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Abstract

We propose an e�cient method for computing the Sparse Resultant of a system of n + 1
polynomial equations in n unknowns. The �rst e�cient algorithm was proposed by Canny and
Emiris [CE93]. The new algorithm produces a smaller matrix whose determinant is a nontrivial
multiple of the Sparse Resultant and from which the latter is easily recovered. It is incremental
in the sense that successively larger matrices are constructed until one is found with the above
properties. For certain classes of systems, the new algorithm attains optimality by expressing the
Sparse Resultant as a single determinant. An implementation of the algorithm is described and
experimental results are presented. In addition, we propose an e�cient algorithm for computing
the Mixed Volume of n polynomials in n variables, which provides an upper bound on the number
of common roots. This algorithm has also been implemented and empirical results are reported
which suggest that this is the fastest algorithm to date.

Keywords: Sparse Resultant, Mixed Volume, Newton Polytope, Asymptotic Complexity, Experi-

mental Results.

1 Introduction

We are interested in computing the Sparse Resultant of a system of n + 1 polynomial equations in n

unknowns. The Sparse Resultant provides a condition for the solvability of the system; it generalizes
the determinant of a linear system and the Sylvester resultant of two bivariate forms, as well as the
classical resultant for n homogeneous polynomials. Resultants are used for eliminating variables, thus
they are also called eliminants, and in solving systems of equations, for instance by means of the
u-resultant construction.

Resultant-based methods o�er the most e�cient solution to di�erent problems in areas ranging from
robotics [Can88] to graphics and modeling [BGW88]. A concrete example is the inverse kinematics
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problem for a 6R robot which is solved using a customized Sparse Resultant in 11 milliseconds [MC92c].
This consists of �nding the angles by which each of the six links of the robot must be rotated in order
to attain a given �nal position. Homotopy methods take about 10 seconds, which is unacceptable of
real-time industrial manipulators.

Implicitizing parametric surfaces is a fundamental problem in geometric and solid modeling. Given
the parametric expression of a surface

(x; y; z; w) = (X(s; t); Y (s; t); Z(s; t);W (s; t));

we wish to �nd its implicit description as the zero set of a single homogeneous polynomial in x; y; z; w.
This is achieved by eliminating the parameters s; t from the system

wX(s; t)� xW (s; t) = wY (s; t)� yW (s; t) = wZ(s; t)� zW (s; t) = 0;

which is equivalent to computing the system's resultant by considering these equations as polynomials
in s; t. For a bicubic surface, methods based on Sparse Resultants have been shown to run faster
by a factor of at least 103 compared to Gr�obner bases and the Ritt-Wu method [MC92b]. If the
parametrization has base points, taking the Dixon resultant of a perturbed system leads to an algorithm
that terminates successfully in about 30 minutes, while all major Gr�obner bases packages run out of
memory after running for a few days, even when working on a homomorphic image of the problem over
a �nite �eld [MC92a]. In general, Gr�obner bases algorithms can also exploit sparseness; yet, when the
Sparse Resultant is known, several problems can be solved much faster, as seen in these applications.

There exist several classes of problems, such as computing the camera displacement in vision and
the kinematics of mechanisms [ER94], the generalized kinematics problem with constraints as well as
problems in computational biology [PC94] for which sparse methods are expected to be very e�cient.
So, ideally, we would like to have a Sparse Resultant for every problem, which calls for a general
algorithm to construct them. The �rst e�cient algorithm was proposed in [CE93], while here we take
a di�erent tack in order to obtain more compact formulae. More precisely, we decrease the order
of the matrix de�ning a multiple of the Sparse Resultant and, for certain classes of systems, obtain
an optimal matrix whose determinant equals the resultant. The worst-case asymptotic complexity is
polynomial in the degree of the resultant and singly exponential, with a linear exponent, in n, provided
that certain mild conditions hold. The size of the constructed matrices is asymptotically given by the
same bounds, though our experimental results suggest that the average case is more favorable.

A subproblem in our approach is the computation of Mixed Volume which, based on Bernstein's
theorem, provides an upper bound for the number of roots of a system of polynomial equations. This
estimate is much tighter than Bezout's for sparse systems, in the sense speci�ed in Section 3. Clearly,
computing Mixed Volumes is of independent interest. We present an e�cient algorithm which is, to
the best of our knowledge, the most e�cient to date in terms of empirical complexity; its worst-case
asymptotic complexity is singly exponential in n, which matches the known lower bounds.

The next section puts the new approach into perspective by outlining previous work in the area.
Section 3 provides preliminary de�nitions. Section 4 speci�es our approach and Section 5 presents the
algorithm for building Sparse Resultant matrices. Section 6 discusses computing Mixed Volumes. The
Sparse Resultant implementation is presented in Section 7 and the asymptotic complexity analysis in
the following section. Section 9 shows how our algorithm constructs optimal Sparse Resultant matrices
for a class of multihomogeneous systems and lists some experimental results for multihomogeneous
systems in general. The paper concludes with directions for future work and some open questions.

2 Related Work

The classical resultant has been examined in the context of homogeneous polynomials; since no a

priori knowledge on the coe�cients is assumed, these can be dense polynomials. The simplest system
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is that of two homogeneous polynomials in two unknowns, which was studied by Sylvester who de�ned
the resultant as the determinant of a matrix in the polynomial coe�cients [Sal85]. The Multivariate

Resultant for a system of n homogeneous polynomials in n variables can be de�ned in several alternative
ways: Cayley [Cay48] de�ned it via a series of n divisions of determinants, Macaulay [Mac02] as the
quotient of a determinant divided by one of its minors while Hurwitz expressed it as the Greatest
Common Divisor (GCD) of n inertia forms [Hur13, vdW50]. In all cases, the nonzero entries of the
matrices are coe�cients of the given polynomials. Various more recent algorithms exist to construct
this resultant [Laz81, Can88, Ren92].

The Sparse Resultant was de�ned following the study of generalized hypergeometric functions
and A-discriminants [GKZ91, GKZ94]; the exact notion of sparseness is formalized and compared
to the dense case in the next section. The �rst general and e�cient algorithm for computing the
Sparse Resultant of n + 1 non-homogeneous polynomials in n variables was proposed in [CE93]. It
constructs a square matrix whose determinant is not identically zero and is a multiple of the Sparse
Resultant. The complexity, under certain conditions, is polynomial in the degree of the resultant and
exponential in n with a linear exponent. The Sparse Resultant is de�ned through a generalization of
Hurwitz's inertia forms, as the GCD of n+1 determinants of matrices. It is computed for a particular
coe�cient specialization through a series of n determinant divisions, though for polynomial system
solving the resultant matrix su�ces. The algorithm constructs the Multivariate Resultant if the input
is comprised of dense polynomials, while for linear systems it correctly computes the determinant of
the coe�cient matrix. A generalization of the algorithm was presented by Sturmfels [Stu94]. A greedy

implementation has been written on MAPLE by the second author and P. Pedersen and produces a
matrix whose order is at most that of the original algorithm.

