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Abstract

Applications of Parallel Processors to Technology
Computer-Aided Design Problems

by
Eric R. Tomacruz
Doctor of Philosophy in Engineering
University of California at Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

The feature size shrinkage of integrated circuits has made accurate three dimensional modeling and
simulation of semiconductor processes and devices indispensable. The simulation problem consists of find-
ing the solution to a system of PDEs. This dissertation uses the control volume approach which discretizes
the simulation region into a set of subvolumes each represented by a grid point. This step transforms the
PDE:s into a nonlinear set of equations. Numerical integration methods are then applied to the time depen-
dent derivatives and each equation is linearized through the use of the Newton-Raphson method. Finally,
each system of linear equations is solved using the iterative Conjugate Gradient Squared (CGS) method.
Since the number of equations is proportional to the number of grid points, threc dimensional simulation is
computationally intensive. This dissertation investigates the applicability of parallel processors to carry out
3-D process and device simulations. Since most of the total CPU time is spent on the linear system solution,
a major effort is placed on developing and implementing parallel preconditioned linear solvers. The solution
process efficiency is improved through the use of multigrid methods, irregular grids, and adaptive grids. Sil-
icon pixel detectors and chemically amplified resists are studied in detail. The parallel processors used for
this study are the single instruction multiple data CM-2 and the multiple instruction multiple data CM-5.
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CHAPTER 1

Introduction to Technology
CAD and Parallel
Processors

1.1 Technology Computer Aided Design

1.1.1 Role of Particle Distribution

Technology computer-aided design (TCAD) is essential to the development and fabrication of
advanced integrated circuits. It reduces development time and cost by allowing engineers to explore differ-
ent design and process possibilities without the need for actual implementation. It also allows the design of
hypothetical structures and processes that are not possible with the current technology. TCAD is divided into
two main areas - process and device simulation. Figure 1.1 illustrates the physical characteristics of the
device structure as the end product of process simulators and the electrical characteristics of the device

structure as the output of device simulators. The electrical characteristics may then be used as an input to cir-

cuit simulators.
Technology CAD
Process Device
Simulation Simulation

Profiles
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v/Cv

Parameter Circuit
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Figure 1.1: Technology Computer-Aided Design
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A main goal of IC process and device simulation is to find the spatial distribution of mobile, charged
or neutral particles as a function of time. The particles are electrons and holes for device simulation and are
atoms and molecules for process simulation. The distribution of mobile particles is governed mainly by par-
ticle transport equations and Maxwell’s equations. There are three common methods to solve these partial
differential equations (PDEs) - particle method, control volume, and finite element. The focus of this disser-
tation is in utilizing the control volume approach which divides the simulation space into subvolumes with
aggregate variables that describe the average state of particles in the subvolume.

Control volume approaches in TCAD are usually used to solve the continuity equation.

Z - VerF Ly

where C is the concentration of particles and F is particle flux density. Equation 1.1 states that the time rate
of change of the total amount of a particle contained in a control volume is equal to the inward flux of the
particle across the boundaries of the control volume. The particle flux density may be described by

F=DVC+ 7c‘%DC'E (1.2)
where D, C’, and E are the diffusivity, electrically active particles, and electric field respectively. ¢, k, and T
are the electric charge constant, Boltzmann’s constant, and temperature, respectively.

Process simulation may be grouped into four categories - lithography, etching, thermal processing,
and deposition. The continuity equation is solved in the area of thermal processing specifically in the area of
oxidation, dopant diffusion, and acid diffusion. One difficulty in solving this equation lies in the specifica-
tion of D. For impurity diffusion, D may be concentration-dependent in order to model diffusion mecha-
nisms that are controlled by physical quantities such as vacancies and excess interstitial concentration. For
acid diffusion, the diffusivity may also be concentration-dependent due to interactions between acid and
activated sites. This will be discussed further in Chapter 4.

Device simulation involves the solution of the Boltzmann Transport Equation (BTE) which can be
obtained by generalizing the continuity equation [2]. For control volume methods, there are two simplifica-
tions of the BTE that are commonly solved - drift-diffusion equations and hydrodynamic equations. The
drift-diffusion equations consist of the carrier continuity equations and Poisson’s equation. The hydrody-
namic model extends the drift-diffusion model by generalizing some variables in Equation 1.2 and adding a

third term to represent a contribution from drift energy. The device simulation equations are further dis-

cussed in Chapters 2 and 3.



1.2 Parallel Processors

1.1.2 Current Computationally Expensive Simulation Problems

State of the art TCAD simulations involving the control-volume method are very computationally
expensive. For example, a CMOS latch-up simulation takes 5 hours on a Cray-2 [3]. Nishi and Ueda [4]
report the use of deep-submicron CMOS circuits to investigate the effects of narrower spacings to propaga-
tion delay and also to get an optimal process conditions with respect to gate oxide thickness and threshold
voltage. CPU time for the simulation of one sample on a 30 MIPS machine is 2 hours for process simulation
and 2.5 hours for device simulation. Leakage currents due to parasitic MOS effects were studied by Noell et
al. [5]. Using a 48,190 mesh size, a 3-D simulation to generate a single current-voltage curve took 8 hours on
a Multiflow Trace 14/300 [30]. Trench-bounded MOSFETSs found in DRAM cells having a deep trench stor-
age capacitor were simulated by Knepper et al. [6]. Mesh structures with up to 100,000 nodes may be
required to simulate accurately submicron features of the structure. Run times on the order of 15-30 minutes
per bias point are required by an IBM RS/6000.

Although traditional vector machines may provide the computational power needed for TCAD simu-
lations, parallel machines may provide a good alternative. The effective use of parallel machines for TCAD
involves a good understanding of parallel machines, parallel programming methodologies, and the target
TCAD application. The remaining sections of this chapter provides an overview of parallel processors and

applications that have been developed for these machines.

1.2 Parallel Processors

1.2.1 Evolution

Due to progress in microelectronics, high-density packaging, advanced processors, memory systems,
and other hardware technology, parallel processing architectures with hundreds or thousands of processing
elements are now possible. The evolution can be traced back four decades to the introduction of the first
sequential architecture. This architecture gradually improved through the use of lookahead functions which
allowed the overlapping of instruction fetch, decode, and execution. The lookahead function eventually
matured to the more general pipelined architecture. Then came the advent of vector processing which per-
formed arithmetic or logical operations on scalar data items. The independent computations allow very deep
pipelines and minimize instruction fetch. Also, vector processing allowed faster memory access and control
hazards from branches are made nonexistent.

Parallel machines have been around since the 1960 (Burroughs D825 - 4 processors). Massively Par-
allel Processor (MPP) systems started in 1968 with the release of the Illiac IV computer, which had 64 pro-
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cessing elements (PEs) under one controller. However, in the early stages the machines did not have
adequate technology for the architectural concepts involved. To attract users, a parallel processor must offer
substantially better performance over computers existing at the time. A new technology must not only catch,
but also surpass an entrenched technology in order to replace it. This is very difficult while the entrenched
technology is still making good progress.

Today, the progress of the high end von Neumann machine has slowed down. In terms of clock rate, as
shown by Figure 1.4, the current fastest von Neumann machine is only a few times faster than the current
state of the art microprocessor. It is not clear if technological barriers for high end von Neumann machines
are more difficult compared to microprocessor development technological challenges. However, there is def-
initely more market demand for microprocessor-based computing platforms. More financial resources are
available for microprocessor development due to economies of scale. Hence, designers of high end
machines are attempting to remove traditional barriers and gain power through scalable use of hundreds or

thousands of off-the-shelf processors.
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Figure 1.2: Clock Rates for Supercomputers and Workstations
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1.2.2 Hardware Model

122.1 Flynn's Classification and Beyond

Flynn [7] introduced a classification of computers in 1972. He divided architectures into four catego-
ries - SISD, SIMD, MIMD, and MISD. S, I, M, and D denote single, instruction, multiple, and data respec-
tively. Thus, SIMD means single instructions multiple data. SISD such as personal computers and most
workstations are the most common. Vector processors and some parallel processors such as the CM-2 and
the MP-1 fall under SIMD. SIMD architectures only require one program. The main distinction between
parallel and vector SIMD is that more parallelism is available with parallel SIMD - tens vs. hundreds or
thousands of simultaneous operations. MIMD architectures can be viewed as SISD architectures with a spe-
cial communication network between processors. This architecture may have many programs and hardware
construction can be simplified using off-the-shelf uniprocessors. Also, with this architecture, communication
can be merged with computations. MISD machines are not common.

A different program for each MIMD processor is difficult to implement. Hence, a new term “SPMD”
which stands for single program multiple data has been introduced. This classification denotes that each pro-
cessor works on its own data and each processor may be in different parts of the program at one specific
time. There are two variations of SPMD. One variation simplifies programming with coordinated and sepa-
rate communication. The other has merged communication which allows the overlapping of computation
and communication. SPMD with separated computation and communication implies programming that is as
simple as SIMD since communication is always synchronized. SPMD with merged communication require
less programming effort than general MIMD.

The naming convention for dedicated parallel computing platforms has evolved over the past three
decades. Originally, they were referred to as parallel computers or parallel processors. With the introduction
of the CM-2, the term massively parallel processors (MPP) became the standard naming convention. Today,
if the number of processors is significantly lower than SIMD architectures, the machines are just referred to

as parallel processors (PP) or sometimes multiprocessors (MP).

122.2 Memory

Parallel machines can also be classified according to the way they access memory - shared memory
and distributed memory. The Cray Y-MP is an example of machine with shared memory. Each of its proces-
sors may access the same memory location. For larger parallelism, distributed memory which means each

processor has its own local memory is common. There are several advantages to using distributed memory.
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First, distributed memory machines are easy to build. Second, many applications have locality. Third, using
nearby memory is five to fifty times faster than a centralized memory. And fourth, current PP hardware and
software are local memory oriented. Hence, distributed memory is a key to portable code. Distributed mem-
ory has a disadvantage since compilers need to know how to use nearby memory. This may be difficult with
traditional sequential programs. Hence, programmers need to leam to use nearby memory for speed.
Another way to classify parallel machines is through their address space - local and global. Intuitively,
distributed machines should have local address space. Some distributed memory machines such as the Cray
T3D and the KSR-1 have special hardware that connects local memories directly. This allows a global
address space in which a processor can access another processors memory without message passing routines

between processors. With special compilers, machines with local memory can also be programmed with a
global address space.

12.2.3 Interconnection Network

The interconnection between processors is another aspect that differentiates one parallel machine
from another. There are several criteria for a good interconnection network. The relative importance of each
criteria is determined by the target application and the efficiency of the tools for algorithm implementation.

1. Functionality - the machine’s ability to support efficient data routing, interrupt
handling, synchronization, and combine functions.

2. Network Latency - the minimum time delay to transfer data through the net-
work.

3. Diameter - the shortest path between any two nodes.

4. Bisection Bandwidth - the minimum number of cut edges for a given a network
cut equally into two.

5. Hardware Complexity - translates to implementation cost.

6. Scalability - the expandability of the network.

Figure 1.3 illustrates four example communication networks currently used today. Table 1.1 illustrates
the characteristics of these networks based on the criteria described earlier. Several observations can be
made in interpreting this table.

1. Most networks have nodes with small degree.

2. Hypercube node degree increases with logoN which is bad with large N
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3. High degree of concurrent communication may be more important than the

diameter,

4. The number of links and node degree affect network cost.

5. Bisection width can be enhanced by a wider channel width.
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Figure 1.3: Interconnection Network Examples
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Table 1.1: Network Characteristics

2-D Mesh 4 2(r-1) 2N-2r r r=sqrt(N) Paragon
Hypercube n n nN/2 N2 n =log,N (dim) iPSC/2,
nCUBE, CM-2
Fat Tree 2 2h aN(1-2™) | 20 h=1logyN | 64 Node CM-5
3-D Torus 6 12 3N 2r* r=N T3D

1.2.2.4 Current Trends and Target Architectures

A totally coherent taxonomy of parallel processors is difficult to construct. Each aspect of architec-
tural consideration influences each other to some degree. Architectural research and development goals
include packaging efficiency, scalability, adaptability to current technology, and backward compatibility.
Current parallel architectures appear to be converging to a generic parallel architecture. The generic parallel
architecture uses off-the-shelf processing technology, uses distributed memory, and has a simplified inter-
connection network. By using off-the-shelf processing technology, development cost is reduced. Survival of
interconnection network in future systems depends on packaging efficiency and scalability. Hence, parallel
processor companies such as Intel and Thinking Machines Corporation have switched from the complicated
hypercube to much simpler interconnection networks. Cray and I.B.M. which only recently entered the par-
allel processing market also have introduced machines with simple communication networks.

The Connection Machine 2 (CM-2) and the Connection Machine 5 (CM-5) MPPs are used to imple-
ment algorithms presented in this dissertation. The CM-2 is representative of the SIMD technology while
the CM-5 has a MIMD architecture.

The Connection Machine 2 is a massively parallel computer with up to 65536 processors with a con-
ventional computer as a front end. Each processor is bit serial which have a clock rate between 7 to 10 MHz
and can have 64k to 1024k bits of local memory. The processors may be equipped with floating point accel-
erators which are shared by a cluster of 32 processors. The CM-2 is a Single Instruction Multiple Data
(SIMD) architecture. The nodes exchange data among themselves through the router, NEWS grids, or a
scanning mechanism. Each processor chip contains 16 processors and a router. The router nodes are wired

together to form a Boolean n-cube. The NEWS grid is based on the fact that each processor has a north, east,
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west, and south fi€ighbor in the various grid configurations. The CM-2 also has special hardware for fast
data combining or spreading throughout the entire array [16].

The Connection Machine 5 is a massively parallel computer in which data parallelism can be imple-
mented in either a SIMD mode, or synchronized Multiple Instruction Multiple Data (MIMD) mode. Each
node of the CM-5 is a SPARC microprocessor with up to four vector units and 32 Mbytes of memory [17].
The Sparc processor has a clock of 33 MHz and a 64 Kbyte cache. The processors are interconnected using
three networks: data network, control network, and diagnostic network. The data network is configured as a
4-ary fat tree. Each processor has two connections to the data network which correspond to a bandwidth of
40 Mbytes/s in and out of each leaf node. An aggregate bandwidth of 160 Mbytes/s out of a subtree is
achieved with 16 leaf nodes since only two parent connections are needed. For four parent connections, a

bandwidth of 10 Gbytes/s is obtained. The bandwidth continues to scale linearly up to 16,384 nodes [16].

1.2.3 Programming Model

There are three ways for a user to program a parallel processor. The first is through the use of parallel-
izing compilers that automatically extract parallelism from programs written in existing serial languages.
The programmer may aid this process by specifying data partitioning and assisting code optimization. Sec-
ond is through the use of a serial language augmented with a new constructs that allow the programmer to
specify and properly coordinate the execution of parallel tasks. Finally, the programmer could write in an
entirely new language designed to make parallelism easier to detect and extract. This can be done by elimi-
nating side effects and other features that make it difficult to extract parallelism from programs written in
serial languages. Implicit parallelism involves functional programming, dataflow, Prolog, and other “side-
effect-free” languages.

Significant research is also being done in the area of parallel tools and languages. Ease of program-
ming and debugging in obtaining high performance portable code is the main goal. Pancake [33] surveyed
Supercomputing Conference Proceedings and observed that current programming methodology focuses on
the data parallel and message-passing approaches which are used to implement algorithms in this disserta-
tion. These approaches are based on programming languages extended to handle the execution of a parallel
task.

In the data parallel computing model, each processor has some memory associated with it. The pro-
cessors may act under the direction of a serial computer called the front end. Each processor stores the infor-

mation for one data point in its local memory; all processors can then perform the same operation on all the
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data points at the same time. A programmer can specify that only a particular subset of the processors is to
carry out an operation. Data parallel algorithms map well to SIMD architectures such as the CM-2.

In the message-passing environment, each processing node runs an independent copy of single pro-
gram, and manages its own computations and data layout. Communication between nodes is handled by
calls to communication library routines. These routines allows a user to send messages from one processing
node to another in a number of different ways. It also provides function for point-to-point messaging and
global operation. It may also provide low-level tools for “active message” operations which allow the over-
lapping of computation and communication. One of the most useful features of message-passing programs is
that they allow the processing nodes to synchronize as frequently or infrequently as required for a given
application. Message-passing algorithms map well to MIMD architectures such as the CM-5.

PVM (Parallel Virtual Machine) is a software package for using a heterogenous network of computers
as a single computational resource [34]. Due to current large latencies in representative workstations and
LANS, PVM is designed to provide a message-passing environment for applications with relatively loosely
coupled, large grain parallelism. However, for homogenous network of processors such as the CM-5, it also
provides a good message-passing environment for highly coupled parallel applications [35].

1.2.4 Parallel Processing Performance

12.4.1 Peak Performance

Computer manufacturers usually state peak performance in terms of MIPS (millions of instructions
per second) or Mflops (millions of floating point operations per second). Figure 1.4 illustrates the peak per-
formances of vector machines and parallel machines in terms of Mflops [30). The trend shows an order of
magnitude increase in performance for parallel machines compared to vector machines. Although vector
supercomputers like NEC’s SX-3 (4 processors) and Hitachi’s S-3800 (4 processors) whose claimed peak of
20 gigaflops and 32 gigaflops respectively may offer the computational power needed, massively parallel
processors (MPPs) that offer a peak of over 100 gigaflops provide an attractive alternative. The gap between
MPP and vector machine peak performances is expected to widen. Hence, as shown by Table 1.2, manufac-
turers of traditional vector machines are currently shifting their product line to parallel vector machines.
Supercomputers in the future will unlikely have less than 16 processors. As a result, the computational

requirement of current and future sophisticated semiconductor device simulation problems will be satisfied
by parallel machines.
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Table 1.2: Current Parallel Vector Machines

Patl?du:(:lh‘i,rle:wr Int;e::l:tfon Pr?c%scs,grs Peak GFlops
NEC SX4 199 | 16512 | 1004 |
Cray-4 1995 16-128 256
Hitachi SR2001 1994 8128 7

1.24.2 Sustained Performance

As mentioned earlier, computer manufacturers usually state peak performance in terms of MIPS or
Mflops. These performance metrics are by no means conclusive. The real performance which can also be
called sustained performance is application-driven and program dependent. Dongarra [38] has shown the
effectiveness of parallel processors for the Linpack benchmarks. This benchmark may identify key proper-
ties such as floating point performance but is not an accurate predictor of general purpose performance. The
infancy of compiler technology for parallel machine is another issue to consider. Sethian [39] reports a fac-
tor of five speed-up by just recompiling applications a year later.

To make statements on the isefulness of parallel machines for real applications such as TCAD, it is
necessary to actually design and implement the algorithms. It should be pointed out the best algorithms for

sequential machines are not necessarily the best algorithms for parallel computers. The best measure of per-

11
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formance is the wall clock time which is the time it takes a machine to solve the problem. For parallel
machines, the algorithm with the best computational efficiency may not necessarily give the algorithm with

the least wall-clock time.

1.2.5 Clusters of Workstations Versus Multiprocessors

Due to its general use, workstation clusters are widely available and can be viewed as MPPs with a
slower network. Their cost is lower because of economies of scale leveraged across the entire workstation
user community and because of their dual use - normal workstation and parallel processor. Also, as pictured
in Table 1.3 [40], MPPs are usually more than a year behind in terms of utilizing the state of the art micro-
processor. Since microprocessors improve 50% per year in terms of speed, a one year lag would result in a
1.5 factor degradation of an MPP node compared to a workstation. Hence, workstation clusters are very
attractive for parallel processing. However, the applicability of clusters of workstations will be determined
by global system software, communication network, and the target application.

A global system software treats a collection of processors, memory, and disks as a single machine. To
reduce development time, the use of off-the-shelf technology such as existing operating systems is a good
approach. One can just add communications protocol sofiware and a global system layer such as PVM and
one can already implement parallel software. However, as will be shown later, existing software layers

degrade the performance of communication networks.

Table 1.3: MPP Technological Delay

MPP Processor Year Workstation

T3D 150 MHz Alpha| 93/94 9293
Paragon 50 MHz i860 92/93 91

CM-5 32 MHz §S-2 91/92 89/90

12
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Table 1.4: Data Rates and Latency for Some MPPs

MPP Year Introduced ('::;fts:;"’) Latency (ms)
Tntel IPSC 1985 0 17
Intel Paragon 1991 1600 0.08
TMC CM-5 1992 320 0.01
Cray T3D 1994 2400 7

For workstation clusters to execute efficiently fine grain parallel algorithms, it must address two key

communication issues. First, its communication network should have a high data rate transfer. Figure 1.5
shows peak data rates for local area networks (LAN) [31] and Table 1.4 illustrates sample data rates for

MPPs. LAN data rates are comparable to MPP data rates. Second, LAN networks should have low-latency.

A physical limit for latency is the speed of light [32]. Information travelling at the speed of light takes 70

microseconds to go halfway around the globe. In terms of hardware considerations, no published theoretical

limits are available since assumptions have to be made about the network topology, hardware implementa-

tion, and the manner in which messages are sent.

Tables 1.5 and 1.6 present the actual communication and global operation speeds of workstation clus-

ters using PVM [35]. Two important points can be observed. First, the latency is in the order of milliseconds

13
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which is two orders of magnitude slower compared to MPPs. Second, actual bandwidth could be driven at
near theoretical peak capacity for large messages.

The slow performance presented in Table 1.5 for Ethernet and FDDI networks is due assumptions
made in traditional LAN software. These include invoking the operating system on every message, driver
support for complex gather/scatter operations, and protocols which model communication only in point-to-
point terms rather than in an all-to-all framework. The costs of all operations of the communication software
including context switching buffer and timer management, scheduling, and data copying must be reduced to
improve performance.

Latency can be hidden by using active messages [37] such that while one process is waiting for a
response, another process which does not depend upon this response, may proceed with its processing. Mar-
tin [36] and von Eicken et al. [37] present active message implementations on workstation clusters with spe-

cial communication hardware.

Table 1.5: Data Transfer Times (milliseconds)

Network Message Length
Type 0 128 1K 16K 64K M
—_— |
Ethernet 12 1.5 32 ] 82.3 1211.2
FDDI 12 1.5 2.5 16.1 60.3 665.7

Martin [36] presents the HP active message layer (HPAM) which is a software layer that delivers

close 10 the hardware performance to user level programs. The difference between HPAM and typical LAN

Table 1.6: Global Operation Times (milllsoconds)

Operation No. of Networked Processors
Type 2 8 32
=_—__m
Barrier 22 28.1 1072
Broadcast 32 159 65.9
Opt. Beast 12 11.5 35.1

communication software are the following.

