
QuaC: Binary Optimization for Fast Runtime Code Generation in C
(EXTENDED ABSTRACT)

Curtis Yarvin Adam Sah

Abstract

Runtime code generation (RTCG) has considerable theoretical potential but has so far seen
little use in practice. Adequate tools are lacking. We present QuaC, an RTCG system that
lets C programmers specialize their functions at runtime with a simple, portable user interface.
QuaC works by applying compiler optimization techniques to machine code in memory. It is
fast and highly retargetable.

1 Introduction

In theory, runtime code generation is an extremely powerful technique. Code runs faster when
specialized to the current data; and often at runtime data stays constant long enough to be worth the
investment of specialized code. Routines specialized to runtime constants will be smaller and faster.

This is not a new idea, and in the past many systems have explored the �eld. Before compilers
or an emphasis on portability became widespread, most software was written in assembly language, and
programmers found it natural and common to use self-modifying code. With the advent of high-level
languages, self-modifying code and other forms of RTCG largely disappeared, because HLLs provide no
obvious mechanism to support it; but experiments continued in dedicated systems [[PLR85], [May87]] and
compilers [[PS84], [CU91]], which could a�ord to be machine-dependent.

One of the most interesting and spectacular uses of RTCG in recent years, and the one which sparked
our interest in the �eld, is Massalin's Synthesis operating system [[MP89]]. Massalin noted that much
kernel data stays constant for long periods of time; his system generates specialized code for operations
like process table traversal and open �le access, and achieves speedups of up to 50x over comparable Unix
systems.

But the techniques in Synthesis, like previous attempts at systematic RTCG, have not been widely
adopted. We see several reasons for this:

� Portability. Fast RTCG systems must interact directly with assembly or machine code; as such, their
implementation is unportable. Synthesis, for example, is tied closely to the MC68k architecture.

� Interface. Modern software systems are written in high-level languages. We know of no HLLs designed
for user-directed runtime specialization. RTCG interface designers must modify their users' HLL,
export a machine-speci�c interface, or create a third language to de�ne specializable code. None of
these alternatives is desirable, but most designers choose the second. Synthesis, like many systems,
provides assembly-language templates, fragments of code containing holes to be �lled in at runtime.
This is e�cient, but it makes the entire system unportable and forces its programmer to work closely
with assembly language.

� Performance. Some systems forego any attempt at an interface for specialization, and generate full
HLL code by hand at runtime. A good example is Christopher's Asgard system [Chr94], which
needs to repeatedly evaluate complex algebraic expressions de�ned at runtime; it converts them
into C, sends them to the compiler, and dynamically loads the resulting object module. This process
produces good code, but causes performance problems. The generated code must be highly persistent
and often-executed to amortize the high cost of compilation. And for most problems it is di�cult to
generate C code from scratch as a string.

1



Thus it is unsurprising that previous attempts at popularizing RTCG have not succeeded. The
technique is theoretically promising, but practical concerns have outweighed its value.

Our goal in designing QuaC was to overcome some of these problems. We wanted our RTCG system
to:

� Provide a simple, C-based interface.

� Allow e�cient, portable implementation.

� Require no modi�cation of the C compiler.

We have had to compromise on some of these goals, but overall we feel we have achieved them.

2 The QuaC Interface

QuaC's interface resembles Synthesis' template system. Instead of assembly blocks, however, QuaC
templates are C functions. This obviates the need for a special template compiler. Any function in the
program can be used as a template.

To specialize, we curry a function, de�ning some of its arguments to be constant. If the program
contains the function

int read(int fd, char buf, int len);

and one invokes QuaC with

fd = 2;

errorRead = synth read(fd, *, *);

errorRead will be of the type

int (*errorRead)(char *buf, int len);

and will perform the operation read(2, buf, len).

errorRead() will be specialized for the case fd=2, and will run faster than read(); for example, it
might write directly to a tty bu�er without �le table indirection.

Another way to de�ne data for specialization is fix. The program uses fix to tell the QuaC runtime
system that the contents of an area of memory are now constant:

fix object length;

fix lets the runtime optimizer replace memory loads with immediate constants, providing a further source
of known data for optimization. For example, an expression tree evaluator might fix a tree in memory
and then synth the interpreter function to it.

3 Binary Optimization

QuaC would be easy to implement with compiler support, as a language extension to C. We would
add the fix and synth keywords to the parser, and modify the output generator to include information
for specialization (such as a copy of the intermediate representation for template functions).

Such an implementation would be straightforward. [KEH93] describes an RTCG system that works
this way. With the template's intermediate representation stored in the executable, the runtime system
needs be little more than the compiler's optimizer and code generator.

We chose to avoid this approach, for several reasons:

2



� It is little better than just running the compiler. We would be including most of a full compiler in
the runtime system, and invoking most of the full compiler's overhead.

