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Abstract

We describe a data structure and a set of BDD based algorithms for efficient formal design verification. We
argue that hardware designs should be translated into an intermediate hierarchical netlist of combinational tables
and sequential elements, and interally represented by a flattened network of gates and latches, akin to that in
SIS [32). We establish that the core computation in BDD based formal design verification is forming the image
and pre-image of sets of states under the transition relation characterizing the design. To make this step efficient,
we address BDD variable ordering, use of partitioned transition relations, use of clustering, use of don’t cares, and
redundant latch removal. Many of these techniques have been studied in the past. We provide a complete integrated
setof modified algorithms and give references and comparisons with previous work. We report experimental results
on a series of seven industrial examples containing from 28 to 172 binary valued latches.
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1 Introduction

In the design of digital systems, there are two different levels of verification, corresponding to two major phases
of design. In the first phase an initial specification in a high-level description language, like VHDL or Verilog is
used. Design verification is concemed with the question “Is what I specified what I wanted?”. The second phase
is synthesizing the initial specification into a circuit which can be implemented. Implementation verification is
concerned with the question “Is what I synthesized what I specified?”.

The traditional approach to design verification is simulation, which is well-understood and has been applied
widely in the design community. Designers are comfortable with simulation because thinking in terms of input
patterns and expected output patterns is intuitive. However, exhaustive simulation is not feasible for even moderately
sized systems. Thus, simulation has a serious drawback; it cannot show the absence of errors, only the presence of
eITors.

Formal design verification, is the process of mathematically proving that a system possesses a set of properties.
The theory behind this approach has been investigated over the last three decades, but only in the last five years
have practical tools begun to emerge. Though it overcomes many of the drawbacks of simulation [1], it is currently
limited to relatively small designs. We seek to improve the efficiency of verification so that larger designs can be
verified.

A detailed survey of the various verification methods can be found in [22). The first to be used in design
verification was theorem proving, which usually requires extensive interaction with human experts. Language
containment (LC) and model checking (MC) are two recent automated approaches for verifying properties of
designs described by state transition systems. In LC, the system and the properties are both specified as w-automata.
The verification problem is equivalent to verifying that the language of the system is contained in the language of
the properties (COSPAN [23]). In MC, the properties are specified using temporal logic, and model checking is
applied to the system specification to verify these properties [17]. Verification tools that manipulate state-based
systems explicitly are limited by the size of the state space (Mur [16]). However, most real designs consist of a set
of interacting components leading to the problem of state explosion. In the context of implementation verification,
Coudert and Madre [15] pioneered the use of BDDs to implicitly manipulate the product state space. Since then,
the use of BDDs has been extended to manipulate transition systems in the area of design verification (SMV [29]).

In this paper we describe a data structure and a set of algorithms for efficient BDD based formal design
verification. We argue that hardware designs can (and should) be mapped into netlists of deterministic (possibly
multi-valued) gates and latches. At early stages of the design process, descriptions often contain non-determinism
which can be equivalently viewed as coming from unconstrained external inputs. These netlists can be internally
represented by a SIS [32] like data structure, on which a large body of BDD techniques developed in SIS, for
operations like sequential equivalence and optimization e.g. [10, 26, 30, 33], can be applied. This data structure
also provides a common and somewhat familiar software development environment for developers wanting to write
their own applications.

We argue that the core computation in BDD based formal design verification is that of forming the image and
pre-image of a set of states under the transition relation characterizing the system. In order to make this step as
efficient as possible, we address the following:

o Variable ordering techniques.

o Use of partitioned transition relations (keeping the components separate to avoid the large BDD size of the
monolithic transition relation for the entire system).

¢ Use of clustering (grouping together some parts of the design to reduce the number of iterations required for
each image and inverse image computation).

o Ordering of the clustered transition relation for efficient image and pre-image computation.



o Use of don’t cares in minimizing BDD’s.
e Removal of redundant latches.

Many of these approaches have been studied in the past. References and comparisons with previous work are
given with the details of our techniques. One salient feature is that all our algorithms are completely automatic.
The methods are interdependent and can be used together in various combinations. We report on a subset of these
combinations and experimental results on a benchmark set consisting of seven relatively large industrial designs.

The algorithms described in this paper use several parameters (default or user specified). It is likely that no
universal choice of settings will yield the best results for all examples. Hence the ability to set parameters at
the prompt is provided; further experiments possibly will lead to a general purpose robust script for novice users.
However, an advanced user can exploit the core computation routines for writing new applications possibly using
different parameter settings. ‘

The paper is structured as follows: in Section 2 the CTL model checking and language containment paradigms
are described. We also introduce the state explosion problem, which motivates the need for symbolic techniques for
state enumeration.

Section 3 presents our data structure used to represent hardware designs, which is well suited for formal design
verification.

Efficient BDD methods for image and inverse image computations are described in Section 4. We conclude in
Section 5 by commenting on some implications of these results and indicating future directions.

2 Preliminaries

2.1 Image and Inverse Image Computations

B represents the boolean set {0, 1}. The following definitions pertain to a finite state system M with n state bits
and m inputs.