1. Direct user access to the hardware

2. An all-to-all, request-reply model of communication

14
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3. C;iefnﬂ management of the network state to keep the overhead low.

Martin [36] describes active message measurements on a network of 4 HP 9000/735 workstations
with Medusa FDDI interface cards. HPAM achieves a round trip time for a 20 byte payload of 29 usec and a
maximum bandwidth of 12 MB/s. The main limitation to scaling, independent of the network, is the buffer
requirements. It requires 4*D*P buffers per node where D and P are the network depth (number of outstand-
ing packets to get full bandwidth) and number of processors respectively. For a shallow network, D =2 or 4,
it would scale well to 64 processors. However, it would not scale to a network with 1000 processors.

von Eicken et al. [37] evaluates a prototype implementation of the low-latency active messages com-
munication mdﬁel on a Sun workstation cluster interconnected by Fore Systems SBA-100 ATM interfaces
using a 140 Mb/s TAXI fiber. Measurements show application-to-application latencies of about 29 microsec-
onds for small messages which is comparable to the CM-5. The speed comes from a careful integration of all
layers, from the language level to the kernel traps. The key issues are avoiding copies by having the applica-
tion place the data where the kernel picks it up to move it into the device and by passing only easy to check
information. Again, the cost is the large pre-allocated and pinned buffers which does not scale well to a large
number of processors.

Future networks will definitely improve but it is not clear if Martin [36], von Eicken et al. [37], or
other network implementations will be used. As network latencies improve, more multiprocessor applica-
tions will be ported to workstation clusters. Section 3.5.1 discusses the issues and possible solutions for a

workstation cluster implementation of a TCAD application.

1.3 Applications of Parallel Processors
1.3.1 General Applications

Numerical processing and symbolic manipulation are two broad categories of applications that may be
done in parallel. Scientific and engineering applications offer some very large numeric computation prob-
lems which includes particle calculations (plasmas), fluid dynamics (weather, aircraft design), and com-
puter-aided design. Symbolic processing applications include database systems and applied artificial
intelligence. Figure 1.6 illustrates the grand challenges identified in the U.S. High-Performance Computing
and Communication (HPCC) program. This diagram shows the levels of processing speed and memory size
required to do both numerical and symbolic manipulations. A significant number of these applications have
been successfully solved in parallel machines. A brief survey of these problems with some similarity to
TCAD problems will be discussed.
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Figure 1.6: Grand Challenge Computing Requirements (U.S. High Performance Computing
and Communication Program, 1992)

Considerable effort has been expended in weather simulations due to their benefits to the economy
and the quality of life. Numerical weather predictions are defined as follows: Given the current state of the
atmosphere (i.e., the values of certain specified meteorological quantities), calculate the state at various time
in the future. The state of the atmosphere is defined by eight quantities - two horizontal components of wind
velocity, temperature, humidity, shifted surface pressure, geopotential, vertical wind velocity, and pressure.
The model consists of the relevant laws of nature expressed as partial differential equations - horizontal
momentum equations, continuity equation, equation of state, first law of thermodynamics, humidity equa-
tion, and the hydrostatic equation. Explicit time integration methods are used to solve the equations that are
discretized using rectangular grids. Parallel weather code implementations have been described by Kom et
al. [41] and Dennis et al. [42). .

Of great importance to the petroleum industry is the acquisition of undistorted subsurface image from
seismic echo data using seismic migration. By starting with a rough velocity profile, the seismologist uses a

cut-and-try iterative procedure to generate and output image that is consistent with measurements. A major
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difficulty in seismic migration as compared to other image processing techniques is that propagation veloc-
ity of the seismic signals can vary by a factor of ten from one part of the seismic image to the other. Typical
solution methods use finite difference techniques to solve the wave equation and to extrapolate the signals
recorded at the surface downward into the desired region; that is, it solves the wave equation to find out what
subsurface features gave rise to the echo pattern recorded at the surface. Fourier transforms are used to solve
the wave equation by transforming the problem from the time domain to the frequency domain. This causes
the frequency to be the outer loop variable which may be evaluated in any order. Hence, the iterations in the
outer loop becomes a pool of tasks that can be performed in parallel [43] [44].

The time evolution of a system of n bodies, each interacting with all other bodies by gravitational
attraction or some other symmetrical force, is another computationally intensive problem. Typical solution
methods [45] for message-passing programs given n bodies can be described as follows: Let each body be
mapped to a unique processor. The innermost loop computes the gravitational force between the host body
and (n-1)/2 visiting guest bodies. The other code in the inner loop shuttles the guest bodies in and out. The
next outer loop sends the host body’s clone out to visit other processes, combines its baggage with that of the
half-updates clone that stayed at home. With this method, each processor only needs to send and receive a
total of four messages. For problems with more bodies than processors, the same communication pattern can
be used. However, communication and load balancing issues need to be addressed.

Quantum chromodynamics (QCD) is a theory about particles that make up atomic nuclei. QCD pro-
vides a formula for the probability that any specified configuration of quarks and field at one instant will
arrive at another specified configuration at some later instant. The space-time continuum is approximated by
an N x N x N x N four dimensional rectangular lattice, and the problem is reduced to the evaluation of an
integral of over 56 x N* variables [46]. Deterministic methods of numerical integration such as the trapezoi-
dal rule would require astronomical amounts of time even on small lattice structures. Hence, integration
methods based on Monte Carlo statistical sampling are used. Butler et al. [47] presents a Monte Carlo proce-
dure similar to a parallel Monte Carlo semiconductor device simulator which is described in Section 1.3.2.

Catleut [48] presents the use of gigabit networks to treat multiple computing resources as single sys-
tem rather than a network of computers. The applications are organized into three general types - computa-
tional science, data navigation, and collaborative environments. In computational science’, successful
applications such as a coupled atmosphere-ocean general circulation model have been implemented on

supercomputers that are linked together. The use of scientific workstations and the Parallel Virtual Machine
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(PVM) have been attempted on tightly coupled algorithms. The efficiency of the algorithms depends mainly
- on the amount of computation between communication calls.

Majumdar and Martin [49] present a parallel preconditioned conjugate gradient algorithm applied to a
neutron diffusion problem. The paper describes an implementation on a distributed workstation (IBM
RS6000) environment using the PVM parallelization software. They claim a very good result of 70% effi-
ciency for a one-dimensional fixed-source neutron diffusion problem on a cluster of 7 workstations. How-
- ever, there are several points not discussed about the implementation. First, a single processor takes 4927s to
solve a 701 node problem. This is an order of magnitude longer compared to the solution of device matrices.
Second, they did not explain the implications of doing 2-D and 3-D simulations. Such simulations may
require a lot more communication calls. Third, there is a linear drop in efficiency from one processor to
seven processors. If the trend continues, efficiency for large clusters of workstations would be very poor.

Some algorithmic aspects developed for TCAD may be useful to other fields and vice versa. Generic
routines such as parallel PDE solvers and Monte Carlo integrators are useful in a lot of fields. In implement-
ing these algorithms though, application specific issues need to be addressed such as preconditioning for the

linear system solution and scattering computation for electron flight for semiconductor device simulation.

1.3.2 TCAD Applications

Since peak performance can only be translated into sustained perfomanc;-. by software, it is the goal
of this dissertation to design and implement process and device simulation algorithms suitable for MPPs,
MPP algorithms should possess a high degree of parallelism and low communication for good performance.
The performance degradation of the parallel algorithm compared to the optimal sequential algorithm should
also be compensated by the added computational power.

In the area of the Monte Carlo device simulation, Sugino et al. [26) presents a device simulator which
partitions the particles to each processor such that each node in has the same number of particles and the ini-
tial spatial distribution of the particle inside the device must be the same for each node. Hiroki et al. [27)
investigates load balancing further by sorting the particles according to the three events of free-flight,
boundary, and scattering. The particles at each event are then evenly distributed among the processors. This
improved the boundary and scattering routine load balance but has little impact on reducing the total compu-
tation time. Ranawake et al. [20] describes a parallel Poisson solver and Monte Carlo simulator. Both shared
memory and distributed memory algorithms were presented. For the distributed memory, the spatial domain

of the device was mapped onto separate processors and dynamic load balancing was implemented to main-
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tain approximately the same number of particles and grid points per processor. Sheng et al. [21] studies the
applicability of SIMD architectures for Monte Carlo simulation. The problem is decoupled into two disjoint
domains - particle-based and spatially-based. Since the CM-2 supports multiple communication configura-
tions, the simulator can dynamically switch between domains and at the same time minimize interprocessor
communications. SIMD Monte Carlo performances can be improved through more efficient flight time gen-
eration algorithms which take into account the underlying architecture [22].

Parallel three-dimensional rectangular grid drift-diffusion device simulation algorithms have been
designed and implemented by Wu et al. [23], Webber et al. [8), and Tomacruz et al. [9]. Wu et al. [23] pre-
sents the device simulator STRIDE which uses incomplete LU decomposition conjugate gradient squared
algorithm to solve asymmetric matrices. Cubic partitioning and an incomplete Nested Dissection ordering
described in Lucas et al. [28] are used to implement an efficient preconditioner on a MIMD machine. The
contribution of this dissertation begins with the development of the a new ordering scheme called the parti-
tioned natural ordering [8] which is observed to be suitable for SIMD architectures. The partitioned natural
ordering scheme is then extended for MIMD architectures [9]. Multigrid methods useful for parallel
machines are also shown. The ideas and results presented in Webber et al. [8] and Tomacruz et al. [9] are
described in chapter 2.

Chapter 3 then investigates the feasibility of irregular grid device simulation on MIMD machines.
Parallel algorithms that obtain more than 50% efficiency compared to best sequential algorithms are
described. This is achieved through the use of geometrical grid node partitioning and ILU with fill-ins pre-
conditioning routines. This work has been published in Sanghavi et al. [13] and Tomacruz et al. [14].

In the area of semiconductor process simulation, Guerrieri et al. [19] presents a massively parallel
algorithm for 2-D scattering in optical lithography. The method is equivalent to the time-domain finite-dif-
ference method used in electromagnetic scattering simulations. Due to the regular structure of the problem,
each grid point is mapped to a CM-2 processor. Calculating the electric and magnetic field requires nearest
neighbor communication. Since the evaluation of boundary conditions require more variables than bulk
equations, the additional “dummy” processors provide a local scratch memory. A careful allocation of the
variables reduces the sequentiality introduced by the boundary conditions since many instructions used to
update the fields in the bulk of the domain are also used to compute the boundary condition. A typical simu-
lation domain consists of a 1024 x 512 mesh structure and steady-state is reached after about 30-50 wave
cycles which takes about 5 minutes on an 8k CM-2 machine [24]. A 3-D version implemented on the CM-5
has been developed by Wong and Neureuther [25].
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Chapter 4 presents parallel algorithms for the post-exposure bake process simulation of chemically
amplified resist systems. The simulations involve the accurate modeling of reaction kinetics and diffusion of
acid. For the robustness of the solver, implicit time integration schemes are used. This creates large linear
systems of equations that are solved efficiently with a parallel machine. 1-D and 2-D case studies are also
presented to verify the proposed diffusion models. This work has been published in Tomacruz et al. [10],
Zuniga et al. [11], and Newmark et al. [12].

Chapter 5 summarizes the parallel algorithm and application contributions. A framework for the par-
allel solution of PDEs is constructed. Generic algorithms which may be useful in other fields are highlighted

and areas of future work are presented.
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CHAPTER 2

Rectangular Grid Drift-
Diffusion Device Simulation

2.1 Overview

Numerical modeling of semiconductor devices to predict electrical behavior is important for efficient
design of new devices. CADDETH (17], MINIMOS [18], and SITAR [19] are sequential 3-D rectangular
grid device simulators that have been successfully used for the past decade. However, even with current vec-
tor supercomputers, these device simulators still require significant CPU times for the generation of accurate
simulation results. In this chapter, parallel algorithms for rectangular grid drift-diffusion simulation are pre-
sented. Ordering schemes for preconditioning are developed and tested for parallel execution efficiency and
for convergence robustness. Multigrid methods are also investigated to improve the initial guess for the

Newton-Raphson solver. Finally, the parallel algorithms are used to simulate silicon pixel detectors.

2.2 Problem Definition
2.2.1 Device Equations

Shockley’s paper in 1949 [1] first described the drift-diffusion equations which model the flow of
electrons and holes in a semiconductor material. The steady-state drift-diffusion (DD) model has been used

in this chapter and is based on the Poisson’s equation and the continuity equations for electrons and holes
[13).

Ve (eVvy) = —q(p—n+Ny;—N,) 2.1
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. where the dependent variables to be determined are the electrostatic potential, v, and the electron and hole
carrier concentrations, n and p. Here,u_, H,» D,, D, are respectively, the mobilities and diffusion coeffi-
cients for electrons and holes; €, g, N, and N, are the permittivity, electronic charge, impurity donor den-
sity, and impurity acceptor density respectively; R, and R, are recombination-generation rates which

include the Auger, Shockley-Read-Hall, and impact ionization terms.
2.2.2 Device Structures

2.2.2.1 Need for 3-D Structures

The general 3-D drift-diffusion model was presented by Shockley [2] and Van RoosBroek’s [3] in
1950. However, the development of 3-D simulators did not happen until the early 1980s due to the computa-
tional and applications requirement. The 1980s signalled the arrival of supercomputing platforms that pro-
vided the necessary computational power. At this same time, the small semiconductor device features
necessitated 3-D simulations. When current flow is no longer predominant to a plane, 2-D mesh structures
are no longer sufficient. For example, as device dimensions shrink for a MOSFET, edge effects which are
characterized by nonlinear current trajectories become important. Another class of 3-D effects is device
cross talk such as parasitic MOS effects that degrade device performance under high bias conditions. Table
2.1 illustrates several examples along with the CPU times needed for the simulations.

Table 2.1: Examples of 3-D Device Simulation Applications

Dev;;:g:;:lel::ical Mesh Size Machine CPU Time Reference & Comments
[T EEPROM | 35000 | Sund/260 [570 sfbias pownt | Linton ot al. [14]; poisson only |
CMOS Latch-up 56,562 Cray-2 5h Heiser et al. [4)
Parasitic MOS 48,190 Multiflow 8h Noell et al. [6]
DRAM 25,000 IBMRS/6000 | 15-30 m/b.p. Knepper et al. [15]

2.2.2.2 Sample Structures

Several typical device structures, MOSFETs, and BITs, are used to test the simulator, The MOSFET
shown in Figure 2.1 is an n-channel device with a W/L ¢ of 1jum/1jum with an oxide thickness of 28nm. The
source and drain regions have an impurity concentration of 2 x 10?%m > and a junction depth of 0.3wn. The
substrate impurity is 2.5 x 10'%cm™3. The bipolar transistor shown in Figure 2.1 is a standard npn device,

with a base width of 0.1 pm. The emitter impurity concentration is 2 x 1020 ¢m™3, the collector is 1020¢m3,
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the active base region is 1.4 x 10'8cm™, the base contact region is 3 x 10%cm 3, the buried N+ region is 3 x

lO'gcm'3, and the substrate is 10!%m™.

|<- 1.6um->|

2.0um .0 um

n:2e20 cm

p:2.5e16 cm™ /j% n+:3el9 2.0u}n:
gt 4 4
|< 24 um >| I‘—— 3.4um—>|

Figure 2.1: MOSFET and BJT Structures

2.3 Solution Method

2.3.1 3-D Grid Generation

N RN

AN
WY

£

o B E S

Figure 2.2: Rectangular Grid

Rectangular grids or tensor-product grids which are illustrated in Figure 2.2 are easy to specify but

can be wasteful since grid lines may need to be extended to quasi-neutral regions. Device simulators that
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used this device structures include CADDETH [17], MINIMOS [18], SITAR [19], and STRIDE [9]. The
- parallel implementation of rectangular grids is the main focus of this chapter.

Prismatic grids can be generated by replicating a triangular grid in the third dimension. This results in
a rectangular grid in the third dimension which again can be extremely wasteful. FIELDAY-3D [20],
SIERRA [21], and HFIELDS [22] use prismatic grids since these simulators were originally 2-D triangular
grid simulators which were extended to 3-D using prismatic grids.

Curvilinear grids, which are illustrated in Figure 2.19, retain the same connectivity as rectangular
grids but allow a more accurate modeling of boundaries due to the flexibility of the location of each grid
point. However, it does not allow the local refinement of elements which again could be wasteful. Matsuo et
al. [54] presents a device simulator using this scheme and it is further evaluated in Section 2.7.

Grid generation using the modified octree approach which is shown in Figure 3.1 can be described as
having a cuboid, whose octants are repeatedly refined at their edge midpoints until the boundary and internal
quantities are sufficiently approximated. Non-rectangular elements are used to pass from dense to coarse
- mesh regions. Coughran et al. [23] claims an average factor of three improvement in grid points from rectan-
gular to irregular grids. Also, the non-rectangular elements can be used to approximate arbitrary device sur-
faces. This is used by the Second [4], Simul [5) and the device simulator presented in Chapter 3.

2.3.2 Dirift-Diffusion Solution Method

The DD equations have been discretized on a three-dimensional tensor-product grid using finite dif-
ference (FD) [24] and the Scharfetter-Gummel method [25] described by Section 4.3 for the approximation
of carrier densities. FD is based on replacing differential operators by difference operators. The unmodified
FD only uses linear approximation which is not useful for the exponential variation of the.carrier density in
the continuity equations. The FD method generalizes to the box method (BM) which is also known as the
control volume or finite volume method for irregular grids. The nonlinear equations are solved using a fully-
coupled Newton method, and the asymmetric linear system of equations are solved using the Conjugate Gra-
dient Squared (CGS) method [26] (described in Section 2.4). The general computational steps can be sum-
- marized by Algorithm 2.1. A major portion of the CPU time is spent in solving linear systems of equations.

Hence, the main focus of this chapter is the efficient implementation of a parallel linear solver.
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Algorithm 2.1: Steady-State Drift-Diffusion Computational Steps

problem read-in and setup
Newton-Raphson loop
evaluate the equations for the Jacobian and
right-hand side of the Newton iteration
solve the associated linear system

post-processing of results

2.3.3 Partitioning for Parallelization

There are numerous possibilities for distributing the workload of a device simulator to different pro-
cessors - grid, time, voltage, and design. Each scheme has its own advantages in terms of ease of implemen-
tation and performance improvements. These advantages depend on the algorithms being implemented and
also the type of parallel architecture being used. Partitioning in terms of grid points is used for all the parallel
algorithms presented in this dissertation. This involves partitioning the mesh structure into subdomains and
mapping each subdomain to a processor. Partitioning in terms of grid points offer the most general form of

parallelism since it can also be used to do voltage sweep, transient, and design space simulations.

2.3.3.1 Grid Point Partitioning

To map the problem onto a CM-2, each grid point is assigned to a processor. Thus each processor
stores the local values of y, n, and p, and the three rows of the matrix of the corresponding grid node. Using
this allocation, the grid fits naturally on the organization of the machine and, at the same time, variables hav-
ing a strong coupling due to the spatial adjacency are tightly clustered. The resulting matrix is a banded
matrix, whose seven diagonals are 3x3 matrices representing the interaction among the local variables.

The CM-5 mesh structure is divided into rectangular blocks each called a subdomain. Each subdo-
main is mapped to a processor and the dimensions of the subdomain are powers of 2. The dimensions in
each axis are equal or almost equal in order to form cubic subdomains. This minimizes the total surface area

which in turn minimizes the data length of communications between processors. A simple row ordering is
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used to map the subdomains to the CM-5 processors since the fat tree connections allow minimal penalty for

communications between arbitrary processors [30].

2.3.3.2 Time Point Partitioning

Han et al. [44] presents a parallel algorithm to solve equations together in parallel at different time-
steps. A processor assigned to a later time-step can start working using a good initial condition before the
processor assigned to the preceding time-step finishes its computation. The initial condition for the later time
step processor is obtained by the quick solution of a coarse grid. Details of the implementation are further
discussed by Han et al. [44]. The algorithm was implemented on a MIMD parallel machine and was tested
on a GaAs MESFET device. A 13.7 speed-up is observed for a 16 processor computer.

Tai et al. [45] describes a 2-D device simulator that is parallel in both time and space. The simulator
was implemented on a SIMD architecture in which the processors are partitioned to different time points.

Each group of processors solves a 2-D device structure for a particular time point. A group of processors

) assigned to a later time-step can start working using a good initial condition before the group of processors
assigned to the preceding time-step finishes its computation. The initial condition for the later time step
group of processors is provided by the current solution of the group of processors for the previous time
point. An explicit method is used to do numerical time integration. A speed-up of 8 is observed for an SOI
application.

2.3.3.3 Voliage Point Partitioning

Allowing each processor to solve a voltage point for a voltage sweep simulation is another way to par-
titioning the device simulation problem. However, the Newton algorithm is known to perform well when a
good initial estimate of the solution is given. Hence, a parallel voltage partitioning cannot take advantage of

a usually good initial guess obtained by a projection from two previous solutions.

2.3.3.4 Design Point Partitioning

Different geometry features or doping profile values are needed to be simulated in optimizing device
performance or in studying the sensitivity of a device characteristics. Sensitivity analysis is important for
predicting worst case device performance due to variations in the geometry and doping profile of the device.
These variations result from the limitations in the accuracy of semiconductor processing technology. Hence,

each of these geometry and doping features can be simulated in parallel.
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2.4 Linear System Solution
24.1 Iterative Solvers

There are two basic ways to solve a linear system of equations - direct and iterative. Direct solvers are
usually preferred because of their reliability and predictability. They are usually based on variants of Gauss-
ian elimination. They construct a lower triangular matrix L and an upper triangular matrix U such that LU =
A. L and U are also sparse but usually much denser than the original matrix. Nonzeros in L and U appearing
in zero positions of the original of the matrix are called fill-ins. The amount of fill-ins increases superlinearly
with the problem size and the dimensionality of the problem. The number of fill-ins for a 3-D discretization
is higher than for a 2-D discretization with the same number of grid points. The combination of these two
factors makes the storage requirements an issue when switching from 2-D to 3-D models.