� By operating at the machine-code level, we gain 
exibility. We can specialize functions from system
libraries, functions written in di�erent languages, even functions hand-coded in assembler.

� Most important, we do not want to modify the compiler. Few commercial applications have source
code to their C compiler, or want to switch to a free compiler. Compiler writers are unlikely to add
support until they see users; users are unlikely to consider the system until they see working tools.

3.1 Optimization of Machine Code

Therefore we chose to implement QuaC as a library. We read the template functions directly from
text memory as machine code, and run traditional optimization algorithms such as constant propagation
on that.

Machine code, however, lacks some of the information available to a compile-time optimizer. For
data
ow analysis, we need to restore three critical structures:

� exactly what variables each instruction a�ects

� the control 
ow graph

� procedure call parameters

This is a signi�cant problem. We solve most of it; our solutions are not perfect, but by and large
they work. The resulting binary optimizer is not appreciably inferior to a compiler-based optimizer.

3.1.1 Hints

QuaC is not an automatic optimizer; all specialization is user-directed. Therefore we will feel com-
fortable asking the user for hints.

We impose two restrictions on the use of hints: that the optimizer must operate correctly in their
absence, and that all hints must be generatable by a source preprocessor outside the compiler. Our hint
mechanism is 
ag functions whose call the optimizer detects and removes.

Hints do not solve all our problems, and they are not our only solution; but they will help.

3.2 Restoring Instruction E�ects

A compiler-based optimizer's intermediate instructions are similar to machine instructions, but op-
erate on logical variables. A binary optimizer sees operations on registers and memory.

Register-to-register instructions are as amenable to data
ow analysis as logical instructions, but
memory operations are not. An indirection on an unknown pointer might be a reference to any object in
memory. This will disrupt stack data
ow analysis in functions with automatic arrays, and functions which
pass addresses of stack variables as arguments.

We have two solutions to this problem. The �rst is suggesting that template functions not make
such use of the stack. It is rarely impossible to code around indirect stack references. The second is range
analysis, which will eliminate many of the problems with automatic arrays.

3.3 Restoring the Control Flow Graph

If all the function's branches are direct, restoring the CFG is easy. Indirect branches, which will occur
wherever the compiler translates a case statement into a jump table, are more di�cult to handle. We have
four strategies:

3



� Reversion. If we simply copy the template's branch instruction, it will branch through the original
jump table and take us back into the template function. This ensures correctness, but after a
reverting branch we are back in unspecialized code, and we cannot perform optimizations like register
reallocation before the branch.

� Range analysis. We can retain reversion as the general case, but most (and probably all) indirect
branches are jump tables derived from case statements. To use a jump table, the compiler must be
sure that the index variable is within the bounds of the table; thus it must insert range checks. A
full range analysis will �nd the checks and tell us the bounds of the jump table, which we can then
parse into the CFG. The only time this will fail is when the compiler's analysis beats ours; it might,
for example, assure itself of the index variable's range through interprocedural analysis, which we do
not do. We solve this problem with a hint:

#define Switch(x) switch(Qfunk(x))

where Qfunk is some unanalyzable external function whose call the QuaC optimizer recognizes and
deletes.

� 'Skank-and-clip.' When the compiler's analysis beats ours, a range analysis hint will introduce un-
necessary range checks. The cost of this is miniscule and we consider it acceptable, but a perfectly-
e�cient solution would be better. We can achieve this by guessing the boundaries of the jump table;
if we guess an table entry which is not in fact valid, our only loss will be unnecessary parsing, and
if we guess that a valid jump index is invalid, we will �ll in that entry in our new jump table with
a reference to a function of ours, which when invoked saves the processor state and regenerates the
function with the new CFG path. This is slow but may be valuable for frequently-executed routines,
because it converges on optimal code. For extremely large or o�set jump tables we need to place the
jump table in an anonymous section of memory [YBA93] and regenerate on page faults; this may
require OS support.

3.4 Restoring Function Call Information

QuaC's analysis is intraprocedural. We need to be able to recognize function calls and work around
them. To do this we require that the code we analyze follow an Algol-style function model, with a frame
accessible only within the activation; and we have to know the frame access protocol, eg, stack pointer.
We know of no C compilers for which this poses a problem.

It is also useful, though not strictly necessary, to know what local registers or stack values may be
used in the called function. For this we need to know the calling convention and the number of arguments
passed; for the latter we take a hint.

3.5 Adaptable Binaries

Future compilers may provide program structure information such as that from Wahbe and Lucco's
ABS [WLG94]. In that case, hints and range analysis are unnecessary.

4 Choosing Optimizations

If there are no unknown stack indirections we have the same information as a compiler-based optimizer
and can perform the same transformations. In practice it is likely that the user wants fast synthesis, and we
restrict ourselves to a few basic optimizations: constant propagation, dead code elimination with def-use
chains; optionally value numbering and register reallocation; directed by hints, loop unrolling and inlining.