Definition 1 T'(Z, i, ¥) : B® x B™ x B"® — B is the transition relation of a system with n state bits and m inputs.
T(Z,1,§) = 1 implies that in state Z there exists a transition to state j on input i.

Definition 2 Let T'(Z, 7, §): B® x B™ x B"® — B be a transition relation and P a subset of B". The image of P
under the transition relation T is the set Q, such that,

§EQ & 3IEeP I st TE =1 0))

Definition 3 Let T(i:’,E",g') : B® x B™ x B™ — B be a transition relation and P a subset of B". The inverse
image (also called pre-image) of P under the transition relation T is the set Q, such that,

feQ & IePI st TELPH=1 ©

Definition 4 Let T(%,7,§) : B® x B™ x B — B be a transition relation and I(Z) be the set of initial states of
the system. The set of reachable states of the system, R({)) is the least fixed point of

Ro(®) = I9) ]
Ren(@ = R(@ U 35 T [Ru(®) ATE,, )] €



Figure 1: An example illustrating a Kripke structure. S = {so, 51, 82, 83, 83, 55, 86}, AP = {a, b}. An edge from
state s; to s; indicates that (s;, 5;) € T. States are labelled with the subset of APs true at the state. A path through
K is a sequence of states 0y, 03, - - - such that Vi (0, 0441 ) € T.

2.2 Formal Design Verification

In this section we informally describe the CTL model checking and language containment approaches to formal
design verification. In both cases the underlying design is characterized by a Kripke structure [14).

Definition 5 A Kripke structure K is a triple (S, T, £), where S is a finite set of states, T C S x S is the transition
relation,and £ : AP — 25 is the labelling function mapping atomic propositions (AP) to sets of states. A pictorial
representation of a Kripke structure is given in Figure 1.

In the CTL model checking paradigm [17], properties are expressed as formulas from an inductively defined
syntax. Truth of the formulae is interpreted over states in Kripke structures; determining the truth value of a formula
over a state in the structure is referred to as model checking and can be algorithmically performed using fixed point
calculations. Precise syntax and semantics are given in [17). As an example, state s in the Kripke structure of
Figure 1 models the formula EF (a A b) (“there exists a path to a state where both a and b hold”). This is because
8 is labelled by a and b, and there is a path from s to s, namely sy — s, — s3 — s5 — s,. This result can be
mathematically obtained by finding the least fixed point of

Ro(Z) = p
Riep1(£) = Ri(f) U EX Ri(3) @

where p denotes the set of states which satisfy the formula (a A b), i.e. set of states labelled with “a” and “6”. Note
that the set of states satisfying EX R(Z), i.e. the set of states that can reach some states in R(Z) in one step, can
be found by computing the inverse image of R(Z), with respect to the transition relation. Similarly, for some other
CTL formula we need to perform image computations.

In the language containment paradigm, the design is identified by the set of generated output traces Lp, and a
property is given by a set of acceptable traces £p. Verification consists of checking whether all design behavior is
acceptable i.e. checking Lp C Lp, which in turn is equivalent to checking that £Lp N Tp is empty. Kurshan [23]
observed that for certain classes of properties (namely deterministic L-automata) the set Zp is efficiently computable.
In simple terms, verification consists of finding a path in a Kripke structure which starts at the initial state and leads to
afair cycle i.e. acycle which includes at least one state from a designated subset of fair states F [18]. Conceptually,



this check may be performed by first finding the set of states F* which given reach a fair cycle. Thus the property
fails if and only if the initial state lies in F* (since we want Lp N Lp = ¢, i.e. no fair cycles).

Suppose R, (%) represents the set of reachable states. Limit the transition relation to the set of reachable states
by T(&, §) = T(Z, §) Roo (Z).

The algorithm to find set of states F* is as follows:

1. Initialize Fo(9) = F(¥).
2. Compute A using following fixed point computation:

A = Fo(9)
Aea(y) = A(@) N 32[A(Z)AT(F,9)] ©)

Ac (%) gives the set of states which can be reached by some states of F,(¥) which lie on a cycle.
3. Compute B, using following fixed point computation:

Bo(Z) = Aw(Z)
Bisi(z) = Bi(Z) 0 G[Be(PHAT(Z,9)] 6)
Bw (Z) gives the set of states which can reach some states of A, (Z) which lie on a cycle.
4. Compute Fy(Z) = Ao (Z) N Boo(Z).
5. Repeat (2-4) until convergence.
6. F* is given by the least fixed point of

Co(Z¥) = Fo(%)
Cin(F) = Ci(@) U I [TE 9 ACH)] @)

It is apparent from Equations [4,5,6,7] that the core computation in verification is that of taking the image or inverse
image of sets of states under the transition relation.

2.3 State Explosion

Often designs are constructed by linking components together; unspecified inputs are assumed to take any value
on each clock cycle. The synchronous product of components defines a single Kripke structure (also referred to as
the product machine), the state space of which is the product of the components’ state spaces. Hence algorithms
that directly manipulate states will have time and space complexity that is exponential in the size of the system
description. Indeed, the computational complexity of this problem is known to be PSPACE~complete [3]. The
complexity introduced by concurrent interaction is popularly referred to as the “state explosion problem”. The quest
for heuristic solutions to this problem constitutes the forefront of research in formal verification [2, 9, 13, 15, 21].