Demmel et al. [31] describes parallel implementations for sparse matrix direct solvers. Sparse matrix
factorization offers more opportunities for exploiting parallelism beyond those available with dense matri-
ces. However, it may be more difficult to attain good efficiency in the sparse case. The main challenge is
developing a row ordering algorithm and a matrix to processor mapping algorithm such that the number of
fill-ins is minimized and parallelism is maximized. One of the earliest parallel algorithms which is presented
by George et al. [32] maps a group of columns to each processor. Clever row ordering may create columns
that may be eliminated in parallel. Sequential iterative solvers are observed to be significantly more efficient
compared to sequential direct solvers for 3-D device simulation problems. In fact, due to memory and com-
putational requirements, large problems can only be solved using iterative methods for current sequential
computing platforms. It will be shown in Section 3.4.7 that even with 100% efficiency for parallel direct
matrix solvers, parallel iterative solvers are still more efficient. However, parallel direct solvers may still be
useful for very ill-conditioned matrices that may arise for severely biased semiconductor devices.

Matrix splitting methods such as Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR) do not
play a significant role in the solution of linear systems in device simulation. Splitting matrices usually do not
meet the requirements for convergence. Another class of iterative solvers involves the minimization of a
convex function. These solvers are composed of routines for generating the search direction and for finding
the minimum in the current search direction. The simplest method is the steepest descent solver. It uses the
negative gradient at the current position as its search direction. Unfortunately, the speed of convergence may
be relatively slow for a relatively flat steep-sided valley. The algorithm is forced to traverse back and forth

across the valley rather than down the valley since the gradient directions for each iteration are too similar.
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To avoid the pitfalls of steepest descent, search direction generation algorithms that take into account
previous search directions have been created. For example, Generalized Conjugate Residuals (GCR) [34]
selects a new search direction based on the current residual plus a linear combination of the previous search
directions. Due to storage requirements and computational increase as the number of iteration increases,
GCR is restarted at regular intervals. Instead of throwing away previous search directions when restarting,
the same amount of memory can be saved by throwing the oldest search direction. This approach is called
" truncation and the truncated version of GCR is called Orthomin [36]. Further improvements in terms of find-
ing the minimum of the current search direction have created the Generalized Minimal Residual Method
(GMRES) [35]. These solvers still fail for typically ill-conditioned device matrices [4,33).

The only successful algorithms for device matrices come from the family of biorthogonalization
methods which includes Biconjugate Gradients (BiCG) [37] and its variants. BiCG not only solves the pri-
mal linear system but also the dual linear system which is composed of the matrix transpose. BiCG is usu-
- ally able to solve device matrices where restarted GMRES or truncated Orthomin fail. Two famous variants
of BiCG are the Conjugate Gradient Squared (CGS) [26] which is described by Algorithm 2.3 and the Bi-
CGSTAB [38]. CGS reformulates BiCG with the absence of transposed matrix operations. It is able to
achieve this by squaring the update formulas for the residual and the search direction. By setting the residual
function of CGS as a function of the squared update formulas, a more convergent solver is observed. The
reason is the “contraction effect” which can be described informally as follows: The kth combined residual
can be written as a product of a polynomial &  (A) and the initial residue. Assume BiCG converge in the
residual, that is, " el is smaller than || ro|| . Hence, the polynomial °k (A) contracts || r0” . It is then possi-
ble that d’k (A) contracts " "k" as well. As a result, the “contraction effect” of <b12‘ (A) applied to || r0|| is
expected to be stronger than that of @ e (4). Search direction routines can then be generated consistent with
the matrix polynomial With device matrices, a speed-up of two is observed.

Bi-CGSTARB is based on the same matrix polynomials as CGS, but instead of being squared, this poly-
nomial is premultiplied by another polynomial which is based on the steepest descent. The second polyno-
mial damps the effect of divergence in the BiCG polynomial. Pommerell and Fichtner [39] present a
comparison of BiCG and its variants,

The BiCG method and its variants require the same basic linear algebra operations - inner products,
vector updates, matrix vector products, and preconditioning. Vector updates are trivially parallelizable sir;ce
each processor updates its “own” segment for a grid point partitioning illustrated by Section 2.3.3.1. Only
the inner products (x ® x), matrix vector products (Ax), and possibly the preconditioning (U™'L™'A) would
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require communication calls. The inner products can easily be parallelized. Each processor computes the
inrer product of two segments of each vector. The results are sent to other processors in order to be reduced
to the required global inner product. Matrix vector products require the need for communication to acquire
the elements of the vector. Since only nearby nodes are connected, processors are only required to communi-
cate with a few other processors. After parallel communications calls, all computations can efficiently be
done in parallel. The preconditioning part is often the most problematic in terms of parallel implementation
due to its sequential nature. Section 2.4.2 discusses this problem in detail. Pommerell [40] presents a
detailed analysis of iterative methods relevant to device simulation. Tong [41] gives a comparative study of
Lanczos methods applied to other applications.

Jones et al. [57] [58], and Demmel et al. [31] present successful implementations of parallel iterative
linear solvers. Jones et al. [57] [58] describes a parallel preconditioned conjugate gradient applied to matri-
ces arising from finite element models. The papers conclude that increase in parallelism generated by color-
ing-based orderings more than offsets any increase in the number of iterations required for the convergence
of the conjugate gradient algorithm. Demmel et al. [31] reports several approaches to obtain parallelism in
preconditioning. Most publications emphasize the importance of ordering for preconditioning of matrices
which is very problem dependent. This dependency will be further examined in the next subsections. Also,
research work has also been done on rearranging computational steps for data locality, reduction of synchro-

nization points, and improved overlapping of communication and computation [59).

2.4.2 Preconditioning

The convergence behavior in solving Ax = b to a given accuracy using an iterative solver depends
heavily on the problem under consideration. All the methods converge in one single step if the matrix is an
identity matrix. Preconditioning transforms the original linear system to A% = b such that A is close to the
characteristics of the identity. Hence, one can expect that an iterative method will solve the preconditioned
system in fewer iterations than the original system. This approach is useful if the total time to perform all the
transformations and the needed preconditioned iterations is smaller than the time for an unpreconditioned
solution.

A is calculated by multiplying A with its approximate inverse A~ and b is obtained by multiplying
b with A1, The usual way of obtaining A1 is to factorize A into components that are easily invertible.
One choice is LU-factorization, a variant of Gaussian Elimination which computes the lower triangular L,

and the upper triangular U such that A = LU. A common preconditioner is incomplete LU (ILU). Algo-
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rithm 2.2 describes ILU decomposition which is equivalent to LU decomposition if all the fill-ins in step 4
are included. Fill-ins are defined as matrix entries in A that are zero but are not equal to zero in L or U. Since
A is only an operator for matrix-vector multiplication in BiCG and its variants, the preconditioner is applied
by the following order of operations - (U™ (L™! (Av))) where v is a vector (Algorithm 2.3 illustrates a
ILU preconditioned CGS). Using Av may seem more efficient but calculating A is difficult since it is not
sparse.

Preconditioning is essential for the convergence of BiCG and its variants for device matrices [39].
Between no preconditioning and full LU, there is a spectrum of preconditioners that offer a wide variety of
efficiency-robustness trade-offs. The design of the preconditioner addressed in this chapter requires parallel-
ization considerations in addition to the robustness issues. For a parallel preconditioner, we would like to
minimize the total CPU time needed by the parallel machine to complete the solution of the linear systems.

The parallel algorithm uses a variation of the incomplete LU factorization for preconditioning since
ILU is observed to be the most efficient for device matrices [39]. The ordering of the equations for this fac-
torization has a significant effect on the convergence behavior of the CGS algorithm as well as on the num-
ber of operations that can be carried out in parallel. Unfortunately, more parallelism yields in general slower
convergence, so that finding an ordering that minimizes the overall running time is not trivial.

There are numerous orderings of nodes possible [27]. Two criteria are used to examine the orderings
in the next subsections, First, the preconditioner should make the iterative algorithm converge for typical ill-
conditioned device matrices. Second, it should be able to minimize the total elapsed time to obtain the solu-

tion. Processor utilization is correlated to the second criterion but is not the primary concern in performance

evaluation.
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Algorithm 2.2: ILU Preconditioning

ILU decomposition:

Given: A, a nonsingular n x n matrix.

Step 0: Setk=1,

Step 1: Set the k™ row of U equal to the & row of the matrix A.
Uj=a; j=kk+l,...,n

Step 2: If k = n then stop.

Step 3: Obtain the kth column of L.
lp=aygluy; i=k+l,....n

Step 4: Update A. Fill-ins may be introduced.
a=a;-lp;; i,j=k+L,k+2,...,n

Step 5: Increment £ and return to step 1.

Forward substitution:

k-1

Ye=b= Y bys k=1,2,...,n
j=1

Backward substitution:

(y - 2": ukixi)

jzk+1

X, = ; k=n,n1,...

Uy
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Algorithm 2.3: Preconditioned CGS

Let:

ro=r=U"'L"(b-Ax), p=1,p=0,9=0

While (rer>¢) {
B=1/p; p=rerg;  P=Pp;:
u=PBq+r; v=PBp+q; p=Pvtu;
v=Ul'L"Ap; 6 =ver,; a=p/c;
g=-av+v; v=u+q; u=ULTAy;

r=r—-0ou, X =x+Qy

2.4.3 Ordering of Nodes for the CM-2

24.3.1 Natural Ordering and Red-Black Ordering

A commonly used ordering for preconditioning on sequential machines is the natural ordering. This
has been successfully used by the device simulator CADDETH [17]. In this ordering, grid nodes (hence
~ matrix equations) are numbered first in the x direction, then in the y direction, and finally in the z direction
(or some other permutation of x, y, and z). Specifically, the index for the equation at grid point i, j, & is given
by the formula i + N, j + Ny N, k where Ny, Ny, and N, are the number of grid points in the x, y, and z direc-
tions respectively.
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Figure 2.3: Two Dimensional Grid with Natural Ordering

During the LU factorization and the forward and backward substitution, the condition that determines
whether or not a node can be eliminated is that all adjacent nodes that have a lower index must have been
eliminated already. At first glance this is a completely sequential algorithm. On closer inspection however, a
significant number of operations can be carried out in parallel as shown in Figure 2.3 where a two dimen-
sional example is shown. The sets of equations that can be processed in parallel form diagonal lines passing
through the grid. In this example, these sets are: {1}, {2, 5}, {3, 6, 9}.{4, 7, 10, 13}, {8, 11, 14}, {12, 15},
and {16). In three dimensions, these sets form diagonal planes. The number of steps required by the algo-
rithm in three dimensions on a massively parallel computer is Ny + Ny, + N, _ 3, which is O(N 13y if the num-
ber of grid nodes is increased uniformly in each of the three dimensions which is O(N!?) if the number of
grid nodes is increased uniformly in each of the three dimensions.

A preconditioner using the natural ordering has good convergence behavior, but it does not exploit
well the architecture of a massively parallel processor. In fact, the time per iteration, O(N 153y, grows fast
with the number of grid points.

A Red-Black ordering (28] provides for a much more efficient parallel implementation of the matrix
operations, but as we shall see later, the convergence of the CGS method is significantly slower. This order-
ing labels each grid node either red or black such that each node is not adjacent to any node of the same

color. Thus, given the assumption of no fill-ins, each red node is independent of every other red node, and
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each black node is independent of every other black node. With this ordering, during the LU factorization,

forward and backward substitutions, all of the red nodes can be eliminated simultaneously first, followed by
all of the black nodes also simultaneously.

Error
Ted - black
m natural
le+22 A .
le+12 3

4--°
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_—
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Figure 2.4: Convergence of Natural and Red-Black Ordering
This ordering is very efficient for parallel computers since it needs constant time per matrix iteration,

and is the method of choice for solving Poisson’s equation [29] where the speed of convergence of the con-

~ jugate gradient method is not strongly affected when compared to the natural ordering. However, for the
solution of the coupled drift diffusion equations, the CGS method with the red-black ordering converges
much slower than the natural ordering as shown in Figure 2.4 for a MOSFET simulation on a 16x16x2 grid.

The error is defined to be the maximum residual generated by the CGS algorithm. The total time for solving

a matrix using the red-black ordering is larger than that for the natural ordering even though the latter
requires much more time per iteration,

2.4.3.2 Partitioned Natural Ordering

Given that the natural ordering performs well for CGS, we examined a modification to the basic
scheme to yield a new method that would allow more parallel operations, the partitioned natural ordering. In
the natural ordering, the sets of nodes that can be eliminated in parallel form diagonal planes through the

grid as shown in Figure 2.3 and a plane has to wait for the factorization process to terminate on the preced-

ing plane. Now if we ignore the dependency between the nodes on plane m+1 and the nodes on plane m,
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then we partition the original matrix into two parts: the one from plane 1 (the left-top node) to plane m and
the other from plane m to plane n, the last plane (the right-bottom rode) of the grid. In this case, at the first
step of the iteration, all the nodes on planes I and m+1 can be processed in parallel. After this step, all the
nodes on planes 2 and m+2 can be processed in parallel, and so on. Using the example in Figure 2.3, the
groups of nodes that can be eliminated in parallel are now: {1, 8, 11, 14}, {2, 5, 12, 15}, {3, 6,9, 16}, and
{4,7,10, 13}.

This method was first applied to the incomplete LU factorization, but gave disappointing results since
many iterations were needed to achieve convergence. However, note that the CGS method requires only one
LU factorization per matrix solution, but several forward and backward substitutions (one of each per itera-
tion). Thus it is more important to speed up the forward and backward substitution processes than the factor-
ization process. Hence, the partitioned natural ordering method was applied to forward and backward
substitution as follows.

The incomplete LU factorization is carried out using the natural ordering and then entries in the L and
U factors that link the elements of the matrix corresponding to the nodes across the partition, are discarded.
In this way, the numerical values of the entries of the LU factors are the same as in the natural ordering, but
the results of the forward and backward substitution process are different.

If the point at which the planes are partitioned is the same for both the forward and backward substitu-
tions, there would be no data transferred between the partitions because all of the matrix elements connect-
ing the partitions would be set to zero. Therefore the point at which the planes are partitioned is offset for the
backward substitution compared to the forward substitution. For example, referring to Figure 2.3, if the par-
tition for the forward substitution is between planes 4 and 5, then for the backward substitution it would be
between planes 3 and 4.
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Figure 2.5: Effect of Number of Partitions to Number of Iterations

Of course, this technique is not limited to two partitions. Figure 2.5 shows how the convergence is
affected by increasing the number of partitions. As can be seen, the speed of convergence is slower as the
number of partitions is increased, but not by orders of magnitude. Figure 2.6 shows the CPU time for the
complete solution of a matrix with respect to the number of partitions using this algorithm. The matrix being
solved was generated from a MOSFET simulation on a 16x32x8 grid, so the number of sets of equivalent
nodes in the dependency graph (or planes through the grid) is 54. This graph shows that the CPU time is
minimized when the number of partitions is in approximately the range of 15 through 27, or, in other words,
when there are approximately two or three planes per partition. As the number of partitions increases beyond
half the total number of planes, the number of iterations for convergence increases significantly. All of the
results presented in this paper related to the partitioned natural ordering usé two planes per partition since

this partition offers the maximum amount of parallelism without affecting the convergence speed by an

intolerable amount.
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Since the partitioned natural ordering uses a fixed number of planes per partition (two), the CPU time
per matrix iteration is now a constant, as it was with the red-black ordering, but at the same time retains most
of the convergence properties of the full namfal ordering.

Even with this approach to speed up forward and backward substitutions, it is observed that the time
for the LU factorization (even though it is computed with the full natural order) is always significantly

smaller, and growing at a smaller rate, than the time for the forward and backward substitutions.

24.3.3 Three-Color and Nested Dissection
The two-color ordering labels each grid node either red or black such that each node is not adjacent to

any node of the same color. The equation to do incomplete two-color LU decomposition is shown as fol-

Lep Lpo| _ [I (i] I:I B] +error 24

Since the fill-ins only occur in the E part of the U matrix, the black nodes should be divided into more

lows.

groups to allow fill-ins to influence E. The simplest approach is to divide the black nodes into two groups,
B1 and B2. The same rule used to create red and black nodes can be used to create Bl and B2 nodes by
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assuming red nodes do not exists. This produces a three color ordering and the equation for incomplete LU

decomposition is shown as follows.

Ip A1 ARB2 Ip 0 Of}/p Uppy Uppy
Apir sy O |=|Lpp Tz 0|0 Epy Upipa (2.5)
Apor O Ipa| |Lpag Lpagy 'paf|® © Ep

Lpp; and Upp; are the fill-ins that are supposed to improve the preconditioner. Table 2.2 shows that
. while the three color scheme improved the quality of the preconditioner, the CPU time required did not
make it competitive overall with the simpler red-black ordering.

Table 2.2: 16x32x8 MOS Three-Color Results

CPU Time Total Linear
Method (relative) Tterations
R/B BCG 1.8 2388
R/B CGS 19 3846
R/B1/B2 CGS 13 3544
Natural CGS 1 104
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Figure 2.7: Nested Dissection Ordering
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The nested dissection ordering [42] has been used for a parallel direct solution of sparse matrices [43].
This ordering minimizes the number of dependencies between nodes which in turn should minimize the
number of discarded fill-ins for a preconditioner. The basic idea is to recursively split the mesh structure into
two pieces of roughly equal rectangular blocks and a separator plane. A 2-D nested dissection scheme is
applied to the separator plane and red-black ordering is used for the nodes that do not belong to any separa-
tor sets. The red and black nodes are mapped to the top of the linear matrix. Then, the separator grid points
are allocated their corresponding rows in the matrix. The red and black nodes can be individually executed
in parallel. The separator nodes can also be executed in parallel using a parallel row ordering scheme. This
algorithm is applied to a 3x3x3 mesh structure and the results are shown in Figure 2.7. All nodes labelled
with the same number can be executed in parallel except for nodes labelled 3. Group 3 nodes are further
labelled with numbers enclosed in parenthesis. Nodes with the same number can be done in parallel.

Current results for nested dissection do not show significant improvements for diode simulations. In
fact, MOS simulations run into convergence problems. It is observed that better results are obtained when

the coupling of nodes is maintained instead of minimizing the discarded fill-ins.
2.4.4 Ordering of Nodes for the CM-5

24.4.1 Partitioned Natural Ordering

The partitioned natural ordering [8] has been extended to the MIMD MPP CM-5 architecture. This
ordering compares favorably with other well known techniques such as the red-black ordering and the natu-
ral ordering on a SIMD CM-2. The CM-2 and CM-5 implementations are tested with a 32x32x16 MOS tran-
sistor and results are presented in Table 2.3 for a single bias point. Generating the linear matrix is relatively
inexpensive for both CM-2 and CM-5 implementations. The linear solvers take more than 95% of the CPU
time for both implementations. The CM-2 version spends more time in the preconditioning step (incomplete
LU factorization or ILU) since this sequential step forces the CM-2 to have more computational resources
idle compared to the CM-5.

Table 2.3: CPU Time Breakdown

Operation CM-2 | CM-5

Jacobian 2.0% | 3.3% |
ILU 30.0% | 10.1%
CGS 68.0% | 86.5%
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Table 2.3: CPU Time Breakdown

Operation CM-2 | CM-5
_—_—————————————
CGS matrix times vector | 26.8% | 36.3%

CGS Forward/Backward | 33.4% | 42.2%
Substitution (CGS-FBS)

CGS-FBS Communication | 12.1% | 154%

2.4.4.2 Block Partitioned Natural Ordering (BPNO)

A new ordering scheme tailored for the CM-5 called the block partitioned natural ordering is intro-
duced. To allow each processor of the CM-5 to execute in parallel, each subdomain mapped into each pro-
cessor should be disconnected from other subdomains while doing forward and backward substitution.
Using the idea of not having the same cut points for the forward and backward substitution proposed by
Webber et al. [8], a new preconditioner called the block partitioned natural ordering preconditioner is pro-
posed. This preconditioner still cuts the links at the boundary of subdomains for forward substitution as
shown in Figure 2.8. However, the cut planes for the backward substitution is moved by an offset of one
which is illustrated by Figure 2.9. Natural ordering backward substitution is done consecutively from set 1 to
set 4. Set 2 is composed of two planes of nodes, set 3 is composed of three lines of nodes, and set 4 has one
~ node. Doing simple subdomain partitioning for backward substitution would have disconnected the set 4

node from its three neighbor subdomains by processing it first. This partitioning gave poor results. The off-
| set of one allows information to travel from one subdomain to another during the preconditioning of the lin-

ear matrix. An offset that cuts through the middle of the subdomain gives similar results.

P>

rd
//

Figure 2.8: BPNO Forward Substitution Subdomain
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Figure 2.9: BPNO Backward Substitution Subdomain

Fill-ins within each CM-5 subdomain can be included. The architecture and large local memory of the
processing nodes of the CM-5 allow several levels of fill-ins within each subdomain while doing incomplete
LU decomposition, forward substitution, and backward substitution. Allowing fill-ins only in the incomplete
LU decomposition did not improve the linear solver. A significant reduction in the total number of inner

loop iterations is observed when fill-ins are also allowed in the forward and backward substitution process.

24.5 Results

Results for a bipolar transistor described by Figure 2.1 with Vp,.=0.8 and V.=1.0 are shown in Fig-
ures 2.10 and 2.11. PNO, NO, and BPNO signify partitioned natural ordering, natural ordering, and block
partitioned natural ordering respectively. The number attached to BPNO indicates the fill-in levels allowed.
64 processors with no vector units are used for CM-5 simulations and 8k processors with floating point
accelerators are used for CM-2 simulations. Fill-ins decreased the total inner loop iterations but not the CPU
time. BPNOO is two times faster than PNO-CMS for the 32k mesh and produces the lowest CPU time for the

CM-5. It is also more robust since PNO does not converge for the 64k mesh. PNO still gives the best perfor-
mance for the CM-2.
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Figure 2.11: CPU Time (sec) vs. Mesh Size (K)

It is stated by Webber et al. (8] that the CM-2 algorithm exceeds vector supercomputer performance
for problems greater then 15,000 grid nodes. With reference to Figure 4 which shows comparable perfor-
mance for the 8K CM-2 and a 64 node CM-5, a 128 node CM-5 can be concluded to provide a vector super-
computer performance. It should be noted that the best known algorithm for each architecture is used for

making the performance comparison.
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More memory for each CM-5 processor over each CM-2 processor produces a significant improve-
ment in the convergence behavior since more coupling between grid points give better preconditioners. This
decrease in inner loop iterations along with faster CM-5 processor elements render a better performance rel-
ative to CM-2 type architectures as the problem size gets larger for the proposed algorithms and discretiza-
tion technique.

