
1

The Dynamic Management of Guaranteed Performance Connections in

Packet Switched Integrated Service Networks

Colin Parris and Domenico Ferrari
The Tenet Group

Computer Science Division, University of California, Berkeley
and International Computer Science Institute

UCB Technical Report CSD-94-859

Abstract

The Dynamic Management of Guaranteed-Performance Connections in Packet Switched

Integrated-Services Networks

Colin James Parris

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Domenico Ferrari, Chair

The communication infrastructure of the future must provide e�cient support for applications with

diverse tra�c characteristics and performance requirements. Currently these applications are supported

using several specialized networks that accommodate the di�erent services (e.g., cable networks for

video, phone networks for voice, and so on); however, technological advancements in the �elds of

microelectronics and optics have made it possible to integrate these services on a single network. These

Integrated Services Networks support a wide range of qualities of services to the client and provide

many advantages, which include large economies of scale, increased network management capabilities,

improved statistical multiplexing, and ubiquity of access. The qualities of service o�ered by these

networks include guarantees on various performance indices for a client's speci�ed tra�c characteristics;

these services are often referred to as Guaranteed Performance Communication (GPC) services.

These GPC services provide performance guarantees in terms of throughput, delay, delay jitter and

loss rates, and adopt a connection-oriented, �xed-routing, reservation-oriented approach to achieve these

guarantees. In such an approach, resource allocation and route selection decisions are made before the

start of the communication on the basis of resource availability and real-time network load at that time,

2and are usually kept for the duration of the communication. This rather static resource management

approach has certain limitations: it does not take into account (a) the dynamics of the communicating

clients; (b) the dynamics of the network state; and (c) the tradeo� between quality of service and

network availability, thus limiting the
exibility or adaptability of these guaranteed-performance services.

In order to accommodate the dynamics of client demands and network state, it is necessary that the

GPC services be
exible.

In this thesis, we examine this problem of
exibility of GPC services in wide-area packet-switched

networks, and present a solution by proof of concept; that is, we designed a dynamic resource manage-

ment scheme, analyzed its behavior through simulation experiments, and implemented a prototype of

the scheme. This dynamic resource management scheme, called the Dynamic Connection Management

(DCM) scheme, provides the network with the capability to dynamically modify the tra�c characteris-

tics, the performance requirements, and the routes of any existing guaranteed-performance connection.

We begin this examination by providing several examples of the dynamics of the client demands and of

the network state to motivate our work, and we continue with a review and critique of various proposed

solutions. We then present the concept of Dynamic Connection Management and discuss its compo-

nents: namely, the DCM scheme and the DCM Policies. The DCM scheme is a collection of algorithms

and mechanisms that permit the runtime modi�cation of the tra�c and performance parameters, and

the route of a guaranteed-performance connection. The DCM scheme is guided by high-level manage-

ment policies, called the DCM policies, that determine when modi�cation is permissible in the network

and the values of the appropriate parameters to be modi�ed. The focus of this thesis is the DCM

scheme.

The DCM scheme is an enhancement of the Tenet GPC service; it is based on three algorithms:

the DCM channel administration algorithm, the DCM transition algorithm, and the DCM routing

algorithm; and it is subject to the DCM modi�cation contract. This contract speci�es the degree of

disruption that a client may experience during a modi�cation. This degree can range from no disruption

to a bounded number of performance violations. The channel administration algorithm conducts the

admission control tests and reserves the appropriate network resources to ensure that the performance

guarantees of the modi�ed channel are satis�ed during and after modi�cation. The DCM transition

algorithm ensures that the performance violations speci�ed in the DCM modi�cation contract are

adhered to during modi�cation. The DCM routing algorithm determines a route from the source to

the destination host according to the tra�c and performance requirements and other administrative

factors.

The DCM scheme also supports mechanisms that enable modi�cations to a connection to be made

to a segment of the connection (local control) or to the entire connection (global control). Furthermore,

3faster establishment and modi�cation is also possible as the DCM scheme uses the intelligent restart

establishment mechanism, which utilizes the real-time network and client state to compute the path

before establishment and the time value of the network state information to bypass unavailable links

during establishment. The DCM scheme was veri�ed and analyzed by a series of simulation experiments.

These simulation experiments indicated that the scheme is functionally correct and that the performance

of the scheme is very acceptable given our time scales of interest.

In completing the proof of concept, we implemented the DCM scheme, and conducted several initial

measurement experiments on this prototype implementation. The implementation provided the basic

management mechanisms, using a standardized \open" management framework, namely the Simple

Network Management Protocol version 1 (SNMPv1), by which guaranteed-performance connections

can be monitored and controlled. In our implementation the data delivery protocols used were the

transport-level message protocol and network-level protocol of the Tenet Real-Time Protocol Suite;

namely, the Real-Time Message Transport Protocol (RMTP) and, the Real-Time Internet Protocol

(RTIP). Management Information Bases (MIBs) were designed for these data delivery protocols and

the DCM scheme, and are used provide the monitoring and control capabilities. Results from the initial

monitoring and control experiments, which were conducted on a local-area testbed, indicated that the

prototype is e�ective in supporting the monitoring and control of guaranteed-performance connections.

Committee Chair:

Professor Domenico Ferrari

1

Chapter 1

Introduction

1.1 Perspective

Technological advances within the last decade have fostered a period of unprecedented growth in

computer and communications systems. The main contributions to these highly touted technological

advances were made in the �elds of �ber optics and micro-electronics. These advances are responsible for

the increase in speeds and capacities of many of the components used in computer and communication

systems (i.e. transmission media, switches, memory, and processors) [23], for the reduction in size and

cost of these components, and for their increased reliability. The growth that has been introduced by

these advances has not only increased the functionality and reliability of these systems, but also made

their presence wide-spread by permitting the production of systems that are more useful and a�ordable.

Coupled with this technological evolution is a major paradigm shift in the needs of the users. This

new paradigm is the desire of users to communicate. This need for communication is depicted in user

demands for total information access, universal connectivity, and interactive communication. Associated

with this new paradigm is the use of multiple media types (video, audio, data) for the presentation of

information or during interactive communication. The signi�cant increase in the number of video

and audio conferencing, data navigation, scienti�c visualization, and medical imaging applications are

indicators of this shift.

Currently these communication needs are satis�ed using several specialized networks which accom-

modate the di�erent services needed for each media type. The cable TV networks are designed to

support the broadcast of analog video signals and require high rate, �xed bandwidth, low jitter, simplex

services. The telephone networks are used to support interactive voice communication, and require a

low rate, �xed bandwidth, low-delay, low-jitter, full duplex service. Data communication is conducted

over data networks. These data networks are designed to support communication between computers

and do not provide any guarantees in their service. While the current video and audio networks provide

2guaranteed performance services, the data network provide a \best-e�ort" service (i.e., they do not

provide guarantees on throughput, delay, or jitter).

To support these user needs while taking advantage of the technological advantages, there has been

a concentrated e�ort to integrate the multiple services required so that they can be provided within

a single network. A successful integration will provide many advantages, including large economies

of scale, improved statistical multiplexing, increased network management capabilities, and ubiquity of

access. These new networks will support applications with diverse tra�c and performance speci�cations

ranging from the extremely stringent (i.e. high throughput, low delay, low jitter, low loss rate) to best

e�ort ones.

The key motivation behind these integrated services networks is to provide a wide range of qualities

of service to a client and to utilize statistical multiplexing to increase resource utilization. The qualities

of service o�ered must include guarantees on various performance indices for a client's speci�ed tra�c

characteristics. Inherently, this motivation seeks to increase the adaptability or
exibility of the network.

Thus, these new networks will not only be capable of adapting to the quality-of-service (QOS) needs of

current applications but to the wide variety of QOS needs of future applications. Statistical multiplexing

will ensure that this
exibility is supported while e�ciently utilizing the networks resources. Flexibility

can thus be thought of as the ability of the network to adapt itself e�ciently to the support of many

di�erent quality-of-service requirements.

Current packet-switched networks are somewhat
exible as they can support applications with di�er-

ent tra�c characteristics; however, they cannot o�er performance guarantees. Circuit-switched networks

can o�er performance guarantees; however, they are in
exible as they can only o�er these guarantees over

a very limited menu of tra�c characteristics (i.e., usually one or two classes of tra�c). An integrated-

services network will provide
exible services in that it must provide performance guarantees over a

wide range of values and combinations of tra�c characteristics.

There are, however, several levels of
exibility. The initial concern of e�cient support for multiple

guaranteed qualities of service has been addressed by several approaches [22, 51, 59, 3, 13, 40, 33, 14, 60]

which can be collectively called Guaranteed Performance Communication (GPC) Schemes. A review

of many of these schemes is provided in Chapter 2. These schemes are intended to make the networks

adaptable to a client's initial quality-of-service requirements; however, in many cases a client's quality-

of-service requirements will change over the duration of the client session. Also, as the network state

changes, it may be possible to satisfy a client's quality-of-service needs that could not initially be

satis�ed. In other cases, a change in the network state (due to client requests at various times for

various qualities of service, link and node faults, mobile host movement, and so on) could result in the

3need for the network to adapt itself so that its state moves to a better position in the state space1. These

network state changes may necessitate changes in the routes of various active quality-of-service sessions

or the modi�cation of these sessions. These adaptive changes modify the network services themselves to

accommodate the needs of the client demands and of the network. The services provided by the GPC

schemes are achieved by managing the resources in the network. In order to introduce this new level of

exibility, it is now necessary to do adaptive or
exible resource management. This thesis studies the

problem of adaptive resource management in the context of guaranteed performance communication

services.

1.2 Network Environment

In our network model we assume that clients communicate through an internetwork of arbitrary

topology, which may consist of several local area and/or wide area packet-switched networks. These

networks can support �xed- or variable-sized packets. While �xed size packets technology has been

chosen (in the form of Asynchronous Transfer Mode (ATM)) as the transfer mode for future Broadband

Integrated Service Networks (BISDN) [12], there are still several advocates of variable-sized packet tech-

nology in the computer communication community [13, 15]. It is our belief that these two technologies

will co-exist in the future, with variable-size packets used at the internetworking level and �xed-size

packets at the network level. In most of our examples we depict local hosts connected to LANs, which

are in turn connected by WANs. In each LAN the gateways or routers act as switches, whereas in the

WANs switching may be accomplished with a dedicated packet switch. In this thesis the term switch

will be used interchangeably to refer to gateways, routers, or dedicated switches.

In this work we assume that a) switches are store-and-forward and non-blocking, b) queuing occurs

at the output ports of a switch, and c) there is no interference between packets arriving on di�erent

input links which are destined for di�erent output links. Also, by non-blocking we mean that packets

arriving at an input link can be routed directly to the appropriate output link without con
icts in the

switching fabric.

With these assumptions a communication session between users (a.k.a. a connection) can be modeled

as traversing a number of queuing servers, where these servers model the output link of a switch. In our

WAN model the output link model is that of the output link of an ATM switch [2, 30], whereas in our

LAN model both the output link and the gateway or router processor may have to be modeled. In this

latter case, both the processor and the output link are modeled as queuing servers in tandem, with the

connection traversing both servers at each switch. In our model, the link delay (i.e., the propagation

1This position may be optimal or nearly optimal in terms of availability to client demands, network utilization, or
performance criteria.

4delay in the case of a physical link or the total cumulative delay incurred in the lower level subnetworks

in the case of logical link [19]) of each packet has a known and �nite bound. It should be mentioned

that this assumption may not be satis�ed by some links governed by contention-based protocols (e.g.,

Ethernets); however, it can be satis�ed on other types of LANs such as token rings (e.g., FDDI rings).

Clients communicate through the network by requesting services from the network. In the integrated-

services networks that we consider in this work, services can be classi�ed as guaranteed performance

services or best e�ort services. In guaranteed performance services (a.k.a. real-time services), a client

requests a connection by specifying its tra�c characteristics and performance requirements to the net-

work, the network determines if these requirements can be satis�ed by applying a series of admissions

(i.e., resource reservation) tests, and accepts or denies the client's request based on the result of these

tests. The acceptance of a guaranteed performance connection can be thought of as providing a con-

tract between the client and the network, where the network guarantees the speci�ed performance

requirement provided that the client obeys its tra�c speci�cation. With best e�ort service, the level of

performance received by the client at each instant in time is totally dependent on the network state at

that instant (i.e., there are no a priori performance guarantees given to the client). Currently this type

of service is that experienced in all conventional data networks.

The initial research on GPC schemes has provided us with some desirable properties that should be

present in these schemes. At this point we will describe these properties and refer the reader to Chapter

2 for a more detailed explanation of the schemes. These properties, as detailed in [21], are as follows:

1) the interface o�ered by the network should be general and parameterized, 2) the scheme should be

applicable to a wide variety of internetworking environments, and 3) the performance requirements of

the clients should be guaranteed a priori.

A useful interface should not con�ne its service o�erings to a limited menu of possibilities (e.g.,

HDTV, CD-quality sound, and so on; or low-delay high-throughput communications, high-delay, low-

jitter communications, and so on.); rather, it should support a broad continuum of values, as well as

combinations of values, for performance requirements. This does not preclude the o�ering of menu where

useful; rather, it allows the easy extension of the menus, at will, where applicable. As useful application

servers may be widely dispersed, GPC schemes should be easily implemented over a broad spectrum

of internetworks. Clients who make the choice of guaranteed performance services are concerned with

provable performance requirements, as these services will primarily be used to create value-added ser-

vices (video and audio conferences, video-on-demand services) which they will o�er to their users2. As

these value-added services usually provide some form of contract that guarantees their services to their

buyers, the providers in turn must rely on the guarantees provided by the network in order to ensure

2These guarantees need not necessarily be rigid or deterministic, but can take the form of statistical performance
guarantees.

5that the buyer's contract is not violated.

The desirable properties presented above give rise to several features that are usually provided by

GPC schemes. The features that are commonplace to most schemes are:

� the schemes provide to the client, a priori, guaranteed tra�c speci�cations and performance

requirements3,

� the schemes are usually connection-oriented and resource reservation based, and

� the schemes do resource allocation and route selection at connection establishment time, and

usually �x the resources allocated and the route for the duration of the connection.

All GPC services have a component of their agreements or contracts that describe the client's tra�c

characteristics, and another component that speci�es the performance requirements that the network

will guarantee. As the network needs to guarantee these performance requirements, it must be aware

of the state of its resources (i.e., its resource load). The network uses this resource state or load in

order to determine if it can accept each new connection into the network. Acceptance is contingent

on the fact that the new connection must be provided with the required performance while ensuring

that the performance requirements of existing connections continue to be met. To determine if a new

connection can be accepted, the network must be aware of the resources that have been reserved by

existing connections for use during data transfers. The acceptance of any new connection in the network

essentially coincides with the reservation of resources for that connections; admission tests are used to

determine if resources are available for that connection, and to reserve these resources if they are indeed

available. In order that a client's tra�c and performance requirements are met, the resources that

are reserved for each client must be allocated to that client on a node by node basis. This type of

allocation suggests the need for e�ciently retaining state information inside the network that must

be present for the duration of the connection. This e�ciency is best achieved by using a connection-

oriented mode of communication. As the performance of the connection is closely related to the route

used by the connection (i.e., a longer path generally has a larger delay associated with it; the greater

the number of hops in a path, the larger the aggregate bandwidth consumed by the connection), the

choice of route is important and is usually precomputed to guarantee the performance requirements.

As state information is associated with each connection to ensure that it is allocated its due resources,

packets belonging to that connection should traverse the route along which this state information is

kept to ensure that they receive the appropriate resources as well as to ensure that they do not consume

resources that have be allocated to other connections. Hence, guaranteed performance services usually

3Some of the schemes are general and parameterized, while others are menu-driven and provide a few \useful"
classi�cations.

6require connection-orientedness, resource reservation tests, resource allocation, and pre-computed �xed

routes. The decisions of resource allocation and route selection are made based on the network \load"

(i.e., on resource reservation levels) at the moment the request is being processed. As the client's needs

or the network state change, the resources allocated by the network and the routes do not change; they

are usually static.

In order to support these performance guarantees, two levels of control are needed. At the �rst

level (the connection level), the resource reservation or admissions control tests determine if the client's

connection request can be honored and reserve resources for this new connection. The second level of

control (the packet level) is the service discipline, which controls the order in which packets are serviced,

and ensure that packets traversing the route receive the resources allocated to the connection, thereby

meeting their performance requirements. Essentially, the service discipline provides protection for the

connection by controlling the interactions of packets from di�erent connections. The service disciplines

and the resource reservation tests are coupled, as the service discipline determines some of the resource

reservation tests. Many current services disciplines can be used to provide guaranteed performance

services subject to the constraints described in [20].

1.3 Problem Speci�cation

The essential features of most current GPC schemes were discussed above; namely, that they are

connection-oriented; require �xed routing and resource reservation on a per-connection basis; and make

resource allocation and routing decisions at the time of connection establishment, based on the resource

availability and real-time network load at that time, and �x them for the duration of the connection.

This static resource management approach cannot support the inherent dynamics of client requirements

and network state, both of which may change during the lifetime of a connection. More importantly,

clients' requirements and network state may be interdependent | there is a tradeo� between the quality

of service o�ered to clients and the availability of the real-time service. In order to provide a complete

speci�cation of the problem we must de�ne the dynamics of interest in this work. Fig. 1.1 depicts the

time scale of some of the more signi�cant network operations.

The service times of a packet are usually on the order of microseconds, the round trip times for

packets traversing a connection on the network are on the order of milliseconds, and most connection

lifetimes are on the order of minutes to hours. The connections that we are referring to are speci�cally

those created by applications requiring performance guarantees (e.g., video/audio conferencing, scienti�c

visualization, and so on,). The client/network dynamics that are of interest to us operate in the seconds

timescale, and are those at the connection entity level, that is, they involve changes to the connection as a

whole during its lifetime rather that to the packets traversing the connection. These changes are usually

7

Connection
Lifetime

Client/Network
Dynamics

Trip
Round

Service
Packet

microsec. millisec. min.sec.

Figure 1.1: Time scale of dynamics

to the characteristics of the connection; namely, the tra�c characteristics, the performance parameters,

or the route4. Several examples of client and network dynamics that are of interest to us are provided

below so as to motivate this work. Another category of examples that is presented is that related to the

interdependence of these dynamics. This inter-dependence can be seen as a tradeo� between quality of

service and network availability: higher quality of service o�ered to a fraction of the clients may lower

the availability of the network, and cause other communication requests to be rejected. Depending on

the management policy in e�ect, it may be desirable to adapt the quality of service o�ered to the clients

based on the load of the network. This adaptation is sometimes referred to as media scaling. Of course,

in order to stay within the framework of guaranteed performance communication, the adaptation should

be graceful (i.e., to be done with minimal or no disruption to the clients) [39]. The proposed resource

management algorithms, in their current state, cannot support such graceful adaptations.

In order to support these dynamics in the context of guaranteed performance services, two funda-

mental capabilities need to be provided to the network, namely, 1) the resource management algorithms

must be capable of modifying a connection's current resource reservations so as to accommodate changes

in the connection's tra�c characteristics, performance requirements, and route while preserving the per-

formance guarantees of all existing connections, and 2) the resource management mechanisms must be

capable of supporting these modi�cations, especially in the presence of a physical change in the route

of the connection, while maintaining the contractual guarantees.

The �rst capability provides the resource management algorithms with the
exibility to adapt to

4These changes do not include the traumatic changes of creation and termination of the connection.

8parameter (i.e., tra�c and performance parameters) and route changes at connection runtime, while

the second capability provides the mechanisms that modify the connection's state in the network so as

to re
ect the new resource reservations. These mechanisms must also accommodate route changes that

may cause disruption in the tra�c
ow of a connection and possible violation of performance guarantees.

With route changes, it is possible that packets from a single source may simultaneously traverse two

routes during the transition from the original route to the new route, thus presenting the potential for

misordered packets.

In order to keep to the �rst desirable property of a GPC scheme, that is, the property that the

interface be general and parameterized, the spectrum over which parameter and route changes can be

made should be as broad as possible. However, over the span of this spectrum it may not be possible to

provide these modi�cations while maintaining performance guarantees, especially during the transition

from the original connection to the new connection. While there are situations where a client cannot

tolerate any violation in the performance guarantees of the connection, there are cases in which some

degree of violation is acceptable, speci�cally where the client itself has requested the modi�cation and

is made aware, a priori, of the maximum possible performance violations (i.e., a bound is provided on

the number of performance violations or the length of the performance violation period) during the

transition from the original to the new connection. Therefore, a modi�cation contract is needed to

provide contractual guarantees over this transition period. Another issue that needs to be addressed

in providing this
exibility is the e�cient use of network resources. An increase in e�ciency can be

realized by choosing a connection's route in the network so that all performance guarantees can be met

while attempting to optimize along several network e�ciency criteria 5.

The new GPC schemes must provide the network with the algorithms that permit the modi�cation

of tra�c characteristics, performance requirements, and routes of connections subject to modi�cation

contracts, and the mechanisms to control both the connection state updates and the performance

disruptions that may be caused by route changes. In this thesis we provide the resource management

algorithms and mechanisms, in the context of the Tenet guaranteed performance scheme [21], that give

a network the ability to adapt to the dynamics of the client demands and of the network state. This

new scheme is called the Dynamic Connection Management (DCM) scheme, with the new algorithms

being collectively referred to as the DCM Algorithms.

The next three subsections provide examples to motivate the need for Dynamic Connection Manage-

ment algorithms. We will divide our examples into three categories: a) dynamics of client requirements,

b) dynamics of network state, and c) tradeo� between quality of service and network availability. The

�nal subsection examines some possible alternative approaches to this problem.

5These criteria are discussed in Chapter 3.

91.3.1 Dynamics of Client Requirements

There are many situations in which clients may require di�erent qualities of services (i.e., di�erent

amounts of resources) during the lifetime of a conversation. For example, in the case of a still image

browser, where degradation of quality is not allowed [48], variation of the browsing speed corresponds

to the need for di�erent amounts of network bandwidth. If the network does not provide a mechanism

to dynamically adjust the bandwidth allocated to the connection, the visualization program will have

to reserve resources according to the maximum requirements of the client at the beginning of the

connection, which will result in wasted resources. However, if the client is allowed to change the amount

of resources reserved for the connection dynamically during the lifetime of the connection, the client

would have the option of reserving just enough resources for playback at the beginning of the program,

and of acquiring more resources later if browsing at higher speed is needed. This type of application,

lossless still image browsing, is very useful in the areas of scienti�c visualization and medical imaging,

where a sequence of related images is browsed in search of minute changes between successive images.

These changes can be to the boundary of a liquid or a weather front, where lossy compression cannot

be used as it may remove the small changes that are the target of the search.

Allowing the clients to dynamically adjust the tra�c or performance parameters will also reduce the

burden on the clients of having to set the parameters correctly the �rst time. As mentioned previously,

the interface the network exports to the communication clients must be general and parameterized;

however, as the interface is general, it may be di�cult for the clients to estimate the parameters

according to the model. This problem is worsened by the fact that, in the current proposed resource

management solutions, once the parameters are speci�ed, they remain �xed during the entire lifetime of

the connection. This will force the clients to act conservatively, and, most likely, reserve more resources

than needed. If there is a mechanism to dynamically change the parameters of a connection, another

mechanism can be added to estimate the appropriate parameters for the connection automatically during

data transfer.

Multicast connections also provide a rich environment for dynamic management. With multicast

connections it is often the case that the addition of a new member to a multicast session already in

progress produces a multicast tree that is not minimum-cost. This situation may occur even if the

previous multicast tree was minimum-cost and the branch connecting the new member to the tree is

also minimum-cost. In these cases, the main branches of the tree may be dynamically and transparently

rerouted to produce the minimum-cost tree that includes the new member.

This situation is illustrated in Figure 1.2, where initially source S was transmitting to the destination

set D1, which was comprised of high bandwidth workstations, WS, and a low bandwidth personal

computer, PC. Then three new workstations, indicated by ?, attempted to join the multicast session.

10
WS

WS

WS

PC

PC

WS

WS

WS

WS

WS

WS

?

WS

?

?

S

S

D1

D1

D1

D1

D1

D1

D2

D2

D2

Figure 1.2: Multicast Management

The dotted lines in the topology in the upper portion of the �gure indicate the additional links needed to

accommodate these new members. If the capability of dynamically modifying connections were present,

the new multicast tree (which includes the new destination set D2) could be made considerably cheaper

by the rerouting of its main trunk, as shown in the lower portion of Figure 1.2.

With the current demand for wireless real-time connections [44], dynamic connection management

provides the ideal primitives for wireless network support. If we assume a model in which the portable

clients are intelligent [49], the movement of the client among base stations can be thought of as the

rerouting of the connections, which can be supported without disruption by DCM6.

1.3.2 Dynamics of Network State

In addition to the dynamics of client requirements, the network state also changes during the lifetime

of a connection. Examples are failures or exceeded error thresholds in links and nodes in the network.

In connectionless networks, packets can be dynamically rerouted when there are failures inside the

network. We would like to port this
exibility of dynamic rerouting to connection-oriented networks.

This
exibility is important in that a connection that traverses a failed link or whose error thresholds

have been exceeded across a link can be quickly rerouted (this could be achieved by rerouting that

portion of the connection that traverses the o�ending link) to one or more other links, thereby reducing

the number of lost or corrupted packets occurring on this connection. These error thresholds are

6We assume here that the underlying data link level technology is such that we can bound the errors introduced by the
medium, and that the performance guarantees made are statistical.

11quanti�cations of error tolerances appropriate to each connection; for instance, in video connections,

the number of consecutive packets or cells lost may be the error tolerance of choice rather than the total

number of packets or cells lost. This
exibility has been demonstrated using DCM, through simulation

experiments, described in references [38, 9].

Another example of the use of DCM can be seen in network load balancing, where a less that optimum

network state can result as clients' requests for creation and termination of guaranteed performance

connections can occur in a non-uniform manner throughout the network. These request can leave

the network in a state where it is not e�ciently utilized and can result in reduced availability for

guaranteed performance clients and high delays for best-e�ort clients. DCM can alleviate this problem,

with the support of e�cient load balancing policies, by transparently rerouting guaranteed performance

connections, thereby increasing the e�cient utilization of the network.

A simple example is shown in Fig. 1.3. In the network illustrated in the upper portion of the �gure,

two guaranteed performance connections have been established from the source S to the destination

D, one connection along the lower path7 (a 40 Mbps connection) and one along the upper path (a

50 Mbps connection). In this network state, a new request arrives for a 80 Mbps connection from

the source S to the destination D. Since the residual bandwidth along the upper and lower routes

is 60 and 50 Mbps, respectively, while there is enough aggregate bandwidth to support the 80 Mbps

connection, this is fragmented among the two routes in such a manner that the 80 Mbps request cannot

be accepted. Similar problems have been addressed in the context of telephone networks by a technique

called trunking [41]. Dynamically rerouting the 40 Mbps connection to the lower path can solve the

fragmentation problem in this situation, as it permits the 80 Mbps connection to be established along

the upper path. This is shown in the network in the lower portion of the �gure.

1.3.3 Quality of Service vs. Network Availability

One of the criticisms against reservation-based algorithms is that they do not address the tradeo�

between quality and availability of service. Although the network will guarantee the quality of service

to the connections already established, it may have to block other connections due to lack of resources.

This is necessary if the qualities of service of the established connections cannot be compromised.

However, there are certain applications that have the ability to adapt to di�erent qualities of service,

and may be willing to reduce their quality requirements in cases of network saturation. For example,

some video coders are designed with tunable parameters so that the compression ratio can be adjusted

to output streams with di�erent bit rates [17, 29, 26]. When the network is less loaded, we would

7The maximum bandwidth of each link in the network is 100 Mbps. For the sake of simplicity, we assume that only
one performance parameter, the throughput, is guaranteed; however, this example can be applied to other performance
parameters such as delay or delay jitter.

12

40 Mbps

50 Mbps

80 Mbps

50 Mbps

40 Mbps

80 Mbps

Link = 100 Mbps DS

S DLink = 100 Mbps

Figure 1.3: Load Balancing Example

like the compression ratio to be small so that we can have higher video quality; however, when the

network is close to saturation, we would like to increase the compression ratio so that we can admit

more connections. Such adaptation, also known as media scaling [18], has been proposed in the context

of datagram networks [54, 27], but without providing any guarantees before or after the change. By

using Dynamic Connection Management on the guaranteed performance network connections, we can

better address the tradeo� between quality of service and availability of service: parameter adjustments

will only be applied with the consent of the application 8. Simulation experiments using the DCM

algorithms have also been conducted in a media scaling context; a description of them can be found in

reference [39].

1.3.4 Possible Alternative Approaches

Our approach to the problem discussed previously is to introduce mechanisms that allow modi�cation

of tra�c and performance parameters and of the route of a guaranteed performance connection at the

networking layer. There are two other possible alternative approaches.

In the �rst alternative approach, when there is a desire to change parameters, the end system es-

tablishes another connection with the new parameters, switches the tra�c from the old connection to

8If network service is free, all clients will ask for the highest quality of service. Quality of service only makes sense
when there is an adequate pricing structure [37, 16]. We assume that the pricing policy takes into account the tra�c and
performance parameters as well as the duration of a connection, thus providing incentives for clients to adjust their quality
of service on a voluntary basis. Also, contracts where media scaling is permitted will carry a lower price tag than those
where scaling is not permitted

13the new connection, then tears down the old connection. In such an approach, the network does not

know the relationship between the old and new connections, thus cannot share resources between them.

Without the sharing of resources network, availability will be adversely a�ected. Also, mechanisms like

rerouting a channel locally9, which is used by DCM to accelerate the transition time, cannot be used

in such an approach.

The second alternative approach is to establish additional connections to transmit the excess data

when more bandwidth is needed.This second alternative can easily result in resource fragmentation. In

resource fragmentation, numerous channels, with low performance requirements, are scattered through-

out the network in such a manner that availability of the network to high performance channels is limited

while there is obviously enough aggregate resources to support these channels. This also requires the

end-system to support multiple connections for one logical stream and provide synchronization among

these connections. Also, it is unclear how to degrade QOS for a connection with such an approach.

1.4 Thesis Organization

In this work, we study the issues and sub-problems that must be addressed in designing and imple-

menting dynamic connection management in a Guaranteed Performance Communication scheme. The

dissertation proceeds in the following manner: we �rst review the literature to determine the strengths

and weaknesses of previous schemes; we design the new algorithms that permit
exibility in the Tenet

GPC service; we analyze these algorithms using simulation experiments; and, �nally, we implement

and evaluate the algorithms and mechanisms in a GPC environment. Each component of our work

is provided in a separate chapter, with a summary and description of future work contained in the

conclusion.

