
May 11, 1994 1

Measurements of Active Messages
Performance on the CM-5

Lok T. Liu
David E. Culler

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

Abstract

Active Messages is a versatile and efficient communication architecture that offers
significant performance improvement over conventional message-passing approach. The
Active Messages architecture achieves its efficiency by carefully integrating the hardware
capabilities of the underlying machine with the software layers above it. By taking a
minimalistic approach, each Active Messages primitive is highly optimized and therefore
its performance is sensitive to the particular design choices being made. In this report, we
compare the performance of two implementations of Active Messages on the CM-5,
CMAM version 2.7 and CMAML in CMMD version 3.1.final, and investigate how the
design trade-offs affect the performance of the different Active Message functions. At the
same time, we also develop a new benchmark framework that can be applied to measure
the performance of message passing libraries in general.

Introduction May 11, 1994 2

1.0 Introduction

Many of the current generation of massively parallel computers, such as the Thinking
Machine CM-5 and the Intel Paragon, are message-passing multiprocessors. Even though
the network hardware in these machines can provide low-latency, high-bandwidth
communication, the actual communication performance obtained in real applications has
been quite disappointing because of high software overhead of the message passing
library. To overcome this problem, Active Messages has been demonstrated to be an
efficient communication mechanism on the CM-5 and nCUBE/2 [1]. Originally developed
at the University of California at Berkeley as CMAM, Active Messages are now
incorporated in the CMAML layer of CMMD 3.1.final, the current version of message
passing library available from Thinking Machine Corp. on the CM-5 [2].

In this report, we compare the performance of Active Messages in CMAM 2.7 and
CMMD 3.1.final on the CM-5 to investigate how the design choices affect the performance
of the two implementations. We also present a new benchmark framework that can be
adopted to measure the performance of any message passing libraries. Our benchmark

approach differs from previous work in that[3]:

1. Each benchmark is carefully designed by considering the underlying hardware
capabilities and the functionalities of the primitive being measured. For example, given
the low overhead of Active Messages and the low network latency of the CM-5, we use
three different benchmarks to measure the send and receive overheads of the basic
Active Message function in an unloaded network in Section 5.1.1.

2. Each benchmark is described in detail so that the results can be easily reproduced.

3. Each benchmark is very simple. Therefore, together with the precise description, it is
relatively easy to interpret what exactly we are measuring and draw meaningful
conclusions.

The rest of the report is organized as follows. First, we present an introduction on the CM-5
architecture and Active Messages. We also briefly compare the features of CMAM and
CMAML. Second, we compare the performance of Active Message functions such as
request, reply, and array transfer in both unloaded and loaded network conditions using the
LogP model. We find that even though CMAML provides extra functionality such as
message interrupts and work queues, it incurs more overhead than CMAM. In an unloaded
network, sending a request message takes 1.49µsec in CMAM whereas it takes 1.96µsec
in CMAML. Node-to-node array transfer to neighboring processor can attain a peak
bandwidth of 10 MB/sec in CMAM whereas it is only 8 MB/sec in CMAML. However, in
a loaded network, CMAML can provide higher bandwidth than CMAM.

Third, we measure the overhead of receiving Active Messages by polling and by interrupt
in detail because messages can only be sent as fast as they are received. Our measurements
show that receiving one Active Message per poll has an overhead of 2.85µsec in CMAM
and an overhead of 3.3µsec in CMAML. However, receiving one Active Message per
interrupt has an overhead of about 19µsec using CMMD 3.1.final and CMOST 7.2.final.

Finally, given the high overhead of message interrupt, we analyze the source code of

Overview of the CM-5 May 11, 1994 3

CMOST 7.2.final and CMMD 3.1.final to investigate the interaction between the Active
Message layer and the operating system during message interrupts. Based on this analysis,
we propose an efficient and flexible design for handling message interrupt on the CM-5.
Overhead of as low as 9.5µsec can be attained by a lean implementation.

2.0 Overview of the CM-5

FIGURE 1. The CM-5 data network is an incomplete 4-ary fat tree. The router chips above level 2
have 4 parents instead of 2 parents, which are not shown here.

The CM-5 is a distributed memory multiprocessor that can have up to 16K nodes [4]. The
nodes are interconnected by two disjoint data networks, a diagnostic network, and a
control network that supports barrier, broadcast, scan and reduce. Each node consists of a
33-MHz SPARC processor chip-set (including FPU, MMU, and 64KB cache), local
DRAM, network interface (NI), and optional vector units. The nodes of the CM-5 can be
divided into multiple partitions. Each partition consists of a partition manager (also called
the host), a set of nodes, and dedicated portions of the data and control networks. The
partition manager is a SUN workstation that executes system administration tasks and
sequential user tasks. A distinguished feature of the CM-5 is that it allows user access to
the network interface through memory-mapped registers and FIFO’s in the user address
space.

As shown in Figure 1, each of the data network is an incomplete 4-ary fat tree. In general,
each router chip is connected to and four child chips and four parent chips to keep the
aggregate bandwidth constant from one level to the next. However, due to packing and
cost constraints, the tree is incomplete. Each processor node at the leaf level has two
connections to the data network. The router chips at the first two levels are connected to
two parent chips in the next higher level. All router chips above the second level have four
parent connections.

Note that the CM-5 network architecture provides multiple paths from a source processor
to a destination processor. To route a message from one processor to another, the message
is first sent up the tree to the least common ancestor of the two processors. This is done by
randomly selecting an upward connection that is not congested by other messages at each
level. Then, the message is sent from the common ancestor to the destination processor via

processor nodes

router chip

Overview of the CM-5 May 11, 1994 4

a unique downward path. The random routing algorithm balances the network load and
avoids hot spots in pathological cases.

2.1 Overview of Active Messages on the CM-5

2.1.1 The Basics

The mechanism of Active Messages is very simple. The Active Message primitives send
messages, which consist of a handler address and the handler arguments. Messages can be
received either by polling or interrupts. The handler is invoked with the arguments on the
receiving processor upon message arrival. The role of the handler is to assimilate the
message from the network in the ongoing computation as fast as possible, rather than
performing the actual processing on the message contents. By keeping the resource
management and scheduling to a minimum in the Active Message layer, the Active
Message primitives are very efficient.

2.1.2 Comparing CMAM and CMAML

Historically, Active Messages was developed at University of California at Berkeley
based on the notion of an efficient communication architecture [5]. Acting as a
communication abstraction on top of the underlying hardware, Active Messages allows
parallel language implementations to access the network hardware with low overhead.
CMAM, the Active Messages implementation on the CM-5, is used successfully in the
development of the TAM compiler [6]and Split-C library [7]. Based on the Active
Messages ideas in CMAM, Active Messages in now incorporated in the CMAML layer of
the CMMD message passing library available from Thinking Machines Corp. As a result,
CMAM and CMAML bear much resemblance in the surface even though their actual
implementations are quite different.

On the CM-5, there are two main flavors of Active Messages: request messages and reply
messages. They differ in their usage of the two data networks. The request functions
CMAM_4() and CMAML_request() send the message using the request (left) data
network and poll both the request (left) and reply (right) networks alternately while
attempting to send. The reply functionsCMAM_reply_4() and CMAML_reply()
send the message using the reply (right) data network and poll only reply (right) networks
while attempting to send. Usually, the request message invokes a handler in the
destination, which replies to the sender with a reply message. By following this protocol,
deadlock and unbounded handler invocations can be avoided. CMAML offers an extra
function,CMAML_rpc() , which alternates send requests between request (left) and reply
(right) networks and polls both networks alternately while attempting to send.The
CMAML_rpc() semantics allows Active Messages to be sent in a handler without
following the request-reply protocol when the number of RPC invocations can be
bounded.

On the CM-5, each of the basic Active Message functions can send messages up to 5
words long. Since each node has the same code image, each node can address the handler

Overview of the CM-5 May 11, 1994 5

on another node by looking up the address of the handler locally.1 The advantage of
having short messages is that the 4 handler arguments can be passed to the Active
Message functions through register window on the SPARC with low overhead. However,
using the basic Active Message function to transfer an array of data is not efficient
because the handler address and the destination memory address would take up 2 of the 5
words.

To support array transfer, CMAM introduces the notion of a segment, which is a memory
region on the receiving processor into which other processor(s) can transfer data. A
segment is setup by calling CMAM_open_segment(), which specifies the base address of
an array, the array size, and an end-of-transfer handler function. Using the segment
identifier from the receiver, the sender(s) can then call the functionsCMAM_xfer() or
CMAM_reply_xfer() to transfer data into the segment.CMAM_xfer() , like a
request function, sends the array data in memory through the request (left) network and
polls both networks whereasCMAM_reply_xfer() sends and polls only the reply
(right) network. Thexfer messages do not contain a handler address. Instead, they are
marked with special hardware tag and therefore, upon arrival on the receiver, a predefined
handler in CMAM is called. This special handler stores the data into memory and
decrements the segment counter. When the segment counter reaches zero, the end-of-
transfer handler function is called at the receiver to synchronize the completion of an array
transfer with the ongoing computation. By encoding the segment identifier and the offset
into the segment into a word, 4 words is now available for the actual array data in a
message.