5 Portability

QuaC is not trivially portable; but it is highly retargetable, more so than most retargetable compilers.

The data
ow analyzer views the processor as an abstract state machine with some number of registers
and a 
at memory; code is a stream of abstract instructions. In iterative analysis it takes each instruction
and determines its sources and e�ects.

4



The machine-dependent module needs no semantic understanding of most instructions; all it must
know is how to parse out the opcode, and source and destination operands. To map the source values
onto the results it jumps to a canon of the instruction and then copies the e�ects out of the canonical
destinations.

Optimization demands more knowledge of the instruction set; we need rules for improving instructions
based on knowledge of constant data. This can be coded ad hoc or done with a rule engine as in lcc [FH91].

This approach maps well onto all RISC and CISC architectures we know of, including those with
delay slots.

6 Implementation

We are in the early stages of implementation on QuaC. Our prototype system does data
ow analysis,
all our standard optimizations, and none of the optional ones. It runs on the DEC Alpha architecture and
took three months to implement, by two programmers on quarter-time.

7 Performance

We would have liked to modify a large software system, ideally an operating system, to use QuaC; but
we lacked the time or resources. In smaller systems, the best use of RTCG is in interpreters. With a loop
unrolling hint, QuaC can take a block of straight-line source and an interpreting function, and generate
near compiler-quality code.

For a test system we built a very simple integer expression calculator. We read in an expression tree,
lay it out postorder in a bu�er, and call fix on the bu�er; then we synth the expression evaluator on the
bu�er and its length.

We have not had time to performance-test this practical example. We have performed microbench-
marks of code generation speed, but the system which we microbenchmarked was straight from debugging
phase and had not yet been tuned. The �nal draft will contain full performance results.

All our algorithms are linear. On a �fteen-instruction, three-argument toy function with one loop,
regenerating for two constant words took 750�s on a 133 Mhz Alpha. We consider this excessive. It is
largely due to the untuned nature of the instruction resolver, which spent 20�s per instruction, and the
reassembler, which took 90�s; neither of these is intrinsically expensive, and our implementations of both
contain extensive debugging code.

8 Related Work

Runtime code generation is an old technique; its uses are too numerous to cite. The most similar
RTCG system we know of is Keppel's [KEH93], which uses intermediate-code templates and a compiler
backend.

Binary code analysis was pioneered in pro�ling systems, such as pixie [Dig]; but the analysis tech-
niques needed for pro�ling di�er from those for optimization.

Currying and partial evaluation are old techniques from the programming language community; they
are usually applied in higher-level languages than C.

9 Conclusion

QuaC is hardly a �nished system. It is a prototype, and has yet to stand the test of porting. We
believe the concepts behind it are useful, and hope that RTCG systems will be more common in the future.

References

[Chr94] Wayne Christopher. Multiple-Representation Editing of Physically-Based 3D Animation. PhD
thesis, University of California, Berkeley, January 1994.

5



[CU91] Craig Chambers and David Ungar. Making Pure Object-Oriented Languages Practical. ACM

SIGPLAN Notices, 26(11):1{15, November 1991.

[Dig] Digital Equipment Corporation. Ultrix v4.2 pixie Manual Page.

[FH91] C. W. Fraser and R. R. Henry. Hard-Coding Bottom-Up Code Generation Tables to Save Time
and Space. Software|Practice and Experience, 21(1):1{12, January 1991.

[KEH93] David Keppel, Susan J. Eggers, and Robert R. Henry. Evaluating Runtime-Compiled Value-
Speci�c Optimizations. Technical Report 93-11-02, Department of Computer Science and Engi-
neering, University of Washington, November 1993.

[May87] Cathy May. A Fast S/370 Simulator. ACM SIGPLAN Notices, 22(6):1{13, 1987.

[MP89] Henry Massalin and Calton Pu. Threads and Input/Output in the Synthesis Kernel. In Pro-

ceedings of the 12th ACM Symposium on Operating Systems Principles, pages 191{201, 1989.

[PLR85] Rob Pike, Bart N. Locanthi, and J. F. Reiser. Hardware/Software Tradeo�s for Bitmap Graphics
on the Blit. Software|Practice and Experience, 16(2):131{151, February 1985.

[PS84] Lori L. Pollock and Mary Lou So�a. Incremental Compilation of Locally Optimized Code.
In Proceedings of the ACM SIGPLAN '84 Conference on Programming Language Design and

Implementation, pages 152{164, 1984.

[WLG94] Robert Wahbe, Steven Lucco, and Susan L. Graham. Adaptable Binary Programs, 1994. Sub-
mitted to PLDI '94.

[YBA93] Curtis Yarvin, Richard Bukowski, and Thomas Anderson. Anonymous RPC: Low-Latency Pro-
tection in a 64-Bit Address Space. In Proceedings of the 1993 Summer USENIX Conference,
1993.

6


