.3 is satisfied. In Proposition 6.2.3, N = 1. Since
le(f)u a(g)l = [{a,b,¢,d,e,Q}| = 6, (f,9,Q, NIL) satisfies 2(b) and hence the sequential
mergeability conditions. From remark 3 it follows that the same characterization holds irrespective
- of whether the flip-flop output is available. Next, we identify all possible patterns that match against
(f,9,Q,NIL). Only the patterns that use F, G, and exactly one flip-flop need be considered.
It turns out that three matches are possible, as shown in Figure 6.20. On the other hand, if

(f,9,NIL,NIL)is considered as a candidate, no matches are generated. This is because N = 0,
‘and from Proposition 6.2.3 it follows that to satisfy the mergeability conditions, |o( f)U o(g)| must
" beatmost 5.
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Selecting a Minimum Subset of Matches

Having generated all the matches, we are interested in selecting a minimum subset S of
these, because each match corresponds to a CLB. S should satisfy three types of constraints:

1. Covering constraints: Each node of the network, i.e., combinational or sequential (flip-flop)
node, should be covered by some match in S. A node is covered by a match if it is mapped
to either F, G, Q@ X, or QY of the CLB.

2. Implication constraints: If a match is in S, each external input to the match (i.e., the input of
a combinational function or a flip-flop of the match that is connected to some pin ¢, b, ¢, d, e,
and DIN) should be either a primary input or an output of some match in S.

3. Output constraints: Each primary output of the network should be an output of some match
in S.

As mentioned in Section 3.4.1, the covering constraints are subsumed by the implication
and the output constraints, and strictly speaking, are not needed. However, the heuristics tend to
work better if these constraints are explicitly added in the formulation.

This is once again a binate covering problem and we use algorithms of Section 3.4.1.

If the covering problem is solved exactly, we would solve the mapping problem optimally for the
given k-feasible network 1] (and not for the functionality represented by 7).

Proposition 6.2.5 Given a feasible sequential network 1], the procedure map_together gives the
optimum solution to the technology mapping problem for Xilinx 3090 architecture,’ provided it
employs a complete set of patterns (say of Figure 6.6) and an exact algorithm to solve the binate

covering formulation.

6.2.2 map_separate

Though in theory the optimum solution can be computed by map_together, in practice
it is a computationally infeasible exercise. In addition, the number of matches and therefore the
size of the binate covering matrix B is so large (see Table 6.1) that even the heuristics take a long
time. One way of speeding things up is by introducing a shift in the paradigm. Instead of taking
a global view of the network, in which the combinational and sequential elements are considered
simultaneously, we view the network to be composed of combinational and sequential elements.

Twithout the capability of option 1 (c) of Section 6.1.1
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First we map the combinational logic nodes onto the CLBs and then attempt the best placement for
the flip-flops. This approach is the most natural extension of mis-fpga to sequential mapping.
Given a k-optimal network 7, the algorithm works as follows.

1. It first maps combinational logic onto CLBs. This is done by running merge on the combina-
tional subnetwork of # (this subnetwork is obtained by ignbring the flip-flops). As explained
in Section 3.7.1, this identifies the maximum number of pairs of functions that satisfy the
combinational mergeability conditions (CMCs) and assigns each pair to a different CLB.
Each unpaired function is assigned to a new CLB.

2. Tt then assigns the flip-flops of the sequential network to CLBs. An attempt is made to assign
maximum number of flip-flops to the CLBs used in the first step, so that minimum number of
new CLBs is used. Each flip-flop is assigned to exactly one CLB. Two methods are used to
solve the assignment problem. One is based on a network flow formulation and the other is a
greedy heuristic. We describe them next.

A Network Flow Formulation

As Figure 6.6 shows, there are many possible ways in which a flip-flop can be used inside
- a CLB. In this discussion, we will consider only a proper subset of these ways (or pattemns). We

-~ will show that using this subset, the optimum assignment of flip-flops to CLBs can be obtained in

- polynomial time using network flow. We impose that a flip-flop is assigned to at most one CLB.

First we define the set of patterns we will allow ourselves. Let C be the set of CLBs in
use after assigning combinational functions (i.c., after step 1 of map_separate). Any CLB j € C
uses only the combinational function(s) and has both flip-flops unassigned. Given a flip-flop ¢ of
the network and a CLB j € C, we consider the following patterns:

o Type I. It exists if and only if j has a combinational block f that is connected to the input
of ¢ and f is a single-fanout node. Then, ¢ and j form a pattern as shown in Figure 6.21 (1).
Note that g may or may not be present.

o Type 2: It exists if and only if j has a combinational block f to which ¢ is fanning in and ¢
fans out to node(s) in j only. Then ¢ and j form a pattern, as shown in Figure 6.21 (2). Once
again, g may or may not be present.

e Type 3: It exists if and only if j has a single combinational function. Then ¢ and j form a
pattern as shown in Figure 6.21 (3).
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Figure 6.21: Patterns used in the maxflow formulation

o Type 4: It exists if and only if j has a single combinational function f such that number of
inputs of f is at most 4. Then ¢ and j form a pattern as shown in Figure 6.21 (4). Here i is
placed on j using the unused combinational function of the LUT as a buffer. Note that in the
type 3 pattemn, DI N was used to place 7 on the CLB.

Definition 6.2.3 A flip-flop i of the network and a CLB j € C are associated by pattern k,
1 < k £4,if i can be placed on j using a pattern of type k.

The above types define how a single flip-flop can be placed on a CLB. However, each
CLB can accommodate two flip-flops. This is handled by taking combinations of the above pattern
types for the two flip-flops. For example, two flip-flops ¢; and ¢, may be assigned to the same CLB
using pattern types 1 and 2 respectively. However, not all combinations are allowed. For example,
two flip-flops ¢} and ¢ cannot be assigned to the same CLB using pattern types 2 and 3, since it
implies an overloading of DIN. We now give a complete list of the constraints associated with the
problem:

1. Each flip-flop is assigned to at most one CLB in C.
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1

(A) Type 1edge

(B) j has one combinational function (C) j has two combinational functions

Figure 6.22: Constructing maxflow network

2. Each CLB can accommodate at most 2 flip-flops.

3. Fora CLB j € C, there can be at most one assignment of type k for each k € {2,3,4}. Two
assignments of type 2 or of type 3 imply an overloading of DI N, whereas two assignments
of type 4 imply use of three outputs (j was already using one output).

4. ACLB j € C cannot get assigned to two flip-flops if one assignment is of type 2 and the other
of type 3 (otherwise DIN will be overloaded).

S. Similarly, j cannot get assigned to two flip-flops if one assignment is of type 3 and the other
of type 4 (otherwise j will use 3 outputs).

The problem is 2o assign the maximum number of flip-flops of the sequential network to the
CLBs in C using only the four pattern types subject to the above constraints. We show how to solve
‘_ this problem exactly using maximum flow or maxflow. We construct a maxflow network (a directed
graph) as follows: there is a vertex u; foreach flip-flop i and a vertex v; foreach CLB j € C. Foreach
tand j that are associated with a match of type 1, there is an edge from u; to v; (Figure 6.22 (A)). For
aCLB j,let I3, I;3, and 14 be the sets of flip-flops associated with j corresponding to match types 2,
3, and 4 respectively. Add vertices wj2, w;3, w4, Z;, ¥j, and z;. Foreach k € {2,3,4},add an edge
(ui, wji) if flip-flop ¢ € I;x. Add edges (wj2,Y;), (Wi, z5), (w)a, 2;), (25, ¥5), (25, 23), (5, v5),
and (2;,v;). This is shown in Figure 6.22 (B). If j contains two combinational functions, the
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Figure 6.23: Maxflow network for a simple circuit

structure reduces to Figure 6.22 (C). This is because edges of type 3 and 4 exist only if CLB j has
one combinational function. Finally, add two distinguished vertices s and ¢, with an edge from s to
each u; and from each v; to ¢. All the edges of the network have a capacity of 1 each, except edges
(v;,t), which have a capacity of 2.

A capacity of 1 on (s, u;) corresponds to the condition that flip-flop ¢ cannot be assigned
to more than one CLB, and a capacity of 2 on (v;, t) restricts the maximum number of flip-flop
assignments to a CLB to two. The structure of Figure 6.22 (B) corresponds exactly to the constraints
3,4, and 5. Vertices wj, w3, and w;4 (along with the capacities of 1 on edges fanning out of them)
serve to satisfy constraint 3, z; and y; - constraint 4, and z; and z; - constraint 5. Note that z; is
introduced since type 3 association does not go with either type 2 or type 4.

Example 6.2.5 We illustrate the above construction for a simple circuit in Figure 6.23. In this
example, there are 4 primary inputs a,b,c, and d, and one primary output h. CLBs 1 and 2
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implement the three combinational functions f,g, and h. Flip-flops 1, 2, and 3 are to be assigned
to the CLBs. Note that no match of type 1 exists for CLB 1, since f is a multi-fanout node: it fans
out to flip-flop 1 and CLB 2. Recall from the definition of a type 1 pattern that the combinational
JSunction of the CLB feeding the flip-flop should be a single-fanout node. Similarly a match of type
2 between flip-flop 3 and CLB 1 does not exist, since flip-flop 3 fans out to CLB 2 as well. All other
possible matches exist for CLB 1. For CLB 2, type 1 match exists with flip-flop 2. Type 2 match
cannot exist for fanout reasons. Also, since CLB 2 has two functions g and h, it cannot have any
type 3 or type 4 match. The resulting flow network is shown.

After running a maxflow algorithm, if there is a unit flow on the edge (s, u;), flip-flop
has been assigned to a CLB. This CLB is determined by traversing the unique path from u; to some
v; such that there is a unit flow on each edge of the path. Hence the maximum flow corresponds to
the number of assigned flip-flops. The unassigned flip-flops are placed in additional CLBs - two in
each CLB.

For the circuit of Figure 6.23, we get a maxflow of 3. The flip-flop 2 gets assigned to
CLB 2, and flip-flops 1 and 3to CLB 1.

The running time of the algorithm is O(n3) where n is the total number of combinational
and sequential elements in the sequential network.

_ Remarks:

1. Sometimes it may be beneficial to replicate flip-flops, i.e., assign one flip-flop to more than
one CLB. We do not know how to solve the problem in polynomial time if the condition of
unique assignment of a flip-flop is relaxed and replication of flip-flops is allowed.

2. We do not know how to obtain a network flow formulation with a set of patterns larger than
the one being used currently.

3. Although there are just 4 pattern-types corresponding to assigning one flip-flop to a CLB, an
assignment of two flip-flops to a CLB results in a larger pattern set.

A Greedy Assignment

In this method, flip-flops are assigned to CLBs one by one. For a flip-flop F'F, with input
- D and output @, we consider two cases:

o If there is no combinational block with output D (i.e., either a primary input or a flip-flop
directly feeds FF), search for a CLB with exactly one output unused. If found, map FF
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Figure 6.24: Mapping flip-flops in the greedy heuristic for map_separate

using the DIN input of the CLB. Otherwise, assign a fresh CLB to FF using one of the
LUT-section functions as a buffer.

¢ Otherwise, there is a combinational block g in the network, feeding D. Let this block be
mapped to a CLB C in step 1. We then consider the following two cases:

- g is not being used elsewhere in the circuit (i.e., g has a single fanout - to F F): at least
one flip-flop in the CLB C is unused. Use this flip-flop for FF (Figure 6.24 A).

— Otherwise, g fans out to other nodes (and hence should remain an output of the CLB
C). If only one output of C is being used (for g), tie DIN inputof the CLB C to g
and map F'F' to one of the flip-flops (Figure 6.24 B). Another option for this case is to
route g as shown in Figure 6.24 C. Otherwise (i.e., if both outputs of C are being used),
search for a CLB with one output unused. If found, map F'F using the DIN input of
the CLB. Otherwise, use a fresh CLB for F'F.

6.2.3 Comparing map_together and map_separate

1. Parttern set: map-together uses a complete set of patterns whereas the map _separate for-
mulations, both the network flow and the greedy, use a smaller set. It may be possible to
incorporate an enlarged set of pattemns in the greedy heuristic. However, it is not clear how to
obtain a network flow formulation with a set larger than the one being used currently.
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Each pattern type in the flow formulation is restrictive. For example, the pattern type 1 in
Figure 6.21 restricts the number of fanouts of f to 1. The pattems used in map_together
impose no such restriction.

2. Feedback inside the CLB; map_separate does not exploit the feedback inside the CLB. It
ignores QX and QY inputs to the LUT-section. Consequently it is incapable of realizing a
pair of functions with more than 5 inputs with one CLB. map_together exploits this feedback.

3. Logic replication: r;tap_together allows replication of combinational functions and flip-flops,
whereas map_separate does not allow any replication. Hence the solution space is larger for
map_together.

4. Quality: If the binate covering problem is solved exactly, map_together gives an optimum
solution. However, the heuristics for the problem are not known to come close to the optimum.
Moreover, the heuristics are generic, in the sense that they do not exploit the features of the
architecture. On the contrary, the map_separate approach decomposes the mapping problem
for the sequential network into two sub-problems - combinational pairing and assignment of
flip-flops. It does reasonably well on both of them.

6.3 Experimental Results

The algorithms presented above have been incorporated inside sis [77] and are named
sis-fpga. The experimental set-up is as follows. We use finite state machine benchmarks in the kiss
format obtained from MCNC [90]. We apply state-assignment using jedi [49] on these symbolic
machines, except on 5349, $382, s444, s526, 5641, and 5838, for which we did not have kiss
description and had to start with the available encoded networks. The resulting sequential network
is then optimized for minimum number of literals by standard methods [77] - we ran script.rugged
twice with a timeout limit of 1000 seconds for each run. The optimized network is used as the starting
point for both sis-fpga and XNFOPT. In jedi, we chose minimum-length encoding over one-hot,
since the networks obtained after one-hot encoding and subsequent optimization and mapping give
poorer results (see Section 6.3.1).

For XNFOPT, the number of passes is set to 10.8 For sis-fpga, first k-optimal networks
(k =4, 5) are obtained using the algorithm of Section 3.5. The script used had three steps:

*The benchmark keyb had to be interrupted after 9 passes, since XNFOPT was taking too long.
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example | FFs sis-fpga (4-optimal) sis-fpga (S-optimal) [ xopT
comb, tog. sep. | comb. tog. sep.

nodes | matches | CLBs | CLBs s || modes | matches | CLBs | CLBs || CLBs

bbara 4| 18 551 11 235 13 12 11
bbsse 4 37| 1206 21 344 25 25 25
bbtas 3 7 251 6 60 4 4 5
beecount 3 12 310 8 126 8 7 7
dk14 3 24 447 16 198 16 17 18
dk15 2 17 209 11 30 7 7 9
dk16 5 82| 4019 47 60 49 438 47 48 66
dk17 3 14 254 9 10 6 54 6 6 8
dk27 3 5 198 5 3 5 198 5 3 3
dks512 4 16 983 10 8 7 90 7 7 7
exl 5 78| 3527 46 52 65| 1741 49 48 57
ex2 5 42| 1908 24 29 29 252 30 29 30
ex3 4 18 526 11 12 11 119 10 11 10
exd 4 19 780 12 11 16 553 12 11 10
ex5 4 16 586 11 10 11 97 11 10 8
ex6 3 25 746 15 14 21 274 16 15 20
ex7 4 16 520 10 10 10 131 10 10 16
keyb 5 68| 2635 40 46 54 736 a7 45 54
kirkman 5 53| 2717 34 36 || 43 972 35 33 37
lion 2 3 53 2 2 3 2 2 2 2
lion9 4 5 146 4 5 87 6 4 6
planet 6| 186 - -l 136 144| 3884 125| 123 157
s1 5 75| 3270 46 54 55 534 51 50 73
sla 5 67| 2855 38 43 571 1101 49 a7 54
§349 15 50 | 5690 32 26 41| 2069 35 29 35
$382 21 49 - - 27 37| 3923 37 28 31
5386 5 40| 1384 23 25 30 298 26 26 29
420 5 26| 1572 16 15 17 257 16 15 15
s444 21 4| 619 32 26 33 3113 37 27 27
$510 6| 109 - - 74 84| 1972 73 74 77
$526 21 58 - . 32 43| 13826 46 34 35
641 17 64 - . 36 59 - - 37 46
s8 3 10 219 7 8 8 93 7 7 8
$820 5 95| 5032 57 62 771 1494 68 64 80
$832 5 92| 4239 67 59 4| 174 61 59 7)
$838 32 86 - - 49 59 - - 48 55
sand sif 167 - -1 123 133 3081 14| 1m 138
shiftreg 3 3 72 4 3 3 72 4 3 3
styr sl 142 - 104 | 13| 2765 98 92 110
tbk 6 68| 2161 50 49 ss| 1101 49 44 60
traind 2 3 53 2 2 3 47 2 2 2
total 1328 1274 | 1516
subtotall 1243 1264 | 1189 | 1415
subtotal2 " ng| 747 Myl 727 867

Table 6.1: Results for Xilinx 3090 architecture
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example | FFs || sis-fpga (4-optimal) sis-fpga (5-optimal) XOPT
comb. tog. sep. || comb. tog. sep.
nodes | matches | CLBs | CLBs || nodes | matches | CLBs | CLBs || CLBs
total 1328 1274 | 1516
subtotall " 1243 1264 1189 1415
subtotal2 718 747 771 727 867

Table 6.2: Summary of results

FFs number of flip-flops

tog. using map_together

sep. using map_separate

comb. nodes the number of feasible functions in the k-optimal network 7
matches the number of matches generated in map_together

CLBs the number of CLBs in the final implementation

XOPT using XNFOPT

- spaceout or timeout

total: total number of CLBs for all 41 examples

subtotall: total number of CLBs for examples where map_together (5-optimal) could finish
subtotal2: total number of CLBs for examples where map_together (4-optimal) could finish

1. Partial collapse, which includes an initial mapping.

2. Ifthe network is small, collapse it and use Roth-Karp decomposition and cofactoring to search
for a better solution.

3. Partition, with support reduction embedded.

On the k-optimal network, both map_together and map_separate algorithms are run. We used the
. two-phase binate covering heuristic described in Section 3.4.1 to solve the binate covering problem
in map_together. We used both network flow and the greedy heuristic for map_separate (on these
benchmarks, both produce the same results).

Table 6.1 reports the results for sis-fpga and XNFOPT. A summary of the results, along
-with the meaning of the columns, is given in Table 6.2. A “-” indicates that the program ran out
of memory or exceeded a time-limit of 1 hour. The minimum CLB count for each example is
highlighted. The map_separate (4-optimal and 5-optimal) and XNFOPT algorithms finished on all
benchmarks. However, map_together could not (for both 4-optimal and 5-optimal cases). In particu-
- lar, the benchmarks on which 4-optimal finished were a subset of those on which 5-optimal finished.
The row fotal is for the complete benchmark set and hence gives results only for map_separate
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(4-optimal), map _separate (5-optimal), and XNFOPT. The row subtotall gives the subtotals for
those examples on which map together (5-optimal) finished. It compares map _separate (4-optimal),
map _separate (5-optimal), map together (5-optimal) and XNFOPT. Similarly, the row subtotal2
gives the subtotals for those examples on which map_together (4-optimal) finished. It compares
map_separate (4-optimal), map_separate (5-optimal), map_together (4-optimal), map_together (5-
optimal), and XNFOPT.

On the complete set (row fotal), map_separate (5-optimal) gives the best results. It is 16%
better than XNFOPT. However, on examples corresponding to the row subtotal2, map_together
(4-optimal) is better than other methods, being slightly better than map_separate (5-optimal) and
17% better than XNFOPT. This improvement is partially due to a better combinational synthesis
done by mis-fpga and partially due to the techniques specific to the sequential synthesis. For
instance, we noticed that on dkI6, just for the combinational subnetwork (5-optimal case), mis-
fpga uses 48 CLBs and XNFOPT 58. When the sequential network is considered as a whole,
map separate accommodates all the flip-flops in the 48 CLBs, whereas XNFOPT uses 66 CLBs.
Also, in examples like bbsse, ex!, ex2, dk16, keyb, s1, s1a, and s386, map_together achieves lower
CLB counts than all other techniques. Therefore, for these examples, mapping the combinational
logic and flip-flops at the same time helps.

We see from the table that the number of matches for map_together depends heavily on &.
The number of matches for 4-optimal case is much higher than 5-optimal (and that is why on many
examples, it runs out of memory). It generally implies that the number of CLBs used is less. This
is despite the fact that with & = 4 option, the full potential of the architecture is not being tapped,
since the network does not have any functions with 5 inputs.