Instead of segments, CMAML uses receive ports (rport). Setting a CMAML receive port
is similar to setting up a CMAM segment. However, instead of calling one function,
separate accessor functions in CMAML are needed to be called to specify the base
address, buffer size and end-of-transfer handler function. In addition, CMAML also
supports an extra synchronization mechanism on the sender by calling an end-of-transfer
on the sender after the last byte is sent. There are two array transfer functions in CMAML.
CMAML_scopy() , which callsCMAML_rpc() , sends data on both networks and poll
both networks.CMAML_pcopy() is a version ofCMAML_scopy() which transfers data
between the parallel memory in the vector units.

In CMAM, the invocation of the handler is synchronous because messages are received
either implicitly when sending an Active Message or explicitly by calling a polling
function. CMAML differs from CMAM in that it supports asynchronous handler
execution as well.CMAML_request() can be called even when message interrupt is
enabled. If message interrupt is enabled, the arrival of a message will trigger an interrupt.
The kernel will then call the CMAML interrupt handler which dispatches the appropriate
user handler. Because interrupt is disabled in the interrupt handler, subsequent messages
(if any) are received by polling. When there are no more messages to be received, the
ongoing computation is resumed. Since interrupt involves context switching2 between the
kernel and the user code, receiving messages by interrupt has higher overhead than by

1. In machines that do not have the same code image on all nodes, indirect Active Messages can be
implemented using a handler table on the receiver.

Communication Performance Model May 11, 1994 6

polling. In addition, message interrupt adds to the complexity of the Active Message layer
because the Active Message functions need to be re-entrant and the atomicity of the
handler execution still needs to be maintained.

Another aspect that CMAML differs from CMAM is that CMAML uses a work queue
internally. This is done by assigning higher priorities to the request functions and reply
functions than the RPC functions, array transfer functions, handler functions, and regular
user functions. If the priority of the function being invoked is lower than the current
priority, the function is queued for later execution. This mechanism helps to avoid the
deadlock/livelock during send failure especially because the RPC and array transfer
functions send and poll on both network.

3.0 Communication Performance Model

In this report, we use the LogP model as our communication performance metric[8]. The
LogP model is an machine-independent parallel computation model that is intended to
facilitate development of fast, portable parallel algorithms. It captures the essential
performance characteristics of the network without describing the structure of the
networks. The four parameters in the LogP model are:

L: an upper bound on the latency incurred in transmitting a word (or a few words) from
its source to its destination.

o: the overhead, which is defined as the time period during which the processor is
engaged in sending or receiving a message; during this time, the processor cannot
perform other operations.

g: the gap, which is defined as the minimum time interval between consecutive
message transmissions or consecutive message receptions at a processor. The
reciprocal of g gives the effective bandwidth per processor.

P: number of processors.

The LogP model also assumes that the network has finite capacity such that there can be at
most messages in transit from any processor or to any processor. If a processor tries
to send a message that would exceed this limit, it will stall until the network resource is
available.

For array transfer, we complement the LogP model by a linear model

where T is the total to send or receive an array of size x, c is the start-up cost, and B is the
effective bandwidth.

2. On the CM-5, this context switch is relatively light-weighted because the kernel is mapped to the same
virtual pages in every process context and there is no change of address space during a message interrupt.

L g⁄

T c Bx+=

Benchmark Methodology May 11, 1994 7

4.0 Benchmark Methodology

The benchmarks are performed on the 64-node partition of the 96-node CM-5 at the
University of California at Berkeley running CMOST 7.2.final. In this partition, each node
has 8 MB of memory and no vector units. The benchmark programs are written in Split-C
1.2.3 and compiled with the -O2 and -g flag. The results for CMAM 2.7 and CMAML in
CMMD 3.1.final are reported in the following sections.

Two kinds of timers are used in the benchmarks. For benchmarks that can finish in a
period shorter than 0.5 sec (the time quantum on the CM-5 nodes), the NI timer is used.
The NI timer is a 32-bit counter on the network interface (NI) that is incremented every
CPU cycle at 32 MHz. On the nodes, it can be read using a load instruction in 7 CPU
cycles. However, it does not take into account the effect of context switching and it will
wrap around every 130.15 sec. Therefore, for benchmarks that will run longer than 0.5
sec, the Split-C function,get_seconds() is used.get_seconds() uses the CMNA
timers on the nodes, which are virtual timers that has a resolution of 1µsec and measures
only the time a user program is running. However, this timer has higher overhead. Each
get_seconds() call takes about 7.8µsec on the nodes. In all benchmarks, the timer
overhead is subtracted from the measurements. Unless otherwise stated, all measurements
are repeated in a loop until confidence coefficients of at least 90% are obtained. To avoid
race conditions among the nodes, each benchmark is ended with a barrier in each loop
iteration. In most cases, the standard deviations of the data are not reported because they
are actually smaller than 0.5% of the mean values.

5.0 Active Message Benchmarks

In this section, we compare the performance of basic Active Message functions and array
transfer using CMAM 2.7 and CMAML in CMMD 3.1.final. We measure the send
overheads and receive overheads under both unloaded and loaded network conditions.

5.1 Basic Active Message Functions

5.1.1 Unloaded Network

In this section, we describe benchmarks and their results involving communication
between 2 or 3 processors. In this case, the network is not fully utilized.

5.1.1.1 Benchmarks

In each benchmark, Active Messages are received by polling usingCMAM_wait() or
CMAML_wait() . Each Active Message invokes a simple handler that increments a
counter in memory. For node-to-node communication, four types of benchmarks are run:

Active Message Benchmarks May 11, 1994 8

• one-to-one

In this benchmark, we measure the average time to send a message from one processor
to another processor by pipelining the sends across the network. This is done by
sending 1024 messages in a loop and wait for a reply message from receiving processor
to acknowledge that it has received all 1024 messages. Note that this measurement may
include the time to send a message repeatedly when the receiving processor does not
process the messages fast enough so that the network is congested.

• one-to-two

This benchmark is similar to the one-to-one benchmark, except that we send messages
from one processor to two other processors alternately in a loop. By sending to two
different processors, the problem that the receiving processor cannot process the
messages fast enough is avoided. This gives a better measurement on the send overhead
of the Active Message functions.

• two-to-one

In this benchmark, we measure the average time to receive an Active Message by
constantly polling. This is done by first requesting two other processors to send 1024
messages each to node 0. We then measure the time forCMAM_wait() or
CMAML_wait() to receive the 2048 messages on node 0. This benchmark gives the
receive overhead. Notice that this measurement includes the time to execute the simple
handler.

• round-trip

This benchmark measures the time between a request message is sent to another
processor and a reply message is received from that processor as acknowledge. This
measurement includes the send and receive overheads plus the round-trip network
latency. This corresponds to in the LogP model.

To measure the effect of spatial communication locality, we run each benchmark with
different source and destination nodes across the partition. For node-to-host
communication and host-to-node communication, only the one-to-one benchmarks are
run. The NI timer is used for timing in all benchmarks.

5.1.1.2 Results and Discussions

5.1.1.2.1 Node-to-node

Table 1: Benchmark results for node-to-node Active Messages. Note that only the results between
node 0 and node 1 are reported here.

Benchmark

CMAML CMAM

function cycles/op µsec/op function cycles/op µsec/op

one-to-one

one-to-two

two-to-one

 CMAML_request 64.0

62.7

64.3

 2.00

 1.96

 2.01

 CMAM_4 50.2

47.7

51.2

 1.57

 1.49

 1.60

T 2L 4o+=

Active Message Benchmarks May 11, 1994 9

The results for node-to-node Active Messages are shown in Table 1. For the one-to-one,
one-to-two, and two-to-one benchmarks, since we are pipelining the message across the
network, the results are only slightly affected by the network latency. Therefore, only the
results between node 0 and node 1 are reported in Table 1 for these benchmarks. For the
round-trip benchmark, the contribution of the network latency to the timing is illustrated
in Figure 2. In all benchmarks, CMAM is more efficient than CMAML. The extra
functionality in CMAML, such as error checks, message interrupts and work queues,
contribute to the extra overhead. The results for the one-to-one benchmarks is very close
to that for the two-to-one benchmarks. However, the send overheads measured in the one-
to-two benchmarks are smaller than that measured in the one-to-one benchmarks. This
reflects the fact that the message send rate is limited by the message reception rate at the
destination processor in the one-to-one benchmark. Reply messages has lower send
overhead than request messages because only the reply (right) network is polled when
sending a reply message.

