
Parallel Algorithms for Hierarchical Clustering

Clark F. Olson

Computer Science Division

University of California at Berkeley

Berkeley, CA 94720

clarko@robotics.eecs.berkeley.edu

December 28, 1993

Abstract

Hierarchical clustering is a common method used to determine clusters of

similar data points in multi-dimensional spaces. O(n2) algorithms, where n is

the number of points to cluster, have long been known for this problem [24, 7, 6].

This paper discusses parallel algorithms to perform hierarchical clustering using

various distance metrics. I describe O(n) time algorithms for clustering using

the single link, average link, complete link, centroid, median, and minimum

variance metrics on an n node CRCW PRAM and O(n logn) algorithms for

these metrics (except average link and complete link) on n
logn node butter
y

networks or trees. Thus, optimal e�ciency is achieved for a signi�cant number

of processors using these distance metrics. A general algorithm is given that can

be used to perform clustering with the complete link and average link metrics

on a butter
y. While this algorithm achieves optimal e�ciency for the general

class of metrics, it is not optimal for the speci�c cases of complete link and

average link clustering.

1

1 Introduction

Clustering of multi-dimensional data is required in many �elds. For example, in

model-based object recognition, pose clustering is used to determine possible locations

of an object in an image [25, 26, 19]. Some possible methods of clustering data are:

1. Hierarchical Clustering: These methods start with each point being considered

a cluster and recursively combine pairs of clusters (subsequently updating the

intercluster distances) until all points are part of one hierarchically constructed

cluster.

2. Partitional Clustering: The methods start with each point as part of a random

or guessed cluster and iteratively move points between clusters until some local

minimum is found with respect to some distance metric between each point and

the center of the cluster it belongs to.

3. Binning: These methods partition the space into many (possibly overlapping)

bins and determine clusters by �nding bins that contain many data points.

For many applications partitional clustering is not ideal since the approximate

number of clusters must be known in advance and each data point must be place

in some cluster. Binning has low time requirement with respect to the number of

data points, but su�ers from the problems that multi-dimensional spaces require a

large number of bins and accuracy declines due to the separations imposed by the bin

boundaries. If a reasonable distance metric can be de�ned on the multi-dimensional

space, hierarchical clustering is the ideal method of clustering, but has not been used

due to an O(n2) time complexity. (Pose clustering, for example, requires clustering a

number of points polynomial in the number of image and model features.) E�cient

parallel clustering algorithms can reduce this burden and make hierarchical clustering

algorithms more useful for many applications.

2

The �nal hierarchical cluster structure can be represented by a dendrogram (see

Figure 1.) The dendrogram can be easily broken at selected links to obtain clusters

of desired cardinality or radius. We can create a representation of the dendrogram

internal to the computer by simply storing which pair of clusters are merged at each

step. This representation is easy to generate even in a distributed fashion, so I will

ignore its generation for the most part, concentrating on the determination of which

clusters to merge.

Individual data points are vectors in a d-dimensional space. I consider cases where

the dimensionality of the space d is �xed. Most of the algorithms presented have a

linear time dependence on d. I will note where this is not the case. The Euclidean

distance is usually used to determine the distance between any two points. But,

even restricting ourselves to hierarchical clustering, there are a number of methods of

determining the distances between clusters. See Murtagh [18] for additional details.

The distance metrics that I will examine can be broken into two general classes :

1. Graph methods These methods determine intercluster distances using the

graph of points in the two clusters. Examples include:

� Single link: The distance between any two clusters is the minimumdistance

between two points such that one of the points is in each of the clusters.

� Average link: The distance between any two clusters is the average distance

between each pair of points such that each pair has a point in both clusters.

� Complete link: The distance between any two clusters is the maximum

distance between two points such that one of the points is in each of the

clusters.

2. Geometric methods These methods de�ne a cluster center for each cluster

and use these cluster centers to determine the distances between clusters. For

example:

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1: A dendrogram shows how the clusters are merged hierarchically.

4

� Centroid: The cluster center is the centroid of the points in the cluster.

The Euclidean distance between cluster centers is used.

