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Abstract
We propose a new approach for vision based longitudinal and lateral ve-

hicle control which makes extensive use of binocular stereopsis. Longitudinal
control | i.e. maintaining a safe, constant distance from the vehicle in front
| is supported by detecting and measuring the distances to leading vehicles
using binocular stereo. A known camera geometry with respect to the locally
planar road is used to map the images of the road plane in the two camera
views into alignment. Any signi�cant residual image disparity then indicates
an object not lying in the road plane and hence a potential obstacle. This
approach allows us to separate image features into those lying in the road
plane, e.g. lane markers, and those due to other objects. The features which
lie on the road are stationary in the scene and appear to move only because
of the egomotion of the vehicle. Measurements on these features are used
for dynamic update of (a) the camera parameters in the presence of camera
vibration and changes in road slope (b) the lateral position of the vehicle with
respect to the lane markers. In the absence of this separation, image features
due to vehicles which happen to lie in the search zone for lane markers would
corrupt the estimation of the road boundary contours. This problem has not
yet been addressed by any lane marker based vehicle guidance approach, but
has to be taken very seriously, since usually one has to cope with crowded traf-
�c scenes where lane markers are often obstructed by vehicles. Lane markers
are detected and used for lateral control, i.e. following the road while main-
taining a constant lateral distance to the road boundary. For that purpose we
model the road and hence the shape of the lane markers as clothoidal curves,
the curvatures of which we estimate recursively along the image sequence.
These curvature estimates also provides desirable look-ahead information for
a smooth ride in the car.

�Research funded by PATH grant no. MOU 94
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1 Introduction

We propose an approach and develop a system for vision based longitudinal and
lateral vehicle control which makes extensive use of binocular stereopsis. Novel
aspects include (a) exploitation of domain constraints to simplify and make robust
the search problem in �nding binocular correspondences (b) dealing with crowded
tra�c scenes where substantial segments of the lane boundaries may be occluded.
The vision system is designed to interface in a modular fashion with the use of non-
visual sensors such as magnetic sensors for lateral position measurement and active
range sensors (e.g. Doppler radar) for an integrated approach to vehicle control such
as that being investigated in the California PATH project.

Longitudinal control | i.e. maintaining a safe, constant distance from the vehicle
in front | is supported by detecting and measuring the distances to leading vehicles
using binocular stereopsis. A known camera geometry with respect to the locally
planar road is used to map the images of the road plane in the two camera views
into alignment. Any signi�cant residual image disparity then indicates an object
not lying in the road plane and hence a potential obstacle. This approach allows
us to separate image features into those lying in the road plane, e.g. lane markers,
and those due to other objects. The features which lie on the road are stationary
in the scene and appear to move only because of the egomotion of the vehicle.
Measurements on these features are used for dynamic update of (a) the camera
parameters in the presence of camera vibration and changes in road slope (b) the
lateral position of the vehicle with respect to the lane markers. In the absence of
this separation, image features due to vehicles which happen to lie in the search
zone for lane markers would corrupt the estimation of the road boundary contours.
This problem has not yet been addressed by any lane marker based vehicle guidance
approach, but has to be taken very seriously, since usually one has to cope with
crowded tra�c scenes where lane markers are often obstructed by vehicles. Lane
markers are detected and used for lateral control, i.e. following the road while
maintaining a constant lateral distance to the road boundary. For that purpose
we model the road and hence the shape of the lane markers as clothoidal curves,
the curvatures of which we estimate recursively along the image sequence. These
curvature estimates also provides desirable look-ahead information for a smooth ride
in the car.

1.1 Related Research

A number of di�erent sensing technologies have been proposed for use in an Ad-
vanced Vehicle Control System. These include vision, magnetic sensors for lateral
position measurement and active range sensors (e.g. Doppler radar).

By far the most important and impressive work on a visually guided AVCS has
been done in the group of Prof. E.D. Dickmanns of Universit�at der Bundeswehr,
Munich, Germany. See [Dickmanns & Mysliwetz 92] and the references cited therein.
Their work resulted in a demonstration in 1987 of their 5-ton van, the VaMoRs
running autonomously on a stretch of the Autobahn at speeds of upto 100 km/h.
Vision was used to provide input for both lateral and longitudinal control on free

3



roads. Subsequently they have demonstrated successful operation on cross-country
roads (at lower speeds) where the road boundaries are di�cult to determine.

Further development of this work has been in collaboration with von Seelen's
group in Bochum [Schwartzinger et al. 92] and the Daimler Benz VITA project
[Ullmer 92]. For collision avoidance with vehicles in one's lane, model-based tech-
niques are used which exploit heuristics such as symmetry of the bounding box of
the vehicle, which is based on the fact that rear or the front views of most of the
vehicles exhibit a strong vertical symmetry. It seems to us that these techniques
are not as reliable as those using binocular stereopsis which enables obstacles to be
de�ned in a very general way. Also, for longitudinal control under platooning con-
ditions such as being studied in the PATH project, one would need a much higher
precision for estimating distances to other vehicles.

While Dickmanns's project has resulted in the most impressive demonstration
of vision-based vehicle guidance to date, it is only one of the numerous sites where
research in this area is being conducted. In the United States, most of the signi�cant
projects are supported by the Department of Defense and the desired capability is
driving on cross-country terrain. The CMU NavLab project [Thorpe 90] is the
key university-based project on this theme with major activity also at sites such
as Martin Marietta at Denver. In the Navlab project a number of di�erent lane
following algorithms have been used. Currently the favored one seems to be the
ALVINN system [Pomerleau 92] based on training a neural network with input a
30x32 low resolution image and output the desired steering command. The best
performance cited is that of a 21.2 mile run at speeds of upto 55 miles per hour.
The network performs reasonable well if it is trained with similar road conditions.
In order to overcome the problem on which network to use, they recently proposed a
connectionist superstructure | MANIAC | which incorporates multiple ALVINN
networks, each of which is pretrained for a particular road type ([Jochem et al. 93]).
Their hope is that the superstructure will learn to combine data from each of the
ALVINN networks and not simply select the best one.

A more recent project on road following in the US is a collaboration between
NIST and Florida Atlantic University[Raviv & Herman 91]. Lateral control is based
on sensing the optical 
ow at a certain tangent point on the lane and steering so as
to make it have no horizontal component. There may be di�culties if the tangent
point is occluded.

A basic module in any of the visually guided vehicle control algorithms has to be
the detection and tracking of lane boundaries. A leading project is the LANELOK
system developed at GM Research. Continuing work has resulted in a real-time
implementation reported in [Altan et al. 92].