From Figure 2, we can see that the curves for the round-trip time are like step functions
even though the data is quite noisy and the standard deviation is as high as 0.7µsec for
some data points. The first jump of the curve is at destination node 4 and the second jump
is at node 16. This is exactly what we would expect from the 4-ary fat-tree network. Each
jump is about 1µsec, which indicates that the delay through one router chip is about 0.25
µsec. The round-trip time for CMAML is about 1µsec higher than that for CMAM
because CMAML has higher send and receive overheads for both the request and reply
functions. Subtracting the send and receive overheads from the results of the round-trip
benchmark, we can deduce that the round-trip network latency between node 0 and node
63 is 6.8µsec using the data from CMAML and 7.17 µsec using the data from CMAM.

one-to-one

one-to-two

two-to-one

 CMAML_reply 65.3

41.0

66.6

 2.04

 1.28

 2.08

 CMAM_reply_4 49.9

40.0

51.2

 1.56

 1.25

 1.60

one-to-one

one-to-two

two-to-one

 CMAML_rpc 60.8

40.0

61.8

 1.90

 1.25

 1.93

round-trip

(node 0 to node
1 and back)

402.9 12.59 364.8 11.40

Benchmark

CMAML CMAM

function cycles/op µsec/op function cycles/op µsec/op

Active Message Benchmarks May 11, 1994 10

Figure 2. Round-trip times from node 0 to node 1 through node 64. Note that the round-trip time is the
sum of the send and receive overheads and the round-trip network latency

5.1.1.2.2 Node-to-host

Table 2: One-to-one benchmark results for node-to-host Active Messages

The results for node-to-host Active Messages are shown in Table 2. Since there is a high
variation in the timing, the average time to send a message reported here is calculated by
sending 1024 messages instead of repeating the measurements until a 90% confidence
coefficient is reached. In this benchmark, there is no significant difference between the

CMAML function cycles/op µsec/op CMAM function cycles/op µsec/op

CMAML_request_tohost 12774 399.2 CMAM_host_4 12784 399.5

CMAML_reply_tohost 12461 389.4 CMAM_host_reply_4 12589 393.4

CMAML_rpc 12438 388.7

destination node

ro
un

d-
trip

 tim
e (

us
ec

)

10.5

11

11.5

12

12.5

13

13.5

14

14.5

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

CMAML

CMAM

CMAML(fitted)

CMAM(fitted)

Active Message Benchmarks May 11, 1994 11

results for CMAML and that for CMAM. Sending reply or RPC messages is still faster
then sending request messages. However, the time to send an Active Message from one
node to the host is 200 times longer than from one node to another node. There are two
reasons for the poor performance:

1. Since the host lies outside the address space of the partition it manages, it can only be
addressed using its physical data network address, rather than its relative address in the
partition. This requires a system call into the CMOST kernel on the nodes and adds to
the overhead.

2. All CM-5 programs comprises of two parts: the host program that runs on the host and
the node program that runs on the nodes. Even though the node program is scheduled
synchronously (coscheduled) on the nodes, there is no coordination between the
scheduling of the host program and the node program. As a result, if the host program is
not scheduled on the host when a node tries to send messages to the host, that node is
simply blocked because the host is not receiving messages and the network link is
congested. This adds to the indeterminacy in the timing for node-to-host
communication.

5.1.1.2.3 Host-to-node

Table 3: One-to-one benchmark results for host-to-node Active Messages

The results for host-to-node Active Messages are shown in Table 3. The average time to
send a message reported here is calculated by sending 1024 messages instead of repeating
the measurements until a 90% confidence coefficient is reached. We can see that the time
to send an Active Message from the host to the node is about 3 times slower than between
the nodes. This is because the network interface is accessed through the S-Bus on the host
rather than through the M-Bus as on the nodes. The S-Bus runs at the half the CPU clock
rate and is only 32-bit wide. In comparison, the M-Bus can run at the same clock speed of
the CPU up to 40 MHz and is 64-bit wide. Moreover, data need to pass through extra bus
adaptor to access the NI on the host and this adds to the overhead. For example, the NI
timer register can be read in 7 cycles on the nodes. However, this will take about 21.4
cycles on the host.

5.1.2 Loaded Network

In this section, we present results for benchmarks in which all processors are sending and
receiving at the same time.

CMAML function cycles/op µsec/op CMAM function cycles/op µsec/op

CMAML_request 155.8 4.87 CMAM_4 160.3 5.01

CMAML_reply 138.2 4.32 CMAM_reply_4 139.2 4.35

CMAML_rpc 141.1 4.41

Active Message Benchmarks May 11, 1994 12

5.1.2.1 Benchmarks

To get an idea on how the Active Message functions perform in a loaded network, we use
the following benchmarks:

• ring

In this benchmark, we arrange the processors into a linear ring. Each node is to send
1024 messages to its right neighbor while receiving 1024 messages from its left
neighbor. This is done by callingCMAM_4() or CMAML_request() 1024 times in a
loop and then call theCMAM_poll_wait() or CMAML_poll_wait() to make
sure that all 1024 messages from the left neighbor are received. We measure the
average time for node i to send a request message to node (i+1) mod P while receiving
a message from node (i-1) mod P, where P is the total number of nodes. The
communication pattern is very localized in this benchmark.

• traverse

This benchmark consists of P steps, where P is the total number of nodes. In step i,

node j and node () exchange 1024 messages with each other, where () means j

exclusive-or i. In a hypercubic network, the communication pattern at step i can be
interpreted as a permutation in which a packet is routed from node j to node () by

traversing the dimensions of the hypercube in which there is a 1 at that bit position in
the binary value of i. For the incomplete 4-ary fat tree of the CM5, in step i, a packet
needs to travel up to the common ancestor in level of the network before it

follows the downward path to the destination node. Again, we measure the average
time to send and receive a request message in this benchmark. This benchmark
measures how the hierarchical structure and bisection bandwidth of the network affect
the performance.

Note that we are measuring the sum of the gap (g) and the receive overhead (o) of the
LogP model in these benchmarks. Polling is used in both benchmarks.

5.1.2.2 Results and Discussions

5.1.2.2.1 ring

Table 4: Results for the Active Messages ring benchmark

In this benchmark, the average times to exchange a request message are very close among
the nodes and the average time among the nodes are reported in Table 4. Since the
communication is very localized, we would expect the measured time to be the sum of the
send overhead and receive overhead we obtain in Section 5.1.1.2.1. Indeed, the measured

function measured (µsec/op) expected (µsec/op)

CMAM_4 3.18 3.09

CMAML_request 4.59 3.97

j i⊕ j i⊕

j i⊕

i4log i+

Active Message Benchmarks May 11, 1994 13

times are pretty close to the expected time. However, the deviation for CMAML is greater
than that for CMAM probably because CMAML is not fast enough to handle the messages
and the network starts to be congested.

Figure 3. Results for the Active Messages traverse benchmark

5.1.2.2.2 traverse

In this benchmark, the variation of the average times to exchange a message is quite high
among the nodes. For some data points the standard deviation is as high as 0.5µsec. The
0.5 µsec standard deviation is expected because, as we will see in Section 6.1.3.1, each
iteration in the dispatch loop is roughly 1µsec and, on average, a message will arrive at
the midpoint of the loop. In Figure 3, the average time to exchange a message among the
nodes in each step is plotted against the step number for the different functions. It can be
seen that the CMAM and CMAML functions behave differently. ForCMAM_4(), the
curve is like a step function with a jump of about 1.4µsec at step 16. For CMAML, even
thoughCMAML_rpc() has lower overhead thanCMAML_request() in a unloaded
network, its performance is worse thanCMAML_request() . Nevertheless, the curves
for both CMAML_request() and CMAML_rpc() exhibit an interesting behavior. Between

step number

av
era

ge
 tim

e t
o s

en
d a

nd
 re

ce
ive

 on
e m

es
sa

ge
 (u

se
c)

3

3.5

4

4.5

5

5.5

6

6.5

7

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

CMAM_4

CMAML_request

CMAML_rpc

Active Message Benchmarks May 11, 1994 14

step 0 and step 3, their curves are quite flat. Then, there is a jump at step 4 in both curves
and the curves stay quite flat between step 4 and step 15. For CMAML_rpc(), the jump is
about 1.9 µsec, which is much higher than the jump of about 0.7µsec for
CMAML_request(). Interestingly, both curves jump back down at step 16 and stay flat
between step 16 and step 63 around a value which is still higher than that between step 0
and step 3. In fact, the average time to exchange a message is almost the same for
CMAM_4() and CMAML_request() between step 16 and step 63.