Binary Decision Diagrams (BDDs) [7] are canonical representations of Boolean functions on which Boolean
operations can be performed efficiently. Furthermore, they can compactly represent a wide variety of commonly
encountered functions. Transition relations and sets of states can be represented using BDDs of their characteristic
functions, which can be used for efficient fixed-point computations [9, 15, 30]. BDDs are now extensively used for
both design and implementation verification of hardware systems and many non-trivial design examples have been
verified using BDDs [11, 29]. Still, there are many instances of medium sized circuits that cannot be verified using
existing BDD techniques. In Section 4 we provide a partial survey of state-of-the-art BDD techniques and present
our contributions.



3 Data Structure

Designers typically specify systems in a high level language which supports constructs like integer arithmetic,
multi-valued variables, array structures etc. (e.g. SMV [29] or enhanced Verilog [12]). The description of the
system often contains non-determinism typically introduced when some part of the design is abstracted by hiding
details. Non-determinism also comes into play while modeling the behavior of the environment. Our approach to
non-determinism s to add new unconstrained inputs. We convert an arbitrary system description into a deterministic
netlist of gates and latches. For example, consider the following Verilog description of an xor gate with arbitrary
delay. The output of the gate is made non-deterministic to model the an arbitrary delay.

module xor( clk, inp, out )
input clk, inp: )
input ready;

output out;

reg out;

initial out = 0;
always (@posedge clk) begin

if (ready)
begin
out <= [[out, out~inp]];/*next state of out is non-deterministically */
end I* either out or out & inp*/
else
out <= 0;
end
endmodule

We use a new, unconstrained binary valued variable _$nd0 to convert this description into deterministic netlist
of gates and a latch as given in Figure 2.

It can be shown that the “determinized” design yields a Kripke structure that is bisimilar [6] to that of the original
design, and can be safely used in place of the original.

This “determinization” can be done automatically. Suppose 7 = (»1 12 . . .ym) is a non-deterministic function
of £ = (z122...2,), where all component variables take binary values. Thus ¥ can be expressed by a non-
deterministic multi-output table, as illustrated in the following example:

x1 %2 — yl1 y2

- 0 0 1
1 - 1 0
0 1 0 0

Thus, for example, for = 10, § can be either 01 or 10. We add an unconstrained input 4 to this table. The
corresponding deterministic table is given as follows:
d x1 x2 — yl y2

0o - 0 0 1
1 1 - 1 0
- 0 0 0 1
- 1 1l 1 0
- 0 1 0 0
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Figure 2: A deterministic netlist of gates and latches that represents the functionality of the non-deterministic
Verilog module xox. The variable $nd0 is a new primary input to the system.

Determinizing with the least number of additional external inputs is equivalent to solving the minimum coloring
problem for undirected graphs.

Lemma 3.1 It is NP-complete to decide if K binary variables suffice to “determinize” a table.

Proof: Membership in NP: Note that checking a table for determinism is easy: form the pairwise intersection of the
cubes in the input space — any pair with non empty intersection should agree on the corresponding outputs. Hence
the K new variables along with the assignment can be guessed; the resultant table can be checked in polynomial
time.

NP-hardness We use a reduction from graph coloring [19). Let G = (V = {w,v1,...,va1}, E) be a graph
and K < n be a positive integer. Suppose k = [log, n]. Define a non-deterministic function V on input space
(21,22, ...,z:) and output space (y1, 32, - - -, ¥& ). The corresponding table is defined on the minterms of the input
space by the equation V(z) = {y | (v, v"y") € E}, where || z || gives the decimal value of the binary number
represented by the vector (z1,z2,...,z), similarly || y ||. For a non-trivial graph with at least one vertex with
degree more than one, the oorrespondmg table is non-deterministic. V can be determinized by adding a single
multi-valued variable D to the input space; identify a valid | D | coloring of the graph by the values taken by D at
the corresponding input minterm, i.e. all nodes whose corresponding minterm have the same D value are given the
same distinct color.

In fact, since deciding if a 4 coloring exists is already complete, finding the least number of variables to
determinize a table with as few as two binary outputs is already intractable. =

A similar argument, run in reverse, demonstrates that finding the minimum number of binary variables needed to
determinize a table easily reduces to the graph coloring problem for which good heuristics exist, e.g. complementing
the graph and covering it by cliques etc.

After determinization, the design is translated into a hierarchical netlist of deterministic, single output gates
and latches. Internally, we read the netlist into a flattened graph representation. The nodes of the graph indicate
combinational logic blocks and sequential elements, i.e. latches. Nodes may be annotated with information about
the original hierarchy that certain partitioning/clustering applications might find useful. Those familiar with the
sequential synthesis tool SIS will immediately see the similarity with the SIS or BLIF representation of sequential
logic circuits.



We chose such a data structure because it allows easy access to the wide range of BDD applications written for
SIS, such as variable ordering and reachability analysis [25, 26, 33]. The wide acceptance of SIS as a framework
for developing new applications suggests that our data structure may have similar applicability.

