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Abstract
Tcl is a highly dynamic language that is especially challenging to execute efficiently.

In this paper, I discuss many issues involved in implementing Tcl, and describe a design for

a faster system that maintains Tcl semantics, including its C callout mechanism.  This

design focuses on a method for caching the parsed representation for data values, and lazily

converting to strings on demand.  This allows most computations to be performed using

native types (eg. integers) rather than strings.  The current implementation is presented

along with results showing a speedup of about 5-10 times over the existing Tcl interpreter.
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1 Introduction

1.1 Motivation

In the past five years, the Tcl scripting language[Ous93] has gained enormous popularity.  As with all such

software, this popularity has inspired users to extend the range of Tcl’s uses.  In particular, longer scripts and

scripts with large data structures present a performance challenge that has not been met adequately by the current

interpreter.

This “success disaster” leads current users to rewrite sections of Tcl scripts in C, which is about three orders

of magnitude faster.  This situation is made possible by the C callback mechanism, in which an arbitrary C

function can be bound to a Tcl command name.  A common approach is to rewrite time-consuming Tcl proce-

dures in C and bind them to the original procedure name.  For example, Braverman used this approach to build

object oriented extensions into Tcl[Bra93].  Doing this, however, forgoes many of the benefits of using Tcl,

including the easy interoperatability with other software systems, ease of maintenance, and the benefits afforded

by incremental development as provided by the interpeter.

The performance problems that lead users to rewrite Tcl commands in C stem from the current implementa-

tion in which all objects are stored as strings, including both code and data.  For example, in the case of code, the

for  command stores the body of the loop as a string, which necessitates its reparsing on each iteration.  The

same problem is exhibited in data access.  For example, indexed lookup into Tcl lists requires a linear parse and

scan algorithm because lists are stored only as strings whose whitespace delimits elements.

I have developed an alternate approach where data is stored in a more convenient form in a way that’s

compatible with Tcl’s “everything is a string” model.  In this design, we recognize when Tcl requires a value in

its string form and convert from our storage form into the value’s string form.  These implicit conversions are

used for the features in Tcl that require strings, such as string concatenation of values and the C callout mecha-

nism.  I have implemented this approach in a Tcl interpreter called TC.

My thesis argues that such a system will perform favorably against a pure-string system and that this new

system will maintain Tcl semantics.  The performance claim requires an argument that such string conversions

are a rare case.  In addition to this semantic argument, I present empirical evidence from some sample scripts

showing sizeable improvements for operations on large data objects, repeated execution of scripts (ie. function

calls), and operations over data types that have efficient representations in C.  Commands that inherently neces-
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sitate string-based implementation perform less favorably over Tcl.

The remainder of this paper describes the implementation of this scheme, notably its value-caching system.

In section 2, I discuss Tcl’s evaluation semantics and introduce TC’s evaluation algorithm.  Section 3 then

proposes a design for a caching data structure.  Section 4 discusses the syntactic and semantic issues in parsing

Tcl scripts.  Section 5 describes the resolution of the memory management issues of this new system.  In section

6, I begin the discussion of the secondary design decisions with the details on procedure calls and variable access.

Section 7 completes the design with a discussion of the various optimizations made on a per-type basis.  Section

8 then validates this thesis with a performance analysis of the resulting system.  Finally, section 9 provides an

analysis of this work and draws conclusions based on the results.  Appendices are provided discussing additional

semantic issues, future work, and the source code to the test suites used to measure performance.

1.2 An Overview of the Tcl Language

Tcl[Ous93] was designed to address the need for a “scripting” language, providing high-level control over a

program with simple, syntax resembling the Unix shell[Bou78].  In Tcl, every statement can be thought of as a

function call, in the form “cmd arg arg arg ...”, where the first word of the command selects a procedure to invoke

and the subsequent words are string arguments to that pro-

cedure.  Relative to implementation, there are three impor-

tant issues in Tcl: argument evaluation as substitution, string

storage and semantics, and the C callout mechanism.

In Tcl, argument evaluation consists of string substitu-

tion.  Each command procedure needs to know how to handle

fulyl substituted string arguments.  Substitution is denoted

by special character symbols in the source text: square brack-

ets denote nested commands; dollar signs indicate variable

substitutions; curly braces group text into single arguments

without performing substitution.  See figure 1 for a sample

script.

In keeping with this string substitution model, in Tcl

# comments start with a ‘#’ character.

# sets variable a to value “5”
# (the string, not the number!)
set a 5

# sets b to the string “10”.
# The ‘expr’ command converts the string
# “5” to the number 5, (it is not
# performed by the interpeter)
set b [expr $a+5]

# sets c to “5.510”
set c $a.$a$b

# define the factorial function:
# ‘proc’ is a command taking “fact”,
#   “n” and “if ... “ as arguments
# (curlies are stripped by the interpreter).
proc fact {n} {

if {$n <= 1} {
return 1;

} else {
return [expr $n*[fact [expr $n-1]]];

}
}

# calling our new factorial function
fact 7

Figure 1: a sample Tcl script.  Each of the whitespace-separated
arguments to commands is subject to substitution as per Tcl
rules.  For example, the curly braces in the procedure definition
are what delay the substitution of the arguments in the statements
in the procedure body.
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everything is a string. In practice, this means that all objects have string representations, including all data

objects, intermediate results and code.  The use of strings to denote data objects implies a single “type” for all

data structures.  Of course, not all operations are legal on all strings; for example, multiplying “abc” by “5” has

no meaning and results in a dynamic typecheck failure.  In Tcl, type correctness means that each primitive

procedure called is able to parse its arguments.

Programmers can create new Tcl commands by defining a C command procedure for each command and

calling the Tcl runtime library to associate the command procedure with the particular name.  When one of these

new commands is called in a Tcl script, the interpreter will invoke the associated C function, passing it the

arguments as an array of strings.  Indeed, this C callout mechanism is used to implement all of the built in

command primitives in Tcl, including control-flow constructs.  For example, the if  command is bound to a C

routine that takes strings as arguments, which it treats as the predicate, the “then” clause, and (optionally) the

“else” clause.  Depending on the truth value of the predicate when evaluated, if  will then evaluate one of the

clauses as Tcl scripts.

This turns out to be a delightfully simple solution because of the rich runtime library written in C.  At first,

it seems like every callback requires all of the machinery needed to look up variables and otherwise interact with

the Tcl virtual machine.  However, such duplicated code is avoided because the Tcl runtime library provides a

function call interface for common operations such as variable lookup (eg. Tcl_GetInt() for integer parsing,

Tcl_Eval() for nested statement evaluation, and so on).  Thus, the C programmer has the tools needed to easily

bundle a set of functionality into a command embedded in Tcl.

2 Evaluation in Tcl and TC

2.1 Evaluation Semantics of Tcl

Before delving into the guts of the TC design, it is important to first understand the semantics of Tcl evalu-

ation.  These semantics are based on string substitution of the arguments to commands, giving the language its

string-centric bias.  For example, if “a” is set to “5” and b is set to “6”, then incr a $b  will mutate the Tcl

variable “a” to “11”.  incr  is bound to a C function that the interpreter calls, passing it an array of strings, in this

case the three element array of “incr”, “a”, and “11”.  Thus, it is the interpreter’s role to hide the substitution of

values from the C callouts that operate over strings.
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In the original implementation, the Tcl7.x interpreter breaks this example statement into three arguments,

“incr”, “a” and “$b”.  Then, it evaluates each one.  The first two are constant strings that evaluate to themselves,

but the third requires variable substitution.  “b” is located in a table of variables and its value is substituted.  This

substitution takes place into a vector of strings that the interpreter is building, called the argv array, that holds an

array of string values representing the arguments to the current command.  The argv array in the previous ex-

ample would have the values “incr”, “a” and “6”.  The interpreter treats argv[0] as a command and searches for

it in the table of commands.  The interpreter then calls the C function associated with incr .  The command

procedure implementing “incr” then examines the arguments it is passed and parses them.  For argv[1] (“a”), it

looks this up as a variable and retrieves its string value.  Parsing this value as an integer, it increments this value

by the value in argv[2] (also parsed as an integer).  The resultant integer is then converted back into a string.  This

string value is stored in the variable and also returned to the interpreter as the result of the statement.  In the case

of nested commands (eg. set a [incr a $b] ), this result is substituted into the argv[] array of the outer

statement.

2.2 Profiling Tcl: The Motivation and High-Level Design of TC

The source script:

time {incr a 5} <iters>

Within Tcl_Eval():

 82% Tcl_IncrCmd() the command procedure.

  5% Tcl_FindHashEntry() command (argv[0]) lookup.

 12% Tcl_Eval() itself parse,create of argc/argv.

  1% Tcl_Eval() other (ie. reset results).

Total string handling and parsing overhead: 17%

Within Tcl_IncrCmd(): (the C callback bound to incr )

 30% sprintf() post-increment integer->string conversion.

 30% Tcl_SetVar() parsing, lookup and setting of variable.

 18% Tcl_GetVar() parsing and lookup of old value.

 14% Tcl_GetInt() parsing arguments as integers.

  8% Tcl_IncrCmd() other (ie. setting result).

Total string handling and parsing overhead within callback: 92%

Total string handling and parsing overhead: 0.17 + 0.816*(.92) = 92%

Potential speedup for incr: 1.0 / (1.0-.92) = 12.5x

Figure 2: Profiling a simple Tcl script.  This script executes the incr command repreatedly.  The explanations are derived from the profile
and from examining the original source.  Most of the time processing this command is spent in parsing and manipulating strings.
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To better understand Tcl’s current implementation, I profiled Tcl running a simple script.  The results are

shown in figure 2.  Much of the execution time is spent converting to and from strings, including the parsing and

lookup of variable names and commands (includes hashing of the string).  Clearly, a large performance gain may

be had if operations could be performed on the native machine types, and if virtual machine entities like variables

could be accessed more efficiently.  It should be possible to cache parsed entities in the common case where they

won’t change, as in statement parsing.