Chapter 2 provides a review of the literature and an analysis of relevant work. The review is divided

into two sections. The �rst section examines relevant guaranteed performance communication schemes

while the second examines routing under performance constraints.

Chapter 3 presents the details of the Dynamic Connection Management scheme. It begins with an

overview of the Tenet scheme and of the service discipline Rate Controlled Static Priority (RCSP),

which are the building blocks of the DCM scheme. The chapter proceeds with the basic paradigms

under which DCM operates, and then provides an in-depth description of the three algorithms that

comprise the scheme.

Chapter 4 analyses the scheme through the use of simulation experiments. The experimental setup is

�rst described, and several useful simulation experiments are conducted to determine the validity and

usefulness of the scheme.
9Local rerouting can be used to accommodate a change in the delay bound of a connection.

14Chapter 5 presents the design and an implementation of the DCM scheme. The scheme has been

implemented using the Simple Network Management Protocol version 1 (SNMPv1) as the management

protocol, on a DEC platform under Ultrix4.2a. This implementation provides both monitoring and

control capabilities to the network in that SNMPv1 Management Information Bases (MIBs) can be used

by DCM Network Managers to give the state of a connection and to establish or modify a connection.

The guaranteed performance connections use the Real-Time Message Transfer Protocol (RMTP) and

the Real-Time Internet Protocol (RTIP) as their data transport protocols. Results from a measurement

study show that the DCM scheme is e�ective in modifying the parameters of a GPC connection.

15

Chapter 2

Related Work

There have been several GPC schemes proposed over the last few years. The guarantees, which can

be statistical or deterministic, provided by these schemes span a wide range of performance parameters

and utilize a variety of tra�c models. In the �rst subsection we provide an overview of the relevant

schemes and we examine their
exibility. In the second subsection we survey the literature on routing

with emphasis on routing techniques with performance constraints. In that subsection we review routing

techniques from both packet switching and circuit switching environments to determine their suitability

for use in our work.

2.1 Guaranteed Performance Communication Schemes

The GPC schemes reviewed below represent the early and current research in guaranteed performance

communication and, as such, address a variety of sub problems in this area, thereby resulting in wide

variations in their proposed solutions. Some schemes provide connection management (i.e., resource

management) solutions [60] , others provide guaranteed data transport solutions [59], and yet others

provide comprehensive solutions involving both connection management and data transport services

[21]. All widely known GPC schemes are presented regardless of the type of solution; however, it should

be noted that the solutions more relevant to this work contain a resource management component and

operate at the network layer level1. As the DCM scheme is based on the Tenet real-time scheme, which

is a comprehensive scheme, we defer a review of the Tenet scheme to Chapter 3.

The Flow Protocol provides guarantees only for average throughput bounds [59] on a
ow (i.e., a

connection). It does not provide guarantees for delay, delay jitter or loss bounds. While end-to-end

delay bounds are not guaranteed, these delays can be somewhat reduced by increasing the through-

put resources reserved; however, the quantitative relationship between the percentage of throughput

1The network layer level that we refer to is the third layer from the bottom in the ISO OSI reference model.

16resources reserved and the delay reduction has yet to be determined. The Flow Protocol reserves re-

sources and uses rate control to enforce a source's tra�c characteristics. The VirtualClock scheduling

discipline is used to ensure that the bandwidth reserved by a client is accessible to that client and to

provide isolation from other clients. There are no features in this protocol for the dynamic modi�cation

of
ows.

The Session Reservation Protocol (SRP) provides throughput and delay guarantees for a session by

reserving resources at each node [3]. The client is required to specify its tra�c parameters using the

DASH resource model. SRP creates sessions at each node, which represent reservations of a part of

the capacity of each resource. These reservations are su�cient to guarantee the local throughput and

delay requirements of the client. These sessions are then linked together along a �xed route to form

an end-to-end session, which provides the end-to-end performance guarantees. The end-to-end session

establishment and philosophy are similar to that of the Tenet scheme2, but there are a few di�erences.

The di�erences are that SRP uses a di�erent tra�c model and a di�erent admission control policy, and

the control and delivery functions are incorporated within the same protocol. Also, SRP aligns itself

closely with IP in that it seeks to achieve performance guarantees for IP-based communication without

changing the IP protocol and does not provide guaranteed delay jitter bounds, over
ow bounds, or any

statistical guarantees. SRP does not employ any mechanisms for the dynamic management of sessions.

The Asynchronous Time Sharing (ATS) approach provides a �xed menu of classes-of-services [32].

There are 4 classes of services. Three of the classes, Class I, II and III, transport user tra�c, while the

fourth transports networkmanagement tra�c. Class I tra�c is characterized by zero percent contention3

loss and an end-to-end delay distribution with a narrow spread. Class II tra�c is characterized by e %

contention packet loss and an upper bound, n, on the average number of consecutively lost packets. Its

end-to-end delay distribution has a larger spread than the Class I distribution. The end-to-end delay

bound of Class I packets is less than that of the Class II packets. Class III tra�c is characterized by

zero percent end-to-end packet loss. This is achieved by retransmissions. Real-time connections can

only obtain performance guarantees corresponding to those of their class. The service discipline of ATS,

MAgnet Real-time Scheduling (MARS), has its activity divided into cycles. A cycle is the period during

which a �xed number of cells can be transmitted and is divided into four subcycles, each corresponding

to a class-of-service and to the allocation of the link to this class-of-service. The duration of each

subcycle is determined dynamically by the MARS scheduler according to the tra�c load and the mix.

While there is an extensive monitoring capability in the ATS approach, to our knowledge there is no

ability to manipulate real-time connections.

2The Tenet scheme is described in Chapter 3.
3Contention packet loss represents packets that are discarded due to bu�er over
ow and packets whose end-to-end delay

is greater than the maximum set limits.

17Clark, Shenker, and Zhang propose an Integrated Services Packet Network (ISPN) architecture that

will support guaranteed and \predicted" performance services [14]. In their context, guaranteed bounds

on throughput and delay can be provided to a client if the client speci�es its maximum sending rate. For

this rate the network will inform the client of the o�ered delay bound; if the delay bound is insu�cient,

the client must request a higher sending rate so that the delay requirement can be satis�ed. For predicted

service, the client characterizes its tra�c and the delay and loss rate it can tolerate. The admission

control scheme determines if there are su�cient resources and stability in the network to accommodate

the client. Due to network load
uctuations, predicted-service clients experience
uctuations in their

performance speci�cations, to which they can choose to adapt to accommodate these perturbations. The

network naturally does its best to ensure that there is high stability in its load. Clark et al. propose

a uni�ed scheduling algorithm capable of supporting both guaranteed and predicted tra�c. The ISPN

architecture does not address any of the network management issues, and provides no capability for

channel modi�cation.

The Stream Protocol, Version II (ST-II) [51] is an experimental internetwork-layer stream protocol

developed for the Internet. ST-II decouples control from data delivery, as it uses the ST-II Control

Message Protocol (SCMP) to establish and teardown connections. Connections can be unicast or mul-

ticast. Connections are established by sending an SCMP message to each hop along the route, which

determines if resources are available for the connection. The ST-II agents in the intermediate and

destination nodes utilize the parameter
ow speci�cations4 to determine the availability of resources.

Some of the parameters included in the speci�cation are minimum allowable/deliverable bandwidth,

maximum allowable/deliverable delay, delay variance, and so on. The speci�cation of ST-II does not

detail any of the resource reservation policies. The design of these policies is left to the implementor.

The intermediate nodes modify the
ow speci�cation to re
ect the available resources they have re-

served. The destination can accept or reject a request for a connection by examining the modi�ed
ow

speci�cation and sending its response back to the source. If the source and destination are in agree-

ment, the connection is established and data transport can begin. The SCMP speci�cations include

a CHANGE message that can be used to modify parameters but no formal descriptions are given of

this CHANGE functionality, and no implementations have been reported in the literature. However,

it should be noted that there have been oral reports that the ST-II protocol implementation using the

HeiRAT resource management algorithms seeks to provide this functionality, but the author is unaware

of written con�rmation of these reports.

In the Capacity Based Session Reservation Protocol (CBSRP) [50] the user can specify the minimum

and maximum values of the desired temporal and spatial resolutions of the media5 to be transmitted, the

4There are 15
ow parameters, with the speci�cation permitting applications to add extra �elds.
5The temporal and spatial resolutions of the media are the frame rate and the frame size of a stream.

18allowable end-to-end delay, and the maximum packet loss rate. The speci�ed values allow the network

to assign each client to a particular class of service. When a new client requires the establishment of a

session, if the available resources are already saturated, some existing sessions may be forced to reduce

their qualities of service (i.e., to modify their parameters), to accommodate the new request. However,

this modi�cation of parameters is restricted to the values of the temporal and spatial resolutions of the

stream - only bandwidth modi�cations are allowed, end-to-end delay and loss rate modi�cations are

not supported. The minimum quality of a session ,i.e., the minimum values of the temporal and spatial

resolution, is always guaranteed once the session is established. Another limitation of CBSRP is that

is has been designed for a local area network environment, while issues associated with a more general

internetworking environment have not been addressed.

The Multipoint Congram-oriented High-performance Internet Protocol (MCHIP) [40], is a guaranteed

performance service that also provides multicast capabilities and utilizes resource servers to monitor and

record channels established and resources available. MCHIP uses as its service primitive a congram6.

MCHIP uses two types of congrams: a user congram (UCon) and a persistent internet congram (PICon).

A UCon can be thought of as a soft connection (with no hop-to-hop error control) and can be used

to provide strict performance guarantees to applications that need it. PICons are long lived congrams

between MCHIP entities, and their purpose is to provide a shared communication channel for a number

of applications, thus suitable for carrying datagram tra�c. While the services have been designed, to

the best of our knowledge the channel establishment procedure and resource reservation policies have

not yet been published.

The ReSerVation Protocol (RSVP)[60] is a resource reservation protocol that can be used to reserve

resources for multicast connections. The key features of RSVP are: it is receiver-oriented; it allows each

receiver in a multicast group to reserve a di�erent amount of resources, to receive di�erent data streams

sent to the same multicast groups and to switch between these streams without changing its reservation;

also, it supports dynamic memberships and adapts to routing changes by using soft state. RSVP does

not address real-time data transport and is entirely a vehicle for establishing and maintaining per-

connection state information in the switches along the paths traversed by a connection. RSVP keeps

soft state information at intermediate switches and leaves the responsibility of maintaining the paths

and reserving resources to end users. These end users (i.e., the source and destinations) send refresh

messages at intervals (these intervals are maintained by using refresh timers) to refresh the path and the

reservations. This use of soft state does permit the modi�cation of tra�c and performance parameters

and routes; however, it introduces some other problems that the RSVP designers are now attempting

to address. As path and reservation messages are sent periodically, there is the possibility of corrupted,

6The congram service primitive seeks to combine the strengths of the connection and datagram approaches.

19lost, and late7 messages that may result in the removal of state information at an intermediate switch.

This removal of state information can cause wide variations in the performance of a connection, as its

resources may have already been assigned to another connection. Also, as the routing mechanism and

the reservation protocol are decoupled, it is possible that the underlying route may change to a route

which does not have adequate resources to support the connection at its current level of performance,

thus resulting in a decreased level of connection performance until the connection has been re-established

on a suitable route.

The plaNET network [13] is a guaranteed performance scheme that provides guarantees on the band-

width and loss rate of a connection. It contains both resource reservation and data transfer components

in its solution. The scheme is implemented in hardware and uses the notion of equivalent bandwidth to

determine the resources reserved for a connection. In plaNET an estimator is used, for each connection,

to estimate the actual tra�c characteristics of the source. This estimate is then used to renegotiate

the connection's bandwidth parameters. Thus, it is possible to modify the bandwidth of a connection.

However, a drawback of this scheme is that delay bounds and jitter bounds are not supported and we

believe that these performance parameters are needed to provide useful real-time services. It should be

mentioned that this de�ciency is currently being addressed, as delay bounds and jitter bounds are now

being incorporated in the plaNET performance parameter set.

2.2 Routing Techniques

Routing on the basis of tra�c and performance constraints (a.k.a, real-time routing) has been sig-

ni�cantly researched in the context of circuit switching environments (i.e., in a telephony context) but

only marginally so in packet switching environments. In this subsection we review routing techniques

in both environments and discuss their suitability for use in our work.

To maximize the utilization of high-speed GPC networks and reduce the risk of saturation in these

networks, real-time routing is very important. As performance guarantees are made along a �xed

route, virtual circuit routing techniques are most relevant to our work. As we wish to maximize the

\run-time" e�ciency and reduce the saturation of the network, we consider only dynamic or adaptive

routing schemes. Dynamic routing is a network routing technique that routes client channels on routes

determined by using the current real-time state of the network, thereby allowing the network to respond

quickly and correctly to changes in network loading and facilitating a high utilization of the network's

resources. We now present a survey of many of the important routing techniques used in these networks,

and provide an analysis of their usefulness in our real-time environment.

7This situation may arise due to the di�culty in setting the refresh timers correctly.

202.2.1 Circuit Switched Routing Techniques

Dynamic routing techniques used in circuit-switched networks can usually be divided into two ma-

jor categories: time-dependent and state-dependent. In time-dependent routing, preplanned routing

patterns, which were computed o�ine, are entered at �xed times during the day to allocate network

capacity for previously forecasted tra�c demands. In state-dependent routing, the routing patterns

are automatically varied according to instantaneous tra�c demands and network status information

to respond to tra�c variations. Network status information includes such information as the number

of successful calls and the occupancies of the trunk groups. The analysis of the information and the

selection of routes can be done in a distributed or centralized manner. Usually the collection of load

information and the route selection are done periodically, with the selected routing patterns valid for

the entire period. Circuit switch routing techniques are almost always applied exclusively in telecom-

munications, where the backbone network8 is fully connected and routes are considered as direct or

alternate. Direct routes are one-link routes; alternate routes are usually limited to two-link routes.

Performance studies have shown that alternate routes with more than two links reduce call acceptance

rates. Also, with these networks there is associated a trunk reservation scheme that limits the e�ect

of over
ow tra�c (i.e., calls that utilize the two-link alternate routes) on calls that require their direct

routes. The network management facilities also include Automatic Call Blocking (ACB), whereby the

network limits access to certain portions of itself in order to reduce the degradation of service to current

users9. The main circuit-switching routing techniques in use are summarized below.

Aggregated Least Busy Alternative (ALBA) is a distributed, state-dependent, dynamic routing tech-

nique for fully-connected networks [35] . We assume that the network has N nodes and a link with C

circuits between every node pair; routes are restricted to have at most two links. The direct link is the

single link route between the source and the destination. The alternate route is any of the possible N�2

two-link routes between the source and the destination. In ALBA, upon arrival of a call, local informa-

tion on the state of the links of all possible routes is used to determine the route of a call. In ALBA(k)

the (C+1) states of each link, which represent the number of occupied circuits on that link, are lumped

into k aggregates (A0; A1; A2; :::; Ak�1) in order of increasing occupancy level. The largest aggregate

Ak�1 is the set of states with r or less idle circuits; we say that Ak�1 comprises the set of reserved states

and r is the trunk reservation parameter. Routing occurs in the following manner: the arriving call is

attempted on the direct route; if a circuit is available, the call is carried along this route; if no circuit is

available, the call is attempted on an aggregated-least-busy-alternative two link route. An ALBA two

link alternate route for a source/destination pair s; d is one that minimizes max(Asi; Aid), where i is the

8This is the lowest level network in the hierarchy of networks that comprise a major telecommunications system.
9These situations are called focused overload situations. An example of this situation occurred during the last California

earthquake, where many people tried to call California at the same time.

21intermediate node and Asi and Aid are the aggregate states of links (s; i) and (i; d) respectively. Any of

the N � 2 alternate routes can be chosen, with ties broken randomly. The arriving call is accepted on

a two link alternate route if it does not leave either link in aggregate Ak�1, else the call is blocked and

lost.

State- and Time-Dependent Routing (STR) was developed by Nippon Telephone and Telegraph

(NTT) and combines a learning automaton (the state-dependent portion) and a time-varying method

(the time-dependent portion). In STR each node has a route selection list that is updated periodically

by a central processor. These route selections are determined by that processor based on the network

topology and link size, and the predicted tra�c load between these nodes. When an incoming call

arrives, it is routed using the route selection list. The call is �rst o�ered to the direct route and

over
ows to an alternate route, speci�ed in the route selection list, if it is blocked. The alternate route

is chosen using a learning automaton routing method. In this method a call over
owing its direct route

is o�ered an alternate route. If the alternate route is not congested (i.e., if the number of idle trunks

on either of the links does not exceed a set threshold), the call is given the route, and any subsequent

call attempts the same alternate route. If the alternate route is congested, another alternate route is

attempted by the call. Congestion status on the second link is relayed by using the call-completion signal

or the trunk release signal sent back to the source node. This isolated scheme has several variations

depending on whether the alternative routing is of the single-over
ow type or of the multiple-over
ow

type. In the single-over
ow type only one alternate route is considered if a direct route is not available,

whereas in the multiple-over
ow type a speci�ed number of alternate routes are considered if the direct

route is unavailable. The �rst available alternate route is chosen for the call. The value of the congestion

threshold can be varied to produce other scheme variations. In STR, usually the single-over
ow scheme

is used with a set non-zero value for the congestion threshold. Performance evaluations for combinations

of these variants are given in [34].

Dynamic Non-Hierarchical Routing (DNHR) [5] was developed by AT&T and is a centralized, hy-

brid time-dependent and state-dependent route selection technique, where the time-dependent factor is

determined by forecasted tra�c patterns and the state-dependent factor is a response to network load

variations. In DNHR, the direct primary route and two-link alternate routes are used to carry tra�c

between source and destination DNHR tandem switches10. The time-dependent routing capability al-

lows prespeci�ed routing patterns to change as frequently as every hour in response to forecasted tra�c

patterns. In DNHR a call is �rst o�ered to the direct route; if no circuits on this route are available,

the call is o�ered to the alternate route set. If blocking occurs on the second link of an alternate two

link route, a control message is sent back to the source node so that this blocked call can be routed on

10These switches form the highest-level of the telecommunications network hierarchy and are usually intercity exchanges.

22another route in the alternate route set (this technique is commonly referred to as crankback). These

alternate routes (there is a maximum of 14 for each source/destination pair) are examined sequentially

until the call is accepted. If the call cannot be accepted by any of the alternate paths, then the call fails.

DNHR also includes a state-dependent routing ability, courtesy the NEtwork Management Operations

System (NEMOS), which searches for idle trunk capacity on an individual call basis using the trunk

reservation parameters as idle thresholds. If idle links are found, they can be incorporated into the

alternate route set to increase the o�ering to an arriving call. This dynamic routing is only used in the

case of network link failures and other unusual scenarios.

DNHR has also been extended to provide state-dependent routing based on trunk status information.

This new routing technique is called Trunk Status Map Routing (TSMR) [4]. The TSMR concept

involves having an update of the number of idle trunks in each of the DNHR trunk groups sent to the

centralized network database every T seconds. The database determines a new ordered routing sequence

based on the number of idle trunks and returns this sequence to each switch. The new ordered sequence

is used for the next T seconds until the next update.

Dynamically Controlled Routing (DCR) [11] is a state-dependent routing method, developed by

Bell-Northern Research, which uses centralized routing to determine the best routes, depending on the

occupancy of the trunk groups. Each call is �rst o�ered the primary route. If this call is blocked, it

is then o�ered to an alternate two-link route. The alternate route is selected on a probability basis

and the number of call attempts on alternate routes can be set at some threshold value. A central

processor computes route probabilities at �xed intervals based on the residual capacities of the links.

These probabilities are usually computed every 10 seconds.

The System for Test Adaptive Routing (STAR) [25] is a state-dependent routing technique developed

by the Centre National d'Etudes des Telecommunications (CNET) for dynamic routing in the French

Telecom network. In this method, trunk group occupancy information is periodically collected at a

central processor. The route selection sequences are updated at each local switch in order of decreasing

route residual capacity. The residual capacity of a link is de�ned as the minimum residual capacity

of all trunk groups belonging to the route. Incoming calls are o�ered �rst to the direct path and, if

blocked, are o�ered to the alternate paths in sequential order. Crankback may be used to detect blocked

calls and do multiple alternate route attempts. Initially the STAR prototypes were implemented with

the update period varying from 1 to 2 minutes due to technical constraints; however, the production

switches are expected to have an update period on the order of 10 seconds.

Real-Time Network Routing (RTNR) is a decentralized routing technique developed by AT&T to

provide routing for future dynamic class-of-service networks, which provide connections for voice, data,

and wideband services on a shared transport network [6]. With RTNR, the source switch attempts to

23route an incoming call onto a direct trunk. If this direct trunk is not available, the switch attempts to

�nd an available two-link route by �rst querying the destination switch11 for the busy-idle status of all

trunk groups connected to it. The source switch then compares its own trunk group busy-idle status

information to that obtained from the destination switch in order to obtain the least loaded two-link

path over which the call can be routed. This least loaded two-link path is obtained by comparing load

threshold bit maps of the trunks corresponding to the source and destination switches. To obtain a

speci�c class-of-service route, these load threshold bitmaps can be overlayed by an allowed-via-switch

bit map which indicates routes that possess this class of service. Of these allowed links the least loaded

two-link path is selected. It should be noted that the class-of-service routing provided by RTNR usually

refers to bandwidth-based services.

Dynamic Alternative Routing (DAR) is a decentralized (isolated) learning-automaton routing method

developed by British Telecom [46]. In a DAR network an incoming call is o�ered the direct route. If

this route is blocked, the call over
ows to the currently selected two-link alternate route. If the call is

also blocked at this alternate route, the call is refused, and a new two-link alternate route is selected at

random from possible two-link routes for subsequent calls.

In the previous sections we have reviewed some of the more prominent circuit-switched routing

techniques. The major disadvantages of these techniques are as follows: usually only one type of service

guarantees is considered (i.e., guarantees are made implicitly by the use of dedicated circuits and by

the performance-oriented design of the telecommunication system12) and the value of the bandwidth

and delay parameter in these circuits cannot be changed; fully connected networks are assumed; in

some cases the network tra�c can be predicted (i.e., in time dependent routing techniques), and this

prediction is utilized by the routing technique. Another drawback of some of the schemes is that

centralized control is used.

These disadvantages reduce the usefulness of these techniques. In our environment many di�erent

classes of services are to be provided, hence a routing technique that optimizes routing for a single class

of service is not useful. Also, the routing techniques surveyed cannot determine routes that provide

a broad range of delay and jitter guarantees. The assumption of a fully connected network is not

appropriate for the types of network topologies we deal with. These routing techniques are limited

to two-link routes. As the topologies that will be encountered are most likely to be relatively sparse,

optimizing for two-link routes is not appropriate. The tra�c loads that will be seen on these networks

will be very dynamic and highly unpredictable. The unpredictability is due to the lack of a convincing

model for the multimedia tra�c that will be present on these networks. The rate of growth of multimedia

11This query is done over the Common Channel Signaling (CCS) Network .
12The bandwidth given by a circuit is dedicated to the client for the duration of the call and the delay experienced in a

phone call is bounded.

24applications and the possible combinations of applications will provide an environment that will render

historical call data obsolete; prediction will be almost impossible. The disadvantages present in circuit

switching routing techniques do not allow us to utilize these techniques directly.

2.2.2 Packet Switched Virtual Circuit Routing

Although there are many virtual circuit routing techniques, three of them that are particularly

suitable for real-time routing. They are the plaNET routing algorithm, the scheme used by Codex, and

a multicast routing scheme proposed by Kompella et al.

The plaNET network is a high-speed packet switching network designed to support multiple classes

of service [1]. The objective of the source routing technique used in plaNET is to minimize call blocking

while providing low end-to-end delay. In plaNET only bandwidth is guaranteed by reservation, but

delay is minimized as much as possible. The routing algorithm assumes that queuing delay is not a

major issue in high-speed networks, as switches will be very fast and hence the focus of the routing

algorithm is to minimize call blocking. Minimization of call blocking is achieved by favoring the shortest

path between source and destination, and by load balancing. By favoring the shortest path, less links

are used; hence the call blocking e�ect of this call on other calls in the network is reduced. By load

balancing among shortest paths, the load is distributed evenly among the links, and, when this is

correctly done, this also tends to reduce call blocking. Results are provided in [1] to verify that these

objectives are achieved. The routing algorithm used is a modi�ed shortest path algorithm where the

link weights are an increasing function of the link load (this promotes load balancing). This algorithm

is further constrained to obtain the minimum number of hops between the source and the destination,

thereby reducing the e�ect of this channel on other channels in the network. Link weights take into

consideration the bandwidth of the channel requested and the current load on the link; they are used to

make saturated links unavailable and to discriminate among paths with equal number of hops. Among

the minimum-hop paths, the path with the lowest total weight is chosen.

The Codex routing scheme permits the routing of virtual circuits and the rerouting of these virtual

circuits in response to link congestion levels [28]. A virtual circuit is established between a source and

a destination by sending a route message to the destination node, which then uses a source13 routing

shortest-path technique to establish a path from the destination to the source. Thus, the destination

node is responsible for routing and rerouting the virtual circuit. This routing algorithm is based on the

total cost of all of the links in the network. A link's cost is a function of the excess capacity of the link,

the data rate of the connection, the propagation delay, the total weighted tra�c, and the priority of

the connection. Therefore, the total network cost will be lower if connections with high data rates or

13In this case the source responsible for the routing is actually the destination node.

25high priorities are routed along routes containing only a few hops. Routes for new paths are selected

to minimize the increase in network cost. This is accomplished by assigning to each link the increment

in the link's cost if the new connection were accepted, and then running a shortest path algorithm to

determine the path with the least total cost. This path is the selected route. Rerouting decisions are

made by scanning the routes terminating at a node. For each route terminating at a node, computations

are made to determine what the tra�c characteristics of the network would be if the current route were

deleted and a new shortest route established. Using those characteristics, the cost of the current route

and the cost of the shortest route are computed. If the latter is less than the former, a secondary

path is established. To protect against the possibility that many reroutings will overload a previously

lightly-loaded link, only a fraction of the paths are considered for rerouting at any time, and a maximum

amount of rerouted tra�c can be established on any link over an interval.

Kompella et al. propose a multicast routing algorithm that determines a least-cost tree, spanning

from the source to all of the destinations, subject to the constraint that all source/destination routes

have a client-speci�ed delay bound [31]. In their algorithm, they initially construct a closure graph

on the set containing the source and all of the destination nodes. This graph is constructed from the

cost and delay weights assigned to each edge (the edges represent links and the nodes represent packet-

switching nodes) and is a complete graph where each edge connecting two nodes represents the minimum

cost path where the delay along the path is less than the client-speci�ed delay. The delay along the path

is the sum of the propagation and transmission delays. Prim's spanning tree algorithm is then applied

to this graph to determine a minimum-cost spanning tree. Heuristic functions are provided for choosing

edges in the spanning tree. This tree is expanded into the edges that represent the constrained cheapest

paths. As it is possible that the resulting graph is not a tree because the edges in the closure graph

represent paths and expanding them may cause loops, a subsequent operation is performed to remove

these loops. The result is a minimum spanning tree where each source/destination path is constrained

by a speci�ed delay bound. While this is a multicast algorithm, it can easily be applied to the unicast

case, hence it merits analysis here.

The plaNET routing technique contains several useful ideas: for example, routes can be determined

that support di�erent classes of service; blocking probability can be decreased by reducing the number

of links in the route; and the topology considered is similar to those encountered in our environment.

However, the routing technique only takes into consideration the bandwidth resources, and not the

delay or bu�er resources. In the Codex algorithm, bandwidth resources are taken into consideration,

and rerouting is examined; however, the delay and bu�er resources are not addressed. The problem

of achieving a minimum-cost route subject to delay constraints is exactly that we wish to solve, and

Kompella et al. propose a useful, though computationally expensive, solution for a multicast environ-

26ment. With these disadvantages in the circuit and packet switching routing techniques, it was necessary

to extract the essence of the advantages from these techniques and use them to develop a suitable set

of properties from which a DCM real-time routing algorithm could be developed. The DCM real-time

routing algorithm is described in Chapter 3.

27

Chapter 3

Dynamic Connection

Management(DCM)

In the previous chapters we presented a major problem associated with GPC schemes, i.e. their lack

of
exibility, and motivated the need for
exibility in these schemes. This motivation was, in essence,

based on the inability of the current schemes to adapt to the dynamics of the client's \runtime" demands

or to the dynamics of the network state. In this chapter we present a GPC scheme that addresses this

problem by supporting the modi�cation of tra�c parameters, performance parameters, and routes of

an existing connection under global or local control subject to a modi�cation contract that speci�es the

extent of disruption to be experienced by the client during this modi�cation. Local control is the ability

of the network to modify the tra�c parameters, performance parameters, and route of a portion1 of

an existing connection, whereas global control refers to the modi�cation of the entire connection. This

scheme is one component of a complete solution that we refer to as Dynamic Connection Management

(DCM), which is composed of the DCM scheme and the DCM policies.

The DCM scheme is based on the Tenet real-time scheme and extends this scheme by providing

exibility to the Tenet scheme. The DCM scheme is the collection of algorithms and mechanisms that

permit the network to dynamically modify connection parameters and routes. The modi�cation of a

connection is a procedural abstraction whereby a guaranteed performance connection with the new

performance and tra�c parameters (referred to as the alternate connection) is established, the client's

tra�c is moved from the current real-time connection (referred to as the primary connection) to the

alternate connection, and then the primary connection is removed. The movement of tra�c from the

primary to the alternate connection is referred to as the transition from the primary to the alternate

connection. Modi�cations can also be applied to change the route of a connection. Furthermore, the

1This portion of the connection may contain as many as N � 1 links in an N link connection; or as few as 1 link.

28DCM scheme allows the fast establishment or modi�cation of a channel, permits a �ner granularity of

control to be exercised on a channel, and supports transparency during the transition from the primary

to the alternate channel.

The DCM policies are rules that determine if a real-time connection is to be modi�ed, and the new

values of its parameters. These rules may examine the network's or client's state data to determine if a

modi�cation should take place. If this modi�cation should be e�ected, then the policies supply the mod-

i�ed parameters and routes. The DCM policies are usually implemented as management applications,

and will not be addressed in this thesis.

In this chapter, the DCM scheme can be described from three viewpoints: the DCM modi�cation

contract, the DCM algorithms, and the DCM mechanisms. As the DCM scheme is an extension of the

Tenet scheme, the Tenet scheme will be �rst described from the same viewpoints.