This approach has the advantage over the one used in the initial version of HSIS [1] in that the number of
variables initially needed to build the BDDs representing the system is drastically reduced; only the present state,
next state, and primary input variables are needed. Also functional composition (like in SIS) can be used to derive
the next state and output functions, whereas currently in HSIS relational composition is needed because internal
variables can be non-deterministic. Furthermore, the next state function of each latch can be specified separately,
since the correlation between next states is carried by the newly created inputs. Thus, the expression for the core
computation of finding the image of a set of states A(Z) (Equation 1) can be given by,

Image(AE)(§) = 37,3 [A@) [[(w = £(z, D))

=1

where y; is the next state variable of latch i, fi(Z, @) is the next state function, % is the present state vector and
# is the primary input vector. The transition relation T;(Z, @, y;) of the i-th latch, by definition is the relation
(% = fi(Z,1)). In Section 4 we describe how to evaluate this expression efficiently using BDDs by choosing an
appropriate variable ordering, forming the product of A(z) incrementally with a heuristically chosen permutation
of the T;’s, and clustering the T;’s into sets C}. to form a smaller set of transition relations Tc, . Although we do not
pursue it in this paper, the fact that we have a next state function instead of a relation also allows experimentation
with the method proposed in [15].

4 Algorithms

In this section we present various BDD based algorithms to efficiently perform the core verification computations.
In Section 4.1, techniques are discussed to achieve good BDD variable orderings. Section 4.2 presents the use of
clustered transition relations. The approach used for ordering the clusters is detailed in Section 4.3. In Section 4.5,
we describe a fast technique for removing some redundant latches.

To illustrate the effectiveness of these algorithms and to contrast them with some previous approaches, we use
a set of seven benchmark examples. We perform reachability analysis (Equation 3) on these examples (Table 1) to
demonstrate the effectiveness of the algorithms for the image computations. Preliminary experiments indicate that
these algorithms are efficient for inverse image computations as well. We will report a complete set of the results
on inverse image computations in the final version of the work.

All examples were run on a DEC5900/260 workstation with 440MBytes memory. A limit of 10000 seconds of
CPU time and 400MBytes of data size were used while running the experiments.

4.1 Ordering of BDD variables

As mentioned earlier, our symbolic verification algorithms use BDDs as the underlying data structure. The success
of such algorithms depends critically on the size of the resulting BDDs, which is very sensitive to the variable
ordering chosen. Given a logic function, the problem of finding the ordering that leads to a minimum sized BDD
for the function is algorithmically intractable. Hence we need to apply some heuristics [4, 26, 33).

In the dynamic reordering scheme (31], the BDD package automatically reorders variables to minimize the total
number of BDD nodes. Starting with a good heuristic ordering leads to better results. Since invoking dynamic
reordering takes a significant amount of time, we found the following two parameters to be useful in controlling
BDD size and improving computational efficiency. The first parameter, the “base value”, is the total number of nodes



( Example | # Latches | # Gates | Description |

sbe 28 927 ISCAS’89 sequential benchmark (a snooping bus controller).
Gigamax 45 994 Cache coherency protocol description for hardware
implementation of Gigamax distributed multiprocessor [29].
Abstracted Byte Data Link Controller (BDLC);
BDLC* Manages the transmit-receive protocol between microprocessor
144 4775 | and aserial bus. Contains the abstract description of
BIT module. Part of a commercial chip.
BDLC 172 6639 | Unabstracted version of the previous example.
2MDLC 83 2596 | Two BIT modules interacting
_ ) via a serial bus using BDLC protocol.
Bl 154 3018 | Abstracted version of a Bus Interface Unit
from a commercial microprocessor.
Every 63 838 | Cache fiush controller module
of a commercial microprocessor.

Table 1: Benchmark examples used in this work.

in the BDD manager at which the reordering starts. The second parameter, the “increment value”, is the amount by
which the number of BDD nodes in the manager must increase between two successive invocations of reordering.
These parameters can be chosen at the prompt and can be changed dynamically in the course of computation.

4.1.1 Results and Discussion

In our framework, we provide options for using ordering heuristics given in [4] and [33). For our experiments we
chose the heuristic in [4] as it was shown to outperform the other.

To demonstrate the effectiveness of dynamic ordering where the initial ordering is either random or based on a
good heuristic, we performed some experiments.

We observe from Table 2 that for large examples, use of static ordering alone often leads to large BDD sizes. In
the examples shown in the table, only one (2MDLC) could be completed using static ordering. The smaller BDD
sizes for case C as compared to case B indicate that dynamic ordering should be used along with good heuristic
initial ordering.

We also provide the ability to read in a manual ordering from a file. This feature especially becomes useful
when we want to use the variable ordering previously generated by some heuristic or by dynamic reordering. As
mentioned earlier, dynamic reordering is computationally expensive and thus bypassing it by using a previously
generated ordering provides a significant computational advantage. Results shown in Table 3 indicate that using a
previously generated ordering can achieve up to 10x speed improvement.

In addition, we provide the ability to read in partial orders and heuristically complete them to obtain good initial
orderings. Thus, if incremental changes are made to the design, the previous ordering can be adapted to be used for
the updated design. This can substantially improve the dynamic reordering performance.