Comparing 4-optimal and 5-optimal cases for map_separate, the results are mixed. In the
S-optimal case, there are fewer nodes to start with, but the possibilities of pairing are also lower.
Overall, starting from 5-optimal networks gives 4% better CLB count than starting from 4-optimal
networks.

Finally, comparing the map_together and map_separate, it is seen that the results obtained
from map_separate (5-optimal) are better than those from map_together (5-optimal). But results
from map_separate (4-optimal) are worse than those from map_together (4-optimal). So no one
technique is a clear winner. In principle, if we use an exact binate covering method, map together
will be at least as good as map_separate. This is because there are matches that map_together will
detect but map_separate will not. For example, map_together can place some function pairs with a
total of 6 or 7 inputs in one CLB. This is beyond the capabilities of map_separate. However, since
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we are using a generic heuristic to solve the binate covering problem in map_together, the results
are mixed.

6.3.1 Different Encoding Schemes

We study the effect of two different schemes: one-hot and minimum length. On the
* symbolic FSM description, we used jedi to assign codes either in a one-hot mode (using the -eh
option) or the minimum length mode (default). Then, the experiment was conducted exactly the
same way as earlier, except that map_separate was used to finally cluster the elements of the k-
optimal network, k = 4, 5. The results are shown in Table 6.3. Note that many large state machines
used in Table 6.1 are missing. This is because we did not have symbolic kiss descriptions of the
missing machines. It tumns out that on the benchmark set of Table 6.3, the minimum length encoding
scheme gives better results than one-hot. This is in contrast to the results obtained by Schlag et
al. [75]. Their conclusion was that a one-hot encoding scheme is better than others for LUT
architectures. The anomaly may be due to different encoding techniques - they used MUSTANG
[19], different optimization scripts, and different mapping algorithms. In fact, in their table of
results, we observed that the encoding scheme that yields minimum number of literals also yields
minimum number of CLBs. This is expected since most LUT mapping techniques work on the
representation generated by the optimization phase and group the literals or cubes subject to the
fanin constraint. In their experiments, it so happens that one-hot gives minimum number of literals
inmostof the cases. A detailed study needs to be done to nail down the exact cause of the anomaly.

6.4 Discussion

We presented two methods for technology mapping of sequential circuits onto a popular
LUT architecture. Both use a k-optimal network as the starting network. In the first, we consider
combinational logic and flip-flops together for mapping. We formulate this as a binate covering
problem. The second method uses a maximum cardinality matching algorithm to place as many
function-pairs together on CLBs as possible; each remaining function is assigned to a fresh CLB.
Flip-flops can then be assigned using either a network flow technique or a greedy heuristic. No
single method does well on all the cases. However, both are better than XNFOPT, a commercial
logic sythesis tool for LUTs. On the benchmark examples tested, we obtained average improvement
of about 16% over XNFOPT using map_separate, and 17% using map_together. This improvement
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example 4-optimal H S-optimal

| one-hot | min-length || one-hot | min-length

[ bbara ’I 14 12 17 12
bbsse 26 26 27 25
bbtas 5 5 5 4
beecount 14 7 16 7
dk14 26 16 28 17
dk15 19 12 20 7
dk16 55 60 56 48
dk17 16 10 17 6
dk27 6 3 6 3
dk512 16 8 17 7
exl 51 52 51 48
ex2 30 29 31 29
ex3 13 12 13 11
ex4 9 11 13 11
ex5s 14 10 13 10
ex6 17 14 19 15
ex7 11 10 13 10
keyb 41 46 42 45
kirkman 36 36 34 33
lion 3 2 4 2
lion9 8 4 10 4
sl 74 54 74 50
s386 28 25 28 26
s420 18 15 19 15

[total [ 550] 49 573 445

Table 6.3: One-hot encoding vs. minimum-length encoding

use one-hot encoding in the state-assignment step

use minimum-length encoding of jedi in the state-assignment step
obtain 4-optimal network, then use map_separate

obtain 5-optimal network, then use map_separate

sum of Xilinx 3090 CLB counts over all examples

one-hot
min-length
4-optimal
5-optimal
total
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. is partially due to a better combinational synthesis done by mis-fpga and partially due to the
techniques specific to the sequential synthesis we have proposed.

One contribution of this work is a fast method of determining whether two functions, along
with some flip-flops, can be placed on a single Xilinx 3090 CLB. The correspondence of the inputs
of the functions with the pins of the CLB can also be found out quickly. Another contribution is
* proving that there exists a complete set of 19 pattems for the Xilinx 3090 CLB. Finally, we presented
. a polynomial-time algorithm to obtain the best assignment of flip-flops after combinational logic
elements had already been placed. However, we restricted ourselves to a subset of patterns and
allowed no replication of flip-flops.

Although specific details of the algorithm are worked out for the Xilinx 3090 architecture,
the generic algorithms presented here can be tailored to other configurations of LUT architectures.
The pattem set will change, and with it the heuristics used in map_separate. map_together will be
the same except for the match generation step, which is pattern dependent. The binate covering
formulation will be solved the same way.

An important issue not considered in this work is that of starting the machine from an
initial state. This requires a proper setting or resetting of the individual flip-flops in the CLBs. In
the Xilinx 3090 CLB, a flip-flop can be reset, but not set. Appropriate inverting logic has to be used
for flip-flops that need to be initialized to 1.

This work is a first step towards synthesis of the sequential circuits for LUT architectures.
We visualize it as the back-end of a complete synthesis system. The front end is a state-assignment
program targeted for LUT architectures. A more thorough study of various state-assignment methods
needs to be done. Of great interest is the problem of balancing the combinational and sequential
components of the circuit. Any imbalance will cause more CLBs to be used than are necessary. We
have the following approach in mind to solve this problem.

1. Do the state-assignment and optimization for minimum combinational logic, irrespective of
the number of flip-flops used. Let us say that combinational logic uses CLBs distributed over
¢ chips.

2. If the flip-flops can be assigned to the CLBs in the c chips, terminate. Otherwise, the circuit
is more sequential than combinational in nature. Try to reduce the number of flip-flops. One
way of doing so is by retiming the circuit (i.e., moving the latches across combinational logic)
for minimum number of flip-flops, as proposed by Leiserson ez al. [48]. Since retiming does
not touch the combinational logic, the mapping of combinational logic is unaffected.



6.4. DISCUSSION 253

3. If the flip-flops still do not fit, re-encode parts of the FSM such that combinational logic is
traded for sequential logic.

4. When all else fails, use extra chip(s) to accommodate the flip-flops.

Another important area is that of performance optimization for sequential circuits. One
effort in this direction was by Touati et al. [83], who applied retiming on a circuit mapped on to
3090 CLBs to improve the circuit delay. However, due to lack of room for moving latches in a
mapped circuit, the technique did not give encouraging results.
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Chapter 7

Performance Directed Synthesis

7.1 Introduction

Figure 7.1 shows a typical section of an LUT architecture. The interconnections to realize
the circuit are programmed using scarce wiring resources provided on the chip. There are three
kinds of interconnect resources:

1. long lines: run across the chip; mainly used for clocks and global signals.
2. direct interconnect. connects the output of a CLB to an input of the adjacent CLB.

3. general purpose interconnect: consists of a grid of horizontal and vertical metal segments
running along the edge of each block. Switching matrices join the ends of these segments.
This interconnection is programmed using pass transistors. A typical block delay in the
Xilinx case is 15 ns. Wiring delay could vary from 2 to 80 ns. The main constraints from the
synthesis viewpoint are:

(a) a maximum number of inputs to a CLB,
(b) limited wiring resources, and

(c) alimited number of CLBs on a chip (e.g. a Xilinx chip may have around 320 CLBs).

Most of the work on synthesis for FPGAs mainly focussed on minimizing the number of
blocks needed to implement a circuit. In this chapter, we address the problem of delay optimization
for FPGAs.

The chapter is organized as follows. The development of performance optimization for
LUT architectures is presented in Section 7.2. The terms used in the chapter are defined in Section
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Figure 7.1: Interconnection structure in an LUT architecture
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» 7.3. Section 7.4 describes our two-phase approach. Results and comparisons on benchmarks are
- presented in Section 7.5. Finally, some conclusions are drawn in Section 7.6.

7.2 History

Most of the existing logic synthesis techniques for delay optimization are geared towards
designs without dominant wiring delays ({81, 82]). Consequently, these techniques either roughly
approximate or ignore wiring delay. In the case of FPGAs, a significant portion of the delay of a
path from an input to an output can be due to wiring delays. Recently, Pedram and Bhat showed one
way of taking into account the wiring delays [66] while mapping a design into a predefined library
of cells.

7.2.1 chortle-d

In 1991, Francis et al. proposed chortle-d [27], which is level-reducing algorithm for
the LUT architectures. Like chortle-crf, it is based on the concept of bin-packing. It generates
reasonably good solutions in terms of the number of levels of LUTs. But it suffers from two
drawbacks. First, the number of levels alone may not be a good objective function for the minimum
delay. The wiring delays can be unpredictable and can cause the total delay of the placed and
routed implementation to vary significantly, even if the number of levels is kept the same. Second,
it achieves the level-reduction at the expense of extra logic. This typically introduces extra routing
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complexity, leading to additional wiring delays.

7.2.2 mis-fpga (delay)

At the same time as chortle-d, we proposed our performance optimizer [64). It does not
suffer from the above drawbacks. We solve the problem by a two-phase approach: first, we apply
transformations at the logic level using an approximate delay model and then, couple timing-driven
placement with resynthesis using a more accurate delay model.

7.23 DAG-Map

In 1992, Cong and Ding presented DAG-Map [16], a delay minimization algorithm,
which like chortle-d, addressed only the problem of minimizing the number of levels at the logic
level, given an m-feasible network. The significance of this algorithm is that it generates the exact
minimum number of levels, given the original structure of the m-feasible network, and the only
transformation allowed is node collapsing (this is the delay analogue of the covering problem for
minimum block count, Problem 3.4.1).

7.24 TechMap-L

In 1992, Sawkar and Thomas [74] proposed a mapping approach for delay optimization,
in which the delay-critical sections of the area optimized network are remapped using clique
partitioning.

7.3 Definitions

Definition 7.3.1 A path i 5 j is asequence of alternating nodes and edges in the graph (network),
starting at the node i and ending at the node j.

We assume that each node of the network has some delay associated withit. Also, arrival
times a; at each primary input ¢ and required times r; at each primary output j are given, indicating
the times at which signal becomes available at the inputs and by which it is required at the output.
These times are derived from the performance constraints on the design. They are then used to
compute the arrival time a, and required time r, at each node = in the network. If arrival times
are not specified for some primary inputs, they are assumed to be zero. Similarly, required times
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at primary outputs, if unspecified, are forced to be the maximum required time of an output. If no
required times are specified, we set the required times of all the outputs to the maximum arrival
time of an output. A forward trace (from inputs to outputs) of the network gives the arrival time at
each node (i.c., at its output). Similarly, a backward trace of the network yields the required time
at each node. We can extend the notion of arrival and required times for the edges of the network
too as follows. If the delay through an edge (n, f°), f° € FO(n), is d, then the arrival time at the
edge (n, f°) is the a,, + d, and the required time at (n, f°) is the difference between the required
time at f° and the delay through the node f°. We compute the slack s; at each node (edge) ¢ as the
difference between the required time r; and the arrival time a; at the node (edge), i.e., 8; = 7; — a;.
A node (edge) is e-critical if its slack is within ¢ of the most negative slack in the network.

7.3.1 Problem Statement

Given a circuit, described in terms of Boolean equations, the arrival times at the inputs
and the required times at the outputs, obtain an implementation on the target LUT architecture that
meets all the timing constraints with the least block count.

7.4 Approach

We propose a two-phase approach:
Placement-independent (Pl) phase: It involves transformations at the logic level, which
are guided by an estimate of the final delay.
' Placement-dependent (PD) phase: It does a synthesis-driven and performance-directed
" placement. Delay models that explicitly take into account the wiring delays are used.

7.4.1 Placement-Independent (Pl) Phase

Since wiring delays are important, we may often prefer a trade-off between the number
of levels and the number of nodes and edges.! In this phase, a standard delay reduction script is
"~ used to obtain a delay-optimized network. The resulting network is in terms of 2-input gates and
d hence is m-feasible (since m > 2). The remaining task is to reduce the number of levels in this
_ network while maintaining feasibility and with a simultaneous control on the number of nodes and

'We use the number of edges in the network as a measure of routing complexity and hence wiring delay.
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Figure 7.2: Reducing the level by collapsing

edges. As we shall see in Section 7.5, the following algorithm LUT reduce.depth achieves the
above objective.

LUT reduce_depth first finds the critical nodes of the network 7 by a delay trace. The
delay trace assigns levels to each node. The level of a primary input is O, the level of any other
node is one plus the maximum level of its fanins. This delay model is also called a unit delay
model. Then it traverses 7 from inputs and tries to collapse each critical node n into a subset S
of its fanouts. S is the set of those fanouts of n whose level is one higher than the level of n.
If a fanout f° € S remains feasible after collapse (Figure 7.2), or becomes infeasible but can be
redecomposed (e.g., by cofactoring, as shown in Figure 7.3) resulting in reduction of the level of
the fanout, then = is collapsed into it. In both these figures, m is assumed to be 5 and the number
beside a node is its level. If after this first pass through S, there exists some fanout f° into which
n could not be collapsed, the algorithm tries to move some non-critical fanins of » as inputs of
some other non-critical fanins of n. The condition under which this can be done can be derived
from functional decomposition theory, e.g., that of Roth and Karp [36]. This fanin movement was
described in Section 3.3.6. Similar fanin movement is tried at the fanout node f° as well. Such
transformations increase the likelihood of collapsing node n into f°. The whole process is repeated
until critical nodes can no longer be collapsed. A delay trace using the unit delay model is done
after each collapse, so that the algorithm always operates on correct delay values. Let the resulting
network be 7.

If 7] has a small number of primary inputs (say up to 10), we try two other decompositions.
We first collapse 7 into two levels. We then apply cofactoring and the Roth-Karp decomposition
techniques and delay-evaluate the resulting decompositions. If either of these delay evaluations is
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Figure 7.3: Reducing the level by collapsing and redecomposing

less than that of 7, the best decomposition is accepted. This final check helps in reducing delay in
many examples.

Since the covering step of the BCM phase (Section 3.4.1) reduces the number of nodes,
and often edges, without increasing the number of levels in the network, the partition routine is
called as the final step. It works by collapsing nodes into their fanouts if they remain feasible after
collapsing. This takes care of the collapsing of non-critical nodes.

7.4.2 Placement-Dependent (PD) Phase

The starting network for this phase is the one generated by the Pl phase. We combine the
techniques of logic synthesis with a placement algorithm. We model the placement as assigning
locations to point modules on a k by k grid (in the Xilinx 3000 series, & can take values from 8
to 18). We use a simulated annealing based algorithm for placement. At the end of the iterations
at each temperature we identify critical sections that are ill-placed. We use logic synthesis and
force-directed placement techniques to restructure and reposition these sections. The logic synthesis
techniques used are decomposition and partial collapse. These techniques arelocal, i.e., they explore
only the neighborhood of a critical section for a better solution. The algorithm is summarized by
the pseudo-code in Figure 7.4.

We note that this approach can be incorporated in any iterative placement techniques, like
the force directed methods, or resistive network methods. We chose simulated annealing because
we wanted to model the simulated-annealing based place and route tool of Xilinx.
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/* a = temp factor (ea<1); T = current temperature;
T) = starting temperature for logic synthesis;

m = number of moves per temperature; */

{
T = start-temp;
while (T > final-temp) {
j=0;
while (j<m) {
get two random locations for swap:
evaluate éc, change in cost;
accept swap with probability e'%);
if swap accepted, do delay trace;
J++;
}
if (T <T;) do logic resynthesis and
replacement for delay:
T=T=xa;
}
}

Figure 7.4: Simulated annealing for placement and resynthesis
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Delay Models

The following assumptions are made:

1. There is no capacitance seen into an input pin of a block. This is as per the Xilinx manual
[88].

2. We do not consider the non-linearities of the pass transistors used to connect two routing
segments.

3. We ignore the output resistance of each block (simply because we do not know it). This is
consistent with the way the Xilinx manual suggests the computation of the delay through each
edge [88].

4. The delays from a primary input to a node and from a node to a primary output are ignored
for want of proper pad placement.

The delay computation is done as follows. The delay through each block is a constant,
called the block delay. To compute the wiring delay, we use two models: Elmore delay model and
Rubinstein-Penfield-Horowitz delay model (RPH) [67].

1. Elmore delay model: We consider each edge of a net independently. In other words, there is
no affect of other fanouts of » on the delay of the edge (n, f°), f° € FO(n). The model is
simplistic but fast to compute. The delay d through the edge (=, f°) is the time signal takes
to reach from zero volts to v; of its final value at the node f°. The starting time is the time
when the signal becomes available at the driver node ». The delay d is given by

d=R.Clogl L

where R and C are the resistance and capacitance of the edge (=, f°) respectively. We
compute the RC of the edge by first computing the length ! of the edge. We then compute
RC by I2 x rc_pu_len_squared, where rc_pu_len_squared is the factor used to convert from
unit of length squared to unit of delay.

2. Rubinstein-Penfield-Horowitz delay model (RPH): The net driven by the node = is treated
as an RC-tree. We construct a minimum length spanning tree connecting node » and all
its fanouts. Each edge in the spanning tree is modeled as a lumped RC-line. Two bounds
are calculated for each edge (n, f:’): a lower bound and an upper bound. The formulae for
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computation may be found in [67]. The upper bound is used as the delay of the edge. This
model takes into account the loading effect due to other fanouts on a fanout f°. A problem
with this model is that it sometimes gives a huge difference between the lower and upper
bounds for edges in the net, implying that some of the bounds are not tight. So, by taking
the upper bound, we may be doing a pessimistic analysis. Also, it is computationally more
expensive than the Elmore delay model.

Either model can be used in the delay computations. However, to make computations fast, we use
the Elmore model for evaluating the effect of a transformation on delay. The transformations used
are:

1. a swap of contents of two locations in the simulated annealing step,
2. logic synthesis operations on the critical sections.

The delay models require the constant rc_pu_len_squared, called the delay per unit length
squared. Section 7.5 describes how this constant is computed experimentally.

Cost Function

The change in cost function éc is computed as a weighted sum of the change in total
interconnection length é£ and change in the delay éd through the network.

be=(1-a(T)) 6+ a(T) 6d a1

o(T) is a temperature-dependent weight that increases as the temperature decreases. The reason for
using total interconnection length while optimizing for delay is that we would like to get the blocks
closer to each other before trying to optimize the delay. In our experience, this approach tends to
give better results than when we just optimize for delay alone. The length of a net driven by a node
n is estimated as the minimum length rectilinear spanning tree connecting the node » and all its
fanouts. Computing &£ is then straightforward; it involves recomputing minimum length rectilinear
spanning trees for the nets that are affected by the swap. Computation of éd is more involved and
is described next.

Computing éd: We estimate §d, the change in delay of the network, when two nodes
n; and np are considered for swap as follows. We start the delay trace at the fanins of the node
n1. We assume that the arrival times of the fanins of »; remain the same.2 We recompute the new

>This may not be true if n; is in the transitive fanin of n,.
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estimate.delay-change(n;) {
changel = LARGE;
foreach-fanout (ng, f°) {
diff = old-slack(n;,f°) - (min-slack(N) + ¢);
diff_arr = old.arr(my, f°)-new.arr (n;, f°);
change.delay = diff + diff_arr;
if (diff > 0) && (change_-delay > 0)
“continue; /*not critical*/
changel = min (change-delay, changel);
}
/*no fanout became critical*/

if (changel == LARGE) changel = 0;

Figure 7.5: Estimating the delay change

.. delays through all edges (f*,n) and (ny, f°), f' € FI(n)), f° € FO(n;). As stated earlier, we
. - recompute these delays using Elmore delay model. We use the algorithm of Figure 7.5 to estimate
| - the change in delay, changel, of the network N by placing node n; at the new position. Note

- that di£f£ is the available delay before n; becomes e-critical. We similarly compute change2

for node ny. To estimate the delay change éd through the network, we do a worst case analysis.
If changel and change2 are both negative, dd is estimated to be - (changel + change2)

(this case may happen if »; is in the transitive fanin of n; or vice-versa); else dd is estimated as
~ =-min(changel, change2). By doing a worst case analysis, this approach tries to ensure that
. if the actual delay increases after swap, our estimate of éd is non-negative. It should be emphasized
- that we are trying to predict the changes in the delay through the entire network by just examining
the neighborhood of the nodes »; and n,.

If the swap is finally accepted, delays on some edges change, thereby changing the arrival

times and required times of various nodes in the network. To determine the nets whose delays are
affected, we handle the two delay models separately:
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1. If the delay model is the Elmore delay model, the delays on all the edges of the type (n;, f°)
or (f',n;) need to be updated (j = 1,2). Here f° € FO(n;) and f* € FI(n;).