In TC, the evaluation algorithm described above is modified to cache values (ie. the strings that are passed in

the argv array).  To accomplish this, TC converts values to the native forms on first usage, and only converts back

to string form when needed.  On the second evaluation of the example statement  incr a $b  , the value of “a”

arrives to the command procedure already parsed as an integer, as is the value of “b” (assuming it hasn’t changed).

Likewise, preparsing means that “incr” has already been found in the command table, “a” itself (not a’s value) is

already parsed as a variable name and the “$b” is already parsed as a variable substitution.

3 The Dual-Ported Object System
In order to provide both native type storage and compatibility with Tcl, TC stores values in an object struc-

ture containing both a string representation and a typed, parsed representation (“native representation”).  At any

given time, one or both forms will be valid; TC treats each form as a cache of the other and converts the native

forms to string form on demand.  Thus, TC can mimic Tcl semantics by converting values to strings when

needed, with the tradeoff being an extra layer of indirection to access the string representation.  Since time-

critical computations are often performed using non-string forms, this leads to a speed improvement.

To make this scheme work, the native representation must be typed because different functions are needed to

convert the native type to and from string form.  For example, if the type is integer, then the native value is stored

as a C integer and will be converted from string form (parsed) using a function like atoi().  This type tagging also

implies another distinction of values in TC: the same value can be represented in multiple ways, including

different “types”.  For example, the integer 5 is equivalent to the string “5”.

In fact, this approach allows an object to have different native representations at different times.  For ex-

ample, figure 3 shows a series of script statements and the corresponding state of the value of the variable “a”.

When the object value is first assigned a value, only the string form is valid.  In response to the typed read request
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in the incr  command, a’s value is converted to integer form.  incr  increments this value and stores it back in

its native form, invalidating the string value.  At this point, further uses of the integer form will require no

conversions, affording TC a performance advantage over Tcl7.x, whose incr  command parses the arguments

into integer each time it is executed.

I believe that data values tend to either be read and written as a single type or read only as a single type and

as a string.  In these two cases, TC can provide the type needed for the computation without converting from one

form to another.  Intuitively, these two cases are the common case because most programmers work in statically

typed languages without such conversions.  For example, consider a loop of the form:

for {set i 0} {$i < 1000} {incr i} {
   ...
}

In TC, the object representing i’s value would be converted to integer form once during its first use; thereafter, no

conversions would be needed.  In section 8.2.2, I measure the performance of such a loop and show that TC

executes this loop an order of magnitude faster than Tcl.  In the worst case, TC should be no slower than Tcl7.x,

which performs all conversions.

3.1 Data Layout of Objects

To implement TC’s conversion caching, we need a dual-ported structure containing both a string representa-

tion and a typed representation.  In theory, only the typed representation is needed.  In practice, read-only string

use in Tcl appears to be sufficiently common (eg. for C callouts) that this cache will be ineffective without the

ability to obtain the string form of a value without losing the preparsed representation.  For the string represen-

tation, we reuse a structure Tcl7.x uses. This structure is tuned for copying and appending in the presence of a

slow memory allocator like malloc() and consists of the triple {allocLen, usedLen, strVal}.  allocLen refers to the

Figure 3. A sequence of Tcl statements and how they affect the representation of the value of ‘a’.  The statements are shown
in order of execution: in the first, set  assigns a string value to a.  incr  converts this to an integer, increments,
and stores it back as an integer.  In the third statement, the math expression uses this value (direct conversion) as
a floating point number to perform the multiplication.  Lastly, printing to the screen requires the string representation,
which does not change the still valid binary representation.  TC’s lazy conversion scheme saves conversions in
statements two (integer-->string) and three (string-->float).

= representation
is invalid.

Status of ‘a’ after each statement

string native TC
source code repr. repr. type

set a 1 “1” string

incr a 2 integer

set a [expr $a*1.2] 2.4 float

puts stdout $a “2.4” 2.4 float
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amount of memory allocated to hold the string; this allows the implementation to over-allocate buffers, which

amortizes the costs associated with finding such buffers from the free pool (eg. calls to malloc()).  usedLen stores

the amount of this arena currently occupied by valid data.  It is used in copying, appending and other operations

for performance.  strVal contains the address of this arena.  Figure 4 shows this data layout.

To store the type-tagged native representation, we extend this data structure to include a pointer to a type

record and storage for this representation.  The type record contains function pointers to the type-specific meth-

ods used in conversion.  For each type, two methods are needed.  The first is called the printproc, and it converts

from the native representation to string form, setting the string representation for the object.  The second is called

the parseproc, and it converts from the current form (either a string or another native type) to the desired native

type.  The generality of parseprocs allows us to avoid the overhead of string conversion when we need to convert

between two native types, as in the third statement in figure 3, where we need to convert directly from int to float.

Naively, the parseproc could be coded to convert the object to string form using the old type’s printproc, and then

parse the string, as Tcl7.x does.  Instead, the general form of parseprocs allows common direct conversions to be

treated specially.

Storage for the native representation is placed directly in the object to save a layer of indirection and to

reduce the number of memory allocations.  In this scheme, a few words of storage are padded onto the object

definition so that simple types can be stored entirely there, without having to maintain a separate area offset by a

dereference.  More complex types will use these fields as pointers to bigger, heap-allocated data structures.

Figure 5 shows the layout of a sample object of type integer.  The “val” field stores the binary representation and

its C-language type is dependent entirely on the value in the type field.  This design allows all objects to be the

same size, allowing TC to replace malloc() with a fixed size object allocator, which I measured to be about 5x

strVal   = 5 0 \0

allocLen = 10

usedLen  =  2

type     = parseproc =   TC_ParseInteger()

val   = 50 printproc =   TC_PrintInteger()
  .
  .
  .

Figure 4: An example of a Tcl value, as stored in memory. Figure 5: An example of a TC value of type integer.  Both the binary
representation as well as the string representation are valid.

type record for integerType

strVal   = 5 0 \0

allocLen = 10

usedLen  =  2
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Figure 6. The actual source code for the incr  command procedure.  On the left is the Tcl version; on the right is the TC version; comments
are shared.  I have attempted to align similar actions in each.  In the Tcl version, the arguments are passed as strings, requiring their
parsing during each call.  In TC, arguments are passed as typed objects, which may have already been parsed by a previous command.
If so, the call to TC_CoerceToType() will return without parsing.

Note: the code for TC is slightly more complicated because the Tcl version cheats, parsing the variable name twice: once in
Tcl_GetVar()  and once in Tcl_SetVar() .

int Tcl_IncrCmd(dummy, interp, argc, argv)
ClientData dummy; /* Not used. */
Tcl_Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */
char **argv; /* Argument strings. */

{
int value, result;
char *oldStr, *result;
char newStr[30];

/* ----------------------------------------------------------------------- error check the number of arguments  ----------------------------------------------------------------------- */
if ((argc != 2) && (argc != 3)) {

Tcl_AppendResult(interp,
"wrong # args: should be \"",
argv[0], " varName ?increment?\"",
(char*)NULL);

return TCL_ERROR;
}

/* ---------------------------------------------------------------------------- the first argument is a variable ---------------------------------------------------------------------------- */
oldStr = Tcl_GetVar(interp, argv[1],

TCL_LEAVE_ERR_MSG);
if (oldStr == NULL) return TCL_ERROR;

/*--------------------------------------------------------------------------  treat variable's value as an integer ------------------------------------------------------------------------- */
result = Tcl_GetInt(interp, oldStr, &value);
if (result != TCL_OK) {

Tcl_AddErrorInfo(interp, "\n    (reading value
of variable to increment)");

return TCL_ERROR;
}

/* ----------------------------------------------------------------------------------- get the step value -------------------------------------------------------------------------------------*/
if (argc == 2) {

value += 1;
} else {

int incr;

result = Tcl_GetInt(interp, oldStr, &incr);
if (result != TCL_OK) {

Tcl_AddErrorInfo(interp, "\n    (reading
increment)");

return TCL_ERROR;
}
value += incr;

}

/*---------------------------------------------------------------------------  update the value for the variable -------------------------------------------------------------------------*/
sprintf(newStr, "%d", value);
result = Tcl_SetVar(interp, argv[1], newStr,

TCL_LEAVE_ERR_MSG);
if (result == NULL) {

return TCL_ERROR;
}

/*----------------------------------------------------------------------  set the result (as an object) and return ------------------------------------------------------------------------*/
interp->result = result;
return TCL_OK;

}

int TC_IncrCmd(dummy, interp, objc, objv)
ClientData dummy;
Tcl_Interp *interp;
int objc;
TC_Obj* objv[];

{
TC_IntExp* stepVal=NULL, *intVarValue=NULL;
TC_VarExp* varObj;
TC_Obj* varValue;
Var* rec;
int step, result;

/* TC provides some handy C macros to match arguments.  These
could easily be incorporated into Tcl. */

ONLY_MATCH_NUM_ARGS(interp, objc, objv,
"varName ?increment?", 2, 3);

result = TC_CoerceToType(interp, varType, objv[1]);
if (result != TCL_OK) return TCL_ERROR;
varObj = (TC_VarExp*)objv[1];

rec=TC_EvalToVarRecord(interp, varObj, NO_CREATE);
if (rec == NULL) return TCL_ERROR;
varValue = rec->value.tc_value;
result=TC_CoerceToType(interp, intType, varValue);
if (result != TCL_OK) return TCL_ERROR;

if (objc == 2) {
step = 1;

} else {
result = TC_CoerceToType(interp, intType,

objv[2]);
if (result != TCL_OK) return NULL;
stepVal = (TC_IntExp*)objv[2];
step = stepVal->val;

}

/* touch() the object and set the variable to get the new object.  This is needed by
the copy-on-write mechanism, explained in section 5.3. */

intVarValue = (TC_IntExp*)rec->value.tc_value =
TC_TouchObject(interp, varValue);

/* In TC, we must explicitly invalidate the string form if it exists. */
TC_ClearObjectStrVal(intVarValue);
intVarValue->val += step;

TC_SetObjectResult(interp, intVarValue);
return TCL_OK;

}
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faster than system malloc().