In Japan, research is being conducted at a number of industrial and academic
research laboratories. These include the Harunobo project at Yamanashi University
ongoing since 1982 which has resulted in an autonomous vehicle tested on roads.
Industrial sites include Toyota, Nissan, Honda, Matsushita etc. For an extensive sur-
vey, we recommend the proceedings of the IEEE Conference on Intelligent Vehicles
1990 [Masaki 92b] and 1992 [Masaki 92a]

The use of binocular stereopsis for vehicle control has been successfully demon-
strated by JPL's planetary robotic vehicle [Matthies 92] and Nissan's PVS vehicle
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[Ohzora et al. 90]. Both systems realize a tradeo� between performance time and
density of a depth map. For obstacle detection it is actually not necessary to compute
a dense depth map neither is it necessary to perform the depth map computation
in video rate. A trinocular stereo system is used by [Ross 93], where the third cam-
era actually serves as a mean to con�rm and re�ne the results obtained from two
cameras.

Research closest related to our obstacle detection approach is described in [Zheng
et al. 90]. They perform �rst a recti�cation of the stereo images to achieve zero
vertical disparity, before they estimate the disparity by comparing the variances
of the di�erence in a window of the recti�ed left and right image. The notion
SWITCHER of their approach refers to an F-test, which is applied to the variances
associated to the disparities, in order to decide whether there is a signi�cant change
in disparity which would indicate an obstacle. Although they exploit the full camera
geometry, they do not use the knowledge of the ground plane disparity to reduce
the search space, neither does their approach apply to lane marker detection. They
furthermore admit that their approach is quite computationally expensive.

Other, more classical approaches for obstacle detection are based on motion
stereo or optical 
ow interpretation ([Enkelmann 90; Carlsson & Eklundh 90]). The
key idea of these approaches is to predict the optical 
ow �eld for a moving observer
under constraint motion (e.g. planar motion). Obstacles are then detected by a
signi�cant di�erence between the predicted and the actual observed optical 
ow
�eld. The major drawbacks of these approaches are (a) computational expense
and (b) the lack of reliable and accurate optical 
ow �elds and the associated 3D
data (it is well known that structure-from-stereopsis approaches perform better than
structure-from-motion approaches).

A combination of stereo and optical 
ow is suggested in [Chandrashekar et al. 91]
in order to perform a temporal analysis of stereo image sequences of tra�c scenes.
They do not explicitly address the problem of obstacle detection in the context of
vehicle guidance, but the general problem of object identi�cation. They extract
and match contours of signi�cant intensity changes in (a) stereo image pairs for
3D information and (b) subsequent frames to obtain their temporal displacement
([Meygret et al. 92; Meygret & Thonnat 90b]). Object descriptions are �nally
obtained by grouping the Kalman �ltered 3D trajectories of these contours using a
constant image velocity model. In order to distinguish between obstacles and road
boundaries or lane markers, they also exploit some heuristics like horizontally and
vertically aligned contour segments as well as 3D information extracted from the
stereo data ([Meygret & Thonnat 90a]).

While the most successful lane marker based approaches for lane following per-
form quite well in uncrowded tra�c scenes, where lane markers are clearly visible
and not obstructed by other vehicles, we expect them to fail or at least to perform
not so well in crowded tra�c scenes, where lane markers are obstructed by other
vehicles. On the other hand we expect our approach to perform reasonable well even
in crowded scenes, since we explicitly distinguish and reason about lane markers and
obstacles, lying in the search region for lane markers.

The rest of this paper is organized as follows: In Section 2 we outline our sys-
tem approach for lane following and lane changing. Section 3 is dedicated to the
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longitudinal vehicle control based on binocular stereopsis. Our lateral control ap-
proach based on lane marker 
ow is introduced in Section 4. Our experimental and
computational setup is explained in Section 5, where we also present the camera
calibration procedures. Some results are �nally shown in Section 6.

2 System con�guration

In this section we want to elucidate our basic ideas and the concept of the system
design being developed in the course of this project, in order to give the reader an
idea of the problem and to bring the whole project in a larger context. The system
con�guration and the used algorithms have to meet two major goals: robustness
and realtime performance. Real time performance in the context of computer vision
means that the processing time of a single image frame acquired by the vision sensor
is of the order of the videorate, i.e. at least 5-10 Hz. The robustness of the proposed
system is based on fusion of data from di�erent sensors: vision, the magnetic sensor
for lateral control, the velocity signal derived from the antilock braking system
(ABS) and Doppler radar for detecting obstacles and measuring their distances to
the car.

Figure 1 shows a 
ow chart of the proposed system with the interaction of other
sensors. This diagram shows the 
ow of information for keeping the car inside a
certain lane. Our computer vision system uses the same output of the multichan-
nel �lterbank for the detection of lane markers and the computation of stereopsis.
The task of the di�erent components is to provide the vehicle control system with
additional information for lateral and longitudinal control. The importance of this
| in the �rst view redundant | information becomes obvious when planning a lane
change during which the other sensors are expected to yield uncertain or even wrong
or no information for the control variables.

Lane change maneuvers

In the platooning concept being studied in the PATH project a lane change is re-
quired in case a car wants to merge into a platoon or to leave a platoon. In either
case of a desired lane change, the vehicle control system has to initiate all safety
checks and communications with the involved cars before starting a lane change ma-
neuver. This includes a check of neighboring lanes as well as information about cars
approaching from behind. After all safety checks have been successfully executed
the vehicle control system can change the state from lane following into lane change.
For that purpose a motion plan has to be computed with a sequence of control vari-
ables for the steering and throttle actuators. During the lane change maneuver the
predicted control values for the steering and throttle actuators are compared with
the sensor data in order to compute new updates. This control feedback keeps the
control variables in an appropriate range during the maneuver and keeps the vehicle
control system updated in case of an unexpected behavior. Figure 2 shows a 
ow
chart of the proposed system for guiding a car during performing a lane change.
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Figure 1: The 
ow chart of our proposed system for lane following.
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3 Longitudinal Control

In order to extract inputs for the computation of longitudinal control variables from
images we have to estimate depth and relative velocities of objects appearing in
front of the car as well as the velocity of the car itself. In order to obtain robust
estimations of the 3D structure of the environment in front of the car we combine
approaches based on di�erent combinations of input vision sensor data:

1. Binocular stereopsis using the slight di�erences of locations of imaged 3D scene
structures in the views of two spatially separated cameras.

2. Structure from planar motion using the temporal integration of movements of
imaged 3D scene structures in subsequent frames of a single camera | the
so-called optical 
ow.