� Median: The cluster center is the (unweighted) average of the centers of

the two clusters agglomerated to form it. The Euclidean distance between

cluster centers is used.

� Minimum Variance: The cluster center is the centroid of the points in the

cluster. The distance between two clusters is the increase in the sum of

squared distances from each point to the center of its cluster caused by

agglomerating the clusters.

Useful clustering metrics can usually be described using the Lance-Williams up-

dating formula [12]:

d(i+ j; k) = a(i)d(i; k) + a(j)d(j; k) + bd(i; j) + c j d(i; k)� d(j; k) j

So, the distance between a new cluster (combining the two previous clusters i and

j) and the cluster k is a function of the previous distances between the clusters, with

coe�cients (shown in Table 1 for the metrics described above) that are functions of

the cardinality of the clusters.

O(n2) time algorithms exist to perform clustering using each of the metrics de-

scribed above. This is not quite of optimal worst-case e�ciency for single link clus-

tering, since the single link hierarchy can be easily determined from the minimum

spanning tree of a set of points [18], and the Euclidean minimum spanning tree

of n points in d dimensions can be determined in O(n2�a(d) log1�a(d) n) time where

a(d) = 2�d�1 [27]. This algorithm is not practical in most cases, so I will consider

O(n2) to be the optimal practical e�ciency. In addition, any metric that can be

described by the Lance-Williams updating formula can be performed in O(n2 log n)

time [6].

5

Metric a(i) b c
Single link 1

2
0 �1

2

Average link jij
jij+jjj 0 0

Complete link 1
2

0 1
2

Centroid jij
jij+jjj

� jijjjj
(jij+jjj)2 0

Median 1
2 �1

4 0

Minimum variance jij+jkj
jij+jjj+jkj

� jkj
jij+jjj+jkj

0

Table 1: Parameters in the Lance-Williams update formula for various clustering
metrics. (j x j is the number of points in cluster x.)

I present O(n) time algorithms for hierarchical clustering using each of the speci�c

metrics above on a n node CRCW PRAM, and O(n log n) time algorithms for these

metrics (except average link and complete link) on an n

logn node tree or butter
y.

In addition, I show how general clustering algorithms that can be described by the

Lance-Williams updating formula can be performed in O(n log n) time on an n node

butter
y. Thus, I give optimal, worst-case e�ciency parallel algorithms for a general

class of hierarchical clustering algorithms and for several cases of clustering using the

speci�c metrics.

2 Sequential Algorithms

Several important results on sequential hierarchical clustering algorithms are summa-

rized in [17] and some more recent results are presented in [6]. I will brie
y describe

some of these.

2.1 Single link, median, and centroid metrics

Clustering using the single link metric is closely related to �nding the Euclidean

minimal spanning tree of a set of points. The edges of the minimal spanning tree

6

correspond to the cluster agglomerations if taken in order from smallest edge to

largest edge, where the clusters of points agglomerated are those connected by the

subtree of edges already examined. While o(n2) algorithms exist to �nd the Euclidean

minimal spanning tree [27], these algorithms are impractical for d > 2.

An O(n2) time sequential algorithm for the single link method proceeds as follows:

1. Determine and store the distance between each pair of clusters. (Initially, each

point is considered a cluster by itself.) Also, for each cluster determine its

nearest neighbor.

2. Determine the pair of clusters with the smallest distance between them and

agglomerate them.

3. Update the pairwise distances and the new nearest neighbors.

4. If more than one cluster still exists goto Step 2.

This algorithm can be performed in O(n2) time, since Step 1 requires O(n2) time

and Steps 2-4 are performed n � 1 times and they can be completed in O(n) time.

Step 3 requires determining the new nearest neighbor for clusters that had one of the

agglomerated clusters as their nearest neighbor, but in the single link case we are

guaranteed that the new nearest neighbor will be the new agglomerated cluster. For

clustering using other metrics, this step is more complicated since the new nearest

neighbor may be any cluster. Finding the new nearest neighbor requiresO(n) time for

each cluster whose nearest neighbor is agglomerated in these cases. For the centroid

and median metrics, Day and Edelsbrunner [6] have shown that the number of such

clusters is limited by a function of size O(min(2d; n)), which for constant d is O(1).