In general, we would expect the measured time to increases with the step number because
more levels of the network need to traversed and the nodes need to compete for the limited
bandwidth between each level of the network. SinceCMAM_4() has low receive
overhead, there is no severe backlog from the network between step 0 and step 15 and
therefore our measurements are very close to the sum of the send overhead and receive
overhead. From step 16 and on, bandwidth limitation comes into place and the network is
congested. Hence, the network backlog causes a jump in the average time to send a
message at step 16. However, for CMAML_request() and CMAML_rpc(), it is not clear
why the measurements between step 4 and step 15 have higher values than those between
step 16 and step 63. In addition, it is also not clear why CMAML_rpc() has a higher jump
than CMAML_request() at step 4. This may be related to the fact that CMAML_rpc() has
much lower send overhead than CMAML_request(). Therefore, CMAML_rpc() may keep
attempting to re-send the packet at a higher rate when the network is congested. This, in
turn, can aggravate the network congestion. Since the interaction between the sender and
the receiver is highly coupled in the CM-5 network, the phenomena we observe in Figure
3 may be caused by the particular way in which messages are received in the request and
RPC functions. To probe the matter further, we insert an extra polling function call in the
inner loop of the traverse benchmark and the results are shown in Figure 4. Comparing the
results in Figure 3 and Figure 4, the following observations can be made:

1. For CMAM_4(), in steps 0 through 15, the average time to send and receive one
message in Figure 4 is higher than that in Figure 3 by about 0.8µsec, which is
approximately the time for an unsuccessfulCMAM_poll() that we will show in
Section 6.1.3.1. In steps 16 through 63, both benchmarks have the same results. This
seems to confirm the hypothesis that the performance ofCMAM_4()is limited by the
network bandwidth in this region.

2. For CMAML_request() and CMAML_rpc() , the jumps in steps 4 through 15
disappear in Figure 4. In Figure 4, the graph forCMAML_request() is relatively flat
at around 5.4µsec, which is almost the same as the value forCMAML_rpc() between
steps 16 and 63 in Figure 3. This value is also about 0.8µsec higher than that for
CMAML_request() in Figure 3 between steps 16 and 63. However, as we will see in
Section 6.1.3.1, the time for an unsuccessfulCMAML_poll() is about 1.3µsec.
Another interesting point is that, in Figure 4, the graph forCMAML_rpc() is
relatively flat at 4.68µsec, which is almost the same value forCMAM_4() between
steps 16 and 63 and almost the same as its initial value in Figure 3. It seems that by
adding an extra poll to slow down the send rate and poll both networks has helped to
reduce the congestion in this case.

Active Message Benchmarks May 11, 1994 15

Figure 4. Results for the Active Messages traverse benchmark with an extra polling function call in
the inner loop

5.2 Array Transfer Functions

In this section, we measure the performance of bulk data transfer using Active Messages
in both unloaded and loaded network conditions.

5.2.1 Unloaded Network

5.2.1.1 Benchmarks

In this section, we measure the performance of array transfer usingCMAM_xfer() in
CMAM andCMAML_scopy() in CMAML by transmitting arrays of sizes from 2 bytes
to 64K bytes. We also vary the alignment of the destination buffer addresses among byte,
word, and double-word boundaries. Since the SPARC processor has a 64KB unified
cache, we would expect our results not to be affected by the cache misses in most cases.
However, we do not study how the cache performance affects the data transfer rate in
these benchmarks. For node-to-node and node-to-host array transfer, the Split-C function,
get_seconds() is used for timing. For host-to-node array transfer, the NI timer on the
host is used. The results exclude the time to allocate receive ports in CMAML or to
allocate segments in CMAM. Polling is used in all benchmarks.

3.5

4

4.5

5

5.5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

step number

av
era

ge
 tim

e t
o s

en
d a

nd
 re

ce
ive

 on
e m

es
sa

ge
 (u

se
c)

CMAM_4

CMAML_request

CMAML_rpc

Active Message Benchmarks May 11, 1994 16

For node-to-node communication, four types of benchmarks are run:

• one-to-one

This measures the average time to send an array of size x from node 0 to node 1. For
blocking send, the result includes the time to wait for a reply message from node 1 to
signal that the whole array is received. For non-blocking send, we stop the timer once
the array transfer function returns. Then, we wait for an acknowledge from node 1
before we proceed to send the next array.

• two-to-one, one segment

This measures the average time to receive an array of size x by having node 1 and node
2 sending to two different halves of the same buffer on node 0 at the same time, i.e.
same segment or same receive port.

• two-to-one, two segments

This measures the average time to receive two arrays of size x/2 by having node 1 and
node 2 sending to two different buffers on node 0 at the same time, i.e. two different
segments or receive ports.

• swap

This measures the average time for two processors to swap an array of size x
simultaneously. In the CMAM version of the benchmark, node 0 requests node 1 to use
CMAM_reply_xfer() to send it an array before it starts to send an array to node 1
usingCMAM_xfer() . We measure the total time for node 0 to send an array to node 1,
receive an array from node 1, and wait for an acknowledgement from node 1 that it has
received the array. In the CMMD version of the benchmark, since there is no reply
version ofCMAML_scopy() , CMAML_scopy() is used on both node 0 and node 1.

For node-to-host and host-to-node array transfer, only the non-blocking one-to-one
benchmark is run. In these cases, we are transmitting data between node 0 and the host.

5.2.1.2 Results and Discussions

5.2.1.2.1 Node-to-node

Table 5: Benchmark results for node-to-node array transfer

Benchmark Alignment

CMAM CMAML

4
words
(µsec)

start-
up cost
(µsec)

bandwidth
(MB/sec)

4
words
(µsec)

start-
up cost
(µsec)

bandwidth
(MB/sec)

one-to-one
(blocking)

 byte 21.6 28.7 5.76 33.1 40.6 3.81

 word 21.6 30.0 8.42 31.9 38.5 8.04

 double-
word

 23.8 21.1 10.11 31.7 30.1 8.12

Active Message Benchmarks May 11, 1994 17

The results for node-to-node array transfer are shown in Table 5. For each benchmark, we
show the time to send or receive 4 words so that we can compare the overhead of the array
transfer functions with that of the basic Active Message functions. We also report the
start-up cost and bandwidth from a least-square fit of the data points using a linear model.
Note that the start-up cost value from the linear model is affected by the non-linearity and
the noise of the data. Therefore, it may not reflect the actual start-up cost accurately.

• Overhead for array transfer

From the results of the non-blocking one-to-one benchmark and the two-to-one
benchmark, we can see that the overhead of the array transfer functions is much higher
than that of the basic Active Message functions. For the basic Active Message
functions, all arguments can fit into a register window in the SPARC processor.
Therefore, the compiler can pass the arguments to the Active Message functions and
the handler functions through registers instead of memory. However, for array transfer,
data has to be copied from memory to the NI at the sender and again from the NI back
to memory at the receiver. In addition, on the sender side, the array transfer functions
need to packetize the array into 5-word messages and to handle data at different
alignments. This slows down the send rate. On the receiver side, the segment or receive
port data structure also needs to be accessed to figure out where to store the data in
memory. The extra overhead in maintaining the segment or receive port data structure
also slows down the receive rate.

one-to-one
(non-block-
ing)

 byte 8.6 13.1 5.76 19.8 25.0 3.81

 word 8.6 12.7 8.43 19.7 21.0 8.12

 double-
word

 10.7 8.0 10.09 19.8 10.6 8.09

two-to-one,
one segment

 byte 17.8 35.4 10.06 22.5 31.6 7.63

 word 18.5 36.5 10.06 22.5 32.3 8.07

 double-
word

 18.9 16.6 10.12 22.7 19.7 8.12

two-to-one,
two seg-
ments

 byte 20.1 35.9 7.31 26.7 42.6 6.98

 word 20.2 33.9 7.36 26.7 31.3 6.94

 double-
word

 20.9 14.7 7.39 26.6 24.0 7.11

swap byte 21.2 32.0 2.98 38.8 49.7 2.81

 word 21.0 46.7 4.48 37.0 57.2 5.34

 double-
word

 31.2 25.0 5.06 37.4 59.8 5.66

Benchmark Alignment

CMAM CMAML

4
words
(µsec)

start-
up cost
(µsec)

bandwidth
(MB/sec)

4
words
(µsec)

start-
up cost
(µsec)

bandwidth
(MB/sec)

Active Message Benchmarks May 11, 1994 18

• Comparing the overhead of CMAM and CMAML

CMAML_scopy() also has higher overhead thanCMAM_xfer() . One reason is that
CMAML_scopy() requires 8 arguments which cannot fit into a register window.
Therefore, the compiler has to pass the arguments through the stack rather than
registers. The extra functionality that a handler function can be invoked when the
transfer is completed at the sender incurs a cost of 2 extra arguments for
CMAML_scopy() . In addition, we can also observe that CMAML can only achieve a
peak bandwidth of about 8 MB/sec, which is 20% lower than the 10 MB/sec bandwidth
of CMAM. This is due to the fact that the message dispatch loop in the polling function
and the data packet handler have higher instruction counts in CMAML than those in
CMAM. Note that this 4:5 ratio can also be observed in the receive overhead measured
in Section 5.1.1.2.1 for the basic Active Message functions.