3.2 Type Conversion

In both Tcl7.x and TC, type conversions take place in the C command procedures.  Figure 6 shows the incr

command procedure as an example. incr  takes one or two arguments: the first is a variable name and the second

is an increment amount; if the second argument is not provided, incr uses an increment of one. incr  then

changes the integer value of the variable by the amount, updates the variable, and returns this value to the

interpreter.  As you can see, the TC and Tcl7.x versions look much alike.  In the place of Tcl_GetVar()  and

Tcl_GetInt() , TC provides TC_CoerceToType() , which performs the type conversions as needed.

The library routines for conversion, TC_CoerceToType() and TC_CoerceToString(), are shown in figure 7,

along with the type-specific methods for floating point numbers.  TC_CoerceToType() returns a status flag.

Since some values have no reasonable representation in the desired type (ie. “abc” as an integer), any attempt to

int TC_CoerceToType(TC_Obj* obj,
TC_TypeRecord* destType)

{
int retn;

/* already has a valid binary repr. of the desired type? */
if (obj->type == destType) return TCL_OK;

/* parseproc is not just for string->destType */
retn = destType->parseproc(obj, destType);
if (retn != TCL_OK) return retn;

/* set the type, since we know what it must be. */
obj->type = destType;
return retn;

}

void TC_CoerceToString(TC_Obj* obj)
{

/* already has a valid string representation */
if (obj->strVal != NULL) return;

/* printproc is the type-specific equivalent of sprintf() */
obj->type->printproc(obj);

obj->type = stringType;
return;

}

/* an example printproc */
void TC_PrintFloat(TC_Obj* obj)
{

TC_FloatObj floatObj = (TC_FloatObj) obj;
char buf[100];

sprintf(buf, “%lg”, floatObj.val);
TC_SetStringVal(obj, buf, strlen(buf));

}

/* An example parseproc.
 * Note: setting the type field is done by TC_CoerceToType(). */
int TC_CoerceToFloat(TC_Obj* obj)
{

TC_TypeRecord* type1 = obj->type;
TC_FloatObj floatObj = (TC_FloatObj) obj;
char *s;

/* special case of int->float */
if (type1 == intType) {

TC_IntObj intObj = (TC_IntObj) obj;

/* retrieve the the binary representation */
double val = (double) intObj.intVal;

/* store back into the same space */
floatObj.floatVal = val;
return TCL_OK;

}

/* when a special case isn’t available, we
 * convert type1->string then string->float */
TC_CoerceToString(obj);

/* perform the conversion */
floatObj.floatVal = strtod(obj->strVal, &s);

/* This is the equivalent of a dynamic type check in Tcl. */
if (s == obj->strVal) {

return TCL_ERROR;
}

return TCL_OK;
}

Figure 7: the algorithms used in conversion.  C command procedures call TC_CoerceToType() and TC_CoerceToString() in the
place of such routines as Tcl_GetInt() and Tcl_GetVar().  Note that coercing to strings cannot fail, since all values have a

string representation in Tcl.  This is why TC_CoerceToString() is made into a separate routine returning void.
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convert this value should result in an error.  This is the Tcl equivalent of a dynamic type check failure.  In contrast,

string coercion cannot fail (“everything is a string”) and so the interface to string converters does not contain a

provision for returning an error.  One might compare this with Scheme [R4RS], where not all s-expressions have

string representations (eg. continuations), or C, where no printf() format exists for code.  In Tcl, even the bodies

of functions have string representations and can be printed using the puts  command.

This design has some ramifications for the rest of the system.  First, when a command procedure sets one

representation of an object, it must explicitly invalidate and deallocate the other representation.  For example,

just prior to the value increment in the incr  command procedure, a call is made to invalidate the string represen-

tation, as shown in figure 6.

The second ramification is far greater: we need a new callback mechanism to replace the array of strings that

Tcl7.x passes to C command procedures.  Conceptually, this is because C functions need to operate over the

native data types.  In the case of incr , you wouldn’t want to try to add the string values together- instead, you

parse each string as an integer, add them together, and convert back to a string.  Since the entire point of TC is to

avoid these conversions, it is necessary that TC not pass strings to the C command procedures.  As seen in figure

6, TC passes command procedures an array of dual-ported objects rather than an array of strings.

3.3 Backward Compatibility with Tcl7.x

As a matter of practicality, this design was made backward compatible with Tcl7.x’s string style callouts.  If

TC insisted on calling all command procedures with object arrays, I would have had to rewrite all of the Tcl7.x

builtin command procedures before the system would begin to work, including ones that have no impact on

performance or are difficult to optimize.  For example, it makes no sense to optimize puts  because its execution

time is dominated by the necessary I/O of printing to the screen or output device.

The mechanism for ensuring backward compatibility turns out to be remarkably easy to implement.  When

calling a Tcl7.x-style command procedure, TC coerces each of the arguments to strings, builds a string array and

makes the call.  The string results are then captured and used as the string representation in TC’s result field,

which is an object as well.  To differentiate between the two styles, C command procedures are either registered

as TC-style callouts or Tcl7.x-style callouts; the former are passed an array of objects, the latter an array of

strings.
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To make this scheme work, the Tcl7.x library access routines, written in C, had to be modified to request up-

to-date information from TC.  This is because TC cannot use the old Tcl access methods, which require string

parsing of the inputs.  Using the example of Tcl_GetVar() , which retrieves the value of a variable, Tcl7.x takes

as input the string name of the variable.  TC uses an offset into the current frame, which is faster than the hash

table system Tcl7.x currently employs.

These less efficient access routines don’t degrade the performance of the system, since most such calls will

employ the TC-style mechanism.  Thus, the TC access methods were written to maximize their own efficiency at

the expense of Tcl7.x-style command procedures.  For example, Tcl_GetVar() was rewritten internally to find

variables in TC stack frames (see section 6.1 for details), even though the interface must still accept strings.  This

rewritten version may be slower than the original, since it is based on linear search rather than hashing.  Again,

this is justified by the rewriting of selected command procedures that work to ensure that such fallback is not a

performance bottleneck.  Indeed, if all of the command procedures are rewritten using TC-style callbacks, this

mechanism is never used.

4 Compiler Preparsing
One of the major sources of delay in the execution of Tcl7.x is the time spent parsing scripts, as seen from the

profile in section 2.2.  In what now seems like a mistake, I wrote a static compiler to preparse scripts in an effort

to eliminate this cost.  This section describes the issues in the parsing of Tcl scripts and explains why it is

preferable to simply cache parsing as a conversion from string form to an internal form.

4.1 The Parsing of Code in Tcl

In the original implementation of Tcl, code is parsed as it is executed, an expensive operation I wanted to

minimize through the use of preparsing.  Since Tcl7.x does not cache parsed expressions between computations,

if a statement is executed repeatedly as in a loop, it is parsed repeatedly.  It is easy to misinterpret this to mean that

runtime parsing is the cause of this expense; in fact the key insight is that code is reparsed on each execution.  If

we can cache this parsing, then we will preserve Tcl semantics while providing a speedup in the common case

where code is statically defined.  For example, in the loop example from the last section, all of the arguments to

the for  command are statically defined and the cost of parsing should be subsumed by the time spent executing

the body of the loop.  If this statement is executed only once and the loop has only a few iterations, then the Tcl
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portion of the execution time will be small, and so runtime parsing isn’t a major performance hit.  In other words,

Tcl overhead is seen in the repeated execution of statements only.  Since parsing is cached, a repeated statement

is only parsed once, so the amortized cost is small.

One reason all language implementations don’t parse statements at runtime is that it precludes global optimi-

zation (the optimization across multiple control flow constructs and statements, but within a procedure) and

forces the runtime system to check whether a statement has been compiled or not, which can be quite expensive

for simple statements.  These two effects are related: the latter forces the separation of each basic block so that

this check can be made.  The entire point of global optimization is to treat multiple basic blocks as a single entity

for the purposes of code generation.  Numerous studies have shown that such optimizations vastly improve the

quality of code generation, especially on RISC architectures, since it leads to intelligent register allocation,

instruction scheduling, constant propagation, copy propagation, and other important optimizations[ARZ93].

The solution of cached, runtime parsing of longer code entities has been tried in the Self runtime [Cha91] with

reasonable success.  However, it is very complex and may not pay off for a language as dynamic as Tcl.

4.2 Dynamic Constructs in Tcl

Even though many constructs in Tcl are static, not all of them are, and thus we need to be able to parse code

at runtime, for example [eval $a] .  By our previous arguments, a compiler therefore serves no use: it doesn’t

replace runtime parsing, and won’t help performance unless it performs global optimization.  Since all Tcl

primitives are defined in C (including user-defined ones) and since commands may be redefined at runtime, the

results of global optimization will be valid only in the case when dynamically-defined commands are not used,

and where user-defined C commands are not used.  Essentially, this requirement excludes nearly all non-trivial

scripts, including any use of the Tk user interface library and all scripts using object-oriented extensions such as

Caste.  This is because they dynamically define commands as “objects” like Tk does for widgets.

5 Optimizing the Object System
We now turn our attention to the extensions of the basic object system necessary to attain the performance

improvements across the board.  Essentially, there are three major issues and optimizations.  First, no discussion

has been made about memory management except a hand-waving argument regarding deallocation of a represen-

tation during the writing of the other representation.  Here we present a more rigorous algorithm.  From this



TC: An Efficient Implementation of the Tcl Language 14

Adam Sah • April, 1994 14

follows the need for explicit support for automatic memory management, where reference counting is chosen.

This leads to a discussion about copy-on-write and its influence on the performance of TC.

5.1 Memory Management

Memory management in TC is more complex than in Tcl, where strings are the only form of storage.  For

example, the results of computations in TC need to be dual-ported objects in order to retain the native represen-

tation across computations.  Since the native representation of an object is dependent on its type and may contain

references to other structures, we need a type-specific way of deallocating objects, as when results of a computa-

tion go unused by the surrounding computation.