So, we can modify the above algorithm to perform clustering using the centroid metric

by including in Step 3, the generation of the nearest neighbors for the O(1) clusters

whose nearest neighbor was agglomerated without changing the order of the running

time.

7

Note that this algorithm requires O(n2) space to store each of the pairwise dis-

tances for the single link metric. (For the centroid and median metrics, we can store

the cluster centers in O(n) space a generate the distances as needed.) Sibson [24]

gives an algorithm for the single link case requiring O(n) space and Defays [7] gives a

similar algorithm to perform complete link clustering in O(n2) time and O(n) space.

2.2 Metrics satisfying the reducibility property

An O(n2) algorithm using nearest neighbor chains is given next. To produce exact

results, this algorithm requires that the distance metric satis�es the reducibility prop-

erty [5]. The reducibility property requires that if the following distance constraints

hold for clusters i, j, and k for some distance �:

d(i; j) < �

d(i; k) > �

d(j; k) > �

then we must have for the agglomerated cluster i+ j:

d(i+ j; k) > �:

The minimum variance metric and the graph theoretical metrics satisfy this prop-

erty, so they are ideal metrics for use with this algorithm. The centroid and median

metrics do not satisfy the reducibility property. This algorithm still provides a good

approximate algorithm for these cases, but the order of examining the points can

change the �nal hierarchy.

The algorithm is as follows:

1. Pick any cluster i1.

2. Determine the list i2 = NN(i1), i3 = NN(i2),... until ik = NN(ik�1) and

ik�1 = NN(ik), where NN(x) is the nearest neighbor of cluster x.

8

3. Agglomerate clusters ik�1 and ik and replace them by a single cluster represented

by the new cluster center.

4. If more than one cluster still exists goto Step 2 using the previous ik�2 as the

new i1 if k > 2, otherwise choose arbitrary i1.

By amortizing the cost of Step 2 over the n iterations, it can be seen that this

algorithm requires O(n2) time and O(n) space for clustering techniques using cluster

centers. It can also be modi�ed to perform clustering using graph theoretical metrics

by keeping a matrix of the intercluster distances, increasing the space requirement to

O(n2).

2.3 General metrics

For any metric where the modi�ed intercluster distances can be determined in O(1)

time (e.g. using the Lance-Williams update formula) clustering can be performed in

O(n2 log n) time as follows [6]:

1. For each cluster generate a priority queue of the distances to each other cluster.

2. Determine the closest two clusters.

3. Agglomerate the clusters.

4. Update the distances in the priority queues.

5. If more than one cluster remains goto Step 2.

Step 1 can be performed in O(n2) time. Steps 2-5 are performed n � 1 times

each. The bottleneck is Step 4, which requires creating a new priority queue (for the

agglomerated cluster) and updating O(n) priority queues each time it is performed.

Since this step is performed n times and each time requires O(n log n) time, the total

time required is O(n2 log n).

9

2.4 Probabilistic algorithms

The expected running time of probabilistic algorithms has also been examined. For

example, Murtagh [16] describes an algorithm that achieves O(n) expected time for

the centroid method and O(n log n) time for the minimum variance method under

the assumption that the points are uniformly and independently distributed in a

bounded region. The algorithms are exponential in the dimensionality of the space,

so are practical only for small values of d. Fast expected running time algorithms to

determine the Euclidean minimal spanning tree also exist [4, 23], but these algorithms

are also exponential in the number of dimensions in the cluster space.

3 Previous Parallel Algorithms

Several authors have previously examined some of the clustering problems I discuss

or related problems. I will brie
y describe these here.

Rasmussen and Willett [21] discuss parallel implementations of the single link

clustering method and the minimum variance method on an SIMD array processor.

They have implemented parallel versions of the SLINK algorithm [24], Prim's mini-

mum spanning tree algorithm [20], and Ward's minimumvariance method [10]. Their

parallel implementations of the SLINK algorithm and Ward's minimum variance al-

gorithm do not decrease the O(n2) time required by the serial implementation, but

a signi�cant constant speedup factor is obtained. Their parallel implementation of

Prim's minimum spanning tree algorithm appears to achieve O(n log n) time with

su�cient processors.