• Effect of buffer address alignment

The relative alignment of the source buffer address and destination buffer address also
affects the start-up cost and the peak bandwidth. If both source and destination buffer
addresses are double-word aligned, double-word loads and stores can be used and the
array can be easily transferred 16 bytes at a time. Therefore, the start-up cost is usually
lower for double-word aligned buffer and the peak bandwidth can be obtained.

• Blocking vs. Non-blocking

Comparing the results for the blocking and non-blocking benchmarks, the attainable
bandwidths are the same. However, the non-blocking sends have lower latency than the
blocking sends because there is no need to wait for an acknowledgement in the non-
blocking case. The difference in latency between the blocking case and non-blocking
case is about the round-trip time we measure in Section 5.1.1.2.1.

• Comparing the two-to-one benchmark results

To avoid the higher latency to access the segment or receive port data in memory, both
CMAM and CMAML cache these data in registers, assuming that packets destined for
the same segment or receive port is likely to arrive in a contagious stream. In the two-
to-one, 2 segments benchmark, the receiving processor needs to demultiplex the
incoming packet stream into two different segments or receive ports. As a result, the
caching scheme becomes less effective and there is higher overhead than in the two-to-
one, 1 segment benchmark. The receive bandwidth in CMAM drops from 10 MB/sec to
7.3 MB/sec when two segments are used, which is comparable to that for CMAML.
The packet receiving code in CMAM is highly optimized for the case that there is only
one sender.

• Swapping data

In this case, since the processor is sending while receiving, the bandwidth drops from
10 MB/sec to 5 MB/sec in CMAM. However, in CMAML, the bandwidth drops less
significantly and is higher than that for CMAM becauseCMAML_scopy() uses both
networks to send data.

Active Message Benchmarks May 11, 1994 19

5.2.1.2.2 Node-to-host

Table 6: Non-blocking one-to-one benchmark results for node-to-host array transfer

The results for node-to-host array transfer are shown in Table 6. In this set of benchmarks,
the data for CMAML in the double-word aligned case fails to reach the 90% confidence
coefficients before 65536 iterations are run. Therefore, the average results from the 65536
iterations are shown for the double-word aligned case. We can see that the latency to send
a 4-word is almost the same for both CMAM and CMAML. In fact, it is comparable to
that for sending a request Active Message to the host. However, the bandwidth for
CMAML is two-order of magnitude higher than that for CMAM.3 The start-up costs for
CMAML in the byte aligned and word aligned cases are 2 or 3 times higher than those for
CMAM. However, the start-up cost in the double-word aligned case in CMAML is
suspiciously low. An examination of the raw data reveals that the latency drops from 439
µsec for an array of 8 bytes to 56µsec for an array of 16 bytes and then increases
monotonically. The non-linearity of the data leads to an inaccurate start-up cost estimate
from the linear model. The S-Bus on the host still limits the bandwidth in CMAML.

5.2.1.2.3 Host-to-node

Table 7: Non-blocking send benchmark results for host-to-node array transfer

The results for host-to-node array transfer are shown in Table 7. In this case, the time to
send a 4-word array is larger than that to send an Active Message because of the extra

3. In CMMD 3.0, the node-to-host bandwidth is almost the same as that for CMAM, which is about
40 KB/sec.

Alignment

CMAM CMAML

 4 words
(µsec)

start-up
cost(µsec)

bandwidth
(MB/sec)

 4 words
(µsec)

start-up
cost(µsec)

bandwidth
(MB/sec)

byte 425 505 0.0397 421 1040 2.49

word 424 341 0.0403 421 1001 3.17

double-
word

 430 391 0.0405 421 77 3.36

Alignment

 CMAM CMAML

 4 words
(µsec)

start-up
(µsec)

bandwidth
(MB/sec)

4 words
(µsec)

start-up
(µsec)

 bandwidth
(MB/sec)

byte 7.5 48 2.6 21.7 35.2 2.37

word 7.4 45 3.0 21.7 38.3 3.58

double-
word

 9.7 33 3.3 21.7 14.8 3.62

Active Message Benchmarks May 11, 1994 20

overhead to access the segment or receive port. CMAML achieves a slightly higher
bandwidth than CMAM. The S-Bus on the host is still the bottleneck.

5.2.2 Loaded Network

5.2.2.1 Benchmarks

In this section, we use the ring and traverse benchmarks from Section 5.1.2 to measure the
performance of array transfer in a highly utilized network. In this case, instead of sending
individual Active Messages, we measure the time to exchange arrays of size 2 bytes to 64
KB and fit the data into a linear model to obtain the effective bandwidth.

5.2.2.2 Results and Discussions

5.2.2.2.1 ring

Table 8: Results of the ring benchmark for array transfer

Since the communication is very localized in this benchmark, the measured bandwidth
obtained here is almost the same as that for the swap benchmark in Section 5.2.1.2.1.

5.2.2.2.2 traverse

Figure 5. Results of the traverse benchmark for array transfer

function bandwidth (MB/sec)

CMAM_xfer 5.02

CMAML_scopy 5.7

step number

sen
d a

nd
rec

eive
 ba

ndw
idth

 (M
B/s

ec)

3

3.5

4

4.5

5

5.5

6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

CMAM

CMAML

Message Reception Benchmarks May 11, 1994 21

In this benchmark, we can see that CMAML outperforms CMAM. Since
CMAML_scopy() calls CMAML_rpc() , which sends data down both networks, its
performance is limited by the overhead to send and receive the data packets, rather than by
the network bisection bandwidth. Therefore, the effective bandwidth stays above 5.4
MB/sec in most steps, except that in step 4 through step 15, the bandwidth dips a little bit
to about 5.2MB/sec. This echoes the results we obtain in Section 5.1.2.2.2 for
CMAML_rpc() . For CMAM_xfer() , its low overhead enables it to sustain bandwidth
above 5 MB/sec in step 0 through step 15. From step 16 and on, its performance is limited
by the network bisection bandwidth and drops to about 3.3 MB/sec.

6.0 Message Reception Benchmarks

Since messages can only be sent as fast as they can be received, the overhead to receive a
message is as important as that to send a message in determining the performance of
Active Messages. In this section, we measure the overhead to receive messages using
polling and interrupt in details.

6.1 Polling

6.1.1 Basic Polling Mechanism

Active Messages can be received by explicitly checking the status bits on the NI. If a
message is present, the message is read in and the corresponding handler is invoked. This
process is repeated until no more messages are available. The basic functions that
implements this dispatch loop areCMAM_poll() andCMAML_poll() , which poll both
the reques t (le f t) and rep ly (r igh t) da ta ne tworks . The func t ions
CMAM_request_poll() andCMAML_request_poll() poll only the request
(le f t)da ta ne twork wh i le the func t ionsCMAM_rep ly_po l l () and
CMAML_reply_poll() poll only the reply (right) data network.CMAM_wait() and
CMAML_wait() are variants ofCMAM_poll() andCMAML_poll() that poll until a
flag is set to a certain value.CMAM_poll_wait() andCMAML_poll_wait() differ
from CMAM_wait() andCMAML_wait() in that they poll at least once before
checking the flag.

6.1.2 Benchmarks

In this section, we measure the overhead of both unsuccessful polls and successful polls.
To measure the overhead of an unsuccessful poll, we make sure that no processors are
sending messages and measure the average time to call the polling functions 1024 times.
Essentially, this measures the time for the polling functions to poll the network once or
twice and return to the caller because no message is received. The NI timer is used for
timing in this benchmark.

To measure the overhead of a successful poll, we send 1024 messages from node 1 to node
0. Each message invokes a simple handler that increments a counter in memory. Since

Message Reception Benchmarks May 11, 1994 22

multiple messages can be received in one call to the polling function, we vary the time
intervals between which a message is sent by inserting delay loop between each call to
CMAM_4() or CMAML_request() . We record the time to receive the messages and the
number of calls toCMAM_poll() or CMAML_poll() required to receive the
messages. To interpret the data, we amortize the time to receive the messages using the
number of messages received and using the number of calls to the polling functions. By
plotting the average time per message and average time per poll against the message send
interval, the intersection of the two curves will give us the time to successfully receive one
message per poll. Notice that this measurement includes the time to execute the simple
handler.get_seconds() is used for timing in all these benchmarks.

6.1.3 Results and Discussions

6.1.3.1 Unsuccessful poll

Table 9: Benchmark results for unsuccessful polls

The time of an unsuccessful poll for various polling functions are shown in Table 9. The
polling functions in CMAM have lower overhead than those in CMAML except for
CMAM_wait() . The overheads forCMAM_wait() andCMAML_wait() are lower
than expected because, in this case, the functions check the flag and return without polling
the NI.