An integral part of the Theory of Sparse Elimination is Bernstein's bound on the number of toric
roots of a square polynomial system. This is a signi�cantly tighter bound than Bezout's, in general,
but its calculation requires the computation of the Mixed Volume of the given polynomials. Several
algorithms have been proposed and implemented for this problem [HS, VVC94], whereas the algorithm
in [Emi93] solves the more general problem of computing a mixed subdivision. The �rst two methods
have worst-case asymptotic complexity singly-exponential in n, as does our new algorithm, yet the
latter improves upon the empirical complexity of previous approaches.

Special interest has been exhibited for multihomogeneous systems, where for certain cases ex-
act Sylvester-type formulae are obtained, i.e. matrices whose determinant equals the resultant ex-
actly [SZ94]. These results are applied in Section 9 and our improved algorithm is shown to construct
these formulae. A generalization of these results [WZ92], covering a wider class of systems, has yet to
o�er a constructive approach.

3 Preliminaries

Suppose that we are given n + 1 non-homogeneous polynomials f1; : : : ; fn+1 in variables x1; : : : ; xn
with indeterminate coe�cients and that we seek a condition on the coe�cients that indicates when the
system has a solution. We ignore trivial solutions with some xi = 0 for all coe�cient specializations,
thus we can deal with the more general case of Laurent polynomials

fi 2 K[x1; x
�1
1 ; : : : ; xn; x

�1
n ] = K[x; x�1]

where K is the algebraic closure of Q(fciji = 1 : : :ng) and ci is the sequence of all nonzero coe�cients
in fi. We are interested in common toric roots � 2 (C�)n where C� = C� f0g.

We use xe to denote the monomial xe11 � � �xenn , where e = (e1; : : : ; en) 2 Zn is an exponent vector.
Let Ai = supp(fi) = fai1; : : : ; aisig � Zn denote the set, with cardinality si, of exponent vectors
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corresponding to monomials in fi with nonzero coe�cients, called the support of fi. Then

fi =
siX
j=1

cijx
aij ; cij 6= 0; 8j 2 [1; si]; for i = 1; : : : ; n+ 1; (1)

so that Ai is uniquely de�ned given fi. A polynomial system is unmixed if supports A1; : : : ;An+1 are
identical, otherwise it is mixed.

De�nition 3.1 TheNewton Polytope of fi is the Convex Hull of support Ai, denotedQi = Conv(Ai) �
Rn.

We shall denote the cardinality of the vertex set of Qi by mi.
For arbitrary sets there is a natural associative and commutative addition operation called Minkowski

Addition.

De�nition 3.2 The Minkowski Sum A+B of point sets A and B in Rn is point set

A+ B = fa+ bj a 2 A; b 2 Bg � Rn:

In particular, if A and B are convex polytopes then A+ B is a convex polytope.

We are mostly interested in the Minkowski Sums of convex polytopes, for which A+B can be computed
as the Convex Hull of all sums (a+ b) of vertices of A and B respectively. The commutativity of this
operation implies that translating A or B is equivalent to translating A+B.

De�nition 3.3 TheMinkowski Di�erenceA�B of convex polytopes A and B in Rn is convex polytope

A� B = fa 2 Aj a+B � Ag � Rn:

A�B lies in the interior of A but does not de�ne an inverse of the addition operation, since it does not

equal A+(�B) and, in general B+(A�B) �
6= A. However, when A is itself a Minkowski Sum B+C,

then (B+C)�B = C, for any convex polytope C. We also state identities A� (B+C) = (A�B)�C

and (A+ U)� B = (A� B) + U , where U is a one-dimensional polytope.
Let Vol(A) denote the Lebesgue volume of A in n-dimensional Euclidean space, for polytope

A � Rn.

De�nition 3.4 Given convex polytopes A1; : : : ; An � Rn, there is a unique, up to multiplication
by a scalar, real-valued function MV (A1; : : : ; An), called the Mixed Volume of A1; : : : ; An which is
multilinear with respect to Minkowski Addition and scalar multiplication, i.e. for (non-negative) �; � 2
R�0 and convex polytope A0

k � Rn

MV (A1; : : : ; �Ak + �A0
k; : : : ; An) = �MV (A1; : : : ; Ak; : : : ; An) + �MV (A1; : : : ; A

0
k; : : : ; An):

To de�ne Mixed Volume exactly we require that

MV (A1; : : : ; An) = n! Vol(A1); when A1 = � � � = An:

An equivalent de�nition is

De�nition 3.5 For (non-negative) �1; : : : ; �n 2 R�0 and convex polytopes A1; : : : ; An � Rn, the
Mixed VolumeMV (A1; : : : ; An) is the coe�cient of �1�2 � � ��n in Vol(�1A1+ � � �+�nAn) expanded as
a polynomial in �1; : : : ; �n.
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Notice that this de�nition di�ers from the classical one [Gr�u67] by the factor n!.

Theorem 3.6 [Ber75] For polynomials f1; : : : ; fn 2 K[x; x�1] with Newton polytopes Q1; : : : ; Qn �
Rn the number of common solutions in (C�)n equals MV (Q1; : : : ; Qn). For a speci�c specialization of
coe�cients in C, the number of roots in (C�)n is either in�nite or does not exceed MV (Q1; : : : ; Qn).

This is also called the BKK bound, since it relies heavily on work by Kushnirenko [Kus75] and
has been alternatively proven by Khovanskii [Kho78], and constitutes the cornerstone of Sparse Elim-
ination Theory. It is at most as high as Bezout's bound and usually signi�cantly tighter for systems
encountered in Engineering applications. The two bounds are equal when every Newton polytope is
an n-dimensional unit simplex with all vertices on the coordinate axes and scaled by the total degree
of the polynomial. This situation is depicted in Figure 1 with dashed lines.