Several performance metrics for MPPs discussed by Zorpette [7] are significant for the implemented
CM-5 device simulator. The simulator has an 80% to 20% computation to communication ratio which is
important in determining which MPP architecture to use and which MPP architectural and software aspects
need to be improved. The CM-5 algorithm does not take advantage of overlapping communication and can
be executed in a data parallel SIMD mode. These two architectural considerations may become important
when nonuniform grids are used. The bisection bandwidth, the rate at which half the processors in the
machine can send data to the other half, is important since adjacent subdomains which are arbitrarily
mapped to different processors need to communicate with each other. Latency time, the time it takes to pre-
pare for communication, is unimportant because each communication call usually involves transferring hun-
dreds of floating point numbers. Finally, a user specified mapping that takes advantage of certain regular
properties in the algorithm and the architecture should give comparable, if not better, performance over MPP
architectures that mimic shared-memory.

The CM-5 implementation of the preconditioner can be made more efficient by improving communi-
cation and computation routines. For the communication routines, the maximum experimental node to node
transfer is found to be 8 Mbytes/sec which is well-below the peak bandwidth of 20 Mbytes/sec [30]. It is
expected that this is going to increase with newer versions of the CMMD communications library [30). For
the computation routines, each CM-5 node may have up to four vector units. Each processor can be treated
as a4 processor SIMD computer. Each vector unit is capable of 32 Megaflops/sec. With reference to Figures
1 and 2, all nodes with the same number can be executed in parallel by the vector units.

2.5 Multigrid

The Newton algorithm is known to perform best when a good initial estimate of the solution is given.
A good initial guess is usually obtained by a projection from two previous solutions whose bias conditions
differ only at one contact to a new applied bias at that contact. The initial guess for the first two solutions
may be obtained by the initialization described by Webber et al. [8]. The simulations are initialized with

piecewise constant potential and carrier concentration which associate with each region the potential of its
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contact and the concentration of the majority carrier. This can be accelerated by a multigrid initial guess
which does not require any specific knowledge of the device and the region of operation upon which it is
simulated. It should be noted that voltage sweeps do not necessarily need to start with zero bias. Measuring
threshold voltage or device breakdown for example only involves the simulation of a certain segment of the
IV curves. Hence, the first two bias points may significantly affect the total CPU time of voltage segment
simulations. The next subsections will present algorithms to obtain the initial bias points efficiently. It may

. be noted that these algorithms are also applicable to sequential machines.

* 2.5.1 Multigrid Discretization

The scheme is based on two coarse grid mesh structures intertwined as shown in Figure 2.12. These
coarse grids are constructed from 4 sets of discretization nodes. Coarse grid 1 is defined as the union of sets
1 and 2, and coarse grid 2 is defined as the union of sets 3 and 4. Set 1 is defined to be nodes with even coor-
dinate values in all three grid axes, and set 3 is defined to be nodes with odd coordinate values in all three
grid axes. Set 2 is defined to be the nodes connecting the nodes of set 1, and set 4 is the nodes connecting the
nodes of set 3. If the solution of the equations on one of the coarse grids previously defined is carried out
while the other coarse grid mesh structure is used as a boundary condition, the nodes in sets 2 and 4 will
have only two active neighbors, thus making possible the static elimination of the variables associated with
the nodes themselves. This ultimately allows the use of a smaller grid mesh structure composed solely of set
1 or 3. In addition, the elimination of set 2 or 4 decreases the number of variables which decreases the search

space of the linear solver and hence, reduces the number of linear solver iterations.
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Figure 2.12: Multigrid Discretization
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2.5.2 Multigrid Initial Guess

The multigrid discretization is used to define an approximate decoupled Newton scheme to produce a
good initial guess for the full Newton algorithm. The algorithms consist of the following steps: First, do a
simulation of set 1 nodes. Using set 1 as a boundary condition, an initial guess for set 2 nodes is computed
by doing three extended simulations. Each extended simulation uses the actual fine grid discretization for
one axis and the set 1 discretization for the remaining two axes. Using sets 1 and 2 as boundary conditions,
an initial guess is calculated for sets 3 and 4. As a final step, sets 3 and 4 are used as boundary conditions to
improve the initial guess for sets 1 and 2. These simulation steps are summarized as follows (B.C. denotes
Dirichlet boundary conditions).

Algorithm 2.4: Multigrid Initial Guess

1. Set 1 Simulation (B.C. = 0)
2. Set 2 Simulation (B.C. = Set 1)
a. extended x
b. extended y
c. extended z
3. Sets 3 and 4 Simulation (B.C. = Sets 1 and 2)
4. Sets 1 and 2 Simulation (B.C. = Sets 3 and 4)

Simulations with a multigrid initial guess are done for a 31x31x15 MOSFET, a 63x63x31 MOSFET,
and a 63x63x31 bipolar transistor described by Figure 2.1 with varying bias conditions using a CM-2. A fac-
tor more than 2 in CPU time improvement is observed compared to simulations with initial guess generated
by Webber et al. [8] for large and highly biased problems. It is also observed that as the bias conditions of
the devices become harder to solve, the multigrid initial guess gives a better relative performance. These
results are summarized in Table 2.4 and similar results are expected for the CM-5.

Interpolation schemes were also tried instead of doing a Block Newton Simulation for Steps 3 and 4.
Linearly interpolated potential and carrier concentrations did not produce a good initial guess for step 4. The
use of Neumann instead of Dirichlet boundary conditions also produced a poor initial guess.
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Table 2.4: Multigrid Initial Guess Results

Device Bias Conditions %Ppg':;f
[3L31x15 MOS | Vg=30,va=50] 13 |
31x31x15 MOS | Vg=4.0,Vd=5.0 1.8
63x63x31 MOS | Vg=0.5,vd=0.1 ?
63x63x31 MOS | Vg=0.5,Vd=0.5 23
63x63x31 MOS | Vg=0.5,Vd=1.0 ?
63x63x31 BJT | Vb=0.6,Vc=0.5 ?
63x63x31 BJT | Vb=0.6,Vc=1.0 15
63x63x31 BJT | Vb=0.6,Vc=3.0 25

? = Original simulator did not converge; New simulator converges
2.5.3 Alternating Coarse Grid Simulation (ACG)
An iterative block relaxation Newton can be also defined oxi the basis of our multigrid discretization.
This basically involves looping through steps 3 and 4 of the multigrid grid initial guess routine until a certain
convergence criterion is met. It is observed that doing steps 3 and 4 produce well-conditioned linear matri-
ces. This allows the use of partitioned natural ordering incomplete LU decompositions.
Defining convergence as steps 3 and 4 taking only one Newton iteration each to meet the potential
convergence criterion, a 10% to 30% CPU time reduction is observed for BJTs. The MOS CPU simulation

times did not have any significant reductions.

2.54 ACG with Intermediate Selected Nodes Simulation
To improve performance, a simulation of nodes with the largest error is proposed after doing steps 3
and 4. These steps are summarized as follows.
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2.5 Multigrid

Algorithm 2.5: ACG with Intermediate Selected Nodes

1. Set 1 Simulation (B.C. =0)
2. Set 2 Simulation (B.C. = Set 1)

a. extended x

b. extended y

c. extended z
3. Sets 3 and 4 Simulation (B.C. = Sets 1 and 2)
4. Sets 1 and 2 Simulation (B.C. = Sets 3 and 4)
4.5 Simulate nodes with largest error
5. Repeat steps 3 to 4.5 until convergence

Experimental simulations are done to determine which nodes are to be included in the intermediate
selected nodes simulation. Poor results are observed for taking the top 12.5% nodes with the largest error. A
2.5 decrease in total final fine grid linear solver iterations is observed for taking the top 1.5% and their neigh-
bors for the intermediate selected nodes.

In implementing a CM-2 version of the scheme presented above, the intermediate selected nodes are
proposed to be chosen to fit inside a rectangular mesh structure for easy and efficient mapping into the CM-
2 architecture. The top 1.5% plus neighbor is still used as a criteria for the important nodes to simulate. The
first selection is done by enclosing in a rectangular grid box the most number of important nodes. Two other
variations are done by dividing the covering box into two boxes and into eight smaller boxes. It is observed
that the single box is competitive with the 2 and 8 box selection. Efficient routines are still needed to be
developed to solve this covering problem. A CM-5 implementation does not require rectangular intermedi-
ate selected nodes for efficient simulation.

A rectangular covering heuristic is needed for the CM-2 implementation of ACG with intermediate
selected nodes in order to do timing comparisons. A CM-5 implementation of ACG with intermediate

selected nodes will require some load balancing heuristics when doing step 4.5.

50



CHAPTER 2: Rectangular Grid Drift-Diffusion Device Simulation

2.6 Silicon Pixel Detector Application
2.6.1 Background

Silicon pixel detectors are being given more attention in the high energy physics community since
they can be used as very effective tracking devices. Pixel Detectors may offer very small detection elements
(as small as 30 x 30 um?) with low capacitance, low leakage current and no ambiguities in multiple-hit
events. This implies a very high noise immunity and an intrinsic radiation resistance, which are good fea-

tures for applications with future high luminosity machines.

Four Pixel Simulation Area [ /Cy Cxy
F g

Figure 2.13: Definition of Pixel Capacitances

The pixel capacitances play a crucial role in the system design since they determine the noise and
cross-talk of the detector. Capacitances for 100 x 100 um? pixel detectors illustrated in Figure 2.13 are mea-
sured and simulated. By comparing experimental and simulation results, the pixel capacitances for varying
geometries are expected to be modelled. Each pixel is a P+-implant with an aluminum contact on top, laid-
out at a fixed 100um pitch with varying gaps (5,10,15,20,25, and 30 um). The other side of the implant has
an n+-implant that serves as a back contact. The main concern is with the surface capacitances Cy and Cxy
defined in Figure 2.13. The back capacitance is simulated to be roughly equal to the area of the pixel (pitch2)
divided by the silicon thickness (Cyaq = 3.5/F for the pixels) with a slight dependence on the gap, similar to
the one observed in strip detectors [46].

Section 2.6.2 illustrates the special measurement techniques that had to be developed to account for
stray capacitances. Section 2.6.3 describes the method used for calculating capacitances from simulation

results and compares the simulation with measured data.
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2.6.2 Measurements

The main sources of error in the measurement of small capacitances are the noise in the system and
the stray capacitances. Bosisio et al. [47] describes the difficulty and method of the experimental measure-
ments. One interesting observation is that the pixel capacitances lay in the 10 fF range and, even with coax-
ial probes, the residual capacitance of the tips placed at 100 um distance, Cpp, is the order of 10 fF. Its
proper subtraction is crucial for the correct measurement of pixel capacitance and to measure it, the wafer
has to be lowered from the contact position as shown in Figure 2.14. Unfortunately, the residual probe tips

capacitance depends rather strongly on the separation d of the probe tips from the wafer conductive plane.

Coaxial Probe Tips

HI LO

to Guard

Conductive Plane

Figure 2.14: Probe Tips Set-up for Cpp Measurement
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Figure 2.15: Probe Tips Residual Capacitance
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Figure 2.15 shows the Cpp measurements and it can be interpreted as follows: For large separations (d
> tip length (2 mm)), the conductive plane is unseen and Cpp is constant. For medium separations (tip-to-tip
distance (100 um) < d < tip length), the conductive plane is beginning to “eat-up” some of the field lines and
the capacitance decreases. The dependence is Cpp o log(d) as the probe tips are seen at this distance as
wires. For short separations (10 um < d < 100 um), the geometry gets more complex because the distance
between the tips is comparable with separation. For very short distances (d < 10um), Cpp is flat again and is
basically the capacitance of the probe tips laying on a conductive plane with an infinitely thin insulator layer
on top. The Cpp measurement is done with d equal to 10 um which is where the curve is almost flat.

Capacitance (fF)
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Figure 2.16: Cx and Cy Measurements

To separately measure the various components Cx and Cxy of the pixel capacitance, a specific test
structure described by Bosisio et al. [47] is designed. The results from separate measurements of Cx and Cxy
are shown in Figure 2.16 for gaps varying between 5 and 30 um. A remarkable feature of the plot is that the
diagonal is of the same order, or equal to, the adjacent coupling. This effect may be due to the accumulation
~ channel created between pixels by the fixed oxide charge, that creates a relatively high conduction path and
increases long range coupling. This picture is confirmed by the fact that at small gaps, when the resistance of
the accumulation layer increases, the size of the diagonal coupling to Cx decreases. If the capacitances are

correctly measured, one expects a simple relationship between Cx, Cxy, and Cone: Cone = 4(Cx + Cxy).
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This is actually the case in the measurements, as can be seen in Figure 2.17, where the two quantities are

plotted on the same graph.

2.6.3 Comparison with Simulations
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Figure 2.17: Cone from Experimental and Simulation Measurements

The simulation of capacitances in semiconductor devices requires a basic steady state solution for the
desired operating condition plus some means of estimating the small signal response of the device. Laux
[50] describes three methods to measure the capacitance - charge partitioning (CP), fourier decomposition of
transient analysis (FD), and sinusoidal steady state analysis (S3A). The CP method is currently utilized since
it has the least computational requirements. In CP method, after the basic solution is found, a voltage step
AVJ- is applied to the electrode j and the new, slightly modified DC solution is calculated. The element of the
capacitance matrix Cij is given by the charge variation on electrode i divided by the voltage step: Cij = AQ ;
/ AVj. The difficulty lies tin the definition of AQ;, that generally must include not only the charge induced
on the contact but also the bulk charge associated with that electrode. For this association to be effective, a
device dependent physical insight is needed. For the pixel detectors being described, the charge region
boundaries were placed in the middle of the gaps between pixels.

The parallel device simulator described earlier is used to simulate four and nine pixel devices. Differ-
ent mesh structures are used depending upon the device being simulated - 16x16x16, 32x32x32, and

64x64x64. The comparison of measurements with simulation is shown in Figure 2.17. There are two simula-
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tion curves that refer to different values of fixed positive oxide charge. This interface charge [51] is formed
during the oxidation process and is localized at the Si-SiO2 interface. Unfortunately the simulation lacks the
code to handle a surface charge, and we therefore distribute it in the oxide volume. We added a rough factor
of two in the equivalence to take into account the diminished effectiveness on the accumulation layer of a
volume distributed charge, so that (volume charge) = 2(surface charge)/(oxide thickness). In any case,
although the oxide charge is needed to have a good agreement with measurements, the simulation results
show a rather weak dependence on the precise value of the charge. We see from Figure 2.17 that the best
agreement is found for 0, = 4x 10" c¢m™ and in fact direct measurements of the interface charge on
MOS capacitors give 0, =2 -4x 10" em™2,

The simulation of the separate contributions of Cx and Cxy does not for the moment agree very well
with the data due to the uncertainties in the definition of the charge region. As discussed by Ward and Dutton
[52] for a MOS transistor, when the charge region boundary lies in an undepleted zone, which is the case of
the gap between pixels when the fixed oxide charge is present, its exact placement can become critical and
undermine the capacitance simulation. Various algorithms for the charge region boundary placement are
under study. The straight line superimposed on Figure 2.17 represents a rough extrapolation from strip
detectors data [48] obtained by scaling the interstrip capacitance per unit length Cjg with the pixel perimeter.
It must be noted that no data exist for strip detectors with very small gaps, and hence, the linear dependence

shown by Cjg at larger gaps was extrapolated.

N+ Implants  EBES P-Blocking Strips HEEH

Figure 2.18: P-Type Substrate
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2.7 Extensions to Curvilinear Grids

To use p-type substrate detectors, it is necessary to put p-blocking strips between each n+ pixel. This
prevents the inversion of surface, which is due to the presence of oxide charge, from shorting the n+ regions.
Simulations show a factor of 2 increase in total pixel capacitance. A probable reason is the amplification of
long range effects due to the blocking strips.

Table 2.5 shows the CPU times required for the simulation of mesh structures with different sizes.
Simulations for structures with fixed oxide charge required a voltage ramp for convergence. A 16 x 16 x 16
and a 32 x 32 x 32 simulation is done for the 4-pixel N-Sub device. Only a 5% difference is observed. The P-
Sub device simulation only needed two voltage steps. However, the matrices were more ill-conditioned and
required the natural ordering preconditioner in some cases for convergence. Nine pixel simulations are also
done to see the long range coupling of pixels. Only a 5% increase is observed for the current structures. All

simulations are done with a 16K CM-2 equipped with floating point accelerators.

Table 2.5: CPU Times for Silicon Pixel Detector Simulations

i tal Total Inner
Doviee | chage | wesn | 00 | ngon | Vlogp | TEICRY
cm Iterations | Iterations
4-pixel N-Sub 0 16x16x 16 2 13 1020 98
4-pixel N-Sub le22 16x 16x 16 27 366 28776 2774
4-pixel N-Sub 1e22 32x32x32 27 413 103050 19491
4-pixel P-sub 0 32x32x32 2 37 28673 11040
9-pixel N-sub 0 30x26x16 2 21 1838 191

2.7 Extensions to Curvilinear Grids
As integrated circuits decrease in size, device simulation techniques which can accurately treat pn-

boundaries or shapes of internal boundaries between semiconductors and insulators become important. One
limitation of rectangular grids is that they do not allow the exact modeling of nonrectangular device bound-
aries. Boundary conditions need to be approximated using fine rectangular discretizations which may intro-
duce inaccuracies and redundant grid points. An alternative is the use of curvilinear coordinate systems

(CCS) [53] which can model arbitrarily shaped boundaries,
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Figure 2.19: Curvilinear Coordinate System

Figure 2.19 illustrates a sample CCS mesh structure. The connectivity between grids is identical to a
rectangular mesh. Hence, algorithms presented earlier for parallel rectangular grid device simulation are
. applicable for this discretization. Instead of using information from 7 points for each control volume, 27
points are necessary for a general CCS. Matsuo et al. [54] presents a simplified version which only requires
information from 11 points for each control volume. Both methods can easily be incorporated to in a parallel
implementation since the 27 and 11 point discretizations will still only require regular neighbor communica-
tion. As shown earlier, this can be easily and efficiently done for parallel processor architectures.

Matsuo et al. [54] presents the simulation of narrow channel effects in MOSFETs using CCS. The
increase in threshold voltage (applied gate voltage when drain current is 1nA) for narrow channels due to
boron channel-stop encroachment into the channel region is simulated. Tanaka et al. [55] shows the applica-
tion of CADDETH-NP [54] to the simulation of a grooved gate MOSFET. The short-channel effects in the
sub-0.1-um regime is shown to be suppressed though the use of simulations by a grooved gate MOSFET.
This suppression is due to the concave corner of the gate insulator which is extremely grid wasteful to simu-
late with rectangular grids. Tanaka et al. [56] presents experimental results that confirms the suppression
. characteristics.

Matsuo et al. [54], and Tanaka et al. [55] [56] use CADDETH-NP for CCS device simulation. The
same natural ordering incomplete LU preconditioner used by CADDETH [17] is utilized for these CCS sim-
ulations. The matrix components generated from rectangular grids and CCS are similar. Hence, rectangular
and CCS matrices should have similar conditioning characteristics. Based on the results presented in Figure
2.10, BPNO with enough levels of fill-ins should be able to converge quickly with CCS matrices. To imple-
ment a parallel CCS device simulator from a parallel rectangular grid simulator, modifications of the matrix
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generator and the matrix-times-vector routines would be needed to handle the additional neighbor connec-

tions.

2.8 Summary
3-D simulation is harder than 2-D simulation in several ways. First, the memory requirements grow

linearly with the problem size. Second, the CPU time per iteration of the linear solver is proportional to the
number of equations. The conditioning of the matrix tends to deteriorate with increasing number of
unknowns. Hence, the simulation time grows superlinearly with problem size. Third, more sophisticated
visualization programs are needed to examine simulation data.

Three-dimensional device simulations are observed to be very computationally intensive even with
vector supercomputers. The main computational task is the solution of the sparse linear system of equations
which may have more than a million equations. The efficiency of the iterative linear solver is determined by
the preconditioning scheme. The partitioned natural ordering has been developed and published by Webber
etal. [8]. It is observed to give the best results for the CM-2 in terms of CPU time minimization. Another
contribution is a preconditioner called the block partitioned natural ordering (BPNO) for a CM-5 drift diffu-
sion simulator. BPNO has been published by Tomacruz et al. [60] and it gives an efficient iterative linear
solver. It is observed that preconditioners that maintain coupling between nodes give the best results. Also,
not having the same cut points for forward and backward substitution is important for producing converging
preconditioners.

A multigrid discretization has also been developed to provide a framework to perform a block Newton
iteration [60). Three variations of a block Newton iteration are shown to be effective in generating a good
initial guess for the device simulator without having any knowledge of the device structure and the operating
region. These schemes are observed to decrease the CPU time by a factor of two.

The parallel algorithms are shown to successfully simulate silicon pixel detectors [47]. Three dimen-
sional capacitance simulations which match experimental results are observed to be significantly different

from two dimensional simulations. 3-D long range pixel coupling are observed to be amplified due to the
blocking strips.
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CHAPTER 3

Irregular Grid Drift-
Diffusion Device Simulation

3.1 Overview
The simulation of complex three-dimensional semiconductor devices requires computers with signifi-

cant computational power. Chapter 2 (published by Webber et al. [1] and Tomacruz et al. [44]), Wu et al. [3]
and Dutton et al. [4] have shown how massively parallel computers can be used efficiently for drift-diffusion
device simulation. All these simulators used rectangular grids since they are easy to implement, have perfect
load balance, and have regular communication patterns. However, irregular grids are important in the field
of device simulations since they allow the modeling of nonrectangular device boundaries and do not require
grids for quasi-neutral regions. Coughran et al. [5] gives an example of a diagonal alpha particle track that
would require 2,000,000 rectangular grid points to model accurately whereas a general irregular grid would
only require 6900 grid points to achieve the same accuracy. Even with the reduction of grid points obtained
by the use of irregular grids, semiconductor simulation still requires significant computational power. A
standard latch-up problem, which requires over 50,000 irregular grid nodes, may take five hours to simulate
on vector machines such as the Cray-2 [6]. Other applications such as SOI, parasitic MOSFET [7], and sili-
con pixel detectors [8] may require more computational power. Although faster vector supercomputers may
offer the computational power needed, parallel processors provide an attractive alternative.

A Connection Machine 5 (CM-5) {9] device simulator that uses an irregular grid automatically gener-
ated by the Omega program [10,11] will be presented. For sequential device simulators, the nonlinear alge-
braic system of equations arising from the discretization is efficiently and accurately solved by a variation of
the basic Newton-Raphson algorithm. As usual in this algorithm, most of the computation time is spent on
the solution of the linearized system of equations. The focus of the work is to speed-up this step. Heuristics

for partitioning, communication scheduling, and preconditioning for the efficient implementation of a paral-
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lel iterative linear solver Will be illustrated. Parallel results are compared with a sequential program called
PILS [12).