Our previous work on these problems has been reported in [Jones & Malik 92;
Weber & Malik 93; Koller et al. 93]. Stereo for vehicle control is used successfully
by JPL's planetary robotic vehicle [Matthies 92] and Nissan's PVS vehicle [Ohzora
et al. 90]. Both systems realize a tradeo� between performance time and density of
a depth map. For obstacle detection it is actually not necessary to compute a dense
depth map neither it is necessary to perform the depth map computation in video
rate. A trinocular stereo system is used by [Ross 93], where the third camera actually
serves as a mean to con�rm and re�ne the results obtained from two cameras.

Although proposed algorithms in the literature for computing binocular stereop-
sis and optical 
ow are quite computationally expensive we are able to reduce the
complexity considerably by using region-of-interest processing and exploitation of
domain constraints. The �rst stage is based on a multichannel �ltering approach
which is completely parallelizable and hence realtime feasible. The algorithms ap-
pear robust and accurate enough to support further computations based on their
outputs.

Using the extracted information for the depth and velocity we can formulate
obstacle hypotheses which we are going to verify by temporal integration using
predict and update formulations with standard Kalman �lter techniques (e.g. [Bar-
Shalom & Fortmann 88; Scales 85; Koller et al. 93]. A detailed spatial description
of other vehicles is not necessary since the position and velocity of the vehicles in the
nearest neighborhood seems to be su�cient for the task of the longitudinal control
as well as for deciding whether a lane change can be performed or not (at the current
stage it makes no di�erence whether the obstacle is a motorcycle, car or truck).

The output of the depth and velocity estimations have to be checked for consis-
tency with the output of the Doppler radar and the velocity from the ABS system.
The combination of all of these sensor outputs provide a robust estimation of the
control variables for longitudinal motion and detects a failure of one of the inputs.
More detailed information | which we are going to expect from the vision sensor
because of its capability for looking ahead | can be used to detect unexpected ob-
stacles and signaled to the vehicle control system in order to decide an appropriate
behavior.
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In the following Subsection 3.1 we brie
y state the problem of estimating depth
using stereopsis and describe how one can exploit certain constraints and a special
camera geometry in order to reduce the computational complexity. It is well known
that structure from stereo yield more accurate and robust results than structure
from motion using optical 
ow.

Our results of computing depth from stereo are quite encouraging and good
enough for use in longitudinal control (see Subsection 5). Computing robust optical

ow from video sequences taken by a camera �xed on a car driving on a highway
causes some problems; a) the car usually experiences signi�cant vertical motions
due to the suspension, and b) the visual image motion of the ground plane is quite
large (in the order of 40 pixels between two subsequent frames). After extensive
research in this area we conclude that we will use only stereopsis for depth estimation
and longitudinal control. Depth estimation using stereopsis is quite robust against
vertical motion and shaking, since only stereo pairs at a certain time instant are
used in the computation. A temporal integration can even be used for estimating
the vertical motion.

3.1 Stereopsis

A stereo setup for retrieving 3D structure of the environment seems quite obvious,
but is not yet used for realtime applications like this because the standard algorithms
are computationally expensive. We have developed a very simple and highly e�cient
algorithm, starting with [Jones & Malik 92] and exploiting domain constraints with
region-of-interest processing to gain a major speedup.

In order to retrieve depth information from the images we compute the stereo
disparity between the left and right view of the cameras, i.e. we look for the shift
of the location of imaged scene features in the two images (c.f. Figure 14a) and b)).
The stereo disparity d of an imaged scene feature depends from the camera baseline
b (the spacing of the camera center) and the depth Z, i.e. the distance of the scene
feature from the camera and the focal length f (see Eqn. 1).

d = f
b

Z

d : disparity
f : focal length
b : camera baseline
Z : depth (distance camera|object)

(1)

From this equation we see that for small �Z we get �d = fb
Z2 �Z and hence �Z = �d

fb
Z2,

which means that the error in depth estimation increases quadratically with the
depth. This �ts nicely with our requirements, since the nearer the objects the more
important they are.

Computing the disparity actually requires solving some correspondences of image
features in the left and right view. The process of computing the stereo disparity
is tremendously simpli�ed by using an insight due to Helmholtz ([Helmholtz 25])
more than a hundred years ago, but not yet exploited in computer vision. Helmholtz
observed that objectively vertical lines in the left and the right view perceptually ap-
pear slightly rotated which led him to the hypothesis that the human brain performs
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a shear of the retinal images in order to map the ground plane to zero disparity.
The mathematical reasoning is as follows: Under the viewing geometry of parallel
axes, disparity for points on the ground plane has a zero value on the horizon and
increases linearly with the image plane coordinate in the vertical direction. By ap-
plying a constant shear (the amount is a function of the distance between the eyes
and height above the ground plane) one can map all points on the ground plane to
have zero disparity. Then, any object above the ground plane will have non-zero
disparity. This is very convenient because the human visual system is most sensitive
around the operating point of zero disparity.

We can apply the same idea in our context{the advantage is that obstacles get
mapped to points of non-zero disparity making them very easy to detect. See Fig-
ure 14 where (a) and (b) are a stereo image pair, and (c) and (d) show the points
of interest on the sheared left and on the right image. Signi�cant disparities corre-
spond to obstacles. From the amount of the disparity at a certain image location
we can simply estimate the distance (cf. Eqn. 1).

This ground plane disparity removal can be easily be shown for a special stereo
camera set-up, where the optical axis is parallel to the ground plane. From Figure 3a)
we obtain:

x0l = f
�b=2�X

Zl

x0r = f
b=2�X

Zr

Stereo Disparity �x0 = x0r � x0l = f
b

Yw
; (2)

with Yw = Zw = Zl = Zr. The primed coordinates (0) are the image coordinates of
the point (Xc; Yc; Zc) in camera coordinates. Using

y0 = f
tz
Yw

; (3)

with tz the height of the camera above the ground plane from Figure 3b), the
disparity for a constant tz is a linear function of the y-coordinate in the image:

�x0 =
b

tz
y0: (4)

We prove a similar result for the more general view with an arbitrary inclination
angle � (see Appendix A.1):

�x00 =
b f cos�

tz
�
b sin�

tz
y0; (5)

which yields a ground plane disparity �x0 as a linear function of the y0-coordinate
with constant coe�cient as long as we use a rigid stereo camera rig with constant
base line and height as well as constant inclination angle �.
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Figure 3: Top view (a) and side view (b) of a simple stereo camera set-up with the optical
axis Zc is parallel to the ground plane Xw � Yw.

As we see from equation 1 we obtain zero disparity for the horizon (Yw = Zw !
0). We obtain the horizon line y0 = y0h for the more general view from equation 5
for �x0 ! 0:

y0h =
f

tan�
: (6)

The only drawback of this approach is the sensitivity to the camera adjustment:
we assume the stereo cameras are adjusted in such a way that epipolar line (the line
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of sight in one images which corresponds to the projected point in the other image)
appears horizontal in both images. In this way the search for correspondences can
be reduced to horizontal scanlines in the images.