This leads to the need for automatic memory management.  One solution would be to copy the return value

and deallocate the copy when it is no longer needed.  This would be quite slow and would necessitate a large

number of allocations and deallocations.  To avoid this, we need to allow multiple references to the same object

and only deallocate an object when no references exist to it.  Such automatic memory management is usually

called garbage collection and there are a host of known techniques for implementing it[Wil92].

5.2 Reference Counting

For TC, I chose to implement reference counting, even though simpler and faster schemes are publicly

available for C, including Boehm-Weiser’s[BW88].  There are two reasons.  The first is that reference counting

behaves as an incremental collector, which avoids the pauses that non-incremental collectors typically incur.  It is

possible to build an incremental, non-reference-counting collector, but they tend to be quite difficult to imple-

ment and debug.  The second advantage is that refcounts (the number of references to an object in a reference

counting collector) can be used to implement copy-on-write, which is quite useful in Tcl (see section 5.3).

The downside is that refcounts cannot collect circular structures.  However, Tcl is based on pass-by-value and

offers no way for a callee to mutate arguments it is passed, whether such procedures are written in C or Tcl.  This

ensures that circularities cannot arise.  The proof of this is fairly trivial: to create such a circularity, one would

have to modify a structure to point to itself.  But since the value being changed in such a computation must be

distinct from the value being assigned, in accordance with pass-by-value, no circularity is made.  Intuitively, a

circular reference cannot exist in Tcl because all values in Tcl can be represented by finite string values.  If a

circularity were to exist, the interpreter would loop indefinitely attempting to represent this value as a string.
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To implement refcounts, TC adds a refcount field to all dual-ported objects, including both code and data.

This field tracks the number of data structures, including other objects, that possess references to this object.

When the refcount reaches zero, the object is deleted, since it can never be accessed again.  Object deletion

requires the deallocation of the binary representation.  This representation is type-specific and may be arbitrarily

complicated, including pointers to other data structures or objects.  Thus, TC needs to augment type records with

another procedure used to delete objects’ binary representations.  This function pointer field is called the deleteproc.

Rather than try to explain all the picayune details of when refcounts are incremented and decremented, I will

simultaneously offer an example and refer the reader to the volume of literature on garbage collection and

reference counting  [Pey87][Wil92].  Let’s walk through the following example:

set a [expr {$a + $b}]

When this statement is executed, the values {set, a, [expr {$a + $b}], expr and {$a + $b}} have refcounts of 1,

signifying their existence in the current statement.  References to “set” and “a” are both copied into the array of

objects (TC’s equivalent of the argv array).  This copying causes the objects’ refcounts to increment.  For the

third argument, we evaluate the nested statement [expr {$a + $b}].  Like the outer statement, the references to the

arguments are copied into an object array and the expr  command procedure is invoked.  Within this routine, a

call is made to perform additional substitutions; from this, calls are made to retrieve the values of a and b.  Since

expr  is synthesizing a new value from the summand of $a and $b, neither values’ refcount will be changed.

expr  then calls a special evaluator for type “mathexpr”, which performs the mathematical computation of the

expression.  The sum is a new object with refcount one, and it is returned.  Next, the refcounts of the arguments

to the nested command are decremented.  The set  command procedure is then invoked.  It retrieves the variable

record and decrements the refcount to the existing value, if one exists.  It then replaces the value with the one

passed as argv[2], incrementing its reference count.

The command is now completed, so the refcount of each of the arguments is decremented.  The summand

refcount is incremented as the result from the set, but is immediately decremented again, since this value is

unused.  This return value will not be deallocated, since it is stored as the variable’s value, and so must have a

positive refcount.  Finally, if this is a top-level command, the code objects will have their refcounts decremented.

In general, this triggers their deallocation, since top-level statements are only ever executed once.  As would be

expected, only the variable value lives on beyond this command, with a refcount of one.
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5.3 Copy-On-Write

Copy-on-write is desirable in implementing pass-by-value because it minimizes copying costs in the com-

mon case when arguments to commands are not mutated.  By comparison, command invocation in Tcl currently

requires the interpreter to copy each of the arguments’ values prior to the call.  For large values this is quite

expensive (see section 8.2.1 for details).  With copy-on-write, the system simply copies the address of the object.

If the value is never modified then no copying is needed.

As mentioned previously, refcounts offer the opportunity to implement copy-on-write.  This is because copy-

on-write requires the system to track which objects are shared.  The rule of thumb is: if the object is shared, copy

it before writing.  If the object is unshared (eg. the writer is the only reference holder for that object), no copying

is necessary.  To implement these semantics in TC, we use the refcounts to track this shared state.  A refcount of

one indicates non-shared; greater than one indicates a shared object.  Thus, callbacks that wish to change values

(“side effects” in programming language parlance) must explicitly make sure they are the only holder of refer-

ences to the value.  This is accomplished by a call to the routine

TC_Obj* TC_TouchObject(Interp*, TC_Obj*) , as seen in figure 6.  If the refcount is one, the object is

returned unchanged.  If there are multiple references to the object, the refcount is decremented, and a copy is

made.  The copy, with refcount one, is then returned to the caller.

Since copying may involve copying the binary representation of a given object, and since there is no standard

for layout of such data, we are forced to add another type-specific method for copying objects.  This copyproc

returns a duplicate of whatever object is passed.

6 Procedure Calls and Variable Access
The importance of optimizing Tcl procedure calls and variable access should not be understated.  In practice,

most of the code in a Tcl script resides within Tcl procedures, as opposed to the top-level script command list.

While I offer no statistics to prove this argument, the only other mechanism a programmer could use to circum-

vent use of the proc facility is the C callout mechanism, but this negates the benefits of incremental development

offered by the Tcl interpreter.
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6.1 Procedure Calls Implementation

Tcl offers a command called proc  that binds a new command to sets of Tcl statements.  The arguments to

such commands then become the parameters to such a procedure, and like calls to command procedures, use

pass-by-value semantics.  For Tcl, this means that arguments are copied into a procedure’s call frame, creating

local variables for each formal parameter.  For TC, formal parameters also become local variables, but we can

copy references instead of values, using the aforementioned copy-on-write scheme.  In both Tcl and TC, the

frame is destroyed on procedure return.

Tcl offers access to variables in the caller’s frame through the upvar , global  and uplevel  commands.

upvar  copies a variable (by name) from a caller’s scope into the local one; the uplevel  command executes a

statement in a caller’s scope.  The global  command is synonymous with an upvar  to the top-level scope, so

by default, no globals are visible in a Tcl procedure.  Again, these semantics affect TC and Tcl identically because

both chain procedure invocations together and both provide a direct link to the global scope.  Access to prior

scopes is effected by copying the relevant variable records from prior scopes into the current one.  The variable

record is a structure containing bookkeeping information about a variable and a reference to its current value.

The major difference between Tcl and TC is how call frames are represented.  In Tcl, frames are hash tables

keyed on the string names of variables.  In TC, we optimize frames to be static arrays.  Before a procedure is first

executed, it is scanned for variable references of the form $varname .  These are collected and each unique

variable is given an entry in this array.  The references in the source are then replaced by indexes into this array.

There are three issues in this design.  First, we have to handle upvar references.  Second, we have to effi-

ciently handle uplevel calls.  Lastly, we need to handle variable references not captured in the scan of dollar-sign

uses, such as in [set a] .  For upvar references and global variables, TC uses the same approach as Tcl: it

follows the chained call frames to the desired one, locates the variable by a search on its string name, and sets a

forwarding pointer in the current frame to the variable record in the upscope frame entry.  The only difference is

that in TC, this is a linear search instead of a hash table lookup.  We cannot copy a reference to the actual variable

value because we want to share more state information than just the value.  For example, a value copying scheme

will fail to preserve this link if the variable doesn’t already exist in the uplevel scope.  In Tcl’s semantics, such a

link allows either scope to initialize the variable.
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uplevel  is not implemented in the current prototype.  To implement it, the TC design would compile the

body for the higher scope.  Caching of this compilation across repeated statements is complicated: normally,

when a body is compiled for the “current” frame, the frame itself is fixed across invocations, even if the contents

of variables changes.  With uplevel calls, though, the scoping level chosen can be different for different invoca-

tions of the uplevel statement.  It is possible to concoct schemes to circumvent this.  For example, the absolute

scoping level for which the body is compiled can be stored with the compiled body.  If uplevel is called and the

body is compiled for the wrong scope, it can be recompiled.

Finally, TC must handle variable references not captured in the sweep of dollar sign usages.  This arises in

two cases.  The first case is when a C command procedure reads a variable value using Tcl_GetVar() or Tcl_SetVar().

The second case is a statement of the form [set $a 5].  In this case, we capture the use of “a” but not the variable

whose name is the runtime value of a.  However, set  is implemented in C and uses Tcl_SetVar() just like C

command procedures written by end users.  Thus, only the first case need be considered.

To handle this case, TC needs to modify the routines Tcl_SetVar() and Tcl_GetVar() to implement these

dynamic variables.  These variables are always referenced by their string names, so we can add an auxiliary hash

table of such uncaptured variables if the reference isn’t found in the main list of captured variables.  Since this

case employs variable name lookup using string names, performance will be poor in any implementation.  It is

important to ensure correctness, not efficiency, and so I make no attempt to optimize these uncommon cases.

Note that the current prototype implementation of TC does not fully implement all of the these features.

6.2 Array Variables in TC

Tcl provides a facility for associative arrays, which are bound to variables.  Unlike C-language arrays, Tcl

arrays are indexed on arbitrary strings.  For example, $a($b) refers to the element of the “a” array whose index

value is the same as the current string value of the “b” scalar variable.

While it is possible to preparse array references, it is not usually possible to preparse the index value.  Indeed,

not only does the index value typically require repeated evaluation, but it also must be converted to string form

before lookup.  Consider the case of an integer loop through an array:

for {set i 0} {$i < 1000} {incr i} {
somecmd $a($i)

}
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<math expr>

oper: LT

variable(a) int(5)

Figure 11: abstract syntax tree for {$a<5} , without compression (left) and with compression (right).