2. If the delay model is RPH, we need to look at nets instead of edges. The nets affected are the
ones that are driven either by node n; or by a fanin of n; (j = 1,2).

Next, we need to update the arrival and required times of appropriate nodes. Let S be the set of
edges whose delays were updated as a result of swap. Then the arrival times of edges in S and
all the nodes and edges in the transitive fanout of an edge in S need to be updated. As for the
required times, theoretically, only the nodes and edges in the transitive fanins of the edges in S
need to have their required times updated. However, if none of the required times were specified
for primary outputs initially, then as per our assumption, the required times of all the outputs were
set to maximum arrival time of an output. As a result of updating the arrival times after swap, this
maximum arrival time may have changed, changing in tum the required times of all the outputs. So
a backward delay trace may need to be done on the entire network.

The analysis is suitably modified if there is no node at a location, i.e., the location is a
vacancy.

Logic synthesis

After a set of critical nodes has been identified in the network, we use logic resynthesis
to correct the structure of the network. Then we do a force directed placement of the resynthesized
region. The logic operations are of two kinds, decomposition and collapsing. These operations
change the structure of the mapped network while preserving the functions at the outputs, and
can be interpreted as topological changes that yield a better placement. Decomposition introduces
new nodes and new edges in the network. Collapsing may cause the number of edges to increase,
decrease, or remain the same.

Decomposition: Since we start the placement with an m-feasible network, each node
(block) has at most m inputs. We use the Roth-Karp decomposition technique to find a suitable
decomposition [36). In Roth-Karp decomposition, a bound set X is chosen from the fanins of the
node 7 to be decomposed. The rest of the inputs of # form the free set Y. Then the decomposition of
nisofthe fom: f(X,Y) = g(a1(X),ea(X),...,a:(X),Y), where g, o, @3, . .., oz are Boolean
functions. As a result of the decomposition, we get a tree of logic blocks for the single block n
that we started with. The new blocks are placed using a force directed technique. This has the
effect of reducing routing congestion, ensuring, at the same time, that the signal at the output of
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Figure 7.6: Decomposition example

the tree arrives no later than the original arrival time at the output of n. The motivation for this
decomposition can be understood by the following simple example. Let g = (a +b) cdebea
node in the feasible network. The initial physical placement is shown in Figure 7.6(a). The (arrival,
required) times are shown as the bracketed pair next to each node. The critical paths are shown
. with bold lines and the remaining with dotted ones. The block delay is assumed to be 2 units. The
delay along each edge is shown alongside it. Since the signals a and b arrive late, we should put
them close to the output of the decomposition. Let {c,d, e} be the bound set X and {a, b} be the
free set Y. We obtain a decomposition as ¢ = cde, g = i(a + b). Figure (b) shows the placement

.. after decomposition. Note that the decomposition satisfies the constraint that the output of f arrives
.. no later than 18 units of time. A simple move of node ¢ from its initial location to its new location

. would have increased the lengths of paths ¢ — g,d — g,e — g. A swap between the node g and
the vacancy at the new location of g could have been possibly considered in the simulated annealing
step, but it may have been rejected if the wiring cost was high. Hence this placement is better for
delay. At the same time, the routing penalty is kept low.

Placement of decomposition tree: Let N be the node to be decomposed (Figure 7.7). Let
7 denote the set of nodes replacing N after decomposition. We can look at 7 as a network with a
single output driving the fanouts of N. The primary inputs of 7, PI(#), are the fanins of node N.
We need to determine the locations of the intermediate nodes of 7. The locations of the inputs of
7 and the fanouts of N are known. We start placing nodes of 7 from the inputs in such a way that
when a node = is being placed, the locations of all of its fanins are known. So for n, we can do
a force-directed placement with respect to the fanins of », FI(n), and the fanouts of N, FO(N).
For each edge in 7, we find the delay that the signal can expend passing through it. This is obtained
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Figure 7.7: Placement of the decomposition tree

from the arrival times a;, ¢ € PI(7) and required times r;, j € FO(N'). Then, the node n is placed
closer to those fanins f* or fanouts f° such that delay to be expended along (%, n) and (=, f°) is
small. ’

Recall that q; is the arrival time, r; the required time and s; the slack at node . Let p be
a path from a primary input ¢ € PI(n) of nto anode j € FO(N). Then we have r; — a; units of
time to distribute over all paths from : to j (there could be many such paths). We say an edge-path
pair is valid if the edge lies on the path. We associate with each valid edge-path pair (ex, p), a value
of 51[3"5, where |p| denotes the number of edges in the path p. For each edge ey, define its weight
(w) to be the minimum value over all paths that contain it.

. Ti—a
Wil = min
Vp:ex€p |P|

7.2)

The weight on each edge gives an estimate of the time that a signal can expend passing through it,
thus bounding the length of the edge in the placed circuit.

Let n € 7 be the node whose location is to be determined. Construct an undirected
graph G,(Vy, E,) as follows. For every k¥ € FI(n) there is a node k, € V,. There is a node
corresponding to n, say nn. For each j € FO(N) there is a node j, € V;. There are edges
between n,, and all other vertices, denoted by ey ;. ,kn € Vp, ko # nn. Weigh each of the edges
as follows. The weight of the edge joining n, and k,(k € FI(n)), denoted by W7 , is the same
as the edge weight wy, described in the above paragraph. The weight of the edge joining n,, and
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Jn(dn € FO(N)) is approximated as,

w3y = min (el - )
where p is a path from i € FI(n) to j € FO(N) in 7, and node » lies on the path. Note that a; is
known since fanins of » have been placed. |py;] is the number of edges along the path from = to j
(pajl = Ipl = 1).

Let the location of each node ! € G,(I # n,) be given as an ordered pair (z;,y;). We
define the co-ordinates of n as

za o= Y, fWh)ek+ Y. F(WE)z;
k€FI(n) JEFO(N)
o= >, fWR)w+ Y f(Wi)y;
k€FI(n) JEFO(N)
~ where f is a function satisfying

1L 0< fWR) <1

2. Yrerin) FWE) + Zierony) f(Wh) = 1
3. fisastrictly decreasing function.

The function f serves to weigh the co-ordinates appropriately. Intuitively, f should be a decreasing
function: lesser the amount of time available to expend along a wire, the closer should the location
~ of the node = to its fanin or fanout. The conditions on J above guarantee that (z,, ¥, ) lies in the
| convex hull defined by the locations of the fanins of = and the locations of the fanouts of N. If this

location (or nearest integer location) is empty, we can place n at the position obtained. We allow
| a tolerance of +1 units around the location calculated above. If we cannot find an empty location,
we discard the decomposition and continue with the algorithm.

We define the function f as follows: Let

Sn = max{Wy:e} ; €Gn}
Fo = Y (-WE+S)+ Y (-Wp+S5.)
i€FI(n) JEFO(N)
f(we) = (=Win + 5n) i € FI(n)
F,
(=W + Sn)

fwWy) = RIS jeFO(A)
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example 2

Figure 7.8: Collapsing examples

S gives the largest weight in the graph G .. F;, is the normalizing factor. The f so defined satisfies
the conditions described above. Doing so we guarantee that the location of » is closer to a node that
is connected to » by an edge with lower weight than other nodes.

Partial Collapse: We motivate the collapsing operation with the help of two examples.
In both examples, node = is collapsed into its fanout f° (Figure 7.8). All the numbers are the arrival
times at nodes and edges. The block delay is assumed to be 2 units. In the first example, the benefit
gained from the collapse is due to the removal of node » from the path. In the second, additional
benefits accrue due to a skewed configuration.

We consider a critical node n for collapsing into one of its fanouts f°. If collapsing n
into f° is feasible, we estimate the savings in delay because of this transformation. For this, we
recompute the arrival time at f° by first computing the delay through each of the edges (f*, f°),
where f' is a fanin of n. The pair (n, f°) is ranked with a score equal to the difference between
the old arrival time and new arrival time at f° if this difference is nonnegative; else the pair is not
considered for collapse. Note that the position of the node f° remains unchanged. This way we
rank all the critical (node, fanout) pairs in the network that result in a feasible collapse. We greedily
select the pairs with large scores.
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7.5 Experimental Results

MCNC benchmarks were used for all the experiments. First, the benchmarks were
optimized for area3 Then a delay reduction script, script.delay, with speed_up at the end was
used to obtain delay optimized networks in terms of 2-input NAND gates. In Table 7.1, we report
results after the placement-independent phase of mis-fpga and chortle-d, using the same starting
networks for both the programs. We set m to 5. We are restricting ourselves to single output CLBs,
i.e,, m-LUTs. For chortle-d we used the option -K 5 -r -W -e. For each example, we report the
number of levels, 5-LUTs, edges and the CPU time (in sec.) on DEC5500 (a 28 mips machine) in
the columns lev, 5-LUTs, edges and sec. respectively. Out of 27 benchmarks, mis-fpga generates
fewer levels on 9 and more on 13. On average (computed as the arithmetic mean of the percentage
improvements for each example), mis-fpga needed 2.9% more levels. The number of blocks and
the number of edges it needs are 58.7% and 66.2% respectively, of chortle-d. As shown later, the
number of nodes and edges may play a significant role in determining delay of a network. However,
chortle-d is much faster than mis-fpga.*

For the placement-dependent phase, the starting networks are the ones obtained from the
level reduction algorithms. We conducted three sets of experiments:

1. Pl + apr: The network obtained after the placement-independent phase of mis-fpga was
placed and routed using apr, the Xilinx place and route system [88].

2. chortle-d + apr: The network obtained after chortle-d was placed and routed using apr.

3. Pl + PD + apr: After the placement-independent algorithm, the placement-dependent phase
of mis-fpga is applied. The resulting placed network is routed using apr, with its placement
option disabled. The routing order is based on the slacks computed for the edges: apr is
instructed to route more critical nets first. Logic synthesis is invoked once at each tempera-
ture. However, it is started only at a low temperature, the reason being that collapsing and
decomposition may increase the number of edges in the network. At higher temperatures,
a swap that increases the cost function is accepted with higher probability. A subsequent
synthesis phase at that temperature may decrease the cost function, but increase the routing

3Regrettably, the area optimization script is not script.rugged, which is used in other chapters. The reason is that the
experimental set-up in this section uses some proprietary tools, whose license expired some time ago. The results reported
here are two years old, taken from [64), which used different area optimization scripts.

4One reason is that since mis-fpga is based on misl|, a lot of time is spent in allocating (freeing) memory for additional
data structures whenever a node is created (freed).
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example | mis-fpga - PI I chortle-d

lev [ LUTs | edges | sec. || lev | LUTs | edges | sec.
z4ml 2] 10 427 21 3] 20 74| 0.1
misex1 2 17 7! 1.7 3 25 99| 0.1
vg2 4 39 165 1.7 3 54 206 | 0.1
5xpl 2 21 88 3.5 4 29 115 | 0.1
count 4 81 336 5.1 3 102 368 | 0.1
9symml 3 7 35 99|l 4 76 273 | 0.1
9sym 3 7 35| 152 5 130 477 | 0.2
apex7 4 95 383 84 4 131 452 | 0.2
rd84 3 13 61 9.8 4 69 268 | 0.2
etd 5 212 857 | 15.7 4 356 | 1236 | 0.6
C880 9 2591 1070 | 39.0 7 383 | 1437 | 09
apex2 6 116 481 9.8 5 165 578 | 0.2
alu2 6 122 543 | 426 8 316 | 1189 0.7
duke2 6 164 685 | 164 4 248 863 | 04
C499 8 199 896 | 58.8 6 436 | 1736 | 1.8
Ot 7 3221 1312 | 50.0 6 439 | 1608 | 1.0
apex6 5 274 | 1209 | 60.0 5 361 1360 | 0.8
alud 11 155 648 | 154 8 194 710 | 0.3
sao2 5 45 189 95 4 58 220 | 0.1
rd73 2 8 36 44 4 52 183 | 0.1
misex2 3 37 160 14 2 52 188 | 0.1
f51m 4 23 100 59 5 65 237 | 0.1
clip 4 54 219 3.7 4 83 281 | 0.1
bw 1 28 138 8.3 1 28 138 | 2.6
b9 3 47 199 2.3 3 62 225 0.1
des 11| 1397 | 6159 | 937.8 91 3024 | 10928 | 9.2
C5315 10 643 | 2826 | 282.2 91 1221 ] 4509 | 3.6

Table 7.1: Results for level reduction
lev number of levels in the final network
LUTs number of LUTs in the final network
edges number of edges in the final network
sec. time taken in seconds (on a DEC5500) to generate the final network
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example | mean value of (-2%)
5xpl 0.774
9sym 0.682
9symml 0.767
C499 0.842
alu2 0.649
alu4 0.663
apex2 0.738
apex6 0.609
apex7 0.805
b9 0.940
bw ‘ 0.851
clip 0.828
count 1.103
duke2 0.615
f51m 1.306
misex1 0.848
rd84 0.933
rot 0.785

- Table 7.2: Calculation of delay per unit length squared

complexity and number of levels. Though each such synthesis phase is good relative to the
current placement state, from an absolute point of view, it may be bad. We found that it is
better to start synthesis at a temperature when there are no major hill-climbing swaps. Then
each synthesis phase results in an improvement. Also, we found it helpful to have the total
net length dominate the cost function at higher temperatures. This brings the blocks close to
each other. As the annealing proceeds, we increase the contribution of delay change éd in ¢
by increasing a(T"). Finally, at very low temperatures, o(T') = 1, i.e., only the delay appears
in the cost function. The arrival times of the primary inputs are set to O and the required times
of the primary outputs to the arrival time of the latest arriving output. We used Elmore delay
model in all delay computations.

To compute the delay per unit length squared, apr was run on a set of examples and delay
of each edge along with its length was obtained. From this, the RC/(length?) value for each edge
and then the average values for the networks are computed. These are shown in the Table 7.2 for
some examples. Then the delay per unit length squared is set to the average value 0.82.
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The results of the experiments for placement, resynthesis, and routing are shown in Table
7.3. The table shows the delay through the circuits in nanoseconds after placement and routing.
The block delay used is 15 ns. We chose only those benchmarks that could be successfully placed
and routed on one chip. The Pl phase of mis-fpga gives lower delay than chortle-d on most of
the examples. More interestingly, we can study the affect of number of nodes and edges on the
delay. For example, though the number of levels in count for chortle-d is 3 and for mis-fpga
is 4 (Table 7.1), the delay through the circuit for mis-fpga is 3 ns less than chortle-d. In fact,
using the PD phase of mis-fpga makes the difference even larger. For vg2, duke2, alu4 and
misex2, the delays for mis-fpga are higher than chortle-d, but the difference in delays is less than
15(di f ference in levels). This effect will be more pronounced in examples where the number of
nodes is greater than the capacity of the chip. Then, extra inter-chip delay will be incurred, which
may be an order of magnitude higher than the on-chip delay.

It tumns out that logic synthesis in the PD gives mixed results on these networks. This
is partially because many networks did not have much room for delay improvement by local
resynthesis. We observed that if we start with networks that did not use an aggressive block count
minimization during the Pl phase, resynthesis improves the delays significantly.

7.6 Discussion

Given an m-feasible network, the goal in the Pl phase is to minimize the number of levels.
What we presented was a heuristic to solve the problem. The DAG-Map algorithm, proposed
recently by Cong and Ding [16] computes a minimum delay solution if only collapsing of nodes
is allowed. However, in the Pl phase of mis-fpga, covering is integrated with resynthesis (e.g.,
functional decomposition) when it is found out that collapsing a node into its fanout is not feasible.

Experimental evidence indicates that two circuits having the same number of levels can
have widely varying delays after the final placement and routing. So, the number of levels may not
be a good cost function.

The delay model used currently at the logic level is weak. This is because it has no idea
about the wiring delays, which are a function of the module locations. Better delay models need to
be developed also for placement. The Elmore delay model does not consider fanout loading, and
the Rubinstein-Penfield-Horowitz model gives two delay numbers, which could differ from each
other significantly.
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example | mis-fpga Pl + apr | chortle-d + apr | mis-fpga P| + PD + apr
z4ml 33.60 56.00 31.00
misex1 33.10 58.00 36.20
vg2 82.90 76.40 76.30
5xpl 33.60 7740 35.90
count 88.40 91.88 79.02
9symml 54.00 84.10 53.50
9sym 53.70 110.40 53.50
apex7 97.75 108.00 93.90
rd84 50.70 77.80 54.30
apex2 147.43 134.30 142.50
duke2 125.13 114.70 151.83
alu4 256.35 230.68 -1
sao2 104.00 82.30 96.00
rd73 33.60 85.00 31.00
misex2 53.80 47.80 53.70
fSIm 72.60 107.50 76.60
clip 81.10 84.10 84.60

1 two nets could not be routed.

Table 7.3: Delays after placement and routing
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Part II

Multiplexor-based Architectures
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Chapter 8
Mapping Combinational Logic

8.1 Introduction

In this chapter, we study MUX-based architectures, in which the basic block is a com-
bination of multiplexors, with possibly a few additional logic gates such as ANDs and ORs.
Interconnections are realized by programmable switches (anti-fuses) that may connect the inputs of
the block to signals coming from other blocks or to the constants O or 1, or may bridge together
some of these inputs.

The most popular architectures are act] and act2 introduced by Actel [29], and are shown
in Figure 8.1. Each module has eight inputs and one output. While act! is a tree configuration of
three 2-to-1 multiplexors with an OR gate at the control (select) input of MUX3, act2 has three
multiplexors, an OR gate, and an AND gate. These logic blocks can implement a large number of
logic functions. For example, the act! module can implement all two-input functions, most three-
input functions [38], and several functions with more inputs. However, some of these functions are
P-equivalent. In [56], 702 non-P-equivalent functions for act/ and 766 for act2 were counted.

As in the case of LUT-based architectures, the number of blocks on a chip, logic func-
tions that these blocks can implement, and the wiring resources are the main constraints. Also,
the architecture-specific mapping typically starts with a network that has been optimized by the
technology-independent operations. In future, we expect these operations to be driven by the target
technology.

This chapter is organized as follows. A brief history of the MUX-based mapping is
presented in Section 8.2. BDD-based techniques are described in Section 8.3. Their extensions to
ITEs, along with the matching algorithms, form the complete mapping algorithm, which is outlined
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Figure 8.1: Actel architectures: act! and act2

in Section 8.4. The matching algorithms for act! and acr2 are described in Section 8.5, and the
ITE-based mapping in Section 8.6. Experimental results using these techniques are described in
~ Section 8.7. The approach is critiqued in Section 8.8.

8.2 History

8.2.1 Library-based

In 1989, when we first started looking at the synthesis problem for MUX-based architec-
_ tures, we knew of only one mapping approach - the one based on the creation of alibrary. The library
can be created with gates that represent functions obtained from the basic block by connecting the
function inputs to some of the input pins and then tying the remaining pins to constants (0 or 1).
The network is represented as a subject graph in terms of a set of base functions, typically a 2-input
NAND gate and an inverter. All the functions in the library are also represented in terms of the base
functions. These are the pattem graphs. The problem then is to cover the subject graph using the

* minimum number of pattern graphs.
' An advantage of this approach is that it is quite insensitive to the basic block architecture.
The only change needed is the creation of a new library. If we put in all the functions that can be
implemented with the act! or act2 module, the library size will be unmanageable. The size can be
“reduced by putting only one out of all P-equivalent functions in the library. Efficient algorithms
that use BDDs can produce all non-P-equivalent functions implemented by a MUX-based block in
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a short time. However, even this number may still be large, although not as large as for the LUT
architectures (706 for the act] as compared with 9,014 for a4-input, 1-output LUT). Also, each such
function is represented in all possible ways, and so the number of pattemn graphs is much larger. In
addition, the time to map becomes quite high. One remedy is to select a smaller subset of functions
for the library, say by throwing away less frequently used functions. In general, such a reduction
can result in a loss of quality of results.

8.2.2 BDD-based

In 1990, we proposed in mis-fpga [62] that for MUX-based architectures, the set of base
functions should be changed from a NAND gate and an inverter to a 2-1 multiplexor, since it is a
more natural representation for the MUX-based architectures. We defined both the subject graph
and the pattern graphs in terms of BDDs. Recall that each non-terminal vertex of a BDD represents a
2-1 multiplexor. We used both ordered and unordered BDDs for the subject graph. A very small set
of pattern graphs was needed, another benefit of the new function representation. As in the popular
library-based approaches, the underlying mapping algorithm in mis-fpga was based on dynamic
programming. To further improve the quality of results, we added an iterative improvement step
after initial mapping; it tries to exploit the relationship between nodes of the network. It consists
of three main operations: partial collapse, decomposition, and quick-phase (which decides the
phase - positive or negative, in which a function should be implemented). Significant gains over the
library-based approach of mis!! were obtained in the quality of results.

