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Abstract

Wedescribe a data structure anda set of BDD based algorithms for efficient formal designverification. We
argue that hardware designs should be translated into an intermediatehierarchical netlist of combinational tables
and sequentialelements, and internally represented by a flattened network of gates and latches, akin to that in
SIS [32]. We establishthat the core computation in BDD basedformal designverification is forming the image
and pre-imageof sets of statesunder the transition relation characterizing the design. To make this step efficient,
we addressBDD variableordering, use ofpartitioned transition relations, useof clustering, use of don't cares,and
redundantlatchremoval. Manyof thesetechniqueshavebeenstudiedin thepast Weprovidea completeintegrated
setof modifiedalgorithms andgivereferencesandcomparisonswithpreviouswork. Wereportexperimental results
on a seriesof sevenindustrialexamplescontainingfrom28 to 172binaryvaluedlatches.
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1 Introduction

In the design of digital systems, there are two different levels of verification, corresponding to two major phases
of design. In the first phasean initialspecification in a high-level description language, like VHDL or Verilog is
used. Design verification is concerned with the question"Is what I specifiedwhat I wanted?". The second phase
is synthesizing the initial specification into a circuit which can be implemented. Implementation verification is
concerned with the question"Is what I synthesizedwhatI specified?".

The traditional approach to design verification is simulation, which is well-understood and has been applied
widely in the design community. Designers arecomfortable with simulation because thinking in terms of input
patternsandexpectedoutputpatterns is intuitive. However, exhaustive simulation is not feasible forevenmoderately
sized systems. Thus, simulation hasa serious drawback; it cannot show theabsence of errors, onlythe presence of
errors.

Formal design verification, is the process ofmathematically proving thata systempossesses a setof properties.
The theory behind this approach hasbeen investigated over the last three decades, but only in the last five years
have practical tools begun toemerge. Though it overcomes many of thedrawbacks of simulation [1], it is currently
limited to relatively small designs. We seek to improve theefficiency of verification so that larger designs can be
verified.

A detailed survey of the various verification methods can be found in [22]. The first to be used in design
verification was theorem proving, which usually requires extensive interaction with human experts. Language
containment (LC) and model checking (MC) are two recent automated approaches for verifying properties of
designs described by state transition systems. InLC,thesystem and theproperties are both specified asu-automata.
Theverification problem is equivalent toverifying that thelanguage of thesystem is contained in thelanguage of
the properties (COSPAN [23]). In MC, the properties are specified using temporal logic, and model checking is
applied to the system specification to verify these properties [17]. Verification tools that manipulate state-based
systems explicitly are limited by thesize of thestate space (Mur^ [16]). However, most real designs consist ofaset
of interacting components leading tothe problem of state explosion. In the context of implementation verification,
Coudert and Madre [15] pioneered the use of BDDs toimplicitly manipulate the product state space. Since then,
the use of BDDs has been extended tomanipulate transition systems inthe area of design verification (SMV [29]).

In this paper we describe a data structure and a set of algorithms for efficient BDD based formal design
verification. We argue that hardware designs can (and should) bemapped into netlists of deterministic (possibly
multi-valued) gates and latches. At early stages of the design process, descriptions often contain non-determinism
which can beequivalently viewed as coming from unconstrained external inputs. These netlists can beinternally
represented by a SIS [32] like data structure, on which a large body of BDD techniques developed in SIS, for
operations like sequential equivalence and optimization e.g. [10, 26, 30, 33], can beapplied. This data structure
also provides acommon and somewhat familiar software development environment for developers wanting towrite
their own applications.

We argue that the core computation inBDD based formal design verification isthat of forming the image and
pre-image of a set of states under the transition relation characterizing the system. In order tomake this step as
efficient aspossible, we address the following:

• Variable ordering techniques.

• Use of partitioned transition relations (keeping the components separate toavoid the large BDD size of the
monolithic transition relation for theentire system).

• Use ofclustering (grouping together some parts of the design toreduce the number of iterations required for
each imageandinverse imagecomputation).

• Ordering of the clustered transition relation for efficient image and pre-image computation.



• Use of don't cares in minimizingBDD's.

• Removal of redundant latches.

Many of these approaches have been studied inthe past. References and comparisons with previous work are
given with the details of our techniques. One salient feature is that all our algorithms are completely automatic.
The methods are interdependent and can beused together invarious combinations. We report ona subset of these
combinations and experimental results onabenchmark set consisting of seven relatively large industrial designs.

The algorithms described in this paper use several parameters (default oruser specified). It is likely that no
universal choice of settings will yield the best results for all examples. Hence the ability to set parameters at
theprompt is provided; further experiments possibly will lead toa general purpose robust script for novice users.
However, an advanced user can exploit the core computation routines for writing new applications possibly using
different parameter settings.

Thepaper is structured as follows: in Section 2 theCTLmodel checking and language containment paradigms
are described. Wealso introduce thestate explosion problem, which motivates theneed for symbolic techniques for
state enumeration.

Section 3 presents our data structure used torepresent hardware designs, which iswellsuited for formal design
verification.

EfficientBDD methods for imageandinverse image computations aredescribed in Section4. We concludein
Section 5 by commenting on some implications of these results and indicating future directions.

2 Preliminaries

2.1 Image and Inverse Image Computations

B represents the boolean set {0,1). The following definitions pertain to a finite statesystem M with n statebits
and m inputs.