Li and Fang [14] describe algorithms for partitional clustering (the k means

method) and hierarchical clustering (using the single link metric) on an n-node hyper-

cube and an n-node butter
y. Their algorithms for the single link metric are basically

a parallel implementation of Kruskal's minimum spanning tree algorithm [11] and run

in O(n log n) time on the hypercube and O(n log2 n) on the butter
y, but in fact the

10

algorithms for hierarchical clustering appear to have a fatal
aw causing incorrect

clustering operation. In their algorithm, each processor stores the distance between

one cluster and every other cluster. When clusters are agglomerated, they omit the

updating step of determining the distances from the new cluster to each of the other

clusters. If this step is added to their algorithm in a straightforward manner, the

time required by their algorithm increases to O(n2).

Driscoll et al. [9] have described a useful data structure called the relaxed heap

and shown how it may be applied to the parallel computation of minimum spanning

trees. The relaxed heap is a data structure for manipulating priority queues with

the properties that the operation of deleting the minimum element can be performed

in O(log n) time (where n is the number of items in the priority queue) and the

operations of decreasing the value of a key can be performed in O(1) time. The

use of this data structure allows the parallel implementation of Dijkstra's minimum

spanning tree algorithm [8] (also known as Prim's algorithm) in O(n log n) time using

m
n logn

processors, where n is the number of nodes in the graph and m is the number

of edges. Since the clustering problem must consider the complete graph on n nodes

this implies n

logn processors are used. This algorithm meets the optimal (practical)

e�ciency since it performs O(n2) work. In addition, it appears that using a butter
y

or tree rather than a PRAM is su�cient to obtain these times.

4 Parallel Machines

In this section, I will discuss the parallel computers that I describe algorithms for.

These can be divided into two categories. First, PRAMs, in which the memory is

shared among all processors and thus it does not matter where a value is stored.

Second, networks (e.g. butter
y or tree) on which each processor has its own local

memory and a interconnection pattern between processors is speci�ed upon which all

communication must be performed.

11

4.1 PRAMs

PRAMs (parallel random access machines) allow each of the processors to access a

single parallel memory simultaneously. Three types of PRAMs have been discussed

that allow di�ering types of concurrent access to any single memory location:

1. EREW (exclusive read, exclusive write): Processors must not try to read or

write to any memory location simultaneously.

2. CREW (concurrent read, exclusive write): Processors may read from a memory

location simultaneously, but may not write to a memory location simultane-

ously.

3. CRCW (concurrent read, concurrent write): Processors may read from a mem-

ory location concurrently or write to a memory location concurrently. Some

method of resolving concurrent writes must be speci�ed (e.g. using priorities or

arbitrary.)

I will be concerned primarily with CRCW PRAMs in this paper, but EREW

PRAMs will also be examined. The key operations that will be needed to implement

the clustering algorithms are determining the minimumvalue of a set of numbers (one

for each processor) and broadcasting a value to each processor.

On a CRCW PRAM, both broadcasting and minimization can be performed in

constant time. Broadcasting is performed by simply writing the value to a location

in memory that each processor can read. Minimization can be performed by each

processor writing a value to the same location, using the value as a priority. Thus,

the minimum value is the one that will be stored.

On an EREW PRAM, both of these operations take O(log n) time where n is the

number of processors. Broadcasting requires communication between the processors

in a binary-tree pattern. The processor that holds the information writes it to the

shared memory. A single processor can then read it during the next time-step. Both

12

of these processors can then write the information to the shared memory, allowing

two more processors to access the information in the next time-step. This continues

until all of the processors have accessed the information. Minimization is performed

in a similar fashion, but we now reduce the information by eliminating half of the

values at each step. We get the O(log n) time bound since a tree with n leaves have

height log n+ 1.