The Sparse or Newton Resultant provides a necessary and generically su�cient condition for the
existence of toric roots for a system of n + 1 polynomials in n variables; since it applies to mixed
systems, it is sometimes called the Sparse Mixed Resultant. The complexity of the Multivariate
Resultant depends on the Bezout bound, in particular its degree in the coe�cients of fi is

Q
j 6=i dj ,

where dj is the total degree of fj . In contrast, the degree of the Sparse Resultant depends on the
Mixed Volume of the n� n subsystems of the given polynomials, according to Theorem 3.8.

To de�ne the Sparse Resultant we regard a polynomial fi as a generic point ci = (ci1; : : : ; cimi
)

in the space of all possible polynomials with the given support Ai. It is natural to identify scalar
multiples, so the space of all such polynomials contracts to the projective space Pmi�1

K or, simply,
Pmi�1. Then the input system (1) can be thought of as a point

c = (c1; : : : ; cn+1) 2 Pm1�1 � � � � � Pmn+1�1:

Let Z0 = Z0(A1; : : : ;An+1) be the set of all points c such that the system has a solution in (C�)n and
let Z = Z(A1; : : : ;An+1) denote the Zariski closure of Z0 in the product of projective spaces. It is
proven in [PS93] that Z is an irreducible variety.

De�nition 3.7 The Sparse Resultant R = R(A1; : : : ;An+1) of system (1) is an irreducible polynomial
in Z[c]. If codim(Z) = 1 then R(A1; : : : ;An+1) is the de�ning polynomial of the hypersurface Z. If
codim(Z) > 1 then R(A1; : : : ;An+1) = 1.

Let degfi R denote the degree of the resultant R in the coe�cients of polynomial fi and let

MV (i) =MV (Q1; : : : ; Qi�1; Qi+1; : : : ; Qn+1) for i = 1; : : : ; n+ 1:

A consequence of Bernstein's theorem is

Theorem 3.8 [PS93] The Sparse Resultant is separately homogeneous in the coe�cients ci of each
fi and its degree in these coe�cients equals the Mixed Volume of the other n Newton polytopes, i.e.
degfi R = MV (i).

The Sparse Resultant generalizes the Multivariate Resultant; they coincide when all Newton poly-
topes are n-simplices scaled by the total degrees of the respective polynomials as described above and
the polynomials are homogenized.

Example 3.9 Here is a system of 3 polynomials in 2 unknowns

f1 = c11 + c12xy + c13x
2y + c14x

f2 = c21y + c22x
2y2 + c23x

2y + c24x (2)

f3 = c31 + c32y + c33xy + c34x
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Figure 1: Newton Polytopes for Example 3.9

with Newton polytopes shown in Figure 1. The matrix constructed by the algorithm of [CE93] has size
15, whereas the greedy version of that algorithm and the algorithm in this paper respectively reduce
the matrix size to 14 and 12. The Multivariate Resultant has total degree 26 and can be obtained as
the Sparse Resultant when the Newton polytopes are the dashed triangles in the �gure.

4 Matrix De�nition

In this section we describe how to obtain a matrix such that some maximal minor is a nontrivial mul-
tiple of the Sparse Resultant. The entries of this resultant matrix are chosen among the indeterminate
coe�cients of the original polynomials.

To exploit sparseness and achieve the degree bounds of Theorem 3.8 we must work on the sublattice
of Zn generated by the union of all input supports [Ai, i.e. on the coarsest common re�nement of
the sublattices generated by each Ai. Suppose this sublattice has rank n and is thus identi�ed with
Zn [Stu94]; in what follows, it is assumed that this has already been done by means of the Smith
Normal Form.

Let P(A) � K[x; x�1] be the set of all Laurent polynomials in n variables with support A �
Zn. Clearly, fi 2 P(Ai). Now �x supports B1; : : : ;Bn+1 � Zn and consider the following linear
transformation:

M : P(B1)� � � � � P(Bn+1)! P(
n+1[
i=1

Bi +Ai) : (g1; : : : ; gn+1) 7! g =
n+1X
i=1

gifi; (3)

where addition between supports stands for Minkowski Addition. The matrix we are constructing is
precisely the matrix of this transformation and to de�ne it fully we specify supports Bi at the end of
this section. Every row of M is indexed by an element of some Bi and every column by an element
of Bi + Ai for some i; equivalently, the rows and columns are indexed respectively by the monomials
of gi and the monomials of g. We �ll in the matrix entries �a la Macaulay: The row corresponding
to monomial xb of gi contains the coe�cients of polynomial xbfi so that the coe�cient of monomial
xq appears in the column indexed by xq, where b 2 Bi, q 2 supp(g). Columns indexed by monomials
which do not explicitly appear in xbfi have a zero entry.

Lemma 4.1 If f1; f2; : : : ; fn+1 have a common solution � 2 (C�)n then M is singular.

Proof If a common solution � exists, then it is a solution for all g in the image of linear transforma-
tion M . This implies that the image of M cannot contain any monomials and is, therefore, a proper
subset of the range. Since M is not surjective it is singular. 2

The number of rows equals the sum of the cardinalities of supports Bi while the number of columns
equals the cardinality of supp(g). Throughout this article we restrict ourselves to matrices M with at

least as many rows as columns.
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Theorem 4.2 Every maximal minor D of M is a multiple of the Sparse Resultant R(A1; : : : ;An+1).

Proof By the lemma, the rank of M is less than the number of columns on the set Z0 of coe�cient
specializations such that f1; : : : ; fn+1 have a common solution. Any maximal minor D is zero on Z0,
thus it is zero on the Zariski closure Z which is the zero set of R(Ai; : : : ;An+1). Since the latter is
irreducible, it divides D in Z[c1; : : : ; cn+1] where ci are the coe�cients of fi. 2

Let degfi D denote the degree in the coe�cients of polynomial fi of a maximal minor D of M . It is
clear from Theorem 3.8 that if R divides D then degfi D �MV (i) for all i.

We now specify the construction of supports Bi. Let

Q = Q1 + � � �+ Qn+1 � Rn

be the Minkowski Sum of the input Newton polytopes. Consider all n-fold partial Minkowski Sums

Qi = Q�Qi =
X
j 6=i

Qj � Rn and let Ti = Qi \ Zn = (Q� Qi) \ Zn:

We shall restrict our choice of Bi by requiring that it be a subset of Ti; notice that this is the case
in [CE93]. One consequence is that the supports of all products gifi lie within the Minkowski Sum Q,
therefore supp(g) � Q.