3.2 Disparity Computation

We perform this residual disparity computation1 on a reduced set of points-of-
interest on horizontal scanlines in the image. These points-of-interest are simply
the locations in the image at which the gradient of the image function in horizontal
direction is above a certain threshold. For that purpose we shift a correlation win-
dow for each point-of-interest along a horizontal scanline and compute the summed-
squared-di�erence between the left and the right image (see Figure 4). The integer
disparity estimate at the horizontal image location x is:

d(x) = min
f�g

+W=2X
u=�W=2

kg1(x+ u+ � )� g2(x+ u); (7)

which is the minimum of the summed-squared-di�erence (SSD) of a window W
shifted along a horizontal scanline with at least the expected disparity.

After the integer displacement has been obtained we apply a quadratic interpola-
tion around the minimum in order to obtain sub-pixel accuracy (see Appendix A.2).
Some results are given in Figure 14.

3.3 Depth Estimation

For estimating the depth | or more precise the 3D location of a point | we use
Equation 7, which relates the image disparity for features on the ground plane to the
normal distance tz. We can use this equation also to compute the normal distance
to a virtual plane parallel to the ground plane and which contains the feature which
give rise to the observed image disparity. This distance can the be expressed in the
height of the feature in world coordinates. From Equation 7 we get:

tz =
b

�x00
(f cos�� y0 sin�); (8)

which is the height of the camera expressed in the expected image disparity �x0.
Features above the ground plane appearing in the same image location are actually
nearer to the camera and originate a larger disparity �x0 = �x0

0
+ �, which is:

tz � ~Zw =
b

�x00 + �
(f cos�� y0 sin�); (9)

where we added a term � which accounts for the additional image disparity as
opposed to the one which we would observe when Zw = 0. If we simply substitute

1For the shake of performance we actually we do not compute a sheared image according to the
ground plane disparity but use the amount of the shearing as a predisplacement for the search of
correspondences.
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�
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Figure 4: The image disparity is computed along horizontal scanlines. Only image lo-
cations (points-of-interest) with a �rst spatial derivative along the horizontal
x-axis above a certain threshold are used for disparity computations. We apply
a simple summed-squared-di�erence along a horizontal scanline to obtain an
integer disparity estimate � .

the expected image disparity for features on the ground plane from Equation 7 we
�nally obtain after some rearrangements:

~Zw =
tz

1 + b
� tz

(f cos�� y0 sin�)
; (10)

Since we use �x00 only for a predisplacement while searching for correspondences we
give also the equation for Zw expressed in the total measured image displacement
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�x0:
~Zw = tz �

b

�x0
(f cos�� y0 sin�); (11)

To express the Y -component of the 3D feature point in world coordinates, which
we denote by ~Yw, we use (cf. Figure 17):

~Yw = �(tz � Zw) tan 
: (12)

We obtain expressed in the residual disparity:

~Yw = �tz
f sin� + y0 cos�

�
b
+ f cos� � y0 sin�)

; (13)

and expressed in the total disparity:

~Yw = �
b

�x0
(f sin�+ y0 cos�): (14)

In order to get the X-component of the 3D feature point in world coordinates
we use the perspective projection and solve for the Xw = Xc-component:

~Xw = ~Xc =
~Zc

f
x0: (15)

Using Equation 29 and 30 we obtain:

~Xw = tz
x0

f cos�� y0 sin�
: (16)

3.4 Obstacle Detection

Residual disparities | which appear in the image after the ground plane disparity
has been mapped to zero (cf. Section 3.1) | indicate objects which appear above the
ground plane. This process provides a simple tool to distinguish between features
lying on the ground plane (e.g. lane markers or other paintings on the road) and
features due to object lying above the ground plane and which may appear as
obstacles during the course of the vehicle. For this purpose we set a simple threshold
for the residual disparity according to Equation 7. The process for obstacle is
sketched in Figure 5.

Image features at image locations with zero or small residual disparity which do
not pass the threshold test are assumed to represent features lying on the ground
plane. The procedure for how to use these disparities to update the camera param-
eters is described in the next section.
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Figure 5: Obstacle detection by detecting residual disparities: to detect obstacles we
compare a precomputed disparity according to features on the ground plane
and the measured disparity. Any signi�cant di�erences are due to features lying
above the ground plane and are potential candidates for projected features of
an obstacle which may preclude the course of the vehicle.

3.5 Dynamical Camera Parameter Update

The disparity of the ground plane is mapped to zero using known camera parameters
or more precise the pose of the camera with respect to the ground plane. This camera
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pose can change with time due to camera shake, movements of the car's suspension
and due to changes in the slope of the road. These changes can be incorporated by a
camera parameter update using small measured disparities of image features which
are assumed to lie on the ground plane. The candidates for these small disparities
are the features which do not pass the threshold test used to separate obstacles from
ground plane features mentioned in the previous section, and which lie in the search
region of lane markers.

The parameter most e�ected by camera shake and change in vertical road curva-
ture is the inclination angle �. Other parameters are supposed to be constant along
the time. For that purpose we include an error �(�) in the disparity measurement
of Equation 7 which accounts for an incorrect �:

�x0 =
b f cos�

tz
�
b sin�

tz
y0 + �(�): (17)

We then write an error function F (�) which we want to minimize with respect to
�:

F (�) =
X
i

k�i(�)k
2

=
X
i

k�x0i +
b

tz
(y0i sin� � f cos�)k2: (18)

The summation is carried out over all feature points which yield small disparities
and hence are assumed to be on the ground plane.

Di�erentiation with respect to � and setting to zero yields the following trigono-
metric equation:

A cos�+B sin� + C sin 2�+D cos 2� = 0; (19)

with (N is the number of measurement points):

A =
X
i

�x0iy
0
i;

B =
X
i

�x0if;

C =
1

2

X
i

b

tz
(y0i

2
� f2) =

b

2tz

X
i

y0i
2
�
b f2

2tz
N;

D = �
X
i

f b

tz
y0i:

In order to solve this nonlinear equation in � we linearize it using a taylor
expansion of the trigonometric functions around an initial value �0, which we obtain
from the static camera calibration (cf. Section 5.2). This is equivalent in solving
this nonlinear equation using the �rst iteration of the Newton-Raphson method. We
set:

� = �0 + �� (20)
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and approximate:

sin(�) = sin(�0 + ��) � sin�0 + �� cos�0;

cos(�) = cos(�0 + ��) � cos�0 � �� sin�0;

and obtain the solution for ��:

�� = �
A cos�0 +B sin�0 + C sin(2�0) +D cos(2�0)

A sin�0 �B cos�0 �C cos(2�0) +D sin(2�0)
: (21)

The inclination angle � is then consistently updated over time using a linear
Kalman Filter based on the assumption of a constant �. Small variations are cap-
tured by an appropriate process noise. There are essentially two origins for variations
in �: a short term variation due to camera vibrations, which requires a large process
noise, and a long term variation caused by a change in the slope of the road, which
can be captured using a small process noise.