A similar approach was later used in ASYL [80, 6]. The input ordering for the BDD is
obtained by lexicographical factorization, the central theme of ASYL. Both area- and speed-oriented
solutions were presented.

8.2.3 ITE-based

In 1991, Karplus proposed Amap in which he extended the idea of using a MUX-
based representation. Instead of using BDDs, he used if-then-else dags (ITEs), the most general
representation of a function in terms of multiplexors. The selector function at each vertex of an ITE
can be a function of inputs, rather than being an input, which is the case for BDDs. As pointed out,
one main advantage of ITEs over BDDs is that duplication of cubes can be avoided [38]. Amap
does not give results as good as mis-fpga but is much faster.
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GF

Figure 8.2: Can a 2-1 MUX implement an OR gate?

824 Boolean Matching-based

Also in 1991, Ercolani et al. [21] proposed PROSERPINE, an approach based on
Boolean matching, which answers the following fundamental question: “Can a given function f be
realized by a gate-function GF, where some of the gate-inputs may be tied to constants (i.e., 0 or
1), or other inputs?”

Example 8.2.1 In Figure 8.2, we show that a 2-input OR function f can be realized by a 2-1
" multiplexor if the select and the 0 input of the MUX are tied to a and b respectively, and the I input
to the constant 1.

PROSERPINE constructs ROBDDs for f and G F' and then checks if the ROBDD for

f is a subgraph of the ROBDD for GF. In the worst case, all possible variable orderings for the

) ROBDD for G F have to be considered. The problem is further complicated by the fact that some

) inputs of G F may have to be tied to either constants or other inputs (bridging) to realize the desired

~ function f. The PROSERPINE paper [21] does not report the CPU times, but we have reasons

to believe that the matching check is expensive. This matching forms the core of the mapping

algorithm, in which sub-functions of the network are extracted and checked for realizability by one

block.

3 In 1992, Burch and Long proposed matching algorithms using BDDs [15]. Their main

contribution was an algorithm for matching under input negations that takes time polynomial in the

7 size of the BDDs representing the functions to be matched. This algorithm forms the basis of the
algorithms for matching under input permutations, bridging, and constant inputs.

8.2.5 Combining Various Approaches

In 1992, following Karplus, we incorporated ITEs in our approach. In addition, we
developed fast matching algorithms for act/ and act2. We combined both techniques along with the
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iterative improvement step of mis-fpga in a single framework, and this yielded better results [60).
Later, in 1993, we improved various aspects of the algorithm, including the following:

1. selection of the branching variable at each step of the I TE construction,

2. construction of ITEs for functions having cubes with disjoint supports,

3. coupling between the matching algorithm and the ITE paradigm - it was made tighter,
4. use of the new ROBDD data structure [9], which has complementary edges, and

5. creation of multi-rooted subject graphs.

Note that no approach except the first one uses an explicit library.

8.3 Constructing Subject Graph and Pattern Graphs using BDDs

We consider two BDD representations: ROBDD and unordered BDD (or simply BDD).

8.3.1 ROBDDs

ROBDDs are attractive as a subject graph representation because they are compact and
do not have any function implemented more than once. The basic idea is to construct an ROBDD
for the function and then cover it by minimum number of pattern graphs. So we will like to have
an ROBDD that is small. It is well known that the ROBDD size is sensitive to the ordering of the
input variables [14]. Unfortunately, no polynomial-time algorithm is known for finding an ordering
that results in the smallest ROBDD. However, if the function has a small number of inputs, an
optimum ordering can be determined by trying out all possible orderings and picking the best one.
In our case, an optimum ordering is one whose corresponding ROBDD can be covered with fewest
pattems. One way of obtaining functions with small number of inputs is by transforming the given
network 7 into a network 7 in which every node has at most N fanins, where N is a small constant.
The problem of obtaining 7} from 7 is same as the synthesis problem for N-LUT architectures, and
the techniques of Chapter 3 can be used. For each node, the ROBDDs corresponding to all the input
orderings are constructed, their costs are evaluated using the covering algorithm (to be described
shortly), and the ordering that yields the minimum cost is picked.

Although for an arbitrary function we do not know an easy way of computing an optimum
ordering, for some simple functions we do know how to do it. As the next two propositions show,
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two such classes of functions are: those consisting of only single-literal cubes in their SOP, and
. those with just one cube.

Proposition 8.3.1 If afunction f = f(z1,22,...,Zks Y1, %2, - - ., Y1) consists of only single literal
cubeswith inputvariables =1, T2, . . ., Ty occurring in the positive phase and y1, 2, - . . , y1in the neg-
ative phase, then the ROBDD corresponding to the ordering x1, 4, 22,23, %2, T4, Z5, Y3, L6, L7, - - -
of input variables results in the minimum number of actl blocks after an optimum covering as
compared to other orderings, where this ordering starts from the leaves.

Sketch of Proof For any ordering, the ROBDD for f is a chain, i.e., at least one child of each
non-terminal vertex is a terminal vertex. Since the covering method is based on ROBDDs, the
select lines of MUX1 and MUX2, and the inputs of the OR gate can only be the inputs of f. Then,
to cover the chain ROBDD of f, act! can be configured in one of the following two ways.!

1. The OR gate inputs are tied to z; and z; (i # j), which are inputs occurring in positive phase
in f. Then, the data input ‘1° of MUX3 is constant 1, and the input ‘0’ is a sub-function of
f. The select line of MUX2 can be either an z input or a y input.

2. Only one input of the OR gate is tied to an input of f, the other input being constant 0. The
OR gate input can be z; or y;. If it is z;, the data input ‘1’ of MUX3 is constant 1, and the
input ‘0’ is a sub-function of f. The select line of MUX2 can be either an z input or a y input.
If it is y;, the data input ‘0’ of MUX3 is constant 1, and the input ‘1’ is a sub-function. The
select line of MUX1 can be either an z input or a y input.

In the first case, the act] module can “cover”’ a maximum of three inputs of f; in the second case,
it covers two inputs, the only exception being the act/ module that is bottommost in the chain.
This module can cover an extra input of f if the data input of its MUX1 (or MUX2) is an z input.
Then, the problem of minimizing the number of act] modules reduces to that of finding an optimum
ordering of the input variables. The z inputs should be used as the inputs to the OR gate as much
as possible, since two of them can be covered by an OR gate. To save them for the OR gate, the
MUX1 (or MUX2) select input should be a y input. These simple rules correspond to an ordering
where two z inputs are interleaved with a y input. The exceptional case of the bottommost module
_ is handled by putting a positive phase input (say z1) first in the ordering, [ |

!modulo complementation of some intermediate functions, which does not alter the basic argument.
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Proposition 8.3.2 If a function f = f(z1,22,...,Zks Y1, W2, - - -, Y1) iS @ single cube with input
variables 1,2, .. ., Tk occurring in the positive phase and yy, ¥, ¥, - - - i in the negative phase,
then the ROBDD corresponding to the ordering zy,22,Y1, %2, %3, ¥3, Y4, T4, Ys, Y6s - - - Of input
variables results in the minimum number of actl blocks after an optimum covering as compared to

other orderings, where this ordering starts from the leaves.

Proof Similar to that of Proposition 8.3.1. =
Note the following:

1. The first input in both the orderings is always an input in the positive phase. Starting from the
second variable, the orderings follow a repetition rate of 3: either a positive input followed
by two negative inputs, or a negative input followed by two positive inputs.

2. When inputs of some phase get over, the remaining inputs (of the other phase) are simply
concatenated to complete the ordering.

3. Both orderings are listed so that they start from the terminal vertices and end at the root of
the ROBDD.

Example 8.3.1 Consider functions
fi = d'bdde,
o = d+b+d+d+e+g+h.
From Proposition 8.3.2, an ordering for f that results in the minimum number of actl blocks is

b,d,a,c,e. In the corresponding ROBDD, vertex corresponding to input e would be the root. Also,
Jfrom Proposition 8.3.1, the ordering for f; is b,a,d, g,c, h,e.

From the perspective of synthesis for MUX-based architectures, the ROBDD representa-
tion has the following drawbacks.

1. The input ordering constraint imposed by the ROBDD may be too severe and can result in a
higher block-count after mapping. For instance, see Example 8.3.2.

2. Since an ROBDD has only one copy of a function, a vertex v can be pointed at by many
vertices - all are parents of v. Since the covering procedure we use is tree-based, the subject
graph is clipped at vertices with multiple parents. And if there are several such vertices, the
subject graph gets partitioned into many small trees. Although each tree is mapped optimally,
more the trees, more is the deviation from a global optimum solution.



284 CHAPTER 8. MAPPING COMBINATIONAL LOGIC
This leads us to consider another representation that does not have these two restrictions.

8.3.2 BDDs

The goal is to construct a BDD (without any ordering restrictions) such that the number
of vertices in the BDD is small and the number of vertices with multiple parents is small. The
method used to construct BDDs is subsumed by the method for constructing I TEs - to be described
in Section 8.6. Since ITEs are the representation of choice currently, we do not present the BDD
construction algorithm here. It can be easily derived from that for ITEs. In any case, the reader is
referred to [62].

A drawback of the BDD representation, or at least the heuristic to construct it, is that
some function may be replicated many times in different branches of the BDD.

In general, it is not possible to predict which type of representation, ROBDD or BDD,
will give a lower-cost implementation; we have to construct both the types for a node function and
select the one with lower cost.

8.3.3 Local versus Global Subject Graphs

Experiments showed that, in general, constructing a subject graph for the entire network
in terms of the primary inputs (global subject graph) leads to worse results as compared to when a
subject graph for the local function at each node of the network (local subject graph) is constructed.
This can be explained as follows.

1. The global ROBDD and BDD require all vertices to be indexed by primary inputs. This is
too restrictive; smaller representations are possible if the vertices can be indexed by internal
node functions, precisely what a local subject graph is.

2. The ordering constraint imposed on a global ROBDD can cause it to be huge. It is crucial that
the subject graph be small, so that acceptable mapping solutions are generated after covering
it with a small pattern-set (which we use). The basic assumption behind having a small set of
pattern graphs is that the subject graph is close to optimum. If it is not, then the pattem-set
needs to be enlarged.

~ So, we construct subject graphs for each node of the network separately.
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Figure 8.3: act - a simplified act]

0

1 2 3
o/N\1 {< % 0 ;2 1
Figure 8.4: Patterns for act

8.3.4 Pattern graphs

First, consider a simplified version of act/ module, act, as shown in Figure 8.3. It is
obtained by ignoring the OR gate of actl. We consider four pattern graphs for the act module, as
shown in Figure 8.4. A circle in a pattem graph is a 2-1 MUX, whose data input 0 is provided by
the low or O child, and input 1 by the high or 1 child. If a function is realizable by one act block, it
either uses one multiplexor, or two, or all three multiplexors.? The pattern graphs are in one-to-one
correspondence with these possibilities. This small set of patterns suffices to capture all possible
functions realizable by one act block. This is formally stated in Proposition 8.3.3. Note that all
the pattern graphs are leaf-DAGs, as the hanging edges (whose one end-point is not circled) are
allowed to terminate at any vertex of the BDD.

In actl, introducing the OR gate at the control input of MUX3 increases the number
of functions realized as compared to act considerably. However, from an algorithmic point of

%f a function does not use any multiplexor, it is either 1, 0, or identically equal to an input. Then it can be realized
without any block.
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Figure 8.5: Patterns for act!/

view, it causes some difficulties - number of pattem graphs increases, the correspondence between
multiplexor usage and the pattern graphs is destroyed, and some of the pattem graphs are no longer
leaf-DAGs. Currently, we have a set of 8 pattem graphs for actl. They are shown in Figure 8.5.
The patterns O through 3 are the same as the ones in Figure 8.4. The patterns 4 through 7 exploit
. the presence of the OR gate. To see how, consider the pattern 4. Let

r = root vertex of the pattem 4,

R = the variable at 7,

s = low(r),

S = the variable at s,

t = high(r) = high(s),

u = low(s),

U = the variable at u,

v = low(u), and

w= high(u).

Then the function g implemented by r in terms of the inputs of the pattem is

g = Rt+R(St+S5'(Uw+ U'v))
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Rt+ R'St+ R'S'(Uw + U'v)
(R+ S)t+ R'S'(Uw+U'v)

If R and S are tied to the OR gate inputs of act! (see Figure 8.1), MUX1 is configured to realize
t, and MUX2 is configured to realize Uw + U'v, g can be realized with one act! module. Similar
derivations can be made for the patterns 5 through 7. Although non-leaf-DAG patterns (i.e., ones
with internal fanouts) are possible, we do not include them in our set. This is because the covering
algorithm breaks the subject graph into trees and no sub-tree can match against a pattern graph that
has internal fanouts.

8.3.5 The Covering Algorithm

We use the tree-covering heuristic proposed in (41]. The only difference is that in our
case, the subject graph and the pattern graphs are in terms of 2-to-1 multiplexors. We now justify the
use of the set of pattern graphs for act, as shown in Figure 8.4, by stating the following proposition.

Proposition 8.3.3 For a function f realizable by one act module, there exists a subject graph S
whose non-leaf portion is isomorphic to one of the four pattern graphs of Figure 84, say p. The
covering algorithm will map S onto p3

Proof Deferred to Section 8.5.1. ]
Later, in Section 8.5.1, we will present an algorithm to determine if f is realizable by one
act module without constructing all possible ROBDDs.
Since the pattern-set is small, the covering algorithm is fast.

Example 8.3.2 Consider f = d(ac + a'b) + d'(ca + ¢'b). Figure 8.6 (A) shows a BDD for f, and
(B) an ROBDD. After applying the covering algorithm, it is seen that 3 actl modules are needed
for the ROBDD, whereas 1 module suffices for the BDD. A dotted rectangle denotes a match, i.e.,
an instance of actl module, which is configured as one of the patterns of Figure 8.5. Also note that
the vertices not covered by any match are the leaf vertices.

8.4 Proposed Mapping Algorithm

3This subject graph S is an ROBDD and can be found by constructing ROBDD:s for all possible input orderings for
f. Since f is a function of at most 7 inputs, 7! orderings may need to be examined.
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Figure 8.6: BDD representations

An outline of the overall synthesis algorithm for the MUX-based architectures is shown
in Figure 8.7. It resembles, at this level of abstraction, the algorithm for the LUT architectures of
Figure 3.34. The differences are in the way some of the specific algorithms (e.g., initial mapping)
work.

First, the network is optimized (currently, we use the standard technology-independent
optimization techniques). The mapping algorithm works as follows on the optimized network.

1. Initial mapping of each node: First, we check, using the matching algorithm to be described
in Section 8.5, if the local node function f can be implemented with one basic block. If not,
we construct an ITE for f (the subject graph) using the procedure of Section 8.6 and map
it, i.e., cover it with the pattern graphs corresponding to the basic block by the tree-based,
dynamic programming algorithm.

After this step, each node of the network has a feasible implementation associated with it.
However, the interconnection structure of the network remains the same. The cost of a node
is the number of basic blocks in its feasible implementation.

2. Iterative improvement: The node-by-node mapping paradigm used in the previous step does
not exploit the relationship between the nodes. To do so, we use an iterative improvement
phase. Two operations, partial collapse and decomposition, are tried. Partial collapse is the
same as that for the LUT architectures (see Section 3.5), except that the cost of a function
is now measured in terms of the MUX-based blocks. Decomposition uses decomp -g of
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unoptimized network

Optimizetion

I Initia! mapping of each node J

}

Partial Collapse

Decomposition

Obtain feasible nodes

Pantial Collapse

Build global ROBDD

optimized feasible network

Figure 8.7: Overview of the algorithm

misll [12] to break a node into a set of nodes, which are then mapped. If the cost improves,
the original node is replaced by its decomposition. Partial collapse and decomposition are
repeated for some number of iterations.

3. Last gasp: A node may cost more than one act/ block. In last gasp (a term borrowed from
ESPRESSO), we try to reduce this cost using one or both of the following techniques:

(@) Construct an ROBDD for the local node function and map it. If the node cost improves,
save the new mapping. Note that so far in the algorithm, ROBDDs had not been used.

(b) From each node n, construct a network 7j(n) with one internal node that is a copy
of n, one primary output, and as many primary inputs as the fanins of n. Apply a
decomposition algorithm on #(n), generating many smaller nodes. Then, invoke the
steps 1 and 2 of this algorithm on the resulting network and determine its implementation
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Figure 8.8: Why does the last iteration help?

cost. If this cost is less than that of n, replace n by the new network. This last gasp
technique mimics on a node what the first two steps of the algorithm do on a network.

4. Obtainingfeasible nodes: At thispoint, each node has attached to it a feasible implementation,
which is either the node itself (if the matching algorithm succeeded in step 1), or a mapped
ITE, or a mapped BDD. In this step, we replace each node by its feasible implementation, so
that the resulting network is feasible with respect to the basic block.

3. Lastiteration: Here we perform one iteration of partial collapse, as it can potentially improve
the quality. This can be attributed to two factors.

(a) Partial collapse is now being performed on smaller nodes, each having a cost of one
block. Itis possible that two such nodes can be absorbed in one block (for instance, when
these two nodes belong to the feasible implementations of two nodes of the original
network, one of them fanning out to the other).

(b) As shown in Figure 8.8, there may be a multiple-fanout vertex » within a mapped ITE
(just before step 4) that is covered by the pattern 0 of Figure 8.21 (i.e., a single MUX) and
that can be absorbed in its fanouts. This is possible, for instance, when all the fanouts
of v (in our example, w and ) are roots of some pattern graphs (in our example, 0) in
the cover of the ITE. This happens when the fanouts of v are multiple-fanout vertices.
So the node corresponding to v in the feasible network obtained after step 4 can be
collapsed into all its fanouts, thereby reducing the network cost by 1.

.This step was inspired by [6] and the partition algorithm for LUT architectures.
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6. Global ROBDD : Sometimes it is beneficial to construct a global subject graph. Since the
algorithm described so far is based on unordered ITEs and local ROBDDs, it is worthwhile to
experiment with a global subject graph that is ordered. We found ordered ITEs [37, 44] to be
ineffective: creating them takes a long time and the quality of the solution is not redeeming
either, and so decided to use ROBDDs. We discovered experimentally that global ROBDDs
may improve results when the network does not have too many primary inputs. Also, for
symmetric circuits, this step works very well, since an n-input symmetric function f can
be realized with O(n?) multiplexors. Such a realization requires that function-sharing be
detected. Since f is symmetric, an ROBDD for f automatically generates this realization
irrespective of the input ordering chosen for the ROBDD.

We used two ROBDD packages:

o 0ld[53): It does not use complementary edges (a complementary edge carries an inverter
to complement the function). This conforms to the target architectures act! and act2,
which do not have explicit inverters. However, since different primary outputs are not
allowed to share vertices in their ROBDDs, the representation provided in this package
is iarger than it odght to be.

e new - based on [9]: It uses complementary edges and permits the ROBDD:s for different
primary outputs to share vertices wherever possible. Due to the presence of the inverters
on the complementary edges, the ROBDD is not mapped directly. Instead, it is first
converted into a network of MUXes and inverters, which is then mapped using one

iteration of partial collapse.

The algorithm is flexible, i.e., except for the initial mapping, other steps are optional.
Moreover, they can be reordered. For example, right after step 1, step 4 can be applied followed by
step 2. The user is free to experiment with different orders, thus generating different designs.

The algorithm is applicable for both act! and act2 architectures. However, some
architecture-specific differences are there. The differences arise in the matching algorithm, con-
struction of ITEs, and pattemn graphs. Since the matching algorithms for act and act2 are quite
different, we present them for both in Section 8.5. For the rest (i.e., construction of ITEs and

corresponding pattern graphs), we focus on act/ in Section 8.6; these steps can be suitably modified
for acs2.
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Figure 8.9: An actl-realizable function

8.5 The Matching Problem

In this subsection, we address a fundamental problem in mapping: given a completely
specifiedfunction f and the basic block of the architecture, is f realizable by a single block? A more
general version of this problem is addressed in [21]: given a function f and a gate-function GF, is
- f realizable by GF? We restrict ourselves to two special gate-functions - those corresponding to
- the act! and act2 blocks. By this restriction, we hope to have a much faster algorithm.

8.5.1 The Matching Problem for actl!

First the matching theory is developed, which is then incorporated in an algorithm.