6.1.3.2 Successful poll

We plot the average time to receive a message on a per message basis and on a per poll
basis versus the message send interval in Figure 5. The curve for the average time per poll
decreases monotonically because more polls are unsuccessful as the message send interval
increases. The curve for the average time per message increases linearly because the time
to receive a message increases when more time is wasted in unsuccessful polls. From the
intersection of the two curves, we can find that the time to receive one message per poll is
about 2.85µsec for CMAM and about 3.3µsec for CMAML.

CMAML function cycles/op µsec/op CMAM function cycles/op µsec/op

CMAML_poll 42.6 1.33 CMAM_poll 27.2 0.85

CMAML_request_poll 27.8 0.87 CMAM_request_poll 11.2 0.35

CMAML_reply_poll 22.1 0.69 CMAM_reply_poll 16.3 0.51

CMAML_wait 13.4 0.42 CMAM_wait 22.1 0.69

CMAML_poll_wait 53.1 1.66 CMAM_poll_wait 43.5 1.36

Message Reception Benchmarks May 11, 1994 23

Figure 6. Benchmark results for successful polls. We average the time to receive a message on a per
poll basis and on a per message basis.

6.2 Interrupts

6.2.1 Basic Message Interrupt Handling Mechanism

Messages can also be received via interrupt instead of polling. If message interrupt is
enabled on the NI, the NI will generate an interrupt to the CPU upon message arrival. If
the CPU interrupt is also enabled, the CPU will suspend the ongoing computation and
jump to a message interrupt handler through the kernel. In general, the message interrupt
handler performs the following functions:

• disable message interrupt on the NI

• save any necessary states

• call a polling function to dispatch all incoming messages

When there are no more messages to be received, the interrupt handler will restore the
saved states, enable message interrupt, and return to the interrupted computation.

message interval (usec)

ov
erh

ea
d

(us
ec

)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

overhead per message
(CMAM)

overhead per poll
(CMAM)

overhead per message
(CMMD)

overhead per poll
(CMMD)

Message Reception Benchmarks May 11, 1994 24

6.2.2 Benchmarks

In this section, we measure the overhead of using interrupt to receive messages. Since
message interrupt is not supported in CMAM, all measurements are done using CMAML.

First, we measure the overhead of enabling and disabling message interrupt using
CMAML_enable_interrupts() andCMAML_disable_interrupts() . These
functions are useful in forming critical sections. In the pipeline benchmark, we measure
the average time to call these functions in a loop. This measures the minimum time taken
by these functions without changing the interrupt enable status. In this case, it only
involves checking the value of a global variable. In the toggle benchmark, we measure the
average time to enable interrupt when interrupt is currently disabled and vice versa. We
also measure the time taken by a pair of calls toCMAML_enable_interrupts() and
CMAML_disable_interrupts() . The NI timer is used for timing in these
benchmarks.

Second, we measure the overhead to receive messages by interrupts. In this benchmark,
we enable interrupt on node 0 and then call a function to perform a fixed amount of
computation on node 0. At the same time, we send 2500 messages from node 1 to node 0
at a certain time interval and measure the total time taken by node 0 to perform the
computation while receiving messages using interrupt. Then, we measure the time taken
to perform the same computation without receiving any messages. The difference of the
two time measurements gives us the time to receive the 2500 messages using interrupt. By
subtracting the time to execute the handler, we can obtain the overhead to receive the 2500
messages by interrupt.get_seconds() is used for timing in these benchmarks.

6.2.3 Results and Discussions

6.2.3.1 Enabling/disabling message interrupt

Table 10: Benchmark results for interrupt enable and disable

From the toggle benchmark results in Table 10, we can see that the overhead to enable and
disable message interrupt is quite high. The reason is that the interrupt enable bit in the NI
can only be changed in supervisor mode. Therefore, a system call to the CMOST kernel
on the node is required. ForCMAML_enable_interrupts() , after interrupt is
enabled, it needs to check whether a message has moved to the head of the receive FIFO

CMAML function cycles/op µsec/op

CMAML_enable_interrupts (pipeline) 13.4 0.42

CMAML_enable_interrupts (toggle) 156.8 4.90

CMAML_disable_interrupts (pipeline) 13.4 0.42

CMAML_disable_interrupts (toggle) 120.0 3.75

CMAML_enable_interrupts/CMAML_disable_interrupts 267.8 8.37

Message Reception Benchmarks May 11, 1994 25

while the interrupt enable bit is set. Otherwise, we may miss an interrupt for that packet.
As a result, the overhead ofCMAML_enable_interrupts() is higher.

6.2.3.2 Overhead of receiving messages using interrupt

Figure 7. Overhead of receiving messages using interrupt in CMAML

The average overhead of receiving a message using interrupt in CMAML is plotted
against the message interval in Figure 6. The expected overhead per message is also
plotted in the same graph. Note that the leftmost point in Figure is below the 2µsec we
measure in Section 5.1.1.2.1 because we have deducted the 0.5µsec per call to execute the
handler here.

The plateau-shaped curve can be explained as follows. The cost of receiving a message via
interrupt is higher than that for polling because the kernel is involved. When messages are
sent frequently, the first message arrival will trigger a message interrupt but subsequent
messages are received by polling in the dispatch loop. Therefore, the average cost per
message is quite low and is very close to that for polling. When messages are sent less
frequently, the number of interrupts increases and the number of messages received per
interrupt decreases. As a result, the average cost per message increases until the message
interval is equal to the overhead to receive one message per interrupt. Beyond this point,
every message arrival will trigger an message interrupt and no message is received by

message interval (usec)

ov
erh

ea
d (

us
ec

)

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140 160 180 200

 measured overhead (usec)

estimated overhead (usec)

pure interrupt overhead

pure polling overhead

Message Interrupt Handling May 11, 1994 26

polling. Since there is no wasted effort to poll for messages, the curve stays flat at the
overhead of receiving one message per interrupt, which is about 19µsec.

The expected time per message can be calculated using the following model. Supposen
messages are sent at a certain message interval,x. Given the time to receive a message per
interrupt(T

i
) and the time to receive a message by polling (T

p
), the time to receiven

messages isT
i
 + (n - 1)T

p
Therefore, the average time to receive a message

is . However, we can only send message as fast as we can receive. Hence,

we get the following relation:

As a result, the expected average overhead excluding the 0.5µsec handler execution time
is:

Our measured results match the expected results very closely in Figure 6. The uphill
portion of the graph is just a manifestation of the fact that the average message send rate
can only be as fast as the average message receive rate. In this region, the CPU is spending
most of its time receiving messages rather than performing computation.

7.0 Message Interrupt Handling

In this section, we analyze the message interrupt path in CMOST 7.2.final and CMMD
3.1.final. Based on this analysis, we propose an efficient design for the interrupt path and
show an example implementation that has lower overhead than CMOST.

7.1 Message Interrupt Handling in CMOST and CMMD

The message interrupt handler in CMOST 7.2.final and CMMD 3.1.final is actually more
complex than what we have described in Section 6.2.1. If message interrupt is enabled, the
NI will generate a Green interrupt to the SPARC processor upon message arrival. If CPU
interrupt is enabled, the CPU will automatically perform the following actions:

• suspend the ongoing computation

• switch to supervisor mode and update to the processor status register(PSR)

• activate the trap register window

Ti n 1–() Tp+

n

x
Ti n 1–() Tp+

n
------------------------------------=

y x 0.5–=

Ti n 1–() Tp+

n
------------------------------------ 0.5– for x Ti<=

Ti 0.5 for x Ti≥–=

Message Interrupt Handling May 11, 1994 27

• save the PC and nPC in the trap register window

• jump toSYS_GREEN, the Green interrupt entry in the trap table

Since there can be only 4 instructions in each entry of the trap table, the program must
jump from the trap table entry,SYS_GREEN, to the actual green interrupt handler,
sys_green .

sys_green is the kernel-level interrupt handler that handles both system messages (e.g.
I/O messages) and user messages. When receiving user messages, it performs the
following functions:

1. update the variables_num_green and _green_int_cause (probably for
debugging purpose)

2. check the interrupt cause register on the NI to see whether the interrupt is caused by an
alarm condition

3. save the global registers %g6 and %g7 into memory because they are used in the
handler

4. clear the interrupt cause register on the NI

5. poll both the left data network (LDR) and right data network (RDR) to see whether
there is any incoming message

6. check the tag of the message to see whether it is a system message or user message

7. check the tag of the user message to see whether it is supposed to trigger an interrupt

8. restore %g6 and %g7

9. disable message interrupt on the NI by resetting the interrupt mask

10.get the user-level message handler from process control block (PCB)

11.save the processor status register (PSR), program counters(PC and nPC), the multiply-
step register (Y), the stack pointer (SP), and global registers(%g1 through %g4) to the
PCB.