4.2 Networks

In parallel computers with only local memory, determining which processor will store

each piece of information is of utmost importance, since any request for this piece

of data by a processor on which it is not stored requires communication over the

interconnection network between the computers. I will discuss algorithms for two

interconnection patterns: butter
ies and trees. Details of these the butter
y and

tree interconnection patterns can be found in [13]. Importantly, both of these net-

works have radius O(log n) where n is the number of processors, so broadcasts and

minimizations can be performed in O(log n) time.

5 Parallel algorithms

A few basic algorithms will be used to implement clustering using the various dis-

tance metrics on these parallel computers. In each case, I will �rst describe the

basic algorithm and then describe the implementation details for the speci�c met-

rics/computers that we will use them for. In these algorithms, each cluster will be

the responsibility one processor (if we use n processors to perform clustering of n

points then there is a 1-1 correspondence.) When two clusters are agglomerated, the

lower numbered processor corresponding to the two clusters takes over full respon-

sibility for the new cluster. If the other processor no longer has any clusters in its

responsibility it becomes idle.

13

I will measure the amount of work performed by each algorithm as the number of

processors used multiplied by the time required. A parallel algorithm will be said to

be e�cient if the work performed matches the sequential time of the best practical

algorithm.

5.1 Algorithm 1

The �rst algorithm will be similar in operation to the sequential algorithm described

in Section 2.1:

1. Create a data structure so that we can easily determine which pair of clusters

is closest together.

2. Determine the pair of clusters with the smallest distance between them and

agglomerate them.

3. Update the data structure.

4. If more than one cluster still exists goto Step 2.

The important element of this algorithm is the data structure used and method

of determining the closest pair of clusters. Step 1 is performed only once and the rest

of the steps are performed n � 1 times.

5.1.1 Single link metric on a PRAM

We can use this algorithm to perform clustering using the single link metric very easily

on a PRAM.We just create a two-dimensional array of all of the intercluster distances

(each processor is responsible for one column) and a one-dimensional array storing the

nearest neighbor of each cluster (and the distance to it.) We can then determine the

closest pair of clusters by performing minimization on the nearest neighbor distances.

The numbers of these two clusters are then broadcast.

14

To update the data structure, each processor updates the inter-cluster distance

array to re
ect the new distance between its clusters and the new agglomerated

cluster. For each cluster it is responsible for, each processor must thus update a

single location in the array (or two if we maintain a redundant array such that the

distance can be indexed by either ordering of the clusters.) No operation need be

performed for the agglomerated clusters or the new cluster, since the new distances

will be determined by the remaining clusters.

Since the single link metric has the property that if the nearest neighbor j of

a cluster k becomes agglomerated into a new cluster i + j, then the new nearest

neighbor of j must be the new cluster i+ j, we simply check for this case and modify

the nearest neighbor array accordingly. The nearest neighbor of the new cluster is

determined using minimization on the distances of each other cluster to it.

Aside from trivial constant time operations, this algorithm requires only O(1)

broadcast and minimization operations. Thus, an n processor CRCW PRAM can

perform this algorithm in O(n) time. Note that on an EREW PRAM we can perform

the operation of log n clusters on a single processor and still achieve O(n log n) time

since broadcasting and minimization can still be performed in O(log n) time and the

other constant time operations become O(log n) operations. Thus, this algorithm

can be performed with O(n2) work on both a CRCW PRAM and an EREW PRAM,

which is e�cient in practice.

Note that this algorithm cannot be performed e�ciently on a local memory parallel

computer since the distance from the new cluster to each other cluster would be stored

on the same processor, requiring O(n) time to update this value at each step.

5.1.2 Centroid and median metrics

The above algorithm cannot be applied directly to other metrics, since only the single

link metric has the property that any cluster that had one of the agglomerated clusters

as its previous nearest neighbor has the new cluster as its new nearest neighbor. We

15

can sidestep this problem for the centroid and median metrics by using the result

of Day and Edelsbrunner [6] that shows that when the dimensionality of the cluster

space is �xed, there are O(1) clusters that can have any speci�c cluster as a nearest

neighbor. This number is exponential in the dimensionality of the space.

Note that for geometric intercluster distance metrics we do not need to store the

distances between each cluster. We can simply store the cluster centers for each

cluster (on each processor, if necessary) and generate each distance in O(1) time as

required.