4.2 Use of Clustered Transition Functions

The two most common methods of representing the transition relation of a system are the following:



Different Cases

Example | L Case A Case B Case C

|| |R| | Time T R| | Time | [T R| | Time
2MDLC | 83 | 3894 | 76158 | 204 | 21841 | 17350 | 1436 | 3894 | 13919 | 1552

BDLC* | 144 | 52757 | S.0. - | 36577 | 7069 | 1167 | 27000 | 5607 | 1495

BDLC | 172 | 79308 | S.0. - 39935 | S.0. - | 25250 | 86080 | 6970
BIU 154 | 37989 | S.0. - | 31829 | 4614 | 3912 | 36626 | 2930 | 1635

Case A: Only static ordering performed.

Case B: Dynamic ordering performed with a random static ordering.
Case C: Both static and dynamic ordering performed.

L: Number of binary latches.

|T'|: Shared BDD size of the transition relation.

|R|: BDD size of the reached set.

Time: Time in seconds to perform reachability.

S.0.: Space out.

Table 2: Results for various ordering heuristics.

[ Example | Case C | CaseD |

Case C: Time to perform reachability without using saved ordering file (in secs). Same as case C in Table 2.
Case D: Time to perform reachability with saved ordering file (in secs)

Table 3: Results showing effectiveness of using saved ordering files.

Monolithic Transition Relation: The transition relation of the system is represented by a single BDD [9] which
is the conjunction of the transition relations of the individual latches. As the circuit complexity grows, the
size of the transition relation usually explodes. Hence this approach becomes infeasible for large, complex
circuits.

Partitioned Transition Relation: A vector of transition relations is used [15, 33]; each element of the vector
represents the next state relation for a latch. Coudert [15) proposed reducing image computations to range
computations by exploiting the property of the constrain operator; the range computation is performed by
recursive co-factoring. Efficiency comes from caching intermediate results and exploiting disjoint support.
Touati [33] suggested a similar approach based on forming the product as a balanced binary tree. Image
computation or pre-image computation is carried out iteratively using transition relations for individual latches.
Reasoning heuristically, as the number of latches in the system grows, the computation time increases.

A simple extension of these two approaches overcomes some of their shortcomings.
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We represent the transition relation of the system by a vector of clustered transition relations. First, the next state
relation of each latch is computed. Next, a group of transition relations are clustered together to form a vector of
clustered transition relations. The idea is illustrated below.

Suppose the original vector of transition relations corresponding to latches is given by T; = Ti(Z, @, i) for

-

i = 1,2,...n. Then the image of A(Z) is given by,
Image(A()) = 37, 7 A®) [ T#, 4, w)] ®)

While forming clusters of latches, we take the product of the corresponding transition relations. If there are K
clusters C, Cy, - - - Ci. of latches, then .the image computation can be equivalently written as,

i=K

Image(A(Z)) = 3%, [ AZ) [] Tc.,) )]

i=1

where T, = anCi Ti(Z,4, y;).

In [8], Burch also proposed the use of clustered transition relations to represent circuits more efficiently. Latches
were grouped together to form clusters but no automatic way to form clusters was given. Their technique possibly
required user expertise, based on circuit structure.

4.2.1 Proposed Clustering Technique

In our approach the user specifies a limit on the BDD size of individual clusters (Partition Size Limit). The next
state relations of latches are ordered using one of the heuristics given in Section 4.3. Then the next state relations of
latches are conjoined in this order until the product size surpasses the user specified limit. At this point the current
cluster is complete and is stored in an array. Then, the clustering continues starting from the next latch.

4.22 Results and Discussion

Table 4 shows our results on clustering by BDD size.

We make the following observations: setting higher limits obviously leads to fewer clusters but the total number
of BDD nodes taken by the clusters becomes bigger. From Equation [9], we observe that the image computation is
performed by taking the product of transition relation of clusters sequentially (we will refer to them as sequential
iterations). The time taken in forming this product is a function of number of clusters as well as the cluster sizes.
This results in total CPU time being a convex function of partition size limit. Intuitively this can be reasoned as
follows.

Using a limit of one yields a procedure which uses the least amount of space but results in maximum number
of clusters (equal to the number of latches in the system) implying maximum number of sequential iterations.
As the threshold is raised, the number of iterations is reduced, while BDD sizes of the operands increase. In the
beginning, the reduction in the number of iterations offsets the increase in BDD sizes (and hence greater computation
complexity). Hence initially run time is reduced as the cluster size isincreased. But later, the BDD computation time
starts to dominate the savings due to decreased number of iterations and we observe an increase in runtime. This is
true for all the examples, except ones for which the monolithic transition relation is not very big (e.g. 2MDLC).