4 Lateral Control

The lateral control variables for automatic guidance of a car in a lane or during
a lane change can be extracted by computing the horizontal 
ow and the angular
change of the lane markers. This information is checked for consistency with the
lateral information from the magnetic sensors in order to yield the control variables
for lateral motion. In the following subsection we want to describe our approach for
using lane markers.

4.1 Using line 
ow

In order to deal with lateral control of the car, we have to obtain an estimate of its
motion relative to the road. The traditional approaches based on optical 
ow are
not satisfactory for several reasons:

� in high speed driving, the displacement between two consecutive frames is quite
large, thus inducing systematic error due to the �rst-order approximation in
di�erential methods, and increase the computing cost for any method,

� the unwanted vertical vibration induced by the car suspension are likely to
cause large errors on the vertical component.

All these drawbacks could be overcome if, instead of relying on the general optical

ow of the road, we consider only the 
ow of the lane markers, considered to be a
global set. The idea is that the speci�c task of road following doesn't need to be
based on as much information about the road as possible, but only on particular vi-
sual cues which can be extracted locally along lane markers ([Gordon 66; Dickmanns
& Mysliwetz 92; Raviv & Herman 91]). The suggestion of [Raviv & Herman 91] is
to use a particular property of the tangent point on the road edge and its optical

ow. If the alignment of the moving vehicle is correct, then the radial component
of this 
ow must be zero in a particular coordinate system.
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What line 
ow information to use ? A more general formulation of the visual
�eld obtained from a moving vehicle has already been presented by Gordon [Gordon
66]. When the moving vehicle is aligned with a straight or constant curvature portion
of road, each point of one lane marker falls in the position previously occupied by
another point of this lane marker. Thus, it is invariant as a set, and therefore the the
road has a stationary appearance. If the vehicle is misaligned laterally, the entire
lane marker moves, thus no part of it is more essential. This can be contrasted
with [Raviv & Herman 91] who make an unnecessary restriction by looking only
at tangent points. This restriction reduces the applicability of the idea to curved
portions of the road, and also may cause the algorithm to lack robustness. For
instance, it will fail if the particular point that is considered is occluded by another
car.

As can be seen in Figure 6, the extent of lateral misalignment is indicated by
the rate and extent of slewing and sidesliping of the lane markers. This information
can be easily obtained by computing | in the coordinate system linked to the car
|

� the di�erence in horizontal o�set of the lane marker

� the di�erence in orientation of the lane marker

We introduce the notion of line 
ow as a more useful model than the standard
term optical 
ow (used for denoting the pointwise motion) for this context. Consider
the motion of an extended line segment in the plane with its two components of
translation and rotation. The component of translation perpendicular to the line
segment can be measured using image processing operations, as also its rotation.
Because of the aperture problem, we expect not to be able to measure the component
of the translation along the line. The term normal 
ow has been used before in the
optical 
ow literature; we think the rotational component is also important. We are
currently working on di�erential methods for estimating line 
ow, both the normal

ow as well as the rotational 
ow.

Motion of a straight line along its direction results in zero line 
ow while the
optical 
ow is, of course, non-zero. Because of the aperture problem it would be
di�cult to estimate the pointwise optical 
ow in this situation. However it will be
quite easy to estimate the line 
ow. Another pleasant feature is that it is expected
to be small when one is correctly following a road, so that it will be possible to
use an e�cient di�erential method. By modeling the line 
ow in the case of a lane
change, it is expected that the same approach would also work for these planned
movements.

line 
ow perception and control One of the big advantages of this framework
is that it enables us to formulate the problem of road following as one of nulling
deviation from the steady state by using some visual information which is easy to
extract directly from the image. The departure of the previously described quantities
from the null value can then be directly used to generate a control command, making
a direct perception-action loop, in contrast to traditional approaches for which a
conversion to 3D coordinates is needed. These commands can use fairly sophisticated
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Figure 6: Lateral guidance on straight and curved road. Initial slewing is shown by
shaded area and sideslip by arrows [Gordon 66].
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geometrical information, and are not limited to a simple actions on the steering
direction.

4.2 Lane Marker Detection

The goal of this module is to provide us with the description of the nearest lane
markers seen from the car. Since these descriptions will be also used to control
lane changes, it is important to be able to track multiple lane markers at various
positions.

The Model

Planar surface hypothesis We have chosen to model the road as a planar patch
between a closest depth Y1 and a farthest depth Y2. Thus there is a one-to-one
transformation between the image coordinate and the 3D coordinates of a given
point of this plane. This transformation is projective linear, which means there is a
3� 3 invertible matrix H, such that the following projective relation holds for each
point:

mimage =HMroad (22)

We have developed an estimation method to compute this transformation in a simple
and accurate way [Robert & Faugeras 93; Luong & Faugeras 93]. By writing that
the two proportionality constraints obtained from (22) are satis�ed, we obtain two
equations which are linear in the coe�cients of H. Thus we can obtain a solution
provided that we know the road coordinates of at least four points.

For the time being, we have supposed that this transformation is invariant over
time, which means that we neglect the departures from planarity. However, the same
method can be used to estimate on-line the value of the transformation matrixH. In
order to deal with non-planar roads {desirable to maintain a very high calibration
accuracy2 in the presence of vertical road curvature { we intend to couple this
estimation with the dynamic calibration of inclination angle of the stereo rig which
is performed in the stereopsis module.

Reference coordinate All the identi�cation is done in a 3D reference coordinate
system attached to the car, rather than a 3D coordinate system attached to the road.
This allows us to obtain parameters which are directly relevant in terms of control
actions. It is however easy to transpose data to a 3D coordinate system attached to
the road, in order to obtain absolute positions of lane markers, and relative position
of the car. This could be useful for example to maintain a global description of the
road, or to integrate other sensorial inputs.

Model of lane markers The model that we use is based on the the actual road
layouts widely used in civil engineering to produce high-speed roads. Each of the
lane markers detected is modeled as a plane curve which is characterized by the four

2It has been reported [DeMenthon & Davis 90] that a small di�erence in the assumed and actual
camera tilt angle with respect to the ground a�ects the 3D reconstruction signi�cantly.
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parameters, illustrated in Figure 7:

� O: lateral o�set of the line in the car's coordinate system

� �0: angle between the direction of the line at the closest position and the line
of sight of the car

� C1: curvature at the closest position

� C2: curvature at the farthest position

α
O

1/C

1/C

1

2

X

Y

(s)

Y

Y2

1

Figure 7: The model of lane markers. In the depth band, each lane marker is represented
by an arc of clothoid with a constant factor, and by position and orientation
in the car coordinate system.