Updating the data structure is now a little more di�cult. Since we know that there

is a constant maximum number of clusters that can have either of the agglomerated

clusters as their nearest neighbors, we can write the numbers of these clusters to a

constant sized queue on one of the processors. Determining the nearest neighbors of

these clusters can the be performed in constant time in the same manner that the

new nearest neighbor for cluster the new cluster is determined. It is now necessary to

broadcast the �rst entry in the queue at each step, but this is easy. Thus, hierarchical

clustering using the centroid and median metrics can also be performed in O(n) time

on an n node CRCW PRAM and O(n log n) time on an n

logn node EREW PRAM,

butter
y, or tree.

5.1.3 General metrics

If we try to use this algorithm on general metrics, we have no bound on the number

of clusters that may have any particular cluster as a nearest neighbor. In this case,

we can employ a priority queue for each cluster to keep track of which clusters are

closest to each. Since we only need to know which cluster is the closest at each step

this can easily be implemented using a heap (see, for example, [1].)

We can create a priority queue in O(n) time on a single processor, but we must

now update each priority queue after each agglomeration, a step that takes O(log n)

time on a PRAM. This algorithm thus requires O(n log n) time on an n node CRCW

16

Processor
0 1 2 3

D0;0D1;0D2;0D3;0

D0;1D1;1D2;1D3;1

D0;2D1;2D2;2D3;2

D0;3D1;3D2;3D3;3

Processor
0 1 2 3

D0;0D1;0D2;0D3;0

D3;1D0;1D1;1D2;1

D2;2D3;2D0;2D1;2

D1;3D2;3D3;3D0;3

(a) (b)

Figure 2: Distribution of D values between processors. (a) Straightforward distribu-
tion (b) Skewed distribution of values

or EREW PRAM, but since the sequential algorithm for general metrics required

O(n2 log n) time this is still e�cient.

Things become more complicated on local memory machines, since we cannot

store all of the distances to a single cluster on the same processor (each agglomerated

cluster would required O(n) work on a single processor at each step.) We can use

a new storage arrangement to facilitate this implementation (see Figure 1.) In the

skewed storage arrangement, each processor p stores the distance between clusters i

and j if i+ j mod n = p. For this case, each processor must update only two values

per agglomeration.

Updating the data structure now requires more work, since each updated distance

is the function of three inter-cluster distances in the Lance-Williams update formula

and only one of them will be stored on the processor where the result will be deter-

mined (and stored.) We need to perform two permutation routing steps to collect

this information into the appropriate processors. Permutation routing on a butter-

y requires O(log2 n) time in the worst case (tree networks will not be considered

for this case,) but since we only need to worry about O(n2) possible permutations

(corresponding to the n(n� 1)=2 pairs of clusters we could merge,) we can compute

deterministic O(log n) time routing schedules for each of them o�-line [3]. These

17

schedules are then indexed by the numbers of the clusters that are merged. Thus,

we have an e�cient parallel algorithm for general algorithms on a butter
y network,

but we now require computing O(n2) routing schedules o�-line (each of which re-

quires O(n log n) time to compute) and we need memory polynomial in n to store the

schedules on each processor.

5.2 Algorithm 2

The second algorithm that we will use is based on the sequential algorithm in Section

2.2:

1. Create a data structure in which we can determine nearest neighbors easily.

2. Pick any cluster i1.

3. Determine the list i2 = NN(i1), i3 = NN(i2),... until ik = NN(ik�1) and

ik�1 = NN(ik), where NN(x) is the nearest neighbor of cluster x.

4. Agglomerate clusters ik�1 and ik.

5. Update the data structure.

6. If more than one cluster still exists goto Step 3 using the previous ik�2 as the

new i1 if k > 2, otherwise choose arbitrary i1.

Steps 1 and 2 are performed only once. Over the entire algorithm, we will need to

perform no more than 3n nearest neighbor computations for Step 3 (each cluster is

examined only once until it is agglomerated or its nearest neighbor is agglomerated,

but each agglomeration causes only two clusters in the nearest neighbor chain to

have new nearest neighbors due to its construction, assuming the metric satis�es the

reducibility property.) Steps 4-6 are performed n � 1 times each and are trivial.