4.3 Ordering of Clustered Transition Relations

Since the system behavior is represented in terms of clusters of transition relations, the core verification operations
(image and reverse image computation) are performed iteratively, one cluster at a time. Suppose A(Z) represents

11



Examples
Partition [ 2MDLC ([=83) BDLC* ([=143) BDLC ([=172) BIU (L=154)

Size Limit | N [ |T| | Time | N | 1T |Time | N [ |T| |Time | N | [T| [ Time
1 83 (2744 | 728 | 144 | 5114 432 1172 | 7042 | 9248 | 154 | 3943 564
100 16 [ 2943 | 348 | 49 | 8454 | 235 | 57 | 13259 | 3905 | 48 | 9950 | 430
1000 513434 203 | 14 | 19613 | 125 | 20 | 24966 | 2014 | 18 | 30511 | 266
2000 3 13238 171 | 11 | 27762 | 115 | 14 | 34774 | 1662 | 15 | 35746 | 245
5000 2 |6612| 167 | 8 | 44033 | 106 | 8 | 46994 | 1443 | 10 | 76563 | 228
10000 1 | 6853 | 142 | 6 | 56410 | 106 | 6 | 61704 | 1243 | 9 [ 180914 | 227
20000 - - - 5 88984 | 116 5 190179 | 1121 7 1217395} 171
30000 - - - 4 | 111867 | 129 | 4 | 99020 | 1185 | 7 | 284450 | 198

N: Number of partitions
L,|T|, Time: As in Table 2.

Table 4: Results on space-time trade off in clustering by the BDD size approach.

the set of states, and T;(Z, 4, ;) represents the transition relation of the i** cluster; then the image of A(Z) under
the set of transition relations is mathematically given by,

Image(A()) =3 Z,i [ A() A TiE, 4, §) A Ta(F, @) A ... A Tu(Z, 4, 5) ]

Since transition relations can be moved out of the scope of the existential quantification if they do not depend on any

of the variables being quantified, for a given ordering of the transition relations, the above equation can be rewritten
as,

Image(A(:E’)) = 3 T, ux ( Tk(:i", i, y';;) A (35};-1,!7];_1 Tk_1(5, i, y;{il) Ao A (351,171 T(z, ﬁ,ﬁi) A A(.‘f))))

Coudert [15] proposed the recursive image computation. Touati [33) computes the image of a set of states by
exploiting the property of the generalized cofactor in converting the image computation into range computation
given by

1=k

az, u H T;'A(i')(fa i, g:):l
=1

where T; 4(z) denotes the generalized cofactor of T}(Z, #, y;) with respect to A(Z). This range computation is

performed using a balanced binary tree — leaves correspond to terms and variables at nodes of the tree that do not

appear in the support of nodes elsewhere are existentially quantified. They reported better performance than [15].

Burch [8] criticized this approach on the grounds that generalized co-factor may introduce new variables in the
supports of the terms, which delays the ability to quantify out variables. Heuristically, this would lead to larger
BDD size of the intermediate product terms.

Note that if T;(Z, #, ;) is conjoined with the product term obtained so far, it introduces |i; | new variables (the
corresponding next state variables). We heuristically argue that the number of the variables getting existentially
quantified from the product term and the number of variables getting introduced in the product term determine the
computational efficiency of this operation. Thus the space requirement and the efficiency of image and pre-image
computations become dependent on the order in which these clusters are processed. In [8], an ordering scheme of
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the partitioned transition relation is proposed and is based on the semantics of the underlying model. However, this
requires detailed understanding of the semantics of the model and hence is not easily automated.

Geist et al. [20) give a simple automated way to order the relations when each relation consists of the next state
function of a single latch. The primary criterion used is to choose the relation next in ordering for which maximum
number of variables can be quantified out from the new product (unique variables belonging to that partition). In
case of a tie, the relation with the maximum support is chosen.

Since, in our approach, clusters do not necessarily consist of a single latch, the ordering criteria should also take
into account the number of next state variables introduced, while choosing the next cluster in the order. It was found
that the maximum depth in the BDD ordering of any variable in a partition, referred to as the index of the variable,
also affects the performance. The reasoning behind this is that existentially quantifying a variable from a function
becomes computationally less expensive as the depth of the variable in the ordering increases.

4.3.1 Our Heuristic

In our heuristic, four different factors were used to decide the ordering of the partitions. We maintain two sets of
clusters P and Q. The set P denotes the set of clusters which have already been ordered. This set is initialized as
empty set. The set Q contains the clusters which are not yet ordered. For each cluster C; in the set Q, we find the
parameters as described below. In the following, PS, PI and N S denote the set of present state, primary input and
next state variables respectively. A variable is denoted by v, S(T') represents the set of support variables of T and
|| A || denotes the cardinality of the set A.

L ve, =|| {v | (vE€S(Tc,)) A (v € PSUPI) A (v ¢ S(Tc;) Cj # Ci,Cj € Q) } ||, ie. the number of
variables which can be existentially quantified when T, is multiplied in the product.

2. we; =|| {v | (v € PSUPI) A (v € S(Tc,))} |l i.e. the number of present state and primary input
variables in the support T¢,.

3.z¢c,=|| {v | (ve PSUPI) A (veS(Tc,), Cj €Q)} |l ie. the number of present state and primary
input variables which have not yet been quantified.

4. yc, =l {v | (veSTc,)) A (ve NS)}|,ie. the number of new variables that would be introduced in
the product by multiplying Tc,.