Given a direction u 2 Qn we de�ne a family of one-dimensional polytopes U � Rn, each being the
Convex Hull of the origin and of a point �u 2 Rn, where � is a varying nonzero real number. The
sign of � determines the direction in which U lies and its magnitude determines the length of U . For
a �xed U we de�ne

Bi = (Qi � U)\ Zn � Ti:

As the length of U decreases the cardinality of Bi tends to that of Ti. So for �xed u and � or, simply,
for �xed U , matrix M is well de�ned. In the next section we specify an algorithmic way for computing
Bi.

5 Matrix Construction

This section presents the algorithm for constructing sets Bi and the resultant matrix.

De�nition 5.1 Given convex polytope A � Rn and a vector u 2 Qn, we de�ne the u-distance of every
point p 2 A\Zn to be the maximum non-negative s 2 R�0 such that p+ su 2 A, i.e. it is the distance
of p from the boundary of A on direction u.

Integer points on the boundary of polytope A which are extremal with respect to vector u have
zero u-distance. Figure 2 shows di�erent subsets of T2 for system (3.9) with respect to u-distance, for
u = (11; 1). An equivalent de�nition of supports Bi is by ordering Q

i\Zn by u-distance, then selecting
the points whose u-distance exceeds some bound. Vector u here and in the de�nition of U at the end
of the previous section is the same and � can be used as the bound on u-distance. This is formalized
in

Proposition 5.2 For convex polytope A and one-dimensional polytope U 2 Rn,

(A� U) \ Zn = fa 2 A \ Zn j u-distance(a) > � = length(U)g:
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We now turn to the question of enumerating all integer lattice points Ti in n-fold Minkowski Sum
Qi, for 1 � i � n+1, together with their u-distances for some u 2 Qn. Our Mayan Pyramid Algorithm

is recursive and computes, at every stage, the range of values for the k-th coordinate in Ti when the
�rst k� 1 coordinates are �xed i.e. when the algorithm is computing coordinate xk for 1 < k � n, all
previous coordinates are set to p1; : : : ; pk�1.

Input: Integers i; k in [1; n] and u 2 Qn.

If k > 1 then a set of integer coordinates p1; : : : ; pk�1 is also given.

Output: Ti � Zn together with the u-distance of the points.

Mayan Pyramid Algorithm:

1. Compute mn;mx 2 Z which are, respectively, the minimum and maximum xk-
coordinates in Qi when the first k � 1 coordinates are fixed to p1; : : : ; pk�1.

2. If k < n, for each pk 2 [mn;mx]
set xk = pk and recursively call the algorithm with input i; k+ 1
and coordinates p1; : : : ; pk.

3. If k = n, for each pk 2 [mn;mx]
set xk = pk, compute the u-distance of point (p1; : : : ; pn) and add it to Ti.

The recursion terminates if [mn;mx] is empty for any k. Linear Programming is used to compute
mn;mx; here is how we �nd mn, for some k > 1:

minimize s 2 R : (p1; : : : ; pk�1; s) =
n+1X

l=1;l6=i

miX
j=1

�ljv
k
lj ;

mlX
j=1

�lj = 1; �lj � 0; 8l 6= i; j = 1 : : :ml;

where vlj are the vertices of Ql, v
k
lj is the k-vector consisting of the �rst k coordinates of vlj and ml

is the respective cardinality. Then mn is the ceiling of the optimal value of s; the same setup with s

maximized gives mx as the oor of the optimum.
Computing u-distances is accomplished by Linear Programming as well:

minimize s 2 R : (p1; : : : ; pn)+su =
n+1X

l=1;l6=i

miX
j=1

�ljvlj ;
mlX
j=1

�lj = 1; �lj � 0; 8l 6= i; j = 1 : : :ml:

This Linear Program can be used with k < n coordinates for pruning the set of integer points Ti, since
in practice we concentrate on points with a positive u-distance. We can then test the point projections
as they are constructed and eliminate all points (p1; : : : ; pk) whose uk-distance is zero; the uk-distance
is the analogue of u-distance for the projection of Qi and of u in the �rst k dimensions. Further tests
of this avor can achieve a more extensive pruning that decreases the empirical complexity.

Incrementing the supports Bi is done either by decreasing the length of U or, equivalently, by
lowering bound � on the u-distance. The degree of maximal minor D in M must be at least MV (i).
Hence we pick the initial sets Bi to be of cardinality exactly equal toMV (i). If D is generically nonzero
then it equals the Sparse Resultant and we have obtained a Sylvester-type formula. Otherwise, points
from Ti are added to Bi and they correspond to additional rows which are appended to the existing
matrix; in general, more columns will have to be added as well.

We summarize now the matrix construction algorithm, under the assumption that a direction u

has been chosen.

Input: Ai;MV (i); Ti with the u-distance of every point, for i = 1; : : : ; n+ 1.
Output: Maximal minor D of matrix M, such that D is a nontrivial multiple of the

Sparse Resultant, or an indication that such a minor cannot be found.
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Figure 2: T2 subsets with di�erent u-distance bounds and U

Incremental Matrix Construction Algorithm:

1. Initialize supports Bi to include MV (i) points from Ti
with largest possible u-distance.

2. Construct matrix M with random coefficients.

3. If M has at least as many rows as columns and it is nonsingular

then return any maximal minor in it.

4. Otherwise, if Bi = Ti for i = 1; : : : ; n+ 1 i.e. the supports cannot be

incremented, return with an indication that minor D cannot be found.

5. Otherwise, let Bi = fp 2 Ti j u-distance(p) � �g where � 2 R is chosen

so that the minimum number of new points are added to supports Bi and

at least one Bi is incremented; go to step 2.

The nonsingularity test considers a generic matrix M whose nonzero entries are symbolic coe�-
cients. Genericity is simulated by picking uniformly distributed random coe�cients from an interval
of integers. If we consider the determinant of M as a polynomial in one coe�cient from each fi then
the probability that a generically nonsingular M is singular under the specialization is bounded by
the ratio of the number of rows of M divided by the size of the interval. The size of M is typically
less than 104 so one-word integer coe�cients lead to an upper bound of 10�5 on the probability.

In many situations, a deterministic u which guarantees the construction of a compact matrix
formula can be found; such cases include systems whose structure is or resembles the multihomogeneous
structure, as demonstrated in Section 9. For arbitrary systems, a random vector u is chosen.

In several applications, including polynomial system solving, an exact matrix formula for the
resultant is not required [ER94], though when minor D equals the Sparse Resultant e�ciency is
optimized. In general D 6= R and there are two alternative ways to proceed in order to obtain the
resultant under a speci�c specialization of the coe�cients [CE93]; for both we �x the cardinality of
B1 to MV (1) so that degf1 D = degf1 R. This will enable us to de�ne R as the GCD of at most n+ 1
such minors.