Definition 1 T(x, 7, y): Bn x Bm x Bn -+ Bisthe transition relation ofasystem with nstate bits and m inputs.
T(x, i, y) = 1 implies thatinstatex there exists a transition to state y oninput t.

Definition 2 Let T(x, 7, y): Bn x Bm x Bn -*• Bbe a transition relation and Pa subset ofBn. The image ofP
under the transition relation T is the set Q, such that,

yeQ <* 3x € P, 3 x s.t. T(x\», y) = 1 (1)

Definition 3 Let T(x, z,y) : Bn x Bm x Bn -+ B be a transition relation and P a subset of Bn. The inverse
image (also called pre-image) of P under the transitionrelation T is the set Q, suchthat,

x€Q & 3y€P,3i s.t. T{xXy) = l (2)

Definition 4 Let T(x, i,y): Bn x Bm x Bn -*• B be a transition relation and I(x) be theset of initialstatesof
thesystem. The set of reachable states of thesystem, R(y) is the leastfixedpointof

Jfe(y) = m
Rk+\(y) = Rk(y)U 3£j[Rk{x)AT{x,tty)] (3)



{}

Figure 1: An example illustrating a Kripke structure. S = {s0, si, s2i s3, s4, s5,s6}, AP = {a,6}. Anedge from
state $i to sj indicates that («,-, 8j) € T. States are labelled with the subset of APs true atthe state. A path through
K isa sequence of states <t\ ,<r2, •••such that Vi fa, <Ti+i) GT.

2.2 Formal Design Verification

In this section we informally describe the CTL model checking and language containment approaches to formal
design verification. In both cases the underlying design ischaracterized byaKripke structure [14].

Definition 5 A Kripke structure K isatriple (5,T, £), where 5 isa finite setof states, T C S x 5 is thetransition
relation, and C:AP-*2s isthe labelling function mapping atomic propositions (AP) to sets ofstates. A pictorial
representation of a Kripke structure is given in Figure 1.

In the CTL model checking paradigm [17], properties are expressed as formulas from an inductively defined
syntax. Truth ofthe formulae isinterpreted over states inKripke structures; determining the truth value ofa formula
over astate inthe structure isreferred toas model checking and can be algorithmically performed using fixed point
calculations. Precise syntax and semantics are given in [17]. As an example, state s0 in the Kripke structure of
Figure 1models the formula EF{a Ab) ("there exists apath toastate where both aand 6hold"). This isbecause
s\ is labelled by a and 6, and thereisapath from so to«i,namely s0-> s2^> s3 -» ss -*• si. This result can be
mathematically obtained by finding theleast fixed point of

Ro(x) = p

Rk+i{x) = Rk(x) U EX Rk(x) (4)

where pdenotes the set of states which satisfy the formula (a A6), i.e. set ofstates labelled with "a"and "6". Note
that the set of states satisfying EXR(x), i.e. the set ofstates that can reach some states in R(x) in one step, can
be found by computing the inverse image ofR(x), with respect to the transition relation. Similarly, for some other
CTL formula weneed to perform image computations.

In the language containment paradigm, the design isidentified bythe set ofgenerated output traces £u, and a
property isgiven byaset ofacceptable traces CP. Verification consists ofchecking whether all design behavior is
acceptable i.e. checking CD C CP, which in turn isequivalent to checking that CD nZF isempty. Kurshan [23]
observed that for certain classes ofproperties (namely deterministicL-automata) the set CP isefficiently computable.
In simple terms, verification consists of finding apath inaKripke structurewhich startsatthe initial state and leads to
afair cycle i.e. acycle which includes at least one state from adesignated subset offair states T [18]. Conceptually,



this check may beperformed by first finding the set of states T* which given reach a fair cycle. Thus the property
fails if and onlyif theinitial state lies inT* (since wewant Co n Cp = <f>, i.e. no fair cycles).

SupposeRoo (x) represents the setof reachable states. Limit the transition relation to the set of reachable states
by T{x,y)=T(x,y)ROQ(x).

The algorithmto find set of states T* is as follows:

1. Initialize FQ(y) = F(y).

2. ComputeA^ using following fixed pointcomputation:

Mv) = ^o(y)
Ak+1(y) = Ak(y) n 3x[Ak{x) AT(x,y)] (5)

^oo(y) gives thesetof states which can bereached by some states of F0(y) which lieonacycle.

3. Compute Boo using following fixed pointcomputation:

Bo{x) = Aoo(x)

Bk+l(x) = Bfc(x) n 3y[Bib(y)Ar(x,y)] (6)

Boo (£) givesthe setof states whichcan reach somestates of Aoo (x) whichlie on acycle.

4. ComputeFo(x) = i4oo(x) n Boo(x).

5. Repeat (2-4) until convergence.

6. T* is given by the least fixed point of

G>(x) = F0(x)
Ck+i(x) = Cfc(x) U 3y[T(x,y)ACk(y)) (7)

It is apparent from Equations [4,5,6,7] that the core computation in verification is that of taking the image or inverse
image of sets of states under the transition relation.