S5.2¢, =|| {v ]| (ve NS) A (veESTc)CjeQ)}|ie the number of next state variables not yet
introduced in the product.

6. mc, = max{index(v),v € S(T¢;) A v € (PIUPS)},i.e., the maximum BDD index of a variable to be
quantified out in the support of T¢,.

7. Mc, = max{mc;, C; € Q },i.e. the maximum BDD index of a variable to be qunatified out in the remaining
clusters.

In order to normalize the effect of parameters 1,2,5 and 6, we form the following ratios.
1. Rg, = (vc./wc,)-
2. R%, = (we,/zc;).
3. R:é'_ = (yc./zc;)-

4. RS = (mc,/Mc,).
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Weights of W), W, W3, and W, are attached to the above four factors respectively. The order of the clusters is
obtained by greedily choosing the cluster with the best cost function at each step. The chosen cluster is moved from
set @ to set P and the process is repeated until all the sets are ordered (set Q becomes empty).

In our framework these weights can be interactively varied. We performed a series of experiments to find a good
combination of these weights.

43.2 Results and Discussion

Table 5 compares the performance (CPU time in seconds) of our ordering heuristic with the heuristics proposed
in [20, 33]. Specifically we report the time taken in the reached state computation. The weights chosen after some
experimentation in our heuristic were W =2, Wo = 1, W3 =1, W, = 1.

Various Heuristics
Example | [33] | [20] Proposed |
BIU 305 326 315 |

Every 6087 | 5857 5788
2MDLC 176 244 179
BDLC* 140 191 144
BDLC | spaceout | 3023 2231
Gigamax 438 74 48
sbc 116 135 118

Table 5: Comparison of CPU time (in seconds) for different cluster ordering heuristics.

The above results indicate that the proposed approach always outperforms that in [20]. Improvements up to
25% were achieved.

Although in some examples (BIU, BDLC*, 2MDLC, sbc) Touati’s heuristic [33] performs marginally better
than ours, on BDLC, Touati’s approach ran out of memory.

44 Don’t Cares

Don’t care points arise naturally in the context of BDD based formal verification. For example, consider the
following fixed point computation for finding the set of reached states:

Ao(z) = Init(z)
Arn1(y) = Ar(y) U 3 [T(z,y) A Ar(2)] (10)

Define the frontier states at iteration i to be A; \ A;_; where A_; = {}. Coudert [15] observed that any set of
states between A; and A; \ A;_; can be used in place of A4; in Equation 10 while preserving the result for A;.;.
Thus A;_; can be used as a don’t care set to minimize the BDD size of the frontier states. Similarly, the transition
relations can be simplified with respect to the set of states whose image is being computed. In our framework we
provide the option of using don’t cares arising in this manner.

Conservative approximations to the unreached states also yield don’t cares. Given aset of clusters {C1,C,...,C}
we can compute an upper bound on the projection of reachable states in the product space to a component C;. As-

signments to the latches in component C; not corresponding to the above states can never be attained in any
environment [13).
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For components that are too small, this approach fails to give any improvement since typically all states are
reached in the component; for components that are too large, the fixed point computation fails. We provide a
routine which computes AZ,, for a given C*. We found that for medium sized clusters (approx. 15 latches), At
would be considerably smaller than the full state space of the cluster. However, somewhat to our surprise, using the
corresponding unreached states to minimize the transition relation for the component usually led to larger BDDs;
we are conducting further experiments.

4.5 Removing Redundant Latches

The basic motivation behind this approach is to simplify BDD’s for transition relations and reached state sets by
removing variables. .

A latch is redundant if it can be replaced by a wire without changing the functionality of the circuit. Replacing
a latch by a wire, reduces the number of BDD variables by two, and heuristically speacking would also reduce the
size of the BDDs containing these variables.

We briefly describe two methods to'find redundant latches and remove them.

Constant Propagation: Sometimes latch inputs are tied to either VDD or GND. In our algorithm we detect such
latches and propagate their constant values to their fanouts (hence the term “constant propagation™. An
example is shown in Figure 3.

L Ls

= > B Ls

GND ]
o )

1

Ly La
- Vid

Figure 3: Propagation of Constants through Latches: L,, L3, L4 and Ls are redundant.

L

A recursive algorithm for removing redundant latches is the following:

To each latch attach a value parameter - “constant” or “variable” and a status parameter - “processed” or
“unprocessed”.

1. Mark all latches as “unprocessed”.

2. While there exists unprocessed latches, pick an “unprocessed” latch L.
3. Call the function find_redundant(L).

4. return

Jfind_redundant(L):
1. If L is processed, then return its value (“constant” or “variable”).
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. Mark L as “processed”
. If L is tied to VDD or GND assign value “constant” and return.
. Assign value “variable” to L.
. For each variable v in the support of the next state function of the latch,
(a) If v corresponds to a primary input, mark the latch as “variable” and return.
(b) If v represents a wire with constant value “0” or “1”, continue.
(c) Find latch L; for which v is the present state variable, and call find_redundant(L;).
6. Modify the next state function of the latch by propagating the constant value of fan-ins.