3.1 The Tenet Scheme

In this section, we give a brief overview of the current version of the Tenet resource management

algorithms [21]. We describe three aspects of the scheme: the Tenet performance contracts, which de�ne

the service abstraction; the Tenet mechanisms, which constitute a distributed connection establishment

procedure; and the Tenet algorithms, which consist of the service discipline at the switches and the

admission control tests.

3.1.1 The Tenet Performance Contract

The Tenet algorithms are based on a communication abstraction called a real-time channel [22, 52].

A real-time channel is a network connection associated with pre-speci�ed tra�c and performance pa-

rameters. The parameters are provided by the clients, who specify their tra�c characteristics and

performance requirements. The performance guarantees in the Tenet scheme refer to bounds on through-

put, delay, delay jitter, and loss rate due to bu�er over
ows. The tra�c speci�cation consists of four

parameters:

� Xmin - the minimum packet inter-arrival time;

� Xave - the minimum average packet inter-arrival time over an an averaging interval;

� I - the averaging interval;

� Smax - the maximum packet size.

29The �rst three parameters belong to the set of positive real numbers, while the fourth parameter

belongs to the set of positive integers. The four performance parameters by which clients describe their

requirements are:

� D - the maximum delay permissible from the source to the destination;

� Z - the minimum probability that the delay of the packet is smaller than the delay bound, D;

� W - the minimum probability of no bu�er over
ow;

� J - the maximum delay jitter2.

The delay violation probability speci�cation allows the client to indicate if a deterministic or statistical

channel is desired. If the value of Z is one, this indicates that the delay of the packet will always be less

than the delay bound D. This is considered a hard or deterministic guarantee. If the value of Z is less

than one, the channel is considered a statistical channel. The throughput guarantee is obtained from

the tra�c characteristics of the client as the network, after accepting the channel, agrees to absorb the

load produced by the client. The delay, delay jitter, and loss rate due to bu�er over
ows guarantees

are obtained from the performance speci�cations as the network agrees to deliver packets within the

speci�ed performance parameters.

The service abstraction de�nes a contractual relationship between the network and the client: once

the channel is established, the network guarantees that, in the absence of network failures, it will meet

the speci�ed performance requirements of the client, provided that the client obeys its worst-case tra�c

speci�cation.

3.1.2 The Tenet Mechanisms

A channel needs to be established before data can be transferred. This channel establishment is

achieved in the following manner: a real-time client speci�es its tra�c characteristics and end-to-

end performance requirements to the network; the network determines the most suitable route for a

channel with these tra�c characteristics and performance requirements; it then translates the end-to-

end parameters into local parameters at each node, and attempts to reserve resources by conducting

resource reservation tests at these nodes accordingly. This is done in a distributed manner during a

round-trip communication.

On the forward pass of the channel establishment round trip, call admission tests are conducted and

resources are reserved to get the best possible level of local performance so as to ensure that resource

de�ciencies further along the path can be accommodated. This process continues along each node until

2In this case jitter is de�ned as the di�erence between the delays experienced by any two packets on the same connection.

30the destination node is reached or an intermediate node rejects the channel. At the end of the forward

pass, the destination summarizes the information collected along the path and determines if all of the

end-to-end performance bounds obtained by reserving resources during the forward trip are better than

the corresponding client requirements. If so, on the reverse pass, the resources reserved during the

forward pass are reduced or relaxed so that only the necessary amounts of resources are committed.

These call admission or resource reservation algorithms are used during this channel establishment

to determine if the needed resources can be reserved and, if available, to reserve the resources, thereby

ensuring that the guarantees made to the clients can be met. Resources are only reserved inasmuch as

they do not cause the violation of the guarantees made to the other clients. These algorithms are based

on the service disciplines at each switch; therefore, after the establishment phase, a priori end-to-end

performance guarantees can be o�ered to the client.

3.1.3 The Tenet Algorithms

In order to provide performance guarantees, two levels of controls are needed: at the connection

level, channel admission control algorithms reserve resources for each of the connections and limit the

maximum utilization of the network by real-time tra�c; at the packet level, the service discipline at

each of the switches determines the multiplexing policy and allocates resources to di�erent connections

according to their reservations.

As shown in [14, 20, 57, 55], many service disciplines can be used to provide real-time service. However,

di�erent service disciplines require di�erent admission control algorithms. For the purpose of this paper,

we assume that the service discipline used at the switches is Rate-Controlled Static Priority [56, 55] or

RCSP. In this section, we �rst brie
y summarize the properties of the RCSP service discipline, then

give the corresponding admission control tests.

RCSP is a service discipline proposed to achieve both
exibility in terms of allocating service priorities

and bandwidth resources to di�erent connections, and simplicity in terms of high speed implementation.

As shown in Fig. 3.1, an RCSP server has two components: a rate controller and a static-priority

scheduler.

The rate controller shapes the input tra�c from each channel into the speci�ed tra�c pattern by

assigning an eligibility time to each packet; the static-priority scheduler orders the transmission of the

eligible packets from all channels. A rate controller is a set of tra�c regulators, each associated with a

channel traversing the switch. The regulators in RCSP can be either rate-jitter or delay-jitter controlling

regulators. A rate-jitter controlling regulator controls rate jitter3 by partially reconstructing the tra�c

pattern, while a delay-jitter controlling regulator controls the delay jitter by fully reconstructing the

3Rate jitter is de�ned as the maximum number of packets that can be present in a jitter averaging interval.

31

Packet Queue

SchedulerRate Controller

Non Real-Time

n

2

1

Regulator

Regulator

Regulator

Connection

One regulator

Traffic

Real-Time

Input

Input Non Real_Time Traffic

...

...
m

1

Level

Priority

Queues

Packet

Real-Timeper

Figure 3.1: Rate-Controlled Static-Priority Queuing

tra�c pattern. The regulator achieves this by assigning to each packet an eligibility time and holding

the packet until it becomes eligible before passing it to the static-priority scheduler. In controlling

the channels admitted into the switch and shaping tra�c patterns to conform to the speci�ed tra�c

requirements, the channels can obtain their previously speci�ed throughput requirements.

The static-priority scheduler consists of a �xed number of prioritized real-time packet queues and

a single non-real-time queue. Associated with each priority queue is a delay bound; the packets in

the topmost priority queue (denoted as priority level one) have the lowest delay bound. A channel is

assigned a priority level during the channel establishment phase, and that level is usually maintained

for the duration of the session. Multiple connections can be assigned to the same priority level. By

restricting the number of channels at each priority level using the admission tests, the queuing time

of each packet at a priority level is guaranteed to be less than or equal to the delay bound associated

with that level. The scheduler services the packets as follows: the next packet transmitted is always the

packet at the head of the highest-priority non-empty queue, and non-real-time packets are transmitted

only when there are no real-time packets in the priority queues. The transmission of a lower-priority

packet is not preempted by the arrival of a higher-priority packet.

As stated previously, a single RCSP server can guarantee a number of local delay bounds to di�erent

connections. When the local node receives an establishment request, it determines if enough bandwidth

and schedulability resources can be reserved to ensure the satisfaction of throughput and delay bound

guarantees. Resources are reserved according to the results of Test 1 given below.

32Test 1: Let d1i ; d
2
i ; : : : ; d

n
i (d1i < d2i < � � � < dni) be the delay bounds associated with each of the

n priority levels, respectively, at switch i. Let Cq be the the set of connections that are established

and assigned level q (1 � q � n), and the jth connection within Cq has the tra�c speci�cation

(Xmin
q
j; Xave

q
j; I

q
j ; Smax

q
j). Assume that the link speed is l, and the size of the largest packet that can be

transmitted onto the link is Smax . A new connection with the tra�c speci�cation (Xminnew; Xavenew; Inew; Smaxnew)

can be assigned to level m, or be assigned a local delay bound dmi , if the following inequality holds:

m0X
q=1

X
j2Cq

d
dm

0

i

Xmin
q
j

eSmaxqj + d
dm

0

i

Xminnew
eSmaxnew + Smax � dm

0

i l m0 = m; � � � ; n (3.1)

Intuitively, the longest waiting time in the scheduler for a level-m0 packet corresponds to the case

in which a lower-priority packet is being transmitted when the packet arrives at the scheduler, and is

followed immediately by the longest possible transmission of packets with higher or equal priorities.

Test 1 bounds this longest waiting time to be less than dm
0

i for m0 = m; � � � ; n, which are the priority

levels that can be a�ected by placing a new connection in priority level m (level 1 has the highest

priority).

RCSP servers also hold packets to ensure tra�c smoothness and bounded delay-jitter properties in

a network of switches. The following gives the delay property for a connection traversing a tandem of

RCSP switches 4.

Delay Property: Let d1;j; � � � ; di;j be the local delay bounds for the �rst i switches along the path

traversed by connection j, �i�1;i be the propagation delay from switch i� 1 to switch i, and Di;j;k be the

delay experienced by the kth packet on connection j from switch 1 to switch i; the following properties

hold for any k:
i�1X
i0=1

(di0;j + �i0;i0+1) � Di;j;k �
i�1X
i0=1

(di0;j + �i0;i0+1) + di;j (3.2)

The property gives the upper and lower bounds on the delay for any packets traversing a path of

RCSP switches. The end-to-end delay jitter is bounded by the local delay bound of the last switch

along the path.

To ensure enough bu�ers are reserved so that the performance guarantees are not violated, the

following local condition must be met at switch i.

Test2:

4Of the two types of RCSP servers only a delay-jitter controlling RCSP server has this delay property [55]. In this
dissertation only delay-jitter controlling RCSP servers are used.

33

Rbu + d
di�1;j

Xmin
e � Smax+ d

di;j

Xmin
e � Smax � B i = 1; � � � ; n (3.3)

where di�1;j and di;j are the local delay bounds for the connection at the (i� 1)th and ith switches along

the path, respectively, Rbu is the current bu�er space occupied (in bits) and B is the maximum bu�er

space (in bits) allotted.

Note that the bu�er space depends on the delay bound in the previous switch. This is due to fact

that an RCSP switch also holds packets, and the longest time a packet from connection j is held in

switch i is di�1;j where d0;j = 0.

3.2 The Dynamic Connection Management Scheme

3.2.1 The DCM Modi�cation Contract

Network

Client/

Response

time

Request

Modification

Network

Interval
Transition

T3T2

ChannelAlternate

Removed

Channel

Primary

Primary Channel

T1

Figure 3.2: Request/Response Paradigm

A request for modi�cation is governed by the request/response paradigm depicted in Figure 3.2. In

this paradigm, requests can be either client-initiated or network-initiated. In a client-initiated request,

an application or higher level protocol entity makes a modi�cation request to the network services

manager, whereas in a network-initiated request the DCM policy manager, using the current network

state and client demands, can decide that a modi�cation is needed and submit a request to the network

service manager. This is shown in Fig. 3.2 at time T1. In this thesis we will normally use the term

\client" to refer to both an application or a policy manager as these are the clients that use the network

34services in the DCM scheme. In most cases the context will indicate to the reader to which, if not both,

of the client types we are referring. Upon receiving a request, the network service manager uses the DCM

scheme to modify the relevant channels. It should be noted that the DCM scheme can also be used to

establish a connection as well as to modify it. After the request is made the network returns a response,

accepted or denied (at time T2 in Fig. 3.2) based on the contents of the request and the current real-time

network load. If the request has been accepted, the client can then begin sending packets using the

new tra�c characteristics, if applicable5 , and expecting that the performances guaranteed on both the

primary and alternate channels are met6. It should be noted that the primary and alternate channels

exist simultaneously for a short interval of time, the transition interval (between T2 and T3 in Fig. 3.2),

and then the primary is removed. After this interval only the alternate channel will exist. Currently

the DCM scheme only supports the modi�cation of deterministic services.

In DCM there are contractual obligations made to the client that determine the extent of the dis-

ruption that will be experienced by the client due to the transition from the primary to the alternate

channel. There are two types of DCM modi�cation contracts:

1. The No-Violation contract, which states that no performance guarantees will be violated during

the transition from the primary to the alternate channel.

2. The Bounded-Violation contract, which states that a bounded number7 of performance violations

can occur during the transition from the primary to the alternate channel.

There are three types of performance violations that may occur:

� a delay bound violation occurs when a client, sending tra�c according to its tra�c characteristics,

has at least one packet that exceeds the delay bound D at the destination node;

� a delay jitter bound violation occurs when a client, sending tra�c according to its tra�c charac-

teristics, has at least one packet that exceeds its delay jitter bound J at the destination node;

and

� a packet ordering violation occurs when a client, sending tra�c according to its tra�c character-

istics, receives packets out of sequence.

These violations may occur singly, or multiple violations can occur simultaneously. The �rst type of

DCM modi�cation contract ensures that none of the three performance violations will occur during the

5There may be network-initiated requests where only the route is changed, hence there are no new tra�c characteristics.
6This is to say that packets traversing the primary channel will meet the performance guarantees corresponding to the

primary channel, and packets traversing the alternate channel will have their alternate channel performance guarantees
met, subject to the modi�cation contract explained below.

7The number of performance violations is speci�ed as a packet count; however, it will be converted into a unit more
easily understood by the human client (i.e., frames, messages, etc.).

35transition to an alternate channel. This contract may be explicitly requested by the client before channel

parameter modi�cation or implicitly demanded by the policy manager before channel route modi�cation.

Route modi�cation is usually done by the network and must be totally transparent to the client; hence

there must be no performance violations. Reroutings may be done directly for network administrative

or management purposes, or indirectly due to a client's performance parameter modi�cation request.

There is an intrinsic condition that must be satis�ed to avoid performance violations. To see this, let

us consider the following case. Assume the kth packet to be the last packet transmitted on the primary

channel. Let Dp, Da be the end-to-end delay bounds of the rerouted connection on the primary and

alternate paths, respectively. Also, let sk, rk, Dk and sk+1, rk+1, Dk+1 be the sending time, receiving

time, end-to-end delay, for the kth and (k + 1)th packets, respectively. We have sk + Dk = rk, and

sk+1+Dk+1 = rk+1. To ensure in-order delivery, we need to have rk < rk+1, i.e. sk +Dk < sk+1+Dk+1.

Rearranging the terms we have

Dk � (sk+1 � sk) < Dk+1 (3.4)

We assume that the kth packet traverses the primary route and the (k+1)th packet traverses the alternate

route. We also know that Dk � Dp
path, where Dp

path is the upper bound on the delay of packets along

the primary path and that the tra�c has to satisfy the tra�c constraint, or sk+1 � sk � Xmina. Since

(3.4) has to hold for any values of Dk and Dk+1 that satisfy delay and jitter bounds, we choose the most

rigorous situation8 to get the following:

Dp
path �Xmina < Da

path � Japath (3.5)

where Da
path is the the upper bound on the delay of packets along the alternate path, and Japath is the

maximum jitter experienced by packets along the alternate path. Hence Da
path�Japath is the minimum

amount of time that packets traversing the alternate path can experience between the source and the

destination (i.e., it is the lower bound on the delay of packets along the alternate path; this is due to the

delay-jitter rate control RCSP servers); thus, Da
path � Japath � Dk+1. Since the modi�cation contract

must be made before establishing the alternate channel, the values of Da
path and Japath will not be

known. However, we do know that the following

Da
path � Da (3.6)

must be true to ensure the the delay bound guarantees are met on the alternate channel. Thus the

necessary condition9 for a No-Violation contract is

Dp
path �Xmina < Da (3.7)

8Where the largest values are chosen for the variables on the left hand side of equation 3.4 and the smallest for those
on the right hand side of the equation.

9We assume here that the tra�c characteristics of the alternate channel apply at the instant that the client is noti�ed
of the acceptance.

36While the No-Violation contract constrains the ranges of the parameter modi�cations, some clients can

tolerate the violation of these guarantees during a transition provided that the e�ect is bounded. The

performance violations that can occur are those of delay, delay jitter, and packet ordering, and the

violation bound is an upper bound on the number of packets exceeding their required delay or delay

jitter bounds, or the number of packets that are received out of order at the destination during the

transition interval. This contract is useful, as we believe most clients will expect a slight disruption in

service upon modi�cation, and will be ready to accept it as long as it is bounded.

In the case of a Bounded-Violation contract, we remove the parameter constraints and specify an

upper bound on the number of packets that will exceed the delay or delay jitter bounds of the alternate

channel, or arrive out-of-sequence at the destination during the transition interval. If condition (3.7) is

not satis�ed, the number of packets that can arrive out-of-sequence or exceed delay bounds is bounded

by

d
Dp

path �Xmin
a �Da

path + Japath

Xmin
a e+ 1: (3.8)

As a performance violation bounds must be supplied to the requester before the channel is modi�ed,

the value of this bound will be made known to the client before the channel modi�cation is attempted,

and the client can then decide if the modi�cation is worth attempting. Equation 3.8 determines the

number of packets that will have performance violations but also requires information that can only be

obtained after modi�cation of the channel (i.e., Da
path and Japath). Therefore, before modi�cation, the

number of packets with performance bounds is determined by the equation:

d
Dp

path �Xmina �Dmin
path

Xmina
e; (3.9)

where Dmin
path is the sum of the propagation and transmission delay on the shortest path between

the source and the destination. This equation is a much looser version of equation 3.8 as it uses the

Dmin
path term, which is the absolute minimum delay between the source and the destination, and will

provide a high upper bound on the number of packets with performance violations. If the client wishes

to continue with the modi�cation, then after establishment the client can be informed of the tighter

bound stated in equation 3.8. This violation bound is the same for all performance violations, as it is

based on the maximum number of primary channel packets that can be in transit during the transition

from the primary to the alternate channel.

3.2.2 The DCM Algorithms

In this sub-section we will present the high level functionalities of the three DCM algorithms: the

channel administration algorithm, the routing algorithm, and the transition algorithm, followed by

a detailed discussion of each of them. The key function of these algorithms is to provide the support

37needed to modify parameters and routes under the constraints of resource sharing and of the modi�cation

contracts. These two constraints motivate three speci�c functions, each of which is provided in an

algorithm.

Alternate channel establishment can be examined under two scenarios, i.e., no resource sharing and

resource sharing. Under the no resource sharing scenario, an alternate channel is established along a

route that is completely disjoint from that of the primary channel or the alternate channel traverses

links that are common with those of the primary channel but does not share any of the resources

previously reserved by the primary channel. Under the resource sharing scenario, an alternate channel

is established along a route which traverses some links that are common with those of the primary

channel and shares resources along all of the common links10. We envision that resource sharing may be

desirable11 as we expect a signi�cant number of instances in which a very large channel (i.e., very resource

demanding) or multiple smaller channels are being rerouted or enhanced, and the resources required

to accommodate these requests, especially during the transition interval, can only be made available

using resource sharing. The channel administration algorithm provides the admission control tests and

some additional constraints needed to support both of these scenarios. It should be mentioned that the

decision to utilize resource sharing is entirely policy-dependent, and the algorithm merely provides the

capability without imposing any judgment as to when it is used.

In determining a suitable route for the alternate channel, the routing algorithm must be able to re
ect

the inclusion or exclusion of the resource sharing factor. If resource sharing is not accommodated, the

resources reserved by the primary channel are not considered by the routing algorithm in determining

an alternate route. If resource sharing is accommodated, the routing algorithm compensates for the

resources reserved by the primary channel, i.e., by \virtually" removing the resources reserved by the

primary channel from its routing database before calculating the alternate route. Thus, the alternate

route chosen may have to share previously reserved resources if there are common links. The decision

to accommodate resource sharing is a policy decision; only the routing mechanism, which must support

either policy, will be addressed in this work.

The modi�cation contracts discussed in Section 3.2.1 present the performance parameter constraints

needed to support the \No-Violation" and \Bounded-Violation" contracts; however, in the \No-Violation"

contract additional support is needed to prevent packet-ordering or delay bound performance violations.

The transition algorithm described below provides the additional bu�ers and the packet reordering

mechanism needed to support this contract.

Table 3.1 summarizes the discussion above. The constraints of resource sharing and the modi�cation

contracts are expanded, and their e�ects on the three DCM algorithms are presented. There are two

10It may be that the alternate and primary route are the same.
11It would increase the utilization of the network.

38Constraints Channel Admission Routing Transition

Algorithm Algorithm Algorithm

NV RS Test Set Adjust resources before Used
(1,2,3,4) route calculation

NV NRS Test Set Do not adjust resources Used
(1,2) before route calculation

BV RS Test Set Adjust resources before Not
(1,2,3,4) route calculation Used

BV NRS Test Set Do not adjust resources Not
(1,2) before route calculation Used

Table 3.1: Impact of Constraints on DCM Algorithms

types of modi�cation contracts, a No-Violation contract (NV), and a Bounded-Violation contract (BV)

. The resource sharing constraint is re
ected in two states, Resource Sharing (RS) and No Resource

Sharing (NRS) . There are four tests associated with the Channel Administration algorithm; the �rst

two tests, Test 1 and 2 presented in Section 3.1.3, are used for admission control on non-shared resources,

while Test 3 and 4 (to be presented in Section 3.2.2), are used for admission control on shared resources.

Along a path on which resource sharing occurs there may be both shared links and unshared links;

hence all of the tests (i.e., Tests 1, 2, 3, and 4) may be used in that establishment attempt.

The DCM Channel Administration Algorithm

The DCM scheme has the same procedural format as the Tenet scheme, in that an establishment or

modi�cation message proceeds along the nodes traversing the path, and admission tests are conducted to

determine if the new channel can be established or modi�ed and to reserve the appropriate resources for

this channel. In the DCM scheme, the Tenet channel administration algorithm has been supplemented

by the DCM channel administration algorithm.

The goal of the DCM channel administration algorithm is to establish an alternate channel, conform-

ing to the speci�ed tra�c and performance parameters, between a source and a destination host. This

alternate channel is established in the presence of a primary channel on which the client is currently

active. The establishment entails the decision as to the acceptance or rejection of the client's request

subject to resource availability; the algorithm must reserve the appropriate resources if they are avail-

able, so that an a priori guarantee is made. In the establishment of an alternate channel we can choose

not to utilize or to utilize resource sharing. Both scenarios are examined below.

As discussed previously, in a no resource sharing scenario the alternate channel is completely resource

independent from the primary channel and the admissions tests to be applied at each link are those used

in the establishment of a primary channel, i.e., Test 1 and Test 2. There is, however, one di�erence:

the transparency procedure (discussed in Section 3.2.3) is used to ensure that the interface the client

39sees of the channel after the modi�cation is the same as that seen before the modi�cation.

In the resource sharing scenario, the alternate channel is resource dependent on the primary route,

and shares resources along one or more of the links that comprise the primary route. In this scenario

the admissions tests applied to the common links, Test 3 and 4, reserve resources for the larger (in

terms of resource reservations) of the two channels. Test 1 and 2 are still applied to the links that are

not common to both routes. Test 3 and 4 are modi�cations of Tests 1 and 2, respectively, and take

into consideration resources that are already reserved for the primary channel at that link, to ensure

that there is no duplication of resources. If the primary channel has acquired resources that are greater

than those of the alternate channel, these tests need not be applied. If Test 3 and 4 are successful,

we have guaranteed that enough resources are available for the higher performance channel but not for

both of the channels; therefore, we need to avoid the situation in which packets from both channels

arrive at the link simultaneously, as resources are not reserved for both channels. This is achieved by

using the delay jitter control properties of the RCSP server, that is, by properly setting the local delay

bounds parameters along the paths of both the primary and the alternate channels. Notice that, in a

delay-jitter controlled network, the delay of a packet from a source to a switch does not have only an

upper bound, but also a lower bound, and the di�erence between the two bounds, which is the maximum

delay jitter, can be tuned by properly setting the local delay bounds [56, 57]. Assume that the shared

link is an output link of switch i, that the upper bounds and lower bounds of delay from the source to

the i th switch for packets of the primary and alternate channels are denoted by D
upper;p
i , Dlower;p

i
12,

D
upper;a
i and Dlower;a

i respectively. To ensure that the packets arriving at the shared link obey the tra�c

speci�cation, the following condition must be satis�ed:

D
upper;p
i � D

lower;a
i (3.10)

If both of these actions, passing the establishment tests and ful�lling the above delay bounds condi-

tion, can be done successfully, the channel can be accepted; otherwise, it is rejected.

Resource Sharing Admissions Control Tests

These modi�ed tests are only applied to the common links if any of the performance requirements of

the alternate channel are greater than those of the primary channel. When at least one of the conditions

(provided below) holds, the performance needs of the alternate channel are greater than those of the

primary channel. These conditions correspond to the throughput, delay, and delay jitter performance

of the channels, respectively, and are:

� Smaxa

Xmina
� Smaxp

Xminp

12In keeping with our convention, the \bar" over Dlower;p
i indicates a bound on this lower delay.

40� D
a
< D

p

� J
a
< J

p

To ensure that the transition from the primary to the alternate channels is as smooth as possible, it is

necessary to retain ample resources so that packets from either the primary or alternate channels can

meet their requirements. This can be achieved by a judicious choice of parameters upon which resource

reservation at this common link will be based. In Test 3 below, an initial adjustment is made to virtually

remove the resources currently reserved for the primary channel, and then resources are reserved for

the composite channel de�ned by equations (3.11), (3.12), and (3.13)13. After this adjustment, the

resources must be available to ensure that packets from both channels meet their obligations. This

is accomplished by choosing the appropriate Xmin and Smax parameters from among those of the

primary and alternate channels, and ensuring that on that common link the local delay bound of the

alternate channel is always less than or equal to that of the primary channel. In the event that any

performance index for the alternate channel is greater than the same index for the primary channel, the

composite values of Xmin and Smax to be used in the admission test, and the local delay conditions

are given by:

Xminc = min(Xmina; Xminp) (3.11)

Smaxc = max(Smaxa; Smaxp) (3.12)

dc
î
= da

î
� d

p

î
(3.13)

If all of the performance indices of the alternate channel are less than those of the primary channel,

no admission test need be applied, as su�cient resources for the alternate channel have already been

reserved. As the resources reserved by Test 3 below ensure that the primary channel packets as well

as the alternate channel packets meet their obligations, they may be in excess of those needed for the

alternate channel. These excess resources are only present during the transitional period, and will be

recovered by the network upon the tear down of the primary channel.

Test 3: For an alternate channel request with the tra�c speci�cation (Xmina; Xavea; Ia; Smaxa) and

a local delay bound requirement of da;k, and for a primary channel with speci�cation (Xminp; Xavep; Ip; Smaxp

) and a local delay bound dp;m, �rst the resources are adjusted to \virtually" remove the primary channel

and then Test 1 is applied.

13The subscript î indicates that link i is common.

41Adjustment:

Rba;m0 =
m0X
q=1

X
j2Cq

d
dm

0

Xmin
q
j

eSmaxqj + Smax� d
dp;m

0

Xminp
eSmaxp m0 = m; � � � ; n: (3.14)

If the condition given below can be met:

Rba;m0 + d
dc;m

0

Xminc
e � Smaxc � dc;m

0

l m0 = k; � � � ; n (3.15)

then the alternate channel request can be accepted.

The bu�er resource test modi�cation is of the same form as that of the bandwidth and scheduling test

above, but an adjustment must be made to ensure that there is no duplication of previously reserved

resources. Again, the reserved resources are adjusted, and the test condition applied to the adjusted

resources.

Test 4: For an alternate channel request with the tra�c speci�cation (Xmina; Xavea; Ia; Smaxa) and

a delay bound requirement da, and for a primary channel with a tra�c speci�cation (Xminp; Xavep; Ip; Smaxp)

and a delay requirement dp, the adjustment at the ith switch is:

Rbuadj = Rbu� d
d
p
i�1

Xminp
eSmaxp � d

d
p
i

Xminp
eSmaxp (3.16)

The condition that needs to be satis�ed is :

Rbuadj + d
max(dpi�1; d

a
i�1)

Xminc
eSmaxc + d

d
p
i

Xminc
eSmaxc � B (3.17)

where Rbu is the current bu�er space in use (in bits), B is the maximum bu�er size (in bits) allocated

to that output link, and d
p
i�1 is the delay bound in the i � 1 th switch along the route. It should be

noted that dpi�1 actually refers to the delay in the switch on the primary route preceding the ith switch

along the alternate route. This preceding switch along the primary route may not be the i� 1th switch

on that route, but for the sake of notational brevity we allow this exception.

Note also that this modi�ed test is only performed if the performance indices of the alternate channel

are greater than those of the primary channel. In the case where the performance requirements are less

restrictive, no resources are released during the establishment phase; rather, the excess resources are

reclaimed during the tear down of the primary channel.

42The DCM Routing Algorithm

The DCM routing algorithm is designed to �nd an shortest path route based on the constraints im-

posed by the tra�c characteristics, the performance and administrative requirements, and the source/destination

host pair. A shortest path route is one that minimizes the total cost as de�ned below. This routing

algorithm taken by itself would provide a signi�cant contribution to the Tenet Scheme 1 as the scheme

currently uses Internet routing, which considers neither the real-time network load nor the tra�c and

performance parameters of the channel. The DCM channel administration algorithm obtains from the

DCM routing algorithm a route for the speci�ed source/destination host pair that obeys the speci�ed

routing constraints. In requesting this route, the values of various tra�c, performance, and admin-

istrative parameters are required by the routing algorithm. The tra�c and performance parameters

pertaining to the alternate and primary channel have been previously described. The administrative

parameter is used to indicate resource sharing. This parameter can take three values:

� if the parameter value is 0, the routing algorithm assumes that a primary route is needed, and

obviously no resource sharing occurs;

� if the parameter value is 1, the routing algorithm determines an alternate route that does not

share resources with the primary route;

� if the parameter value is 2, an alternate route that can share resources with the primary route is

determined.

The manner in which these administrative requirements are satis�ed is explained below.

The DCM Routing Algorithm provides source routing and is based on a modi�ed, constrained, version

of the Bellman-Ford algorithm. In a network with N nodes, the fundamental Bellman-Ford algorithm

[10] searches for the shortest paths between a speci�ed source and destination node starting from

all possible one-hop paths and continuing until all N-2-hop paths have been examined. The goals

of our routing algorithm were to maximize throughput, to obtain routes in a timely manner, and to

maximize the probability that the route provided will be successfully established (i.e., the route will be

established with the tra�c and performance speci�cations given by the client). The routing algorithm

calculates a minimal-cost route subject to a delay constraint. The cost of the route is the number

of links comprising the route, while the delay constraint ensures that the sum of the delay values of

these links is less that the delay bound, D, required by the client. The delay value attributed to a

link is the sum of the minimum queuing delay o�ered by the node to a real-time channel with these

tra�c characteristics and the propagation delay along the output link. While the propagation delay is

�xed, the queuing delay experienced in the RCSP scheduler is variable, and is dependent on the current

channel resource reservations on the corresponding output link and the tra�c characteristics of the new

43channel. This queuing delay is calculated by using the admission tests provided in Section 3.1.3 and

Section 3.2.2 to determine the minimum queuing delay that this link can o�er a connection with these

tra�c characteristics. Currently we assume that bu�er space is an abundant, although �nite, resource

and so it is not considered a constraint in the routing algorithm.