<math expr>

oper: VAR_LT_INT (a, 5)

Although TC can parse the reference to the “a” array variable, the index must be hashed as a string on each

reference.  Both systems store array values in hash tables keyed on the index’s string value.  This limits TC to be

a lackluster improvement for array variables, since execution should be dominated by the hashing and lookup.

7 Type-Specific Optimizations

7.1 Math Expressions

In a typical language interpreter, the runtime evaluates mathematical expressions by evaluating nodes in an

evaluation tree, with a node’s result value being the value of the subexpression it represents.  In this tree, the data

elements at the leaves are numerical values in registers or memory locations.  In TC, we can assign a new type to

such trees, mathexpr, and to ensure that math expressions will not need to be reparsed in repeated evaluations.

We can then use a similar tree to represent TC math expressions.

The problem with this scheme is that the nodes in the expression tree are objects tagged with types, which are

expensive to build and evaluate relative to the common case of dollar-sign variable references and constant

numerical values.  Thus, TC uses a special structure to represent a node, with an enumerated tag describing the

mathexpr type contained: either an int, a float, a string, a variable reference, or an object.  For numerical values,

the C language value is placed in this same structure by padding a few words of memory onto its definition.

We can go one step further and special-case common subtrees.  For example, a common subtree in a condi-

tional expression is {$varname < intval } , which is commonly used in loops.  A special handler for such

cases will flatten this tree by storing the entire subtree in a single node.  The tradeoff is against code size and

complexity, which in TC amounts to two hundred lines of boilerplate code.  In TC, I arbitrarily special case the

following subtrees:

{ VAR_<op>_VAR, VAR_<op>_INT, INT_<op>_VAR, VAR_<op>_FLOAT, FLOAT_<op>_VAR,

<unaryop>_VAR, VAR_NEQ_ZERO, VAR_EQ_ZERO, VAR_NEQ_ONE, VAR_EQ_ONE }

<op> ∈ { LT, LTE, GT, GTE, EQ, NEQ, PLUS, MINUS, MULT, DIV, AND, OR, ...}
<unaryop> ∈ { UMINUS, BIT_NOT,...}
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The four cases of VAR_{NEQ,EQ}_{ZERO,ONE} are for common boolean expressions, and the parser takes

advantage of commutativity and swaps the arguments if they are reversed (eg. {0 != $a} becomes {$a != 0}).

7.2 Lists

Tcl lists are currently stored as strings, affording a great opportunity for improvement, but their semantics

reflects this implementation, and so might frustrate an attempt to duplicate these semantics in TC.  In Tcl, lists are

stored as strings and parsed into elements separated by whitespace; “1 2 3” is a valid list with three elements.

This provides a great opportunity for TC to improve performance for nearly all list operations, such as indexed

lookup, by maintaining lists in parsed form.  However, a list abstraction would not preserve semantics because

Tcl maintains a list’s string form under update, where TC invalidates the string.  For example,  if we append an

element  “d”  to  “  a b c”  we get  “a b c d”, not  “  a b c d”, which is what Tcl would do.  A naive implementation

that converts to string form by inserting singleton spaces between objects will fail to preserve these semantics.  It

is possible to augment the simple list structure to maintain whitespace, but it didn’t seem worthwhile for this

prototype, especially since it is a rare case when these semantics are needed.

A TC list is stored as an array of object references.  Each reference represents an element in the list, and like

other string values, is parsed on demand in TC.  If and when the string value for the list is requested, it is

constructed by concatenating the string values of the elements together.  There was an alternative implementa-

tion, where lists are stored as pointers into the original string representation of the list..  I chose not to implement

lists this way because it adds a dependency between the string and compiled representations, so that the string

representation could not be discarded without updating the compiled representation.

The choice of array storage versus linked list storage trades slower updates for faster lookups.  To ease the

cost reallocation under append (a common case for updates), TC overallocates the array, using a usedLength and

allocLen field just like Tcl and TC do for string values.  Performance for mid-list insert and delete still suffers

under this scheme because of copying costs.

8 Performance

Performance of TC relative to the original implementation of Tcl is the project’s metric of success.  In this

way, TC is quite successful, showing improvements of 5x to 10x for many common operations.  As seen in the

sections to come, some cases did not scale as well as others, reflecting a  lower bound in overhead.
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8.1 Testing Methodology

The test suite used in this thesis stresses microbenchmarks.  This exclusion of more aggregate tests is a result

of instability and incompleteness in the current version of the software, not necessarily a foreboding of poor

performance or a result of negligence.  The microbenchmarks chosen reflect only those language features I

attempted to optimize using object-style callouts; exception handling and traces are excluded, as are core com-

mand procedures I didn’t reimplement to accept arrays of objects instead of arrays of strings.

The system chosen to implement TC was an DEC Alpha 4000/300 capable of about 100 MIPS.  It was

running OSF/1 v.1.3 at the time of the tests, and I compiled TC using the GNU C compiler.  The tests themselves

were run while the machine was unloaded and they were each repeated several times.

8.2 Micro Benchmarks

Microbenchmarks attempt to isolate a small piece

of a system to demonstrate how efficiently this fea-

ture is implemented.  In TC, the microbenchmarks

I’ve run show a reasonable improvement for the fea-

tures I’ve optimized.  The following subsections de-

tails each class of optimization.

8.2.1 Primitive Operations

This set of benchmarks is designed to test state-

ment execution, data assignment, substitution, and

copying.  In the first set of these tests of table 1, I

measure the time TC and Tcl take to invoke a C command procedure which does no work with its arguments.

This number sets a lower bound on performance improvement for inexpensive commands like set  and incr .

The second set of tests measures variable access and assignment.  The first test in the set uses the set

command to return the value of varname, whose value is “123”.  The second test, an assignment, differs from the

first only in the actual assignment– both return the final value of the variable.  The difference in execution time

therefore shows the time for assignment.  In TC, assignment takes (6.8 - 5.4) = 1.4 usec; in Tcl, this is (19.5 -

15.2) = 4.3 usec; TC assignment is roughly 3x the speed of Tcl.  Performance is not impressive because TC incurs

a large, fixed cost for object creation and Tcl’s overhead for string copying is minimized for small sizes strings.

Description TC Tcl Tcl/TC
calling C command  procedures:

0 args 4.24µs 6.14µs 1.4x
1 args 4.24µs 7.48µs 1.8x
4 args 6.58µs 10.5µs 1.6x
8 args 8.96µs 19.0µs 2.1x

set varname 5.4µs 15.2µs 2.8x
set varname 123 6.8µs 19.5µs 2.9x
set varname $a 7.9µs 29.2µs 3.7x

set a <4Kbyte string> 6.9µs 1.8ms 260x
concatenate five values* 27µs 55µs 2.0x

Table 1. Performance of primitive operations: a=“123”.
*See Appendix B for additional source code

Dollar-sign variable substitution and setting of large data
items is made fast by the object system, but string operations
like concatenation show little benefit over existing Tcl.  Unless
otherwise specified, strings are kept small to minimize the
impact of Tcl’s string copying costs.
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The time for substitution is likewise seen in the difference in execution time between the second and third

tests of the second set, which vary only in the source of the new value.  This involves local variable lookup, so

TC’s indexed access offers a significant improvement over Tcl: 1.1 usec versus 9.7 usec for a speed of nearly 9x.

The last set of tests in table 1 demonstrates the best and worst cases of TC’s performance relative to Tcl’s in

terms of data copying.  In the 4K string assignment, Tcl must copy the entire string value each time, where TC

can copy a pointer and bump a reference counter.  The less attractive case is shown by string concatenation, where

TC must essentially perform the same work as Tcl in concatenating the string values together.  I hypothesize that

the performance gain comes from faster variable substitution and from faster statement execution.  Subsequent

tests (not shown) indicate that this 2x relative performance is fairly consistent across larger numbers of concat-

enations but decreases as the string copying overhead

increases with longer individual strings.

8.2.2 Loops

Loop operations, which repeatedly execute the

same script, offer a great opportunity for improvement.  In most cases, the cached parsing of the body of the loop

will not be invalidated, unless the code is dependent on the loop control variable.  As seen from the speedups, this

common case is drastically improved by code caching, reaffirming common knowledge that interpreted code is

typically an order of magnitude slower than compiled

or byte-compiled code.

8.2.3 Procedure calls

Procedure calls are important to measure because

they are the mechanism typically used to bundle small

chunks of Tcl code together.  As in other languages like

C++, Tcl procedures are parameterized on input argu-

ments and allow arguments to have default values and

variable numbers of arguments (“varargs”).  Default

arguments are parameters that are optional– if the caller

does not supply an input argument, the calling mecha-

nism will substitute a default in its place.  varargs is a

Description TC Tcl Tcl/TC
for  loop: count from 1->10000 140ms 1450ms 10x

while : sum the 1st 1,000 int’s 24ms 240ms 10x

Table 2. Loop performance.  See Appendix B for source code.

Description TC Tcl Tcl/TC
procedure call with small args:

0 args 8.3µs 15.4µs 1.9x
1 arg 10.4µs 35.9µs 3.5x
4 args 16.4µs 66.3µs 4.0x
8 args 27.3µs 111µs 4.1x

procedure call with varargs:
0 varargs 11.6µs 40.3µs 3.5x
1 vararg 14.2µs 46.4µs 3.3x
4 varargs 18.8µs 59.5µs 3.2x
8 varargs 22.0µs 76.5µs 3.5x

procedure call with default args:
1 default arg, 0 args passed 11.4µs 40.2µs 3.5x
1 default arg, 1 arg passed 11.9µs 40.0µs 3.4x
4 default args, 0 passed 16.8µs 67.5µs 4.0x
4 default args, 4 passed 17.0µs 71.8µs 4.2x
8 default args, 0 passed 24.5µs 102µs 4.2x
8 default args, 8 passed 28.8µs 116µs 4.0x

procedure call with one 1K arg 11µs 305µs 28x

Table 3. Procedure calls.  See Appendix B for source code.
The arguments passed in all cases except the last are small, so
Tcl’s string copying cost is minimized.  TC’s relative performance
should be better in real scripts with longer string data.
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facility where the caller can pass more arguments than there are parameters in the callee’s definition; in this, a

special parameter, “args”, is assigned a Tcl list composed of the unmatched arguments.  Both facilities are used

widely in Tcl scripts and so should be measured.