The clothoid model, which is used in road design, consists of assuming that the
curvature along the road is a continuous function of arc length, with a piecewise
constant variation. As we look at a time at only portions of the road which do not
exceed a distance of 100m, we can further suppose that on the sections that are
being considered in a single image, the curvature has a constant variation a, called
"clothoid parameter", that is:

C(s) = C1 + as (23)
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where s is the arc length. The coordinates of the points on the curve are then
obtained by:

X = O +
Z s

0

cos�(t)dt , Y = Y1 +
Z s

0

sin�(t)dt with � = �0 +
Z s

0

C(t)dt (24)

Some �rst order approximations are made to reduce the computational cost attached
to the model [Dickmanns & Mysliwetz 92]. However, in spite of the small number of
parameters, and of these simpli�cations, the model is more accurate than assuming
just zero curvature [Turk et al. 88; Crisman 90; Kenue 89] or parabolic sections
[Kluge & Thorpe 92]. It can represent accurately straight lines, arc of circles, and
the transitions between them.

The Tracking Scheme

Unlike previous work, ours uses stereo analysis, which we believe will contribute
signi�cantly to improve the overall precision and robustness. It allows us to disregard
areas that correspond to points that are above the ground plane, thus achieving more
robust localization. All the stages of the algorithm make use of this information.
We also plan to make use of geometrical constraints that arise from the cooperation
of motion tracking and stereo matching [Faugeras et al. 90] [Navab et al. 90],
which allows to recover 3D structure of lines from their 2D optical 
ow and stereo
correspondences.

Initialization We search for the position of potential lane markers, as straight
lines, using the fact that they are roughly parallel. The method works as follow:

� back project the Gaussian derivatives images | obtained by the output of the
�lter bank | onto the ground plane,

� select by a voting procedure the common orientation of lane markers,

� select by a clustering procedure the o�sets of lane markers.

The algorithm is fast and can also be used to reinitialize the model in case of detected
inconsistencies. An example of lines detected by the algorithm is shown in Figure 8.

Control structure While the vehicle moves, the following loop continually exe-
cutes:

� Predict new parameters for each lane marker. This is done now by a locally
constant velocity model for each of the four parameters. The estimate of
the velocity obtained from odometry is used, as well as the estimates of the
parameters in the two previous images.

� De�ne horizontal search bands in the image, based on the predicted parameters
and their uncertainties, an example of which is shown in Figure 8.
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� Localize within the search zone the center of lane markers, using a model of
the image intensity produced by these lane markers (bright bars). An example
of the points found is shown in Figure 8.

� Use these points, and the predicted parameters, to �t a new clothoid model by
global optimization over the sample points of each lane marker. The solution
relies now on a gradient method. An example of a portion of clothoid found
is shown in Figure 9.

� Update the model parameters, and modify, if needed, the number of lines being
tracked.

The algorithm as been tested in typical road scenes. Although we have not yet
introduced any further hypothesis on the lane markers such as parallelism, the results
are consistent, as can be seen in 9. The information that we are now able to estimate
provides important information for lateral control:

� Change in lateral orientation and position can be used for instantaneous con-
trol in the way shown in previous section.

� The estimate of road curvature, allows to improve the control strategies in the
sense that predictions for control variables are available that provide a smooth
and safe ride.

All algorithm are based on computations that are fast and a further speed up can
be obtained by parallel processing in a very straightforward way. The only time
consuming phase is now the �tting procedure. We think that by using a di�erential
approach, we will be able to avoid using global optimization, thus achieving real
time performance.

5 Experimental Setup

We now want to describe our experimental setup we built in the this project. The
goal was to acquire some image data from some typical driving conditions of a car on
a highway and develop and test some key algorithms in order to show the feasibility
of the concept.

5.1 The Test Car

For the purpose of acquiring stereo image sequences a stereo camera rig was built
and mounted on top of a Lincoln towncar which was provided by PATH as a test
vehicle (see Figure 10) The images of the synchronized3 left and right camera were

3Since the car, and thus the cameras, is moving about 30 m/s at a speed of 65 mph, the
longitudinal shift of a camera position between two subsequent frames is about 1 m at a framerate
of 30 Hz. Unsynchronized cameras would thus give an additional average error of about 0.5 m in
the depth estimation using stereopsis.
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Figure 8: The initialization of the algorithm is done by detection of portions of straight
lines of common orientation (top left). Within the search zone predicted using
current the current lane markers parameters (top right), a precise model-based
localization of lane markers points is performed (bottom).
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parameter left marker right marker
lateral o�set (m) 0.73 4.57

orientation (degree) 90.6 90.0
initial radius of curvature 1

C1
(m) 2074 3910

�nal radius of curvature 1

C2
(m) 309 297

Figure 9: Estimated parameters, top view, and reprojected view of the �tted clothoids.

The zoom shows that the �t is quite precise, in spite of the large distance and

curvature variation.
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recorded on two S-VHS tapes inside the car. The camera spacing (baseline) was
about 20 cm. An additional time code generator produces a time code which can be
overlaied in the images for an easy association of the left and right view. As a �rst
coupling with other sensors we count the pulses from the ABS system from one of
the tires in order to compute the velocity of the car. This velocity is stored together
with the frame number in data �le by a PC laptop and also overlaied in one of the
images (see Figure 14a) and b)). We want to use this velocity information in order
to increase the robustness and to check the accuracy of our algorithms.

Figure 10: The Lincoln towncar with which we recorded test sequences on highways

using the stereo camera rig mounted on top of the roof.

As a �rst coupling with other sensors we count the pulses from the ABS system
from one of the tires in order to compute the velocity of the car. This velocity is
stored together with the frame number in data �le by a PC laptop and also overlaied
in one of the images (see Figure 14a) and b)). We want to use this velocity informa-
tion in order to increase the robustness and to check the accuracy of our algorithms.
A hardware block diagram of the stereo vision setup is shown in Figure 11.