The algorithm proceeds with the following steps:

� A directed graph is created in which the nodes correspond to switches and hosts in the network

and the edges to the links connecting these switches and hosts. The weights attributed to the

edges represent the link delay values. These delay values are computed just prior to applying the

algorithm, thereby using the most recent link information obtained from routing update messages.

� For the delay bound case the DCM routing algorithm proceeds as follows:

1. Consecutive searches are performed on all 1, 2, .., N-2-hop paths from the source to the

destination node, where N is the number of nodes in the network, until the delay conditionP
l(s;r) wl � D is satis�ed, where D is the delay bound of the channel, wl is the delay value

or weight of link l, and (s,r) are the links connecting the source s to the destination r. A

constraint is placed on the number of possible searches by stopping at the hop level at which

the delay bound condition is �rst satis�ed. This hop level is the number of hops from the

source to the destination node and is also the cost of the route.

2. At this hop level or cost, the path with the minimum delay value (i.e., min
P

l(s;r) wl) that

meets the delay condition is chosen.

� For the delay jitter bound (J) case, the following steps are performed:

1. Assuming a path with n hops, the minimum queuing delay o�ered by the link incident on

the destination node14, dn, is �rst examined. If dn � J , then the algorithm proceeds, else

the channel cannot be accepted, as the delay jitter bound condition cannot be satis�ed.

2. Consecutive searches are performed on all 1, 2, .., N-2-hop paths from the source to the

destination node until
Pn�1

l=1 wl � D � dn � �n, where D is the delay bound of the channel,

and �n is the propagation delay associated with the last link n.

3. At this hop level, the path with the minimum delay value that meets the delay condition is

chosen.

As we consider bandwidth to be our premium resource, the algorithm seeks to reduce the consumption

of this resource by selecting a path with the minimum number of hops so as to maximize the available

14We assume that there is only one link incident on the destination node. In the event that there are multiple incident
links, the link with the lowest queuing delay value is chosen.

44network throughput. This is achieved by limiting the search space or hop level, which restricts the

number of links or hops in the path. Another consequence of limiting this search space is that the

computation time of the algorithm is reduced. The probability of successful channel establishment is

increased as the algorithm determines the queuing delays based on the tra�c characteristics of the

channel and the most recent real-time load information.

The administrative constraints are achieved by modifying the weights (i.e., the delay values) asso-

ciated with the edges (i.e., links) of the graph before applying the algorithm. With an administrative

parameter value of 0 and 1, no adjustment is made to the edges of the graphs. Thus, in the presence

of a primary channel, i.e., when the parameter is 1, the resources used by the primary channel are not

considered. With a value of 2, the primary channel's resources are virtually removed from the edges

corresponding to the links comprising the primary route before calculating the weight of the edge.

Routing updates are currently done on a per-channel-establishment basis. Updates are accomplished

by having every node broadcast the load values of its links to all other nodes. These load values are the

amount of bandwidth and delay resources reserved at each priority level in the RCSP server at this node.

This broadcast is done upon the establishment of a new channel, after the node has sent the reverse

channel establishment message to the previous node on the new channel's route, and following every

channel tear down. Upon receiving an update packet, the receiving node updates its local link-state

table. If there are no new channel establishments within a speci�ed time interval, link updates are sent

by each node to assure other nodes that the link is still active. All route update broadcasts are done

along a minimum spanning tree.

The DCM Transition Algorithm

The DCM transition algorithm ensures that the transition from the primary to the alternate channel

does not violate the DCM modi�cation contract. It is invoked for a channel with a No-Violation

modi�cation contract when there is a possibility that packets on the alternate channel may arrive at the

destination before the last packet on the primary channel. This packet mis-ordering situation may arise

even when condition 3.7 is met. In this case, transition bu�ers need to be reserved at the destination

and the re-sequencing of packets needs to be performed. During channel establishment some bu�ers

have been reserved to ensure that all performance guarantees are met; however, additional bu�ers may

need to be reserved to accommodate out-of-sequence packets.

Packets along the alternate route may arrive at the destination before packets along the primary route

only when the maximum delay of packets traversing the primary channel is greater than the minimum

delay of packets traversing the alternate channel. This condition is:

Dp
path �Xmina + Japath � Da

path (3.18)

45If this condition 3.18 is satis�ed, then the additional bu�ers needed are:
d
Dp

path �Xmin
a �Da

path + Japath

Xmin
a e+ 1

!
Smaxa (3.19)

During the transition, packets arriving earlier on the alternate channel will be held in these bu�ers until

all packets from the primary channel have arrived and have been passed to the receiver.

In the case of a connection requesting a delay-jitter bound, the channel administration algorithm

makes the delay bound at the last switch equal to the delay jitter bound. If J
a
6= J

p
, contract violations

can be avoided by maintaining a delay jitter equal to min(J
p
,J

a
). If condition (3.18) holds, the reserved

bu�ers (including the transition bu�ers) will be used to ensure that delay-jitter performance guarantees

are not violated during the transition. All out-of-sequence packets on the alternate channel will be

bu�ered at the destination and passed up to the client at the appropriate time. In the previously

discussed delay bound case, upon arrival of all packets on the primary channel the bu�ered out-of-

sequence packets are all passed up to the client immediately. However, to preserve the exact tra�c

pattern in the delay jitter bound case, the out-of-sequence packets will be passed up to the client at the

appropriate times. The appropriate time, tk, for packet k is

tk = srck +Da � Ja; (3.20)

where srck is the source time stamp on the packet, and Da and Ja are the delay bounds and delay jitter

bounds on the alternate channel. As mentioned previously, if the No-violation contract is desired, the

tight coupling of delay bounds and delay-jitter bounds in our scheme necessitates that the conditions

speci�ed by equation (3.7) be met to ensure that there are no delay jitter performance violations.

3.2.3 The DCM Mechanisms

As mentioned in the previous section, the DCM mechanisms employ the same procedural format as

the Tenet scheme for the establishment of a channel. The modi�cation of a channel also follows a similar

format as that of the establishment, in that two passes are required for establishment or modi�cation,

and resources are reserved on the forward pass and relaxed on the reverse pass. However, the procedure

has been enhanced to reduce the response time of the DCM scheme (i.e., the overall delay experienced

by the client between the time of its request and that of the network service manager's response).

In this subsection we will address the mechanisms unique to the DCM scheme that allow the fast

establishment or modi�cation of a channel, that permit the granularity of control, and that support

transparency during transition from the primary to the alternate channel.

46Establishment and Granularity of Control in DCM

The response time of the DCM scheme is the time interval between an establishment or modi�cation

request and the response of the network. This interval is dependent on the client's request, the current

network load, and the establishment procedure, and is commonly referred to as the establishment time15.

With channel establishment we have the following two cases: if the client requests a modi�cation that

does not increase the level of any of the performance parameters or require a change in the route of the

channel, then the response is an immediate acceptance, and, if applicable, the tra�c characteristics

of the channel can be immediately modi�ed to re
ect this response; if the modi�cation request re
ects

an increase in the level of at least one of the performance parameters or a change in the route of the

channel, then the response can be an acceptance or a rejection of the request. If the response is an

acceptance, then at the instant the response is passed to the client the required resources are available,

and the client can now begin to use these resources.

The response time should be as short as possible for client satisfaction. This time is dependent on

� the accuracy of the routing algorithm (i.e., the ability of the algorithm to provide a route that

will permit the establishment of the channel requested by this client), and,

� the round trip delay (i.e., the sum of the transmission, propagation, and queuing delays) of the

establishment message along the route from the source to the destination.

In order to reduce the establishment time, these two dependencies must be examined.

In DCM we attempt to reduce the portion of the establishment time dependent on the accuracy of the

routing algorithm by (1) having the routing algorithm utilize the most recent real-time network state

information as well as the tra�c and performance requirements of the client16 to determine an available

route before establishing the channel, and (2) exploiting the time value of the network state information

so as to bypass unavailable links (discussed later in this section) during channel establishment. The

DCM mechanisms employ a modi�ed version of the establishment procedure used by the Tenet scheme

that exploits the time value of the network state information to achieve a greater success probability.

In order to guarantee that the route selected by the routing algorithm will provide the greatest

probability of success, the routing algorithm uses the most recent network state information in its

database and the tra�c and performance requirements of the channel in computing a route. The

accuracy of this network state information is based entirely on the routing update mechanism. In our

model, route update information is disseminated upon the establishment and tear down of a channel

15In this thesis, the interval is referred to as the primary establishment time, in the case of the response time to an initial
request, and as the alternate establishment time in the case of the response time to an alternate channel request.

16The current Tenet scheme utilizes Internet routing which does not directly utilize any network or client real-time
information.

47and periodically if there are infrequent channel establishments or modi�cations. Currently, these route

updates are sent via a minimum spanning tree connecting all nodes in the network 17.

The value of network state information decreases in time if it is not updated. At the time of its

shipment, an update packet contains the exact state of the node18 from which it was generated; as it

is sent to nodes further away from this source node, the network state changes and the information

provided in the packet is a less accurate description of the state of the source node. Beyond a certain

amount of time the information contained in a routing update packet may be entirely inaccurate. As a

channel establishment message moves from the source node towards the destination node, it encounters

nodes that have received more recent network state information from the destination node. Thus, the

time value of the information pertaining to the route along which the establishment message is traveling

is increasing. This indicates that the nodes have more precise information on the state of the network

along that route as the establishment message moves towards the destination. If the establishment

message encounters a link which has insu�cient resources to accommodate the request, it returns to

the node preceding this unavailable link and requests a new route from this node to the destination.

This node, which has more recent information than the source of the establishment package, computes

the route from itself to the destination. This computation takes into consideration the resources that

were reserved before the unavailable link, and the tra�c and performance parameters contained in

the establishment message. Each node that attempts to route the establishment packet because of an

unavailable link knows the previously reserved portion of the route and removes these links (with the

reserved resources) from the graph, before applying the routing algorithm, thereby preventing looping

in the path. This addition to the establishment procedure (a.k.a. intelligent restart) should reduce

the establishment time of a channel, and can be useful also in the case of link failures where the

establishment message can be immediately rerouted to avoid the failed link. An example of the new

establishment procedure is shown in Figure 3.3, where a channel establishment is being attempted

between the source node S and the destination node D. The initial route chosen for this attempt is

route 1 (labeled (1)). The admission control test for resource reservation is successful at the �rst two

links in the path but fails at the third link (i.e., the link between intermediate nodes I2 and I3). At

this point the establishment procedure returns to the previous intermediate node, I2, and attempts to

route the channel to the destination node from that intermediate node. In this case there is a possible

route, route 2, hence the establishment message proceeds along this new \sub-route" and the channel is

established. If the admission test failed on the second link (between I2 and I3) then route 3 may have

been the new sub-route.

17While a su�ciently large network will su�er from inconsistent views of its state due to the large delays experienced in
the broadcast, for small networks this mechanism is adequate.

18The nodes contain information on the state of the links they support.

48

(3)

(2)

(1)

I1

A1A2

I3I2

RejectAccept Accept

DS

Figure 3.3: Intelligent Restart

Intelligent restarts can also be thought of as a version of retry whereby previously reserved resources

are held and a retry is attempted at the node preceding the failed link. This technique should be more

bene�cial than retries in that retries would return to the source node and utilize routing data that may

be out-dated. Also, the route selected may indeed overlap with the previously reserved portion of the

last failed establishment attempt19.

The response time is also dependent on the round trip delay experienced by the establishment message.

This round trip delay is the sum of the transmission, propagation, and queuing delays of the packets

comprising the message as it travels from the source to the destination node. In this round trip delay

only the the packet queuing delays can be a�ected as the transmission and propagation delays are

�xed. The queuing delays can be reduced by reserving resources for the establishment message (i.e., by

creating a real-time channel for establishment messages) or by prioritizing the establishment messages

so that they are given access to the network before other best-e�ort tra�c. The �rst method, (i.e.,

reserving resources for establishment message), which has been attempted in [45], has a signi�cant

drawback in that it is very di�cult to characterize the establishment tra�c passing through a node. We

are assuming that a single real-time \management" channel is established between each adjacent node

and the management tra�c sent over this channel is the aggregate management tra�c passing through

that node20. The second method is more feasible in that the establishment message can be prioritized so

19Note that these previously reserved resources would have been released on the return pass after the establishment
failed.

20It is very expensive to establish a management channel between every node pair in the network.

49that it is given preference over best-e�ort tra�c. This method is used in the DCM scheme by inserting

a management queue directly below the lowest level real-time queue and above the best-e�ort queue as

shown in Figure 3.4.

per Real-Time

Packet

Queues

Priority

Level

Management

Traffic

1

m
...

...

Input Non Real_Time Traffic

Input

Real-Time

Traffic

One regulator

Connection

Regulator

Regulator

Regulator

1

2

n

Non Real-Time

Packet Queues

Rate Controller Scheduler

Figure 3.4: Management Tra�c in RCSP Queues

The DCM algorithms can be applied to modify the performance parameters or the route of an entire

channel. It can also modify a segment of the channel. The smallest segment of a channel that can be

modi�ed is a single link. Control can be applied at the link (or local) level or at the route (or global)

level. We make no distinction between a modi�cation a�ecting a single link and a modi�cation a�ecting

any subset of a channel's links (excluding the entire route); both of these are called local modi�cations.

The modi�cation of an entire channel is referred to as a global modi�cation. The DCM algorithms can

be utilized for both local and global modi�cations, as the segments of a channel are themselves real-time

channels whose source is the node at which the segment begins and destination the node at which the

segment ends. The tra�c characteristics of these segments are the same as those of the \parent"channel,

and the performance requirements are derivatives of those of the parent (i.e., the delay bound is the

sum of the delay bounds of the links comprising the segment and the delay jitter bound is the queuing

delay in the last switch along the path of the segment). The DCM modi�cation contracts are equally

applicable to channel segments.

There are advantages and disadvantages to local and global control. Local control has the advantages

that the routes obtained by the routing algorithm usually have a higher success rate than those of

global routes, as the routing information gathered within a small radius is normally more accurate, and

50the channel establishment time is small due to the short distances traveled. However, local routing

algorithms do not possess the global knowledge that the source has and may not be aware of routing

constraints (these constraints may be cost or security restrictions) and can cause localized saturation

as only a small subset of the links are considered.

Transparency Procedures in DCM

The transparency procedure must ensure that the interface to the application client is preserved during

the transition from a primary channel to an alternate channel. This transition must be \invisible" to the

client as far as this interface is concerned. The interface is usually in the form of a unique identi�er that

the client uses when transmitting or receiving on the channel21. This unique identi�er must be preserved

at the source and a similar identi�er must be preserved at the destination. After the transition, the

unique identi�er will refer to the alternate channel, and the client's packets will be sent along this

alternate route, while at the destination the receiver will continue to receive its packets from its usual

receiver abstraction.

While preserving this unique identi�er, the client's real-time packets must be switched from the

primary to the alternate channel at the appropriate time. The transfer to the alternate channel, while

maintaining the same unique source and destination channel identi�ers, is done during the alternate

channel's establishment. On the forward pass, each intermediate node creates an instance of a channel

data structure which stores the state of the channel in that node, and an entry into a virtual circuit

routing table that indicates the outgoing virtual circuit identi�er and the outgoing link. Along the

alternate route, the node preceding the destination con�gures its virtual circuit routing table so that

it points to the same entry as the node preceding the destination in the primary path. In this manner

both the primary and alternate channels point to the same destination virtual circuit entry. Note that

this action is taken regardless of the conditions of the routes (i.e., whether the alternate and primary

routes are completely disjoint, partially disjoint, or identical), as new channel data structures and new

table entries are required in all conditions. On the reverse pass the switching between the primary

and alternate channels takes place when the virtual circuit table entry corresponding to the source is

changed to point to the alternate route. This change is accomplished by modifying the outgoing virtual

circuit identi�er and the outgoing link identi�er at the source node. The previous outgoing virtual

circuit and outgoing link identi�ers are maintained and used to tear down the primary channel.

An example of this procedure is given in Figure 3.5. The top diagram of this �gure indicates the

current state of the channel's data structures in the three nodes along the path. Each of these structures

contains the local channel identi�er (lcid), the outgoing link to be used (link), and the virtual channel

21For example in a Unix based system the unique identi�er would be a socket number.

51identi�er (vcid) which is the local channel identi�er to be used in the channel structure at the downstream

node. In the top diagram the source node uses outgoing link 5 to send its data packets to the intermediate

node I1. In addition to a data payload in these packets, there is header information that contains the

vcid to be used at this node. At this intermediate node the vcid is used as an index into the table to

determine the outgoing link and downstream local channel identi�er, which in this case are link 2 and

vcid 1, respectively. At the destination node the vcid 1 is used as the index to obtain these link and

vcid values. At the destination the outgoing link has a special value that indicates that this packet has

arrived at its destination; in this case the vcid indicates the unique identi�er for the receiving application.

During channel modi�cation the forward pass of the alternate channel establishment message reserves

the resources and sets up the data structures in the same manner as that of the primary channel

establishment; however, at the destination the value of the vcid is set to that of the primary channel

(this keeps the destination interface unique). This can be seen in the second diagram of Figure 3.5,

where the data structure22 indexed by the lcid chosen by that node (lcid 3) has its vcid updated to the

unique identi�er 92.

On the reverse pass the values of the lcid chosen at each individual node are loaded as the vcids

in the upstream node's channels data structure. At the source the unique identi�er is maintained by

replacing the its current outgoing link and vcid (i.e., that of the primary channel) by the new outgoing

link and new vcid (i.e., that of the alternate channel). This is shown in the bottom diagram where

the intermediate node, I2, updates its vcid to the lcid of the downstream node (i.e., 3) and the source

switches the outgoing link and vcid of the unique identi�er 2 (i.e., lcid 2) to 3 and 1, respectively. It

should be noted that the lcid originally obtained at the source for the alternate channel, lcid 30, is

associated with the original values of the primary channel in order to teardown the primary channel

and reclaim the appropriate resources.

3.3 Summary

In this chapter we have presented our solution to the problem of lack of
exibility in GPC schemes.

Flexibility is needed in these GPC schemes in order to adapt to the dynamics of the client's \run-

time" demands or to the dynamics of the network state. Our solution, called the Dynamic Connection

Management (DCM) scheme, permits the modi�cation of the tra�c characteristics, the performance

parameters, and the route of channel subject to a modi�cation contract that speci�es the extent of

disruption to be experienced by the client during this modi�cation. Furthermore, the scheme supports

global or local connection control by permitting modi�cations to be made to an entire connection or to

any of the segments of the connection.

22It should be noted that the alternate path passes through a di�erent intermediate node, I2.

52

2
11

3

4

Primary Channel

4

3

1

3

Forward Pass on Alternate Establishment

1
352

1

123
352

Reverse Pass on Alternate Establishment

3
3 1

35

Source DestinationI1

I2

92D

92

92D

D

92

92

D

D

30

30

link

link vcidvcid

vcid

lcid lcid link vcidvcidlinklcid

lcidlcid link vcidvcidlinklcid

link vcidlcid lcid link vcidvcidlinklcid

I2

Figure 3.5: Transparency Procedure

53The DCM scheme is composed of algorithms and mechanisms. There are three DCM algorithms:

the Channel Administration Algorithm, the Routing Algorithm, and the Transition Algorithm. The

DCM Channel Administrative Algorithm reserves the network resources, in the presence or absence of

resource sharing, needed to support the transition from the original (i.e., primary) channel to the new

(i.e., alternate) channel. This algorithm also ensures that the performance guarantees of the alternate

channel are satis�ed. The DCM routing algorithm determines a route from the source to the destination

host based on the tra�c and performance requirements of the connection requested by the client, and

the resource sharing factor. The DCM transition algorithm ensures that the performance violations

speci�ed in the DCM modi�cation contract are adhered to during the transition. In the chapter we

described these algorithms in detail.

The scheme supports mechanisms that enable connection modi�cations to be made to the segment of

the connection (local control) or to the entire connection (global control), and enables faster establishment

and modi�cation of connections. Faster establishment and modi�cation of connections is achieved by the

intelligent restart establishment procedure and results from the use of the time value of the network state

information and the ability of the procedure to navigate resource saturated links during establishment

or modi�cation. Both of these mechanisms were presented and discussed in the chapter.

This chapter provided an in-depth presentation of the DCM scheme. The following two chapters

complete this proof of concept, in that, Chapter 4 provides an analysis (using simulation experiments)

of the algorithms and the mechanism comprising the scheme while, Chapter 5 presents a prototype

implementation of the scheme and an analysis of the initial experiments conducted on the prototype.

54

Chapter 4

Simulation Experiments

In Chapter 3 we provided a detailed description of the DCM scheme consisting of the DCM modi�ca-

tion contracts, the DCM algorithms, and the DCM mechanisms. In this chapter we verify and analyze

the scheme by a series of simulation experiments the goals of which are :

� to verify that the tra�c and performance parameters and the route of an active connection can

be modi�ed (both locally and globally), and that the modi�cation contract is honored,

� to verify that the modi�cation times are low (i.e., that the scheme can support the client demand

and network state dynamics discussed in Chapter 1),

� to verify that the performance guarantees of all other real-time channels are met, and

� to analyze the performance of the Intelligent Restart establishment procedure.

We begin by describing our simulation methodology, and then present the �ve sets of simulation

experiments that were used to examine the DCM scheme, as well as their results and analyses. Some of

these simulation experiments are also useful examples of the use of the DCM scheme in a multimedia

context.

4.1 Simulation Methodology

In order to accomplish a successful network simulation study, four major issues concerning the

methodology must be addressed: the level of detail of the simulation, the network topology, the work-

loads, and the performance metrics. In this section we explain the methods we used to address each of

these issues.

554.1.1 The Simulator

The DCM simulator is an event-driven, continuous-time, C-based simulator that simulates the host

(i.e., the source and destination nodes) and switch functionalities at the network layer level. The simu-

lator provides its users with the ability to specify the tra�c workload, network topology, routing update

algorithm, and DCM policy. The user interface to the simulator is through two �les: a command �le

and a workload �le. The command �le speci�es the topology, the routing update algorithm, the type

and quantity of measurement data to be recorded, and various control commands1. The workload �le

speci�es a list of connections, with each connection described by its tra�c characteristics, performance

parameters, beginning and ending times, source and destination hosts, and other per-connection control

information2. The workload �le can also be used to specify error-prone links, together with the proba-

bility of an error occurring or the actual times that the errors will occur. The simulator simulates the

sending of packets through each of the nodes (i.e., hosts or switches). These packets can be real-time

data packets, best e�ort data packets, routing update packets, or establishment (both initial and mod-

i�cation) packets. In the simulation, packets are queued in the appropriate RCSP queues (each queue

corresponds to a distinct priority level) and forwarded at the appropriate times; also propagation and

transmission delays are accounted for at each of the links. Establishment and modi�cation tests are

conducted at each node along the path, and routing is done at the source (or, in the case of intelligent

restart, at other nodes along the path). Routing update messages propagating throughout the network

are simulated when connections are established or modi�ed3. Data is gathered during the course of

the simulation experiment based on the variables that are speci�ed in the command and workload �les.

The metrics derived from this data is discussed in Section 4.1.4.

4.1.2 Network Topology

As we are investigating a GPC scheme, it would be advantageous to conduct simulation experiments

using the topology of a network on which GPC services will be provided, such as XUNET[24]. However,

as these types of experimental networks are in the initial stages of their development, their topologies are

somewhat sparse and would not provide a suitable model on which to do a useful analysis. In order to

facilitate useful analysis, we chose a square mesh topology that allows us to analyze a complex network

(as there are multiple paths through the network) while permitting quick insights from and veri�cations

of the results (due to the symmetry of the topology). The topology of the simulated network and its

con�guration are given in Fig. 4.1. This square mesh consists of 25 nodes and 40 links; each one of these

1These control commands select the type of establishment procedure to be used and the format of the reports that are
to be generated.

2This control information speci�es the trace level to be used on the connection for debugging purposes.
3Periodic updates are also used if there are infrequent establishments and modi�cations.

56

host

0 1 2 43

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

10Mbps

10 msec

host

host

host

Figure 4.1: Experimental Network

links represents a pair of simplex links with opposite directions. All of the links in this network have a

speed of 10 Mbps and a propagation delay of 10 ms. Attached to each of the nodes on the periphery is

one host which is connected by a local link. The hosts are assumed to be attached to the nodes by very

fast LANs (e.g., FDDI), hence their link speeds are not bottlenecks, and are not considered during the

simulation experiments. In Fig. 4.1, four of the sixteen hosts are shown, hosts 0, 4, 10, and 22.

4.1.3 Workload

The workloads used in these simulation experiments are composed of the set of real-time channels

that are established, modi�ed, and terminated during the course of the experiment, with a background

load comprised of real-time and non-real time connections and best-e�ort management tra�c. To study

its performance, the DCM scheme was examined over a variety of workload levels. The determination of

these workload levels is di�cult as it depends on the number of channels, their tra�c and performance

speci�cations, and the length of their routes. It would be useful if this workload level could be repre-

sented by a single-valued metric that encompassed all of these factors, as it would allow us to easily

compare any two workloads (or any two channels). To put this in context, how could two workloads be

compared where 15 audio (low bandwidth/low delay) channels and 2 video (high bandwidth/medium

delay) channels are established in the �rst workload and, under identical pre-conditions, 4 video chan-

nels and 9 audio channels are established in the second workload? A �rst attempt at a solution to this

problem might be to use the bandwidths of the channels as the only criterion. The problem with this

approach is that it ignores path-length and delay. If two channels have the same tra�c and perfor-

57mance characteristics but di�erent path lengths, the channel with the longer path uses more resources

within the network, hence it should have a greater e�ect on the load in the network. Delay is especially

important in guaranteed service networks since giving a low delay to a channel involves giving it higher

priority service and e�ectively blocking more future channels. Thus, a low delay request uses more

resources within the network, as we will see later on in this section.

A general solution to this problem is quite complex, and, in fact, would solve more than the relatively

academic problem of comparing workloads or channels. For instance, such an index could be used for

pricing, as a resource allocation tool, or as a routing index in guaranteed service networks. For the

needs of our simulations, we have devised a simple index which meets the above requirements within

the context of the RCSP scheduling discipline.

The description of the RCSP admission control scheme, in section 3.1.3, motivates the choice of

the load index in a network using this scheduling strategy at all link. The RCSP admission control

bandwidth test ensures that, at any priority level p, when a packet arrives, the maximum amount of

time it could possibly wait before it can be sent out is bounded by the delay bound dp corresponding

to that level. This bound must take into account any packets at the same level which could be there

before the packet arrived, and any packets which could come in at any higher level before the packet is

sent out. Thus, any time a channel is added to level k at a link, we have to ensure that, for any level

p � k (i.e., equal or lower priority levels), the amount of work (in terms of transmission time of the

packet) which can come in during a time period dp is less than dp. In other words, adding a channel

at level k adds a certain amount of work to all equal and lower priority levels p � k. The admission

control tests ensure that the total work at any level p does not exceed the delay bound dp for that level,

where work at level p is de�ned as

Wp =

CpX
j=1

d
dp

Xminj
e �

Smaxj

l
+
Smax

l
(4.1)

where Cp is the number of connections at level p, Xminj is the minimum inter-arrival time of the

packets on the jth connection, Smaxj is the maximum size of the packets on the jth connection, Smax

is the size of the largest packet that can be transmitted on the link, and l is the link speed. Introducing

a channel into the network at level p adds work to this level and all lower levels. This is why a low

delay (high priority) channel consumes more resources in the network, since it uses a high-priority level

(small p) and it increases call blocking probability at all levels m > p. If the delay requirement is larger,

it goes into a lower priority level (larger p) and a�ects fewer levels. This prompts us to consider the

sum of the work across all levels as an index of the load on the link. A high priority channel will cause

a big change in this index as it will increase the work at all levels, while a channel at the lowest priority

level will only a�ect one level. By summing this index of the load across all of the links and dividing by

58the number of levels in the RCSP server4 we obtain an index of the load on the network. We call this

index of the load on the network the Queuing Delay Index. For the sake of brevity, in the remainder

of this chapter we will refer to this index as the Load Index.

50 100 150 200

0

20

40

60

delay (ms)
i)

load
index

Xmin = 2: g

Xmin = 4: `

Xmin = 8: b

Xmin = 16: *
g g g g g g g

g
g

g
g

g
g

g
g

g g g

` ` ` ` ` ` ` ` ` ` `
` ` ` `

` ` `

f f f f f f f f f f f f f f f f f f

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.1 0.2 0.3 0.4 0.5
packets/ms

ii)

Delay = 50: g

Delay = 100: `

Delay = 150: b

Delay = 200: *
g

g

g

g

g
ggg

`

`

`

`
`

`̀`

f

f
f

f
ffff

∗∗∗∗∗∗∗∗

1 2 3 4 5 6
Number of hops

iii)

D=13*n,Xmin=2: g

D=13*n,Xmin=4: `

D=13*n,Xmin=8: b

D=20*n,Xmin=8: *

g

g

g

g

g

g

`
`

`
`

`
`

f
f

f
f

f
f

∗ ∗ ∗ ∗ ∗ ∗

Figure 4.2: Queuing Delay Index

Figure 4.2 shows how successful this index is at capturing bandwidth, delay and path-length as

components in the overall load on the network. Graph i) shows how the index changes as a function

of the delay requirement of a channel on an otherwise empty network. We can see that as the delay

requirement becomes slacker (higher end-to-end delay bounds) the load index decreases. The graph

attens out beyond 200ms because at this point the channel is at the lowest level in the RCSP queues

and further increases in the delay bound do not a�ect the priority level of the channel. Thus, bandwidth

and path length remaining the same, the index is monotonically decreasing as a function of the end-to-

end delay bound. Graph ii) shows that the load index is linear in the bandwidth of the tra�c, with the

slope of the line dependent on the delay bound of the channel. Graph iii) show that the index increases

linearly with the path length, as long as the delay bound per link and the Xmin value of the connection

remain constant. We believe that this index is a good characterization of the overall load on the network.