I have attempted to cover these cases through a series of tests shown in table 3.  The first set shows the simple

case where neither default args nor varargs are used.  As seen, results are typically 3-4x faster for TC, primarily

because string copies and variable name hashes are replaced by pointer copies and indexed variable access.  The

second set of tests exercises the varargs facility.  Here TC’s relative performance suffers because of the high cost

of array-based list construction for short string parameters, as used in the tests.  The third set shows performance

of the default args facility, which maintains a fairly consistent improvement across different numbers of param-

eters and defaults.  The last test demonstrates the value of copy-on-write for procedures.  In Tcl, this one kilobyte

string must be copied each time, where in TC, only a pointer is copied.

8.2.4 Array Variable Access

I ran a short battery of tests to determine the rela-

tive performance of array variable access in TC.  The

latter two cases, where the index name is substituted

from variables, are a common idiom in Tcl code.  Array

variable access performs as predicted in section 6.2: a

smaller improvement over Tcl than TC was able to

achieve for scalars.  Better performance can only be achieved by allowing array indexing on non-string types,

since this would afford TC the ability to also cache the index value, a native type (eg. integer).  Native type

indexing would afford faster lookups in cases where the cache is invalidated because string operations such as

hashing and lookup set a lower bound on performance and do not scale well for longer string values.

8.2.5 Math Expression Evaluation

Math expressions are in the critical path of Tcl per-

formance because of their use in determining control

flow (ie. if , while , etc.), as well as their use in nu-

merical computation.  To measure the effects of TC’s

optimized math expression evaluator, I ran a set of four

Description TC Tcl Tcl/TC
set varname(index) 12.5µs 20.2µs 1.6x
set varname(index) 123 13.4µs 24.3µs 1.8x
set varname($idxname) 13.0µs 31.6µs 2.4x
set varname($idxname) 123 14.4µs 35.4µs 2.5x

Table 4. Performance of array variables:
varname(index)=“123”; idxname=“index”.

The speed o f ar ray var iab le s i s h indered by
the evaluation of the index expression, which causes the
access to not be cacheable.

Description TC Tcl Tcl/TC
{$intvar != [set zero]} 51.5µs 98.6µs 1.9x

{$intvar != $zero} 17.7µs 81.9µs 4.6x

{$intvar != 10} 14.8µs 79.5µs 5.4x

{$intvar != 0} 12.6µs 78.1µs 6.2x

Table 5. Math expression performance: zero=“0”
The four tests highlight math-specific optimizations using an

expression tree compression algorithm.
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tests, all essentially the same expressions, but implemented in different ways.  The first test shows the results of

using objects as nodes in the expressions tree because the current optimizer has no optimized node for this kind

of expression.  This suggests that a more aggressive optimization policy would be useful; in this case, it would

make sense to support VAR_<op>_OBJECT as a new kind of optimized node.

The remaining tests are more representative of real TC performance for small math expressions.  The second

test involving comparison of the variables is therefore a more reasonable base case.  In this test, the parser is able

to use the VAR_<op>_VAR optimization, but requires two variable lookups and overhead for memory manage-

ment of the results from each.  In a slightly optimized implementation of TC, it would be possible to reduce this

memory management overhead by accessing variable values without changing their refcounts for read-only cases

such as math expression evaluation.  The key requirement would be to never return a reference to a variable’s

value from the evaluation of a node, but instead to copy the {integer, float, or string} value out of the result object

so that the reference count for the object never changes.

The last two tests show VAR_<op>_INT and VAR_NEQ_ZERO and again, the difference between them is

artifically poor because TC is not as optimized as it could be.  In this case, VAR_<op>_INT is performing poorly

because of I decided to opt for simpler code at the expense of top performance.

While this suite of tests seem to validate the thesis that type specialization of math expressions will improve

performance by reducing layers of indirection and costs for type checking, they seem anomalous: 1 microsecond

on the Alpha-based workstation that I ran the tests on, is about 100 instructions, making these numbers seem

suspicious; a pointer traversal and associated type checking should not cost 200+ instructions as it does between

the third and fourth test.  Nevertheless, these numbers are reproducible given the current versions of TC and Tcl,

and to the best of my knowledge, no memory is leaking for these tests.

8.2.6 Lists

As one of the only aggregate data structures provided in the Tcl core, lists are very important to overall

performance.  Thus, a series of tests was run to measure TC’s performance over list operations.  It is clear that an

array-of-elements based storage system will scale better than a string-based one, so the results for llength ,

lindex , and foreach  come as no surprise.  Their measurement was more designed to show TC’s fixed over-

head for list management and object creation.  The remainder of this section explains the other cases: lrange ,
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lsearch , lappend  and lsort .

The lrange  command extracts a subrange of a

list and returns the newly formed list.  For lrange, TC’s

advantage is less obvious because we now need to cre-

ate a new list and populate it with objects, which in-

curs a relatively high cost for bumping the refcounts

on each copied reference.  By comparison, once Tcl

has parsed the list up to the starting element, it only

needs to perform a string copy.  This explains why

TC’s relative performance increases between the first

two cases, when the length of the subrange is fixed at

6, but where the starting index increases.  The cost of

refcounting and list creation are the reasons behind

the lackluster performance in the last case, where Tcl’s

parsing overhead is minimized and TC’s object over-

head is maximized.

The lsearch  command searches for a string element in a list of items; in table 6 we see that this is much

more efficient in TC than in Tcl.  In both implementations, the string comparison algorithm aborts the compari-

son early if the two strings are not equivalent, so Tcl’s parsing overhead dominates execution time in the common

case where there are many failed comparisons before a match is found.  This is why the third case, with 150 failed

comparisons, is so much faster for TC than Tcl.

lappend  appends new elements to the list represented by a given variable, and is commonly used to

construct lists; in table 6 we see a fairly constant advantage in TC over Tcl.  In measuring lappend, it therefore

makes sense to construct two test lists, L1 and L2, by appending each element in order.  Since TC overallocates

the list array, TC amortizes the high cost of reallocating and copying the list for repeated append operations.  In

this way, TC’s append operation scales, as seen by the examples shown.  Since Tcl overallocates its string array,

it too scales.  Presumably, for arrays of longer string values, TC’s advantage would be greater, reflecting the cost

Description TC Tcl Tcl/TC
llength $L2 9.0µs 69µs 7.7x
llength $L1 9.15µs 540µs 59x

lindex $L1 0 8.5µs 60.7µs 7.1x
lindex $L1 100 8.7µs 276µs 32x
lindex $L1 200 8.5µs 498µs 59x
lindex $L1 5000 8.2µs 500µs 61x
lindex $L3 2 8.5µs 51.6µs 6.0x
lindex [lindex [

lindex $L3 2] 2] 1] 24.8µs 128µs 5.2x

foreach item {a} { } 11.4µs 41.6µs 3.6x
foreach item $L2 { } 15.8µs 127µs 8.0x
foreach item $L1 { } 157µs 2.1ms 13.4x

lrange $L1 3 8 17.2µs 92.0µs 5.3x
lrange $L1 153 158 14.5µs 459µs 32x
lrange $L1 3 102 163µs 330µs 2.0x

lsearch $L2 joey 16.0µs 114µs 7.1x
lindex $L2  [lsearch  $L2 joey] 24.2µs 171µs 7.1x
lindex $L1 [lsearch $L1 150] 103µs 1.5ms 14.6x

build L2 using lappend * 131µs 536µs 4.1x
build L1 using lappend * 2.3ms 10.3ms 4.5x

lsort $L2 25.6µs 129µs 5.0x
lsort $L1 3.2ms 4.3ms 1.3x

Table 6. List operations. *See Appendix B for source code.

List performance varies widely in this implementation based on
arrays of objects , but is generally a marked improvement
over Tcl, which must reparse its string-based lists on each usage.
L1 is the list of the first 200 positive integers (long length with
short items).  L2 is a list of 9 peoples’ names, about 5 characters
each.
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for Tcl to copy the strings into the array string.

Lastly, I measured the lsort  command, which copies the list and sorts the duplicate list, returning the

duplicate.  lsort  is faster for TC mostly because of reduced parsing costs, which accounted for 1.4ms of the

4.3ms it took Tcl to sort the 200 element list.  In the steady state of a “large” list, both are using the system’s

qsort() routine using strcmp() for the comparison function, so both should perform identically, since parsing is

O(n) and sorting is O(n) for n small list elements.

Because of memory management bugs, I was not able to measure linsert  or lreplace  in this version

of the system.  In truth, their performance would probably have been lackluster.  Mid-list insertions and deletions

to any array-based implementation requires data copying just like Tcl requires, so TC’s performance will improve

only inasmuch as string copies are dependent on the length of the strings which correspond with the elements of

the list.  In TC, the copying cost would depend only on

the length of the original list and the location and num-

ber of elements insrted or deleted.

My conclusions are that most of the benefits of smart

list implementation come from preparsing and replac-

ing string copying with object pointer copying.  Im-

provements in TC’s list algorithms should be assessed

on an application-specific case, accounting for scaling

and common operations; it may make more sense to

choose a different data structure than arrays, and bind

the operations to new command names rather than to change TC’s list implementation.