Assume that a completely specified function f is realizable by an act! block, and that a
minimum support cover for f is given. Since act/ has 8 inputs, assume that 1 < |o(f)| < 8 (0 and
1 functions are trivially realizable, so |o(f)| = 01is not considered). Observe that, without loss of
generality, one of the inputs of the OR gate can be tied to an input of f. This is because otherwise,
~ the select input of MUX3 is either constant O or constant 1. In either case, if f is realizable by an
' actl module, it is realizable by a 2-1 MUX, and hence by MUX3 with a non-constant input (i.e., an
input of f) at its select line. Refer to Figure 8.9 for the rest of the discussion. There are two cases:

1. One OR gate input is a € o( f), and the other input is 0. Then, f has a decomposition of the
form
f=ag+ah 8.1)

“The optimization phase, by generating a prime cover, guarantees minimum support.
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for some input a of f, where g and h are each realizable by a 2-1 MUX. The problem is to
find g and h. We may assume, without loss of generality, that g and & are independent of the
input a. This follows from the following proposition:

Proposition 8.5.1 If f has a decomposition as in (8.1), where g and h are realizable by a 2-1
MUX each, then it also has a decomposition of the form

f=ag +a'hy, 8.2)

where g1 and h, are realizable by a 2-1 MUX each and are independent of the input a.

Proof Since g is realizable by a 2-1 MUX, it can be writtenas g = CA+ C'B,A,B,C €
{0,1} U o(f). Assume g depends on a. Then, if C = a, g = a4 + a'B. So,

f = ag+ah
a(aA+d'B) +a'h
a(A) + d'h.

If A # a, set g1 = A, otherwise set g1 = 1. In either case, f = ag, + a’h, g; being
independent of a and realizable (trivially) by a2-1 MUX.If C # a,let A = a(thecase B = a
is similar). Then, g = Ca + C'B. So,

f = ag+adh
= a(Ca+C'B)+ad'h
= a(C1+C'B)+a'h.

If B# a,setg = C+ C'B=C+ B. Otherwise, set g; = C + C’ = 1. Once again, g; is
independent of a, and realizable by a 2-1 MUX.

In other words, if g depends on a, to obtain the desired g;, delete any cube in g having the
literal a’. Also replace each literal a by 1. Then, g, is independent of a, is realizable by a 2-1
MUX, and satisfies f = ag) + a’h. Use similar arguments on h to obtain the desired ;. =

The proposition tells us that whenever f is realizable by one act/ module with a single input
a at the OR gate, and g or % or both depend on e, an altemate realization is possible, as in
(8.2), with g, and h; independent of a. Since we are interested only in finding one way of
implementing f rather than all, in this case (of single input ¢ at the OR gate) the problem can
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be reduced to the simpler problem of finding g; and h; (or altemately, g and k) which are
independent of a. So, without loss of generality, g and & can be assumed to be independent
of a. Then, cofactoring (8.1) with respect to a and a’ yields

g= fm h= fa" (8-3)

. The OR gate inputs are tied to a and b, a, b € o( f). Then, f has a decomposition of the form

f=(a+b)g+ath, @4

where g and h are each realizable by a 2-1 MUX. The problem is once again to find g and A.
The following proposition provides a way to find k.

Proposition 8.5.2 If there exists a decomposition of f as in (8.4), with g and h realizable by
a 2-1 MUX each, then there exists another decomposition of f of the form

f=(a+bg+abt'h, (8.5)

where h, is independent of the inputs a and b and is realizable by a 2-1 MUX.

Proof The proof is similar to that for Proposition 8.5.1. We first write has h = CA+ C'B
and then observe that any cubes with literals @ or b can be removed from  (since h is ANDed
with a’b’ in (8.4)). Also, if present, the literals a’ and b’ can be simply deleted from a cube
(i.e., replaced by 1). Let the new function be k. It satisfies (8.5) and is independent of the
inputs @ and b. It is easy to see that & is also realizable by a 2-1 MUX. ]

This means that, without loss of generality, we can assume h to be independent of a and
b. Then, from (8.4), h = fu». The problem now reduces to finding a g that is 2-1 MUX
realizable. We divide it into two cases.

(a) g is independent of a,b. The following proposition gives necessary and sufficient
conditions for this to happen.

Proposition 8.5.3 A decomposition of f as in (8.4), with g independent of a and b,
exists ifand only if fo = fp.

Proof Note that

fo = foifandonlyif fap = forp = farr (8.6)
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The if part follows from considering Shannon expansion of f, and f;, with respect to b
and a respectively. The only if part follows from the fact that f, and f, are independent
of both a, b (since f, = fi).

(=) Assume

-
1l

(a+b)g+a't'h 8.7
abg + a'bg + ab'g + a't'h (8.8)

Cofactoring (8.8) with respect to ab, ab’, and a’b, and using the fact that g is independent
of a and b,

9= fab = farr = fanp 8.9

From (8.6), the result folows.
(<) Doing the Shannon expansion of f with respect to a and then b,

[ =abfas +a'bfpn, + ab fop + @'V fory (8.10)

Using (8.6) in (8.10),

<
Il

(ab +a'b+ ab’)fab + a'b’fa,b,
(e +b)g+a't’h

where g = fob = fary = fap and b = f,ny. Since f,p is independent of a and b, so is
g. [ |
Then, from (8.4), it follows that g = f,.

(b) g depends on a or b or both. Cofactoring (8.4) with respect to ab, a’b, and ab’, we get
9ab = fabs a's = fabs gab» = fapr. Then, from the Shannon expansion of g,

9 = gabab+ gopa’b+ goprad’ + gopa’t’ (8.11)
= fasab+ fona'b+ fopab' + gorpa't’ (8.12)
= G+ Ha'b'. (8.13)

Here, G = fapab+ fana'd+ foprab and H = g,1. Note that

Goy = 0 8.14)

How = H. (8.15)

-
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Given f and a choice of a and b, we are interested in finding a g that is MUX-realizable.
g will be known if G and H are known. We already know G (since we know f), but we
donotknow H. To find H, note that H does not affect f, since f is obtained by ANDing
g =G+ Hda't/ with (a + b). So H isa don't care for f. However, we are interested in
finding only those choices of H that make g realizable by a 2-1 MUX. Writing g as a
MUX implementation, we get g = CA + C'B, where A, B,C € {0,1} U o(f). Since
H = g,ny, we get

H =(CA+ C'B)ay = CarprAaryr + (Carr) Barpyr. (8.16)

If we use this formula as such to compute H, there could be 224 possibilities (when
lo(f)| = 8). However, we observe that at least one of 4, B,C € {a,b} = V. This is
because, by assumption, g dependsonaord. If C € V,then H = Byy. If A€V,
H=C'3yByy. f BEV,H = CyyAsy. Thus

H €{0,1,¢,¢,cd,¢d}, ¢,d € o(f) - {a,b}, ¢ # d. 8.17)

This reduces the possible choices of H toatmost 1 + 1+ 6 + 6 + 15 + 30 = 59 (when
la(f)| = 8). These can be reduced further by examining the cases when H = cd and
when H = ¢d. When H = cd,g = G + cda'b’. Since g is MUX-realizable, it has at
most 3 inputs. Hence, g does not depend on at least one of , b, ¢, d.

i. If g does not depend on ¢,

ge = 9g¢
G.+dd't = Go
Gear +d = Getar
d = 0(since G4n = 0 from (8.14)),

which is a contradiction. So g depends on c.
ii. Similarly g depends on d.

iii. If g does not depend on a,

e = 4Gao
G, = Gg +cdb
Gabo = cd

. fab’ = cd(since Gopr = Jab?)
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iv. If g does not depend on b, we can similarly show that )

faw = cd

So either f,p = cdor foy = cd. Similarly, if H = ¢'d, either f,5» = c'd or fn, = c'd.
Hence, for the case of a two-input H, we just examine f,r and f,. If any of these
are of the form cd or ¢'d, we consider that form for H. This reduces the number of
possibilities from 59 to at most 16.

The Matching Algorithm

We first give a subroutine that checks if a function f with a given prime and irredundant
cover C, is realizable by a 2-1 multiplexor. Such an f should have at most 3 inputs. Also |C| < 2.
The check is based on |o( f)).

1. If |o(f)| < 1, the function is realizable.

2. If |o(f)| = 2, say = and y are the inputs, then the possible functions are z + y,z + ¥, 2’ +
y,zy, Yy, z'y, and these are easy to check for.

3. If Jo(f)| = 3, then f should be of the form zy + z'z, i.e., there should be exactly two cubes
in C, each with two literals, with one input z occurring in both positive and negative phases,
and the other two inputs y and 2 occurring exactly once in the positive phase.

We can now describe the matching algorithm for act]. Its outline is shown in Figure 8.10.

0) If |o(f)| = 0, return the match for the constant function f. If |o(f)| > 8, no match exists;
quit.

(i) Compute T3(f) = {ala € o(f),|o(fa)| < 3}. We can restrict the potential OR gate inputs
to T3(f), i.e., if @ € o(f) is an input to the OR gate for an act-realizable function f, then
a € T3(f). This follows from (8.1) and (8.4) by noting that f, = g, and g, being realizable
by a 2-1 MUX, has at most 3 inputs.

(ii) Single input at the OR gate: Check if an input a € T3( f) may be put along with a 0 at the OR
gate. The check is performed by seeing if f, and f, are each realizable by a 2-1 MUX each
(using (8.3)). If so, report a match and quit. Otherwise, pick another ¢ € T3(f) and check
likewise. When all the choices are exhausted, go to the next step.
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lo )1>8?

YES

- 10 match

NO'

Does f have a decomposition of

the form: f=ag+a'h?

YES
e SAVE MALCH
NO y

Does f have a decomposition of

the form: f=(a+b)g+a’ b’ h?

YES
f———————— Save maich

NO

)
no match

Figure 8.10: Matching algorithm for act!

- (iii) Two inputs at the OR gate and g independent of these two inputs: Select a pair of inputs a and
b,a,b € T3(f), at the OR gate. From Proposition 8.5.3, f, should be equal to f3. This check
is fast, since f, and f, are functions of at most 3 inputs. If they are equal, and f, and f,/
are each realizable by a 2-1 MUX, we know f is realizable by one act! block. Otherwise,
pick another a, b pair and do the check.

(iv) Two inputs at the OR gate and g depends on at least one of them: For each pair a, b € T3(f),
first check for MUX realizability of fo«r. If successful, look for g that is realizable by a 2-1
MUX and depends on either a or b. For that, go through all the possibilities (at most 16) for
H one by one and see if g = G + Ha'b' is MUX realizable.

In steps (ii), (iii) and (iv), we first obtain a prime and irredundant cover of the candidates
for g and h before calling the subroutine for MUX-realizability, as it is a pre-condition for our
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subroutine. From the discussion, it follows that

Proposition 8.5.4 If a completely specified function f is expressed on minimum support, then the
above procedure is complete for actl, i.e., it generates a match if and only if f is realizable by one
actl module.

Note that if f is not expressed on minimum support, the algorithm may not find a match
that otherwise exists. A simple example is the tautology function f = 1 expressed as a function of
greater than 8 variables.

Using just the steps (i), (ii) and (iii), we may miss amatch. Forexample, f = (a+b)(a'c+
ab) +a'b'(zy + z' ) is realizable by act!, as shown in Figure 8.11. However, (ii) and (i) fail to find
amatch. T3(f) = {a,b}. Step (ii) fails to generate a match. Since f,» = bc + b'(zy + z’z) is not
realizable by a 2-1 MUX, a cannot be the only input to the OR gate. Similarly, fyr = a'(zy +2'z) is
not realizable by a 2-1 MUX, and hence b also cannot be the only input to the OR gate. So, we move
to step (iii). The only candidates for the OR gate inputs are a and b. However, since f, # f3, step
(iii) also fails to generate a match. Thus, f can be matched to act! only when the OR gate inputs
are ¢ and b, and g depends on a or b or both. This example also demonstrates that a method based
on cofactoring cannot guarantee optimality for mapping a function onto minimum number of act/
modules. This is because after cofactoring f with respect to a and b, the newly-created function g
will be independent of a and b. However, for the simplified act module, which does not have the
OR gate, cofactoring suffices. For, a function f realizable by one act module has a decomposition
of the form (8.1), and from Proposition 8.5.1, g and 4 can be assumed independentof a: ¢ = f, and
h = f,. Hence there exists a BDD for f which is isomorphic to one of the pattems of Figure 8.4.
We are assuming, of course, that f cannot be realized with 0 modules. This incidentally completes
the proof of Proposition 8.3.3.

8.5.2 The Matching Problem for ac:2

The act2 architecture (Figure 8.1) is slightly more difficult to handle than act], because,
unlike act!, MUX1 and MUX2 cannot be treated separately - they have a common select line, and
the extra AND gate complicates the matching check. This is similar to the complications arising
from the presence of the OR gate in the act] block.

Definition 8.5.1 Two functions g and h are common-select MUX realizable if each can be realized
with a 2-1 multiplexor, with the same select line (which may be a constant).
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(A) ®)

Figure 8.12: Common-select and common_AND-select MUX realizable functions

Such functions have a realization as shown in Figure 8.12 (A).

Definition 8.5.2 Two functions g and h are common_AND-select MUX realizable if both g and h
can be realized with a 2-1 multiplexor each, such that the select line for both the multiplexors is the
same and is equal to AND of some inputs c,d, where ¢,d € a(g) U o(h),c # d (so c and d cannot
" be the constants 0 and 1°).

Such functions have a realization as shown in Figure 8.12 (B).
Given two functions g and A, it is natural to ask if they are common-select MUX realizable
or common-AND-select MUX realizable. We now give methods that answer these questions.

Problem 8.5.1 Given two functions g and h, are they common-select MUX realizable?

5The cases when the constants 0 and 1, or ¢ = d are allowed are handled by common-select MUX realizable functions.
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Solution First find out all possible select line inputs C; under which g can be realized by a
multiplexor. If a function g is MUX-realizable, either

1. there are no restrictions on the selector function, i.e., g is 0, 1 or some input, so tie g to 0 and
1 pins of the MUX, or

2. there is exactly one candidate, z, for the select line, i.e., g is one of the following forms:
', z'y, 2’ + y,zy + 'z, 0r

3. there are exactly two candidates, z and y, for the select line, i.e., g is of the form z + y or zy.

These candidates form C,. Similarly find C;, for k. Compute C, NC. ThenCy NCy, # ¢ if and only
if g and h are common-select MUX realizable. u

Problem 8.5.2 Given two functions g and h, are they common_AND-select MUX realizable?

Solution Let o(g) and o(k) be the set of inputs of g and h respectively. Let U = o(g)U
o(h). Assume g and h are common-AND._select MUX realizable (Figure 8.12 (B)). Since ¢,d ¢
{0,1},|U| > 2. Then,

g = cdk+ (c' + d’)l, (8.18)
h = cdm+(c+d)n, (8.19)
¢,d €U, c#d,andk,I,m,neUu{0,1} (8.20)

We let ¢, d vary over U. Given g, h, ¢, and d, we may assume k, m to be independent of ¢
and d,i.e., k,m ¢ {c, d}. If they are not, we can replace them by 1 without changing g, k. We now
present necessary and sufficient conditions for g and 4 to be common_AND-select MUX realizable
for a given ¢, d pair. The corresponding values of £, !, m, and n are also given.

1. gca € {0’ l} u (O’(g) - {ca d}) (set k = gcq), and
2. he € {0, 1} U (o(h) - {c’ d}) (set m = hcq), and
3. Exactly one of the following should hold:

(i) go=0and g = c. (Set!l =¢).
@ii) g =0and g = 0. (Set! =0).
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(iii) g = land g4 = 1. (Set! =1).
(iv) go = dand gy = 0. (Set ! = d).
(v) 9o = zand gg = z. Here z € o(g) — {c,d} (Setl = z), and

4. Exactly one of the following should hold:

(@) he =0and hg = c. (Set n = c).
(i) he =0and by = 0. (Set n = 0).
(ii) he = land hg = 1. (Set n = 1),
(iv) hy =dand hg = 0. (Set n = d).
(v) he = zand hy = 2. Here z € o(h) - {c,d}. (Set n = 2).

We just present a sketch of the proof. For necessity, assume (8.18), (8.19), and (8.20). Cofactoring
(8.18) and (8.19) with respect to cd gives the first two conditions. Cofactoring (8.18) with respect
to ¢’ and d’, and using the fact that [ € U U {0, 1}, we get the third condition. Likewise we get the
fourth one from (8.19). For sufficiency, do Shannon expansion of g and » with respect to ¢ and d.

= geacd + geared’ + gorac'd + gorgrc'd’
= heged + hegred' + hogc'd + hogdd

Using the conditions 1-4 in these two equations, it is easy to see that k,l,m, and n can be
appropriately selected, as written parenthetically above, to give the desired implementation of g and
h as (8.18) and (8.19) respectively.

These conditions are easy to check. Since |U| < 6, in the worst case, they have to be
checked for all 15 ¢, d pairs. n

We are now ready to answer the original question: given f, is f realizable by one act2
block? The strategy is to assume that f is realizable by one act2 block and derive all possible
function pairs g and h (Figure 8.13). Then depending on the number of proper (i.e., non-constant)
inputs at the AND gate, check if ¢ and A are common-select MUX realizable or common_AND-
select MUX realizable. Refer to Figure 8.13 for the rest of this subsection. It suffices to consider
the following five cases:

1. One proper input, a, at the OR gate and at most one proper input, c, at the AND gate: If f
is realizable by a single act2 block, then f = ag + a'h, g = ck + ¢'l, h = em + ¢'n. Note
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act2

Figure 8.13: An act2-realizable function f

that g and h are common-select MUX realizable. It is enough to check for the case when g
and h are independent of a For, if either k or ! = e, replace it/them by 1. If any of m,n = a,
replace it/them by 0. Then, if c = a,

f a(ak + a'l) + d'(am + a'n)

= ak+a'n.

If g1 = k and k) = =, then g, hy are common-select MUX realizable, are independent of a,
and can replace g and k without changing f. Then g = f,,h = f,+. Finally check if g and h
are common-select MUX realizable.

2. One proper input, a, at the OR gate and two proper inputs, c and d, at the AND gate, ¢ # d: If
fisrealizable by asingle ac2 block, f = ag+a'h, g = cdk+(c'+d'),h = edm+(c'+d')n.
Again, without loss of generality, we can assume that g, h are independent of a. For, if
k,l,m,n = a, they may be replaced by appropriate constants 0 or 1. Then if ¢ = a (case
d = a is handled similarly), we get

f = a(adk+ (a' +d))+ d'(adm + (a’ + d')n)
a(dk + d'l) + a'n.

Set g1 = dk + d'l,h; = n = dn + d'n. Then replacing g and h by ¢; and h, respectively
results in a decomposition covered by case 1. So, g, % can be assumed independent of a.
Then g = fq, h = f,. Finally check if g and & are common_AND-select MUX realizable.
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3. Twoproper inputs, a and b, at the OR gate, a # b, and at most one proper input, c, at the AND

gate: If f isrealizable by asingle act2block, f = (a+b)g+a't’h,g = ck+c'l,h = em+c'n.
h may be assumed independent of a, b. For, if either m or n € {a, b}, they may be replaced
by 0. Then if ¢ € {a,b}, h may be replaced by h; = =, which is independent of a,b
and is common-select MUX realizable with any MUX realizable function. This implies that
h = f . For g, we need to consider two cases:

o g is independent of a,b: Then f, should be equal to f;, and g = f, (Proposition 8.5.3).
We then check if g and h are ooxﬁmon-select MUX realizable.

o g depends on either a or b or both: As shown earlier in (8.13), g = G + Ha't'. Then,
as before, for g to be MUX-realizable, we have at most 16 choices for H. For each such
choice, we compute the comresponding ¢ and check if g and & are common-select MUX
realizable. We quit if we get a match (i.e, a yes answer), otherwise we consider the next
choice of H and repeat this step.

. Two proper inputs, a and b, at the OR gate, a # b, and two proper inputs, c and d, at the AND

gate, c # d: If f is realizable by a single act2 block,

f =(a+b)g+dbh @8.21)
g =cdk+(+d)l (8.22)
h =cdm+ (' +d)n. (8.23)

h may be assumed independent of a, b. For, m, n can be made independent of a, b. Then, if

c=a,

<
I

(a+b)g +d't'h
= (a+b)g+d'bt'(adm+ (a’' + d)n)
= (a+b)g+(a't'n+d't'd'n)
= (a+b)g+ad'tn.
Then h may be replaced by k; = =, which is independent of a, b and is common_AND-select
MUX realizable with any g of (8.22).
This implies that h = f,+. For g, we need to consider two cases:

e g is independent of a,b: Then f, should be equal to f; and g = f, (Proposition 8.5.3).
We check if g and h are common-AND-select MUX realizable.
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o g depends on either a or b: As done earlier, we see that g = G + Ha't'. Also, from
(8.22), g = cdk + (' + d')l. Here, ¢,d € o(f) and k,l € {0,1} U o(f). Since
Gany =0, and H = g,y is independent of a, b, we get

H = carydaryrkary + (o + diny Ylarpe
Since g depends on {a, b} = V, we consider the following cases:
@) Ifc € V,cony =0. Then H = I 4. Similarly handle thecase d € V.
(b) Otherwise,
- ifkeV,H = (cly +d.y)law.
- ifl € V, H = caedanykary.