Example 3.9 (cont'd): Figure 2 shows Q2 of system (2) and polytope U between the origin and
(2; 2=11) such that Q2 � U is the thin-line triangle with vertex set f(0; 1); (1; 1); (0; 0)g; this is B2 for
the �nal matrix M . Equivalently, this is the set of integer points in Q2 whose u-distance is larger than
or equal to 5

p
5=11, where u = (2; 2=11). The thin polygonal lines in Figure 2 de�ne some subsets of

T2 � Z2 for di�erent cuto� values on the u-distance.
This u leads to a 13� 12 nonsingular matrix M shown below for system (2) with Bi cardinalities

5; 3; 5, from which any 12� 12 minor serves as D. The Sparse Resultant's total degree is the sum of
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Mixed Volumes 4 + 3+ 4 = 11. The �rst line below displays the integer points indexing the columns.

(3; 2)(4; 3)(5; 3)(4; 2)(3; 1)(5; 2)(4; 1)(2; 2)(3; 3)(2; 1)(5; 4)(4; 4)

M =

2
666666666666666666666664

c11 c12 c13 c14 0 0 0 0 0 0 0 0
c12 0 0 c13 c14 0 0 0 0 c11 0 0
c14 c13 0 0 0 0 0 c11 c12 0 0 0
0 c14 0 0 0 0 0 0 c11 0 c13 c12
0 0 0 c12 c11 c13 c14 0 0 0 0 0
c21 0 c22 0 0 c23 c24 0 0 0 0 0
0 c22 0 c23 c24 0 0 c21 0 0 0 0
0 0 c23 c24 0 0 0 0 c21 0 c22 0
c31 c33 0 c34 0 0 0 0 c32 0 0 0
c32 0 0 c33 c31 0 c34 0 0 0 0 0
c33 0 0 0 c34 0 0 c32 0 c31 0 0
0 c31 c34 0 0 0 0 0 0 0 c33 c32
0 c32 c33 c31 0 c34 0 0 0 0 0 0

3
777777777777777777777775

6 Mixed Volume Computation

Computing the Mixed Volume of n Newton polytopes in n dimensions is an indispensable subproblem
for the Sparse Resultant matrix construction but also a fundamental question of independent interest in
Sparse Elimination. The main idea behind our method is the Lifting Algorithm by B. Sturmfels [Stu94].
Given convex polytopes Q1; : : : ; Qn � Rn, we choose a su�ciently generic lifting de�ned by n linear
functions li : Z

n ! Q and de�ne the lifted polytopes

bQi = f(q; li(q))j q 2 Qig � Rn+1; 1 � i � n:

We de�ne the lifted Minkowski Sum as the Minkowski Sum of the lifted polytopes bQ =
Pn

i=1
bQi � Rn+1.

De�nition 6.1 Consider distinct vertex sets fp1; : : : ; png and fq1; : : : ; qng such that pi; qi 2 Qi andPn
i=1 pi =

Pn
i=1 qi. The lifting de�ned by functions l1; : : : ; ln is su�ciently generic if and only ifPn

i=1(pi; li(pi)) 6=
Pn

i=1(qi; li(qi)) or, equivalently,
Pn

i=1 li(pi) 6=
Pn

i=1 li(qi).

The lower envelope of a convex polytope in Rn+1 is the closure of the subset of all n-dimensional
faces, or facets, whose outward normal has a negative xn+1-coordinate.

For a su�ciently generic lifting, the lower envelope of bQ is in bijective correspondence with the
Minkowski Sum Q of the original polytopes, since every vertex on the lower envelope is expressed
uniquely as a Minkowski Sum. This is a weaker requirement on the genericity of li since it has
to remove any ambiguity in picking the unique point lying on the lower envelope of bQ. If all 2n2

coordinates of li are chosen uniformly at random from an interval of size d2Lle, the probability that
genericity fails is bounded by

Q
imi=n

22Ll , where mi is the vertex cardinality of Qi and Ll 2 R�0. For
most problems in practice it su�ces to use one-word values for the li coordinates. It is straightforward
to check deterministically whether a particular choice of lifting functions is su�ciently generic.

The facets of the lower envelope project to maximal cells in a mixed subdivision of Q so that each
cell either contributes its volume to the Mixed Volume or contributes zero. In the �rst case, the cell is
called mixed and is the Minkowski Sum of n edges; in the second case it is unmixed. Demonstrations
of these facts can be found in [BS92, Stu94]; the essential property

MV (Q1; : : : ; Qn) =
X

Vol(�); over all mixed cells � of a mixed subdivision of Q;

10



relies on the multilinearity of the Mixed Volume from De�nition 3.4. Mixed cells are parallelepipeds
in n dimensions, hence their volume is the determinant of a matrix whose rows are the edges de�ning
the cell.

Several algorithms exist for the calculation of Mixed Volumes. One of the �rst approaches [Emi93]
computes the entire subdivision and simultaneously all n-fold Mixed Volumes required for a system
of n + 1 polynomials in n variables, but has to construct explicitly the lower envelope of bQ. The
method of [HS] takes advantage of repeated polytopes, while that of [VG94] exploits symmetry; gen-
eral implementations have been described in [VVC94]. These algorithms have the same worst-case
asymptotic complexity, as does our own algorithm de�ned below and analyzed in Section 8, namely
singly-exponential in n. However, based on experimental results, our algorithm appears to be the most
e�cient to date, for the general problem.

The idea is to test, for every combination of n edges from the given polytopes, whether their
Minkowski Sum lies on the lower envelope of bQ. If so its volume is computed and added to the Mixed
Volume. To prune the combinatorial search, we make use of

Proposition 6.2 Fix a lifting and let J � f1; : : : ; ng be an index set such that ej is an edge of Qj for
all j 2 J . If the Minkowski Sum of lifted edges

P
j2J bej lies on the lower envelope of

P
j2J

bQj then,
for any subset of L � J , the Minkowski Sum

P
l2L bel lies on the lower envelope of the Minkowski SumP

l2L
bQl.

Our algorithm constructs n-tuples of edges from Qi by starting with edge pairs and adding one
edge from another polytope at a time. As each edge is added, the k-tuple for 2 � k � n is tested on
whether it lies on the lower envelope of the corresponding lifted Minkowski Sum or not; only k-tuples
that pass the test continue to be augmented. Further pruning is achieved by eliminating from the edge
sets of polytopes not yet considered those edges that cannot extend the current k-tuple. This means
that for index set J , we let L = J [ fig, where i ranges over f1; : : : ; ng n J and check the edge tuples
corresponding to L. This process employs several \small" tests to decrease the number of \large" and
expensive tests that must be ultimately performed.