12.check the access permission of the user-level message handler

13.return from the trap and jump to the user-level message handler

In this case, the user-level message handler isCM_message_func , which is a wrapper
func t ion tha t ca l l s the CMAML message in te r rup t hand le r,
cmaml_interrupt_handler . CM_message_func is invoked to make sure that the
user-level message handler trap back to the kernel to restore the previous states.

cmaml_interrupt_handler performs the following functions:

1. update two flags_CMAML_InterruptsEnabledP and _CMAML_InsideInterruptHandlerP

2. save the floating-point status register (FSR) in memory

3. callCMAML_poll() to dispatch all incoming messages

Message Interrupt Handling May 11, 1994 28

Note thatCMAML_poll is used to receive messages here. But, rather than calling it
directly, we need to crawl through the kernel first.

WhenCMAML_poll has no message to receive, it returns tocmaml_interrupt_handler ,
which restores the registers and updates the flags again. Then,CM_message_func traps
back to the kernel throughSYS_MRESTORE. The trap handler,_sys_mrestore ,
restores the PSR, PC, nPC, SP, Y, and %g1 through %g4 from the PCB. It also enables the
user message interrupt by restoring the NI interrupt mask from the PCB. Since interrupt is
disabled in the interrupt handler, some messages may have arrived after returning from
CMAML_poll . Therefore,_sys_mrestore needs to check that there is no more
incoming system or user message. As a result, it jumps back to the_io_interrupt
section of_sys_green before it returns from the trap to the interrupted computation.

From the description above, we can see that the message interrupt path in CMOST and
CMMD is not efficient for receiving user messages. For example, we can make the
following observations:

• _sys_green gives priority to system messages over user messages. User messages
are handled only if there are no pending system messages. As a result, the path to the
user message handler is lengthened.

• Since CMOST allows users to set their own message handlers, it is very cautious in
saving the process state and error checking. For example, it saves the global registers
%g1 through %g4 even though the user message handler may not use them.
Unfortunately, together with saving the PSR, PC, nPC, Y, and SP, this will cause the
4-double-word write buffer to overflow in the default write-through cache mode.

7.2 An Efficient Message Interrupt Handling Design

Based on the analysis in the last section, we propose an efficient design for handling
message interrupt. Contrary to the circumspect approach taken by CMOST, we take a lazy
approach. Our design differs from the CMOST design in that:

• We assume that handling user messages is the common case. Therefore, there should be
a fast path through the kernel to the user message handler. Since system messages such
as alarms are infrequent and system messages for I/O have high overhead already, we
can trade off the overhead of system messages for faster processing of user messages.

• We believe that the kernel should be as lean as possible so that no extra overhead will
be incurred for features that are not frequently used. As long as we define the interface
between kernel code and user code clearly and follow the SPARC ABI convention, we
can rely on the user to save any necessary state with the callee save convention.
Therefore, the kernel can save the minimal amount of state.

To illustrate this approach, we have modified the message interrupt path in the CMOST
kernel to implement a fast path for handling user messages. In the modified kernel, we
insert code at the beginning of_sys_green to determine whether user messages are
received. If so, the code falls through the fast path to the user message handler. Otherwise,

Message Interrupt Handling May 11, 1994 29

if a system message is received, the code jumps back to the original CMOST code. The
fast path for user messages only saves and restores the PC, nPC, and PSR, but not the Y,
SP and global registers. This avoids overflowing the write buffers in the default write-
through cache mode. The user message handler should save and restore the global
registers and floating point registers as needed.

In addition, we streamline the message handler for user messages as follows:

• No global registers are used in the fast path for handling user messages in the kernel.
As a result, %g6 and %g7 do not need to be saved and restored.

• In the original CMOST code, the NI is accessed a lot of times using 3 instructions like:
sethi %hi(NI_REC_INTERRUPT_MASK_A),%l4 ! set high bits of absolute address

or %l4,%lo(NI_REC_INTERRUPT_MASK_A),%l4 ! set low bits of absolute address

ld [%l4],%l7 ! load the interrupt mask from NI

In the fast path, we keep the base address of the NI in the local register %l5, and do the
load/store using the offset with one instruction, e.g.:

ld [%l5+NI_REC_INTERRUPT_MASK_O],%l7 ! use the offset from the NI base

• In _sys_mrestore , instead of jumping back to_io_interrupt , the check for
more messages is done right away by checking the NI status.

• Users can still set the user message handler. However, instead of checking the access
permission of the user message handler every time it is invoked, we assume it is
checked only once when it is set using theCMOS_SET_MESSAGE_HANDLER syscall.

• The variables_num_green and_green_int_cause do not seem to be used in
anywhere else in the kernel. So, they are not updated in the fast path.

To find out what is the lowest overhead achievable, we have also implemented a user
message handler by merging CM_message_func, cmaml_interrupt_handler, and
CMAM_dispatch into one function. This handler does not update any flags and does not
use the work queue and the global registers. It is just a minimal handler to dispatch request
or reply messages.

7.3 Performance Comparison of the Two Implementations

Table 11 shows the breakdown of the instruction counts and cycle counts for the message
interrupt path in CMOST 7.2.final and CMMD 3.1.final. A similar breakdown is shown in
Table 12 for the kernel fast path and the minimal user message handler we have
implemented. The following assumptions are made to estimated the cycle counts:

• We are receiving one user message per interrupt from the request (left) data network.
There are no system messages.

• All instructions are in the cache.

• For a 32-bit word, NI register reads take 7 cycles and NI register writes take 3 cycles.

• All non-NI data are in the cache, i.e. 32-bit word loads take 2 cycles and 32-bit word
stores take 3 cycles.

Message Interrupt Handling May 11, 1994 30

To compare the actual performance of the two implementations, we also measure the
interrupt overhead under various conditions using the benchmark we use in Section 6.2.2.
The results are shown in Table 13.

Based on assumptions above, the estimated overhead of receiving one message per
interrupt using CMOST 7.2.final and CMMD 3.1.final is 12.6µsec and the measured
overhead is 19µsec. For the kernel fast path and minimal user message handler, the
estimated overhead is 6.2µsec and the measured overhead is 9.6µsec. Note that the
estimated time is always smaller than the measured time. One possible reason is that there
are actually cache misses since the SPARC processor has only a 64 KB direct-mapped
unified cache and the CM-5 uses a write-through cache by default. However, by
examining the code and data addresses in the symbol table, we fail to identify any possible
sources of cache conflict misses. The discrepancy between the estimated and measured
values shows that there are certain factors that we have neglected when we estimate the
overhead.

By turning on the copy-back cache, we can see that the overhead drops from 19µsec to 15
µsec when using CMOST 7.2.final and CMMD 3.1.final. When the modified kernel or the
minimal user handler is used, the decrease is less substantial. In addition, from the
measurements, we find that saving the global register %g1 through %g4 costs about 2
µsec in the write-through cache mode because this causes the write buffers to overflow. If
the global registers are saved later in the user message handler, we can avoid this extra
overhead.

In summary, we can see that taking a minimalistic approach can substantially cut down the
overhead of receiving messages by interrupt.

Message Interrupt Handling May 11, 1994 31

Table 11: Breakdown of cycle counts for message interrupt path in CMOST 7.2.final and CMMD
3.1.final

Function/Label Description
 # of
instr

 # of
cycles

SYS_GREEN Trap table entry for message interrupt 4 10

sys_green Green interrupt handler

 update _num_green and _green_int_cause

 check whether message tagged as alarm

 8

 6

 13

 6

_io_interrupt I/O interrupt handler

 save %g6 and %g7; initialize variables 5 8

check_dr clear interrupt cause; receive message on LDR? Yes

 message tagged as I/O? No

 10

 7

 18

 7

check_other_dr receive message on RDR? No 5 11

_check_for_user_message get user interrupting message? Yes 13 19

_sys_green_user_msg restore %g6 and %g7; disable user message inter-
rupt

 get message handler address; save states in PCB

 check access permission of handler address

 return from trap to CM_message_func

 8

 12

 4

 2

 18

 30

 4

 4

subtotal: 148 cycles(4.6µsec)

CM_message_func user message handler wrapper

 save frame; call cmaml_interrupt handler 6 7

cmaml_interrupt_handler update flags; save FSR in memory; save %o6, %o7,

 and %g[5-7] in %l[3-7]; call _CMAML_dispatch

 13 19

CMAML_poll save frame; initialize work queue and variables

 poll left

 10

 4

 10

 10

INTERNAL_DISPATCH jump to handler table

 pull message out of NI

 4

 8

 5

 29

subtotal: 80 cycles(2.5µsec)