We then get
H e {0,1,z,z'y,2' + ¥/, (z' + ¢)z, 2y, zyz}, (8.24)
z,y,2€0(f)-V, (8.25)
sy ytz,c#z2 (8.26)

As in the algorithm for actl, we investigate the cases H = zyz and H = (2’ + ¢')2. Let
H = zyz. Then g = G + zyza'b'. But g has at most 4 inputs. So, g must be independent of
at least one of z, y, z, a,b. We can then show that either f,i» = zyz or fon, = zyz.

(a) If g does not depend on z, we get

9z = Gz
Gz +yza't = Gy
G:m’b’ +yz = G:l:'a’b‘

y2 = 0
Not possible. Hence g depends on z.
(b) Similarly g depends on y and z.
(c) If g does not depend on a,
9o = (Ga

Ga = Ga’+xyzb,
Goy = zyz

fab’ = Tyz
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Similarly, if g does not depend on b, f,,, = zyz=.

Similarly, if H = (2’ + ')z, either for = (2’ + y')z or for, = (2’ + y')z. Hence, for a
three-input H, we just need to examine f,;r and f,+5. Only if any of these are of the form zy2
or (2’ 4+ y')2, we need to consider that form for H. This reduces the possible choices of H
toatmostl1+1+6+30+ 15+ 1+ 15+ 1="70. For each such H, we obtain a g and check
if g and h are common_AND-select MUX realizable.

5. The output of the OR gate is a constant (0 or 1): So f = gor f = h. Then if f is realizable
by a single ac2 block, either f = z (z € o(f)),or f = ck + cl,or f = edk + (¢' + d')l =
c(dk + d'l) + ¢'l. All these subcases are covered by case 1.

Note that in each of the above cases, we need to vary a,b over T4(f) = {z|z €
a(f),le(fz)] < 4}, and ¢,d over o(f), wherever appropriate. Also note that as for actl, each
time we obtain a sub-function of f, we first derive a prime and irredundant cover before performing
any checks. From the above discussion, it follows that

Proposition 8.5.5 If a completely specified function f is expressed on minimum support, then the
- above procedure is complete for act2.

8.6 Constructing Subject Graph and Pattern Graphs using ITEs

We construct an unordered ITE for a function keeping in mind that it is to be mapped to
- actl. Say we are given the cover (or SOP) C of a function f. The overall procedure for constructing
the ITE for f is as follows:

1. If fisidentically O or 1, its ITE is just one vertex, which is a terminal vertex with value O or
1.

2. If f is a single cube, order the variables as per Proposition 8.3.2. If it is a sum of single-literal
cubes, order the variables as per Proposition 8.3.1. In either case, construct the chain ITE.

3. Check if f can be realized by a single act/ block. This is done by invoking the matching
algorithm of Section 8.5.1. If f is realizable, construct its ITE appropriately: each MUX of
actl is represented by a non-terminal vertex in the ITE. The OR gate of act! can also be
represented in the ITE, as will be shown in Section 8.6.5.



8.6. CONSTRUCTING SUBJECT GRAPH AND PATTERN GRAPHS USING ITES 307

4. If all the cubes in the cover C of f have mutually disjoint supports, use the procedure of
Section 8.6.1 to construct the ITE.

5. If C is unate, construct the ITE using the method of Section 8.6.2.

6. C is binate. First select variables that occur in all the cubes in the same phase. Next, a
branching variable z is selected. Compute the three algebraic cofactors of f with respect to
z and construct their ITESs recursively using this procedure. These ITEs are combined to get
the ITE for f. The details are in Section 8.6.3.

We now present details of the steps 4, S, and 6. The rest of the steps are either straight-
forward or have been described already.

8.6.1 Creating ITE for a Function with Disjoint Support Cubes

In any tree implementation of f, the cubes have to be realized first and then ORed together.
So one way to construct the ITE for f is to first construct an ITE for each cube, and then OR the
cube-functions. The ITE for each cube may be constructed using Proposition 8.3.2. The subsequent
ORing can then be done using Proposition 8.3.1. This procedure, however, ORs the cube ITEs
arbitrarily. Better results are possible if the cube ITEs are combined carefully. The improved
procedure is as follows.

1. Construct an ITE for each cube function using Proposition 8.3.2.

2. Determine for each cube whether after mapping its ITE, the output multiplexor, MUX3, of
the root act/ module is used, i.e., some input of the OR gate is a proper input of the cube. If
both the inputs to the OR gate are constants, the cube can be realized without the OR gate and
MUX3. For instance, as shown in Figure 8.15, MUX3 is unused for the cube ab (the inputs
to the OR gate at MUX3 are constant) and is used for the cube cde. Determining if MUX3
will be used is easy and the corresponding procedure is given in Figure 8.14. It is a function
of numbers of positive and negative literals in the cube. The procedure mimics ITE mapping.
The procedure is initially called with count = 0, which means that no module has been
used yet. Some positive and negative literals are selected for each act/ module. The count
is set to 1 when at least one module has been used. From then on, it remains 1. The case
count = 1 ishandled separately, because for a cube function there is a slight difference in
the way a leaf act/ is handled as compared to other act! modules.
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After this step, the cubes (and hence their ITEs) are partitioned into two sets: free - those
with the root multiplexor unused, and used - those with the root multiplexor used.

3. One ITE from the free set and two from the used set are picked and ORed together.
The ITEs corresponding to the used cubes are mapped to the inputs of the OR gate of the
actl block whose output multiplexor is unused. The free ITE is an input to this output
multiplexor. The resulting ITE is placed in the used set.

If the required number of £ree or used ITEs are not available, suitable modifications are
made. For example, if no free ITEs are present, four used ITEs are picked and ORed.
This corresponds to using an extra act! module: two ITEs feed the OR gate of the new act!/
module and the other two, MUX2. On the other hand, if no used ITEs are present, three
free ITEs are picked. This corresponds to using the OR gate inputs of the root act/ module
of one of the ITEs. In either case, the resultant ITE is placed in the used set.

This step is repeated until just one ITE is left unpicked.

Example 8.6.1 Consider f = ab + cde + g'h'ij’. Let ¢y = ab,c; = cde,c3 = g'h'ij'. For
¢1,p = 2,9 = 0. Then, from Figure 8.14, it can be seen that ¢, is in free. Similarly, for c3,
p=3andq =0, so c; belongs to used. For c3,p = 1 and q = 3, 50 c3 is in used as well. The
corresponding realizations for the three cubes are shown in Figure 8.15. The next step is to realize
f using these realizations. Figure 8.16 shows how the unused MUX3 of ¢,’s block is used to realize
f by connecting c; and c3 to the OR gate inputs of block 1. Note that to realize the desired OR of
¢ + ¢3 with ¢, ¢; switches from MUX1 to MUX2.

8.6.2 Creating ITE for a Unate Cover

In the spirit of the unate recursive paradigm of ESPRESSO [11], a unate cover is
handled specially. One of the following methods is used to generate an |TE for a unate cover C of
the function f.

1. use factored form: Generate a factored form of f, say by using decomp -g on the SOP
C. Unless the SOP consists of cubes with disjoint supports, there will be at least two sub-
functions in the resulting decomposition. This process is repeated until each of the resulting
sub-covers consists of either a single cube or a set of cubes with disjoint supports. In either
case, ITEs are constructed as described earlier. These ITEs are combined to get the ITE for f.
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/* return 1 if the top mux is unused, else return 0 */
/* p = number of +ve literals,

g = number of -ve literals in a cube */
int is_top_mux_unused(p, q, count)

int p, gq, count;

int g3 =9 % 3;
if (p == 0 && g == 0) return 0;
if (count == 0) {

if (p == 1 && q == 0) return 0;

if (q == 0)
if (p == 2) return 1; else return ((p - 3) % 2);
if (p == 0)
“if (g3 == 0 || q_3 == 2) return 0; else return 1;
if (q == 1)
if (p == 1) return 1; else return ((p - 2) % 2):
if (p == 1)
if (q 3 == Il 9 3 == 2) return 0; else return 1;

return is_top_mux_unused(p - 2, q - 2, 1);

}

if (@ == 0) return (p % 2):
if (p == 0)
if (q 3 == Il g 3 == 2) return 0; else return 1;

if (g == 1) return ((p - 1) % 2);

return is_top_mux unused(q - 2, p -1 , 1);

Figure 8.14: For a cube, is the top multiplexor unused?
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Figure 8.15: Example: realizing the three cubes
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Figure 8.16: Example: using MUX3 of block 1 to realize f



312 CHAPTER 8. MAPPING COMBINATIONAL LOGIC

For example, let us assume that the resulting decomposition for f leads to two new functions
G and F(G,...). ITEs for G and F are created. Then, in the ITE for F, all the pointers to
the variable G are replaced by pointers to the ITE for G, and this yields the ITE for f.

2. use column cover: If f is constant - 1 or 0, return the corresponding ITE constant 1 or 0. If
[C| = 1, construct ITE for the single cube using the variable ordering of Proposition 8.3.2. If
C consists of single-literal cubes, use the variable ordering of Proposition 8.3.1 to get the ITE
for f. Otherwise, construct a 0-1 matrix B = (b;;) for the unate cover C, where the rows of B
correspond to cubes, the columns correspond to the variables, and

y.. — | 1 ifthe variable z; appears in the i*h cube of C,
Y 0 otherwise.

z; may be in the positive phase or the negative phase.® A minimal/minimum weight column
cover CC for B is then obtained [11] (see Section 4.4.1). CC contains some variables {z;} of
f. For each variable z; in CC, a sub-cover SCj is constructed using cubes of C that depend
on z;. Each cube is put in exactly one such sub-cover (ties are broken arbitrarily). From the
sub-cover SCj, z; (or z;') is extracted out to yield a modified sub-cover M .SC;.
C = z SC;
z;€ECC

( 3 z;MSC;) + ( >, z;MSC;)
z,€CC, z, pos. binate z;€CC, z; neg. binate

In MSCj, z; is a don’t care. This corresponds to creating an ITE vertex v; for SC; with
the if child corresponding to z;, the then child corresponding to M SC;, and the else child
corresponding to 0. Then v; represents an AND operation. This is the case if z; appears in C
in the positive phase. If it appears in the negative phase, just swap the then and else children
of v;. The column covers for M SC}; are recursively obtained. The ITE of C is then obtained
by ORing repeatedly pairs of ITEs corresponding to the sub-covers SCj.

The weight of a positive unate variable is chosen slightly more than the weight of a negative
unate variable. To see why, suppose f = ab’ + ac’ + ¢’d. If all the variables were given
equal weights, we may obtain a column cover CCy = {a,d}. Let 2) = a,22 = d. Then
SCy = ab' + ac’',8C, = ¢'d. Then we factor f as f = a(d' + ') + d(¢'). MSC, =

SRecall that since C is a unate cover, each variable z, appears in it in either the positive phase or the negative phase,
but not both.
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b +c,MSC, = ¢ Since M SC) and MC S, satisfy the base cases (they are either a single
cube or sum of single-literal cubes), their ITEs are constructed. The ITE for f is constructed
from them as shown in Figure 8.17 (A). While ORing SC) and SC3, pointers pointing to
the terminal 0 in say SC; are changed to point to the ITE for SC;. After mapping using the
pattemns to be described in Section 8.6.5, we get the cost as 3 blocks (the dotted rectangle
stands for an act/ block). The reason is that we end up with ¢, an inverted input, at the leaf
of the ITE, and a multiplexor is used up to realize this inversion. However, if the weight of a
positive unate variable is slightly more than that of a negative unate variable, we obtain the
column cover CC; = {b',¢'}. These variables appear as the if children of some ITE vertex
that implements AND operation and hence their complements are automatically realized. f
is then factored as f = ¥'(a) + ¢/(a + d). The corresponding ITE is shown in Figure 8.17
(B). Note that d appears in the positive phase towards the bottom of the ITE and does not
need a multiplexor. As a result, a cost of 2 is incurred after mapping.” By giving lower
weights to the negative unate variables, negative variables tend not to be at the leaves of the
sub-cover ITEs. We choose the weights such that if the cardinality of a column cover is ¢,
then each cover of size greater than ¢ should have weight greater than ¢. It is easy to see that
weight(negative unate variable) = 1, weight(positive unate variable) = 1 + 1/n, where fis a
function of n variables, satisfy this property.

3. use the method for binate cover: In this method, C is treated as if it were binate. A variable
is selected at each step, and the algebraic cofactors are computed, for which the ITEs are
constructed recursively. The method of selecting the branching variable is described in
Section 8.6.3.

8.6.3 Creating ITE for a Binate Cover

Given the binate cover C for f, we first select variables that occur in all the cubes in the
same phase. Next, at each step a branching variable z is selected. One of the following procedures
is used to select z:

1. most binate [11]: Select the variable that occurs most often in the SOP. Priority is given to
a variable that occurs in all the cubes in the same phase. Subsequently, ties are broken by

"Incidentally, this function can be realized by one block. The match s discovered by the matching algorithm described
in Section 8.5.1.
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(A) B)

Figure 8.17: Positive unate variables should have higher weights

selecting the variable that occurs nearly equal number of times in the positive and negative
phases.

2. quick map: For each input variable v, compute the three algebraic cofactors Cy, C}, and C,
of f with respect to v as follows:

f=Civ+Cov' +C, 827

Example 8.6.2 Let f = abc + a'de + gh + ac'd + g'k, and v = a. Then,

Ci = bec+cd,
Co = de,
Cy = gh+d'k.

Compute the cost of each algebraic cofactor by constructing an ITE for it using the most
binate variable selection heuristic,® and then mapping it without any iterative improvement.
Finally, sum up the costs of all the cofactors to obtain the cost corresponding to selecting v
as the branching variable. Then z is the minimum cost variable.

80ne could use quick map recursively on the cofactor, but the computation becomes time-intensive.
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Figure 8.18: Obtaining algebraic cofactors with ITE

After z has been selected, compute the algebraic cofactors of f with respect to z:
f=Cz+Coz' +C; (8.28)

If we were to construct a BDD for f, f; and f;» would have to be computed. f, = C; + C; and
fzr = Co + C,. So C; is replicated in both. While C; can be shared between f; and £, in theory,
in practice it may not always. The currently used heuristics for constructing unordered BDDs do
not have an inbuilt mechanism for detection of sharing. As of ROBDDs, a bad input ordering can
thwart opportunity for a complete sharing. However, as pointed out by Karplus [38], ITEs avoid
the duplication. As shown in Figure 8.18, we can represent f as if C; then 1 else (if x then C) else
Co). This way we do not have to duplicate any literal of C,. We illustrated this earlier in Example
2.1.1, but repeat it here for convenience.

Example 8.6.3 Consider function f = ab+ a’c + de. In Figure 8.19, we show that if a is selected
as the top variable in the BDD, Cy = de gets replicated in both 0 and 1 branches. This is avoided
in the ITE by factoring out de before branching on a.

We recursively construct ITEs for Cp, C, and C; until they become unate, in which case techniques
from Section 8.6.2 are used to construct the ITEs. For two special cases, however, we use a slightly
different realization. When C; = a’ or C; = '/, where a, b are inputs of f, we realize f as if Cy'
then (if = then C else Cp) else 1. This is shown in Figure 8.20. Such a realization allows us to
save an inverter when C> = a’, and use the OR gate of act/ when Cz = a'b’.

Note that this procedure targets act/ and would have to be modified for other architectures,
say act2.



316 CHAPTER 8. MAPPING COMBINATIONAL LOGIC

Figure 8.20: Modifying algebraic cofactoring for a special case

-8.6.4 Comparing with Karplus’s Construction

Our method of constructing the ITE for a function f borrows from Karplus [38] the idea
of using algebraic cofactors instead of cofactors. However, we construct the ITEs for special cases
differently. We use different techniques to construct the ITE for a single cube, sum of single-literal
cubes, cubes having disjoint supports, unate cover, and feasible functions (for which we use the
matching algorithm).

8.6.5 Pattern Graphs for ITE-based Mapping
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Figure 8.21: Pattern graphs for act!
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The pattern graphs are also ITEs. As shown in Figure 8.21, we use 9 pattemn graphs for

obtaining a feasible realization of an infeasible function onto actl. The first four pattern graphs
(from O to 3) correspond to the act! without the OR gate and using one, two, or all the three
multiplexors. The next four pattems (from 4 to 7) are the same as the first four except that the
patterns 4 to 7 use the OR function at the if child of the root vertex. The OR function is detected
by the presence of the constant 1 at the then child of the if child of the root vertex. Pattern graph 8
represents a special case derivable from the basic block and uses the OR gate. Note the string of 3

MUXes, which as such cannot be implemented by one act! module, since the act] module has only

two levels of MUXes. But it may be possible to juggle some inputs. Let
r = root vertex of the pattern 8,
s =Iif(r),
u = then(r) = then(else(r)),
t = if (else(r)),
v = if (else(else(r))),
w = then(else(else(r))), and
z = else(else(else(r))).
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Then the function g implemented by r

su + 8'(tu + t'(vw + v'z))

su + s'tu + §'t'(vw + v'z)

g

su + tu + s't'(vw + v'z)
= (s+t)u+ s't'(vw+'z)

which is realizable by one act! module if s and ¢ are mapped to the OR gate inputs.

Note that if we do a technology decomposition either into 2-input AND and OR gates or
into 2-1 MUX gates, each function becomes feasible for act!, thus obviating the need for pattem
graphs. We can then simply use a matching algorithm that is embedded in the covering algorithm.
In our paradigm, this is the same as applying one iteration of partial collapse. However, as we will
show in Section 8.7, much better results are possible if we use the complete algorithm of Section
84.

8.7 Experimental Results

First we experiment with simpler options and then apply increasingly sophisticated ones
for better quality. The starting networks are the same as those obtained after optimization in Section
3.6.1.

8.7.1 Without Iterative Improvement

This is the simplest option. For each node of the network, an ITE is constructed and
then mapped using the pattern graphs. This corresponds to the step 1 of the mapping algorithm of
Section 8.4. The results are shown in the column ite-map of Table 8.1.

However, it may be possible to collapse some nodes into their fanouts without increasing
the fanout costs. This transformation corresponds to global covering and is implemented using
the steps 1, 4, and S of the mapping algorithm of Section 8.4. In other words, for each node of
the network, a feasible implementation is determined. Then each node is replaced by its feasible
implementation. Finally, one iteration of partial collapse is applied on the resulting network to
mimic the global covering of the network. The results are shown in the column ite-map + cover
and, on comparing with the column ite-map, establish that the covering step is useful in reducing
the block-count.
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| example || ite-map | ite-map + cover |

5xpl 46 42
9sym 54 53
C1355 166 164
C1908 176 156
C2670 377 340
C3540 552 502
C432 102 92
C5315 658 588
C6288 1226 ' 988
C7552 813 755
alu2 142 134
alu4 352 335
apex2 120 113
apex3 714 697
apex7 94 85
b9 60 56
bw 63 55
clip 45 41
cordic 26 22
dalu 401 366
des 1399 1279
duke2 186 170
e64 116 90
ex4 208 192
f51m 25 23
k2 570 545
misex2 41 37
rd84 56 55
ot 270 246
sao2 60 55
spla 266 246
1481 15 10
vg2 35 33
z4ml 16 13
| total [ 9450 | 8578 |

Table 8.1: actl count without iterative improvement
ite-map step 1 of the algorithm of Section 8.4
ite-map + cover steps 1,4, and 5 of the algorithm of Section 8.4
total sum of act! counts over all the examples
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Initial decomposition

To test the hypothesis that a technology decomposition into two input AND and OR gates
is not the best altemnative, we performed an experiment using three decomposition techniques.

1. nand decomp: Apply decomp -g to create a factored representation and then use tech-decomp
-a 2 -0 2 to derive a representation in terms of 2-input AND and OR gates.

2. MUX decomp: For each node, construct an ITE and break it up into MUX nodes.

3. LUT decomp: It seems a good idea to use the synthesis techniques for LUT architectures
to obtain a 3-feasible network. Initially, the motivation was that for functions with a small
number of inputs, one could construct ROBDDs for all possible input orderings and pick the
best one. We suggested this first in {62]. Karplus, noting that an act] module can implement
most of the 3-input functions, used the same idea in [38). Whatever the motivation, the idea
is good, as the experiments will prove.