Every test for a k-tuple of edges ei1 ; : : : ; eik is implemented as a Linear Programming problem.
Let bpi 2 Qn+1 be the midpoint of the lifted edge bei of bQi and let bp = bpi1 + � � �+ bpik 2 Qn+1 be an
interior point of their Minkowski Sum. The test of interest is equivalent to asking whether bp lies on
the lower envelope or not, which is formulated as follows:

maximize s 2 R : bp�sz = X
l2fi1;:::;ikg

mlX
j=1

�ljbvlj ;
mlX
j=1

�lj = 1; �lj � 0; 8 l 2 fi1; : : : ; ikg; j = 1 : : :ml;

where z = (0; : : : ; 0; 1) 2 Zn+1, bvlj are the vertices of bQl and ml their cardinality, as before. Then bp
lies on the lower envelope if and only if the maximal value of s is 0.

The Mixed Volume is invariant under permutation of the polytopes. For a given permutation the
algorithm is:

Input: Convex polytopes Q1; : : : ; Qn � Rn with integer vertices.

Output: MV (Q1; : : : ; Qn) 2 Z.

Lift-and-Prune Algorithm:

1. Enumerate the edges of all polytopes Q1; : : : ; Qn in sets E1; : : : ; En.

2. Compute random lifting vectors l1; : : : ; ln 2 Qn.

3. Initialize the Mixed Volume to 0.
4. For every edge e1 in E1 create current tuple (e1); let k = 1.
5. Let i range from k + 1 to n:

11



For every ei 2 Ei, if
Pk

j=1 bej + bei does not lie on the lower envelope ofPk
j=1

bQj + bQi then ei is removed from Ei.

6. Increment k.
7. If k > n

then add the volume of the Minkowski Sum of (e1; : : : ; en) to the Mixed

Volume; continue at step 4.

8. If k � n

then add new edge ek in Ek to the current tuple (e1; : : : ; ek�1).
If the Minkowski Sum be1 + � � �+ bek lies on the lower envelope of the

Minkowski Sum bQ1 + � � �+ bQk then go to step 5;

otherwise continue at step 4.

The Lift-and-Prune Algorithm is incremental in the sense that partial results are available at every
stage of execution. This is particularly useful in long runs of the program, when a loose bound can be
detected long before termination. In addition, the tree structure of the combinatorial search permits
to restart the algorithm in the middle of a computation and allows for a distributed version.

The algorithm given above does not exploit the fact that Mixed Volume is invariant under permu-
tation of the polytopes. In our implementation, we change the order of the polytopes, or rather their
edge sets, in a dynamic fashion so that when the algorithm at step 8 picks a new edge set, it chooses
the one with minimum cardinality.

Asymptotic complexity is analyzed in Section 8; here we discuss empirical results. Table 1 displays
the running times of our implementation on the problem of cyclic n-roots for an Alpha DECstation

with an 80 MHz processor, rounded to the nearest integer number of seconds. This is a standard
benchmark for algebraic geometry software, encountered in Fourier analysis. The exact bounds on the
number of isolated complex roots were derived in a series of articles including [BF91a, BF91b, BF94]
plus some Gr�obner bases calculations on J. Backelin's program Bergman. For n = 8 there is a one-
dimensional variety, which is found by GB, plus 1152 isolated roots; for n = 9 it is also known that
the solution includes a positive-dimensional variety but for n � 9 the precise number of isolated roots
is still unknown. The polynomial system is the following:

x1 + x2 + � � �+ xn = 0

x1x2 + x2x3 + � � �+ xnx1 = 0

� � �
x1 � � �xn�1 + x2 � � �xn + � � �+ xnx1 � � �xn�2 = 0

x1x2 � � �xn = 1

We compare running times with the Gr�obner Bases package GB by Faug�ere, since it outperformed
Bergman. GB was executed on a 40 MHz Sun Sparc 10. All running times should be solely
viewed as rough indications of the problem's intrinsic complexity and the algorithms' performances.
The Mixed Volume computation constructs a monomial basis for the coordinate ring which allows us
to solve the polynomial system [ER94], still Gr�obner Bases provide signi�cantly more information,
including a tighter root count in general. For n = 8 the Gr�obner Basis was computed over a �eld
of a large prime characteristic, while for larger n the problem was infeasible [Fau94]. Exploiting the
symmetry, the algorithm of [VG94] requires 16.4 seconds on an Alpha DECstation 5000/240 for
the cyclic 5-root problem.

Our implementation is available through anonymous ftp from robotics.eecs.berkeley.edu.
Parallelization of our algorithm is straightforward and an implementation is being prepared on the
CM-5 for public distribution.

12



Table 1: Mixed Volume algorithm performance for the cyclic n-roots problem on an Alpha DEC-

station.

known Lift-Prune Algorithm GB package
n #roots Mixed Volume time (80 MHz DECstation) #roots time (40 MHz Sparc 10)

5 70 70 0s

6 156 156 2s 156 3s

7 924 924 27s 924 6h 0m 4s

8 1152 2560 4m 19s in�nite (char> 0) 3h 5m 12s

9 ? 11016 40m 59s - -

10 ? 35940 4h 50m 14s - -

11 ? 184756 38h 26m 44s - -

7 Implementation

This section presents the overall algorithm for constructing Sparse Resultant matrices given n + 1
supports Ai � Zn. For computing Newton polytopes Qi we may use the implementation, developed by
the �rst author, of the the Beneath-Beyond algorithm in arbitrary dimension that handles degenerate
con�gurations by the optimal perturbation scheme of [EC92]. However, since only the Convex Hull
vertices and edges are needed, we choose to use Linear Programming on every support point to decide
whether it is a vertex or not. Then the Mixed Volume algorithm of the previous section uses again
Linear Programming on every pair of vertices to identify those that de�ne edges on the Newton
polytopes.

Input: Supports A1; : : : ;An+1 and direction vector u 2 Qn.

Output: Maximal minor D of matrix M, such that D is a nontrivial multiple of the

Sparse Resultant, or an indication that such a minor cannot be found.