Execute user handler

CMAML_poll poll right

 poll left

 poll right

 check rport

 check work queue and return

 4

 5

 5

 3

 6

 10

 11

 11

 3

 9

cmaml_interrupt_handler restore registers; update flags; return 14 20

Message Interrupt Handling May 11, 1994 32

Table 12: Breakdown of cycle counts for message interrupt path in the modified CMOST kernel and a
minimal user message handler

CM_message_func trap to SYS_MRESTORE 3 6

subtotal: 69 cycles(2.2µsec)

SYS_MRESTORE Trap table entry 4 5

_sys_mrestore restore PSR

 restore registers from PCB; enable user message
interrupt

 5

 14

 6

 26

_io_interrupt Go back to check for I/O messages again

 save %g6 and %g7; initialize 5 8

check_dr clear interrupt; receive message on LDR? No 10 18

check_other_dr receive message on RDR? No 5 11

_check_for_user_message get user message? No

 is tag bad? No

 13

 4

 19

 4

_io_read_done restore %g6, %g7, and PSR; return from trap 6 10

subtotal: 107 cycles(3.3µsec)

Total: 12.6 µsec (235 instructions; 404 cycles)

Function/Label Description
 # of
instr

 # of
cycles

SYS_GREEN Interrupt vector 4 10

sys_green Trap table entry for message interrupt

 check whether message tagged as alarm 5 5

_io_interrupt I/O interrupt handler

 get LDR and RDR status 2 14

_io_interrupt_more clear interrupt cause

 receive message on LDR? Yes

 set tag mask

 message tagged as I/O? No

 receive message on RDR? No

 1

 2

 2

 4

 2

 3

 2

 2

 4

 2

Function/Label Description
 # of
instr

 # of
cycles

Message Interrupt Handling May 11, 1994 33

_sys_green_user_msg_fast load interrupt mask (in delay slot)

 user interrupting message? Yes

 disable user interrupt

 get message handler addr

 save PC, nPC, and PSR

 return from trap to my_message_func

 1

 8

 2

 3

 2

 2

 7

 8

 4

 5

 7

 4

subtotal: 77 cycles(2.4µsec)

my_message_func save frame; initialize registers

poll left

 jump to handler table

poll message out of NI and jump to han-
dler

 5

 4

 4

 4

 5

 10

 5

 25

subtotal: 45 cycles(1.4µsec)

Execute user handler

my_message_func poll right

 poll left

 poll right

 trap to SYS_MRESTORE

 4

 5

 5

 3

 10

 11

 11

 6

subtotal: 38 cycles(1.2µsec)

SYS_MRESTORE Trap table entry 4 5

_sys_mrestore load tag mask, PC, NPC, and PSR

 enable user message interrupt

 check LDR and RDR

 any more message? No

 restore PSR and return from trap

 3

 2

 2

 3

 3

 7

 4

 14

 3

 5

subtotal: 38 cycles(1.2µsec)

Total: 6.2 µsec (91 instructions; 198 cycles)

Function/Label Description
 # of
instr

 # of
cycles

Conclusion May 11, 1994 34

Table 13: A comparison of interrupt overheads using a combination of CMOST 7.2.final, CMMD
3.1.final, a modified CMOST kernel with fast user message path, and a minimal user message handler.
Note that, by default, the CMOST 7.2.final kernel saves and restores the SP and global registers %g1
through %g4 but the modified kernel does not save and restores these registers.

8.0 Conclusion

In this report, we compare the performance of Active Messages on the CM-5 using
CMAML in CMMD 3.1.final and CMAM 2.7. In addition, we develop a new benchmark
framework for measuring the performance of message passing primitives. From our
experience, we find that it is important to pay close attention to the hardware and software
details when designing the benchmarks. For example, the simple one-to-one benchmark in
Section 5.1.1 fails to distinguish the difference between the actual send overhead and the
receive overheads of the basic Active Message functions. By using the two-to-one and

Code Options Estimated(µsec) Measured(µsec)

CMOST 7.2.final with
CMAML interrupt
handler

 write-through cache

 copy-back cache

12.6

12.6

 19

 15

modified kernel

with CMAML interrupt
handler

 write-through cache

 copy-back cache

8.3

8.3

 13.4

 11.5

CMOST 7.2.final with
minimal interrupt handler

 write-through cache

 don’t save/restore %g’s and SP

 save/restore %g[1-4] and SP

 save %g[1-4] and SP

 copy-back cache

 save/restore %g[1-4] and SP

9.9

10.6

10.2

10.6

13

 15.1

 14.8

12.8

modified kernel with
minimal interrupt handler

 write-through cache

 don’t save/restore %g[1-4]

 save/restore %g[1-4]

 save %g[1-4]

 copy-back cache

 don’t save/restore %g[1-4]

6.2

6.7

6.5

6.2

 9.6

 11.4

 10.9

 9.4

CMOST 7.2.final write-through cache 8 12

CMAML interrupt
handler

write-through cache 4.7 7

modified kernel write-through cache 3.6 6.6

minimal interrupt handler write-through cache 2.6 3

Acknowledgement May 11, 1994 35

one-to-two benchmarks, we find out that the results in the one-to-one benchmark are
actually limited by the receive overheads. In addition, it is important to describe the
benchmarks in details so that readers can verify the results and draw meaningful
conclusions on their own.

Comparing the CMAM and CMAML implementations, we can see that there is a trade-off
between functionality and performance. CMAML offers extra functionality such as
message interrupt and work queue. But, it also has higher overhead than CMAM. Our
benchmarks show that CMAM outperforms CMAML in both the basic Active Message
functions and nearest-neighbor array transfer. In a loaded network, the use of the work
queue enables the CMAML functions to make use of both networks to send data.
Therefore,CMAML_scopy() has higher effective bandwidth thanCMAM_xfer() . In
other words, CMAML is sacrificing the short message performance for better
performance in sending large arrays of data. While our benchmarks shows that adding
message interrupt and the work queue leads to the higher overhead of CMAML, our
benchmarks do not measure any specific cases in which these features can be useful.
Whether this will benefit an application or not will depends on the communication
characteristics of the particular application.

From the benchmarks to measure the overhead of receiving messages by polling and
interrupt, we can see that it is important to balance the send overhead and receive
overhead when designing a message layer. Since the network is a closed system, the
message injection rate must be equal to the message extraction rate at equilibrium. To
reduce the overhead of receiving messages by interrupt, we propose that there should be a
fast path in the kernel to handle user message interrupt. In addition, the kernel should save
the minimal amount of state so that no extra overhead will be incurred. This provides a
flexible interface for the user message handler to implement any functions it want.

9.0 Acknowledgement

This research is supported by NFS Presidential Faculty Fellowship (CCR-9253705).
CM-5 computational resource is provided by NFS Infrastructure Grant (CDA-8722788)
and the Advanced Computing Laboratory of Los Alamos National Laboratory. The author
would like to thank Alan Mainwaring of Thinking Machine Corp. for providing valuable
information and discussions about CMMD, and Eric Allman and Eric Fraser, our CM-5
system administrators, for their kind assistance. The statistical analysis routines used in
the benchmarks are originally written by Andrea Dusseau.

References

[1] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Eric
Schauser. Active Messages: a Mechanism for Integrated Communication and
Computation. InProceedings of the 19th International Symposium on Computer
Architecture(Gold Coast, Australia, May 1992).

[2] Thinking Machine Corp.CMMD Reference Manual Version 3.0. May 1993.

Acknowledgement May 11, 1994 36

[3] Thomas T. Kwan, Brian K. Totty, and Daniel A. Reed. Communication and
Computation Performance of the CM-5. InProceedings of Supercomputing’93
(Portland, OR, November 1993).

[4] Charles E. Leiserson et al. The Network Architecture of the Connection Machine
CM-5. InSymposium on Parallel Algorithms and Architectures (April 1992).

[5] Thorsten von Eicken. Active Messages: an Efficient Communication Architecture for
Multiprocessors. Ph.D. Dissertation, University of California at Berkeley, November
1993.

[6] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John
Wawrzynek. Fine-grain Parallelism with Minimal Hardware Support: A Compiler-
Controlled Threaded Abstract Machine. InProceedings of 4th International
Conference on Architectural Supports for Programming Languages and Operating
Systems (Santa Clara, CA, April 1991).

[7] David E. Culler, Andrea Dusseau, Seth C. Goldstein, Arvind Krishnamurthy, Steve
Lumetta, Thorsten von Eicken, and Kathy Yelick. Parallel Programming in Split-C. In
Proceedings of Supercomputing’93 (Portland, OR, November 1993).

[8] David E, Culler, Richard Karp, Dave Paterson, Abhijit Sahay, Klaus Eril Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a
Realistic Model of Parallel Computation. InProceedings of the 4th ACN SIGPLAN
Symposium on Principles and Practices of Parallel Programming (San Diego, CA,
May 1993).