This chapter is organized as follows. An overview of the device equations and how they are generally
solved is first given. Section 3.3 describes a parallel linear solver. Results are provided and analyzed in Sec-
tion 3.4. Finally, possible extensions are described in Section 3.5.

- 3.2 Problem Definition and Solution Method
The steady-state drift-diffusion model of semiconductor devices described by Equations 2.1 - 2.3 has

been used in this chapter. The box method (BM) [16] along with the Scharfetter-Gummel method [15]
described by Section 4.3 is used to obtained the discrete equations. The solution method for these discrete
equations is summarized by Algorithm 2.1. BM uses Gauss’s theorem to equate the divergence of a vector
field to a scalar source term. It is equivalent to the finite difference method for rectangular grids. BM pro-
. duces coupling between different grid points only if the points are neighbors. Hence, the linear system
resulting from the Newton scheme is very sparse with about 10 nonzeroes per row. Each grid node maps into
three rows of the matrix, Because of grid irregularity, the sparsity structure is complex when compared to a
simple band structure arising from standard partial differential equations.

For spatial discretization, the grid generator Omega [10,11] which refines mesh density according to
geometry and gradient of impurity concentration is used. Omega also computes the cross sections perpen-
_ dicular to each edge which are required for integrating the device equations with the box method. The
desired mesh density inside the device is obtained through recursive refinement of prisms, pyramids, and
cuboids. For example in refining along one, two, or three coordinate axes, the cube is subdivided into two
halves, four quadrants, and eight octants, respectively. The elements with additional edge midpoints are then
subdivided into tetrahedra, pyramids, prisms, or bricks. Sample mesh structures are illustrated by Figures
3.1 - 3.2. A CM-2 mapping in which each irregular grid is mapped to a processor would result in a very inef-
ficient device simulator since CM-2 non-neighbor communication routines are in the order of milliseconds.
Taking advantage of near neighbor communication through ingenious mappings is difficult since the differ-
ence between the smallest and the largest node degrees is more than ten. Hence, only a CM-5 implementa-
tion is developed since the CM-5 does not require near neighbors for efficient communication.

Heiser et al. [6] states that for a typical sequential 3-D irregular grid simulation with a number of grid
points of the order of 100,000, between 70 and 90% of the total simulation time is used to solve linear sys-

tems. Hence, for the current implementation, linear device matrices are currently generated with the sequen-
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tial program called Second [6). Matrix generation is easily parallelizable since it only requires neighbor

information and its optimization is not important since it is only executed once for each Newton iteration.

3.3 Static Grid Algorithms
3.3.1 Preconditioned Linear System Solution

The CGS [17] iterative solver which has been presented in Section 2.4.1 is again used for the solution
of the linear system. As discussed in Section 2.4.1, inner product, matrix times vector, and preconditioning
operations may require interprocessor communication. A communication scheduling algorithm (presented
later in Section.3.3.4) based on a graph algorithm is now used to handle the irregularity of communication
calls. The same scheduling routine may be used for preconditioning purposes.

The irregularity of the mesh structure makes the use of block partitioned natural ordering (BPNO)
described in Section 2.4.4.2 difficult. Keeping track of subdomain boundaries and moving the subdomain
boundary is not trivial to implement. Hence, we investigate simplified preconditioners generated by the fol-
lowing combination of ILU preconditioning and FBS techniques: parallel ILU / parallel FBS, sequential
ILU / parallel FBS, and sequential ILU / sequential FBS. The parallel version ignores communication com-
pletely as opposed to its sequential counterpart. The reverse Cuthill-McKee, minimum degree, and maxi-
mum degree algorithms [19] are implemented for ordering processor and grid nodes within each processor.
The reverse Cuthill-Mckee ordering starts with the node with the least edge degree. It then selects the neigh-
boring nodes in ascending edge degree order. The algorithm repeats the same process for each neighbor until
all the nodes have been ordered. The minimum degree ordering arranges the nodes in ascending edge degree
order. The maximum degree does the order in a descending manner. No particular ordering is followed when

there are nodes with equivalent edge degrees for all three orderings.
3.3.2 Partitioning

3.3.2.1 Complexity of the Objective Function

The goal is to minimize the total elapsed time needed to obtain the solution. The total elapsed time is
determined by the processor that has the longest CPU time requirement to carry out its alloted computation
and communication task. Hence, the goal of a partitioner is, for a given algorithm, to achieve computational
balance, to achieve communication balance, and to minimize communication requirements.

To achieve computational balance in conjugate gradient based iterative solvers, there are three issues.

First, the linear algebra operations between synchronization points must be computationally balanced by
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balancing the number of grid nodes. These synchronization points which require processor to processor
communication are the dot product and matrix times vector operations. Second, balancing the matrix times
vector operation is dependent upon the number of grid points and the sum of node degrees. Finally, balanc-
ing the application of the preconditioner is a function of the sum of node degrees in a reachability graph for
a given node ordering and level of allowed fill-ins.

Two issues need to be addressed to achieve communication balance and to minimize the total commu-
nication requirement for a given algorithm. First, the average and maximum numbers of processor neighbors
need to be minimized. Processor neighbors are defined as the number of processors a specific processor
needs to communicate with to accomplish its computational task. Minimizing processor neighbors would
imply minimizing the latency time required for each communication call. Second, the average and maxi-
mum numbers of edges cut for each processor need to be minimized.

There are three operations that may require communication for a CG based solver - dot product,
matrix times vector, and application of preconditioner. Dot product communication can be done easily
through the use of the CM-5 reduction operation. To minimize the number of edges cut and the processor
neighbors for a matrix times vector operation, we only have to look at the actual connectivity mesh structure.
For preconditioner communication, we have to look into the edges of the reachability graph that go from one

processor to another. This reachability graph is dependent upon the given node ordering and the criterion
used for allowed fill-ins.

3.3.2.2 Simplified Objective Function
It is difficult to devise an objective function for a partitioner with a CG based solver as its target algo-
rithm when dealing with all the issues described in the previous section. We simplify the criterion for the
partitioner by focusing on the following parameters with the actual mesh as the basis graph:
1. time to run the partitioner
2. difference between the processor with the most nodes and the processor with the
least nodes (node load balance)
3. average number of processor neighbors
4. maximum number of processor neighbors
S. total edges cut
6. difference between the processor with the most edges and the processor with the
least edges (edge load balance)
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- These parameters will have different significances for the unpreconditioned CG based solver and for
the type of preconditioner used. We investigate the geometrical, topographical, and spectral partitioning heu-
ristics that recursively bipartition [20] the graph representing the input mesh structure. Each partitioner has
strengths and weaknesses based on the parameters presented above. The significance of each parameter can
be determined by the total elapsed CPU time results for each partition.

3.3.2.3 Geometrical Partitioner
The geometrical partitioner, described by Algorithm 3.1, sorts the grid points according to their coor-
dinates along the axis that has the most number of unique coordinate points. Several criteria can be used to
choose the partition point.
1. node with a coordinate different from its neighbor closest to the middle
2. node at the middle of the list
3. node that divides the list into two partitions with an equal sum of node degrees
For criterion 2, the grid points at the boundary (grid points with the same coordinates as the node at
the middle of the list) are further sorted using the other two axes. This enables most adjacent boundary grid

points to remain in the same partition,

Algorithm 3.1: Geometrical Partitioner

Step 1: For the given set of points, create three sorted list in terms of
coordinates for each axis.
Step 2: Use the list with the most number of grid points and create two

groups of points based on a specific partitioning criteria.
Step 3: Repeat recursively.

The partitioner based on the first and second criteria can be enhanced further by swapping nodes
between the two partitions to obtain sum of node degrees balance. More heuristics may be used to choose
the region in which to allow the swapping of nodes. The basic idea is to first swap nodes near the boundary
and gradually move in until the desired sum of node degrees balance is obtained.

3.3.2.4 Topographical Partitioner
The Fiduccia-Mattheyses algorithm [21], which is an improvement of a local search algorithm first
presented by Kernighan and Lin [22], is used to implement a topographical partitioner. The basic algorithm

moves a node from one partition to the other partition in an attempt to minimize the cutset while maintaining

67



CHAPTER 3: Irregular Grid Drift-Diffusion Device Simulation

the load balance between-the two partitions within a specified tolerance. A cutset is defined as the number of
edges that connect nodes in different partitions. The algorithm has a cost function that is allowed to increase
in order to help the partitioner get out of a local minima. Algorithm 3.2 summarizes the topographical parti-
tioning steps. Ten trials are executed for each partitioning result in order to desensitize the partitioning out-
come from the random initial guess. A 5% maximum load balance deviation tolerance is used for each

binary partition.

Algorithm 3.2: Topographical Partitioner

Step 1: Random partitioning of grid points into two groups.

Step 2: Switch grid points between the two groups. Keep track of total
edges cut at each step.

Step 3: Use partition with lowest number of total edges cut.

Step 4: Repeat recursively.

3.3.2.5 Spectral Partitioner

The spectral partitioner [23] described by Algorithm 3.3 is based on the computation of the second
largest eigenvalue and the corresponding eigenvector of the Laplacian matrix of the connectivity graph. The
connectivity graph is the device mesh structure. This eigenvector which is called the Fiedler vector [24]
gives distance information about the nodes. Sorting the nodes according to this information provides a way

of partitioning the mesh.

Algorithm 3.3: Spectral Partitioner

Step 1: Compute Fiedler vector for graph using Lanczos algorithm [24].
Step 2: Sort vertices according to size of entries in Fiedler Vector

Step 3: Assign half of the vertices to each subdomain

Step 4: Repeat recursively.

| 3.3.3 Domain to Processor Mapping

No particular order is followed in mapping each mesh subdomain to a processor. The partition number
generated by the partitioner for each subdomain is also used as the processor number. The fat tree network of
the CM-5 minimizes the maximum distance between processors [25]. Hence, we expect minimal communi-

cation penalty for using a simple domain to processor mapping.
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3.3.4 Communication Scheduling

Given a partition of grid nodes among processors, the abstract model used for scheduling communica-
tion is a processor-communication graph. Each vertex represents a processor and each edge (i,j) represents
the existence of at least one mesh edge that has grid nodes in processors i and j. Therefore, an edge in pro-
cessor-commaunication graph represents communication either in one direction (preconditioner computation,
forward substitution, and backward substitution) or in both directions (matrix-vector multiplication).

The communication scheduling algorithm for matrix-vector multiplication is based on the repeated
application of the maximal nonbipartite matching heuristic. We decided to use a heuristic algorithm instead
of an exact minimizing algorithm since the heuristic algorithm is significantly faster to execute and the heu-
ristic solution is comparable to the exact minimized solution. Each pass of the matching heuristic selects the
maximal number of communication edges such that no two have a common vertex. At each step of the max-
imal matching heuristic, an edge that connects a vertex of maximum degree to its neighbor with largest
degree is extracted as a matched edge and deleted from the graph along with the matched vertices and their
incident edges. Therefore, this greedy matching heuristic tries to minimize the number of passes while
attempting to maximize the number of matched edge during each pass.

The communication scheduling algorithm for the preconditioner computation that needs to send the
rows of a matrix from one processor to another is implemented by a simple heuristic that receives data from
and sends data to neighboring processors in a specific order. The same heuristic is used for scheduling com-

munication for the forward and backward substitution.

3.4 Experimental Results
3.4.1 Data Structures and Code Optimization

A hash table is used to store each row of the matrix and comresponding vectors. A doubly linked list of
two-dimensional dense blocks is used to represent each row. Arrays are used to transfer data from one pro-
cessor to another.

The performance of each CGS iteration is improved by several modifications. First, the removal of
subroutine calls avoids unnecessary memory loads and stores. Second, CGS loop reorganization, which is
done by moving some independent CGS steps, improves the cache performance. Third, the combination of
several linear algebra operations minimizes memory loads and stores. Fourth, address precomputation
speeds-up memory access. Application of all these modifications provides a 4X speed-up for CGS with no
preconditioning and a 3X speed-up for CGS with preconditioning.
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3.4.2 Computing Environment & Test Examples

All results in Sections 4.4 and 4.5 are obtained with a 64 node CM-5 with no vector units. 32, 64, and
128 node CM-5s with no vector units are used to generate the results in Section 3.4.6. The algorithms are
implemented using the C programming language with the CMMD 3.0 communications library [26]. Only
blocking communication calls which prevents the overlap of computation and communication are currently

used.

Figure 3.2: LOCOS grid
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Figure 3.3: MCT Grid
Several device structures described by Hitschfeld [27] are used to study the partitioning schemes
described above. ECL is a trench-isolated bipolar transistor, LOCOS is a short channel MOS transistor with
surrounding locos isolation, and MCT is a MOS-controlled Thyristor with integrated MOS controlled n+
emitter shorts and a bipolar gate. It is a device used in high power applications such as traction, high-voltage

transmission and motor control. Varying bias conditions and initial guess values are used to test the solver.

3.4.3 Partitioning Results

In terms of single Sparc partitioning CPU time shown in Table 3.1, both topographical and spectral
partitioner are an order of magnitude slower than the geometrical partitioner. Criterion 1 in Section 3.3.2.3 is
used for the geometrical partitioning results in this section. The topographical partitioner can be accelerated
by decreasing the number of random initial guesses. However, this significantly degrades partitioning
results. Table 3.2 illustrates that the spectral partitioner gives the best node load balance (L.B.). By using
Criterion 2 in Section 3.3.2.3, the geometrical partitioner will give perfect node load balance. The topo-

graphical partitioner can also be modified to give good load balance by tightening the node load balance tol-

erance in the cost function.
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Table 3.1: Single processor partitioning time (sec)

Pevice | oges |81 E4855| o Time | “Time. | mime
724 . )

locos | 16586 | 57335 670 | 14920 | 12506

mt 41122 | 140529 | 1780 | 74864 | Failed

Table 3.2: Load balance results

pevics | b |1opoLB. | sPECLE.

min (max) min (max) | min (max)

ecl 208 (339) | 205(396) | 276 (277)

locos 210 (308) | 252 (267) | 259 (260)
mct 548 (736) | 625 (666) Failed

Processor neighbors (P.N.) are defined as the number of processors a processor needs to communicate
with while doing a matrix times vector operation that is basically represented by the mesh connectivity
graph. The geometrical partitioner is shown by Table 3.3 to give the best minimization of average and maxi-
mum number of processor neighbors. This results degrades when the cost function is adjusted to improve
node load balance. The topographical partitioner is illustrated by Table 3.4 to give the lowest number of
edges cut for the three sample devices. The number of edges cut increases when the cost function is adjusted
to improve the node load balance. The total number of edges cut for the geometrical and the spectral parti-
tions may be improved by applying a variation of the topographical algorithm. Grid nodes at partition
boundaries may be swapped to decrease the number of edges cut and, at same time, still maintain the node
load balance. In terms of the difference between processors with the most edges and the least edges, the
three partitioners gave comparable results. The sum of node degrees has a worst case deviation of 30% from

the average.

Table 3.3: Processor neighbor results

Device GEOM TOPO SPEC
Ave.,Max. | Ave,Max | Ave, Max
ecl 8.0,17 85,17 10.5,19
locos 79,14 98,15 112,19
mct 7.1,14 8.0,20 Failed
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Table 3.4: Edges cut results

Device GEOM TOPO SPEC
E.C. EC. E.C.

ecl | 09112 7749 11641
locos 9294 8155 12223
mct 15396 13601 Failed

3.4 Experimental Results

We focused on the geometrical partitioner since it can be easily modified and executed to produce par-
titions with varying characteristics. The topographical and spectral partitioners are also examined to see if
the best results obtained with the geometrical partitioner can be improved.

3.4.4 CGS with No Preconditioning

With regards to the simplified cost function, there is a trade-off between load balance and communica-
tion balance. Comparable results were obtained with different partitioning goals - node load balance, edge
load balance, and minimization of processor neighbors. The only major performance degradation observed
was while using the partitioning with the perfect node and edge balance. This partition resulted in a severe
number of processor neighbors and of total edges cut. Hence, it can be concluded that the performance of
CGS with no preconditioning is relatively insensitive to the type of partitioning.

A variation from 10 to 40% of the total CPU time is currently spent on communication. The variation
is due to the fact that there is a computational imbalance between communication calls, imbalance of proces-
sor communication requirements, and idle time due to the difference in processor neighbors. Minimizing
total edges cut by using the topographical partitioner did not improve the performance.

A speed-up of more than 40X for 100 CGS iterations with no preconditioning is obtained for large
problems with the geometrical partitioner. This speed-up corresponds to an efficiency of more than 60% in
obtaining the theoretical maximum speed-up. The results are shown in Figure 3.4. The same speed-up is
obtained for a 41,122 node MCT. It should be pointed out that PILS is a highly optimized sequential solver
and the parallel code is also optimized as described in the previous section.
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Figure 3.4: CGS with no preconditioning resuits

3.4.5 CGS with Preconditioning

3.4.5.1 ILU with Magnitude Threshold Fill-ins

In implementing the preconditioner on the CM-5, we observed that any variation of the sequential
FBS produced unsatisfactory results even with different variations of ordering schemes. Since FBS is
applied twice in each iteration, its sequentiality left a major portion of the processors idle. Hence, we
decided to use a parallel FBS which did not require any communication and focused on improving the
matrix decomposition routine. The parallel LU (PLU) preconditioner obtained by performing a complete LU
decomposition within each processor is found to be robust in practice and completely parallel since commu-
nication between processors is now eliminated. However, PLU is very computationally expensive in the cal-
culation of L and U. This problem is alleviated by introducing an incomplete LU routine with some allowed
fill-ins. The fill-ins are kept or discarded depending upon their magnitude. A sequential version called ILUV
has been shown to be effective on the hydrodynamic equations by Zhao et al. [28].

Gauss’s algorithm [29] is used to generate the incomplete LU decomposition. Fill-ins are generated in
Step 4 of the algorithm. For a coupled solution, a fill-in unit is a three by three matrix and is kept if at least
one of the entries is larger than the specified threshold.
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Figure 3.5: Effect of fill-ins on number of iterations
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Figure 3.5 illustrates the influence of the number of fill-ins on the number of iterations needed for con-
vergence. ECL2, ECL3, LOCOS2, and LOCOS3 are 25969, 34877, 27288, and 35875 node devices respec-
tively. Figure 3.6 shows how much faster it is to compute L and U when less fill-ins are retained. Figure 3.7

shows how threshold levels influence the total CPU time which is the composed of ILU computation and of
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the total time needed for CGS to converge. Optimal results show a factor of more than 35X speed-up com-

pared to PILS. However, differences in the conditioning of the matrix require different threshold levels for
optimal performance.

CPU Time (sec)
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Figure 3.7: Total CPU time
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3.4.5.2 Automatic Selection of Threshold

Figure 3.7 shows that for large problems, no fill-ins are needed to obtain the optimum performance.
However, for smaller problems, optimum performance is observed with fill-ins. We implement a routine that
automatically searches for the threshold that will create a number of fill-ins comparable to the number of
entries in the matrix being solved. The threshold search is done using a bisection method. Matrix decompo-
sition is aborted at early stages of the computation if the current fill-in count predicts a substantially lower or
higher final count compared to the number of blocks in the A matrix.

Figure 3.8 show that results of automatic threshold selection algorithm and of the sequential PILS
solution. Sequential results are obtained using CGS with an ILU preconditioning which is commonly used in
sequential device simulation. The time to do the incomplete factorization for PILS is less than 2% of the
total CPU time to solve the linear system of equations. Automatic selection of the threshold is also used for
larger problems and minimal CPU time penalty is observed. Sequential to parallel speed-up increases as the
problem size increases. Speed-ups of 50% of the theoretical maximum are observed for large problems.

Similar speed-up is obtained for the MCT device.

345.3 Effects of Partitioning

For simulations with little or no fill-ins, the best results are obtained with partitions having perfect
node load balance. Since there is no increase in communication compared to CGS with ro preconditioning,
a variation from 2 to 10% of the total CPU time is spent on communication. The same reasons discussed in
Section 4.4 explain this variation.

For simulation with fill-ins, an increase in problem size increases the computational imbalance for
FBS. Balancing the number of grid points per processor is not sufficient for computational balance. For
example, in the 25969 node ECL device with 400 nodes for each processor, there is a worst-case 27/35 dis-
crepancy in terms of sum of node degrees. This produced a 49/85 discrepancy in the number of fill-ins gen-
erated by the LU decomposition within each processor. This imbalance produced a factor of 2 difference in
CPU time. The edge imbalance is corrected by an enhanced geometrical partitioner described earlier. How-
ever, this did not improve the results since the number of fill-ins generated is not only influenced by the orig-
inal nonzero elements but also by the manner in which the nodes are connected. Again, the best results are

still obtained with perfect node load balance.
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34.5.4 Effects of Ordering

As mentioned earlier, the reverse Cuthill-Mckee, minimum degree, and maximum degree algorithms
[19] are implemented for ordering processors and grid nodes within each processor. No ordering is needed
for the processors since the links across processors during preconditioning have been removed for parallel
execution. From our experiences, the minimum degree grid node ordering gives the best convergence behav-
ior for the ECL and LOCOS devices. Reverse Cuthill-Mckee ordering is observed to give the next best con-
vergence behavior. The node with the minimum degree is used as the starting node for the reverse Cuthill-
Mckee ordering. Both ordering schemes maintain a significant portion of coupling between nodes when fill-
ins are allowed. Maintaining the coupling of nodes for rectangular grids has been illustrated by Tomacruz et
al. [44] o give the best preconditioners. This also appears to be a good criteria for irregular grids.

3.4.6 Scalability

Efficiency (%)
70.00 = T T T T T T =

2000 25.00 30. .00 X 45
Mesh Size (10/3)

Figure 3.9: Scalability with problem size
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Figure 3.10: Scalability with machine size

Figure 3.9 shows the increase in efficiency as the problem size becomes larger. These results are
obtained for a 64 node CM-5 using the ECL device. Sequential to parallel speed-up increases as the number
of processors is increased. However, the efficiency of the algorithm is shown in Figure 3.10 to decrease as
the number of processors increases. This is due to the fact that, for a static mesh size, the connectivity of the
mesh structure is compromised further as the number of processors increases. This degrades the perfor-
mance of the preconditioner which results in an increase of the total number of iterations required for con-
vergence.

It should be pointed out that due to memory limitations of the sequential matrix generator, the largest
mesh size solved is about 50,000 nodes. A major portion of three-dimensional device simulation applica-
tions are expected to require nodes in the order of a hundred thousand. Therefore, with larger parallel com-

puters, we still expect a 50% computational efficiency with the simulation of larger device problems.