So, the key to fast execution of this algorithm is determining the nearest neighbors

quickly.

18

Note that the we could use this algorithm instead of algorithm 1 for the case of

the single link metric on a PRAM (the median and centroid metrics don't satisfy the

reducibility property,) but this algorithm requires a larger constant factor, since we

will have to perform up to 3n minimizations rather than 2n in algorithm 1.

5.2.1 Minimum variance metric

For the minimum variance metric, we can simply store each of the cluster centers

(on each processor in a local memory parallel computer) as our data structure and

generate the distance to each cluster as necessary. The nearest neighbor of a cluster

can then be determined by minimization on the distances of the other clusters to that

cluster. So, we obtain an O(n) time algorithm on an n node CRCW PRAM or an

O(n log n) algorithm on an n

logn
node EREW PRAM, butter
y, or tree.

5.2.2 Average and complete link metrics on a PRAM

The average and complete link metrics can be handled in a similarmanner on a PRAM

except that we must now explicitly store each of the intercluster distances in a two-

dimensional array. Note that this will not work on a local memory machine, since

in that case we must specify where each distance is held. If a single processor stores

all of the distances for a cluster then all of the distances for the new agglomerated

cluster must be stored on some processor, and we won't be able to update the data

structure e�ciently. We could use the skewed memory arrangement describe above,

but this results in an O(n2 log n) work algorithm as in the case of general metrics.

5.3 Algorithm 3

The third algorithm is for the special case of the single link metric on a local memory

computer. Here we can use a variant on the parallel minimum spanning tree algo-

rithm given by Driscoll et al. [9]. This minimum spanning tree can then easily be

transformed into the cluster hierarchy [22, 18]. Since we are dealing with the special

19

case of the complete graph on n vertices, it turns out that we do not need to use

relaxed heaps to obtain an optimal algorithm as Driscoll et al. do.

1. Create a data structure to keep track of the distance of each point from the

current minimum spanning tree. (At the start of the algorithm an arbitrary

point comprises the minimum spanning tree.)

2. Find the point p not in the minimum spanning tree that is closest to the mini-

mum spanning tree.

3. Add p to the minimum spanning tree.

4. Update the data structure.

5. If any points are not in the minimum spanning tree goto Step 2.

The data structure used can simply be an array of distances of each cluster from

the minimum spanning tree. This array is distributed across the processors such that

the processor responsible for the cluster stores the distances for that cluster. In Step

1, this array is set to the array of distances of each point from the arbitrary starting

point.

Step 2 is performed by minimization on the values in this array. To update the

data structure, the location of point p is broadcast and the distance of each point

from the minimum spanning tree is simply the minimum of the previous distance and

the distance to point p.

If we use n

logn processors (each responsible for log n points,) this algorithm requires

O(n log n) time since Steps 2 and 4 require log n time and are performed n times.

6 Summary

I have considered parallel algorithms for hierarchical clustering using several inter-

cluster distance metrics and parallel computer networks (see Table 2.)

20

Network Distance Metric Time Processors Work

Single Link O(f(n; d))a 1 O(f(n; d))a

Average Link
Complete Link

Sequential Centroid O(n2) 1 O(n2)
Median
Minimum Variance
Lance-Williams O(n2 log n) 1 O(n2 log n)
Single Link
Average Link

CRCW PRAM Complete Link O(n) n O(n2)
Centroid
Median
Minimum Variance

EREW PRAM, Single Link
Butter
y Centroid O(n log n) n

logn
O(n2)

or Tree Median
Minimum Variance

EREW PRAM Lance-Williams
or Butter
y Average Link O(n log n) n O(n2 log n)

Complete Link

aThe best known complexity derives from the time to �nd the Euclidean minimal spanning tree,
which can be computed in O(n2�a(d) log1�a(d) n) time where a(d) = 2�d�1 [27], but this algorithm
is impractical for most purposes. The best practical algorithms for d > 2 use O(n2) time.