We will use this index to characterize the load on the network in order to study how the behavior of

the scheme changes as a function of the network load. This index also makes it possible to compare

channels which have di�erent bandwidth, delay and path lengths. To better examine the performance

of the DCM scheme, the simulation experiments were conducted over a variety of workloads. For the

sake of analysis the workloads were grouped into three discrete workload levels: low, medium, and

4We assume that all RCSP servers in the network contain the same number of priority levels.

59Workload Load Average Maximum

level Index Bandwidth Bandwidth
Range Utilization Utilization

low 244 - 294 16.52% 52.6%

medium 697 - 747 40.32% 78.40%

high 1208 - 1268 64.17% 89.96%

Table 4.1: Workload Levels

high. These workload levels correspond to a range of load indices. It should be re-emphasized that

the load index is a composite of the bandwidth and delay resources, hence a load index can represent

a variety of combinations of bandwidth and delay resources. In order to give the reader some idea

of the bandwidth resource reserved at a speci�c load index, one of the possible bandwidth utilization

values corresponding to the maximum load index of the workload level is presented in Table 4.1 for

each of the three workload levels. In Table 4.1, Average Bandwidth Utilization refers to the average

bandwidth reserved across all of the links in the network (this bandwidth is represented as a percentage

of the link speed), while the Maximum Bandwidth Utilization refers to the bandwidth reserved in the

heaviest loaded link in the network (this bandwidth is again represented as a percentage of the link

speed). As the network load index captures more than the bandwidth information, a set of channels

with identical bandwidth requirements but di�erent delay requirements or path lengths would give us

very di�erent load index values. Also, setting up the same load index values with the same statistical

distribution of channels using di�erent seeds in the random number generator would give us slightly

di�erent values of network utilization. The ranges used for each level were chosen by determining

the minimum and maximum possible values of the load index for this topology and channel mix, and

then deriving three smaller ranges from this broad range. This derivation is heuristic and entirely

for convenience in these experiments, and is only pertinent to these simulations (i.e., this topology,

with these speci�c connection types and with this mix). The maximum possible value was determined

using the workload mix described below, and is actually an average of the load indices obtained using

many di�erent seeds to generate the workload sets. Three sub-ranges were then selected to de�ne each

workload level.

The workloads themselves were statistically generated with the following characteristics. The channels

in the workload come from three classes, with parameters corresponding to

� A - a one-way low-quality video conference channel,

� B - a CD-quality audio channel, and

� C - a telephone-quality audio channel.

60Channel Xmin Xave I Smax

Class (ms) (ms) (ms) (bits)

A 5.0 5.0 500.0 10000

B 50.0 50.0 500.0 10000

C 153.0 153.0 500.0 10000

Table 4.2: Channel Classes

The tra�c and performance parameters of each of these channels classes are given in Table 4.2.

The distribution of these classes is chosen so that 30% of the channels belong to class A, 30% to class

B, the the remaining 40% to class C. An analysis of several di�erent distributions of these classes

showed minor di�erences in the resulting values of various performance metrics5. The host pairs were

selected randomly to lie along the periphery of the mesh. The delay requirements of the channels were

also generated statistically, to lie uniformly in the range [x + 50; x+ 100] ms, where x is the one-way

propagation delay between the source and the destination of the channel. In the experiments where a

jitter bound value is needed, the jitter bound values were chosen to lie uniformly in the range [1; 40]

ms6. Thereafter, di�erent numbers of channels were generated with the above statistical properties to

get the appropriate values of the load index corresponding to the desired workload level.

In all of the experiments there was at least one real-time channel originating from each host and all

links had real-time tra�c present. During the course of channel modi�cations in each of the simulation

experiments new channels were being established and existing channels were terminated. The channels

generated to create these workloads constituted the background loads. One or more of these channels

were then randomly selected (or tagged) as the channels to be modi�ed7, and the experiments were

conducted on these tagged channels. There was a best-e�ort load present during all simulations; how-

ever, this load was entirely composed of channel management packets (i.e., packets from establishment,

modi�cation, and termination messages) and routing update packets.

4.1.4 Performance Metrics

The performance metrics of interest in the experiments are the throughput8 of the channels, the end-

to-end delay and delay jitter experienced by the packets as they traverse the route, the numbers of out-

of-sequence packets received by the destination hosts, and the channel establishment and modi�cation

times. This data was collected on all channels, that is, channels that were modi�ed using the DCM

scheme and on \background" channels that were not modi�ed. The data collected on the unmodi�ed

5These metrics are the discussed in Section 4.1.4.
6The lower and upper bound of this distribution are based on the minimum and maximum delay values that we believe

can be easily supported in a switch.
7In these experiments at most three channels were modi�ed simultaneously.
8For simplicity, in the simulations we assumed that all of the bits sent in a packet were useful.

61channels is used to ensure that the performance guarantees provided to these \background" channels

are met in the presence of channel modi�cation.

A count of the number of packets traversing each node in a real-time channel was recorded and

used to determine the number of packets arriving at the destination node. This packet count at the

destination node, together with the packet size, is used to compute the throughput of the channel at

the destination host over the channel's lifetime. This throughput is displayed in a graph of bits per

second versus simulation time. The end-to-end delays of all packets traversing each real-time channel are

recorded and displayed in a delay histogram. This histogram is used to determine the number of packets

exceeding their delay bounds and the delay jitter experienced by packets traversing the connection; we

can thus detect jitter bound violations. An out-of-sequence counter is kept at the destination node of

each real-time channel and used to record all out-of-sequence packets that are passed to the destination

application. All simulation data was taken with a millisecond granularity, and the simulations were run

for one to two hours of simulated time (i.e. 3:6� 106 ms to 7:2� 106 ms) depending on the simulation

experiment.

The establishment times of the connections (both initial establishments and modi�cations) are impor-

tant in assessing the viability of DCM. The establishment time is the sum of the communication delays

(i.e., propagation, transmission, and queuing delays), and the processing times of the establishment

message (not including the admissions test), the execution of the routing algorithm (at the source node

only), and the execution of the admission control tests. Since the communications delays and, to some

extent, the message processing times are beyond our control, we shall focus on the processing times of

the admissions tests and of the routing algorithm. The admission control tests are executed on a per-

link basis for each link traversed by the establishment message along the path. As can be determined

from the admission control tests (Sections 3.1.3 and 3.2.2), in the worst case the order of growth for this

algorithm is O(PM), where P is the number of links in the path andM is the number of priority levels in

the RCSP queue. Under worst-case conditions, the routing algorithm must be executable at each node

along the path. The algorithm �rst forms the directed graph, and then runs the constrained-modi�ed

Bellman Ford algorithm (described in Section 3.2.2). Thus, in the worst case, the order of growth for

this algorithm is O(QNL+QPM), where N is the number of nodes in the network, L is the number of

links in the network, Q is the number of nodes along the path, and P and M are as described previously.

Using the dimensions of the experimental network (there were ten priority levels in the RCSP queues)

and running the algorithms on a DECstation 5000/240, the admission control tests took 3.3 milliseconds

at each node. In the worst-case scenario the routing algorithm took 5.5 ms on the same machine. It

should be noted that the order of the routing algorithm's runtime assumes worst-case conditions (i.e., in

which the network is very heavily loaded, and at each node encountered by the establishment message

62the initially chosen link is unavailable). These values are used in the simulation experiments in order to

obtain worst-case establishment times. We also �x the message processing times at each node (based

on our initial experience with the Real-time Channel Admission Protocol (RCAP) of the Tenet protocol

suite) as 2.5 ms [7]. The establishment times are recorded for each real-time channel in the network.

4.2 Experiments

4.2.1 Overview of Experiments

The overall goal of the simulation experiments is to verify that active connections can be dynami-

cally modi�ed in conformance with the modi�cation contracts and without violating the performance

guarantees made to other real-time connections. Thus the sub-goals are :

� to verify that the tra�c characteristics, performance parameters, and the route of an active

connection can be modi�ed (both locally and globally),

� to verify that the modi�cation contract is honored during their modi�cations,

� to verify that the modi�cation times are low (i.e., that they can support the client demand and

network state dynamics of interest to us),

� to verify that the performance guarantees of all other real-time channels are met, and

� to analyze the Intelligent Restart establishment procedure.

The performance metrics mentioned in the previous section were determined for a suite of �ve experi-

ments designed to achieve all of the sub-goals stated above. The �rst four experiments were designed in

a manner that depicted the usefulness of the DCM scheme in supporting multimedia connections. The

scheme can be used for supporting the guaranteed performance needs of any type of application; the

multimedia simulation examples provided here are simply used to place the scheme in a familiar context.

The �rst three experiments focus on client dynamics, and are mainly associated with the modi�cation

of the tra�c characteristics and the performance parameters of a client's channel. These experiments

illustrate client-initiated modi�cations. The fourth experiment is a network-initiated modi�cation and

depicts a situation where the dynamics of the network state require the transparent modi�cation of the

route of a channel. The �nal experiment examines the Intelligent Restart establishment procedure to

determine its usefulness and cost.

The �rst experiment is that of a still image lossless browser which is used to browse a sequence of

large still images. These images are played back at low speeds, and cannot tolerate lossy compression;

hence, browsing is best achieved by enhancing the bandwidth of the existing real-time channel by a

63factor greater than 1. Usually this enhanced bandwidth is maintained for a short duration, after which

the application requests a reduction of the channel's bandwidth to its original value. In this example

it was initially necessary to tune the performance parameters, as insu�cient bandwidth was requested.

This situation can arise when the client has insu�cient tra�c information and chooses tra�c parameters

that provide unacceptably poor image quality.

The second experiment is an example of client dynamics associated with the quality of the end-user

result. The example presented here occurs when the application selects delay values that are insu�cient

to meet the human user's needs. This situation can arise when a client has incorrect or insu�cient data

concerning its performance requirements. In this experiment, the delay bound is adjusted to provide

a comfortable level of service. The delay bound of the channel is modi�ed under a Bounded-Violation

modi�cation contract. This experiment di�ers from the previous experiment in that all modi�cations

in that experiment are subject to a No-Violation modi�cation contract.

The third experiment illustrates another aspect of client dynamics associated with the quality of

the end-user result. In this example the jitter bound provided on the stream is very large and the

destination application does not have enough bu�er resources to support this jitter. In this experiment

the jitter bound is adjusted to provide a more stringent bound. This jitter bound is modi�ed under a

No-Violation modi�cation contract.

The fourth experiment focuses on the route modi�cation aspect of the DCM scheme, and involves

the dynamics of the network state. This experiment examines the responsiveness of the scheme in the

presence of error prone links in the network. In this scenario, a channel speci�es an error threshold and

the network monitors the links to determine when this threshold has been exceeded. The error threshold

is a limit on the number of consecutive packets containing bit errors9. Rerouting can be global or local;

however, only local rerouting is used in this experiment, which also illustrates the ability of the network

to redistribute its load in the presence of reclaimed network resources10 and to increase its availability

to new or current connections. In this experiment, no performance violations must be experienced by

the modi�ed channels, as the modi�cations must be transparent to the client.

It should be noted that in the �rst three experiments route changes are possible for two reasons: 1)

the primary route of a connection may not have su�cient resources to allow a performance increase,

and 2) the routing algorithm may select a di�erent route so as to better balance the network's load.

The last experiment examines the Intelligent Restart establishment procedure, comparing it to the

use of establishment retries. The metrics used in this comparison are the total establishment (or

modi�cation) time and the load index of the channel. The load index of the channel is the Queuing

9Fault recovery is also possible using this mechanism, as local rerouting can be used to reroute that portion of the
network that is faulty while maintaining resources previously acquired in the fault-free section.

10Resources can be reclaimed for maintenance or administrative purposes.

64Parameters Initial Playback Fast Browse

Xmin (ms) 6.0 5.0 2.5

Xave (ms) 6.0 5.0 2.5

I (ms) 500 500 500

Smax (bits) 10000 10000 10000

D (ms) 80 80 80

Bandwidth (Mbps) 1.7 2.0 4.0

Table 4.3: Tra�c and Performance Parameters for Browser Experiment

Delay Index of a network containing only this connection, which provides a measure of the resources

consumed when using each procedure. This last experiment is conducted across all workload levels in

order to determine the e�ect of the workload on the establishment procedure.

In all of these �ve experiment sets the DCM scheme should ensure the following that:

� the delay and delay jitter bounds of all packets on the primary and alternate channels are met;

� the throughput of the alternate channel correctly re
ects the modi�cation (if a bandwidth modi-

�cation has been made);

� there are no out-of-sequence packets or, in the case of a bounded-violation contract, the number

of out-of-sequence packets does not exceed the violation bound; and

� there are no performance violations on any other real-time channel.

4.2.2 Experiment I - Image Browser

In the �rst experiment, Experiment I, the application considered is that of a still image lossless

browser, which is used to browse a sequence of large still images. This type of application is used, for

example, by environmental scientists who examine large satellite maps to determine minute changes

over a certain period of time. Lossy compression techniques cannot be used on these images as they

may remove these minute changes, and low frames speeds are used in normal playback operation.

As these images cannot tolerate lossy compressions, faster browsing is best achieved by increasing

the bandwidth of the channel by any factor that permits useful work by the user. The tra�c and

performance parameters of the di�erent states of the connection are provided in Table 4.3 below.

In this experiment the source of the connection is host 10, the destination is host 14, and the initial

route chosen traverses the switches 10, 11, 12 ,13, and 14 (shown in Figure 4.3 as (1)). The network

load during these modi�cations was at the high workload level and had an average load index value of

1209.4.

65

(3)

(2)

(1)

10 msec

T

H

S
O

S

.
T

E
D

I
N
A
T
I
O
N

10Mbps

2423222120

1918171615

1413121110

98765

3 4210

E
C
R
U
O H

O
S
T

S

Figure 4.3: Experiment I - Browser

Initially, insu�cient bandwidth was requested for the channel, and the tra�c parameters had to

be tuned to obtain adequate bandwidth. To this end, an initial request was made for a throughput

performance increase of 15.0%. After tuning the parameters of the channel, channel modi�cations were

done to re
ect the application's needs for fast browsing and playback. The parameters associated with

each of these states, fast browsing and playback, are also provided in Table 4.3. The bandwidth of the

channel is doubled for the duration of time that the client needs the higher speed (this is usually short

compared to the channel's lifetime), after which the application requests that the bandwidth be reduced

to its original value. In this experiment the start of the fast browsing period and its subsequent duration

were statistically derived. The starting times of the browsing periods were randomly chosen from an

exponential distribution with mean 10 minutes, and the durations randomly chosen from a uniform

distribution with an upper bound of 15 minutes and a lower bound of 5 minutes. The network's

real-time background load was dynamic in that real-time channels were being created and terminated

during the entire experiment, thus encouraging route changes to accommodate alternate channels. There

were three route changes (illustrated as (1), (2), and (3) in Figure 4.311), which exercised the routing

algorithms under the resource sharing constraints. The results of this experiment are displayed in Table

4.4 and Fig. 4.4.

11Route (1) traverses the nodes (10,11,12,13,14), Route (2) traverses the nodes (10,11,6,7,8,13,14), Route (3) traverses
the node (10,15,16,11,12,13,14).

66Metrics Values

Number of Modi�cations 9

Number of Route Changes 4

Maximum Setup Time (ms) 162

Average Setup Time (ms) 133.5

Minimum Setup Time (ms) 108

Maximum Packet Delay (ms) 79

Average Packet Delay (ms) 62.4

Table 4.4: Results of Browser Experiment

In the experiment there were 9 channel modi�cations (i.e., one channel tuning and 4 browsing periods)

with three route changes. The average (round trip) and maximum modi�cation times, 133.5 and 162

ms respectively, re
ect the changes in routes due to modi�cations. The average and maximum packet

delays indicate these changes as well, and also verify that no packet exceeded its delay bound of 80 ms,

as can be seen in Figure 4.512. No out-of-sequence packets were observed. The throughput and delay

bounds on all of the other channels were met throughout this experiment. This experiment veri�ed

the DCM scheme in that modi�cations were accomplished within the constraint of the modi�cation

contracts.

Browser Throughput

browser

Mbps

3Time in sec x 10
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00 2.00 4.00 6.00

Figure 4.4: Throughput of Browser

12As mentioned in Section 3.1, the RCSP delay jitter servers are non work-conserving servers and hold packets until
their eligible times; therefore, there is both a minimum and maximum delay bound associated with the channel. This is
shown in the histogram in Figure 4.5, where the lower bound on this connection is 51 ms

67Delay Histogram

B

Frequency x 103

Delay in sec
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

50.00 60.00 70.00 80.00

Figure 4.5: Delay Histogram of Browser

It should be noted that the maximum alternate channel modi�cation time along this route is 162

ms, of which 120 ms was propagation delay; this value is less than the values associated with electro-

mechanical switches such as those found on VCRs (the time between activating the switch and the

response is usually in the range 0.5-0.8 sec). The maximum alternate modi�cation time is dominated

by the propagation delay, which accounts for 72.9% of the total.

4.2.3 Experiment II - Delay Bound Modi�cation

The delay experienced by a real-time channel between hosts 10 and 14 was excessive, and a channel

modi�cation request was made to the network to reduce the delay bound from 160 ms to 90 ms to 60 ms.

The topology of the network was as shown in Figure 4.1. The tra�c and performance characteristics,

and the route of the original and adjusted channels are given in Table 4.5. The network loads during

modi�cations were at the medium workload level, with an average value of 724.5.

The route changes in this experiment resulted in some out-of-sequence packets. As the delay bound

conditions given in Eq. (3.7) cannot be met13, a \bounded-violation" modi�cation contract is used for

the modi�cation. This modi�cation contract stated to the client that the maximum number of packets

that could violate their performance bounds during Adjustment 1 and 2 (see Figure 4.5) are 23 and

13For simplicity, in this experiment the local delay bounds were relaxed so that Dp
path = Dp and Da

path = Da in both
the initial and Adjustment 1 case.

68Parameters Initial Adjustment 1 Adjustment 2

Xmin (ms) 5.0 5.0 5.0

Xave (ms) 5.0 5.0 5.0

I (ms) 500 500 500

Smax (bits) 10000 10000 10000

D (ms) 160 90 60

Route 10,5,0,1,2,3,4,9,14 10,5,6,7,8,9,14 10,11,12,13,14

Table 4.5: Tra�c and Performance Parameters for Experiment II

Dp Da Bound Final Bound Packet Count

160 90 23 14 13

90 60 9 6 5

Table 4.6: Result of Experiment II

9, respectively. Table 4.6 provides the packet violation bounds and the actual number of packets that

violated their performance bounds. The establishment time was 218 ms, and the modi�cation times

were 128 ms and 114 ms, respectively. These delays are short given that the �ltering capability of human

vision is incapable of distinguishing any pauses between frames 33 to 70 ms apart [36]. Hence the visual

response seems reasonable, especially when the propagation delay is on average 100 ms. In LAN and

MAN environments the delays should be well within the distinguishing range mentioned above.

In Table 4.6, Da is the modi�ed delay bound requested by the client, Dp is the delay bound along

the primary route, Bound (dD
p
path�Xmina�Dmin

path

Xmina
e) is the o�ered performance violation bound, Final

Bound is the tighter bound as given by Eq. (3.8), and Packet Count is the number of packets whose

performance contracts were actually violated. As can be seen in Table 4.6, the DCM performance-

violation guarantees were met.

4.2.4 Experiment III - Jitter modi�cation

In this experiment the jitter bound provided to an application was incorrectly chosen, and the result-

ing bu�er usage at the application could not be supported. As a result the client requested a decrease

in the delay jitter bound of the channel. As discussed previously, the delay jitter bound of a real-time

channel is the local delay bound in the destination node (dn); hence, a decrease in the jitter bound

corresponds to a decrease in the delay bound at this node. As this local manipulation must be done

at the destination node and the request is client-initiated, the establishment message must traverse the

entire route.

The channel modi�cation request was made to the network to reduce the jitter bound from 8 ms to 4

ms. The tra�c and performance characteristics of the original and adjusted channels are given in Table

4.7; the network load during modi�cation was at the medium workload level with a value of 727. The

69Parameters Initial Adjustment 1

Xmin (ms) 5.0 5.0

Xave (ms) 5.0 5.0

I (ms) 500 500

Smax (bits) 10000 10000

D (ms) 80 80

J (ms) 8 4

Table 4.7: Tra�c and Performance Parameters for Experiment III

topology of the network is as shown in Figure 4.1, with the channel's source host was at node 0, and

the destination host at node 4. In this experiment no route changes occurred. The establishment and

modi�cation times were 112 ms and 118 ms, respectively. The delay histograms, Figure 4.6 and Figure

4.7, depict the delay distributions before and after the jitter bound modi�cation.

Delay Histogram

J1

Frequency x 103

Delay in sec
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

65.00 70.00 75.00 80.00

Figure 4.6: Experiment III - Jitter Bound of 8 ms

As can be seen from these diagrams, the jitter bounds before and after the modi�cations are met:

indeed, the spread of the delay distribution in Figure 4.6 is 8 ms, and that in Figure 4.7 is 4 ms. It

should be noted that the RCSP servers in the DCM scheme are delay-jitter controllers; thus, packets are

held in each node until their eligible time. This creates a lower and an upper bound on the end-to-end

delay of packets; the lower bound in this experiment is 70 ms, and the upper bound is the sum of the

lower bound and the maximum possible delay jitter. The throughput diagram, Figure 4.8, also indicates

that the changes in the jitter have no e�ect on the throughput of the channel. This modi�cation was

70Delay Histogram

J2

Frequency x 103

Delay in sec
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

65.00 70.00 75.00 80.00

Figure 4.7: Experiment III - Jitter Bound of 4 ms

done under a No-Violation modi�cation contract, and there were no performance violations on this or

any other real-time channel.

4.2.5 Experiment IV - Error Management

In this experiment real-time channels have error thresholds associated with them, and the network

monitors errors on all links to determine whether the error threshold of a channel is exceeded. If the

threshold of a channel has been exceeded, the network then attempts to reroute the channel (however,

it does not discard corrupted or corrupted packets). Link errors are generated uniformly on all links,

with a mean time between faults of 10 minutes. In this experiment one such channel is considered, with

Table 4.8 indicating the faulty links and the new and old route used by the connection. The faulty

link is denoted by a pair (s,d), where s is the source node of the link and d the destination node. The

connection had the following parameters: Xmin = 5.0 ms, Xave = 5.0 ms, I = 500, and D = 110 ms.

The source host of the channel is at node 0, and the destination at node 4; the new routes are illustrated

in Figure 4.9. The network load during these modi�cations was at the medium workload level, with an

average load index value of 741.6.

Initially the error threshold was exceeded on link (1,2) (i.e., threshold (1) indicated in Table 4.8),

and the source node of the faulty link, node 1, attempted a local reroute of the channel and succeeded

in rerouting that portion of the connection on link (1,2) to links (1,6), (6,7), and (7,2). The other two

71

Throughput

jitter.thr

Mbps

3Time in sec x 10
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 1.00 2.00 3.00

Figure 4.8: Experiment III - Jitter Modi�cation

Threshold Faulty Current New Local
Link Route Route Modi�cation

Time

1 (1,2) 0,1,2,3,4 0,1,6,7,2,3,4 86 ms

2 (7,2) 0,1,6,7,2,3,4 0,1,6,7,8,3,4 62 ms

3 (0,1) 0,1,6,7,8,3,4 0,5,10,11,12,13,8,3,4 169 ms

Table 4.8: Fault Status

72

(1)(2)

(3)

host

0 1 2 43

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

host

10Mbps

Source Dest.

10 msec

Figure 4.9: Error Recovery

occasions in which the thresholds were exceeded occurred on links (7,2) and (0,1), and resulted in the

local reroutings highlighted in bold in Table 4.8. The local modi�cation times are given in Table 4.8.

On average 69.2% of the modi�cation times are due to propagation delays. The throughput diagram

(Figure 4.10) shows no reduction in throughput as the connection is rerouted, since no packets are lost

during the reroute. It should be noted that corrupted packets are not discarded but transmitted at the

destination to upper-layer error recovery mechanisms. The histogram (shown in Figure 4.11) indicates

the three route changes as they cause three distinct distribution segments centered at 44, 68, and 86

ms, respectively. It should also be noted that no packet exceeds its delay bound of 110 ms, and that

there were no out-of-sequence packets. This rerouting is transparent to the client, as all performance

guarantees are met (i.e., there are no guarantee violations). The performance guarantees of all other

channels in the network were also met.

The experiment also illustrates the ability of the network to use local rerouting to transparently

redistribute the load on the network, so that a high performance (i.e., resource intensive) channel

can be admitted into the network. This increases the availability of the network to high performance

multimedia applications. In this scenario, the admittance of a channel into the network could only be

permitted by the rerouting of a portion of a current channel. This situation frequently occurs due to

the dynamic nature of client demands (i.e., the channel origination times and the channels' lifetimes)

as connections are created and terminated.

73

Throughput

Rerouting

Mbps

3Time in sec x 10
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 1.00 2.00 3.00

Figure 4.10: Error Recovery - Throughput Graph

Delay Histogram

F

Frequency x 103

Delay in sec
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

40.00 60.00 80.00 100.00

Figure 4.11: Error Recovery - Histogram

744.2.6 Experiment V - Intelligent Restart

In this experiment we do an initial examination of the Intelligent Restart establishment procedure

by comparing it with the conventional method of retries. In the conventional method, if a channel

establishment14 is unsuccessful, the source node initiates other establishment attempts until it succeeds

in establishing the channel or it exceeds some retry threshold (i.e., the maximum number of retries

permitted). The time between consecutive establishment attempts and the value of the retry threshold

are variables that are set by the DCM policy. As discussed previously, the Intelligent Restart procedure

is a version of retries in which the retry begins at the node preceding the unavailable link (i.e., the link

on which the admission control test failed) and attempts to �nd a route from this node to the destination

host that (in conjunction with the previously reserved resources) satis�es the tra�c characteristics and

the performance parameters requested by the client. In these experiments the time between consecutive

attempts is zero, that is, the retry attempt is started immediately. However, the routing algorithm

updates its database to re
ect the unavailable link, and then determines a route from the source to the

destination host. We will not examine the impact of this factor (i.e., we will not examine di�erent time

intervals between consecutive attempts) but leave it as a topic for future work. The retry threshold was

chosen heuristically equal to 8, as our initial experiments suggested that after this number of retries

the channel could not be successfully established within a time acceptable to the client (i.e., the total

establishment time of the channel exceeds 1 sec). The metrics used in this experiment are:

� the total establishment time, and

� the load index of the established channel.

The �rst metric illustrates the impact of the procedure on the client, while the second illustrates the

impact on the e�ciency of the network. The total establishment time is the interval of time between

the client's request and the network's response. The network responds to the client when

� the channel is successfully established,

� all establishment attempts have failed and the retry threshold has been exceeded, or

� the routing algorithm at any node15 cannot determine a route that meets the real-time require-

ments of the channel.

In the �rst case the response in an accept, while in the other two cases it is a denial. The load index of

the successful channel measures the resources consumed by this channel and enables us to compare the

14This establishment can be an initial establishment or a channel modi�cation.
15In the case of retries, routing is only done at the source node.

75Workload Ave. Max. IR IR Retry Retry

Level Unavail. Unavail. Ave. Max. Ave. Max.
Links Links Time Time Time Time

(ms) (ms) (ms) (ms)

low 0 0 210.6 216.3 209.2 215.2

low 1 1 256.4 269.3 323.3 387.2

medium 1.8 2 311.4 330.3 441.7 481.2

high 3.6 4 364.5 396.4 534.3 573.2

Table 4.9: Experiment V Results - Establishment Times

Workload IR IR IR Retry Retry Retry
Level Ave. Max. Hop Ave. Max. Hop

Load Load Count Load Load Count
Index Index Index Index

low 33.6 33.6 8 33.6 33.6 8

medium 42.8 44.0 10 33.6 33.6 8

high 54.4 56.4 14 46.6 48.4 12

Table 4.10: Experiment V Results - Load Index

e�ciency of the two procedures by comparing the resource consumptions of the channels established

by each procedure. In this experiment we examine the procedures at all three workload levels (low,

medium, and high). The network topology used in this simulation experiment is as shown in Figure

4.1. The channel has the following parameters: Xmin = 5.0 ms, Xave = 5.0 ms, I = 500, and D = 190

ms, with the source at host 0 and the destination at host 24. The propagation delay of the shortest

path between the source and destination is 80 ms. All of the workloads were generated so that at least

one link should be unavailable along the initial route chosen by the routing algorithm. Within each

workload group, 10 experiments were conducted with di�erent random number seeds, so that a di�erent

set of requests were presented to the network but the channel classes and distribution remained the

same16.

The results of these experiments are given in Tables 4.9 and 4.10. As can be seen from Table 4.9,

the Intelligent restart (IR) establishment method performs better across all workloads, in terms of es-

tablishment time, than multiple retries. As a baseline measurement, a set of simulation experiments

were done using both establishment procedures, to determine the establishment time when there are no

unavailable links. These values are provided on the �rst line of Table 4.9. At a low workload level the

maximum number of unavailable links encountered during establishment across all experimental runs

was 1 link, and on average the IR procedure took 20% less time than the retry procedure. This reduction

in time is due to the fact that in the IR procedure the \continued" establishment attempt begins at the

16The load indices from these di�erent workload sets were within 15 units of each other.

76node preceding the failed link, whereas in the retry procedure the establishment message travels back to

the source with the information on the failed link and then the \continued" establishment begins. The

additional time due to returning to each node along that portion of the route that has been established

and consequently to the source contributes to the increased time in the retry procedure. The same

pattern is observed at the medium and high workload levels, where the IR procedure's average estab-

lishment time is 29.5% (medium) and 31.7% (high) less than that of the retry procedure. However, this

increased performance is not free. As shown in Table 4.10, at high workload levels, the IR establishment

procedure may result in channels that consume more resources that those established with the retry

procedure. At the low workload levels the resources used by both of the schemes are the same, as the

network is underutilized and many available links exist at each node. Also, as our topology is somewhat

dense, there are several alternate links that can be chosen from the node with the unavailable link. At

the medium workload levels the network is more utilized, and less links are available from the node with

the unavailable link; hence, a longer route around this unavailable link may be needed. The routes used

by the retry procedure are also shorter, as the routing algorithm does not have to consider the resources

already reserved by the channel; rather, it selects the \best" route from the source to the destination.