2.3 State Explosion

Often designs are constructedby linking components together, unspecified inputs are assumed to take any value
on eachclock cycle. The synchronousproductof componentsdefinesa single Kripke structure (alsoreferredto as
the productmachine), the state spaceof which is the product of the components' state spaces. Hence algorithms
that directly manipulate states will have time and space complexity that is exponential in the size of the system
description. Indeed, the computational complexity of this problem is known to be PSPACE-complete [3]. The
complexity introduced by concurrent interaction is popularly referred to as the"stateexplosion problem".The quest
forheuristic solutionsto this problemconstitutesthe forefront of research in formal verification [2,9,13, IS, 21].

Binary DecisionDiagrams (BDDs) [7] are canonical representations of Boolean functionson which Boolean
operations can be performed efficiently. Furthermore, they can compactlyrepresent a wide varietyof commonly
encountered functions. Transitionrelationsand sets of statescanbe representedusing BDDs of their characteristic
functions, which canbe used forefficient fixed-point computations [9, IS, 30]. BDDs arenow extensively used for
both designandimplementationverification of hardware systemsandmany non-trivialdesign examples havebeen
verifiedusing BDDs [11,29]. Still, therearemany instances of medium sized circuitsthat cannotbe verifiedusing
existing BDD techniques. In Section4 we providea partial survey of state-of-the-art BDD techniques and present
our contributions.



3 Data Structure

Designers typically specify systems in a high level language which supports constructs like integer arithmetic,
multi-valuedvariables, array structures etc. (e.g. SMV [29] or enhanced Verilog [12]). The description of the
system often contains non-determinism typically introduced when some part of the design is abstracted by hiding
details. Non-determinism alsocomes into playwhilemodeling thebehavior of the environment. Ourapproach to
non-determinism is to addnew unconstrained inputs.We convert anarbitrary systemdescription intoa deterministic
netlistof gates andlatches. For example, consider the following Verilog description of anxor gatewith arbitrary
delay. The outputof the gate is madenon-deterministic to model theanarbitrary delay.

module xor( elk, inp, out )
input elk, inp;
input ready;
output out;

reg out;

initial out =0;

always (@posedge elk) begin
if (ready)

begin

out <= [ [out, out" inp] ]; /* next stateof outis non-deterministically *l
end /* eitherout or out © inp*/

else

out <= 0;

end

endmodule

We use anew, unconstrained binary valued variable _$nd0 toconvert this description into deterministic netlist
of gates anda latch as given in Figure 2.

Itcan be shown that the"determinized" design yields aKripke structure that isbisimilar [6] to that ofthe original
design, and can be safely used in place of theoriginal.

This "determinization" can be done automatically. Suppose y = (y\ yi... ym) isanon-deterministic function
of x = (xi x2... xn), where all component variables take binary values. Thus y can be expressed by a non-
deterministic multi-output table, as illustrated inthe following example:

xl x2 -• yl y2
0 0 1

1 - 10

0 1 0 0

Thus, for example, for x = 10, y can be either 01 or 10. We add an unconstrained input d to this table. The
corresponding deterministic tableis givenas follows:

d Xl x2 -• yl y2
0-0 01

1 1 10

- 0 0 0 1

- 1 1 10

- 0 1 0 0



ready

inp 3>
3>^> J out

<^-L

_$ndO

Figure 2: A deterministic netlistof gates and latches that represents the functionality of the non-deterministic
Verilog modulexor. The variable _$nd0 is a newprimary input to the system.

Determinizing withtheleastnumberof additional external inputsis equivalent to solvingthe minimum coloring
problem for undirectedgraphs.

Lemma 3.1 It is NP-complete to decide if K binary variablessufficeto "determinize" a table.

Proof: Membership in NP:Notethatchecking a tablefordeterminism iseasy: formthepairwiseintersection of the
cubes in the inputspace- anypairwithnonempty intersection should agreeon thecorresponding outputs. Hence
the K new variables along with the assignment can be guessed; the resultant table can be checked in polynomial
time.

NP-hardness We use a reduction from graph coloring [19]. Let G = (V = {vo, vi,..., v„_i}, E) be a graph
and K < n be a positive integer. Suppose k = (log2 n\. Define a non-deterministic function V on input space
(xi, X2,..., Xfc) andoutputspace(yi, yi,..., yk). Thecorresponding tableis defined on theminterms of the input
space bythe equation V(x) = {y | (v\\x\\, v\\y\\) € E], where || x || gives thedecimal value of the binary number
represented by the vector (xi, x2)..., X*), similarly || y ||. For a non-trivial graph with at leastone vertex with
degree more than one, the corresponding table is non-deterministic. V can be determinized by adding a single
multi-valued variableD to the input space; identifya valid | D | coloringof the graph by the valuestaken by D at
the corresponding inputminterm, i.e. all nodeswhosecorresponding mintermhavethe same D valueare given the
same distinct color.

In fact, since deciding if a 4 coloring exists is already complete, finding the least number of variables to
determinize a table with as few as two binary outputs is already intractable. •

A similarargument, run in reverse, demonstrates that finding theminimum numberof binaryvariables needed to
determinizea tableeasilyreducesto thegraphcoloringproblemfor whichgood heuristicsexist,e.g. complementing
the graph and covering it by cliques etc.

After determinization, the design is translated into a hierarchical netlist of deterministic, singleoutput gates
and latches. Internally,we read the netlist into a flattened graph representation. The nodes of the graph indicate
combinational logic blocks and sequential elements, i.e. latches. Nodes may be annotated with information about
the original hierarchy that certain partitioning/clustering applicationsmight find useful. Those familiar with the
sequential synthesistool SIS will immediately see the similarity with the SIS or BLIF representation of sequential
logic circuits.