3.4.7 Discussion

Parallel computers are shown to be effective in doing irregular grid drift-diffusion device simulation.
A 50% efficiency is obtained for the solution of large device matrices utilizing the iterative CGS linear
solver with preconditioning. The best preconditioner observed uses incomplete LU decomposition with fill-
ins. Preconditioning is parallelized by removing links between processors during ILU and FBS. Hence,

communication calls are only necessary for dot product and matrix times vector operations. Fill-ins are gen-
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erated using a magnitude.threshold criteria that is adjusted o provide fill-ins comparable to the number of
entries in the matrix being solved. The minimum degree node ordering is observed to give the best results.
Due to the total parallelism of the preconditioner, no processor ordering is necessary.

Perfect node load balance is observed to be the most important partitioning parameter. The geometri-
cal partitioner is the preferred partitioning algorithm since it can obtain perfect node load balance partitions
an order of magnitude faster than the topographical and spectral partitioners. It can obtain this result and, at

* the same time, it tends to minimize average and maximum processor neighbors. Minimizing total edges cut,
- as obtained by the topographical partitioner, is not important since the CGS with preconditioning algorithm
spends less than 10% of the total CPU time doing communication calls. The computational cost of the
sequential geometrical partitioner is not significant since it is only done once, while a typical device simula-
tion requires the solution of numerous time points or voltage points.

If a Cray-2 is used to run PILS, a 40X performance improvement over Sparc workstation performance
is obtained [6]. Hence, it can be concluded that a 128 node CM-5 with no vector units will exceed Cray-2
performance for large irregular grid semiconductor drift-diffusion device simulations.

MFLOPS ratings for the solution of device matrices are not useful. The best algorithms (algorithm
that minimizes wall clock time and has good convergence properties) are different for sequential and parallel
implementations. The parallel algorithm will require more total floating point operations to converge since
parallelization degrades the quality of the preconditioner.

The current implementation uses a sequential matrix generator which takes 10-30% of the total
sequential CPU time [6). This should be easy to parallelize since the communication requirement is the same
as the matrix times vector operation. Also, the algorithm speed can be further increased with the use of vec-
tor units. Groups of nodes within each processor may be done in parallel with the vector units while using
ILU with minimal fill-ins.

The CPU time required for a parallel direct solver is determined by the number of operations and the
percentage that can be done in parallel. The ordering of the nodes determines the number of operations and
the amount of parallel work that can be done. Evaluating these parameters is difficult for irregular grids. It
has to predict the number of fill-ins and also areas of parallel processing given an ordering. An upper bound
can be set by looking at direct dense matrix solvers. In computing the floating-point execution rate, use 2n°/
3+ 2n? operations independent of the actual method used. Dongarra [30] reports 64 node CM-5 perfbr-
mance of 3.8 Gflop/s for LINPACK. Hence, a 64 node CM-5 direct dense matrix solver would take more

than 48 hours to solve a 100,000 node matrix. It is still not clear how well sparse direct solvers can be imple-
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mented on a parallel machine. Algorithms of O(n*) where x is less than 2 may be possible for sparse matrices
with a specific structure. Whether these algorithms may be used with good parallel efficiency for the irregu-
lar problems defined in this chapter still needs to be determined.

3.5 Extensions

3.5.1 Active Messages and Workstation Clusters

Martin [31] or von Eicken et al. [32] network report communication latencies comparable to MPPs, It
is not clear if such special network set-ups will be available in future workstation clusters. These future clus-
ters will be characterized by the use of off-the-shelf components that address a wide range of task require-
ments. Hence, implementation of the parallel algorithms on workstation clusters would only be confined to
current available technology.

Tables 1.5 shows message-passing times in the order of milliseconds for an unloaded workstation and
an unloaded network. Table 1.6 illustrates broadcast and barrier synchronization times in the order of tens of
milliseconds for a 32 node cluster. These communication latencies may be hidden through the use of active
messages. The efficient use of active messages may determine the usefulness of workstation clusters for par-
allel TCAD simulations.

The presented algorithms revolve around the efficient solution of the preconditioned CGS algorithm.
Active messages will not significantly improve the performance of an MPP implementation since only 10%
of the current CPU time is spent on communication. However, active messages may be able to hide the
latency inherent in workstation clusters. The first criterion to check is the time for each iteration. For the
devices presented in this chapter, each iteration CPU Time is in the order of the hundreds of milliseconds
which would imply the possible applicability of active messages. The focus would then be on dot products
and matrix times vector operations since they require communication calls.

Active messages can be applied to dot products by making each processor send their local dot prod-
ucts to a host processor. The host processor can then add up the partial dot products and send it back to the
processors. It is currently not clear how much computation can be done while the processors are waiting for
the dot product. By rearranging some operations like moving the update of x to location after the first dot
product in the inner loop and by having large enough data set within each processor, physical latency due to
dot products may be hidden by active messages.

Active messages can also be efficiently used in the matrix times vector routine since each processor

can first send all the data needed by its neighbors and then work on its own data while waiting for the daa it
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needs from its neighbors. Again, the physical latency can be hidden by having large enough data within each
processor.

Hence, by working on large data within each processor and by careful arrangement of linear algebra
operations, it may be possible to use active messages to efficiently implement CGS routines on workstation
clusters. However, Lewis and van de Geijn [33] report that the use of active messages complicates the imple-
mentation of matrix times vector routines for an Intel iPSC/860. The running time of their algorithm is diffi-
cult to estimate accurately because each node may be computing and have numerous messages in transit at
any time. A more crucial issue is the rapidly increasing number of messages which may prevent the algo-
rithm from scaling to a very large number of nodes. It should be pointed out that high efficiency may not be
necessary to justify the use of workstation clusters since workstations for sequential computing should

already justify the acquisition and operating cost.

3.5.2 Explicit Methods

Tai et al. [36], Kurata et al. [35], and Pleumeekers et al. [34] present explicit drift-diffusion device
simulators. Explicit methods do not require the solution of a linear system of equations. Hence, they have
small memory requirements and are simple to implement both in sequential and parallel form. Tai et al. [36]
presents a parallel explicit 2-D device simulator that has a speed-up of 8 for an SOI application due to paral-
lelism in the time domain. However, no comparisons are made between implicit and explicit methods. The
2-D device was mapped into an 16K CM-2 machine by making multiple copies and mapping each grid point
to a processor. Each device represents a time point and the speed-up was then calculated based on the perfor-
mance of a single device simulation. Kurata et al. [35] uses an explicit algorithm on 2-D bipolar transistor
examples to obtain results that take 5 to 10 times more CPU times compared to the implicit device simulator
TONADDE?2. Pleumeckers et al. [34] performed 3-D explicit simulations on diodes, BJTs, and FETS. In all
cases, the solutions were obtained with a factor of 10 to 50 degradation in CPU time compared to implicit
simulations. For these results and the previous observation of 50% parallel processing efficiency for implicit
methods, it can be concluded that even with 100% parallel efficiency for current explicit methods, the most

. efficient parallel device simulator will still be based on implicit methods.

3.5.3 Adaptive Grids
Three-dimensional adaptive semiconductor device simulation have been presented by Coughran et al.
[38] and Burgler et al. [39). Adaptive grid simulators modify mesh structures during simulation to compen-

sate for unpredictable and changing fields and currents in order to achieve accuracy and efficiency. Adaptive
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grids are particularly useful for time-dependent simulations where the active region of the device changes in
time.

Coughran et al. [38] illustrates a typical outline of a grid generation procedure used by adaptive grid
simulators. The process simulator supplies the topology and the doping profile to the initial grid generator.
The adaptive refinement uses the doping profile, current mesh, and current solution as a basis for creating the
new grid. Using this high-level procedure, the applicability of parallel processors to 3-D adaptive device
simulation is examined.

Figure 3.11 illustrates a proposed adaptive grid simulator. It uses the sequential geometrical parti-
tioner and the parallel static grid simulator presented earlier. Several new issues need to be addressed - initial

grid generation, error indicators, and parallel adaptive refinement.

Seggxenlial .
Initial Grid Generation

Sequential Geometrical
Partitioning

ﬁ Parallel Solve PDEs at bias %

Parallel Computation of
Error Indicator

Obtained Desired
Accuracy?

N S

lel
K?lraaptfve Next Bias or

Refinement Time Point

Figure 3.11: Proposed Parallel Adaptive Grid Simulator

The goal is to minimize the number of adaptive refinement iterations needed to obtain the desired
accuracy. The initial grid should also not be overly fine since this will degrade the efficiency of the program.
A good initial grid generator is OMEGA [11]. To generate a mesh structure with about 100,000 nodes for a
CMOS inverter would take 600 sec on a SUN-SPARCI [10]. Using parallel processors comparable in per-

formance to traditional vector supercomputers (128 node CM-5 = Cray-2 from previous section), an Omega
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initial grid generator would require negligible CPU time compared to the 5 hrs required for the actual device
simulation [6]. Based on extrapolation of the data in Table 3.1, partitioning can be done in less than 300 sec
which again can be neglected in terms of total CPU time.

Local error estimators based on the formalism proposed by Bank and Weiser [41] has been found to
give excellent results [38], [39], [40]. An edge is refined based on an error computation that only requires
data from the two control volumes the edge connects. The scheme has been shown to be successful in simu-
lating bipolar transistors, MOS devices, and CCD [38] [39]. Due to the locality, error evaluations can be
done in parallel.

From the previous paragraph, there exists for each element an indicator telling across which axes of
the element needs furtli[er refinement. Refinement rules presented by Hitschfeld et al. [11] can then be
applied. This process may be done on a sequential or parallel manner. A sequential methods avoids the prob-
lem of implementing a parallel Omega algorithm. However, when grids points are added or deleted for the
next simulation, clever allocation routines are needed to be developed. These routines should be knowledge-
able of the current partitioning of nodes, be able to maintain load balance by moving grid points from one
processor 10 its neighbors, and be able to easily modify the communication scheduling algorithm. The sec-
ond option of implementing a parallel mesh generator would also need these clever allocation routines and at
the same time be able to efficiently represent a parallel mesh data structure. One difficulty lies on grid points
at the subdomain boundaries which are made denser or coarser. This may require communication with other

processors.

~3.54 Hydrodynamic Models
Drift-diffusion device simulators ignore the spatial variation of the average carrier energy and assume
that the mobility and diffusion parameters are uniquely specified by the local electric field. These limitations
can be removed by adding the energy balance equation which will produce a set of equations called the
hydrodynamic equations since the system is similar to that which describes the flow of fluids. The energy
balance equations are derived from the second-order moments of the Boltzmann Transport Equation (BTE)
[43,44).
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where W, F, J, C, and E are the energy densities, energy flows, current densities, carrier type (n or p), and

electric field, respectively. The energy flow is defined as:
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where T, represents the temperature, X, the related thermal conductivity, and s is a weakly-varying correc-

a 5
o Fw‘ = —chTc- (E-S)

tion, related with the dominant scattering mechanism. The hydrodynamic model extends the drift-diffusion
model through three modifications on the particle flux density equation. The first term is the diffusion cur-
rent for which a generalized Einstein relation between mobility and diffusivity can be recognized. Second,
the E term is modified to include the thermoelectric contribution which arises from the gradients in the car-

rier temperature. And finally, a third term is added to represent contribution from the drift energy.
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The average energy density of the carrier subsystems can be expressed as follows:

where m is the carrier effective mass and v the drift-velocity. In the usual energy transport model, the second

mcvaC (3.9)

term is neglected. In the hydrodynamic model (HD), this assumption is not made, and the drift energy is
included in the kinetic energy tensor.

Energy balance and HD device simulators do not have the same region of validity as Monte Carlo
device simulators. Monte Carlo calculates the full distribution function without assumptions of its form. Any
moment-based approach (energy balance or full hydrodynamic) only obtains the first few moments of the
distribution function. A good example is page 105 of Lundstrom [45]. This shows the distribution in the base
of a heterojunction bipolar transistor (HBT). In a thin base HBT, most of the current is carried in the “ballis-
tic peak”. Using only the energy balance equation will not model this properly. Hydrodynamic simulation
may be able to model it. However, anything sensitive to the “thermalized” part of the distribution would
probably not be simulated accurately by HD. The base recombination current might be a parameter that is
strongly dependent on the thermalized part which would be neglected by HD.

There are several versions of HD simulators. Pierantoni et al. [44] features an accurate description of
the energy exchange among electrons, holes, and lattice, and is therefore suitable for self-consistently simu-
lating thermal effects and non-stationary phenomena, as well as their possible interactions. Ahn et al. [46]
presents a hydrodynamic model that accurately computes the high energy tail electrons which contributes to
the impact ionization and the injection of current into the gate oxide. Ramaswamy et al. [47] makes a survey

of some hydrodynamic models and presents a scheme to determine the accuracy of the models.
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Gardner et al. {48] demonstrated that block successive under relaxation converges for a 1-D submi-
crometer semiconductor device using the hydrodynamic model. They obtained a parallel speed-up of
approximately 2.5 on 10 processors using a chaotic relaxation and the preconditioned conjugate gradient
method for the parallel diagonal block solver.

In implementing the hydrodynamic simulator, the presented framework and algorithms may again be
used. There are now six unknowns that can be solved together or in some decoupled scheme. Implementing
a good multigrid initial guess routine along with a good preconditioner may again determine the usefulness
. of a MP HD simulator. Other issues to be resolved are the mesh structure type and the grid generation algo-
rithm to be used. )

Sample matrices are obtained from Pierantoni et al. [44]. Unfortunately, the matrices are not arranged

in accordance to the grid point they belong to. Also, no completely coupled solution of the thermal-hydrody-
namic model is available. The solution is divided into two blocks - [y, n, p] and [¢,, tp, 1;]. One sample
matrix came from a BJT device. The total number of equations is 52908 - the first 17637 are the Poisson
equations, the second 17637 block are for the electron equations and the last block are for the hole equations.
This particular matrix is solved by a sequential CGS solver in 327 iterations (253 seconds in a 365-IBM
RISC 6000). Another sample matrix came from a MOS simulation. It had 20000 equations and it took the
same sequential machine 33 seconds to solve. Using the parallel solver, presented in this chapter, no speed-
up is obtained due to the small sizes of the matrices and the inefficient partitioning of the nodes. However,
the conditioning of matrices is comparable to regular drift-diffusion since the parallel solver takes less than
100 iterations to solve the matrices. Hence, it is expected that the parallel solver will show significant speed-
up for larger problems.

An important issue is when does MP solution of BTE moments become more computationally expen-
sive compared to MP Monte Carlo solution. Sequential Monte Carlo simulations are an order of magnitude
slower than sequential thermal-hydrodynamic simulations. For sequential Monte Carlo simulation, Brisset et ‘
al. [49] reports that contrary to the case of 2D modeling, the CPU time used for solving Poisson’s equation
becomes non-negligible. The total CPU time is strongly dependent on the number of simulated particles, the
number of meshes, and the time step. For a 20 x 20 x 40 mesh, 12500 particles and a 1 fs time step, the sim-
ulation of 10 ps on SUN Sparc 10/20 took 28.5 hours. 16.5% of the CPU time was spent on calculating the
motion of the particles while 77% of the CPU time was spent solving Poisson’s equation.

Section 1.3.2 presents four publications on parallel Monte Carlo semiconductor device simulation.

Ranawake et al. [50] reports a 70% efficiency for 256 x 16 x 128 mesh structure. Even by assuming a 100%
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efficiency for parallel Monte Carlo algorithms and a 50% efficient for parallel hydrodynamic simulators,
hydrodynamic simulators are still expected to be an order of magnitude faster.

Another factor that may influence a user’s choice of models is ease of use in obtaining accurate
results. Ease of use is a combination of several factors. First, the user needs to discretize the problem accu-
rately for meaningful results. For hydrodynamic simulation, the user may specify simple rectangular grids or
complicat‘ed irregular grids to minimize the number of grid points. For 3-D Monte Carlo, rectangular grids
are usually used since this allows easy book keeping of particles for each subdomain. Second, the user needs
to setup the simulation parameters. Both methods require careful choice of simulation time steps. For hydro-
dynamic models, other parameters such initial bias conditions and the collision terms which are calculated
by relaxation-time approximation need to provided. In many cases, Monte Carlo simulations are needed to
give the right hydrodynamic parameters. For Monte Carlo, the user would need to specify the positions and
velocities of mobile carriers. There are also several physical parameters that need to be set depending upon
the problem characteristics such as the type of material used. Third, the convergence behavior of the solution
methods is another important consideration to the user. The block newton iteration with an iterative linear
solve inner loop typically used for hydrodynamic simulation may not converge. Monte Carlo simulators usu-
ally produce simulation results after each run. However, its accuracy is dependent upon the parameter set-
ting. Finally, the user must have confidence on his models. Monte Carlo simulators definitely have more
accurate models. Hence, several papers have been published that attempts to combine drift-diffusion and
monte-carlo to retain the computational efficiency of the pde-based method as well as the accuracy of the
Monte Carlo technique. Kosina and Selberherr [51] describe the basic ideas of the coupled technique.

3.5.5 Noise Simulation for Nonlinear Dynamic Circuits

The iterative solver developed in this chapter is also used for circuit noise simulation. Noise repre-
sents a lower limit to the size of electrical signals that can be amplified without significant deterioration in
signal quality. It also represents an upper limit for the useful amplifier gain. Demir et al. [37] presents a time-
domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations.

The noise simulation method was implemented inside the circuit simulator SPICE3. Time domain
simulation is done along with the transient simulation in SPICE3. The transient simulation in SPICE3 solves
the MNA equations without noises for the circuit. The circuit variables consist of node voltages and branch
currents for some elements. The circuit equations consist of the node equations and branch equations of the

elements for which branch currents are included in the circuit variables vector.
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The noise simulation is done concurrently with the transient simulation. First, the stochastic differen-
tial equation for noise is derived from MNA formulation of the nonlinear circuit equations. Second, the sto-
chastic differential equation for noise is transformed in state-equation form. Finally, the stochastic

differential equation for noise is solved.

') =E@WK ) +K WE@T+F@)F )T (3.10)

where X! (1) represents the noise covariance matrix of circuit variables as a function of time, E () repre-
" sents a matrix which is a function of the derivatives of the MNA equations, and F (#) is the MNA equation
for the circuit. Equation 3.10 is a system of m(m+1)/2 linear differential equations where m is close to the
number of nodes. The Backward Euler scheme is used to solve the equation which transforms the problem
into the solution of a sparse linear system of equations. The system of linear equations would be tridiagonal
if the second term of Equation 3.10 was not included. This second term complicates the solution process due
to the need of general purpose sparse matrix solvers.

Direct methods are first investigated for the solution of the linear system. A BJT active mixer with 65
nodes is used as an example. The noise simulation requires the solution of 2145 linear equations at each of
the 250 time points. This took approximately 17 hours on a DECstation 5900/260. 95% of the CPU time is
used for the solution of large sparse matrices using a direct solver. Using a sequential iterative solver, the
total simulation time was reduced to 0.5 hours. CGS with no preconditioning implemented in PILS [12] was
used as the iterative linear solver. Parallel solution of this problem took 20x250 seconds.

Another example involved the noise simulation of a 16 component delay line in which each compo-
nent had 13 transistors. The matrix generated by this example has 29403 rows. Due to the size of the prob-
lem, direct solvers are not feasible due to memory and speed limitations of current computing platforms.
PILS running on a MIPS R4400/60MHz processor took 1950 seconds to solve the D.C. state noise matrix.
The parallel solver took 330 seconds to calculate the same solution. Since MIPS R4400/60MHz is more 2
times faster than a Sparc II (CM-5 processors), an efficiency of more 20% is observed. Larger problems are
expected to give better efficiency results.

3.6 Summary
The use of parallel processors for the solution of drift-diffusion semiconductor device equations using
an irregular grid discretization has been developed and published [52]. Preconditioning, partitioning, and

communication scheduling algorithms are developed to implement an efficient and robust iterative linear
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solver with preconditioning. The parallel program is executed on a 64 node CM-5 and is compared with
PILS running on a single processor. We observe an efficiency increase in obtaining parallel speed-ups as the
problem size increases. A 60% efficiency for CGS with no preconditioning is obtained for large problems.
Using CGS with processor ILU and magnitude threshold fill-in preconditioning for the CM-5 and CGS with
ILU for PILS, a 50% efficiency for the solution of the large matrices is attained. Perfect node load balance is
observed to be the most important partitioning parameter.

In trying to improve the simulator, explicit methods are shown not be as efficient compared to implicit
methods for the drift-diffusion equations. An adaptive grid algorithm is described along with the difficulties
in its implementation. The proposed irregular grid algorithm is also used in solving the hydrodynamic and
circuit noise equations. It is observed that the hydrodynamic and drift-diffusion matrices have comparable
conditioning. Also, for large hydrodynamic and circuit noise problems, good parallel efficiency are expected
to be observed.
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CHAPTER 4

Reaction Kinetics and
Diffusion Simulation in
Chemically Amplified
Resist

4.1 Background

Various lithographic strategies that have a primary difference in the type of radiation used to expose
the resist have been developed over the past 30 years. All these strategies are limited by resist sensitivity
which must be commensurate with the exposure parameters of the lithography equipment for efficient pro-
duction. Factors such as less efficient radiation sources, photon dependency chemical transformations, or
increase in wafer size from four inches to eight inches and beyond may necessitate the need for increased
resist sensitivity. Chemically amplified resist systems which may be two orders of magnitude more sensitive
[2] are being developed to maintain and improve productivity in terms of wafer exposures per hour. Chemi-
cally amplified systems produce an acid through a photolytic reaction in the initial exposure. The acid then
catalyzes a second chemical reaction during post-exposure bake. The extent of the catalytic reaction deter-
mines the dissolution rate during development. Figure 4.1 demonstrates a general process flow for a chemi-
cal amplification resist consisting of the exposure, a critical post-exposure bake, and development steps.

Chemically amplified resist systems have both nonlinear chemical reaction kinetics [12] and simulta-
neous concentration dependent diffusion. Experimental results such as the lost of standing wave features
(Figure 4.5) and T-topping suggest acid diffusion. Linear linewidth change experimental results presented by
Zuniga et al. [32] and illustrated by Figure 4.11 show evidence that the diffusion is concentration dependent.
The level of complexity in modeling these reaction and diffusion effects is similar to that involved in model-
ing impurity concentration and point defect dependent diffusion in silicon. New mathematical methods in
conjunction with experimental results are needed to be developed to verify reaction parameters. The use of
high post-bake temperatures is preferred as resist sensitivity improves. However, it also results in increased

diffusion and its effects on resolution must be examined in three dimensions. The nonlinearity of the reac-
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tions and the dependence of the diffusion on the local concentration can lead to improved performance.