At high workload levels the network is near capacity; so, the routes (if indeed routes are available) are

circuitous to avoid unavailable links. This is shown in Table 4.10, where two additional links are needed

to avoid unavailable links. It should be noted that in all of these experiments we utilized scenarios in

which the channels could be established. We suspect there may be cases at very high workload levels (in

our context, loads with a load index value greater than 1450) where the IR procedure would be unable

to establish a channel, as the �nal route is so long that the delay bound cannot be guaranteed, while

the retry procedure could establish the channel. The retry procedure could establish the channel as the

new route that is chosen does not have to consider previous links on which resources have been reserved.

These initial results suggest that at low and medium workload levels the IR procedure is more suitable,

but at a high workload level it may be advantageous to use the retry procedure. This experiment was

an initial one; further simulation studies need to be done to determine the relative performances when

a large number of establishments take place simultaneously. As multiple channels are being observed

in these simulation experiments, the results will depend heavily on the class of each channel, the distri-

bution of these clients' initial requests, and the times at which the initial requests occur. Essentially,

the results depend heavily on the DCM policy. These further simulations experiments and analyses

are topics for future work.

77

Chapter 5

Implementation

In the preceding two chapters, Chapters 3 and 4, we described the DCM scheme in detail and presented

simulation experiments that veri�ed and analyzed its functionality. In this chapter, we describe our

implementation of this dynamic resource management scheme in a local area environment. A functional

management scheme should enable the monitoring of relevant network variables and the control of

relevant network parameters. In the context of our scheme this means monitoring the state of the

guaranteed performance connections in the network and controlling these connections. This control

entails the establishment of new connections and the modi�cation of the tra�c characteristics, the

performance parameters, and the routes of current connections. This implementation provides the

fundamental building blocks upon which the higher functional aspects of network management can be

built. The OSI model of network management de�nes these higher functional aspects to be security

management, con�guration management, fault management, performance management, and accounting

management [47]. These functionalities will reside on top of the DCM scheme and are in e�ect the DCM

policies which will instruct the DCM scheme to collect the relevant network data and will determine the

new tra�c characteristics, performance parameters, or routes if a control action needs to be taken. This

chapter is divided into two main sections, monitoring and control. The Simple Management Network

Protocol-version 1 (SNMPv1)[43] is used as the management protocol to monitor and control real-time

connections. The data delivery protocols that we use to provide guaranteed-performance service are

the Tenet real-time protocols; namely, a transport-level protocol, the Real-Time Message Transport

Protocol (RMTP), and a network-level protocol, the Real-Time Internet Protocol (RTIP). SNMPv1

uses Management Information Bases (MIBs), which provide a hierarchical database organization model

of managed information in which management data is recorded in variables. The variables in the MIBs

can be read to facilitate the monitoring functionality or written to initiate a control action. In this

implementation, MIBs have have been de�ned for the data delivery protocols (RMTP and RTIP) and

78for the resource management scheme (DCM). These MIBs are used by SNMPv1 to monitor and control

the real-time channels.

We begin this chapter by providing some relevant background information on our environment (i.e.,

an overview of the Tenet Real-Time Protocol Suite and of SNMPv1) in Section 5.1. We then present a

detailed discussion of the monitoring capabilities of the implementation in Section 5.2. This presentation

includes the de�nition of the RMTP and RTIP MIBs. Section 5.3 presents the control aspects of

the implementation, followed by an in-depth discussion of the SNMPv1 operations and the resource

managementMIB (i.e., the DCMMIB). Section 5.4 describes the initial experiments that were conducted

on this prototype implementation. We conclude this chapter with a brief summary in Section 5.5.

5.1 Environment

The Tenet Real-Time Protocol Suite

The Tenet Real-Time Protocol Suite is a set of communication protocols designed to provide guaranteed-

performance services in packet-switched internetworks. The components of this suite and their inter

relationships are depicted in Figure 5.1. In the suite there is a clear separation between the data delivery

and the control functionalities. In Figure 5.1 the portion of the stack on the left re
ects the traditional

layering of network protocols and is concerned with the function of data delivery. The control func-

tions reside in the protocol on the right of the �gure (the Real-Time Channel Administration Protocol

(RCAP)), with the arrows going to and from RCAP representing the
ow of channel administration

control.

The data delivery functionality is achieved by the protocol stack on the left of the �gure, and consists

of a network-layer protocol, the Real-Time Internet Protocol (RTIP), and two transport-layer protocols,

the Real-Time Message Transport Protocol (RMTP), and the Continuous Media Transport Protocol

(CMTP).

The Real-Time Internet Protocol (RTIP) [58] provides for connection-oriented, guaranteed-performance,

unreliable delivery of packets by scheduling these data packets according to the resource reservations

made by the control protocol RCAP. The services provided by RTIP are used by the two transport-

layer protocols. The Real-Time Message Transport Protocol (RMTP) [58] provides connection-oriented,

guaranteed-performance, unreliable delivery of messages. This is a lightweight transport layer, as it only

performs the functions of
ow control (which is accomplished by the use of rate control) and the frag-

mentation and reassembly of messages. The Continuous Media Transport Protocol (CMTP) supports

the transport of periodic network tra�c with performance guarantees. Using the periodic nature of

continuous-media tra�c, CMTP [53] can gain more e�ective use of the network resources. This knowl-

79

Device Drivers

Real-Time Internet
Protocol (RTIP)

Client
Applications

Real-Time
Message
Transport
Protocol

(RMTP)

Continuous
Media
Transport
Protocol

(CMTP)

Real-Time
Channel

Protocol

(RCAP)

Administration

Figure 5.1: Tenet Real-Time Protocol Suite

edge is also used to implement implicit send and receive messages1.

The control functionality in the suite is handled by the protocol on the right in Figure 5.1, the

Real-Time Channel Administration Protocol (RCAP) [8]. RCAP handles channel management in re-

sponse to requests from application programs. This protocol is responsible for the functions of channel

establishment, teardown and status reporting. RCAP communicates with the network-layer protocol

entities at each node along the channel's path, as well as with the transport-layer protocol entities at

the channel's endpoints. These control paths are indicated by arrows in Figure 5.1.

The Simple Network Management Protocol - version 1 (SNMPv1)

While the Tenet Real-Time Protocol Suite does incorporate a management protocol, RCAP, our

desire to examine the suitability of an \open" management system warranted the use of a standardized

management framework with its associated management protocol. RCAP is a more lightweight and

e�cient protocol than those protocols comprising the standardized management frameworks, as it was

expressly designed for speed and e�ciency in real-time channel establishment. However, the goal of this

implementation is not to expressly design a management framework for speed and e�ciency (although

all attempts will be made to obtain these qualities), but rather to investigate the suitability of an \open"

1Data is passed to and from the client application using shared memory; explicit send and receive system calls are not
needed, as both the client application and the operating system know when data needs to be sent or to be received.

80system to support real-time services.

Towards this end we examined the two most suitable management frameworks, the Simple Network

Management Protocol [43] and the OSI Systems Management Standards [42]. The choice of SNMP was

motivated by the market acceptance and widespread dissemination of this framework as well as by the

simple, yet adequate, functionality provided by SNMP. A third consideration was the availability of

source code for SNMPv1, under Ultrix4.2a, for the DECstations that comprise our local testbed as well

as the SEQUOIA 2000 [48] testbed.

Simple Network Management Protocol (SNMP) is actually a collective term used to refer to a set of

speci�cations for network management that include the protocol itself, a database de�nition, and some

associated concepts. SNMP was designed to be an easily implementable, basic network management

tool that would be used to meet the short term network management needs, with the long term solution

being the OSI Systems Management Standards. The SNMP set of standards provides the de�nition

of management information and a protocol for the exchange of that information. The model assumes

a manager/agent paradigm in which the manager is a software module in a management system re-

sponsible for managing all or part of the network con�guration and the agent is a software module in

a managed device responsible for maintaining local management information and performing various

actions2on behalf of the manager. Information exchange can be initiated by the manager (by polling)

or by the agent (in response to a trap).

Within the SNMP framework, management information is represented using the Abstract Syntax

Notation One (ASN.1). A Management Information Base (MIB) consists of a collection of objects, each

of which holds values that represent managed resources or variables. The allowable ASN.1 types and

MIB structures are speci�ed in a standard known as the Structure of Management Information (SMI).

The framework also includes the speci�cation of a set of objects that are standardized for use in all

implementations, referred to as MIB-II; however, other MIBs may be de�ned for speci�c applications.

In SNMP the only operations supported are the alteration and the inspection of variables. Three

operations may be performed on scalar objects:

� a get operation, which is issued by a manager to retrieve a scalar-object value from an agent;

� a set operation, which is issued by a manager that updates a scalar-object in an agent;

� a trap operation, which causes an agent to send an unsolicited scalar-object value to a manager.

These operations result in the exchange of management information. The protocol used to communicate

between the managers and the agents is a basic mechanism for the exchange of management information.

The basic unit of exchange is a message, which contains the inner Protocol Data Unit (PDU) and some

2These actions may be the delivery of local information or the performance of speci�ed functions at the managed device.

81control information. The control information includes a community name, which allows the agent to

regulate access to its MIB. Five types of PDU may be carried in a SNMP message. They are :

1. the GetRequest PDU (issued by a manager), which includes a list of one or more object names

for which values are requested;

2. the GetNextRequest PDU (issued by a manager), which includes a list of one or more object

names; in this case, for each object named, a value is to be returned for the object that is

lexicographically next in the MIB;

3. the SetRequest PDU (issued by a manager), which includes a list of one or more objects to be

altered and their new values;

4. the GetResponse PDU (issued by an agent), which provides the values of the objects requested

in the GetRequest and GetNextRequest PDUs, or the new values of the objects that were

requested to be \set" in the SetRequest PDU;

5. the Trap PDU (issued by an agent), which provides information to a speci�ed manager concerning

an event.

These messages are sent using the User Datagram Protocol (UDP) with SNMP agents and managers

listening at \well-known" ports.

5.2 Monitoring

In this section we will address the monitoring functionality that has been implemented for the data

delivery portion of the real-time protocol suite. The goal of this monitoring functionality was to provide

the ability to monitor the guaranteed-performance connections that will be established and modi�ed

in integrated-services packet-switched networks. This monitoring capability will enable us to support

the control functionality that comprises the high-level management functionalities described in the OSI

model. As described in Section 5.1, message data delivery3 is accomplished by two protocols: RTIP,

which is a network-level protocol, and RMTP, which is the transport-level protocol. As our real-time

connections are virtual circuits, the network-level protocol, RTIP, requires state information to be kept

in each of the nodes or switches that a connection traverses, whereas the transport-level protocol,

RMTP, requires state information only in the source and destination hosts (i.e., the end points of the

connections).

3In this work we are only concerned with the monitoring and control of RMTP streams as opposed to CMTP streams.

82The MIBs for RMTP and RTIP are provided below. Figure 5.2 provides an overview of the current

structure of the MIB. We have elected to place our real-time MIBs in the private/enterprise subtree.

It should be noted that we have not acquired permission for the enterprise number in the �gure, so

this number may indeed change in the future to accommodate legal users. The TenetGroup subtree

(1.3.6.1.4.1.18) is the root of our MIB, and has one subtree called Scheme1 (it is hoped that Scheme2

will in the future become another subtree to TenetGroup). Under the Scheme1 subtree (1.3.6.1.4.1.18.1)

are the three subtrees that support the monitoring and control of real-time connections.

Figure 5.3 shows the RTIP group, which consists of 3 scalars and a table that are described below.

The 4 objects in this group are:

1. RtipConnTable: A table of RTIP channel-speci�c runtime information.

2. RtipVersionID: The current RTIP version number.

3. RtipMaxConn: The maximum number of permissible RTIP channels.

4. RtipNumConn: The number of current RTIP channels at this node.

The RtipConnTable table is comprised of instances of the object RtipConnEntry. This object is

a SEQUENCE of the objects described below.

1. RtipLcid: The local channel identi�er at this node (index).

2. RtipConnStat: The status of the channel (e.g., the source, destination, or intermediate node).

3. RtipInPkts: The number of incoming packets on the channel (i.e., packets that have been

received at the node).

4. RtipInLatePkts: The number of incoming packets that were late at this node.

5. RtipInHdrErr: The number of incoming packets with header errors.

6. RtipOosPkts: The number of incoming packets that were out of sequence.

7. RtipInChkErr: The number of incoming packets with header checksum errors.

8. RtipForPkts: The number of packets that were forwarded at this node.

9. RtipOutPkts: The number of outgoing packets over this channel.

The �rst variable in the RtipConnEntry object, RtipLcid, provides the INDEX for the table,

as it uniquely identi�es each object instance. The Structure of Management Information (SMI), which

83

(1.3.6.1.4.1.18.1.3)(1.3.6.1.4.1.18.1.2)(1.3.6.1.4.1.18.1.1)

(1.3.6.1.4.1.18.1)

(1.3.6.1.4.1.18)

Scheme1

(1.3.6.1.2.1)
mib I

(1.3.6.1.3)
experimental

(1.3.6.1.2)
mgmt

(1.3.6.1.1)
directory

internet(1.3.6.1)

dod(1.3.6)

org(1.3)

iso(1)

RMTPRTIP DCM

private (1.3.6.1.4)

enterprise (1.3.6.1.4.1)

TenetGroup

Figure 5.2: SNMP MIB-I

84

RtipForPkts (RTIP.1.1.8)

RtipOutPkts (RTIP.1.1.9)

RtipInChkErr (RTIP.1.1.7)

RtipOosPkts(RTIP.1.1.6)

RtipInHdrErr (RTIP.1.1.5)

RtipInLatePkts (RTIP.1.1.4)

RtipInPkts (RTIP.1.1.3)

RtipConnStat (RTIP.1.1.2)

RtipVersionID (RTIP.2)

RtipMaxConn (RTIP.3)

RtipNumConn (RTIP.4)

(RTIP.1.1.1)RtipLcid(INDEX)

RTIP
(1.3.6.1.4.1.18.1.1)

RtipConnEntry (RTIP.1.1)

RtipConnTable (RTIP.1)

Figure 5.3: RTIP Managed Objects

85speci�es the structure and allowed ASN.1 types of these objects in the MIB, is provided in Appendix

I. It should be noted that all of the information contained in this table has its ACCESS de�ned as

Read Only (RO) and its STATUS as mandatory (M). The mandatory status indicates that in any

node supporting this MIB all of the objects in the RTIP group must be supported.

The RMTP MIB is shown in Figure 5.4 and consists of 3 scalars and a table similar to that described

for the RTIP MIB. This MIB is active only at the end points of the connection.

The 3 objects in this group are:

1. RmtpConnTable: A table of RMTP channel-speci�c runtime information.

2. RmtpMaxConn: The maximum number of permissible RMTP channels.

3. RmtpNumConn: The number of current RMTP channels at this node.

The RmtpConnTable is comprised of instances of the object RmtpConnEntry. This object is a

SEQUENCE of the objects described below.

1. RmtpSourceLcid: The local channel identi�er that was speci�ed at the source node (index).

2. RmtpLocalChannelAddr: The IP address of the source node (index).

3. RmtpInMess: The number of incoming messages for this channel (i.e., the number of messages

received).

4. RmtpInReassErr: The number of reassembly errors that occurred in processing the incoming

messages.

5. RmtpOutMess: The number of outgoing messages from this channel.

6. RmtpOutErr: The number of outgoing messages that could not be sent due to fragmentation

errors.

The �rst 2 objects provide the INDEX to the RmtpConnTable table, and can be used to uniquely

access each instance of the RmtpConnEntry. This MIB also has its ACCESS as Read Only (RO)

and its STATUS as mandatory (M). Its SMI is also be provided in Appendix I.

The SNMP Get or GetNext commands are used to access these objects. A connection can be

walked by accessing the entry in the DcmConnTable table in the DCM group (this group is discussed

in Section 5.3.4). The DCM group contains the objects DcmRoute and DcmRouteLcids, which

provide the nodes that comprise the route and the local channel identi�ers (i.e., the RtipLcid) at each

of these node. After obtaining this static information, another get command is used to obtain the

86

RmtpNumConn (RMTP.3)

RmtpMaxConn (RMTP.2)

RmtpSourceLcid (RMTP.1.1.1)

RmtpSourceChannelAddr (RMTP.1.1.2)

RmtpInMess (RMTP.1.1.3)

RmtpConnTable (RMTP.1)

(1.3.6.4.1.18.1.2)

RMTP

RmtpConnEntry (RMTP.1.1)

RmtpInReassErr (RMTP.1.1.4)

RmtpOutMess (RMTP.1.1.5)

RmtpOutErr (RMTP.1.1.6)

(INDEX)

(INDEX)

Figure 5.4: RMTP Managed Objects

87runtime information from the RtipConnTable table, speci�ed by the static information, on any node

along the path.

It should be noted that, due to the manner of the DEC SNMPv1 agent implementation, modi�cations

were needed in RMTP and RTIP to support these MIB de�nitions. Also, these MIBs constitute our

initial attempts at monitoring real-time connections and, as such, represent a base set of monitoring

variables. With the increased usage of these guaranteed-performance data delivery protocols, we expect

that the format of their MIBs will change to re
ect the needs of the network managers and other client

applications.

5.3 Control

5.3.1 Overview

In this section we present the control capability of our DCM implementation. We begin by describ-

ing the control
ow in establishing, modifying, and terminating a channel. SNMPv1 is our manage-

ment or control protocol, and is used to exchange resource reservation messages among nodes along

the path of the channel. The three interfaces to this \reservation" protocol, namely, the Applica-

tion Client/DCM Policy Manager interface, the DCM Policy Manager/SNMP Agent interface, and

the SNMP Agent/RTIP interface, are then de�ned. Finally, the resource management MIB, i.e., the

Dynamic Connection Management (DCM) MIB, is presented.

Guaranteed-performance connections are established, modi�ed, and terminated by using the set

command of SNMPv1. The \setting" of a sequence of objects re
ects the establishment or modi�cation

of a channel with the tra�c characteristics and performance requirements corresponding to the values

of the managed objects that are being set. The set command is atomic in that, if a subset of these

variables cannot be set, then none of the objects in the sequence will be set. This corresponds to the

situation in which a subset of the tra�c characteristics and performance requirements requested by the

client cannot be honored due to resource unavailability, and hence the connection cannot be established

or modi�ed. The termination of a channel is achieved by \setting" the values of this sequence of objects

to \well-known" NULL values. The establishment or modi�cation of a connection consists of setting

the appropriate objects at each node along the path traversed by the connection. If at any node along

the path these objects cannot be set (this situation may occur due to the lack of resources at this node

or because the client does not have permission to access this node), then the connection is refused, and

all of the previously reserved resources are released.

It should be noted that the establishment and modi�cation functions are usually implemented with

signaling protocols that are reliable, peer-to-peer protocols, whereas SNMPv1 is a master/slave protocol,

88with SNMPv1 agents subservient to SNMPv1 managers. While SNMPv2 [47] supports peer-to-peer

manager communication, this protocol is not at a suitable stage of evolution to be considered in our

development e�ort. To our knowledge, only a few prototype implementations of SNMPv2 on Ultrix4.2a

exist, and currently they are not stable. As we mentioned in Section 5.1, the other choice of a framework

was the OSI management framework, which does support peer-to-peer communication; however, the

complexity of this framework, the lack of available implementations, and the desire for a quick prototype

rendered this choice unacceptable. Therefore, in order to incorporate some of the functionality provided

by signaling protocols while trying to maintain the simplicity inherent in SNMPv1, we have made two

relevant changes to the structure of the SNMPv1 operations. These two changes are :

� an agent's response (i.e., the GetResponse PDU) can be sent to the requesting manager and/or to

another manager (currently in SNMPv1 the GetResponse PDU can only be sent to the requesting

manager)4, and

� the underlying unreliable transport protocol for SNMPv1 (i.e., UDP) has been made reliable by

using sequence numbers, timeouts, and retransmissions.

The complete protocol stack is shown in Figure 5.5.

Data Link Layer

Physical Layer

P
C
T

P
D
U

P
T
M
R

IPRTIPIP

SNMPv1

UDP

T
N
E

E
M

G
A
N
A
M

DataControl

Algorithms
DCM

Figure 5.5: Protocol Stack

4This functionality is realized in SNMPv2 by using the InformRequest PDU.

895.3.2 Controlling a Real-Time Connection

4A
A

3M

3A

2M

2A

1

1M 4

GatewayGateway

Host Host

User

Kernel

S

Kernel

User

DForward Pass

M

1

2

8

11 12

13

4

3

6
5 7

9

10

Figure 5.6: Connection Establishment/Modi�cation - Forward Pass

Figures 5.6 and 5.7 show the control message
ows (for the forward and reverse passes, respectively)

during the establishment and modi�cation of a guaranteed-performance connection. These
ows take

the form of either socket calls between the client's sending or receiving application and the DCM

Policy Manager (M), or SNMP messages between the DCM Policy Manager and the SNMP agents

(A). Connection establishment and modi�cation are achieved in two passes (one round trip), a forward

or reservation pass and a reverse or relaxation (i.e., release) pass. Both connection establishment and

modi�cation result in the same message
ow5; however, there are some di�erences between them. In

connection modi�cation, the routing algorithm may need to compensate for the resources reserved for

the current connection (if resource sharing is used), the admission control tests that are conducted are

di�erent, additional bu�ers may need to be reserved at the destination node for re-sequencing, packets

may need to be resequenced at the destination, and the relaxation routine is di�erent. None of the above

di�erences a�ect the message
ow, but the content of the messages is di�erent. Connection termination

is also accomplished in a round trip with resources being released on the forward pass and data structures

cleared on the reverse. The message
ow is identical to that of connection establishment or modi�cation,

with the message content indicating a connection termination. The content of the various messages is

5Global and Local modi�cations of connections use the same control message
ow, although local modi�cations are
across a portion of the route.

90given in Section 5.3.4. The forward pass is depicted in Figure 5.6. The message
ows are described in

numbered order below:

1. This message results from a socket call (discussed in Section 5.3.3), which generates an upcall

to the DCM policy manager (M1) and provides the manager with the parameter and control

information for channel establishment or modi�cation. The DCM Policy manager then examines

the client's request and determines if it should be attempted by examining its Policy Rules. If an

attempt is to be made, it uses the DCM routing algorithm to determine a route for this message.

2. This message results from an SNMP set command from the policy manager (M1) and takes the

form of a SetRequest PDU that is sent to the local SNMPv1 agent (A1). The local agent veri�es

the message using the community �eld in the message header, and then conducts admission control

tests using the parameters contained in the SetRequest PDU. If the admission control tests are

successful, the agent reserves the appropriate resources to accommodate the connection at this

node (i.e., it reserves the appropriate bandwidth and schedulability resources, and bu�er space

needed for this connection). A detailed description of the actions taken by the local agent is

provided in Section 5.3.4.

3. If the admission tests succeeded at this node, the local agent (A1) sends a GetResponse PDU to

the downstream policy manager (M2) containing the objects to be set, their new values, and

some additional updated information. This updated information re
ects the resources reserved in

the local node and other state information. As mentioned previously, this action corresponds to

a change in the usual SNMPv1 operations, as the GetResponse PDU is usually sent only to the

local manager. The choice of the remote policy manager, upstream or downstream, is based on

the result of the admission control test (acceptance or denial), the direction of the establishment

message (forward or reverse pass), and the current node at which we are executing. In Figure 5.6,

we assume that the admission tests are successful along the forward pass; hence, a GetResponse

PDU is passed to the next downstream policy manager. If the response had been a denial, a

GetResponse PDU would have been sent to the upstream policy manger. The failed connection

scenario is provided in Figure 5.8, and will be explained later in this section. It should also be

noted that the reliability that we have provided may result in message 3 being retransmitted

until an acknowledgment is received. This acknowledgment and possible retransmission can occur

simultaneously with message 4. For the sake of simplicity, in Figure 5.6, this reliability is implied

and only message 3 is depicted.

4. The local agent (A1) then sends the identical GetResponse PDU (sent in message 3) to its local

policy manager (M1).

915. The policy manager (M2) then examines theGetResponse PDU to see if the request is permitted.

If so, it issues an SNMP SetRequest PDU with the same contents as the GetResponse PDU

to its local agent.

6. The local agent (A2) does the admission control tests to determine if the connection can be

admitted. If admitted, resources are reserved accordingly. Assuming that the admission tests

are successful, the agent sends a GetResponse PDU to the next downstream policy manager

(M3) indicated in the set request. This GetResponse PDU also contains updated information

pertaining to the locally reserved resources.

7. The local agent (A2) sends a GetResponse PDU to its local policy manager (M2).

8. The policy manager (M3) then examines theGetResponse PDU to see if the request is permitted.

If so, it passes a SetRequest PDU with the same contents as the GetResponse PDU to the

local agent (A3).

9. The local agent (A3) does the admission control tests and reserves resources accordingly. Based on

the results of the admission tests, this agent sends a message to either the downstream or upstream

policy manager and its local policy manager. In this case (a successful admission control test),

the agent sends a GetResponse PDU to the next downstream Policy Manager (M4) with the

updated information.

10. The local agent (A3) sends a GetResponse PDU to its local policy manager (M3).

11. The policy manager (M4) then examines theGetResponse PDU to see if the request is permitted.

If so, it sends a SetRequest PDU with the same contents as theGetResponse PDU to the local

agent (A4).

12. The local agent (A4) does the �nal computation to determine if the channel is accepted, and sends

a response message to its DCM policy manager (M4). This is the one exception to the previous

operations in that, at the destination node, the GetResponse PDUs from the agent is only sent

to the local policy manager.

13. The DCM policy manager (M4) informs the receiver that a request is pending. The receiver can

then decide if it wishes to accept the connection; based on its decision, the DCM policy manager

then begins the message
ow along the reverse pass.

Note that the DCM policy manager does not have to be at the same local node as the agent, as the

manager can send SNMP SetRequest PDU to the agents from remote locations. This is the case in

network-initiated control.

92

4

4M

A

3M

3A
2A

2M

1M

1A

D

User

Kernel

S

Kernel

User

HostHost

Gateway Gateway

Reverse Pass

1

2

3

4

8

9

10 5
7

6

11
12

13

Figure 5.7: Connection Establishment - Reverse Pass

The reverse pass of the establishment/modi�cation message is depicted in Figure 5.7. The path

followed by the establishment message on this reverse pass is always the same regardless of the state of

the SNMP message (i.e., regardless if the connection was accepted or denied); however, the contents of

the message di�er depending on this state. The message
ow is described below.

1. The receiver returns its decision to its policy manager (M4). This decision can be either an

acceptance or a denial of the connection. In this example, the decision is acceptance.

2. The manager (M4) sends a SetRequest PDU with the state variables indicating the acceptance

of the connection to the local SNMPv1 agent (A4) and the relaxed local delay values. This local

agent then calculates the relaxed values for the delay bounds of the links, and then �lls in the

appropriate SNMPv1 data structures that are used in the RTIP, RMTP and DCM MIBs.

3. The local agent (A4) sends a GetResponse PDU with the state variable indicating acceptance

and providing the relaxed delay bound values to the upstream policy manager (M3).

4. The local agent (A4) also returns the same GetRequest PDU to the local policy manager (M4).

5. The upstream manager (M3) examines the GetResponse PDU and then formulates a SetRe-

quest PDU that is sent to the local agent (A3).

936. This local agent (A3) receives the message from the local policy manager (M3) and, if necessary,

adjusts the reserved resources to re
ect the new relaxed delay bound values. The agent then sends

a GetResponse PDU to the upstream policy manager6 (M2).

7. The agent (A3) also returns the same GetRequest PDU to the local policy manager (M3).

8. The policy manager (M2) examines the GetResponse PDU, and then formulates a SetRequest

PDU that is sent to the local agent (A2).

9. This local agent (A2) receives the PDU from the local policy manager (M2) and, if necessary,

adjusts the reserved resources. The agent then sends a GetResponse PDU to its upstream

policy manager (M1).

10. The agent (A2) also returns the same GetRequest PDU to the local policy manager (M2).

11. The policy manager (M1) examines the GetRequest PDU and then sends a SetRequest PDU

to the local agent (A1).

12. This local agent (A1) receives the message from the local policy manager (M1) and, if necessary,

adjusts the channel's reserved resources. The agent then returns a GetResponse PDU to its

local policy manager (M1).

13. The policy manager (M1) then does a downcall to unblock the sending client, and provides the

response to the client.

Figure 5.8 depicts the scenario in which a connection establishment or modi�cation request is refused

at an intermediate node due to unavailable resources or the absence of the appropriate permissions.

The forward pass messages are depicted by the un-numbered dotted arrows and proceed (in the manner

described previously) to the second gateway, while the numbered solid arrows show the reverse pass

failure messages. The message
ow resulting from the failure proceeds from the node at which the

failure takes place:

1. The local agent (A3) does the admissions control tests and the result is failure. This local agent

then sends a GetResponse PDU to the upstream policy manager (M2) indicated in the previous

SetRequest PDU. This PDU has the status bit set to re
ect denial and the reason code �eld

updated accordingly.

2. The local agent (A3) sends a GetResponse PDU to its local policy manager (M3).

6As before, reliability is implicit in this message
ow, and only the initial message
ow is shown.

94

3

M

1

1M

7

A

8

5

6

4

M 3

2
1

S

Test Failed

Reverse pass

Forward pass

User

Failed Connection Request

Kernel
User

GatewayGateway

Host Host

D

M

A 2

2

A

4

4A

3

Figure 5.8: Failed Connection Establishment

3. The upstream manager (M2) sends a SetRequest PDU to its local agent (A2) with the status

bit re
ecting a denied connection.

4. The local agent (A2) releases the resources reserved at the node and sends a GetResponse PDU

to the upstream policy manager (M1) indicated in its variables.

5. The local agent (A2) then sends a GetResponse PDU to its local policy manager (M2).

6. The upstream manager (M1) receives the GetResponse PDU and sends a SetRequest PDU to

its local agent (A1), with the status bit re
ecting the denial of the connection.

7. The local agent (A1) releases the resources reserved at the node and sends a GetResponse PDU

back to its local policy manager (M1).

8. The policy manager (M1) then unblocks the sending client's process and returns to the client the

reason for the denial.

The failure scenario at the destination node (i.e., failure due to unavailable resources) is exactly

the same as that at the intermediate nodes. If the failure is due to the rejection at the receiver, the

information
ow is the same as depicted in Figure 5.7. A failure at the sending node results only in

the return message (i.e., GetResponse PDU) and a downcall to unblock the sending process. The

connection termination procedure uses a message
ow identical to that of connection establishment or

95modi�cation. The functional di�erence is that on the forward pass the resources are released, and on

the reverse pass the data structures are freed. The contents of the messages or PDUs used on these

passes are discussed in Section 5.3.4.