We chose such a data structurebecause it allows easy access to the wide rangeof BDD applicationswritten for
SIS, such as variable orderingand reachability analysis[25,26,33]. The wide acceptance of SIS as a framework
for developing new applications suggeststhatourdata structure may havesimilar applicability.

This approach has the advantage over the one used in the initial version of HSIS [1] in that the number of
variables initially needed to buildthe BDDs representing the systemis drastically reduced; only the present state,
next state,andprimary input variables areneeded. Also functional composition(like in SIS) canbe used to derive
the next state and output functions, whereas currently in HSIS relational composition is needed because internal
variables canbe non-deterministic. Furthermore, the next state function of each latch canbe specified separately,
since the correlation between next states is carried by the newly created inputs. Thus, the expression for the core
computation of finding the imageofa setof states A(x) (Equation 1)canbe givenby,

n

Image(A(x))(y) = 3x,« [A(x) •JJ(yt =/i(x,u))]
t=i

where y, is the next statevariable of latch i, fi(x, u) is the next state function, x is 1h& present statevector and
u is the primary input vector. The transition relation Ti(x, u, y,) of the i-th latch, by definition is the relation
(yi = fi(x, u)). In Section 4 we describe how to evaluate this expression efficiently using BDDs by choosing an
appropriate variable ordering, forming the product of A(x) incrementally with a heuristically chosen permutation
of theTi's, and clustering theTi*s intosets Ck to form a smaller setof transition relations Tck. Although wedonot
pursue it in this paper, the fact thatwe have a next state function instead of arelation also allows experimentation
with the method proposed in [15].

4 Algorithms

Inthissection we present various BDD based algorithms toefficiently perform thecore verification computations.
In Section 4.1, techniques are discussed to achieve good BDD variable orderings. Section 4.2 presents theuseof
clustered transition relations. The approach used for ordering theclusters is detailed in Section 4.3. In Section 4.5,
we describe a fasttechniqueforremovingsome redundant latches.

To illustrate theeffectiveness of these algorithms and to contrast them with some previous approaches, we use
a setof seven benchmark examples. We perform reachability analysis (Equation 3)onthese examples (Table 1)to
demonstrate theeffectiveness of thealgorithms for theimage computations. Preliminary experiments indicate that
these algorithms are efficient for inverse image computations as well. Wewill report a complete setof theresults
on inverse image computations in the final version of the work.

All examples were run ona DEC5900/260 workstation with440MBytes memory. A limitof 10000 seconds of
CPU timeand 400MBytes of data sizewere used while running theexperiments.

4.1 Ordering of BDD variables

As mentioned earlier, oursymbolic verification algorithms use BDDs astheunderlying data structure. Thesuccess
of such algorithms depends critically on the size of the resulting BDDs, which is very sensitive to the variable
ordering chosen. Given a logic function, the problem of finding theordering that leads to a minimum sized BDD
for the function is algorithmically intractable. Hence we need toapply some heuristics [4,26,33].

Inthedynamic reordering scheme [31], theBDDpackage automatically reorders variables tominimize thetotal
number of BDD nodes. Starting witha good heuristic ordering leads to better results. Since invoking dynamic
reordering takes a significant amount of time, we found the following two parameters to be useful in controlling
BDDsizeand improvingcomputational efficiency. The first parameter, the"base value", isthetotal number of nodes



Example # Latches # Gates Description

sbc 28 927 ISCAS'89 sequential benchmark (a snooping buscontroller).
Gigamax 45 994 Cachecoherencyprotocol description forhardware

implementation ofGigamaxdistributed multiprocessor [29].

BDLC*

144 4775

AbstractedByte DataLink Controller(BDLC);
Manages the transmit-receive protocol betweenmicroprocessor
anda serial bus. Contains the abstract description of
BIT module. Part of acommercialchip.

BDLC 172 6639 Unabstracted versionof the previousexample.
2MDLC 83 2596 Two BIT modules interacting

via a serialbus using BDLC protocol.
BIU 154 3018 Abstracted version of a Bus Interface Unit

from a commercialmicroprocessor.
Every 63 838 Cache flush controller module

of acommercialmicroprocessor.

Table 1: Benchmarkexamples used in this work.

in the BDDmanagerat which the reordering starts. The secondparameter, the "incrementvalue", is the amountby
which the number of BDD nodes in the managermust increasebetween two successiveinvocationsof reordering.
These parameterscan be chosen at the prompt and can be changeddynamicallyin the course of computation.

4.1.1 Results and Discussion

In our framework, we provide options for using orderingheuristicsgiven in [4] and [33]. For our experimentswe
chose the heuristic in [4] as it was shown to outperform the other.

To demonstrate the effectiveness of dynamic ordering where the initial ordering is either random or based on a
good heuristic, we performed some experiments.

We observe from Table 2 that for large examples, use of static ordering alone often leads to large BDD sizes. In
the examples shown in the table, only one (2MDLC) could be completed using static ordering. The smaller BDD
sizes for case C as compared to case B indicate that dynamic ordering should be used along with good heuristic
initial ordering.