While the first two techniques generate an act/-feasible network, the third, LUT decomp, may not,
since not all 3-input functions can be realized with an act! module. So, in this case, an ITE is
constructed and mapped, resulting in a feasible implementation.

On the feasible network generated using each technique, an iteration of partial collapse is
applied to mimic the covering step. The results obtained thereafter are shown in Table 8.2. About
10% improvement is attained from MUX decomp over nand decomp. LUT decomp yields the best
results, attributable to superior LUT mapping techniques. As we demonstrate next, it is possible to
further improve the quality by means of the iterative improvement phase.

8.7.2 Iterative Improvement Without Last Gasp

We use steps 1, 2, 4, and 5 of the algorithm. A binate cover is mapped using the most
binate variable option, and a unate cover, using the factored form option. Just one iteration is used
in the iterative improvement step, i.e., in step 2. To make the partial collapse more effective, a node
is considered for partial collapse only if it satisfies all of the following conditions:

1. Its cost is at most 3 act! modules,
2. ithas at most 7 fanins, and

-3. after collapsing it into the fanouts, each of its fanouts has at most 50 fanins.



8.7. EXPERIMENTAL RESULTS

| example | nand decomp | MUX decomp | LUT decomp

5xpl 48 43 43
9sym 79 63 19
C1355 216 200 202
C1908 219 195 182
C2670 330 305 238
C3540 618 605 489
C432 123 114 83
C5315 798 766 555
C6288 1458 1264 1079
C7552 1097 905 712
alu2 185 167 152
alu4 475 443 321
apex2 133 129 120
apex3 799 769 -
apex7 104 90 84
b9 56 56 56
bw 65 62 60
clip 59 46 41
cordic 25 23 26
dalu 487 449 385
des 1617 1563 1222
duke2 210 191 184
e64 97 97 90
ex4 233 221 221
f51m 37 31 26
k2 739 660 536
misex2 48 47 45
rd34 78 67 43
rot 287 288 251
sao2 64 61 52
spla 301 291 251
481 11 10 10
vg2 39 33 34
z4ml 16 18 16
total " 11151 10272 -
subtotal 10352 9503 7828

nand decomp
MUX decomp
LUT decomp

total

Table 8.2: Initial decomposition
apply decomp -g and then tech-decomp -a 2 -o 2; then cover
decompose into MUX nodes; then cover
get a 3-feasible network; then cover
sum of act] counts over all the examples
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Also, in the decomposition step of iterative improvement, only those nodes are considered that have
at lcést 4 fanins. In the rest of the section, all parameters in the mapping algorithm take on same
values as just described.

The results are shown in Table 8.3 in the column ite-map + iter. imp., and are compared
with the column ite-map + cover of Table 8.1. They are, on average, 6% better, confirming the
usefulness of iterative improvement.

Constructing ITE for a unate cover

We experiment with all the three techniques of Section 8.6.2 for handling unate covers:
use fac, use column cover, and use the method for binate cover, and report the results in Table 8.4.
For the binate cover, the most binate variable heuristic is applied. The techniques give comparable
results, the factored form being slightly better than the other two.

Constructing ITE for a binate cover

We experiment with both branching variable selection methods of Section 8.6.3: most
binate and quick map. The results are shown in Table 8.5. On dalu and des, quick map ran out of
memory. On the rest of the examples, it is 0.5% better than most binate, but many times slower.
This slight improvement is probably not worth the time penalty to be paid.

8.7.3 Iterative Improvement with Last Gasp

So far, last gasp (step 3) was skipped in all the experiments. It is put to use for the
first time, and is applied right after the iterative improvement step. The results obtained thus are
compared with iterative improvement and no last gasp (column ite-map + iter. imp. of Table 8.3).
The results, compiled in Table 8.6, show that last gasp is ineffective. We believe this is because the
mapping solution generated by iterative improvement without last gasp is close to the best attainable
with our techniques.

8.74 Using Global ROBDDs

For networks with small number of inputs (for this experiment, at most 15), we construct
global ROBDDs, i.e., step 6 of the algorithm, and check if it improves upon the solution generated
using iterative improvement (column ite-map + iter. imp. of Table 8.3). Last gasp was not used,
since it is not beneficial. We used both old and new ROBDD packages. The results are shown
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[ example | ite-map + iter. imp. | ite-map + cover |
2

5xpl 40 4

9sym 53 53
C1355 164 164
C1908 155 156
C2670 205 340
C3540 472 502
C432 89 92
C5315 519 588
C6288 988 988
C7552 651 755
alu2 130 134
alu4 308 335
apex2 106 113
apex3 697 697
apex7 82 85
b9 56 56
bw 54 55
clip 37 41
cordic 21 22
dalu 361 366
des 1216 1279
duke2 164 170
e64 90 90
ex4 191 192
f51m 23 23
k2 526 545
misex2 37 37
rd84 52 55
rot 236 246
sao2 52 55
spla 242 246
1481 10 10
vg2 32 33
z4ml 14 13

| total i 8073 | 8578 |

Table 8.3: actl count with basic iterative improvement
ite-map + iter. imp. steps 1,2, 4, and 5 of the algorithm of Section 8.4
ite-map + cover steps 1,4, and S of the algorithm of Section 8.4
total sum of act] counts over all the examples
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use fac
col cover
binate
total

CHAPTER 8. MAPPING COMBINATIONAL LOGIC

| example || use fac | column cover | as binate
[ 5xpl 40 40 40
9sym 53 53 53
C1355 164 164 164
C1908 155 156 156
C2670 205 205 205
C3540 472 472 473
C432 89 85 86
C5315 519 520 519
C6288 988 989 988
C7552 651 657 655
alu2 130 129 130
alu4 308 304 305
apex2 106 110 112
apex3 697 692 699
apex7 82 83 82
b9 56 55 55
bw 54 54 54
clip 37 37 37
cordic 21 21 21
dalu 361 363 361
des 1216 1216 1218
duke2 164 168 166
e64 90 90 90
ex4 191 199 197
fS1m 23 23 23
k2 526 527 522
misex2 37 36 37
rd84 52 52 52
rot 236 236 238
sao2 52 52 53
spla 242 243 242
1481 10 10 10
vg2 32 32 32
| z4ml 14 14 14
[total [ 8073 ] 8087 | 8089 |

Table 8.4: Handling unate covers

obtain a factored form for the unate cover

use a column covering procedure to construct ITE for the unate cover
handle the unate cover exactly like a binate cover

sum of act! counts over all the examples
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|_example || most binate | quick map |

5xpl 40 38
9sym 53 52
C1355 164 164
C1908 155 156
C2670 205 202
C3540 472 463
C432 89 88
C5315 519 503
C6288 988 989
C7552 651 657
alu2 130 131
alu4 308 300
apex2 106 110
apex3 697 692
apex7 82 82
b9 56 52
bw 54 55
clip 37 35
cordic 21 22
dalu 361 -
des 1216 -
duke2 164 163
e64 90 %50
exd 191 203
fS1m 23 24
k2 526 522
misex2 37 37
rd84 52 50
rot 236 238
sa02 52 53
spla 242 239
1481 10 10
vg2 32 31
z4ml 14 14
total Il 8073 -
subtotal 6496 6465

Table 8.5: Variable selection method

most binate select the most binate variable at each step

quick map  select the minimum-cost variable: compute cost by
mapping algebraic cofactors

total sum of act! counts over all the examples

subtotal sum of actl counts when quick map finishes
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| example |] last gasp | no last gasp
5xp1 40
9sym 53 53
C1355 164 164
C1908 154 155
C2670 205 205
C3540 472 472
C432 89 89
Cs5315 519 519
C6288 988 988
C7552 651 651
alu2 130 130
alu4 308 308
apex2 107 106
apex3 698 697
apex7 82 82
b9 55 56
bw 54 54
clip 37 37
cordic 21 21
dalu 361 361
des 1216 1216
duke2 163 164
e64 90 90
ex4 191 191
f51m 23 23
k2 524 526
misex2 36 37
rd84 52 52
rot 236 236
sao2 52 52
spla 242 242
1481 10 10
vg2 30 32
z4ml 14 14
[total [ 8067 ] 8073 |

Table 8.6: Last Gasp
last gasp apply last gasp with iterative improvement
no last gasp  do not apply last gasp - only iterative improvement
total sum of act! counts over all the examples
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| example " init | old bdd | new bdd |

5xpl 40 51 51
9sym 53 17 14
alu2 130 131 111
bw 54 112 86
clip 37 105 96
fS1im 23 39 53
rd84 52 36 37
sao2 52 67 77
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Table 8.7: Using global ROBDDs

init starting block count
oldbdd construct ROBDD using the old package and then map
new bdd construct ROBDD using the new package and then map

in Table 8.7. Some improvement is obtained in examples 9sym, alu2, and rd84. These are either
completely symmetric or partially symmetric benchmarks. As mentioned earlier, global ROBDDs
provide a compact representation for such functions. On the rest of the benchmarks, the results are
worse and therefore rejected. Also, the new ROBDD package is seen to be slightly better than the
old one. This is possibly because of the sharing of complement functions in the new package.

8.7.5 Treating Node as the Image of the Network

This idea explores the possibility of extending the last gasp paradigm. Recall that last
gasp attempts to improve the solution quality towards the end of the mapping algorithm, but fails
since iterative improvement produces good-quality results. Here, we embed last gasp at the node-
mapping level. For each node » of the network 7, instead of constructing an ITE and mapping it, we
construct a network 7(n), which has one primary output, one internal node corresponding to n, and
as many primary inputs as the fanins of ». Then, on 7(n) we apply the algorithm of Section 8.4 (with
iterative improvement). This results in a network #(n). We replace n in # by its implementation
7(n). After this step has been performed for each node », 7 gets converted into a new network,
say 7. Each intermediate node in 7 can be implemented by an act/ module. Hence, the number of
internal nodes in 7 gives the number of act!/ modules needed for 7. Finally, we construct a global
ROBDD for the network and map the ROBDD on act] modules. If we get a better block count than
that of 7, we accept the ROBDD decomposition. These results are shown in the column best-map
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of Table 8.8 and are compared with those obtained afier iterative improvement (Table 8.3, column
ite-map + iter. imp.) and then building global ROBDDs (Table 8.7), as reproduced in the column
prev best. There is a slight improvement in the result quality. But it is at the expense of enormous
run-time.

8.7.6 Comparing Various Systems

Here we compare mis-fpga with the library-based mapper in misll [18] and Amap -
actually an improved version of [38). The starting optimized networks are identical for all the
systems. For mis-fpga, we use the results from prev best column of Table 8.8, since it completes
on all the examples, is just 1% worse than the best-map option, and is much faster.

In Table 8.9, we compare Amap with our approach. It can be seen that mis-fpga generates
much better results as compared to Amap, on average 18.5% (using the row subtotal). Using the
average of percentage difference for each example as the measure, we get 20.5% improvement.
Although both the tools use ITE-based representation, mis-fpga uses a different way of constructing
ITEs. Also, it uses an iterative improvement step, which accounts for better results. Not only that, as
can be seen from ite-map column of Table 8.1, mis-fpga with no iterative improvement is slightly
better than Amap. The results of Table 8.9 are pictorially shown in Figure 8.22.

To compare mis-fpga with the library-based approach of misll, we created two libraries:

1. complete: it consists of all 702 non-P-equivalent functions that can be realized with one act!
module,

2. actel manual: it consists of all the cells in the Actel manual [2], which are about 90.

Table 8.10 shows the results. It tumns out that using a complete library helps - by 6.7% on average.
However, the mapping is slow - in fact, about 7-10 times slower than in the case of partial library. The
mis-fpga results as shown in the previous table are about 12.5% better than the complete library’s
and 18.2% than the partial library’s. Using the measure of average of percentage improvement
for each example, mis-fpga is 13.7% better than the complete library and 19.7% better than the
partial one. It reaffirms the thesis that better quality can be achieved by using architecture-specific
algorithms. The results are compared graphically in Figures 8.23 and 8.24.



8.7. EXPERIMENTAL RESULTS

Table 8.8: act! count: treating node as the image of the network

best-map do the best mapping of each node - use all the steps

of the algorithm of Section 8.4 except last gasp

all the steps of the algorithm of Section 8.4 except last gasp
sum of act] counts over all the examples
out of memory

prev-best
total

[ example || best-map | prev best |

Sxpl 37 40
9sym 14 14
C1355 164 164
C1908 149 155
C2670 200 205
C3540 439 472
C432 86 89
C5315 503 519
C6288 990 988
C7552 621 651
alu2 111 111
alud 293 308
apex2 104 106
apex3 696 697
apex7 80 82
b9 54 56
bw 54 54
clip 36 37
cordic 21 21
dalu 340 361
des - 1216
duke2 166 164
e64 90 90
ex4 187 191
f51m 23 23
k2 527 526
misex2 36 37
rd84 37 37
rot 232 236
sa02 50 52
spla 238 242
t481 11 10
vg2 30 32
z4mli 14 14
[ total " I 8000
subtotal 6633 6784
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| example || amap | mis-fpga
Sxpl 47 40
9sym 60 14
C1355 142 164
C1908 172 155
C2670 398 205
C3540 541 472
C432 104 89
C5315 631 519
C6288 1224 988
C7552 820 651
alu2 163 111
alud 356 308
apex2 129 106
apex3 789 697
apex7 98 82
b9 64 56
bw - 54
clip 45 37
cordic 27 21
dalu 429 361
des 1527 1216
duke2 204 164
e64 120 90
ex4 243 191
f5im || 30 23
| k2 567 526
misex2 49 37
rd84 63 37
rot 296 236
sao2 63 52
spla - 242
1481 12 10
vg2 39 32
z4ml 18 14
total " - 8000
subtotal 9470 7704

Table 8.9: mis-fpga vs. Amap
amap using Amap
mis-fpga  prev best column of Table 8.8
total sum of act] counts over all the examples
- segmentation fault
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# actl blocks
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Figure 8.22: Comparing mis-fpga with Amap
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example | library-based [| mis-fpga
|| complete | actel manual ||
5xpl E A 40
9sym 57 61 14
C1355 182 174 164
C1908 181 188 155
C2670 282 297 205
C3540 485 516 472
C432 91 92 89
C5315 621 682 519
C6288 1425 1456 988
C7552 816 855 651
alu2 137 152 111
alu4 329 372 308
apex2 104 114 106
apex3 650 695 697
apex7 89 101 82
b9 53 62 56
bw 68 74 54
clip 49 50 37
cordic 22 23 21
dalu 361 420 361
des 1339 1446 1216
duke2 173 188 164
€64 116 116 90
ex4 197 210 191
fSim 28 33 23
k2 507 546 526
misex2 45 46 37
rd84 58 65 37
rot 276 305 236
sao2 54 59 52
spla 237 257 242
1481 13 13 10
vg2 40 43 32
z4ml 18 18 14
[total [ 9148 9781 [ 8000 |

Table 8.10: Library-based approach vs. mis-fpga

complete use the complete library

actel manual use the library provided by Actel

mis-fpga prey best column of Table 8.8

total sum of act] counts over all the examples
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Figure 8.23: Comparing mis-fpga with the complete library
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8.7.7 Using Multi-rooted ITEs

The subject graph in our algorithm is either a BDD or an ITE, and is constructed and
mapped for each node function separately. It looks promising to explore a subject graph that is global
and at the same time does not suffer from the ordering constraint of global ROBDDs. Then, the
mapping algorithm would have a larger graph to map, potentially yielding better mapping solutions.
A natural choice for such a representation is a multi-rooted unordered ITE. It has as many roots as
the primary outputs of the network, and is constructed by composing the ITEs of the individual node
functions. To handle the new representation, we made appropriate modifications in our mapping
algorithm.

To test the new representation, a multi-rooted ITE is constructed for the entire network
and mapped without any iterative improvement. The results are presented in the column mroot-ite
of Table 8.11, and are compared in the column ite-map with those obtained after constructing ITEs
for each node and mapping them without any iterative improvement (this column is a copy of the
column ite-map of Table 8.1). It turns out the results for the two columns are almost identical. We
believe this is because of the tree-based nature of the mapper. In an optimized network, each node
is saving some literals, i.e., the number of literals in the network will increase if the node-were
eliminated from the network. So, very likely, the root vertex of the node ITE, after composition
of the local ITEs, fans out to more than one ITE vertex in the the multi-rooted ITE. The mapper
breaks up this ITE into trees by clipping the ITE at all multiple-fanout vertices, and maps each tree
separately. The problem then is no different from that of mapping singly rooted ITEs. However,
if an exact mapper (e.g., one based on an exact binate covering solver) were to be used, we expect
multi-rooted ITE to be superior.

8.8 Discussion

Our basic premise was that in the mapping step for MUX-based architectures, instead
of a NAND-based representation, a MUX-based representation should be used. We started with
a BDD-based representation and later switched over to a more general |TE-based representation.
Table 8.10 shows that an ITE-based approach does much better than a library-based approach that
uses the NAND-gate representation, thus establishing the premise.

Comparing various representations, ROBDD has only one copy of a logic function, but it
suffers from unnecessary ordering constraint, and the results depend strongly on the ordering. BDD
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[ example || mroot-ite [ ite-map |

Sxpl 46 46
9sym 54 54
C1355 166 166
C1908 176 176
C2670 381 377
C3540 550 552
C432 101 102
C5315 661 658
C6288 1226 1226
C7552 818 813
alu2 142 142
alu4 352 352
apex2 120 120
apex3 715 714
apex7 94 94
b9 61 60
bw 63 63
clip 45 45
cordic 26 26
dalu 401 401
des 1398 1399
duke2 186 186
€64 116 116
ex4 208 208
f51m 25 25
k2 566 570
misex2 41 41
rd84 56 56
rot 273 270
sao2 60 60
spla 264 266
481 14 15
vg2 35 35
z4ml 16 16
total 9456 9450

Table 8.11: Multi-rooted ITEs vs. singly rooted ITEs
mroot-ite create multi-rooted ITE for the network and map it
iteemap  step 1 of the algorithm of Section 8.4
total sum of act] counts over all the examples
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does not have any ordering problem, but it can have multiple copies of the same function.

On cofactoring, both these representations can replicate product terms in the two branches.
However, as shown in [38], ITEs avoid this replication by using algebraic cofactors.

We believe that the best quality results are obtained if the subject graph is created keeping
inmind the target architecture. As we demonstrated, approaches like ours that directly map on to the
architecture can create such a subject graph. Since a library has many gate functions, library-based
approaches are unable to construct subject graphs that are good for the architecture.

Iterative improvement is essential in getting good quality results.

We targeted primarily act/ module. At a time when there is a surge of new block
architectures, it is difficult for synthesis to keep up. So our guiding philosophy was to fix an
architecture, strive for the best quality results, and hope that the algorithms developed for this
architecture can be appropriately modified for other architectures. For instance, to come up with
a good mapper for acz2, pattern graphs have to be derived. Ideally, the subject graph construction
should also be tailored. We proposed a matching algorithm for act2. Then, the same core of initial
mapping, iterative improvement, etc., can be used.
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Chapter 9

Conclusions

9.1 Contributions

This thesis addressed the problem of synthesizing circuits on field-programmable gate
array architectures. When we started the work, no synthesis algorithms had been published for the
most popular FPGA architectures such as look-up table- and multiplexor-based architectures.

We showed that the synthesis problem for these architectures is different from that solved
by the conventional, standard-cell based logic synthesis tools. Both optimization and technology-
mapping, the two main steps of logic synthesis paradigm, need to be modified in order to obtain
high quality results.

9.1.1 Synthesizing Combinational Logic

For mapping, we considered two objective functions - minimum area, approximated by
the minimum number of basic blocks, and minimum delay. Most of our effort was directed towards
producing a circuit with the minimum number of blocks. Even computing this number for an
arbitrary Boolean function is an NP-hard problem. So good heuristics are needed. We divided
mapping into two main steps: breaking infeasible functions into sets of feasible functions, and then
minimizing the number of feasible functions.