Table 2: Summary of worst case running times on various networks.

The algorithms for each of the clustering metrics have achieved optimal e�ciency

on an n processor CRCW PRAM. I have also given optimal e�ciency algorithms on a

butter
y and/or tree for each metric examined except the average link and complete

link metrics and for a general class of distance metrics. Due to the nature of the

average link and complete link metrics, I hypothesize optimal parallel performance is

not possible for them.

Acknowledgements

The author thanks Jitendra Malik and AbhiramRanade for their advice on aspects

of this research. This research has been supported by a National Science Foundation

21

Graduate Fellowship to the author, NSF Presidential Young Investigator Grant IRI-

8957274 to Jitendra Malik, and NSF Materials Handling Grant IRI-9114446.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algoriths. Addison-Wesley, 1974.

[2] D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes.

Pattern Recognition, 13(2):111{122, 1981.

[3] V. Bene�s. Mathematical Theory of Connecting Networks and Telephone Tra�c.

Academic Press, 1965.

[4] J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected time algorithms for

closest point problems. ACM Transactions on Mathematical Software, 6:563{580,

1980.

[5] M. Bruynooghe. Classi�cation ascendante hi�erarchique, des grands ensembles

de donn�ees: un algorithme rapide fond�e sur la construction des voisinages

r�eductibles. Les Cahiers de l'Analyse de Donn�ees, III:7{33, 1978. Cited in [17].

[6] W. H. E. Day and H. Edelsbrunner. E�cient algorithms for agglomerative hier-

archical clustering methods. Journal of Classi�cation, 1(1):7{24, 1984.

[7] D. Defays. An e�cient algorithm for a complete link method. Computer Journal,

20:364{366, 1977.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269{271, 1959.

22

[9] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps:

An alternative to Fibonacci heaps with applications to parallel computation.

Communications of the ACM, 31(11):1343{1354, November 1988.

[10] J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association, 58:236{244, 1963.

[11] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7:48{50,

1956.

[12] G. N. Lance and W. T. Williams. A general theory of classi�catory sorting

strategies. 1. hierarchical systems. Computer Journal, 9:373{380, 1967.

[13] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgon Kaufmann, 1991.

[14] X. Li and Z. Fang. Parallel clustering algorithms. Parallel Computing, 11:275{

290, 1989.

[15] S. Linnainmaa, D. Harwood, and L. S. Davis. Pose determination of a three-

dimensional object using triangle pairs. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 10(5), September 1988.

[16] F. Murtagh. Expected-time complexity results for hierarchical clustering algo-

rithms which use cluster centers. Information Processing Letters, 16:237{241,

1983.

[17] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms.

Computer Journal, 26:354{359, 1983.

[18] F. Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, 1985.

23

[19] C. F. Olson. Time and space e�cient pose clustering. Technical Report

UCB//CSD-93-755, University of California at Berkeley, July 1993.

[20] R. C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389{1401, 1957.

[21] E. M. Rasmussen and P. Willett. E�ciency of hierarchical agglomerative clus-

tering using the ICL distributed array processor. Journal of Documentation,

45(1):1{24, March 1989.

[22] F. J. Rohlf. Algorithm 76: Hierarchical clustering using the minimum spanning

tree. Computer Journal, 16:93{95, 1973.

[23] F. J. Rohlf. A probabilistic minimum spanning tree algorithm. Information

Processing Letters, 7:44{48, 1978.

[24] R. Sibson. SLINK: An optimally e�cient algorithm for the single link cluster

method. Computer Journal, 16:30{34, 1973.

[25] G. Stockman. Object recognition and localization via pose clustering. Computer

Vision, Graphics, and Image Processing, 40:361{387, 1987.

[26] D. W. Thompson and J. L. Mundy. Three-dimensional model matching from

an unconstrained viewpoint. In Proceedings of the IEEE Conference on Robotics

and Automation, pages 208{220, 1987.

[27] A. C. Yao. On constructing minimum spanning trees in k-dimensional space and

related problems. SIAM Journal on Computing, 4:21{23, 1982.

24