8.3 Macro and aggregate benchmarks

In any performance test suite, it is important to include results from real-world examples.  Unfortunately, in

the current state of development, TC is not sufficiently complete to run such benchmarks.  Thus, it seems unrea-

Description TC Tcl Tcl/TC
factorial (1), recursive 34µs 205µs 6.0x
factorial (4), recursive 265µs 1600µs 6.0x
factorial (7), recursive 510µs 2996µs 5.9x

factorial (1), iterative 102µs 385µs 3.8x
factorial (4), iterative 239µs 1052µs 4.4x
factorial (7), iterative 378µs 1740µs 4.6x

fibonacci(5), recursive 950µs 4.0ms 4.2x
fibonacci(10), recursive 11.4ms 48.3ms 4.2x

converting a list into an array 5.22ms 14.8ms 2.8x

Table 7. Performance in aggregate examples.
See Appendix B for source code.

These examples combine several of the above features in an
attempt to simulate multiple feature usage.  Due to a few
unimplemented features, and the lack of support for Tk, real
macro benchmarks were not attainable.
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sonable to try to generalize from the language subset presented herein.  Instead, I show a few examples where

several language features are used together:

“factorial” and “fibonacci” are implementations of

small mathematical functions.  Mathematics is one class

of CPU-intensive work that appears in a program’s “in-

ner loop” and which executes slowly in Tcl.  The test

contains a mix of control flow code, simple mathemat-

ics, and procedure calls.

“converting a list into an array” involves convert-

ing a long list into the index-value pairs of an array

variable, where odd elements become indices and even

elements become values.  The test contains a mix of

control flow, assignment, and array access.

8.4 Effects of whitespace and long identifiers

Given that Tcl is sensitive to the lengths of identifiers and whitespace, one could write a program that

substituted minimum-length identifiers and that strippped whitespace.  It is therefore important to show that TC’s

performance gains mostly derive from this effect, which TC achieves by cached parsing.  This is shown at right,

where the speedups are typically 10-30%.  Such a speedup leaves ample margin for TC to further improve

performance, thus proving the claim that such an optimizer would not obviate the need for TC.

8.5 Overall Performance Conclusions

In taking stock of the overall performance of TC, there are three issues.  The first is whether the delayed

conversion scheme was effective.  The second is the raw overhead for execution of statements in Tcl and TC,

which is quite high.  Lastly, there were a few obvious measurements I left out this report, whose exclusion I

explain at the end of this section.

From the performance numbers above, I claim that the original thesis is correct: string semantics aren’t

inherently slow; string storage and manipulation is slow.  This, of course, is only true for the data types whose

Description TC Tcl Tcl/TC
factorial(4), well-written 265µs 1600µs 6.0x
factorial(4), compressed 265µs 1405µs 5.3x

speedup from compression 0% 12%

list->array, well-written 5.22ms 14.8ms 2.8x
list->array, compressed 5.29ms 10.4ms 2.0x

speedup from compression -1% 30%

set longerName 6.1µs 17µs 2.8x
set a 6.1µs 12µs 2.0x

speedup from compression 0% 29%

set longerName 123 7.3µs 24µs 3.3x
set a 123 7.3µs 19µs 2.6x

speedup from compression 0% 21%

Table 8. Effects of whitespace and long identifiers in source.
Source code appears in Appendix B.

TC removes whitespace as part of parsing, but Tcl remains
sensitive to this effect, since it reparses statements each time
they are executed, including nested statements, like the bodies
of for  loops.  “well-written” tests include comments and long
identifiers; “compressed” tests use minimal-length length names.
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methods do not require strings, such as integers.  For features such as Tcl-style array variables, it is the string-

based semantics that limit performance.  Faster execution would require a redesign of this feature.  For features

that depend on strings, such as concatenation, the only hope is to avoid them in the “inner loop” of programs that

need to execute quickly.  For example, rewriting the concatenation algorithm in C won’t make it become

algorithmically cheaper.

One surprising result was the large overhead incurred by statement execution in TC.  For example, for simple

commands like set, nearly all of the execution time was spent executing the command and little actually assign-

ing the value to the variable.  I have looked at the main loop of TC and attempted to optimize it, but there doesn’t

seem to be much improvement that can be made in the current framework.  One design change that might lead to

greater performance would be to substitute real garbage collection for reference counting.  Reference counting is

reputed to be slow because it requires the system to touch objects on all reference count changes, not just during

garbage collection, requiring many memory references[Pey87].  I have not experimented with this because it

would mean that copy-on-write could not be supported.  Copy-on-write provided a dramatic improvement in the

cost of calling Tcl procedures and in the cost of variable assignment, so I am reluctant to sacrifice this optimiza-

tion.  One compromise would be to copy on all writes, a policy which does not require reference counting.  The

tradeoff is that in cases where an object is not being shared, copies are still being made on writes; if this is a

common situation, then the copying overhead will be high.  I did not measure this policy and it would make an

interesting experiment.

There were a few measurements I did not include here because they turned out to be insignificant in the

environment I used to design this system.  The first was memory usage in TC, which wasn’t appreciably greater

than Tcl.  This is because data objects are shared instead of copied, and because TC reuses objects when they

become unreferenced as soon as possible (including code).  In a larger script, storage space might become a

problem if many procedures are defined or if many small objects are stored.  I did not measure these cases,

primarily because Tcl scripts tend to be relatively small and are currently limited by execution time, not by space.

At the time of this writing, a typical personal workstation has 16-64MB of RAM, so if TC wastes an extra

megabyte to store data, this isn’t significant.  For embedded systems, portable computers and other space-limited

systems, this may not be the case, and further measurement would be necessary.

The second timing number I left out was the compilation time for the parser.  As mentioned previously, I

made a mistake in writing a separate parser for Tcl scripts, whose output was a preparsed script that the runtime

could efficiently execute.  Since this preparser would be removed in a production version, it seemed futile to
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include its performance.  Furthermore, in every case I ran (up to a few hundred lines), compile times were

essentially instantaneous, limited by file I/O and not by the time to parse scripts.

9 Conclusions
Beyond improving the raw performance of Tcl scripts, TC changes the relative costs of various Tcl con-

structs, and I claim that this is strictly for the better.  Specifically, TC reduces the overhead for parsing, so you

don’t pay additional costs for using long identifiers or comments.  TC also implements copy-on-write, so using

larger data objects is not inherently slower under Tcl’s call-by-value semantics.  This encourages the use of Tcl

procedures, which normally require the copying of their arguments before the call is made.  By reducing their

relative costs, TC encourages users to write cleaner code with more comments, the use of procedural abstraction

and the use of Tcl’s lists.  By reducing the performance benefit, TC discourages the rewriting of Tcl routines in C.

A primary lesson to be taken from this work is that use of strings for storage leads to poor performance.

While this is obvious when compared to compiled language implementations, the real costs are not so obvious

for an interpreted language in which strings are as important as they are in Tcl.  This work quantifies this cost, and

demonstrates one way to improve upon string storage without sacrificing string semantics.

On an abstract level, this project demonstrates that changing the model under which you work rarely im-

proves things itself.  The benefits instead come from the full exploitation of the new model.  For example, the

bundling of the dual-ported representation into a single entity for the purposes of memory allocation was at first

a trivial change.  This then led to reference counts which led to copy-on-write, which in turn made procedure calls

and variable assignments less expensive by avoiding extra data copies.  I claim that this result was not obvious

from the initial, seemingly minor design decision.
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Appendix A Future Work
The obvious question to ask is whether there aren’t additional improvements to be found.  Although I’ve tried

to answer this in the negative using semantic arguments throughout the paper, another approach is possible,

which is to compare the performance of Tcl and TC with languages which are less hostile to efficient implemen-

tation.  For example, one can peg Tcl as being approximately 3 orders of magnitude slower than C for mathemat-

ics and control flow operations.  TC then would be 2-2½ orders slower than C.  By comparison, interpreted

Scheme under SCM, a compact and unheroic implementation, is about 2-5x faster than TC from some small tests

I ran that were similar to the benchmarks shown herein.  If you compile dynamic languages like Scheme and

Smalltalk into native machine code, you would typically find them to be about an order of magnitude slower than

C[Cha91].  In other words, for TC to much improve beyond its current implementation would seem unlikely,

since these other languages are far less difficult to analyze and optimize than Tcl and only provide a 10x improve-

ment through their efforts.

It is tempting to try to redesign some features of Tcl to answer this performance issue because of the language’s

enormous popularity.  It is worth a study to find the source of this popularity: people don’t learn new languages

as a way to avoid vacationing in Aruba.  If it is the case that the most popular features of Tcl do not hinder

performance, then such a redesign might be feasible.  Alternatively, we might ask whether the expensive features

of Tcl are really all that useful.

For example, a survey of users from comp.lang.tcl [Sah94] revealed that few users had use for “uplevel” or

“upvar”, except as ways to simulate pass-by-name and other parameter passing schemes.  Likewise, the main use

of dynamic (re)binding of procedures from C stems mainly from, ironically, performance: at least one object-

oriented Tcl package relies on rebinding to create new “objects”.  However, in its original Tcl implementation,

performance was a severe problem and so Caste[Bra93] was later rewritten in C.