7. If the next state function becomes a constant then change the value of L to “constant”.
8. return value.

[ T - VA S ]

At the end of the algorithm, the next state functions of latches do not contain present state variables corre-
sponding to redundant latches, These variables are not considered for further BDD manipulations.

Latch Removal by Retiming: Retiming rearranges the storage elements in a circuit to reduce its cycle time or to
reduce the number of storage elements, without changing its functionality [28). We use retiming to reduce
the number of storage elements. A simple example to demonstrate this is shown in Figure 4(a). Note that, the

-z, Z,
——
RETIME
] Ty @ ——----- PRI Ty
! ——————— :’d
4(a) 4(b)

Figure 4: Removing latch by re-timing.

inputs of these 2 latches are fed by the same combinational logic. Hence the next state values of these latches
will always be same. The new circuit with the redundant latch removed is presented in Figure 4(b).

An algorithm for removing redundant latch by retiming is following:

1. Sort all the latches in increasing order of the support size of the corresponding next state functions.
2. For each pair of latches L; and L;, with the equal support size do the following:

(@) Suppose z;, z; denote the corresponding present state variables (outputs of latches) and F;, Fj are
the corresponding next state functions.

(b) Find the co-factors F;,,, Fiz,, Fj, and Fj .

© IfF, = F}-:j and Fi;, = F; z then remove L; from the cimilit and replace it by a “wire” instead
(as illustrated in Figure 4).
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4.5.1 Results and Discussion

The results of redundant latch removal techniques on various examples are shown in Table 6. We observe up to

=
!

examples | A D|E F G

T | 1Rl | _IT] | IR

gigamix 45 91010191 2018 | 402 1389 301
BDLC* [144 | 1[0 | 5| 6 |24275| 12208 | 23441 | 9984
BIU 154 [ 6 | 2 | 26 | 34 | 30834 | 25276 | 20088 | 20956
A: Total # of latches

B: # of constant latches removed without constant propagation
C: # of latches removed after constant propagation

D: # of latches removed by re-timing

E: Total # of latches removed

F: Redundant latches not removed

G: Redundant latches removed

|T|, |R]: Asin Table2.

Table 6: Effects of redundant latch removal on BDD sizes.

30% reduction in the BDD size of the transition relation. Also a reduction of up to 25% was obtained for the BDD
size of the reached set.

In the above analysis the reset values of the latches were ignored, i.e. we did not check for the consistency of
the reset values. However these optimization techniques can be applied even if the reset values of the latches are
taken into account. In the constant propagation approach, the reset value of the latch must match the constant next
state value it takes, for it to be made redundant. In the retiming approach, the reset values of the latches must be
identical for either of them to be removed. This analysis can be done very easily.

A similar approach was proposed by Lin [27] who describes an algorithm to remove a maximal set of state
variables without affecting the uniqueness of reachable states. The problem with this approach is that we need to
pre-compute the set of reachable states. In many big designs computing the reachable states becomes infeasible due
to the size of the BDD; in our technique redundant latches are removed once the next state relations are calculated.
Hence the size of the transition relation and the reached state set is reduced before we need to compute it.

However, our approach is orthogonal to Lin’s. After minimizing the transition relation using this approach, we
can still apply Lin’s method to possibly remove more latches and get a further reduction in BDD size after computing
the set of reachable states.

Beer et al. [5] mentioned a “constant-elimination™ technique to reduce the number of inputs and memory
elements; however no algorithm is proposed to detect such cases.

5 Conclusion and Future Work

We described a data structure and a series of algorithms for efficient formal design verification using BDD’s. The
data structure represents a non-deterministic system as a deterministic netlist of gates and latches which allows for
efficient manipulation of hardware designs. We argued that the core computation in BDD based formal verification
is that of forming the image and pre-image of a set of states under the transition relation characterizing the system.
To make this step efficient, we addressed BDD variable ordering, use of partitioned transition relations, use of
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clustering, use of don’t cares and removal of redundant latches. The efficacy of these algorithms was demonstrated
on a set of seven industrial examples ranging in size from 28 to 172 binary latches.

This is part of a second generation BDD based tool (HSIS) for both logic synthesis and formal design verification
using either model checking or language containment. The input is an enhanced version of Verilog which is compiled
to a hierarchical netlist {1]. This is determinized and read into a network of latches and gates. The algorithms
described in this paper are integrated into the tool which is aimed at users of formal design verification as well as
developers interested in creating their own applications on top of the efficient core computation routines provided.

Other BDD based techniques which look promising include the “exists—cofactor” of [10], and the “implicitly
conjoined invariants” of [24]. We plan to experiment with them since it should be relatively easy with the data
structure proposed in this paper to implement these methods. Certain limitations of BDD based formal design
verification can not be solved by the techniques described in this work. For example, the size of the reached set
may be large under any variable ordering. Other data structures like GBDDs, XBDDs, ZBDDs [25] might be
useful in these cases. There are also a wide class of heuristics for coping with state explosion that are orthogonal
to the approaches we have taken, such as property specific reductions [2], abstractions [21], and conservative
approximations to reached state sets [13]. We believe these techniques can be conveniently developed in our
framework and then tested and compared on realistic examples.
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