Understanding and balancing these mechanisms is the key goal in designing production worthy resists.

Exposure Bake Development

Acid
Diffusion

Acid catalyzes to Areas with high concentrations
Acid generation produce activated of activated sites are insoluble
sites

Figure 4.1: Process Flow for a Chemical Amplification Resist

This chapter models the 3-D movement and reaction of species in the post-exposure bake of chemi-
cally amplified resist systems. Both weak and strong dependencies of diffusion on species concentration are
considered by investigating several diffusion models. Combinations of nonlinear reaction kinetics and con-
centration dependent diffusion scenarios are being considered for both acid-hardening (negative) resist and
deprotection reaction (positive) resist. Specifically, we focus our studies on the Shipley SNR-248, I.B.M.
Apex-E, and 1.B.M. Apex-M chemically amplified resists. Due to the predicted large computational require-
ments of 3-D simulations, the target architectures of algorithms developed in this chapter are parallel proces-
SOrS.

This chapter is organized as follows: Section 4.2 describes the equations being solved. Computational
steps to solve the problem implicitly and parallel processor programming consideration are illustrated in
Section 4.3. Section 4.4 explains the discretization method and the matrix assembly equations are described
in Section 4.5. The diffusion models are examined in section 4.6. Section 4.7 describes possible applications
and justifies the use of parallel processors. Section 4.8 presents an adaptive grid method that may be used to

accelerate the simulations. Section 4.9 explores possible extensions and applications of the algorithms pre-

sented.
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4.2 Computational Models
4.2.1 Modeling the Exposure

The SPLAT program [19] is used to determine the intensity distribution as a function of the user spec-
ified mask. The program is capable of simulating the effects of lens aberrations, apodization, spatial filtering,
focus, and magnification effects for high NA, and modified illumination. The intensity distribution is a result
of the coherent and incoherent superposition of a large number of multiply reflected waves within the thin-
film structure. It uses the Hopkins theory of partially coherent imaging to simulate projection-printing with
partial coherence. SPLAT extends Hopkins theory to simulate non-vertical propagation effects in thin-film
interference. Such effects have been shown to be important in photolithography when the Rayleigh depth of
focus R = A/2(NA)? is comparable to or less than the thickness 4 of the photoresist divided by the real part n
of its refractive index. The mask is specified as a set of rectangles and triangles whose size, position, and rel-
ative transmittance are specified by the user.

To generate a 3-D distribution of absorbed energy, the SPLAT program has an independent calculation
for each layer in the third dimension. This may be inefficient since symmetry calculations need only be done
for one z-layer and it may be possible to compute intensity at a smaller number of z-layers and to use inter-
polation for the layers between. Helmsen et al. [28] reports that for a 50x50x93 mesh structure, an I.B.M.
RISC-6000 took 6.8 hours to run Splat. By running this program on a parallel machine or a group of work-
stations, each layer can be done concurrently. Since there is no need for communication, Splat can be exe-
cuted with close to perfect parallel speed-up efficiency.

Dill’'s ABC model [24] can be used to simulate the generation of acid during the exposure through a

simple photolytic reaction. Dill’s equations are summarized below.

%l(z, 1) = —(AM (2,1) +B)I(z,1) @.1)
%M(z, 1) = ~CM(z,8)I(z, 1) 42)

where 7 and M are the intensity distribution and the normalized concentration of photoactive compound

respectively. A, B, and C are Dill’s fitting parameters.

4.2.2 Modeling the Post-Exposure Bake
In chemically amplified resists, one photogenerated molecule drives several reaction cycles during a
post-exposure bake. Ferguson et al. [12] describes the onium salt bake model which is used in this research

project. Although much work has been done, many of the mechanisms such as diffusion which determine
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resist performance are still not well understood. Hence, we develop a general model for two interacting and

one diffusing species which is summarized by the equations below.

e ha-C)Cs (43)
iact;z = Ve (D,V C,) +k,C, “4)
26,(53:2) = 's0undary 5
Ci(x32) = Olag @)
Cy(x,y,2) =Cgl,_, @.7

where C; is the concentration of activated sites, C, is the concentration of acid, £; is the reaction rate coeffi-
cient, k; is the rate coefficient for the acid loss reaction, and m is a fitting parameter (m>1). D, is the diffu-
sion coefficient which may be dependent on C;. Equation 4.3 describes the removal of the -BOC protecting
groups. Equation 4.4 is the mathematical theory of diffusion in isotropic substances which is based on the
hypothesis that the rate of transfer of a diffusing substance through the unit area of a section is proportional
to the concentration gradient measured normal to the section. The second term of Equation 4.4 describes
acid loss. Equation 4.5 specifies that no net flow of acid occurs across the simulation boundaries. Equation
4.7 sets the initial value of the acid by using Dill’s equations and the exposure data generated by SPLAT
[19).

The diffusion coefficient D, is not well understood and might be dependent on 1) the acid concentra-
tion itself (constant), (2) the presence of deprotection sites which provide additional stepping stones (linear
" model), or (3) the increase in free volume with the deprotection reaction which creates a very rapid increase

in diffusion pathways (exponential model). The free volume theory is based on the assumption that a diffus-
ing molecule can only move from one place to another when the local free volume around that molecule
exceed a certain critical value [31]. Relatively small changes in free volume can lead to a large change in the
diffusion coefficient [14] which can be modeled using an exponential equation. These three possibilities are
_ illustrated by Equations 4.8 - 4.10. The second and third models are type II diffusion models which are
defined to have concentration dependent coefficients. To explore the possibility of these various classes of
acid concentration and material state dependent diffusion, a general purpose 3-D reaction-diffusion simula-
tor is proposed. For each of the three classes of increasingly higher nonlinearity an appropriate algorithm is

chosen.
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D,=a 4.8)
D, = y+BC, 49)
D, = Aexp (wC,) (4.10)

where @, ¥, B, A, and  are constant parameters.

4.3 Computational Steps

Rectangular grids with nonuniformly spaced lines are used for the discretization. The second order
trapezoidal method is used for numerical integration and the nonlinear equations are solved using the New-
ton-Raphson method. The Conjugate Gradient Squared (CGS) iterative algorithm described by Section 2.4.1
is used to solve the unsymmetric sparse matrix. Incomplete LU decomposition described by Section 2.4.2
with the red-black ordering defined by Section 2.4.3.1 is used as a preconditioner for the linear solver. These
computational steps can be summarized by Algorithm 4.1.

The CM-2 is used as the target machine for the algorithms. Grid point partitioning described by Sec-
tion 2.3.3.1 is used for parallelization. With 256k bits of memory for each processor, a virtual processor ratio
of 64 is obtained. Hence, an 8k CM-2 with 256k bits of memory for each processor would allow a user to
simulate a 512k mesh structure.

Algorithm 4.1: Time-Dependent Computational Steps

problem read-in and setup
time integration loop
Newton-Raphson loop
evaluate the equations for the Jacobian and
right-hand side of the Newton iteration

solve the associated linear system

post-processing of results

4.4 Discretization
Ferguson [27] uses a second-order Taylor series approximation for the spatial derivatives for constant

diffusion coefficients. For concentration dependent diffusion coefficient scheme, a first order Taylor series

approximation is used.

97



CHAPTER 4: Reaction Kinetics and Diffusion Simulation in Chemically Amplified Resist

Since the exponential diffusion coefficient is a highly non-linear function of the variables, the standard
difference discretization is not suitable for the task unless the grid spacings are made very small. To attain a
more stable discretization, a technique proposed by Scharfetter and Gummel [9] which is now widely used
for the discretization of the semiconductor device equations is utilized. The same approach is used for the
- discretization of the linear diffusion coefficient. Taking the limits of the linear diffusion coefficient discreti-
zation, the discretization for the constant diffusion coefficient is obtained.

Given that the flow of species C,, is described respectively as

J = Aexp (@C,) VC, @4.11)

where C, is the other species interacting with C,, two simplifying assumptions are made. First, C; is linearly
discretized. Second, the flow of C; is constant between grid nodes in a one-dimensional grid. Using tech-
niques used by Scharfetter and Gummel, the constant value of the flux can be extracted. For the exponential

model, we can integrate the previous expression between two adjacent grid nodes, i- and i, on a one-dimen-

sional domain.
% c %
-C,,.
J 1)~ “1¢-1) _ d

J- xexp (—m (_x'_——x‘—_l— (z—x‘._l) +Cl (‘-_1)))43 = zczdx (4.12)

% %1
; ( i (exp (--BCl (..)) - exp (---b(.‘l (i—l)) )) = Cz(o - CZ(i-l) @4.13)

(=) (€15 =C1¢-1))

The constant value of the flux can now be extracted.

=0 {(Cy 5~ Ciqi-1y) Ca) ~C2¢i-1)

J =
(cxp(-—mCl ('-)) —exp(—mcl (‘._1))) LT x_

4.14)

Equating the flow going from node i-I to node i to the flow going from i 10 i+1, an equation which is linear
in the values of C; and nonlinear as a function of C, is obtained. The previous formulation is customarily

extended to multidimensional domain by assuming that the projection of the flux along each line connecting
| adjacent nodes can be considered constant.

The same steps can de used to derive the constant value of the flux for the constant and linear models.

C2() ~Cai-1)
a———

J = 4.15)
T Xy
B(Cy i =Cyri1y) Corn = Copio
;= Mo G-y 20 " Ca-n 4.16)
z ( T+BC ) ) LTx5
| — 1D
T+BC oy
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4.5 Linear Matrix Assembly
4.5.1 Definition of the Jacobian

The nonlinear equations are solved using the Newton-Raphson method which is given by:

1
Cas1—Cy— hUOne)) +7(00) = F(Chyy) =0 4.17)
D(Cniny @) (Ciauny 4= Carny @) = F(Ciasy () (4.13)

where D (C,) is the jacobian matrix of the diffusion and bake equations calculated using the values
obtained from the previous Newton-Raphson iteration. The model to be used involves two species and is
summarized by the equations below.

aC n

5 =k (1-C)C] = £,(C, Cy) (4.19)
aC,
—a—t- = Ve (D2V Cz) + szz = f2 (Cl’ CZ) (4.20)
where C, is the concentration of activated sites and C, is the concentration of acid. The boundary conditions
discussed earlier will be used with the addition of Cy(1=0)=0, and C5(t=0) = C(x,y.2). D, is the exponential
function discussed earlier with Cjequal to C).

The jacobian of the matrix for two species is defined by:

3F, oF,
aC, aC,
3F, 3F,

D(C,Cy) = 4.21)

If the diffusion coefficient D, is equal to zero, the matrix 9F,/dC, is diagonal. At the same time, matrix
oF,/dC, is also diagonal since the generation and recombination are functions of the local values of the
variables. Note that matrix oF,/dC, is symmetric as is easily recognized from the discretization, while dF,/

dC, is asymmetric. The matrix elements for the first species are derived from the trapezoidal rule equation

as follows:
1
FilCiaeny @ C2men ) = et 0 €10 =561 € a1y (9 C2ne 1) (0 +1 (€1 (ay Cagm)) 422)
3
aF, 1
=11 _ 142
Tron = 1= (-} Calny ) 4.23)
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oF,
3Cansy

1
= A0 (1-Cypyyy) L4DCEE, s 4.24)

The matrix elements for the second species are derived as follows:

1
F2(Crins) (07 C2(a+ 1) (0) = C2(a+1) (0 = C2() = 3 V2(C1 (s 1) (0 C2n+ 1) () +/2(C1(my Comy)) 4.25)

£(€Cp) = —2 + —2tikc, (4.26)

where h,, h,, and h, are the dimensions of the control volume. Each control volume is divided into eight

subvolumes to handle boundary conditions. Hence, the equations are transformed as follows:

82(C,,Cy) =h’h:(.l -7 l)+l|xh’(1 -7 1)+h’h,(1 =7 1)+hxh’h,kzcz 4.27)
h-i i-i hi j-i k#i k-i

1
FalChmeny 2 C2tae1y () = BbyBiCoarny (n =Bty Catn) =34 (82(Cr 1) (3 C2(nr 1y (0) +82(C1 (my Co(m))) 4.28)

Using the result of the derivation for the spatial discretization and manipulating the exponential terms,
we get Equation 4.30 as the flux for the exponential model.

—B(C, 1 =C,ri_1y) Cotn —Coti-
;= 1~ C1u-n 20 201 4.29)
‘-E (cxp(-ﬂcl m) '¢3P(‘BC1 - 1))) =%
20 ~C26-1 (430)
Ji_1 = exp(BCl('._l))B(—ﬂ(Cl(o -Cl(f-l))) -—x‘_x‘-1 u) .

where B(x) = —~— which is the Bernoulli function. The matrix terms can now be derived in terms of the Ber-
e -1
noulli function.
¥ 1
fou
1
Cyom = exp(BCy (;_1))B(B(Cy(—Cs-1y)) (x—‘-x;_l“) 4.31)
"l Cyn =C.
. . _ 20 " "20-1 432
Crom exp (BCy (;_1))B"(-B(Cy (5 = Cy (i_y)) -B) (—‘:"‘i-l u) 4.32)

100



&
-1

=C.
3 (sz 2(:-1)) (—B(C
a | (Bexp (BC) (;_4y)) (B (-B(C, =Cii-1))) +B°(-B( ~Cyi-pM))
Cram \ ma 1= BEB(C (y =Cy iy By -Cru-n

4.5 Linear Matrix Assembly

4.33)
The matrix terms for the linear model can be derived the same way.
tY 1
"3 . B S0 ~Gi- (4.34)
acwm ”( a+BCl(n ) =x_;
a+bcl(.._l)
o 1
i-c C,(n~C.
2 8 2(5) ~2(i-1) B
= 1= (Cy o =Ci 11 12) 4.35)
9Cy iy a+BC (n x-x_, O MRS (E2}) a+BCy(y
I (___) ln(———)(u+BClw)
o+PC) ;1) a+BCyi-1
o 1
i-s C,n—C.
2 B 2() "™ 2(i-1) p
= “14(C, n =Cy (1 1) (4.36)
) (i-1j1) a+BC x-x_) 1) ~ig-1) a+BCy (p
) LR PR
a+BCy 1y a+BCy -y

A special case is when BC, (; approaches BC, (;_,,. The limits for Equations 4.34 - 4.36 are shown by
Equations 4.37 - 4.38.

&

1
o ‘—i - a+ﬂcm_l)
BCycp ~ BCy -y 9Ca ija) X=X

4.37
¥ 1
=3 Cp—Cau-1
i gt= 22D G 4.38)
By = BC, i-1%C1 iy n=x_y
A
-3 Catn=Cai-1 B
m = SO0 @39)
BC )y 2 BC -0 9C1 (-1 =X _ g

4.5.2 Matrix Size Reduction

A reduction of the size of the matrix can be obtained by inverting the diagonal matrix oF ,/9C, and
obtaining dC, as a function of 9C,.

aF, -
aCl = (

" (RHS 9F,
a_c,) ( -

-BEBCZ )

(4.40)
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Replacing now the previous expression in the following equation:

oF oF
2(ac,) 2(acz) = RHS, 441)
2
We obtain:
oF, ! oF, oF, -1
ac F2Ge) Ge)+* ac 9C, = RHS, - ac,(ac,) RHS, (4.42)

4.6 Verifying the Diffusion Models
Different resist systems exhibit different diffusion behaviors. For example, SAL601 [13] exhibits a

Fickian diffusion behavior. APEX-E [21] is reported to show type II diffusion behavior. We verify and
extend these studies by focusing on the PEB characteristics of a positive-tone DUV resist used by IBM
which is based on the acid catalyzed deprotection of APEX-E and a generic t-BOC resist [32].

Eib et al. [21] reports that the Dill A parameter for APEX-E is approximately zero. Hence, an expres-

sion for normalized concentration P (P = 1- M) can be obtained.

P(z,1) = 1—exp(-CI(2)1) (4.43)

The Dill parameters are measured to be A = —0.01um™, B = 0.16um™, and C = 0.004cm?mJ™" using
PEB temperatures ranging from 70C to 100C.

4.6.1 Determination of Equation Parameters

The curves generated by different doses represent different concentrations of acid at the start of the
bake. The spacing between the curves can be increased by raising the acid concentration m to a power
greater than one. If the resist dissolution rate is assumed to be determined by the extent of deprotection, then
a higher value of the acid exponent, m, will lead to increased resist contrast.

The activated sites, C, can be observed with a Fourier transform infrared (FTIR) spectroscopy. An
increase in activated sites would decrease the infrared absorbance of the resist. Figure 4.2 illustrates the
FTIR characteristics of a fully and patterned exposed Apex-E resist with no reflection. Without diffusion,
equations 4.3 - 4.4 can be solved analytically.

¢, =¢C, (1 exp (—C"‘ (k—k)cl -y )) (4.44)
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where Ccg is a constant representing the total concentration of cross-linking sites and Cyy is the initial con-
centration of the photo-generated acid. By using the fully exposed FTIR data and the Levenberg-Marquardt
method [29] applied on equation 4.44, the reaction kinetics parameters, k;, k,, and m, are determined to be
0.4, 0.0, and 1.6, respectively. By using the patterned exposed FTIR data, ., Y, B, A, and  are deter-
mined to be 4.0¢-16, 1.0e-16, 4.0¢-16, 1.0e-16, and 2.5, respectively.

Absorbance

1.00 A . . S
0.80

0.60

0.40

0.20

0.00

! | I
0.00 2.00 4.00 6.00

Bake Time x 1073 (sec)

Figure 4.2: FTIR Experimental and Simulation Resuits

4.6.2 1-D Simulations

The diffusion models are examined using a initial source of acid and making it diffuse in one dimen-
sion. Diffusion parameters obtained from the previous section are used for the 1-D simulations. Figures 4.3
and 4.4 illustrate the simulation results for the three diffusion models. Constant and linear diffusion models
give similar results while the exponential model is able to sustain the acid front as it propagates through the
resist. The steepness of the acid front is determined by the magnitude of the exponential coefficient. Figure
4.4 illustrates a 0.3 um linewidth difference by using a 98% deprotection level for the constant and the expo-
nential model with a high exponential coefficient. A larger linewidth change for the exponential model is
also illustrated for results presented in Section 4.6.4. Including a acid loss term (nonzero k») affects the mag-
nitude, propagation speed, and curvature of the profiles.
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Figure 4.3: Acid Profiles at t = 1000 secs
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Figure 4.4: Activated Site Profiles at t = 1000 secs
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4.6.3 Experimental Results for a RIM PSM with Annular Illumination
To extend optical lithography to smaller features, resolution enhancement techniques are being inves-
tigated. One example described by Newmark et al. [23] is the use of rim phase-shifting masks in conjunction

with annular illumination. SEM Results of this technique are shown in Figure 4.5 which illustrates experi-
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mental results for a 0.44um and a 1.08um spacing. Although a large depth of focus for varying pitch lines is
obtained, the dimensional control of the semi-isolated lines is a problem. Figure 4.5 illustrates that the line-
width change between dense and isolated features is 30% or 60nm. Although inaccuracies with the image,
and substrate reflections partially explain the proximity effects, a major portion of the difference is still
unaccounted for. A possible explanation is diffusion in APEX-E. Newmark et al. [23] show the peak aerial
image intensity of the dense lines to be only 0.9 while the peak of the isolated line is 1.9. Since acid concen-
tration is proportional to the peak aerial image intensity as illustrated in section 4.2.1, there is a big differ-

ence in acid concentration between the dense and isolated lines.

Figure 4.5: 0.44um and 1.08um SEM Cross-Sections

0.0613 -----

100

Figure 4.6: Dense Line Initial Acid Concentration
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Figure 4.7: isolated Line Initial Acid Concentration

We investigate the applicability of the three diffusion models in explaining the proximity effects.
Intensity distributions are generated by Splat using the mask features described by Newmark et al. [23].
Acid concentration is calculated using Dill’s equation and the experimental dose of 16.8 mJ/cm2. Figures
4.6 and 4.7 show the initial acid concentration after exposure for dense and isolated lines respectively.
Standing waves result from coherent interference of monochromatic radiation. These data are simulated with
parameters obtained from the FTIR data in Section 4.6.1. It is observed that all three models are able to
remove the standing waves which is shown by Figures 4.8 and 4.9 for the constant and exponential model
after a bake time of 50 secs. However, the parameters of the exponential model may be adjusted to retain the
standing waves and at the same time is still consistent with the FTIR data. This is illustrated by Figure 4.10
which is obtained by lowering the pre-exponential coefficient and compensating it with a larger exponential

coefficient.
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Figure 4.10: Exponential Model with Low Pre-exponential Coefficient Activated Sites Con-
tour

The simulation results give the activated sites for dense and isolated lines. The deprotection level,
which is defined as the amount of activated sites needed for the resist to be removed, is determined by set-
ting it to the value of C; at the simulation boundary of the linewidth consistent with the 0.44um pitch exper-
imental results. This deprotection level is then used to determine the CD of other simulations with a different
pitch. Table 4.1 shows that the exponentially activated acid diffusion in Apex-E may explain the observed
proximity effects. The lower pre-exponential coefficient is a better model since the standing waves are more
diffused compared to the large pre-exponential coefficient model. Initial acid conditions with no standing
waves were also examined to decrease the number of grid points necessary for the simulation. However,
results obtained do not show proximity effects consistent with the experimental results. The low contour
level obtained in determining the CD is probably due to the delay in heating the resist. New mathematical

methods in conjunction with experimental results are being developed to further clarify the reaction parame-
ters.

Table 4.1: Critical Dimension Simulation Results at t=50 sec

Diffusion
Model
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Table 4.1: Critical Dimension Simulation Results at t=50 sec

Diffusion Contour |CD (pitch= | CD (pitch=
Model Level 044 um) | 1.08 um)
4.0x107° 0.035 0.210 0.0
2.0x10 >S4 0.030 0.210 0.170
1.0x101%=>“* | 0,034 0.210 0.141

4.64 Linewidth Measurements

Direct linewidth measurements with the correct deprotection level should further differentiate the dif-
fusion models. Figure 4.11 illustrates experimental linewidth versus post-exposure bake time behavior of
different resist systems. Figures 4.12 and 4.13 illustrate simulation linewidth measurements for a generic
positive tone t-BOC [32]. There is an observable difference between the constant and the exponential model.
With proper reaction kinetics parameters, linewidth measurements through simulations may explain in better

detail the diffusion mechanisms of the resist systems in Figure 4.11.