Main Algorithm:

1. Compute the vertex sets of Newton polytopes Q1; : : : ; Qn+1.

2. Use the Mayan Pyramid Algorithm to compute sets T1; : : : ; Tn+1 2 Zn
and all u-distances.

3. Use the Lift-and-Prune Algorithm to compute Mixed Volumes

MV (1); : : : ;MV (n + 1).
4. Use the Matrix Construction Algorithm to construct matrix M whose

maximal minor D is a nontrivial multiple of R and return D if found.

Otherwise, return with an indication that minor D cannot be found.

A useful feature is that, as the matrix construction is incremental, the nonsingularity test is also
incremental. We have implemented an incremental algorithm for LU decomposition of rectangular
matrices which, given a partially decomposed matrix, will attempt to continue and complete the
decomposition. It uses partial pivoting and stops when a pivot and the subcolumn below it are all
zero, thus calling for a larger matrixM . Arithmetic is carried out over a large �nite �eld, which allows
for e�cient and exact arithmetic. This has the disadvantage that the constructed matrix M may be
larger than what would be possible over the integers.

For Linear Programming, we use a publicly available implementation of the Simplex algorithm,
since our goal is to release our software for distribution. It is evident that more e�cient implementa-
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tions of Linear Programming would signi�cantly speed up our algorithm. As for the stability of the
Simplex algorithm, it is not an issue because the inputs are all integers.

8 Asymptotic Complexity

Let s be the maximum number of points in any of the given supports Ai, e the maximum number of
Newton polytope edges, m the maximum number of Newton polytope vertices and v the maximum
coordinate of any vertex, assuming that the Newton polytopes have been translated to lie in the �rst
orthant and touch the coordinate axes. Let Ll be the maximum bit-size of a coordinate in any lifting
vector li and Lv = log v be the maximum coordinate size of any Newton polytope vertex.

Each Mixed Volume computation requires O(en) Linear Programming problems, each of com-
plexity O(n7m6(Ll + Lv)). For Linear Programming any polynomial-time algorithm can be applied;
Karmarkar's results [Kar84] are used in this section. This complexity dominates Step 1 of the algorithm
where the edges are enumerated. From Section 6, mn=n22Ll is a constant, hence Ll = O(n logm).

Theorem 8.1 The complexity of the Mixed Volume calculation is eO(n)Lv , where e is the maximum
number of edges in any Newton polytope and Lv the logarithm of the maximum coordinate of any
Newton polytope vertex or, equivalently, the maximum degree of any input polynomial in any variable.
For most systems this bound is eO(n).

This is asymptotically optimal because Mixed Volume generalized the Convex Hull Volume problem
which is known to be #P-hard.

Computing one Convex Hull vertex set requires at most s Linear Programming tests for a total
complexity in (sn)O(1)Lv . The cardinality of an integer point set is asymptotically bounded by the
volume of their Convex Hull [Ehr67], hence s is bounded by the maximum Vol(Qi) which is bounded
by the maximum Vol(Qi). In short, the total complexity of �nding all Newton polytope vertex sets is

(nVol(Qi))O(1)Lv with Vol(Qi) maximized over i = 1; : : : ; n+ 1:

Each Linear Programming problem in the enumeration of integer point sets Ti has worst-case
complexity O(n6m5Lv). An asymptotic upper bound on the number of Linear Programming problems
is the cardinality of Ti or, by the relation of point cardinality to volume, Vol(Qi). The complexity
of Algorithm I is dominated by the LU decomposition, hence has complexity O(r3), where r is the
total number of rows in matrix M which is at most equal to the total number of points in all sets Ti.
Hence the complexity of the Mayan Pyramid and the Matrix Construction Algorithms is bounded by
the complexity above. This discussion leads to

Theorem 8.2 Assuming that a constant number of vectors u is used and the Mixed Volumes have
been computed, the complexity of the Sparse Resultant algorithm is (nVol(Qi))O(1)Lv, where Lv is as
above and Vol(Qi) is maximized over all i = 1; : : : ; n+ 1. For systems with every MV (i) > 0, the Lv

factor can be ignored. Another bound is (nv)O(n), where v is the maximum coordinate in any Newton
polytope.

Proof Lv is bounded by the maximum of n and Vol(Qi) provided that Vol(Qi) > 0 which follows
from MV (i) > 0; 8 i 2 f1; : : : ; ng. Otherwise, the input system has a very special structure and the
Sparse Resultant is trivially 1. To avoid the dependence on Vol(Qi), consider that Vol(Qi) � vn and
that Vol(Qi) � nnVol(Qi), where i is always chosen so as to maximize the respective volumes. 2

An important special case is unmixed systems, as well as other systems which may behave sim-
ilarly in the following sense. For unmixed systems Vol(Qi) = O(nnVol(Q1)), MV (i) = n! Vol(Q1)
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and degR = (n + 1)MV (i), where degR is the total degree of the Sparse Resultant. This implies
Vol(Qi) = O(nn degR=(n+1)!) = O(2n degR) by Stirling's approximation. Well-behaved systems are
exactly those for which these relations hold and include those mixed systems whose Newton polytopes
su�ciently resemble each other.

Corollary 8.3 Given the Mixed Volumes, for a constant number of u vectors and for well-behaved
systems, including unmixed ones, the total complexity is 2O(n)(degR)O(1)Lv. Lv is asymptotically
dominated and can be ignored, unless Vol(Qi) = 0 for all i.

We expect to formalize the notion of well-behaved systems, extend the latter bounds to arbitrary
mixed systems and derive tighter bounds for the Mixed Volume problem. Empirical results show that
the above bounds are overly pessimistic for the complexity of our Sparse Resultant algorithm.

9 Multihomogeneous Systems

We concentrate on unmixed homogeneous systems where the variables can be partitioned into r groups
so that each polynomial is homogeneous of degree dk in each group k, with k 2 f1; : : : ; rg; for the
same group, lk +1 indicates the number of variables. We call the system of type (l1; : : : ; lr; d1; : : : ; dr)
with the number of equations being n + 1 where n =

Pr
k=1 lk; there is no relation between these

li and the lifting functions of previous sections. There should be no confusion from the fact that
the polynomials given may be homogeneous; to apply our algorithm we dehomogenize each group of
variables by setting the (lk + 1)-st variable to one.

The Newton polytope for every polynomial is then the Minkowski Sum of r lk-dimensional sim-
plices, each on a disjoint set of coordinate axes. Every simplex is denoted by dkSlk and is the convex
hull of lk segments of length dk rooted at the origin and extending along each of the lk axes corre-
sponding to the variables in this group. Equivalently, Slk is the convex hull of unit segments. Since
we are in the unmixed case the n-fold Minkowski Sum Qi is the same for any i 2 f1; : : : ; n+ 1g and
equal to integer polytope P � Rn which is simply a copy of the unique input Newton polytope scaled
by n i.e.