A Sync Generator produces a Sync signal which is ampli�ed by the Video Dis-
tribution Ampli�er and distributed to either cameras and the Time Code Generator
(via the Laptop PC). The Linear Time Code (LTC) is inserted into the video image
using the Window Inserter (WG-50) in the left branch and the Time Code Gen-
erator (TRG-50) itself in the right branch. Translators (VG-50) are then used to
insert a Vertical Interval Time Code (VITS) in the video signal for retrieve with
special VCR's. In left camera branch we insert also to digits of the velocity of the
car using a Titler (SCT-50). The velocity is computed using the pulses of the Anti
Lock Braking System (ABS) and stored together with the time Code in data �le of
a Laptop PC.
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Figure 11: A hardware block diagram of the stereo vision system we used for record-

ing synchronized stereo video sequences, based on suggestions from Randy

Woolley, Caltrans.
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5.2 Calibration of the Cameras

Since the algorithm we use in our approach for computing the stereo disparity is
based on well aligned and calibrated cameras, we had to spend some e�ort to do
this. Our algorithm assumes that the stereo camera baseline is parallel to the road
plane and the optical axes of the cameras are parallel, i.e the common �xation point
of the cameras is at in�nity. This results in a very simple camera geometry in
which the so-called epipolar lines (the intersection of the plane containing the two
camera centers and a point in the scene with the image plane) are horizontal in
both images. This reduces the search for correspondences to compute disparity to
a single horizontal line (see subsection 3.1).

Camera calibration means the computation of internal (e.g. focal length) and
external (the orientation and location of the camera with respect to some �xed world
coordinate system) parameters, that enable the transformation from points on the
road plane to points in the image and vice versa. The static calibration is based
on correspondences between locations of 3D scene features and their associated 2D
locations in the image. The larger the number of correspondences the larger the
accuracy of the result, which is obtained by minimizing an error function (e.g. [Tsai
87; Lenz & Tsai 88]). For that purpose we put some markers on a 
at road at exactly
measured locations and recorded images for the left and right view (see Figure 12a)).

To complement our calibration we used also a calibration technique developed
at INRIA [Faugeras & Toscani 86; Faugeras et al. 92]. This technique is based on
images of a calibration grid and provides very accurate internal camera parameters
(see b) of Figure 12).

a) b)

Figure 12: The left image shows a view of the calibration markers from one of the cam-

eras. The right image shows a view of the calibration grid.

With this calibration technique we achieved a precision of about 0.6 pixels in the
image which corresponds to an average error of about 0.05m at a distance of 15m
(the nearest markers in Figure 12 a) and about 0.30m for a distance of 50m (the
farthest markers in Figure 12 a).
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5.3 Computational Environment

The computational environment should re
ect the realtime aspect we require for the
system. From the experience of other groups in building realtime applications we
decided to build our �nal realtime system in three steps:

1. In the �rst step we use a simulation environment for developing and testing
algorithms on standard UNIX workstations.

2. In the second step we plan to implement only the key algorithms on dedicated
special hardware using DSP chips. This special hardware uses standard bus
technology so we can control and test the algorithms running on the special
hardware but using our simulation software implemented in the �rst step. This
environment enables already a realtime test using VCR's and recorded tapes
instead of cameras as sensor input.

3. In the �nal step we want to put the same special hardware in the car and link
it with the other sensors and vehicle control system.

5.3.1 Software Simulation

In this research project we developed a software simulation tool (Xavier4) for test-
ing the basic ideas and the key algorithms with image sequences we already recorded
with the hardware setup. Xavier is based on a graphical user interface and enables
the selection and processing of single frames as well as an entire image sequence.
Xavier provides also all necessary tools for inspection and assessment of interme-
diate results in processing the images using graphical outputs (see Figure 13).

5.3.2 Real-Time issues

Concerning the problem of vision-based lateral control, real-time performance has
already been achieved for several years, for example by the group of Dickmanns,
using relatively simple hardware consisting of standard PC motherboards. However,
they used an approach which was entirely integrated, in the sense that control
variable and strategies were mixed with the motion parameters, and that the model
for line markers was also built into the algorithm. Our approach is slightly more
complex, since it has the advantage of providing a separate module for perception,
thus allowing an easy integration of multiple sensors and alternative control laws,
which is highly desirable from an engineering point of view. However, the tasks that
are required are not very computationally expensive. For instance, Blake [Blake et

al. 93] at Oxford has an implementation of a tracking scheme which may be suitable
for lane tracking (it uses splines snakes) and works pretty close to realtime even on
a Sun SparcStation.

Concerning the problem of longitudinal control and obstacle detection, although
in the past real-time performance was a serious problem, the introduction of fast
modern hardware architectures has already allowed a certain number of research

4
Xavier = X-based automatic vehicle image evaluation routines.
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Figure 13: A screendump of Xavier during processing an image.

groups in the world to design near real time stereo algorithms. The best known
of them are the real-time correlation algorithms developed at JPL by Matthies
[Matthies & Grandjean 93], which currently produces a range image in less than
0.3s, and at INRIA in the group of Faugeras [et al. 93], which has similar perfor-
mance with hardware comparable to the one we plan to use (8 Motorola DSP96002
chips), and is more than ten times faster when implemented in hardware (using
DEC Programmable Gate Arrays). It should be noted that the aim of these works
is to produce a dense depth map at a relatively high resolution, suitable for instance
in the navigation of a rover for future planetary exploration over a rough terrain.
In the case of the PATH project, we are mainly interested in detecting the closest
obstacles. We do not need a very dense map, thus there is no need for us to perform
the correlation over all image points. Also, there are two reasons for which we can
work with a limited resolution: we do not need a very precise estimate of the dis-
tances, and since the road obstacles which are close enough to be a threat will have
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a fairly large image size, we are sure not to miss them even at very coarse scales.
In summary, real time performance has already been achieved for problems which

we believe require more computational expense than the one we address here. In our
research, we will take advantage of the simpli�cations speci�c to the PATH project
to produce very fast algorithms.

Real-Time Hardware Early vision is dominated by parallel computations per-
formed on small subsections of an image. These computations can be performed
by independent, locally connected processors. A serial machine is very ine�cient
at performing these local computations. In these cases, tremendous computational
speed-up can be obtained from using parallel processors. The use of parallel pro-
cessing for vision-based vehicle guidance is therefore mandatory.

It is essential to carefully plan a strategy for porting programs to special pur-
pose hardware and to check that appropriate programming and debugging tools are
available.

We are using an array of interconnected TMS320C40 processors. The TMS320C40
is the latest in the line of Texas Instruments Digital Signal Processing (DSP) chips.
The 'C40 runs at 50Mhz and has a peak performance of 50MFLOPS. More impor-
tantly, the 'C40 has 6 communications links which connect to other 'C40's providing
20Mb/s of data transfer per link. These communication links make it possible for
the processors to communicate the large amounts of information in digitized images
at video rate.

Our current system consists of an array of 6 processors residing on two moth-
erboards. These motherboards are standard VME format boards. A link between
the Sun S-BUS and the VME backplane provides communication between the host
Sun and the processors. A frame grabber digitizes incoming images at video rate
and broadcasts the image to the processors. An enclosure with a VME backplane
provides the power and cooling for each of the motherboards and the frame grabber.
By using a standard VME backplane we can later transfer the hardware to a vehicle.
In addition, the host can be replaced by either a separate PC computer or a VME
based host.