We also provide the ability to read in a manual ordering from a file. This feature especially becomes useful
when we want to use the variable ordering previously generated by some heuristic or by dynamic reordering. As
mentioned earlier, dynamic reordering is computationally expensive and thus bypassing it by using a previously
generated ordering provides a significant computational advantage. Results shown in Table 3 indicate that using a
previously generated ordering can achieve up to lOxspeed improvement.

In addition, we provide the ability to read in partial orders and heuristically complete them to obtain good initial
orderings. Thus, if incremental changes are made to the design, the previous ordering can be adapted to be used for
the updated design. This can substantially improve the dynamic reordering performance.

4.2 Use of Clustered Transition Functions

The two most common methods of representing the transition relation of a system are the following:



Example L

Different Cases

Case A CaseB CaseC

\T\ m Time in 1*1 Time in \R\ Time

2MDLC

BDLC*

BDLC

BlU

83

144

172

154

3894

52757

79308

37989

76158

S.O.

S.O.

S.O.

204 21841

36577

39935

31829

17350

7069

S.O.

4614

1436

1167

3912

3894

27000

25250

36626

13919

5607

86080

2930

1552

1495

6970

1635

Case A: Only staticorderingperformed.
CaseB: Dynamic ordering performed witha random staticordering.
CaseC: Bothstaticand dynamic ordering performed.
L: Number of binary latches.
\T\: SharedBDD size of the transitionrelation.
\R\: BDDsize of the reachedset
Time: Timein seconds to perform reachability.
S.O.: Space out.

Table2: Results for variousorderingheuristics.

Example CaseC CaseD

2MDLC 1552 180

BDLC* 1495 114

BDLC 6970 2048

sbc 127 107

BlU 1635 270

Case C:Time toperform reachability without using saved ordering file (insees). Same ascase CinTable 2.
Case D: Time toperform reachability with saved ordering file (insees)

Table 3: Results showing effectiveness of using saved ordering files.

Monolithic Transition Relation: The transition relation ofthe system isrepresented by a single BDD [9] which
is the conjunction ofthe transition relations ofthe individual latches. As the circuit complexity grows, the
size ofthe transition relation usually explodes. Hence this approach becomes infeasible for large, complex
circuits.

Partitioned Transition Relation: A vector of transition relations is used [15, 33]; each element of the vector
represents the next state relation for a latch. Coudert [15] proposed reducing image computations torange
computations by exploiting the property of the constrain operator; the range computation is performed by
recursive co-factoring. Efficiency comes from caching intermediate results and exploiting disjoint support.
Touati [33] suggested a similar approach based on forming the product as a balanced binary tree. Image
computation orpre-imagecomputation iscarriedoutiteratively using transition relations for individual latches.
Reasoning heuristically, asthe number oflatches inthe system grows, the computation time increases.

Asimple extension ofthese two approaches overcomes some oftheir shortcomings.

10



We represent the transition relation of the system bya vector of clustered transition relations. First, thenext state
relation ofeach latch iscomputed. Next, a group oftransition relations are clustered together toform a vector of
clustered transition relations. The idea is illustrated below.

Suppose the original vector oftransition relations corresponding to latches isgiven by Ti = Ti(xt u, y,) for
i = 1,2,... n. Then theimage of A(x) is given by,

Image(A(x)) = 3x, u[A(x) JJ7;(x,«,y,)] (8)

While forming clusters of latches, wetake theproduct of thecorresponding transition relations. If there are K
clusters C\, C2} •••Ck of latches, then theimage computation can beequivalently written as,

Image(A(x)) = 3x, u[A(x) J[ Tc%] (9)
t=i

where TCi = 11;6c,?}(*>«,%•).
In [8], Burch alsoproposed theuseofclustered transition relations torepresent circuits more efficiently. Latches

were grouped together to form clusters butnoautomatic way to form clusters wasgiven. Theirtechnique possibly
required user expertise, based on circuit structure.

4.2.1 Proposed Clustering Technique

In our approach the user specifies a limit on the BDD size of individual clusters (PartitionSize Limit). The next
state relationsof latchesare orderedusingone of theheuristics givenin Section4.3. Then the next state relationsof
latches are conjoined in thisorderuntiltheproduct sizesurpasses the userspecified limit At thispoint thecurrent
clusteris complete and is storedin an array. Then,the clustering continues startingfromthe nextlatch.

4.2.2 Results and Discussion

Table4 showsour results on clusteringby BDD size.
Wemake the followingobservations: settinghigherlimitsobviouslyleads to fewerclustersbut the total number

of BDDnodestakenby the clustersbecomes bigger. FromEquation [9],we observethat the imagecomputation is
performed by taking theproductof transition relation of clusters sequentially (we will refer to them as sequential
iterations). The time taken in forming this product is a function of number of clusters as well as the cluster sizes.
This results in total CPU time beinga convex function of partition size limit. Intuitively this can be reasoned as
follows.

Using a limit of one yields a procedurewhichuses the least amountof space but results in maximum number
of clusters (equal to the number of latches in the system) implying maximum number of sequential iterations.
As the threshold is raised, the number of iterations is reduced, while BDD sizes of the operands increase. In the
beginning, thereduction in thenumberof iterationsoffsets theincrease in BDDsizes(andhencegreater computation
complexity). Hence initially runtimeis reduced as thecluster sizeisincreased. Butlater, theBDDcomputation time
starts to dominate the savings due to decreased number of iterations and we observe an increase in runtime. This is
true for all theexamples, exceptones for which the monolithic transition relationis not verybig (e.g. 2MDLC).