Q1 = � � � = Qn+1 =
rX

k=1

dkSlk ; P =
rX

k=1

ndkSlk � Rn:

Both summations express Minkowski Addition of lower-dimensional polytopes in complementary sub-
spaces, such that their Sum is a full-dimensional polytope.

Sturmfels and Zelevinsky [SZ94] studied in particular the subclass of systems for which, for every
k 2 f1; : : : ; rg, we have lk = 1 or dk = 1. They showed that every such system has a number of
Sylvester-type formulae for its Sparse Resultant, called multigraded resultants, one for every permuta-
tion � of the indices f1; : : : ; rg. For this resultant matrix, all supports Bi are identical, of cardinality
equal to the unique n-fold Mixed Volume. Let B � Rn be the convex hull of Bi. Matrix M is de�ned
by setting

B =
rX

k=1

mkSlk � Rn where mk = (dk � 1)lk + dk
X

j:�(j)<�(k)

lj ; k 2 f1; : : : ; rg:

Lemma 9.1 Partition the n coordinates of vector u 2 Qn into r groups following the partition of
variables and set every coordinate in the k-th group equal to (ndk �mk)=lk 2 Q. Then P � U = B.

Proof By using the fact that
Pr

k=1 lk = n and that for every k we have dk = 1 or lk = 1, it can
be shown that (ndk �mk)=lk > 0, 8k. Consider any point p 2 P � U with coordinates grouped in r
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groups, each of cardinality lk. For k such that lk = 1 we have two conditions on coordinate c:

0 � c � ndk and 0 � c+
ndk �mk

lk
� ndk

which is equivalent to 0 � c � mk. For k such that lk > 1 and dk = 1, we have two conditions on the
sum s of the lk coordinates in the k-th group:

0 � s � n and 0 � s+ lk
n �mk

lk
� n

which is equivalent to 0 � s � mk . Hence p 2 B if and only if p 2 P � U . 2

To see how this u was chosen, observe that B is a scaled-down copy of P , where the scaling has
occurred by a di�erent factor for every group of lk coordinates. Given sequence lk, polytopes P and
B are entirely de�ned by their unique vertex with no zero coordinate; u is the vector between these
two vertices.

Theorem 9.2 Given a multihomogeneous system of type (l1; : : : ; lr; d1; : : : ; dr) such that lk = 1 or
dk = 1 for k = 1; : : : ; r, we de�ne u 2 Qn with the k-th group of coordinates equal to (ndk �mk)=lk.
Then the �rst matrix constructed by our algorithm has determinant equal to the Sparse Resultant of
the system.

Proof It follows from the lemma that the �rst set of supports Bi constructed are all identical, since
the system is unmixed, and equal to B\Zn, hence they are exactly those required to de�ne a Sylvester-
type formula for the resultant. Note that the formula obtained corresponds to the permutation � used
in the de�nition of mk. 2

We have been able to produce all possible Sylvester-type formulae for various multihomogeneous
examples with lk = 1 or dk = 1 for all k. Further, for systems that do not fall within this class
we have used u de�ned similarly and obtained near-optimal resultant matrices. Experimental results
and preliminary running times on a 40 MHz Sun Sparc 10 are displayed in Table 2, rounded to
the nearest integer number of seconds. degR and degD respectively indicate the total degree of the
Sparse Resultant and the size of the maximal minor D that our algorithm constructs.

For the second class of systems for which there exists k such that lk > 1 and dk > 1, we have used
the same recipe as above to calculate mi and u, then have perturbed the latter to obtain the results
shown. For type (2; 1; 2; 1) we used � = (2; 1); the greedy implementation of the Sparse Resultant
algorithm in [CE93] produces a matrix of size 103. Similarly, for type (2; 1; 2; 2) the smallest matrix
is obtained for � = (2; 1).

The last section of the table refers to speci�c applications, namely the motion-from-points problem
in vision and the forward kinematics of the Stewart-platform parallel robot. Neither is exactly a
multihomogeneous system of the shown type but both approximate this structure. The kinematics
problem is very sparse, which signi�cantly lowers the Sparse Resultant degree; in actuality, we have
used a perturbation of the shown u to produce a 745� 745 matrix that can be reduced to a 372� 372
resultant matrix which is then manipulated in order to solve the corresponding algebraic system. More
results on system solving using resultant matrices are reported in [ER94], where further references can
also be found for these applications.

10 Future Work

A theoretical explanation of our algorithm's e�ciency should be possible through the theory of Koszul
complexes and a generalization of the notion of degree to sparse polynomials. The determination
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Table 2: Sparse Resultant algorithm performance on a Sun Sparc 10.

type application vector u 2 Zn degR degD CPU time

(2; 1; 1; 1; 2; 2) (2; 2; 3; 1) 240 240 42s

(1; 1; 1; 1; 2; 2; 1; 1) (7; 5; 2; 1) 480 480 1m 0s

(1; 1; 1; 1; 3; 3; 1; 1) (10; 7; 2; 1) 1080 1080 2m 11s

(1; 1; 1; 1; 3; 3; 2; 1) (10; 7; 3; 1) 2160 2160 4m 3s

(1; 1; 1; 1; 3; 3; 3; 1) (10; 7; 4; 1) 3240 3240 6m 29s

(2; 1; 2; 1) � (1; 1; 3) 48 52 0s

(2; 1; 2; 2) � (1; 1; 5) 96 104 6s

(2; 1; 1; 2; 1; 1) � (3; 3; 2; 1) 240 295 2m 43s

(2; 1; 1; 2; 2; 1) � (3; 3; 3; 1) 480 592 18m 56s

� (2; 3; 1; 1) vision (5; 5; 2; 2; 2) 60 60 24s

� (3; 4; 2; 2) kinematics � (11; 11; 11; 3; 3; 3; 3) 246 745 35m 0s

of favorable vectors u for di�erent classes of systems would automate the process of constructing
compact matrix formulae. Lastly, a more careful complexity analysis for Mixed Volumes and for the
entire algorithm on mixed polynomial systems might yield tighter asymptotic bounds.

An important merit of this work is its practical application in solving algebraic systems in kine-
matics and vision [ER94], modeling [BGW88] as well as computational biology [PC94]. In this respect,
one open question is the transformation of arbitrary systems to an equivalent form that is amenable to
Sparse Elimination and in particular to the computation of Mixed Volumes and Sparse Resultants.
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