For LUT architectures, we examined various decomposition strategies, as well as variable
support reduction, for the first step. We were the first to apply the classical functional decomposition
forthese architectures. We showed that the problem of obtaining small functions after decomposition
can be exactly formulated as an encoding problem - an input-output encoding problem, to be precise.
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Previous formulations encoded the equivalence classes. We showed that this is not the most general
formulation. We presented the most general formulation, which encodes the vertices in the Boolean
space corresponding to the bound set such that vertices in different equivalence classes are assigned
different codes. This result is in the context of the general functional decomposition algorithm, and,
~ as such, is architecture-independent. We applied it to LUT architectures and showed that an input
encoding formulation suffices. We also studied decomposition using cube-packing. We proved
that for look-up tables with at most 5 inputs, cube-packing gives optimum tree implementation for
functions consisting of cubes with mutually disjoint supports. We also showed that, in general,
finding an optimum cube-packing solution is NP-hard. Other decomposition techniques such
as cofactoring and AND-OR decomposition were also studied. For MUX-based architectures,
the decomposition step generates a network in terms of 2-to-1 multiplexors, since it is a more
natural representation for such architectures. Either BDDs or ITEs may be used as the basic
representation. An important problem in mapping is the matching problem, i.e., determining if a
function can be implemented by a module. We proposed matching algorithms for the act] and
act2 modules. Exploitation of the module-structures makes the algorithms fast. Note that in
conventional technology-mapping, just before the covering step, the network is decomposed into
two-input NAND gates. In principle, we could apply the covering (block count minimization) step
on a network of NANDs. However, decomposition that explicitly targets FPGA architectures yields
better results after covering. This is one contribution of our work.

We devised two strategies for minimizing the number of functions in a feasible network.
The first is a covering method, similar to that used in the conventional technology-mapping. A
binate covering formulation is used. For LUT architectures, we defined the notion of an m-feasible
supemode, which is the basic object in the covering algorithm. Optimum and heuristic algorithms
were used/developed to solve the problem. The second strategy, specific to LUT architectures, is
based on reducing the support of a node function so that the node can be absorbed in other nodes.
These two block count minimization strategies were coupled into one algorithm.

For both LUT and MUX-based architectures, making the entire network feasible and then
minimizing the block count is not as effective as applying these operations on each node of the
network separately and then exploiting the structural relationship between the nodes of the network
in a partial collapse operation.

We also examined the optimization issues for FPGAs. In particular, we have modified
kemel extraction for LUT architectures, and are exploring simplification. We have shown how to
modify two-level minimization so as to obtain an SOP that is better suited for cube-packing.
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9.1.2 Mapping Sequential Logic

For sequential circuits, we focussed only on LUT architectures. The act! and act2
MUX-based architectures do not have any flip-flops, and so two modules have to be configured
appropriately using feedback to realize a flip-flop. Then the problem of mapping presents no new
challenges. However, the commercially available LUT architectures have flip-flops. For instance,
the Xilinx 3090 CLB is a complex block with two flip-flops and can be configured in many ways.
One contribution of this thesis was showing that 19 configurations suffice. Another one was
developing a fast algorithm to answer the following question: “Can a given set of combinational
Sunctions and flip-flops of the sequential circuit fit on one CLB ?” This is crucial since it forms
the basis of a mapping technique we proposed, in which combinational functions and flip-flops are
mapped simultaneously. An altemate and faster way is to map the combinational functions first and
then the flip-flops. A flow-based polynomial time algorithm for the best placement of flip-flops in
the already used CLBs was presented. This is optimum under some assumptions. Both techniques
build on and use the combinational mapping techniques proposed earlier.

9.1.3 Complexity Issues

Questions like how good various FPGA tools are and how much more they can be im-
proved led us to examine theoretical complexity issues. We were able to determine the exact
complexity for a subset of functions for LUT architectures. Unfortunately, the problem of deter-
mining the complexity of a function (i.e., the minimum number of blocks needed to realize the
function) is a hard one. The next best alternative is to determine bounds on the complexity. The
thesis explored how to compute upper bounds for a function, and a network in general, given some
representation. Two representations - SOP and factored form - were considered. Most of these
bounds were proven tight under some simplifying assumptions. These bounds can be used to predict
quickly the block count for a circuit without doing any technology mapping, and we provided some
experimental evidence for the accuracy of these estimates.

We did not derive similar bounds for the MUX-based architectures. The main reason is
that an LUT is easy to characterize - simply by the number of inputs. However, the basic blocks for
other architectures cannot be characterized so easily, making the bound derivation hard.
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9.1.4 Performance Directed Synthesis

All of the above approaches were related to obtaining a minimum-area circuit. This thesis
also addresses performance optimization for LUT architectures. Because of the constraints imposed
by the architecture and programming methodology, the wiring delays can be unpredictable and can
be a significant fraction of the total path delay. Lacking placement information, the logic-level
delay models cannot handle wiring delays. Our contribution is to solve the problem by a two-phase
approach: first, apply transformations at the logic level using an approximate delay model and then,
couple timing-driven placement with resynthesis using a more accurate delay model.

All of these techniques, including those for minimum block count and minimum delay,
have been implemented in mis-fpga and sis-fpga, which are built on top of sis. They are currently
being used in both academic and industrial environments. An average improvement of 10-30% over
other systems can be expected, though at the cost of longer run times.

9.2 Future Work

9.2.1 Improving the Implementation

The primary goal of this thesis was to obtain the best quality results. The run-time of
the algorithms was a secondary consideration. Consequently, there is reason to believe that the
current implementations of mis-fpga and sis-fpga can be speeded up significantly. One way is to
first identify the critical sections of the code through profiling and then speed them up. Another

_is through memoization. Right now, the mapping algorithm is applied afresh on each function f
under consideration. It may be the case that either f or another function g equivalent to f (NPN-
equivalent for LUT and P-equivalent for MUX-based architectures) were encountered earlier and
therefore already mapped. If stored in a hash table, these mappings can be used for f, thus avoiding
unnecessary computation. One benefit to accrue from this speed up is that for the same CPU time
spent, more computation can be performed, potentially translating to better results.

9.2.2 Using Don’t Cares

The mapping techniques proposed in this thesis dealt only with completely specified
functions. In general, because of the structure of the network, each node function has a don’t care
set associated with it, which can be used to derive a representation that is better suited for mapping.
In a general mapping framework, the use of don’t cares was initiated by Mailhot and Micheli [52],
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and later extended by Savoj et al. [71]. Theirideas can be applied to FPGA mapping techniques. In
fact, recently Lai et al. [43] have implemented a BDD-based version of Roth-Karp decomposition
for incompletely specified functions.

923 Logic Optimization

We have just started targeting the logic optimization phase for FPGAs, in particular for
LUT architectures. We modeled cube-packing in a two-level minimizer and showed how to obtain
a sum-of-products representation that is suited for cube-packing. This is yet to be incorporated in a
multi-level environment. We believe that other FPGA mapping techniques need to be modeled in
various optimization steps and only then can success be attained in this venture.

9.24 Delay Optimization and Modeling

The delay model used currently at the logic level is weak. This is because it has no idea
about the wiring delays, which are a function of the module locations. Better delay models need to
be developed also for placement. The Elmore delay model does not consider fanout loading, and
the Rubinstein-Penfield-Horowitz model gives two delay numbers, which could differ from each
other significantly.

9.2.5 Area-Delay Trade-offs

During synthesis, we did not take into account the capacity of chips. It may be the case
that the circuit fits on one chip, with some blocks unused. By modifying the circuit such that
the unused resources are used, we may be able to improve circuit speed. Similarly, the circuit
may meet the performance constraints, and it may be possible to recover area without violating
the constraints. Recently Cong et al. [17] and Bhat (7] have proposed some techniques for LUT
architectures. Bhat’s approach is particularly attractive, since it modifies an existing library-based
mapper and thus makes available the whole wealth of techniques developed already [82].

9.2.6 Synthesis for Routability

In Xilinx 3090 architecture, routing is a bottleneck. A smaller implementation may not
necessarily be easier to route. Synthesis algorithms that take routing constraints into account have
to be devised. This thesis does not directly address routing issues, except that one of the block
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count minimization heuristics approximates routability by the number of edges in the network.
~ When there is a choice of nodes to collapse into fanouts, the one that creates the least extra edges
is selected. Although it promises better routability, there are no guarantees. Work by Schlag et al.
[76] is similar in that they also model routability with the number of edges in the network. They
modify the cost function of the covering algorithm for routing and target the 2-output CLB of the
Xilinx 3090 architecture directly. Recently, Bhat and Hill [8] proposed an algorithm that couples
synthesis, placement, and routing in a tight loop.

9.2.7 Sequential Circuits

Although we addressed the problem of mapping for sequential circuits on to LUT-based
architectures, we did not devote much attention to the state-assignment and optimization problems.
'Given a chip that has some number of combinational and sequential components, the synthesis
algorithm is assigned the task of fitting the circuit on a minimum number of chips. Synthesis has to
be carried out under the constraint of fixed resources. State-assignment can trade-off combinational
and sequential elements, thus producing a design that matches the architectural constraints.

9.2.8 Partitioning Issues

If a design is too large to fit on one chip, it has to be partitioned into many chips. If a
‘ minimum cost solution is desired, i.e., using minimum number of chips, the standard partitioning
algorithms, e.g., of Kemighan and Lin [40], can be used. If the minimum delay is the primary
‘objective, an algorithm described in [59] may be used. This problem is interesting because every
time a signal crosses chip boundaries, an extra delay called inter-chip delay is incurred, which
could be much more than the delay on a signal that lies completely within a chip. However, this
algorithm does not consider pin constraints of the chip. So a few extensions need to be made.

Another interesting partitioning problem arises because of the existence of different LUT
- architecture-families (e.g., Xilinx 2000, Xilinx 3090, Xilinx 4000). Since the cost, capacity, pins,
and performance differ for the families, the following question assumes great importance: “Given
a cost objective and a performance constraint (alternatively, a performance objective and a cost
constraint), how many chips of each family should be used, and how should the different parts of
the circuit be assigned to these families?” Recently, KuZnar et al. [42] proposed a multi-way
partitioning algorithm based on a recursive application of the Fiducia-Mattheyses bipartitioning
heuristic [22] to address a restricted problem (without performance issues).
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In our current approach, partitioning constraints are ignored during synthesis. Recent
work by Beardslee et al. [4, 5] addresses logic partitioning subject to pin limitations. The number
of wires going across chips is minimized at the cost of extra encoding logic, thus trading off area
for pins. This work is in a general synthesis framework and can be applied in the FPGA domain.

9.2.9 Targeting New Architectures

New FPGA architectures are being proposed. For instance, the new Xilinx 4000 CLB has
three LUTs - two four-input LUTS feeding a three-input LUT. Our techniques, being architecture-
specific, have to be modified to be applicable to a new architecture. Is it realistic to devise separate
algorithms for separate architectures? Though better results are possible, it may not be viable from
a business viewpoint. We propose an integrated approach, which uses a fast matching algorithm
for each architecture and provides a common core of synthesis operations and transformations (e.g.,
the partial collapse, decomposition, etc.) for all the architectures. Its motivation comes from the
way mis-fpga evolved for LUT and MUX-based architectures. Initially the techniques were quite
different for the two architectures, but finally they converged. This approach, however, does not
consider the following:

1. Technology-independent optimization: Although the number of literals in a factored form is,
in general, a reasonable cost function, it may not be the best one, as was shown in Chapter 4
for LUT architectures. For such cases, should we embed a quick mapper in the optimization
steps to determine if the cost has improved? The cost computation should be fast, since it has
to be performed many times. Some researchers consider the support of a function as its cost
[28]. Though easy to compute, it may not be a good cost function, since functions with the
same support can require widely varying number of blocks.

2. Technology-decomposition: Architecture-specific decomposition generally yields better qual-
ity results. A representation that is more suitable for the architecture is desired. One solution,
of course, is to consider a 2-input decomposition as a starting point irrespective of the archi-
tecture.

As long as some quality-hit is acceptable (which is reasonable given the alternative of developing
different algorithms for different architectures), this approach is attractive.
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92,10 What is a Good Architecture?

The last few years have seen a proliferation of FPGA architectures, which vary in the
basic block structure, the routing architecture, the programming technology, etc. Given this wide
variety, is some architecture better than others? Although no satisfactory answer is available, a few
comments can be made.

1. An architecture is only as good as the synthesis algorithm targeting it. An otherwise good
architecture may remain underutilized if good synthesis algorithms cannot be developed for
it. Non-uniformity of the architectures, such as the Xilinx 4000, makes the development
of synthesis algorithms hard. There is a need to have architectures that are good from the
synthesis perspective.

2. A finer grain block is more efficient in terms of area, but not in terms of the number of
Ievels of blocks needed to implement a function. Moreover, each time a new level is needed,
some delay through the programmable switch may be incurred, thus making a very fine-grain
architecture unattractive.
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Appendix A
mis-fpga

A.1 Introduction

The techniques described in this thesis are implemented in misll, now a part of sis. The
term mis-fpga is used to refer to the part of misll that pertains to the FPGA architectures. This
includes the algorithms, implementation, and the commands.

In particular, combinational circuits can be synthesized for both LUT and MUX-based
architectures. Area minimization for both architectures and delay minimization for LUT architec-
tures are supported. The implementation for sequential synthesis, sis-fpga, is not being distributed
currently, but we hope to make it available in the next sis release.

This appendix briefly describes the commands corresponding to the algorithms described
in the thesis to map on to LUT and act/ architectures. Detailed descriptions are provided only for
those commands that have user-controlled options. For a complete description of each command
and the corresponding options, help <command-name>> shouid be used within sis.

A.2 Synthesis for LUT Architectures

Only the mapping algorithms are currently distributed. A standard optimization script
such as script.rugged (73] should therefore be used before invoking the commands described below.
A.2.1 Making an Infeasible Network Feasible

The following is a summary of various decomposition commands to make m-infeasible
networks feasible.
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xl_.ao cube-packing on an infeasible network

xl k_decomp apply Roth-Karp decomposition

xl_split modified kemel extraction

tech_decomp existing technology decomposition

xl.imp apply different decomposition schemes and pick the best

To get the best possible decomposition in xI_k_decomp, all possible choices of input parti-
tions have to be tried. This is made possible with the options ~e and -£. Then, the decomposition
with the minimum number of nodes is selected.

xi_split extracts kemels from an m-infeasible node. This procedure is recursively applied
on the kemel and the node, until either they become m-feasible or no more kemels can be extracted,
in which case a simple AND-OR decomposition is performed.

xl_imp tries to obtain the best possible decomposition for the network. It applies a set of
decomposition techniques on each m-infeasible node n of the network. These techniques include
cube-packing on the sum-of-products form of n, cube-packing on the factored form of », Roth-Karp
decomposition, and kemel extraction. The best decomposition result - the one which has a minimum
number of m-feasible nodes - is selected. There are options to control which techniques to use.

tech.decomp is a command which already existed in misll and is used typically just
before technology mapping. It takes two parameters -a AND-1limit and ~o OR-limit, and
. decomposes the SOP at each node into AND and OR nodes, the fanins of each node being limited
from above by the AND-limit and OR-limit respectively.

One command which does not necessarily generate an m-feasible network, but reduces
the infeasibility of a network is xl_absorb. This is based on the support reduction technique of
Section 3.3.6. Infeasibility of a network is measured as the sum of the number of fanins of the
infeasible nodes. The command x!_absorb moves the fanins of the infeasible nodes to feasible nodes
50 as to decrease the infeasibility of the network. Roth-Karp decomposition is used to determine if
a fanin of a node could be made to fan in to another node.

A2.2 Block Count Minimization
The following commands are used.
xl_cover use binate covering

xl_partition collapse nodes into immediate fanouts

xl_cover corresponds to the covering technique of Section 3.4.1. Mathony’s algorithm
[54] is used to solve this formulation exactly. For large networks, this algorithm is computationally
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intensive and we have developed several heuristics for fast approximate solutions. The —h option
provides a means to select the exact or a heuristic method. The options —e and —u enable the
program to automatically switch between the exact and the heuristic based on the number of nodes
in the network. If this number is no more than the one specified by the ~e option, the exact method
is applied, if it is more than the one specified by the —u option, x/_cover does nothing, otherwise, it
works as per the -h option.

xl_partition corresponds to partition heuristic of Section 3.4.1, which tries to reduce the
number of nodes by collapsing them into their some or all the immediate fanouts. It can also take into
account extra nets created. In the default mode, it collapses a node into its fanout only if the resulting
fanout is m-feasible. It associates a cost with each (node, fanout) pair which reflects the extra edges
generated in the network if node is collapsed into the fanout. It then selects pairs with lowest costs
and collapses them. With -t option, a node is considered for collapsing into all the fanouts, and is
collapsed if all the fanouts remain m-feasible after collapsing. The node is then deleted from the
network. Further optimization can be obtained by considering the technique of support reduction,
described in Section 3.4.2. This technique is applied as follows. Before considering the collapse of
a node n into its fanout(s), we check if any fanin F of n could be moved to G - another fanin of
n. This increases the chances of » being collapsed into its fanout(s). Moreover, it may later enable
some other fanin of n to be collapsed into n. This technique is invoked using the —m option.

A.2.3 The Overall Algorithm

The command xi_part_coll corresponds to the partial collapse of Section 3.5, except for
one difference. It also performs initial mapping for each node. So it invokes decomposition and
block count minimization routines. The -g value option specifies which representation to use
for mapping a node. A value of 0 just maps the SOP, value 1 maps a factored form, and value 2
maps both and picks the better of the two. The -c option puts an upper limit on the number of
nodes for the exact cover. Partition is also invoked and brings the —m option along with it.

The following script was used to generate the results of Table 3.6.

xl part_.coll -m -g 2 -c¢ 50
x1_coll._ck
xl.cover ~e 60 -u 200

xl_partition -m
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xl_collck collapses a feasible network if the number of primary inputs is small (this
number can be specified by —c option), applies Roth-Karp decomposition and cofactoring schemes,
picks the better of the two, and compares it with the original network (before collapsing). If the
number of nodes is smaller in the new network, the original network is replaced with the new one. If
=k option is specified, Roth-Karp decomposition is not applied; only cofactoring is used. Currently,
m = 2 is not supported in xl_coll_ck.

Intermediate solutions in the quality versus run-time trade-off curve can be obtained by
suitably choosing the scripts. For example, to get reasonably good results in a short time, the
following script may be used:
xl.ao

xl.partition =-tm

In all the commands, the default value of m is 5. It can be changed by specifying the new
value using —n option for each command.

One useful command not described thus far is xI_nodevalue -v support. It prints nodes
that have at least support fanins. This command is used to make sure that a feasible network has
indeed been obtained. For example, if m = 5, xl_nodevalue -v 6 prints the 5-infeasible nodes.

A24 Targeting Xilinx 3090

For the Xilinx 3090 CLB, mis-fpga has two special commands:
xl.merge identify function-pairs to be placed on the same block
xl.decomp_two cube-packing targeted for two-output CLB’s

The approach currently followed is to minimize first the number of single-output blocks
using the script(s) described above and then use x/_merge as a post-processing step to place a
maximum number of mergeable function-pairs in one CLB each. The conditions for mergeability
of two functions can be specified by placing upper bounds on the number of inputs to each function,
. the number of common inputs, and the total number of inputs. This problem can be formulated
as the maximum cardinality matching problem. An exact solution can be generated using lindo,
an integer linear programming package. If lindo is not found in the path, xI_merge switches to a
heuristic to solve the matching problem.

A different approach that sometimes gives better results is the following. First obtain
a 4-feasible network (by running any one of the above scripts with -n 4) and then use x/_merge
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without -F option. Since there are no nodes with S inputs, all nodes can potentially pair with
other nodes. As a result the number of matches is higher. When ~F option is not used, x/-merge
first finds maximum number of mergeable function pairs and then applies block minimization on
the subnetwork consisting of unmatched nodes of the network. This sometimes results in further
savings. We recommend that the user run the scripts for both 4-feasible and 5-feasible cases, apply
xl_merge, and pick the network that uses fewer CLBs.

The command xI_decomp_two does decomposition of the network targeted for two-output
CLBs. It is a modification of the cube-packing approach. However, it does not guarantee a feasible
network; other decomposition commands should be run afterwards to ensure feasibility. The details
of the algorithm corresponding to xI_decomp_two are not described in the thesis.

A.2.S5 Performance Optimization

xlrl performs placement-independent logic optimizations for performance. Given an
m-feasible network (preferably generated by speed_up, the delay optimization command in sis that
generates a 2-feasible network), x/_r! reduces the number of levels of LUTs used in the network.
Then, any block count minimization command (e.g., xI_cover, xl_partition (without —m option)) can
be applied to reduce the number of LUTs without increasing the number of levels. The code for
placement-dependent phase is not distributed.

A.3 Synthesis for MUX-based Architectures

We have implemented mapping algorithms for Actel’s act/ architecture. The command
currently available is called act_-map. The simpler architecture act of Figure 8.3 (that is, act/ with
the OR gate removed) is also supported. No library needs to be read. The algorithm of Section
8.2.2 is used. The user may specify the number of iterations to be used in the iterative improvement
phase, limits on the numbers of fanins of nodes for collapsing or decomposition, etc. He also has
the option to write out for the final mapped network a net-list file in a format similar to that of bdnet.
Each node of the mapped network is realizable by one basic block.

Currently, the method based on ITEs is not distributed.
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