43 Ordering of Clustered Transition Relations

Sincethe system behavioris represented in termsof clusters of transition relations, thecore verification operations
(image and reverse image computation) are performed iteratively, one clusterat a time. Suppose A(x) represents
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Partition

SizeLimit

Examples
2UDLC (L=83) BDLC* (L=144) BDLC (L=1 72) BIU(L=154)
N \T\ Time N \T\ Time N PI Time N \T\ Time

1 83 2744 728 144 5114 432 172 7042 9248 154 3943 564

100 16 2943 348 49 8454 235 57 13259 3905 48 9950 430

1000 5 3434 203 14 19613 125 20 24966 2014 18 30511 266

2000 3 3238 171 11 27762 115 14 34774 1662 15 35746 245

5000 2 6612 167 8 44033 106 8 46994 1443 10 76563 228
10000 1 6853 142 6 56410 106 6 61704 1243 9 180914 227
20000 - - - 5 88984 116 5 90179 1121 7 217395 171

30000 - - - 4 111867 129 4 99020 1185 7 284450 198

N: Number of partitions
L,|T|, Time: As in Table2.

Table 4: Results on space-time trade off in clustering by theBDDsizeapproach.

the set of states, and Ti(xt u, #) represents the transition relation of the Ith cluster, then the image of A(x) under
thesetof transition relations is mathematically given by,

Image(A(x)) = 3x1u [A(x) A Ii(*,ii,ia) A T2(x,u,yi) A ... A Tk(xtu,yk)]

Since transition relations can be moved outofthe scope ofthe existential quantification ifthey do notdepend on any
ofthe variables being quantified, for agiven ordering ofthe transition relations, the above equation can berewritten
as,

Image(A(x)) = 3 xk,uk ( r^x.u.y*) A(3xk.uuk.1 Tfc_i(x,tx,j/fcli) A••• A(3xuui ^(x.it.yl) AA(x))))

Coudert [15] proposed the recursive image computation. Touati [33] computes the image ofaset of states by
exploiting the property of the generalized cofactor in converting the image computation into range computation
given by

J[TiA(2)(x,u,yi)3x, u
L»'=l

where TiA^ denotes the generalized cofactor of Ti(x, u,y.) with respect to A(x). This range computation is
performed using a balanced binary tree - leaves correspond toterms and variables atnodes of thetree that donot
appear inthe support ofnodes elsewhere are existentially quantified. They reported better performance than [15].

Burch [8] criticized this approach onthe grounds that generalized co-factor may introduce new variables inthe
supports of the terms, which delays the ability toquantify out variables. Heuristically, this would lead to larger
BDD size of the intermediate productterms.

Note that if Tt(x} u,£•) isconjoined with the product term obtained so far, it introduces |£ |new variables (the
corresponding next state variables). We heuristically argue that the number of the variables getting existentially
quantified from the product term and the number ofvariables getting introduced inthe product term determine the
computational efficiency of this operation. Thus the space requirement and the efficiency of image and pre-image
computations become dependent on the order inwhich these clusters are processed. In [8], an ordering scheme of
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the partitioned transition relation isproposed and isbased on the semantics ofthe underlying model. However, this
requires detailed understanding of the semantics of the model and hence isnot easily automated.

Geist etal. [20] give a simple automated way toorder therelations when each relation consists of thenextstate
function ofasingle latch. The primary criterion used isto choose the relation next inordering for which maximum
number of variables can bequantified out from the new product (unique variables belonging tothat partition). In
case of a tie,therelation withthemaximum support ischosen.

Since, inour approach, clusters do not necessarily consist ofasingle latch, the ordering criteria should also take
into account the numberofnext state variables introduced, while choosing the next cluster inthe order. Itwas found
that themaximum depth in theBDDordering of any variable ina partition, referred to asthe index of thevariable,
also affects theperformance. Thereasoning behind this is that existentially quantifying a variable from a function
becomes computationally less expensive asthedepth of thevariable intheordering increases.

4.3.1 Our Heuristic

In ourheuristic, four different factors were used to decide theordering of the partitions. We maintain two sets of
clusters P and Q. The set P denotes the setof clusters which have already beenordered. This set is initialized as
empty set. The set Q contains the clusters which arenot yet ordered. Foreachclusterd in the set Q, we find the
parameters asdescribed below. In the following, PS, PI and NS denotethe setof present state, primary inputand
next statevariables respectively. A variable is denoted by v, S(T) represents the set of support variables of T and
|| A ||denotes the cardinality of the set A.

1. vCt =|| {v | (v e S(TC,)) A (v € PSUPI) A (v <£ S(TCj) Cj / Ci%Cj GQ)} ||,i.e. the number of
variables which canbe existentiallyquantified when Tc, is multipliedin the product.

2. wet =|| { v | (v e PS U PI) A (v € S(Td))} ||, i.e. the number of present state and primary input
variablesin the supportTct.

3. xc, =|| {v | (t> G PSUPI) A (v e S(TCi), Cj e Q)} ||,i.e. thenumber of present state and primary
input variableswhich have not yet been quantified.