The above scenarios depicted the client-initiated establishment and modi�cation. In the case of the

network-initiated establishment or modi�cation, the scenario is nearly the same, with the exception that

messages 1 and 13 in Figure 5.6, which are messages from the sending process and to the destination

process, do not exist, and the initiating policy manager need not be local. The policy manager can be

remote once it is veri�ed by the local SNMPv1 agent as an authorized policy manager. In that case

messages 2 and 4 in Figure 5.6 are from and to the remote policy manager. The remainder of the call

sequence is the same as before. On the reverse pass, Figure 5.7 messages 1 and 13, which are messages

from the destination process and to the sending process, do not exist, and messages 9 and 12 are to the

remote policy manager.

5.3.3 Interfaces

In this section we discuss three interfaces. The �rst interface exists between the application client (i.e.,

the entity requesting a connection or modifying a connection in a client-initiated modi�cation) and the

DCM manager, the second interface exists between the DCM manager and the SNMPv1 agent, while

the third exists between the SNMPv1 agent and RTIP. The �rst interface allows the client-initiated

establishment and modi�cation of a real-time channel, and takes the form of socket calls from the

application client. The second interface is the conventional SNMPv1 interface between a manager and

an agent (i.e., the get and set operations). The third interface is between the SNMPv1 agent and the

data delivery protocol, and uses a socket call to initialize the RTIP data structures and to initiate the

RMTP/RTIP connection.

The Client/SNMP Manager Interface

Sender's Socket Calls

1. sockData = socket(AF INET, SOCK DGRAM, IPPROTO RMTP)
2. bind(sockData, sender address, addrlen)
3. connect(sockData, DCMParameters, length)
4. setsockopt(sockData, IPPROTO RTIP, RTIP MOD, DCMParameters, length)
5. select(max�led, NULL(R), sockData(W), sockData(E), NULL)
6. getsockopt(sockData, IPPROTO RTIP, RTIP RESP, &DCMResponse, &length)
7. close(sockData)

Table 5.1: Sender's Interface

96This interface consists of a sequence of socket calls that are issued by the sender or receiver at the

end points of the connection. The �rst sequence of calls contains those issued by the sender to the DCM

Policy Manager, and is depicted in Table 5.1. They are as follows (this is the sequence of calls used if

the client establishes a connection and then modi�es the connection):

1. sockData = socket(AF INET, SOCK DGRAM, IPPROTO RMTP). This call creates a real-time

socket for sending real-time data.

2. bind(sockData, sender address, addrlen). This call binds the address provided by the client to the

socket.

3. connect(sockData, DCMParameters, length) . This is a blocking call that establishes the real-

time connection speci�ed in the DCMParameters data structure. If the establishment is successful,

this call returns a value of -1; if the call is unsuccessful, the call returns a value greater than zero

that indicates the reason for the failure. This call causes an upcall to be generated, which sends

a message to the DCM policy manager.

4. setsockopt(sockData, IPPROTO RTIP, RTIP MOD, DCMParameters, length) . This call issues

a request to modify the parameters of a real-time connection, and provides those new parameters

in the DCMParameters data structure.

5. select(max�led, NULL(R), sockData(W), sockData(E), NULL). This call allows the sender to

continue sending with the original parameter values until noti�cation has been provided that a

response has arrived. This noti�cation occurs as an exception on the sockData socket. The

select call allows the application to write data to the socket while still permitting the DCM policy

manager to inform the client when the response to the modi�cation occurs. The policy manager's

response is obtained by doing the next call.

6. getsockopt(sockData, IPPROTO RTIP, RTIP RESP, &DCMResponse, &length). This call re-

turns the response to the modi�cation request. If the response is success, then the application

can begin sending at the new rate or expecting that the data sent from this moment reaches the

destination with the new parameters. If the response is fail, then a reason code is provided in the

DCMResponse structure.

7. close(sockData) . This call tears down the connection and closes the socket.

If the client does not require modi�cations on this connection, then only calls (1), (2), (3) and (7)

are needed.

The receiver also issues a sequence of calls to allow it to receive incoming real-time connections, as

shown in Table 5.2. This sequence is:

97

Receiver's Socket Calls

1. sockRec = socket(AF INET,SOCK DGRAM,IPPROTO RMTP)
2. bind(sockRec,destination address,addrlen)
3. listen(sockRec,backlog)
4. select(max�led,sockRec,Other,Other,NULL)
5. getsockopt(sockRec,IPPROTO RTIP,RTIP RECREQ,&DCMParameters,&length)
6. newsockRec = accept(sockRec,sender address,addrlen)
7. setsockopt(sockRec, IPPROTO RTIP, RTIP FAILRES, DCMResponse, length)

Table 5.2: Receiver's Interface

1. sockRec = socket(AF INET, SOCK DGRAM, IPPROTO RMTP). This call creates a socket for

receiving real-time data.

2. bind(sockData, destination address, addrlen). This call binds the destination address provided by

the client to this socket.

3. listen(sockRec, backlog). This call informs the DCM Manager that this port is available for real-

time connections. The backlog indicates the maximum number of permissible pending conditions.

4. select(max�led, sockRec, Other , Other, NULL). This call allows the receiver to accept data on

other sockets (or do other work) while it awaits a request for a real-time connection.

5. getsockopt(sockRec, IPPROTO RTIP, RTIP RECEIVE REQUEST, &DCMParameters, &length).

This call gets the characteristics and parameters of the connection request. The destination can

then decide if it wishes to accept this call. The next 2 calls are for the cases of a destination's

acceptance or denial, respectively.

6. newsockRec = accept(sockData, destination, length) . The request is accepted by the destination

process and the reverse pass of the establishment or modi�cation message can begin. This call

blocks until all of the RTIP and RMTP data structures are established at the destination node.

Data can now be received on the newsockRec socket.

7. setsockopt(sockRec, IPPROTO RTIP, RTIP FAILED RESPONSE, DCMResponse, length) . This

call is used when the response is denied; the reason for this denial is returned to the sender in the

DCMResponse structure.

An additional socket call,

setsockopt(sockData, IPPROTO RTIP, RTIP UNREGISTERPORT, port, length),

98is used to un-register a port, thus preventing any connections from being established at this port.

Attempts to connect to this port are returned with the appropriate error message included for the

sender.

In these socket calls the tra�c and performance parameters are passed to the DCM policy manager

using the DCMParameters structure, and the manager's response returned using the DCMResponse

structure. These two structures are provided below.

struct dcm_param {

struct TrafficSpec Init_DcmTrafSpec; /* channel's initial traffic spec */

struct PerfSpec Init_DcmPerfSpec; /* channel's initial perf. spec */

struct in_addr DcmDestIpAddress; /* Destination IP address */

int DcmDestPort; /* Destination port number */

struct TrafficSpec New_DcmTrafSpec; /* channel's modified traffic spec */

struct PerfSpec New_DcmPerfSpec; /* channel's modified perf. spec */

char *Dcm_DestMessage; /* Information passed to the receiver */

} DCMParameters;

struct dcm_resp{

int Dcm_response; /* Acceptance or reason for failure */

char *Dcm_additional_info; /* Add. information from receiver */

} DCMResponse;

In the DCMParameters structure the channel's initial tra�c speci�cation and initial performance

speci�cation are provided by the client in the Init DcmTrafSpec and Init DcmPerfSpec data structures,

respectively. These structures contain the tra�c and performance parameters of the Tenet performance

contract as described in Section 3.1.1. DestIpAddress contains the Internet address of the destination

node, with the DestPort integer containing the port number at this node. In the event that this re-

quest is a modi�cation request (i.e., sender's socket call number 4 and the corresponding receiver's

socket call number 5), the new tra�c characteristics and performance parameters are provided in the

New DcmTrafSpec and New DcmPerfSpec data structures, respectively. The �nal �eld in this DCMPa-

rameters structure is Dcm DestMessage, which is a pointer to a character string that can be used to send

information to the receiver. This information may be used by the receiver to determine accessibility to

the receiver's service or to provide other higher level quality-of-service information.

In the DCMResponse data structure there are two �elds. The �rst �eld, Dcm response, provides

an integer that indicates if the request has been accepted or a numbered reason for its denial. In the

event that the denial was determined by the client's receiver application (who is the high-level service

99provider; for example, a video-on-demand server) the reason for this denial may be sent in the string

whose pointer is Dcm additional info7.

DCM Policy Manager/SNMPv1 Agent Interface

The interface used between the DCM policy manager and the SNMPv1 agent is the usual SNMPv1

interface comprised of the set and get operations. The use of this interface has already been demon-

strated in Section 5.3.2 as the set requests generate SetRequest PDUs that are sent from the local

policy managers to the local agents. The use of the get commands in monitoring the connections was

also demonstrated in Section 5.2. This interface is exclusively used in network-initiated modi�cations,

especially when transparent modi�cations are required. An example of this is load balancing or resource

reclamation, in which network monitoring indicates that route modi�cations are required to more ef-

�ciently utilize the network. These route modi�cations, which can be local or global, are transparent

to the client, and result from the SetRequest PDU sent by the controlling DCM policy manager to

the local agent on the node at which the reroute begins. The message
ow and contents are the same

as those used in the establishment and modi�cation of a channel with the values of the objects set to

indicate local or global rerouting with the routes provided, or to indicate that the routes should be

determined by that policy manager at the rerouting node.

The SNMPv1 Agent/RTIP Interface

The interface used here is the conventional interface used by the Tenet protocols to communicate

between RCAP (the control protocol) and RTIP (the data delivery protocol). In this interface, the

SNMPv1 agent uses a pre-de�ned control socket to update the relevant variables in the RTIP kernel

tables. This interface, which is detailed in [55], is:

� setsockopt(sockControl, IPPROTO RTIP, RTIP SPEC, RtipSpec, length). This \non-blocking"

call writes the RTIP speci�cations into the kernel level RTIP table, thereby establishing the data

path of the connection through this node. The RTIP table is used to determine the level of service,

the outgoing link, and other control actions to be taken on each data packet.

5.3.4 The Resource Management MIB

In this subsection we will provide the management information base for the DCM group. This MIB

contains aggregate and speci�c data on the state of resource management in the node. This data includes

the state of the real-time connections (i.e., the tra�c and performance speci�cations, the status, and

7This string would allow user data to be sent back to the client's sending application.

100other relevant information) traversing the node, aggregate information on the number of requests at

this node, and the state of the node resources (i.e., the reserved amounts of the bandwidth, delay, and

bu�er space resources).

Figure 5.9 provides the managed objects of the DCM group. This group contains 10 scalars and 2

tables as described below. The �rst object in this group is the DcmConnTable table, which contains

the state of each real-time channel traversing the node. The next 7 scalar objects contain the aggregate

information on requests at this node. As this is a prototype MIB for the DCM scheme, only a small

subset of the possible request information was recorded, namely the number of requests, the number of

successful requests, and the number of requests that failed because of the unavailability of a route. Route

unavailability occurs when the routing algorithm determines that no route is available that satis�es the

tra�c and performance characteristics needed by the requesting client, given the algorithm's knowledge

of the current network load. The next scalar, the DcmEnableAuthTrap object, is a trap object that

allows the local agent to generate an un-initiated report to a speci�ed policy manager indicating that

an unauthorized manager had attempted to do a control action at this node. The next object is a table,

DcmRcspTable, whose entries provide the resources reserved at each priority or delay level in the

RCSP server at this node. The �nal two objects are scalars that provide the total bu�er capacity and

the amount of this bu�er capacity that is currently reserved. The objects in the DCM group are:

1. DcmConnTable: A table of channel-speci�c management information.

2. DcmTotalEstReq: The number of establishment requests received.

3. DcmSuccEstConn: The number of establishment requests that were accepted.

4. DcmTotalModReq: The number of modi�cation requests received.

5. DcmSuccModConn: The number of modi�cation requests that were accepted.

6. DcmFailModRoute: The number of modi�cation requests that failed due to route unavailability.

7. DcmFailEstRoute: The number of establishment requests that failed due to route unavailability.

8. DcmStatReq: The number of connection status requests received.

9. DcmEnableAuthTrap: This object enables or disables a trap that will indicate an unauthorized

control attempt.

10. DcmRcspTable: A table of current RCSP reservation information.

11. DcmTotalBufCapacity: The total bu�er capacity at this node.

101

DcmBufReserved (DCM.12)

DcmTotalBufCapacity (DCM.11)

DcmRcspTable (DCM.10)

DcmEnableAuthTrap (DCM.9)

DcmStatusReq (DCM.8)

DcmFailEstRoute (DCM.7)

DcmFailModRoute (DCM.6)

DcmSuccModReq (DCM.5)

DcmTotalModReq (DCM.4)

DcmSuccEstReq (DCM.3)

DcmTotalEstReq (DCM.2)

DcmConnTable (DCM.1)

(1.3.6.1.4.1.18.1.3)

DCM

Figure 5.9: DCM Managed Objects

10212. DcmBufReserved: The total bu�er space currently reserved at this node.

The �rst table,DcmConnTable, contains the state of the real-time connection and is used to achieve

channel control capability. The SetRequest and GetResponse PDU transferred between the DCM

policy manager and the SNMNPv1 agent (as discussed in Section 5.3.2) contain the scalars comprising

an entry in this table. The \setting" of this entry in the table initiates a control action that can

establish, modify or terminate a real-time channel. The DcmConnTable is shown in Figure 5.10 and

is described below.

The DcmConnTable is comprised of instances of the object DcmConnEntry. This object is a

SEQUENCE of the objects as described below:

1. DcmSourceChannelAddr: The IP address of the source host. (index)

2. DcmSourcePortNumber: The port number of the source host. (index)

3. DcmDestChannelAddr: The IP address of the destination host. (index)

4. DcmDestPortNumber: The port number of the destination host. (index)

5. DcmLcid: The local channel identi�er at this node.

6. DcmXmin: The Xmin value of the connection.

7. DcmXave: The Xave value of the connection.

8. DcmI: The Interval value of the connection.

9. DcmSmax: The Smax value of the connection.

10. DcmDelay: The end-to-end delay bound of the connection.

11. DcmJitter: The end-to-end delay jitter bound of the connection.

12. DcmRoute: A string containing the IP addresses of all nodes along the route.

13. DcmStatus: The status of the connection. The connection can be in the following states:

establishing, modifying, terminating or established.

14. DcmLocalDelay: A string containing the local delay bounds at each node along the route of the

connection.

15. DcmRouteLcids: A string containing the local channel identi�ers at each node along the route.

103

DcmConnMod (DCM.1.1.17)

DcmRouteIfnets (DCM.1.1.16)

DcmRouteLcids (DCM.1.1.15)

DcmLocalDelay (DCM.1.1.14)

DcmStatus (DCM.1.1.13)

DcmRoute (DCM.1.1.12)
DcmJitter (DCM.1.1.11)

DcmDelay (DCM.1.1.10)

DcmI (DCM.1.1.8)

DcmSmax (DCM.1.1.9)

DcmXmin (DCM.1.1.6)

DcmXave (DCM.1.1.7)

DcmLcid (DCM.1.1.5)

DcmDestPortNumber (DCM.1.1.4)

DcmDestChannelAddr (DCM.1.1.3)

DcmSourcePortNumber (DCM.1.1.2)

DcmSourceChannelAddr (DCM.1.1.1)

DcmConnEntry (DCM.1.1)

DcmConnTable (DCM.1)

(INDEX)

(INDEX)

(INDEX)

(INDEX)

Figure 5.10: DcmConnTable Object

10416. DcmRouteIfnets: A string containing the identi�ers of the outgoing interfaces at each node

along the route.

17. DcmConnMod: The number of times the channel has been modi�ed.

The �rst 13 objects de�ned in the DcmConnTable object are read-write (RW), the remaining 4

read-only (RO). All objects are mandatory (M). Appendix I describes the details of these objects.

The �rst 4 objects in the sequence comprise the INDEX for the table as they uniquely identify the

channel. This table can be queried to obtain static information pertaining to any connection traversing

the links supported by the node, while the RtipConnTable can be used to obtain the dynamic or

runtime information pertaining to a connection at this node. The values of these 13 read-write objects

are provided by the client or by the network; the DCM policy manager issues a set command to the

SNMPv1 agent to accomplish the action indicated by the value of DcmStatus object8. This action

can be the establishing, modifying, or terminating of a channel. The DcmStatus object indicates the

current action desired by the client, and also if the channel is now established. When a channel is being

established (i.e., on the forward pass), a new instance of the object is created in the DcmConnTable

Table at each node using the requested tra�c and performance parameters and the route provided from

the SetRequest PDUs, and with the value of the DcmStatus object indicating establishing. The

e�ect of this set command at the local agent causes a channel establishment or modi�cation action to

be taken. The agent parses the value of the DcmRoute object which contains the complete route to

be used in this routing attempt to determine the outgoing link upon which the admission control tests

are to be conducted. It then conducts the establishment tests on that outgoing link using the values

of the tra�c and performance objects. If the tests are successful, the agent updates the values of the

DcmLocalDelay, DcmRouteLcids and DcmRouteIfnets objects to re
ect the local delay bound,

the lcid and outgoing link, respectively, of the connection at this node. It then sends a GetResponse

PDU to the downstream node (as discussed in Section 5.3.2). If the admissions control tests fail, then this

entry is removed from the DcmConnTable table, and a GetResponse PDU is sent to the upstream

node to remove the resources reserved for this connection and the instance of the DcmConnEntry

in the DcmConnTable table at that node. At the destination node, if the connection is accepted,

the destination SNMPv1 agent calculates the new local delay bounds (i.e., the agent relaxes the delay

bounds), and returns these values to the upstream nodes via the DcmLocalDelay object. On the

reverse pass the delays are relaxed using the value of the DcmLocalDelay object. The value of the

DcmStatus object is then changed to established and a GetResponse PDU is sent to the upstream

node. In a channel modi�cation the instance of the channel that is currently active is maintained with

8The value of an object usually indicates a state, but in SNMPv1, the manner in which an action is initiated is by
writing a pre-speci�ed value into an object.

105the value of the DcmStatus object changed to modifying and the values of the tra�c and performance

parameter objects changed to re
ect those of the modi�cation request. If the modi�cation request fails,

the values of all previously changed objects are replaced with their original values. The value of the

DcmConnMod object indicates the number of times that the connection has been modi�ed.

The DcmRcspTable is comprised of instances of the object DcmRcspEntry, as shown in Figure

5.11. This object is a SEQUENCE of the objects described below.

1. DcmRcspIndex: The priority level in the queue.

2. DcmRcspDelay: The delay bound value at this priority level in the queue.

3. DcmRcspValue: The resources currently reserved at this level in the queue.

DcmRcspValue (DCM.10.1.3)

DcmRcspDelay (DCM.10.1.2)

DcmRcspLevel (DCM.10.1.1)

DcmRcspEntry (DCM.10.1)

DcmRcspTable (DCM.10)

(INDEX)

(1.3.6.4.1.18.1.3)
DCM

Figure 5.11: DcmRcspTable Object

5.4 Experiments

In this section we evaluate the performance of the DCM implementation on a local area testbed. This

preliminary evaluation seeks to verify the correct functionality of the implementation and to obtain some

initial performance measurements. Towards that end, we conducted two experiments that investigated

the monitoring and control capabilities of the implementation. We begin this section by presenting the

testbed environment followed by a description of the experiments, their results and analyses.

1065.4.1 Testbed Environment

theorem
(a)

(b)

Logical Network

Physical Network

S D

faith propaganda truth

FDDI Ring

truthpropagandafaith

Figure 5.12: Local Area Testbed

The physical con�guration of the local area testbed is presented in Figure 5.12(a). Of the four

workstations depicted in the physical con�guration three of them, namely faith, propaganda, and truth,

are DECstation 5000/240s with the fourth being theorem, a DECstation 5000/125. All four workstations

are connected to a FDDI ring with the routing algorithm (in the DCM scheme) adapted in such a manner

that the three DECstation 5000/240s are con�gured to form the logical network shown in Figure 5.12(b).

The DECstation 5000/125 is used to monitor the connections established across the logical network.

5.4.2 Monitoring Experiment

In order to verify the functionality of the monitoring capability of the implementation we conducted

a simple experiment that walked a real-time connection and obtained various performance statistics

from each node comprising the connection. This scenario is envisioned in the case where the network

manager is attempting to determine the node responsible for lost or late packets on a connection. These

statistics and their associated objects in the RTIP and RMTP groups were :

1. the number of packets sent, if at the source node, from this node (RtipOutPkts),

2. the number of packets forwarded, if at an intermediate node, at this node (RtipForPkts),

1073. the number of packets received, if at an intermediate or destination node, at this node (Rtip-

InPkts),

4. the number of packets that were late at this node (RtipInLatePkts),

5. the number of incoming messages at the destination node (RmtpInMess),

6. the number of outgoing messages at the source node (RmtpOutMess).

A real-time channel was established between a source client at faith and a destination client at truth,

thus traversing the intermediate node propaganda (as shown in Figure 5.12(b)). The channel was es-

tablished with the following parameters: Xmin = 100 ms , Xave = 100 ms, I = 1000 ms , Smax =

1024 bits, D = 80 ms. Data was sent over the connection for 5 minutes, and the values of the objects

mentioned above were obtained using the SNMPv1 agents at each node. The connection was moni-

tored by an application program running on theorem, which executes a series of get commands9 on

the DcmConnTable object with the index values (DcmSourceChannelAddr, DcmSourcePort-

Number,DcmDestChannelAddr,DcmDestPortNumber) = (128.32.33.105, 3769, 128.32.33.115,

and 4001). The values of these indices uniquely identi�ed the real-time channel. In order to moni-

tor the entire connection, two values of the columnar objects DcmRoute and DcmRouteLcids are

needed. These values provide the nodes comprising the route of the connection, in Internet dot no-

tation, and the local channel identi�er at each of these nodes. The value of the DcmRoute object

is 128.32.33.105:128.32.33.107:128.32.33.115, and the value of the DcmRouteLcids object is 1:1:1.

With this static information, several Get commands were issued to each of the nodes to get the above

statistics, with each node retrieving a di�erent subset of the statistics. For instance, the source node

retrieves statistics 1 and 6, the intermediate node statistics 2, 3, and 4, and the destination node sta-

tistics 3, 4, and 5. Tables 5.3 and 5.4 provide the results of these get commands and the times taken

to retrieve and display these results.

As can be seen from the data in Table 5.3, there were no dropped or late packets on the connection,

as the number of outgoing packets, RtipOutPkts, at the source and the number of incoming packets,

RtipInPkts, at the destination are equal, and the number of late packets RtipInLatePkts at both

the intermediate and destination nodes are zero. The results in Table 5.4 show the average and total

time taken in querying the SNMPv1 agent. From this data, the average time per call was 24.07 ms,

which was spent in SNMPv1 operations in the DEC Ultrix4.2a SNMPv1 libraries. These operations

include the searching of the MIB tree to determine the validity and type of each object, the building of

an SNMPv1 packet (using the ASN.1 notation), the sending of the packet, the receiving of the return

9In this instance SNMPv2 would have proven to be much more e�cient, due to its capability to retrieve the values of
several objects with its GetBulkRequest operation.

108

RMTP or RTIP Source Intermediate Destination
Object Node Value Node Value Node Value

(packets) (packets) (packets)

1. RtipOutPkts 2998 - -

2. RtipForPkts - 2998 -

3. RtipInPkts - 2998 2998

4. RtipInLatePkts - 0 0

5. RmtpInMess - - 2998

6. RmtpOutMess 2998 - -

Table 5.3: Monitoring Data

packet, and the parsing and veri�cation of its contents. The average time taken to complete only these

SNMPv1 operations was 20.2 ms. As the source code for the SNMPv1 libraries was not available, it was

not possible to optimize this code; hence, it is currently our performance bottleneck. Thus, the total

time taken to monitor this connection and collect its data is 240.95 ms (i.e., to the sum of the values of

each of the calls in the Command Group in Table 5.4). This time includes the time to retrieve the

static monitoring information, and to access each node, in turn, and retrieve the appropriate runtime

performance statistics.

Command Number of Average Time Total Time

Group Gets per call(ms) per Group (ms)

Initial call to DCM group 2 24.1 48.2

Retrieve source node statistics 2 24.2 48.4

Retrieve inter. node statistics 3 24.0 72.0

Retrieve dest. node statistics 3 24.05 72.15

Table 5.4: Monitoring Times

The times presented in Table 5.4 do not re
ect the time taken to display the statistics at the console10.

It should be noted that to examine the runtime state of any single performance statistic of a channel, at

any node, requires at most 3 get commands. The �rst 2 commands acquire the values of theDcmRoute

and the DcmRouteLcids objects, thus identifying the appropriate instance in the RtipConnTable

from which to obtain the relevant statistic (e.g., RtipInPkts). Therefore, the average time taken to

obtain this performance measure is 72.27 ms. Once the route and lcid are obtained, then the relevant

statistic can be obtained with a single get command with an average time of 24.09 ms. As the dynamics

of interest operate in the seconds timescale, runtime monitoring of several statistics (in our case three

10These \printf" commands can take from 1.98 ms to 4.89 ms to execute.

109statistics) can occur in a su�ciently short time, under 0.1 second, to permit a control action to be

taken.

5.4.3 Control Experiment

The experiment that was used to accomplish the initial functional veri�cation and analysis of the

control capability of the implementation was a simple throughput modi�cation experiment.

A real-time channel was established (as shown in Figure 5.12(b)) between a source client at faith and

a destination client at truth. Two other background real-time channels were established and maintained

during this experiment in addition to the usual production tra�c on the FDDI ring11. The tra�c

characteristics and performance requirements of the initial and modi�ed channel are provided in Table

5.5.

Parameters Initial Modi�ed
Channel Channel

Xmin (ms) 4 2

Xave (ms) 4 2

I (ms) 1000 1000

Smax (bytes) 1024 1024

D (ms) 80 80

Bandwidth (Mbps) 2.0 4.0

Table 5.5: Tra�c and Performance Parameters

The duration of this experiment was 30 minutes, with channel modi�cation occurring 15 minutes after

the starting time. The modi�cation contract used was a No-Violation modi�cation contract. However,

as there was no change in route (due to the simple topology of our testbed), we did not expect nor

experience any out-of-sequence packets. Figure 5.13 provides a throughput graph resulting from the

experiment, with the channel's throughput over the last second computed at each second.

As shown in this �gure, at time 15 minutes the throughput of the channel is modi�ed from 2.0 Mbps

to 4.0 Mbps. The monitoring capability of the implementation was used to verify that there were no

late packets (i.e., packets that exceeded their delay bounds) or out-of-sequence packets. The average

execution times of establishment and modi�cation actions on a single pass at the intermediate node

propaganda are shown in Table 5.6. These execution times represent the time interval between the

receipt of the request by the DCM policy manager at the source and the return of the policy manager's

response on a single pass in either the forward or reverse direction12. These averages were calculated

11These workstations are used as general purpose machines by other members of the Tenet Group.
12They do not account for the time spent in the Client/Manager socket-based interface.

110Throughput

Throuphput

bps x 106

Time in minutes
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00 10.00 20.00 30.00

Figure 5.13: Throughput of Channel

over 50 experimental runs so as to remove any e�ects due to temporary
uctuations in the cpu or

network load; thus, these average execution times are averaged over the execution times on each pass

(be it forward or reverse) for all of the experimental runs. The execution times at this node are nearly

identical to those experienced at the other two nodes, faith and truth. These establishment times are

analyzed in Table 5.6, where the time spent on SNMPv1 operations (which could be optimized) is

distinguished from the time used by DCM processing and the admission control tests.

Procedure Establishment Modi�cation
Message (ms) Message (ms)

Initializing SNMP data structures 10.1 10.2

Preparing the SNMP SetRequest PDU 2.4 2.4

Sending a reliable SetRequest PDU 7.8 7.7

Processing the DCM message 1.2 1.2

Executing the DCM admission tests 0.05 0.06

Total time at each node 21.55 21.56

Table 5.6: Average Execution Times at the Intermediate Node

The �rst procedure, Initializing the SNMP data structures, initializes the SNMP data structures

with information such as the community name (i.e., the access permissions), the number of retries,

111the timeout value, etc13. The Preparing the SNMP SetRequest PDU procedure parses the DCM data

structure that is given to it, retrieves the MIB object identi�ers, and creates the protocol data unit

in ASN.1 notation. The Sending a reliable SetRequest PDU procedure is responsible for sending the

SetRequest PDU and receiving the GetResponse PDU from the agent. Processing the DCM message is

responsible for examining the request and, based on the DCM policies, executing the appropriate action,

which may result in sending a PDU to the local agent or in responding to a source or destination client.

Table 5.7 presents the average times taken to establish and modify the channel over 50 experimental

runs. These times re
ect both the forward and reverse pass across the three nodes traversed by the

connection.

Procedure Establishment Modi�cation

Message (ms) Message (ms)

Synchronizing the agent 60.6 61.2

Preparing the snmp SetRequest PDU 14.4 14.4

Sending a reliable SetRequest PDU 46.8 46.2

Processing DCM message 7.2 7.2

DCM admission tests 0.3 0.36

Total time 129.3 129.36

Percentage time in SNMP operations 94.2% 94.16%

Percentage time in DCM operations 5.8% 5.84%

Table 5.7: Average Establishment and Modi�cation Times of the Connection

As can be seen in Table 5.7, the average channel establishment and modi�cation times across this

route are approximately 129.3 ms, 94.2% of which is time spent in SNMPv1 operations. The propagation

delay on this local testbed was not signi�cant. Given the timescale of interest to us, this establishment

time is within acceptable bounds. As shown in Table 5.6, each node executes its establishment or

modi�cation operations, on average, in 21.5 ms. In our three-node experiments, each node is \touched"

twice (once on the forward pass and once on the reverse pass), thus there are 6 \touches" during then

establishment or modi�cation of a channel, which would require a total operation time, on average,

of 129 (i.e., 21.5 * 6) ms. It should be noted that this corresponds approximately to the average

establishment and modi�cation times of 129.3 ms recorded in the three-node experiment (see Table

5.7).

The use of a WAN instead of a LAN would add the cost of additional hops and the propagation delays

of the additional links, which, in the case of a cross country connection (using the XUNET topology

as an example, there are 6 hops between Berkeley and Bell Laboratories, Murray Hill and the round

13It utilizes several commands in the SNMP library which are expensive.

112trip propagation delay is 50 ms), would result in an establishment time of approximately 306 ms; this

would still be acceptable in the seconds timescale. It should be noted that our SNMPv1 code is not

optimized for speed; discussions with its implementors suggest that a 40% reduction in execution time

is easily possible14. This reduction would place the establishment times of at approximately 80.5 ms,

with a WAN connection (mentioned above) being established or modi�ed in a very acceptable 209.6 ms.