Linewidth (1~10-9)

400.00

350.00

300.00

250.00

200.00

1 1
150.00 200.00

Bake Time (sec)

1
100.00

Figure 4.11: Linewidth Measurements for Different Resist Systems
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Figure 4.12: Constant Model Linewidth Measurements
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Figure 4.13: Exponential Model Linewidth Measurement
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4.7 Applications and Performance Issues
4.7.1 Comparing Implicit and Explicit Methods

We implement a fourth-order Runge-Kutta method to examine the feasibility of an explicit solver. The
Runge-Kutta method has been successfully used to solve numerous partial differential equations and has
been used by Ferguson [27] to solve a constant acid diffusion model. Using the diffusion parameters
obtained in Section 4.6.1, the performance of the Runge-Kutta method is evaluated with the three diffusion
models. Since current and future resist materials have different diffusion parameters, the explicit and
implicit methods are further examined by increasing and decreasing experimentally determined diffusion
parameters.

Tables 4.2 and 4.3 show the time step and CPU time needed for both implicit and explicit methods to
achieve the same acid profiles after 500 secs for an initial condition coming from the 25 sec results described
in Section 4.6.2. This allows the removal of the steep gradient of the initial condition which would require
small initial time steps. Solutions are obtained by using the largest time step possible and still keeping the
desired accuracy. The implicit method with no preconditioning is observed to be superior for all the diffu-
sion models in terms of CPU time minimization. Figure 4.14 illustrates that the effectiveness of implicit

methods over explicit methods in terms of CPU time minimization increases for increasing diffusivity.

Table 4.2: Variations of Constant Diffusion Model (t = 500 sec)

Explicit | "0 | Implicit | Implicit I’“Cl;,‘{‘;“ S B e
- . plicit CPU
D Value |TimeStep Time TimeStep | Iter No Time (No | Tter (Pre) | Time
(sec) ' (sec) Pre)

(sec) Pre) (Pre)
tﬁ?‘?‘?‘?‘ﬁ??‘?
4.0e-16 0.5 617.5 125 523 143 290 183
1.0e-15 0.2 2475.0 50 1000 33 675 470

Table 4.3: Variations of Exponential Diffusion Model (t = 500 sec) -

Exp | Bxplicit [ “PNC | mmplicit | Implicit mpbcit | | Tl

i i i plicit | CPU

Coshcient TieStep | i [ TimeStep | Tier Mo Time (No | Iter (Pre) | Time
Value (sec) (sec) Pre)

(sec) Pre) (Pre)
0.5 5.0 57.0 200 260 7.7 271 15.7
2.5 1.0 260.0 100 902 24.0 569 33.1
7.0 0.5 625.0 50 1334 39.0 1702 106.7
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Figure 4.14: Speed-up for Using Implicit Methods

4.7.2 Two and Three Dimensional Simulation

Table 4.4: Machine Scalability (t = 500 sec)

Machine | CPU Time
Size (sec)
1K 1031.3
8K 1523
16K 88.3

Table 4.1 shows the machine scalability of the simulator for the parameters used to generate Figure
4.9. Scalability does not equal 100% since less communication requirements are needed for the smaller
machines. Figure 4.15 illustrates the acid contour with a matchhead characteristic. The initial condition
shown in Figure 4.7 is used. However, acid concentration at the top 5% simulation region is equated to zero
to simulate possible evaporation effects. A more accurate model can be implemented by modifying Equation
4.5 10 a nonzero value at the top of the simulation region. These simulations may be helpful in explaining
matchhead effects observed by Reuhman-Huisken et al. {25].
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Figure 4.15: Acid Contour with Matchhead Characteristics (t=50 sec)

Z-Axis
25

-0.0551

-0.0551

1.32
2.7 27 ). S

AXIS

Figure 4.16: 3-D L-Shape Initial Acid Concentration

Three-dimensional simulation of movement and reaction of species in the post-exposure bake of
chemically amplified resist systems is invaluable in numerous applications. 3-D end of line simulations may
model matchhead effects more accurately since both evaporation and diffusion due to end of line effects can

be simulated. Another possible application are holes in resists created by reflective notching [26]. Resist dif-
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fusion may be used to remove the holes. Figure 4.16 shows an L-shape initial acid concentration that may
also require 3-D simulation due to standing wave effects.

2-D simulations done in section 4.6.3 required a 64 x 128 mesh structure. For a linear diffusion model
simulation time of 50 sec and a required time step of 5 sec, it took a 1K CM-2 227 seconds to generate the
results. Extending this to three dimensions to simulate effects such as matchhead formation would result in
mesh structures with over 500,000 nodes. If a 1K CM-2 had enough memory, it would require more than 4
hours to do the 3-D simulation. This estimate is a lower bound since it is assuming that the 3-D simulation
would require the same number of newton and linear system iterations. In reality, the additional complexity
of the third dimension makes the linear system less conditioned which would result in more linear solver
iterations. Hence, supercomputing machines are necessary to obtain simulation results in a more reasonable

amount of time. A 16K node CM-2 and a 64 node CM-5 offer the computation power needed.

4.8 Vertical Fronts and Adaptive Grids
Figure 4.3 shows acid profiles for the three diffusion models. A vertical front is observed for some

exponential diffusion simulations. Sturtevant et al. [20] supports the existence of fronts by illustrating exper-
imental data showing a near linear dependence of line space change versus post exposure bake time. Small
grid spacings must be used in the vertical front area in order to evaluate the gradient of the acid concentra-
tion properly. This would be computationally expensive for a static grid since it would imply a fine grid
spacing for the entire area in which the vertical front propagates through. An adaptive grid is proposed to
minimized the number of grid points. Figure 4.14 illustrates a static fine grid (left) and an adaptive grid
(right) simulation. In the adaptive grid simulation, a fine grid region follows the vertical front.
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Figure 4.17: Adaptive Grids for Vertical Fronts

The adaptive approach is executed as follows: First, at the beginning of the simulation, the fine grid
mesh is located on the starting front. As the simulation progresses, the velocity and size of the front is calcu-
lated. The size of the front is determined by marking its boundaries as points that are a certain factor less
than the maximum slope or adjacent points that have slopes that only differ by a certain fraction. The veloc-
ity of the front is calculated by comparing the location of the maximum slope for two consecutive time
points. From these information, grid points are transferred from behind the tail of the front to locations
beyond the head of the front. The location of the new points are determined by dividing the distance between

currently existing adjacent points by one plus the number of new points specified to be added between exist-
ing points,

It is important to place new points at locations with no activity yet in order to accurately linearly inter-
polate solutions for the new grid points. The interpolation function works as follows: First, determining the
unknown nodes with the most number of known neighbors. Second, linearly interpolate these nodes from
the values of the known neighbors. Finally, repeat the first step until there are no more unknown nodes.

This scheme will work for fronts that propagate in the direction of one of the coordinate axis. The

decrease in the number of grids will depend upon the size and speed of the fronts and the duration of the sim-
ulation. Corner effects and standing waves may increase the number of grid points.
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The adaptive grid algorithm is tested with a cubic initial acid condition illustrated by Figure 4.18. One
corner of the cube is allowed to propagate into the resist in order to observe the 3-D effects on propagating
fronts. The width of the front is observed to be 4 times larger compared to a 1-D front using the same param-
eters (exponential parameter with steep acid vertical front) obtained in Section 4.6.1 for a simulation time of
25 seconds. However, even with the widening of the front, a factor of 2 speed-up is still observed with the

use of adaptive grids.

Figure 4.18: 3-D Corner Acid Front

4.9 Extension to Other Models
4.9.1 Generic T-Boc Model

Walraff et al. [30] characterizes two other deep UV resist materials, PTBOCST and PTBMA. Models
were proposed for the thermal and acid catalyzed deprotection and extracted rate coefficients using a sto-
chastic kinetics simulator. The time dependent thermal deprotection and the acid-catalyzed deprotection

models are summarized by the following equations.

ac,
ac,
51| = =kC = kCiCy+ kpCaCy+ Vo (D,V C)) (4.46)
aC2
5 © = kC1Cy=kyC3C, 4K Cy+ Ve (D,V Cy) (4.47)
ac,
= = —kCiCy+ k405G, (4.48)
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where Cj isthe pfotonated TBOC, C; is the protonated HOST, Cs is the unprotonated TBOC, and C, is the
unprotonated HOST. £ is the thermal deprotection rate coefficient. ,, and k., are the protonation reaction
rate coefficients. D; and D, are the diffusion coefficients which may have nonlinear dependencies.

Simulation results are easily generated by using the proposed algorithms presented in Section 4.3.
Only the matrix generation algorithms which are basically the derivatives of Equations 4.45 - 4.48 are
needed to be added. The same diffusion term matrix generator procedures are used. Figure 4.19 shows that
experimental and simulations results agree for flood exposures. FTIR simulation data are generated with
constant diffusion model and they fit the experimental data quite well,
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Figure 4.19: Generic T-Boc Experimental and Simulation Results

The addition of two more variables for this new model required twice the memory size. Though each
iteration required more CPU time, the proposed solution method works well for both models. The algorith-
mic behavior is determined by the diffusion terms which couples the matrix rows and makes the linear sys-
tem of equations harder to solve. Both models appear to create linear systems of equations with similar

conditioning characteristics even though the generic t-Boc model has two diffusion terms.

4.9.2 Moving Boundary Due to Volume Shrinkage
The chemically amplified resist simulator has both nonlinear chemical reaction kinetics and simulta-
neous concentration dependent diffusion. The equations may vary with the type of resist being used. An

important phenomena not yet modelled is the volume shrinkage of deprotected areas. Shrinkage of up to
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30% are observed in resist systems. The volume shrinkage is needed to be modelled to accurately simulate
diffusion. This is a moving boundary problem which will present new challenges for an MPP solver imple-
mentation.

The problem may be tackled by initially formulating volume shrinkage equations. This formulation
may be influenced by work done on silylation and oxidation. A boundary-fitted curvilinear coordinate sys-
tem which has been successfully used for device simulation and silicon oxidation [33] may be used to solve
this problem. Two variations, an 11 point discretization using Voronoi prism control volume and a 27-point
discretization using Voronoi polyhedron control volume can be utilized. Both implementations will handle
moving boundaries and, at the same time, retain the same number of grid points and grid connections. Since,
grid connections of a boundary-fitted curvilinear coordinate grid structure is equivalent to that of a rectangu-
lar grid, there is perfect load and communication balance.

4.10 Summary
The importance of chemically amplified resist systems has necessitated the proper modeling for effi-

cient use of these systems. Two key contributions are presented in this chapter - modeling and a solution
method.

Three diffusion models, constant, linear and exponential, have been presented to simulate acid motion
within the resist. The diffusion models are differentiated through the examination of 1-D and 2-D simula-
tions. The usefulness of the exponential model has been illustrated by the proximity effect simulations pre-
sented in Section 4.6.3 for the Apex-E resist system. The free volume theory [31] is a possible physical
explanation since relatively small changes in free volume can lead to a large change in the diffusion coeffi-
cient. Standing wave initial conditions are also shown to be important in this section. Wallraff et al. [30]
reaction kinetic models have also been successfully implemented and extended with diffusion effects. This
model is observed to be accurate for two types of UV resist materials, PTBOCST and PTBMA. The conver-

. gence properties for this new model is similar to the Apex-E model. The successful implementation of Fer-
guson et al. [12] and Walraff et al. [30) models and their extensions show the generality of the simulator.
New reaction, diffusion, and boundary models are easily implemented by adding or modifying matrix gener-
ation procedures.

The efficient and accurate simulation of the models necessitates the development and implementation
of a new discretization scheme and parallel solution algorithms. The nonlinearities of some diffusion models

require the careful discretization of the problem through the use of the Scharfetter and Gummel method [15).
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Implicit methods are observed to be a lot more efficient than the explicit Runge-Kutta method for solving the
equations presented in this chapter. Due to the sparsity of the matrix, the iterative solution methods pre-
sented in the previous chapters used for semiconductor device simulation are efficiently used in chemically
amplified resist diffusion simulation. The 3-D nature of problems like end of line or L-shape features are
shown to require large mesh structures that may even reach half a million nodes. To obtain the solution at a

reasonable amount of time, large parallel machines are needed to do the simulations.
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CHAPTER 5

Conclusions and Future
Work

5.1 A Summary of Contributions

The work presented in the previous chapters have been published in several conferences and journals.
The contributions are summarized as follows:

CM-2 rectangular grid drift-diffusion device simulator [1] - Based on a CGS linear solver with a
partitioned natural ordering preconditioner, a new massively parallel algorithm for 3-D device simulation is
presented. Compared to a sequential machine running the best sequential algorithm, the CM-2 achieves
supercomputer performance for problems with more than 15,000 grid nodes.

CM-2 multigrid approach [2], [3]- A multigrid discretization has been developed to provide a
framework to perform a block Newton iteration. Three variations of a block Newton iteration are shown to
be effective in generating a good initial guess for the device simulator without having any knowledge of the
device structure and the operating region. A factor of two speed-up is observed for large MOS and BJT sim-
ulations.

CM-5 rectangular grid drift-diffusion simulator [2], [3]- A new preconditioner called the block
partitioned natural ordering for a CM-5 drift-diffusion simulator gives a robust and efficient iterative linear
solver. It is observed that preconditioners that maintain coupling between nodes give the best results. Also,
not having the same cut points for forward and backward substitution is important for producing converging
preconditioners. A 128 node CM-S is observed to provide a vector supercomputer performance.

Capacitance of Silicon Pixel Detectors [4] - A study of the capacitance of pixel detectors to be used
as tracking devices for high energy physics experiments. The pixel capacitance matrix plays an important

role in system design issues such as preamplifier matching and cross-talk among pixels. A good agreement
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between simulations and measurements of pixel capacitance is found. The CM-2 drift-diffusion device sim-
ulator is currently being used to improve the design of the silicon pixel detectors.

CM-2 chemically amplified resists diffusion simulator [5], [6], [7] - A massively parallel frame-
work for accurate, efficient, and convergent simulation of diffusion models is presented. This involves the
use of the solution process used for the CM-2 drift-diffusion simulator. New ideas such as the Scharfetter
and Gummel discretization method for acid discretization is utilized along with the use of adaptive grids
which were found to improve the simulator performance. Experimental and simulation results on proximity
 effects show the applicability of an exponential diffusion model. Implicit methods are shown to be more effi-
‘ cient compared to explicit methods for all the diffusion models. Three-dimensional simulation of resist sys-
tems are observed to be \)ery computationally intensive but can be simulated in a reasonable amount of time
on MPPs.

CM-5 irregular grid drift-diffusion device simulator (8}, [9])- A device simulator that uses an irreg-
ular grid generated by OMEGA is presented. The problem is solved by initially partitioning the grids using
the geometrical, topographical, and spectral partitioning heuristics. Communication scheduling is then done
through the repeated use of the maximal nonbipartite matching heuristic. Finally, the preconditioning prob-
lem is solved by experimenting with several variations of ILU computations and of the forward and back-
ward substitution algoriihms. For‘large problems, a 60% efficiency for CGS with no preconditioning and
50% efficiency for the solution of the matrix. CGS with processor ILU and automatic magnitude threshold
fill-in preconditioning is used for the CM-5 while CGS with ILU is used for PILS.

5.2 Conclusions
In this thesis, the use of parallel processors for device and process simulation has been investigated. In

chapter 2, three-dimensional device simulations are observed to be very computationally intensive even with
vector supercomputers. The main computational task is the solution of the sparse linear system of equations
which may have more than a million equations. The efficiency of the iterative linear solver is determined by
the preconditioning scheme. The partitioned natural ordering is observed to give the best results for the CM-
2 in terms of CPU time minimization. A preconditioner called the block partitioned natural ordering for a
. CM-5 drift diffusion simulator gives a robust and efficient iterative linear solver. It is observed that precon-
ditioners that maintain coupling between nodes give the best results. Also, not having the same cut points for
forward and backward substitution is important for producing converging preconditioners. A multigrid dis-

cretization has been developed to provide a framework to perform a block Newton iteration. Three varia-
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tions of a block Newton iteration are shown to be effective in generating a good initial guess for the device
simulator without having any knowledge of the device structure and the operating region. The parallel algo-
rithms are successfully used to simulate silicon pixel detectors. Three dimensional capacitance simulations
which match experimental results are observed to be significantly different from two dimensional simula-
tions. 3-D long range pixel coupling are observed to be amplified due to the blocking strips.

In chapter 3, a parallel irregular grid drift-diffusion device simulator has been presented. A compari-
son between the best sequential algorithm and the proposed parallel algorithm has revealed a parallel effi-
ciency that exceeds 50% for large problems. Perfect node load balance is observed to be the most important
partitioning parameter. In trying to improve the simulator, explicit methods are shown not be as efficient
compared to implicit methods for the drift-diffusion equations. An adaptive grid algorithm is described
along with the difficulties in its implementation. The proposed irregular grid algorithm is also used in solv-
ing the hydrodynamic and circuit noise equations. It is observed that the hydrodynamic and drift-diffusion
matrices have comparable conditioning. Also, for large hydrodynamic and circuit noise problems, good par-
allel efficiency are expected to be observed.

In chapter 4, three diffusion models have been presented to accurately simulate the motion of acid
within the resist. The nonlinearity of some diffusion models require the careful discretization of the problem
through the use of the Scharfetter and Gummel method. The usefulness of the exponential model has been
illustrated by the proximity effect simulations presented in Section 4.6.3 for the Apex-E resist system.
Standing wave initial conditions are also shown to be important in this section. Implicit methods are
observed to be a lot more efficient than the explicit Runge-Kutta method for solving the equations presented
in this chapter. Due to the sparsity of the matrix, the iterative solution methods presented in the previous
chapters used for semiconductor device simulation are efficiently used in chemically amplified resist diffu-
sion simulation. The 3-D nature of problems like end of line or L-shape features require the use of large
mesh structures that may even reach half a million nodes. To obtain the solution at a reasonable amount of
time, large parallel machines are needed to do the simulations. The solution process is also shown to be
effective for two other types of UV resist materials, PTBOCST and PTBMA. New models are easily imple-
mented by adding a new matrix generation procedure. The convergence properties for this new model is
similar to the Apex-E model.

A framework for solving PDEs can be formulated. First, the type of mesh structure (rectangular, trian-
gular, terminated line, etc.) and grid generation algorithm has to be chosen. Each type has its own advan-

tages and disadvantages with respect to performance issues and difficulty of implementation. After
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discretization, the grids have to be partitioned to different processors with load and communication balance
as key goals. Several algorithms are available such as the geometrical, topographical, and spectral partition-
ers. Based on the communication pattern and structure of the communication network, each partition is then
physically mapped to a specific processor. With the required algorithms for the solution process chosen, a
communication scheduling is then done.

Efficient parallel PDE solvers are usually characterized by good load balancing and low communica-
tion requirements. Efficiency is defined as minimizing the CPU time required to solve the problem. Hence,
processor utilization may be a good indicator of efficiency. However, the best sequential algorithm may not
necessarily be the best parallel algorithm. As shown in Chapter 2 for example, red-black ordering for pre-
conditioning may give good processor utilization but may not converge to the right solution. MFLOPs rat-
ings therefore for parallel solution of TCAD equations are not good indicators of efficiency.

Besides the framework, several other presented algorithms are of general use. First, a linear system
solver is needed for solving any linearized equations that are usually products of stiff PDEs. Significant
research is being done on improving the iterative solver itself. Creativity is also needed in the design and
implementation of the preconditioner. The success of the iterative algorithm and the preconditioner is very
problem specific. Second, multigrid methods can be used effectively to improve the initial guess of the New-
ton-Raphson iteration. Third, adaptive grid methods can be used to optimize the use of computational
resources.

To summarize, it is observed that MPPs are very useful to TCAD problems. Future peak performance
improvement of MPPs over vector supercomputers will make MPPs more attractive for TCAD problems.
Since peak performance can only be translated into sustained performance by software, success of MPP
TCAD applications will depend significantly on the design and implementation of algorithms. An applica-
tions developer would also need to take into account the type of architecture, speed, memory, communica-
tion bandwidth, and other hardware considerations in order to produce an efficient parallel TCAD
implementation. The presented framework and algorithms should give a TCAD MPP applications developer

direction and flexibility in implementing an efficient MPP application.

5.3 Future Work
Several areas of future work have been identified in the previous chapters. In chapter 2, curvilinear

coordinate systems may be used as an alternative to rectangular grids to allow the modeling of arbitrarily

shaped boundaries. Since the connectivity between grids is identical to a rectangular mesh, algorithms used
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for parallel rectangular grid may be applicable for this discretization. Parallel rectangular grids simulators
also have a lot of potential applications. For example, a more detailed study of silicon detectors would be of
significant interest to the nuclear physics community. Other applications such as parasitic MOS and DRAM
devices are of great importance due to the constant reduction in feature size.

In chapter 3, a parallel adaptive grid is motivated to be a good extension of the parallel static grid sim-
ulator. Adaptive grids are very useful since they modify mesh structures during simulation to compensate for
unpredictable and changing fields and current. The application of static grid algorithms to the hydrodynamic
models is another possible extension since drift-diffusion simulators lose their validity as feature sizes
shrink. A third possible extension is the use of the same algorithms for noise simulation of nonlinear
dynamic circuits. Time-domain non-Monte Carlo simulation for nonlinear dynamic circuits with arbitrary
excitations require the solutions of large linear systems of equations which may be significantly accelerated
with parallel machines. Chapter 3 also motivates the possibility of using workstation cluster as a parallel
processing environment. Workstation clusters require more complicated code to hide the latency of sending
messages through the network. However, obtaining good efficiency on this platform may have a more signif-
icant impact compared to MPP based TCAD tools since workstation clusters are very accessible to most
engineers.

In chapter 4, more accurate modeling can be done through the addition of nonzero derivative bound-
ary conditions to model evaporation. New species can be introduced by adding more variables and equati-
ions. These new species may be modeled to decrease acid concentration as they diffuse through the resist
area. The solution algorithms are shown to be easily adaptable to other resist systems. Only the matrix gen-
erations routines are needed to be added. The same diffusion term matrix generator procedures are used. A
possible extension of the work is the automatic generation of matrix terms given a set of reaction and diffu-
sion equations. This will require routines that evaluate the derivative of the equations the user is supplying.
Another possible extension is the use of the curvilinear coordinate system to model moving boundaries due
to volume shrinkage. Curvilinear coordinates systems have already been used successfully for the sequential
solution of moving boundary problems resulting from silicon oxidation [10].
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