4. yct =|| {v | (v € S(Tci)) A (v £ NS)} ||, i.e. the numberof new variables that would be introduced in
the product by multiplying Tc,.

5. zCi =|| { v | (v e NS) A (v e S(TCj), Cj e Q)} ||, i.e. the number of next state variables notyet
introduced in the product.

6. mci = max{index(t>), v e S(TCi) Ave (PI U PS)}, i.e., the maximum BDD index of a variable to be
quantifiedout in the supportof 7c<.

7. Met = maximc,, Cj € Q },i.e. themaximum BDD index ofavariable tobequnatified outintheremaining
clusters.

In order to normalize the effect of parameters 1,2,5and 6, we form the following ratios.

1. R}Ci = (vCi/wCi).

2. R2Ci = (wCi/xCi).

3. R3Ci = (ycjzc,).

4. /£, = (mc,/MCl).
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Weightsof W\, W2, W3, and W4 are attached to the abovefour factors respectively. The order of the clusters is
obtainedby greedilychoosingthe clusterwith thebestcostfunction at eachstep. The chosenclusteris movedfrom
set Q to set P and the process is repeated untilall the setsare ordered(set Q becomes empty).

In our framework theseweightscan be interactively varied. Weperformed a seriesof experiments to finda good
combination of these weights.

43.2 Results and Discussion

Table 5 compares the performance (CPU time in seconds) of ourordering heuristic with the heuristics proposed
in [20,33]. Specifically we report thetime taken inthereached state computation. The weights chosen after some
experimentation in our heuristicwere W\ = 2, W2 = 1, W3 = 1, W4 = 1.

Example
Various Heuristics

[33] [20] Proposed

BlU 305 326 315

Every 6087 5857 5788

2MDLC 176 244 179
BDLC* 140 191 144

BDLC space out 3023 2231
Gigamax 4.8 7.4 4.8

sbc 116 135 118

Table 5: Comparison ofCPU time (in seconds) for different cluster ordering heuristics.

The above results indicate that the proposed approach always outperforms that in [20]. Improvements up to
25% were achieved.

Although in some examples (BIU, BDLC*, 2MDLC, sbc) Touati's heuristic [33] performs marginally better
than ours, onBDLC, Touati's approach ran out ofmemory.

4.4 Don't Cares

Don't care points arise naturally in the context ofBDD based formal verification. For example, consider the
following fixed point computation forfinding the setofreached states:

A0(x) = Init(a?)

4fc+i(y) = Ak(y) U 3x[T(x,y)AAk(x)] (10)

Define the frontier states at iteration i to be At \ X,_i where A^ = {}. Coudert [15] observed that any set of
states between A{ and A{ \ A(-i can be used in place of A{ in Equation 10 while preserving the result for Ai+i.
Thus i4t_i can be used as adon't care set to minimize the BDD size ofthe frontier states. Similarly, the transition
relations can be simplified with respect to the set ofstates whose image isbeing computed. In our framework we
provide theoption of using don'tcares arising in this manner.

Conservativeapproximations to the unreached statesalso yielddon'tcares. Givenasetofclusters {C\, C2,..., Ck)
we can compute an upper bound on the projection ofreachable states inthe product space toa component C,. As
signments to the latches in component C,- not corresponding to the above states can never be attained in any
environment [13].
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For components that are too small, this approach fails togive any improvement since typically all states are
reached in the component; for components that are too large, the fixed point computation fails. We provide a
routine which computes A^ for agiven C\ We found that for medium sized clusters (approx. 15 latches), A^
would be considerably smaller than the full state space ofthe cluster. However, somewhat to our surprise, using the
corresponding unreached states tominimize the transition relation for the component usually led tolarger BDDs;
we are conducting further experiments.

4.5 Removing Redundant Latches

The basic motivation behind this approach is tosimplify BDD's for transition relations and reached state sets by
removing variables.

A latch is redundant if it can bereplaced bya wire without changing thefunctionality of thecircuit. Replacing
a latch by a wire, reduces thenumber of BDD variables by two, andheuristically speacking would alsoreduce the
size of the BDDs containing these variables.

We briefly describe two methods to'find redundant latches and remove them.

Constant Propagation: Sometimes latch inputs are tiedto eitherVDD or GND. In our algorithm we detectsuch
latches and propagate their constant values to their fanouts (hence the term "constant propagation"). An
example is shown in Figure 3.

GND

Li
Vdd

Figure 3: Propagation of Constants through Latches: L\, I3, L4 and L5 are redundant.

A recursive algorithm for removing redundant latches is the following:

To each latch attach a value parameter - "constant" or "variable" and a status parameter - "processed" or
"unprocessed".

1. Mark all latches as "unprocessed".

2. While there exists unprocessed latches, pick an "unprocessed" latch L.

3. Call the functionfind-redundant(L).

4. return

find-redundant(L):

1. If L is processed, then return its value ("constant" or "variable").
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2. Mark L as "processed"

3. If L is tied to VDDor GNDassign value "constant" and return.

4. Assign value "variable" to L.

5. For each variable v in the support of the next state function of the latch,

(a) If v corresponds to a primary input, mark the latch as "variable" and return.
(b) If v represents a wire with constant value"0" or "1", continue.
(c) Findlatch L, forwhich v is thepresent statevariable, andcdHfind-redundant(Li).