The software environment is a parallel version of the C language. This is standard
C with a number of message passing routines added. In our current hardware
con�guration, software development is done on the host computer. The compiled
code is downloaded to the processor array and executed. Messages can be passed
between host and the processors during execution. Thus the graphics and storage
facilities of the host computer can be used.

6 Results

Figure 14 shows a result of the disparity computation and a depth estimation using
the left and right view of a highway scene. Figure 14a) and b) shows the original
image, while Figure 14c) and d) exhibit the extracted points of interest in the already
sheared left image and the right image. The result of the disparity computation is
displayed in Figure 14e).
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a) b)

c) d)

e)

Figure 14: Various steps in the computation of the stereo disparity: a) and b) show the
left and the right image. c) and d) show the points of interest in the sheared
left image and the right image, respectively. The amount of the Helmholtz-

Shear that brings the ground plane of left image into the view of the right
image can be seen on the right slanted line in image c). The �nal disparity
map is given as greycoded values in e).
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Computing the points-of-interest for an 638 � 478 image takes about 3 Seconds
on a Sun SparcStation 10 using a convolution with the �rst derivative in horizontal
direction of a Gaussian function with � = 1:2 and a 6�9 �lter kernel. Computing the
disparity using a correlation between horizontal scanline segments of length 9 pixels
and a maximal disparity of 15 pixels takes about 4 Seconds. This includes sub-pixel
interpolation by means of a quadratic interpolation. The disparity computation can
be speeded up using only a subsampled number of scanlines. Including shearing
of one of the images and applying a threshold to the �lter outputs the total time
for computing the depth from a stereo image pair of size 638 � 478 is about 12
seconds on a Sun SparcStation 10. This performance is state-of-the-art compared
to results obtained by other research groups (e.g. [Matthies 92]). Note that obstacle
detection can be performed on largely subsampled copies of the full-scale image, e.g.
subsampled to 64�64 pixels, in which case the performance is increased by a factor
100 and is hence only 120 milliseconds. Further speed-up can be achieved using the
proposed special purpose hardware.

The result of the depth estimation for the right view is given in Figure 15a),
where the depth is displayed as greyscale values. For a better interpretation, a birds
eye view is shown in Figure 15b). The three cluster of points correspond to the
three cars moving in front of the camera as seen in Figure 14b).

a) b)

Figure 15: Shows the greycoded depth map of Figure 14 and b) shows a birdseye view
of the obstacles and the lane markers.

In order to test the accuracy of the estimated depth from stereopsis we compared
these values with the distances calculated by means of perspective inversion using
calibration data obtained with a static calibration described in the next section.
For that purpose we back projected an appropriate selected rectangle on the road
plane beneath each car in order to obtain the minimum and maximum values for
the distance to the camera. The minimum and maximum values from the stereopsis
are extracted from the clouds of the depth estimations for each car in Figure 15b).
The result is shown in the following table:
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estimated depth range in [m] using
persp. inversion stereopsis

left car 17.5 { 23.5 16.5 { 22.0
middle car 23.8 { N/A 23.0 { N/A
right car 21.5 { 31.1 23.4 { 33.8

The reason why the maximum depth is not available for the middle car is that
we have only the back view of this car. Deviations of the assumption of an exact
aligned camera geometry (see next section) or deviations of the planar road (the road
plane in the highway image seems to be slightly more slanted than the calibration
image) causes di�erences between the two estimations. We see also an increasing
error with the distance according to the statement in Subsection 3.1. To increase the
accuracy and robustness of the depth estimations we plan to exploit temporal inte-
gration using prediction and update by means of standard Kalman �lter techniques
as mentioned in Section 3.
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A Appendix

A.1 Ground Plane Disparity Computation

Zw

Left Image Plane

Ol

y0l

z0l

P = (X;Y;Z)

x0l

z0r

Yw

b

Or
�

x0r

y0r

Right Image Plane

h

Xw

�

�

Figure 16: A more general view of a stereo camera set-up where the baseline b is parallel
to the ground plane and the optical axes of the cameras are still parallel but
with an inclination angle � towards the normal of the ground plane.

Figure 16 depicts a perspective view of the of the camera rig. The cameras have both
the same inclination angle �. The cameras are further adjusted in order to make
the angles � and � small and negligible. A transformation from world to camera
coordinates is then performed by: 

Yc
Zc

!
= Rx(��)

 
Yw

Zw � tz

!
=

 
cos� sin�
� sin� cos�

!  
Yw

Zw � tz

!
; (25)

and hence for a point on the ground plane (Zw = 0):

Yc = Yw cos� � tz sin�; (26)

Zc = �Yw sin� � tz cos�; (27)
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Figure 17: Both cameras are assumed to have an inclination angle �. A point P =
(Xw; Yw; Zw = 0)T on the ground plane is projected onto the image plane at
same location (x0; y0) as a point ( ~Xw; ~Yw; ~Zw)

T .

From Figure 17 we read:

Yw = tz tan 
 = �tz tan(�+ �) = tz
f sin�+ y0 cos�

f cos�� y0 sin�
; (28)

where we made us of the fact that tan(� + �) = tan�+tan�

1�tan� tan�
with

tan � =
y0

f
=

Yc

Zc

=
~Yc
~Zc

: (29)

Substituting Equation 28 into 26 we obtain:

Yc = tz
y0

f cos� � y0 sin�
: (30)

Finally by substituting this into Equation 5 we obtain:

�x0 =
b sin�

tz
y0 �

b f cos�

tz
: (31)
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A.2 Quadratic Subpixel Interpolation

The objective is to �nd the maximum of a function of which we have only discrete
samples around the maximum (cf. Figure 18. To �nd the maximum we perform a
quadratic interpolation.

y

x

x� = x� 1 x x+ = x+ 1xm

Figure 18: x� = x � 1, x and x+ = x + 1 are three sample of a function around the
maximum xm to be found by quadratic interpolation.

A quadratic function is parameterized by:

y = ax2 + bx+ c; (32)

with the extremal point at

xm = �

b

2a
: (33)

The values of the function at the sample points are:

y� = ax2
�
+ bx� + c = ax2 + 2ax+ a+ bx+ b+ c;

y = ax2 + bx+ c; (34)

y+ = ax2
+
+ bx+ + c = ax2 � 2ax+ a+ bx� b+ c;

from which we obtain the parameters:

a =
1

2
(y+ � 2y + y�); (35)

b =
1

2
(y+ � y�)� (y+ � 2y + y�) x (36)

and hence the �nal position of the maximum:

xm = x�
1

2
�

y+ � y�

y+ � 2y + y�
: (37)
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