I am currently investigating whether a happy medium cannot be found.  Features such as implicit string

conversions, a C callout mechanism, scripting syntax, and embeddability all seem quite useful and none seem to

limit the theoretical performance of the system.  The real question is whether the utility of Tcl will be hindered

with its harmful features excised.  This effort has culminated in a Tcl-like language called Rush that preserves

much of Tcl’s syntax and semantics, and yet offers performance hundreds of times that of Tcl.  Rush will be

presented at the Tcl’94 Workshop [SBD94].
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Appendix B  Test Suite Source Code
# n-time is a C command procedure similar to time, but outputs to 3
#   significant figures in floating point.

proc print-results {pref result} {
set pref “$pref — “
puts stdout [format “%-25s %s” $pref $result]
puts stderr “.” nonewline

}

proc n-times {{n 1}} {
set base_times 1000
return [expr {$n*$base_times}]

}

# 8.2.1  Primitive Operations
# calling C command procedures (np is a registered cmd procedure I added)
print-results “callback: 0 args”  [ntime {np} [n-times 300]]
print-results “callback: 1 arg”   [ntime {np a1} [n-times 300]]
print-results “callback: 4 args”  [ntime {np a1 a1 a1 a1} [n-times 300]]
print-results “callback: 8 args”  [ntime {np a1 a1 a1 a1 a1 a1 a1 a1} [n-times 300]]

# “concat five values”
set bob 2
set ted 4
set alice 9
set mary “A long string”
set leslie text
print-results “concat 5 vars” [ntime {set a $bob$ted$alice$mary$leslie} [n-times 200]]

# 8.2.2 Loops
print-results “for loop: 1->10000” [ntime {for {set counter 0} {$counter<10000} {incr counter} {}} 10]
print-results “while loop: sum first thousand ints” [ntime {set counter 0; set sum 0;

while {$counter<1000} {
incr sum $counter; incr counter

}
} 5]

# 8.2.3  Procedure Calls
proc p0 {} {}
proc p1 {a} {}
proc p4 {a b c d} {}
proc p8 {a b c d e f g h} {}

proc varfun {args} {}

proc d1 {{a a1}} {}
proc d4 {{a a1} {b b1} {c c1} {d d1}} {}
proc d8 {{a a1} {b b1} {c c1} {d d1} {e e1} {f f1} {g g1} {h h1}} {}

print-results “proc: 0 args” [ntime {p0} [n-times 300]]
print-results “proc: 1 arg”  [ntime {p1 a1} [n-times 300]]
print-results “proc: 4 args”  [ntime {p4 a1 a1 a1 a1} [n-times 100]]
print-results “proc: 8 args”  [ntime {p8 a1 a1 a1 a1 a1 a1 a1 a1} [n-times 50]]

print-results “proc: 0 varargs”  [ntime {varfun} [n-times 100]]
print-results “proc: 1 varargs”  [ntime {varfun a1} [n-times 100]]
print-results “proc: 4 varargs”  [ntime {varfun a1 a1 a1 a1} [n-times 50]]
print-results “proc: 8 varargs”  [ntime {varfun a1 a1 a1 a1 a1 a1 a1 a1 } [n-times 40]]

print-results “proc: 1 default args”  [ntime {d1} [n-times 200]]
print-results “proc: 1 real args”  [ntime {d1 a1} [n-times 200]]
print-results “proc: 4 default args”  [ntime {d4} [n-times 100]]
print-results “proc: 4 real args”  [ntime {d4 a1 a2 a3 a4} [n-times 100]]
print-results “proc: 8 default args”  [ntime {d8} [n-times 100]]
print-results “proc: 8 real args”  [ntime {d8 a1 a2 a3 a4 a5 a6 a7 a8} [n-times 100]]

# note: I ommitted most of the a’s to save space...
print-results “proc: 1k arg” [ntime {p1 aaa...aaa} [n-times 300]]

# 8.2.4  Array Variables
set varname(idxname) 123
set idxname index
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set varname($idxname) 123
print-results “set varname(index)” [ntime {set varname(index)} [n-times 10]]
print-results “set varname(index) newvalue” [ntime {set varname(index) 123} [n-times 10]]
print-results “set varname(\$idxname)” [ntime {set varname($idxname)} [n-times 10]]
print-results “set varname(\$idxname) newvalue” [ntime {set varname($idxname) 123} [n-times 10]]

# 8.2.5  Math Expressions
set intvar 10
set zero 0
print-results “expr {\$intvar != \[set zero\]}” [ntime {expr {$intvar != [set zero]}} [n-times 10]]
print-results “expr {\$intvar != \$zero}” [ntime {expr {$intvar != $zero}} [n-times 10]]
print-results “expr {\$intvar != 10}” [ntime {expr {$intvar != 10}} [n-times 10]]
print-results “expr {\$intvar != 0}” [ntime {expr {$intvar != 0}} [n-times 10]]

# 8.2.6  Lists
set L1 { 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 }
set L2 { mary bob joe mike sue joey kathy sinead susie }
set L3 { {mary bob} {joe mike} {sue joey {kathy sinead} susie} }

# get rid of parsing costs from timings...
lindex $L1 1
lindex $L2 1
lindex [lindex [lindex $L3 2] 2] 1

print-results “llength \$L2” [ntime {llength $L2} [n-times 300]]
print-results “llength \$L1” [ntime {llength $L1} [n-times 300]]

print-results “lindex \$L1 0” [ntime {lindex $L1 0} [n-times 100]]
print-results “lindex \$L1 100” [ntime {lindex $L1 100} [n-times 100]]
print-results “lindex \$L1 200” [ntime {lindex $L1 200} [n-times 100]]
print-results “lindex \$L1 5000” [ntime {lindex $L1 5000} [n-times 100]]
print-results “lindex \$L3 2” [ntime {lindex $L3 2} [n-times 100]]
print-results “lindex \[lindex \[lindex \$L3 2\] 2\] 1\]” [ntime {lindex [lindex [lindex $L3 2] 2] 1}
[n-times 50]]

print-results “foreach item {a} {}” [ntime {foreach item {a} {}} [n-times 100]]
print-results “foreach item \$L2 {}” [ntime {foreach item $L2 {}} [n-times 100]]
print-results “foreach item \$L1 {}” [ntime {foreach item $L1 {}} [n-times 100]]

print-results “lrange \$L1 3 8” [ntime {lrange $L1 3 8} [n-times 100]]
print-results “lrange \$L1 153 158\”” [ntime {lrange $L1 153 158} [n-times 7]]
print-results “lrange \$L1 3 102” [ntime {lrange $L1 3 103} [n-times 7]]

print-results “lsearch \$L2 joey” [ntime {lsearch $L2 joey} [n-times 50]]
print-results “lindex \$L2 \[lsearch \$L2 joey\]” [ntime {lindex $L2 [lsearch $L2 joey]} [n-times 50]]
print-results “lindex \$L1 \[lsearch \$L1 150\]” [ntime {lindex $L1 [lsearch $L1 150]} [n-times 30]]

print-results “building L2 with lappend” [ntime {
set newlist “”
foreach element $L2 {

lappend newlist $element
}

} [n-times 10]]

print-results “building L1 with lappend” [ntime {
set newlist “”
foreach element $L1 {

lappend newlist $element
}

} [n-times 1]]

print-results “sorting L2” [ntime {lsort $L2} [n-times 40]]
print-results “sorting L1” [ntime {lsort $L1} [n-times 2]]
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# 8.3 Macro and aggregate benchmarks
# “factorial(n), recursive”
# note: can’t do ?: trick bec. tcl will try to eval the else clause...
proc fac {n} {if {$n<=1} {return $n} {return [expr {$n*[fac [expr {$n-1}]]}]}}
print-results “recursive fac(1)” [ntime {fac 1} [n-times 30]]
print-results “recursive fac(4)” [ntime {fac 4} [n-times 7]]
print-results “recursive fac(7)” [ntime {fac 7} [n-times 3]]

# “factorial(n), iterative”
proc iter-fac {number} {

for {set fac 1} {$number != 0} {incr number -1} {
set fac [expr {$fac * $number}]

}
return $fac

}
print-results “iter fac(1)” [ntime {iter-fac 1} [n-times 30]]
print-results “iter fac(4)” [ntime {iter-fac 4} [n-times 7]]
print-results “iter fac(7)” [ntime {iter-fac 7} [n-times 3]]

proc fib {n} {
  if {$n<2} then {
        return $n
  } else {
        return [expr {[fib [expr {$n-1}]]+[fib [expr {$n-2}]]}]
  }
}

print-results “fibonacci(5), recursive” [ntime {fib 5} 1000]
print-results “fibonacci(10), recursive” [ntime {fib 10} 100]

print-results “list->array” [ntime {
    set isIndex 1

foreach item $L1 {
if {$isIndex} {

set theIndex $item
set isIndex 0

} else {
set array($theIndex) $item

# puts stdout “array($theIndex) = $item”
set isIndex 1

}
}

} 100]

# 8.4  Effects of whitespace and long identifiers

# factorial.  for well-written version, see above.
proc f {n} {if {$n<=1} {return $n} {return [expr {$n*[f [expr {$n-1}]]}]}}
print-results “f(1)” [ntime {f 1} [n-times 30]]
print-results “f(4)” [ntime {f 4} [n-times 7]]
print-results “f(7)” [ntime {f 7} [n-times 3]]

print-results “list->array” [ntime {
    set isIndex 1

foreach item $L1 {
if {$isIndex} {

set theIndex $item
set isIndex 0

} else {
set array1($theIndex) $item
set isIndex 1

}
}

} 100]
print-results “list->array” [ntime {set x 1;foreach i $L1 {if {$x} {set d $i;set x 0} {set r($d)
$i;set x 1}}} 100]

set longerName 123
set a 123
print-results “set longerName” [ntime {set longerName} [n-times 300]]
print-results “set a” [ntime {set a} [n-times 300]]
print-results “set longerName 123” [ntime {set longerName 123} [n-times 200]]
print-results “set a 123” [ntime {set a 123} [n-times 200]]
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Memories

See that picture
on the wall.
That's my grand-ma.
Pictures can paint
many, many words-
some more
some less.
I remember our card games
and her sweet nagging.

- in memory of my grand-ma,
Sylvia Feldsher (1912-1984).

-A.Sah'84

The 6:01 Commute

Break-run through the streets of Manhattan;
Fly into the rush hour;
track number... track number... 13! GO!

Riverrun of people pushing into the cars
whoosh! thunk! of closing doors
mish-mash of “personal belongings”,

the adjusting into the window seat.

and the grey-suit businessman next to you,
beer in one hand, briefcase at his feet,
chugs away at the last drops
of what is now only backwash.

and the conductor proclaiming “All Tickets Please,”
as row after row of ordinary people
flash their monthlies
like a membership card to some elite club
that they wished they weren't part of.

and my big, red mohair scarf under my head
as I hug my jacket,
and slide to sleep.

-A.Sah'92

In a Station of the Metro

The apparition of these faces in the crowd;
petals on a wet, black bough.

- Ezra Pound, 1916