5.5 Summary

In this chapter we presented an implementation of the DCM scheme in a local area testbed and two

experiments design to provide functional veri�cation of the prototype and to examine the suitability of

SNMPv1 as a management protocol.

The scheme was implemented, using the Simple Network Management Protocol (SNMPv1), on a DEC

platform under Ultrix4.2a, and provides both monitoring and control capabilities to the network. The

guaranteed-performance connections (which use the Real-Time Message Transport Protocol (RMTP)

and the Real-Time Internet Protocol (RTIP)) can be monitored and controlled by SNMPv1 agents

under the guidance of DCM policy managers. Monitoring and control actions are achieved by using

the SNMPv1 get, set and trap operations on the RTIP, RMTP, and DCM Management Information

Bases (MIBs). Get operations retrieve the static and runtime data pertaining to a connection using

all three MIBs. Connection control is achieved by doing a set operation on the values of speci�ed

objects in the DCM MIB. The \setting" of these objects initiates the establishment, modi�cation, and

termination actions using the values that have been provided in the objects corresponding to the tra�c

and performance parameters.

The monitoring and control experiments were conducted on a local area testbed comprised of four

DECstations connected by a FDDI ring. Our measurement studies veri�ed that the implemention did

achieve the intended functionality; however, they showed the performance limitations due to the DEC

implementation of the SNMPv1 agent. In the monitoring experiments the total time taken to retrieve

any single statistic of a real-time channel is on the average 24.07 ms (i.e., the time taken to execute a

SNMPv1 get command and receive the results); this time does not include the initial call to the DCM

group to retrieve the static information (i.e., the route traversed by the connection and the lcids at

each of the nodes comprising this route). The total time taken to obtain the values of several statistics,

that is, to retrieve the static information and a number of runtime statistics (e.g., three statistics),

would take on the average 122.3 ms, which is acceptable in our timescale of interest. In our control

experiments, the average execution time of establishment and modi�cation actions at a node (on a single

pass in either direction) is 21.55 ms. This time is dominated by ine�cient SNMPv1 library operations

14This is a conservative estimate based on some initial pro�ling that was done on the library functions.

113which are responsible for 94.2% of the time. The average time taken to establish or modify a three-node

connection in our local testbed was 129.3 ms, which is acceptable in our timescale; however, 121.5 ms of

this time was due to SNMPv1 operations. As this SNMPv1 code can be optimized to re
ect a reduction

in execution time of at least 40%, the average modi�cation time in a three-node connection can be

reduced to approximately 80 ms.

114

Chapter 6

Summary and Future Work

6.1 Summary

In this chapter we summarize the main points of this dissertation and we discuss some topics for

future work. The main goal of this dissertation was to increase the
exibility of Guaranteed Performance

Connection (GPC) services by permitting them to adapt to the dynamics of client demands and network

state. Our method of achieving this goal was by proof of concept, that is, we designed the Dynamic

Connection Management (DCM) scheme, which is a collection of algorithms and mechanisms that

would permit such adaptation, we analyzed the behavior of DCM through simulation experiments, and

we implemented a prototype of the scheme.

In Chapter 1, we presented the new communication requirements that arise from the current user

demands for total information access, uniform connectivity, interactive communication, and the desire

for multiple media type presentations. The attempts to satisfy these demands in an e�cient man-

ner have resulted in a number of proposed designs for packet-switched integrated services networks.

These networks seek to provide a wide range of qualities of service to users and to utilize statistical

multiplexing to increase resource utilization. The qualities of service they provide to the users must

include guarantees on various performance indices for a client's tra�c with given characteristics. These

guaranteed-performance services have been called GPC services. The e�cient support of multiple qual-

ities of service constitutes one level of adaptation or
exibility to user demands. In that chapter, we

illustrated another level of adaptation or
exibility that was desired by the users. At this level, the

dynamics of client demands and of the network state require that the network adapt the service it

o�ers to clients during the lifetimes of the clients' communication sessions. Several examples, such as

performance parameter tuning, media scaling, load balancing, were provided to illustrate the dynam-

ics of interest to us. These examples demonstrate the need for dynamic GPC services, which permit

modi�cation of the tra�c characteristics, the performance parameters and the routes of the connections

115during their lifetimes.

In Chapter 2, we provided a review of the relevant literature and a critical analysis of related research.

This review was done in two sections. In the �rst section, we examined the relevant GPC schemes, and,

in the second, routing under performance constraints. The GPC schemes were reviewed to determine

their strengths and weaknesses. In order to provide e�cient
exibility, the choice of a connection's

route is important. Thus, the examination of routing techniques that consider performance constraints

was necessary. Both circuit- and packet-switching routing techniques were reviewed to determine their

suitability for use in our work.

In Chapter 3, we proposed a dynamic resource management scheme, called the Dynamic Connection

Management (DCM) scheme, which permits the modi�cation of the tra�c characteristics, the perfor-

mance parameters, and the route of a connection subject to a modi�cation contract. This modi�cation

contract speci�es the degree of disruption that a connection can experience during modi�cation. The

degree of disruption can range from no performance violations to a bounded number of performance

violations. The DCM scheme is an enhancement of the Tenet GPC scheme and is a collection of three

algorithms: the DCM channel administration algorithm, the DCM routing algorithm, and the DCM

transition algorithm. The DCM channel administration algorithm reserves the network resources, in

the presence or absence of resource sharing, needed to support the transition from the original (i.e.,

primary) channel to the new (i.e., alternate) channel and to ensure that the performance guarantees

of the alternate channel are satis�ed. The DCM routing algorithm determines a route from the source

to the destination host based on the tra�c and performance requirements of the connection and the

resource sharing factor. The DCM transition algorithm ensures that the performance violations spec-

i�ed in the DCM modi�cation contract are adhered to during the transition. These three algorithms

were described in detail in this chapter. The DCM scheme also supports mechanisms that enable mod-

i�cations to a connection to be made to a segment of the connection (local control) or to the entire

connection (global control). Faster establishment and modi�cation is also possible as the DCM scheme

utilizes the intelligent restart establishment procedure, which is based on the time value of the network

state information and permits the bypassing of resource saturated links during establishment.

In Chapter 4, we described the simulator that was built to analyze the DCM scheme, and we presented

and analyzed the results of several simulations experiments which were conducted to determine the

validity and performance of the scheme. In order to correctly analyze the scheme, we proposed a new

metric, the Queuing Delay Index, that captures both bandwidth and delay resources comprising the

network load in a single value, thus permitting us to categorize a network's load or to compare the

resources consumed by two or more real-time channels. Our experiments veri�ed the functionality of

the scheme in that all tra�c, performance and route modi�cations were realized within the constraints

116of the modi�cation contracts. The experiments also showed that, under our workload and topological

conditions, establishment and modi�cations times were fully adequate for our timescales of interest.

The e�ectiveness of the intelligent restart procedure was also examined and compared to that of the

conventional Tenet establishment procedure. Our analysis showed that, at low and medium network

loads, the intelligent restart procedure establishes (or modi�es) a channel faster than the conventional

establishment procedure.

In Chapter 5, we concluded our proof of concept by providing a prototype implementation of the

DCM scheme, and presenting the results of initial experiments conducted on this prototype. In our im-

plementation we attempted to provide the basic management mechanisms, using a standardized \open"

management framework, namely SNMPv1, by which guaranteed-performance connections can be mon-

itored and controlled. SNMPv1's simplicity, availability, and wide dissemination justify its use over

that of a more complex, though more complete, management protocol. The results of these initial ex-

periments indicated that the implementation was functionally correct. Our performance measurements

indicated that both connection monitoring and control capabilities performed within acceptable times

for our timescale of interest. An analysis of these measurements also indicated that the execution times

of the Ultrix4.2a SNMPv1 library routines occupied a signi�cant portion of the average establishment

time (in the case of our local area testbed, SNMPv1 library routines occupied 92.4% of the establishment

time). These library routines are known to be ine�cient; hence, if the routines were made more e�cient

then the execution times at each node (and channel establishment times) would be even shorter. A

conservative estimate on the possible reduction of these SNMPv1 operational times was given as 40 %,

which would make the performance times of monitoring and control operations even more acceptable

in our timescale of interest.

6.2 Future Work

While this thesis has o�ered an initial solution to the problem of the adaptability of guaranteed-

performance communication services, a number of issues remain to be explored.

The DCM scheme solves the problem of the
exibility of a \deterministic" real-time channel, but

does not address that of
exible \statistical" channels. A solution to this problem would involve the

re-design of the algorithms and also the rede�nition of the modi�cation contracts.

The DCM scheme was analyzed using synthetic workloads during our simulation experiments. We

would like to perform some additional analysis using traces from \real" workloads, on the topology of

a production network, to gain a more useful measure of the scheme's suitability.

An analysis of the e�ects of the interactions between the DCM scheme and the DCM policies needs

to be undertaken. The DCM policies determine the rate at which modi�cations are allowed, the mod-

117i�cation parameters, and the degree of control that is permitted (i.e., if local or global modi�cations

are to be done). As the DCM scheme operates in �nite time, the rate, the values of the parameters,

and the degree of control of channel modi�cation must be considered so that network utilization and

establishment times are not adversely a�ected.

Our implementation of the DCM scheme needs to be optimized by modifying the ine�cient routines

in the SNMPv1 library. A better alternative to this is the use of SNMPv2 with an e�cient library.

More complete MIBs need to be de�ned to support the higher level management functions needed, such

as fault management of real-time channels (this area is currently being investigated within the Tenet

Group).

Finally, the implementation needs to be extended to an internetwork environment and investigated

using non-synthetic workloads. These studies would be more fruitful using the realistic workloads of a

\production-like" environment.

The above list is by no means an exhaustive list of the work that needs to be done in this area;

rather, it is a short compilation of our wishes. As always, with the further experiences gained in these

explorations, we will undoubtedly encounter new topics for research.

118Appendix A

Appendix I presents the MIB for the RTIP, RMTP, and DCM groups.

-- the RTIP group

-- Implementation of this group is mandatory . It is used to support

-- guaranteed performance connections in the Tenet framework.

RtipVerNum OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The version number of RTIP used at this node."

::= { Rtip 1 }

RtipMaxConn OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The maximum number of RTIP connections permitted

at this node."

::= { Rtip 2 }

RtipNumConn OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The current number of RTIP connections at this node."

::= { Rtip 4 }

RtipConnTable OBJECT-TYPE

119SYNTAX SEQUENCE OF RtipEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" A list of the Rtip connection entries."

::= { Rtip 3 }

RtipEntry OBJECT-TYPE

SYNTAX RtipEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" An Rtip connection entry containing

packet statistics for a connection"

INDEX { RtipLcid, RtipLocalChannelAddr }

::= { RtipConnTable 1 }

RtipEntry ::=

SEQUENCE {

RtipLcid

INTEGER,

RtipLocalChannelAddr

IpAddress,

RtipConnStat

INTEGER,

RtipInPkts

Counter,

RtipInLatePkts

Counter,

RtipInHddrErr

Counter,

RtipInChkErr

Counter,

120RtipOosPkts

Counter,

RtipForPkts

Counter,

RtipOutPkts

Counter,

RtipDownLcid

INTEGER,

RtipDownChannelAddr

IpAddress,

}

RtipLcid OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

" A unique value for each connection. This is the local

channel identifier (lcid) for the connection."

::= { RtipEntry 1 }

RtipLocalChannelAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The source ip address of the connection."

::= { RtipEntry 2 }

RtipConnStat OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

121" The status of the node (source, intermediate,or

destination node). "

::= { RtipEntry 3 }

RtipInPkts OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of packets that have been received

by this connection."

::= { RtipEntry 4 }

RtipInLatePkts OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of packets that have been received late at this node

on this connection."

::= { RtipEntry 5 }

RtipInHddrErr OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of incoming packets received at this node

with header errors."

::= { RtipEntry 6 }

RtipOosPkts OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

122STATUS mandatory

DESCRIPTION

" The number of packets that have been received out of sequence

at this node on this connection."

::= { RtipEntry 7 }

RtipInChkErr OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of packets that have been received with bad CRCs

at this node on this connection."

::= { RtipEntry 8 }

RtipForPkts OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of packets that have been forwarded

at this node on this connection."

::= { RtipEntry 9 }

RtipOutPkts OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of packets that have been sent on this

connection (i.e. with this node as the source node)."

::= { RtipEntry 10 }

RtipDownLcid OBJECT-TYPE

123SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The local channel identifier (lcid) at the downstream node

in this connection."

::= { RtipEntry 11 }

RtipLocalChannelAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The next downstream ip address of the connection."

::= { RtipEntry 12 }

-- the RMTP group

-- Implementation of this group is mandatory . It is used to support

-- guaranteed performance connections in the Tenet framework in the

-- Real-Time Message Transport Protocol (RMTP).

RmtpMaxConn OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The maximum number of RMTP connections permitted

at this node."

::= { Rmtp 1 }

124RmtpNumConn OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The current number of RMTP connections at this node."

::= { Rmtp 2 }

RmtpConnTable OBJECT-TYPE

SYNTAX SEQUENCE OF RmtpEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" A list of the Rmtp connection entries."

::= { Rmtp 3 }

RmtpEntry OBJECT-TYPE

SYNTAX RmtpEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" An Rmtp connection entry containing

message statistics for a connection"

INDEX { RmtpSourceLcid, RmtpSourceChannelAddr }

::= { RmtpConnTable 1 }

RmtpEntry ::=

SEQUENCE {

RmtpSourceLcid

INTEGER,

RmtpSourceChannelAddr

125IpAddress,

RmtpInMess

Counter,

RmtpInReassErr

Counter,

RmtpOutMess

Counter,

RmtpOutErr

Counter,

}

RmtpSourceLcid OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

" A unique value for each connection. This is the local

channel identifier (lcid) for the connection."

::= { RmtpEntry 1 }

RmtpSourceChannelAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The source ip address of the Rmtp connection."

::= { RmtpEntry 2 }

RmtpInMess OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of messages received on connection."

126::= { RmtpEntry 3 }

RmtpInReassErr OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of reassembly errors that occurred in

processing the incoming messages."

::= { RmtpEntry 4 }

RmtpOutMess OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of outgoing messages on this connection

(i.e. the number of messages sent on the connection)."

::= { RmtpEntry 5 }

RmtpOutErr OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" The number of outgoing messages that could not be sent

due to fragmentation errors."

::= { RmtpEntry 6 }

-- the DCM group

-- Implementation of this group is mandatory . It is used to support

127-- guaranteed performance connections in the Tenet framework in the

-- Real-Time Message Transport Protocol (RMTP). This is the control

-- group.

DcmConnTable OBJECT-TYPE

SYNTAX SEQUENCE OF DcmEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" A row of the Dcmconnection entries."

::= { Dcm 1 }

DcmEntry OBJECT-TYPE

SYNTAX DcmEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" A Dcmconnection entry containing traffic parameters

and performance requirements of a connection"

INDEX { DcmSourceChannelAddr, DcmSourcePortNumber, DcmDestChannelAddr, DcmDestPortNumber

::= { DcmConnTable 1 }

DcmEntry ::=

SEQUENCE {

DcmSourceChannelAddr

IpAddress,

DcmSourcePortNumber

INTEGER,

DcmDestChannelAddr

IpAddress,

DcmDestPortNumber

INTEGER,

128DcmLcid

INTEGER,

DcmXmin

INTEGER,

DcmXave

INTEGER,

DcmI

INTEGER,

DcmSmax

INTEGER,

DcmDelay

INTEGER,

DcmJitter

INTEGER,

DcmRoute

OCTET STRING,

DcmStatus

INTEGER,

DcmLocalDelay

OCTET STRING,

DcmRouteLcids

OCTET STRING,

DcmRouteIfnets

OCTET STRING,

DcmConnMod

Counter,

}

DcmSourceChannelAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-write

STATUS mandatory

DESCRIPTION

129" The source ip address of the connection."

::= { DcmEntry 1 }

DcmSourcePortNumber OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" The source port number of the connection."

::= { DcmEntry 2 }

DcmDestChannelAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-write

STATUS mandatory

DESCRIPTION

" The destination ip address of the connection."

::= { DcmEntry 3 }

DcmDestPortNumber OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" The destination port of the connection."

::= { DcmEntry 4 }

DcmLcid OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Local Channel identifier for connection."

::= { DcmEntry 5 }

130

DcmXmin OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Xmin - Minimum packet interarrival time. (In units of

tenths of ms)"

::= { DcmEntry 6 }

DcmXave OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Xave - Average packet interarrival time. (In units of

tenths of ms)."

::= { DcmEntry 7 }

DcmI OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Interval over which the average is taken. (Units 1/10 ms)"

::= { DcmEntry 8 }

DcmSmax OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Smax - Maximum packet size. (In bytes)"

::= { DcmEntry 9 }

131

DcmDelay OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Delay bound required by client. (In units of

tenths of ms)."

::= { DcmEntry 10 }

DcmJitter OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Jitter bound required by client. A value of zero

is interpreted as no bound needed. (Units 1/10 ms)"

::= { DcmEntry 11 }

DcmRoute OBJECT-TYPE

SYNTAX OCTET STRING

ACCESS read-write

STATUS mandatory

DESCRIPTION

" Route from source to destination."

::= { DcmEntry 12 }

DcmStatus OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

" State of connection. Connection can be establishing,

established, modifying, or terminating."

132::= { DcmEntry 13 }

DcmLocalDelay OBJECT-TYPE

SYNTAX OCTET STRING

ACCESS read-write

STATUS mandatory

DESCRIPTION

"A string containing the local delay values along the route."

::= { DcmEntry 14 }

DcmRouteLcids OBJECT-TYPE

SYNTAX OCTET STRING

ACCESS read-write

STATUS mandatory

DESCRIPTION

"A string containing the local lcid values at each node

along the route."

::= { DcmEntry 15 }

DcmRouteIfnets OBJECT-TYPE

SYNTAX OCTET STRING

ACCESS read-write

STATUS mandatory

DESCRIPTION

"A string containing the outgoing interfaces at each node

along the route."

::= { DcmEntry 16 }

DcmConnMod OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" Number of times that connection has been modified."

133::= { DcmEntry 17 }

DcmTotalEstReq OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Number of Establishment requests received."

::= { Dcm 2 }

DcmSuccEstConn OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Number of establishment requests that were accepted."

::= { Dcm 3 }

DcmTotalModReq OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Number of Modification requests received."

::= { Dcm 4 }

DcmSuccModReq OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Number of modification requests that were accepted."

::= { Dcm 5 }

134DcmFailModRoute OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

" Number of modification requests failed due to

route unavailability."

::= { Dcm 6 }

DcmFailEstRoute OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Number of establishment requests failed due to

route unavailability. "

::= { Dcm 7 }

DcmStatReq OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Number of connection status requests received."

::= { Dcm 8 }

DcmEnableAuthTrap OBJECT-TYPE

SYNTAX INTEGER { enabled(1), disabled(2) }

ACCESS read-write

STATUS mandatory

DESCRIPTION

"Indicates whether the SNMP agent process is

135permitted to generate Dcmauthentication

failure traps."

::= { Dcm 9 }

DcmRcspTable OBJECT-TYPE

SYNTAX SEQUENCE OF DcmRcspEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" Table of Rate Controlled Static Priority state variables."

::= { Dcm 10 }

DcmRcspEntry OBJECT-TYPE

SYNTAX DcmRcspEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

" An entry containing the values at each priority level."

INDEX { DcmRcspLevel }

::= { DcmRcspTable 1 }

DcmRcspEntry ::=

SEQUENCE {

DcmRcspLevel

INTEGER,

DcmRcspDelay

INTEGER,

DcmRcspValue

Counter,

}

136

DcmRcspLevel OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

"RCSP Priority number at this level."

::= { DcmRcspLevel 1 }

DcmRcspDelay OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Delay value at this RCSP level."

::= { DcmRcspLevel 2 }

DcmRcspValue OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Resources reserved at this RCSP level."

::= { DcmRcspLevel 3 }

DcmTotalBufCapacity OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

137"Total buffer capacity at node."

::= { Dcm 11 }

DcmBufReserved OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION

"Total buffers currently reserved at node."

::= { Dcm 12 }

138

Bibliography

[1] H. Ahmadi, J. Chen, and R. Guerin. Dynamic routing and call control in high-speed integrated

networks. Technical report, IBM Research Division, T.J. Watson Research Center, Yorktown

Heights, NY., November 1991.

[2] H. Ahmadi and W. Denzel. Survey of modern high performance switching techniques. IEEE

Journal on Selected Areas in Communications, 7(7):1091{1103, September 1989.

[3] David P. Anderson, Ralf Guido Herrtwich, and Carl Schaefer. SRP: A resource reservation protocol

for guaranteed performance communication in internet. Technical Report TR-90-006, International

Computer Science Institute, Berkeley, California, February 1990.

[4] G. Ash. Use of a trunk status map for real-time dnhr. In International TeleTra�c Congress ITC-11,

1985.

[5] G. Ash. Design and control of networks with dynamic nonhierarchical routing. IEEE Communi-

cations Magazine, October 1990.

[6] G. Ash, J. Chen, A. Frey, and B. Huang. Real-time network routing in a dynamic class-of-service

network. In International TeleTra�c Congress ITC-13, 1991.

[7] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma, and H. Zhang. The Tenet Real-Time

Protocol Suite: Design, Implementation, and Experiences. unpublished draft, 1994.

[8] Anindo Banerjea and Bruce Mah. The real-time channel administration protocol. In Proceedings of

Second Int'l. Workshop on Network and Operating Systems Support for Digital Audio and Video,

Heidelberg, Germany, November 1991.

[9] Anindo Banerjea, Colin Parris, and Domenico Ferrari. Recovering guaranteed performance service

connections from single and multiple faults. In Proceedings of GLOBECOM `94, San Francisco,

CA, November 1994.

[10] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, pages 87{90, 1958.

139[11] W. Cameron, P. Galloy, and W. Graham. Report on the toronto advance routing concept trial. In

Proceedings of the First International Planning Symposium, France, Paris, 1980.

[12] CCITT proposed recommendation i.311, June 1991.

[13] Israel Cidon, Inder Gopal, and Roch Guerin. Bandwidth management and congestion control in

PlaNET. IEEE Communications Magazine, pages 54{64, October 1991.

[14] D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an integrated services

packet network: Architecture and mechanism. In Proceeding of the SIGCOMM'92, pages 14{26,

August 1992.

[15] David Clark, Scott Shenker, and Lixia Zhang. Supporting real-time applications in an integrated

services packet network: Architecture and mechanism. In Proceedings of ACM SIGCOMM'92,

pages 14{26, Baltimore, Maryland, August 1992.

[16] R. Cochi, D. Estrin, S. Shenker, and L. Zhang. A study of priority pricing in multiple service class

networks. In Proceeding of the SIGCOMM'91, September 1991.

[17] D.C. Darragh and R.L. Baker. Fixed distortion subband coding of images for packet-switched

networks. IEEE Journal on Selected Areas in Communications, 7(5):826{832, June 1989.

[18] L. Delgrossi, C. Halstrick, D. Hehmann, R.G. Herrtwich, O. Krone, J. Sandvoss, and C. Vogt.

Media scaling with heits. In Proceeding of ACM Multimedia `93, August 1993.

[19] Domenico Ferrari. Real-time communication in packet switching wide-area networks. Technical

Report TR-89-022, International Computer Science Institute, Berkeley, California, May 1989.

[20] Domenico Ferrari. Real-time communication in an internetwork. Journal of High Speed Networks,

1(1):79{103, 1992.

[21] Domenico Ferrari, Anindo Banerjea, and Hui Zhang. Network support for multimedia: a discussion

of the Tenet approach. Technical Report TR-92-072, International Computer Science Institute,

Berkeley, California, October 1992. Also to appear in Computer Networks and ISDN Systems.

[22] Domenico Ferrari and Dinesh Verma. A scheme for real-time channel establishment in wide-area

networks. IEEE Journal on Selected Areas in Communications, 8(3):368{379, April 1990.

[23] Alexander G. Fraser and Paul S. Henry. Transmission facilities for computer communications.

ACM Computer Communication Review, 22(5):53{61, October 1992.

140[24] Alexander G. Fraser, Chuck R. Kalmanek, A.E. Kaplan, William T. Marshall, and R.C. Restrick.

Xunet2: A nationwide testbed in high-speed networking. In Proceedings of INFOCOM'92, Firenze,

Italy, May 1992.

[25] P. Gautier and P. Chemouil. A system for testing adaptive tra�c routing in france. In Proceeding

of GLOBECOMM '87, Tokoyo, Japan, 1987.

[26] M. Ghanbari. Two-layer coding of video signals for VBR networks. IEEE Journal on Selected

Areas in Communications, 7(5):771{781, June 1989.

[27] Michael Gilge and Riccardo Gusella. Motion video coding for packet switching networks { an

integrated approach. In SPIE Visual Communications and Image Processing '91, November 1991.

[28] P. Humblet and S. Soloway. Algorithms for data communication networks - part i, ii. Technical

report, Codex Corporation, Cambridge, Mass, 1986.

[29] G. Karlsson and M. Vetterli. Subband coding of video for packet networks. Optical Engineering,

27(7):574{586, July 1988.

[30] Mark J. Karol, Michael G. Hluchyj, and Sam P. Mogan. Input versus output queueing on a space-

division packet switch. IEEE Transactions on Communications, 35(12):1347{1356, December 1987.

[31] V. Kompella, J. Pasquale, and G. Polyzos. Two techniques for multicasting for multimedia appli-

cations. In Proc. of Third International Workshop on Network and Operating System Support for

Digital Audio and Video, San Diego, California, November 1992.

[32] A. Lazar and C. Paci�ci. Control of resources in broadband networks with quality of service

guarantees. IEEE Communication Magazine, pages 66{73, October 1991.

[33] A. Lazar and G. Paci�ci. Control of resources in broadband networks with quality of service

guarantees. IEEE Communications Magazine, 1991.

[34] K. Mase and H. Yamamoto. Advanced network tra�c control methods. IEEE Communications

Magazine, October 1990.

[35] D. Mitra, R. Gibbens, and B. Huang. Analysis and optimal design of aggregated-least-busy-

alternate routing on symmetric loss networks with trunk reservation. In International TeleTra�c

Congress ITC-13, 1991.

[36] Arun Netravali and Barry G. Haskell. Digitial Pictures - Representation and Compression. Plenum

Press, NY, 1988.

141[37] C. Parris, S. Keshav, and D. Ferrari. A framework for the study of pricing in integrated networks.

Technical Report TR-92-016, International Computer Science Institute, Berkeley, California, March

1992.

[38] Colin Parris and Anindo Banerjea. An investigation into fault recovery in guaranteed performance

service connections. In Proceedings of ICC/SUPERCOMM `94, New Orleans, LA, May 1994.

[39] Colin Parris, Giorgio Ventre, and Hui Zhang. Graceful adaptation of guaranteed performance

service connections. In Proceedings of IEEE GLOBECOM'93, Houston, TX, November 1993.

[40] G. Parulkar and J. Turner. Towards a framework for high-speed communication in a heterogeneous

network environment. IEEE Network Magazine, March 1990.

[41] R.F. Rey. Engineering and Operations in the Bell System, Second Edition. AT&T Bell Laboratories,

1983.

[42] Marshall T. Rose. The Open Book: A Practical Perspective on OSI. Prentice-Hall, Englewood

Cli�s, NJ, 1990.

[43] Marshall T. Rose. The Simple Book: An Introduction to Internet Management,2nd Edition.

Prentice-Hall, Englewood Cli�s, NJ, 1994.

[44] Samuel Sheng, Anantha Chandrakasan, and Robert W. Brodersen. A portable multimedia terminal.

IEEE Communications Magazine, pages 64{75, December 1992.

[45] Atsushi Shionozaki and Mario Tokoro. Control handling of real-time communication protocols. In

Proceeding of the SIGCOMM `93, September 1993.

[46] R. Stacey and D. SongHurst. Dynamic alternate routing in the british telecom trunk network. In

Proceedings of the ISS `87, Phoenix , Arizona, 1987.

[47] William Stallings. SNMP, SNMPv2, and CMIP. The Practical Guide to Network-Management

Standards. Addison-Wesley Publishing Company, Inc., 1993.

[48] Michael Stonebraker. An overview of the Sequoia 2000 project. In Proceedings of COMPCOM 92,

San Francisco, CA, February 1992.

[49] F. Teraoka, Y. Yokote, and M. Tokoro. A network architecture providing host migration trans-

parency. In Proceedings of the SIGCOMM'92, pages 209{220, 1991.

[50] Y. Tobe, H. Tokuda, S.T.C. Chou, and J.M.F. Moura. QoS control in ARTS/FDDI continuous

media communications. In Proceeding of the SIGCOMM `92, pages 88{98, August 1992.

142[51] Claudio Topolcic. Experimental internet stream protocol, version 2 (ST-II), October 1990. RFC

1190.

[52] Dinesh Verma, Hui Zhang, and Domenico Ferrari. Guaranteeing delay jitter bounds in packet

switching networks. In Proceedings of Tricomm'91, pages 35{46, Chapel Hill, North Carolina,

April 1991.

[53] Bernd Wol�nger and Mark Moran. A continuous media data transport service and protocol for real-

time communication in high speed networks. In Proceedings of Second Int'l. Workshop on Network

and Operating Systems Support for Digital Audio and Video, Heidelberg, Germany, November 1991.

[54] Nanying Yin and Michael G. Hluchyi. A dynamic rate control mechanism for integrated networks.

In Proceedings of INFOCOM'91, 1991.

[55] Hui Zhang. Service Disciplines for Integrated Services Packet-Switching Networks. PhD disserta-

tion, University of California at Berkeley, November 1993.

[56] Hui Zhang and Domenico Ferrari. Rate-controlled static priority queueing. In Proceedings of IEEE

INFOCOM'93, pages 227{236, San Francisco, California, April 1993.

[57] Hui Zhang and Srinivasan Keshav. Comparison of rate-based service disciplines. In Proceedings of

ACM SIGCOMM'91, pages 113{122, Zurich, Switzerland, September 1991.

[58] Hui Zhang, Dinesh Verma, and Domenico Ferrari. Design and implementation of the real-time

internet protocol. In Proceedings of IEEE Workshop on the Architecture and Implementation of

High Performance Communication Subsystems, Tuscon, Az, February 1992.

[59] Lixia Zhang. A New Architecture for Packet Switched Network Protocols. PhD dissertation, Mass-

achusetts Institute of Technology, July 1989.

[60] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala. RSVP: A new

resource reservation protocol. IEEE Communications Magazine, 31(9):8{18, September 1993.