6. Modify the nextstatefunction of thelatchbypropagating theconstant valueof fan-ins.

7. If the next state function becomes a constantthenchangethe valueof I to "constant".
8. return value.

At theendof thealgorithm, the next state functions of latches do notcontain present statevariables corre
sponding toredundant latches. These variables arenotconsidered forfurther BDD manipulations.

Latch Removal by Retiming: Retiming rearranges the storage elements ina circuit toreduce itscycle time or to
reduce thenumber of storage elements, without changing its functionality [28]. We use retiming to reduce
thenumber ofstorage elements. Asimple example todemonstrate this isshown inFigure4(a). Note that, the

"P^
4(a)

xa

—>•

Xb

RETIME

Figure4: Removing latchby re-timing.

X,

Xh

4(b)

inputs ofthese 2 latches arefed bythesame combinational logic. Hence the next state values ofthese latches
will always be same. The new circuit with the redundant latch removed ispresented in Figure 4(b).
An algorithm for removing redundant latch byretiming is following:

1. Sort all the latches inincreasing order ofthe support size ofthe corresponding next state functions.
2. For each pair oflatches Xf- and Ljt with the equal support size do the following:

(a) Suppose xit xj denote the corresponding present state variables (outputs oflatches) and F„Fj are
the correspondingnext state functions.

(b) Find the co-factors Fix., Fi£i, Fjx., and Fjx...
(c) IfFix. = Fix. and Fi£i = Fj£ then remove Lj from the circuit and replace itby a"wire" instead

(as illustratedin Figure 4).
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4.5.1 Results and Discussion

The results ofredundant latch removal techniques on various examples are shown inTable 6. We observe up to

examples A B C D E F G

\T\ m \T\ 1*1
gigamax

BDLC*

BlU

45

144

154

9

1

6

0

0

2

0

5

26

9

6

34

2018

24275

30834

402

12208

25276

1389

23441

20088

301

9984

20956

A: Total # of latches

B: # of constant latches removed without constant propagation
C: # of latchesremoved after constantpropagation
D: # of latches removed by re-timing
E: Total # of latches removed

F: Redundant latches not removed

G: Redundant latches removed

\T\,\R\: As in Table2.

Table 6: Effects of redundant latch removal on BDD sizes.

30% reductionin the BDD size of the transitionrelation. Also a reductionof up to 25% was obtained for the BDD
size of the reached set.

In the above analysis the reset values of the latches were ignored, i.e. we did not check for the consistency of
the reset values. Howeverthese optimizationtechniques can be applied even if the reset values of the latches are
taken into account. In the constant propagation approach, the reset value of the latch must match the constant next
state value it takes, for it to be made redundant. In the retiming approach, the reset values of the latches must be
identicalfor either of them to be removed. This analysiscan be done very easily.

A similar approach was proposed by Lin [27] who describes an algorithm to remove a maximal set of state
variables without affecting the uniqueness of reachable states. The problem with this approach is that we need to
pre-computethe set ofreachable states. In manybig designscomputing the reachable states becomes infeasible due
to the size of the BDD; in our technique redundant latches are removed once the next state relations are calculated.
Hence the size of the transition relation and the reached state set is reduced before we need to compute it

However,our approach is orthogonal to Lin's. After minimizing the transition relation using this approach, we
can still apply Lin's method to possibly remove more latchesand get a further reduction in BDD size after computing
the set of reachable states.

Beer et al. [5] mentioned a "constant-elimination" technique to reduce the number of inputs and memory
elements; however no algorithm is proposed to detect such cases.

5 Conclusion and Future Work

We described a data structure and a series of algorithms for efficient formal design verification using BDD's. The
data structure represents a non-deterministicsystem as a deterministicnetlist of gates and latches which allows for
efficientmanipulationof hardwaredesigns. Wearguedthat the core computationin BDD based formal verification
is that of forming the image and pre-imageof a set of statesunder the transitionrelation characterizingthe system.
To make this step efficient, we addressed BDD variable ordering, use of partitioned transition relations, use of
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clustering,use of don't caresand removalof redundant latches. The efficacy of these algorithmswas demonstrated
on a set of seven industrialexamples rangingin size from 28 to 172binary latches.

This is partofa second generation BDD basedtool (HSIS) forboth logic synthesisand formaldesign verification
usingeithermodelcheckingorlanguagecontainment. The inputisanenhanced versionofVerilog whichiscompiled
to a hierarchical netlist [1]. This is determinized and read into a network of latches and gates. The algorithms
described in this paperare integrated into the tool which is aimedat usersof formal design verification as well as
developers interested in creating theirown applications on topof the efficientcorecomputation routines provided.

OtherBDD based techniques which look promising include the"exists-cofactor" of [10], andthe "implicitly
conjoined invariants" of [24]. We plan to experiment with them since it shouldbe relatively easy with the data
structure proposed in this paper to implement these methods. Certain limitationsof BDD based formal design
verification can not be solved by the techniques described in this work. For example, the sizeof the reached set
may be large underany variable ordering. Other data structures like GBDDs, XBDDs, ZBDDs [25] might be
usefulin thesecases. There are also a wideclass of heuristics for coping with state explosion thatare orthogonal
to the approaches we have taken, such as property specific reductions [2], abstractions [21], and conservative
approximations to reached state sets [13]. We believe these techniques can be conveniently developed in our
framework andthen tested and compared onrealistic examples.
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