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Abstract

Applications of Parallel Processors to Technology
Computer-AidedDesign Problems

by

Eric R. Tomacruz

Doctor of Philosophy in Engineering

University of Californiaat Berkeley

ProfessorAlberto L. Sangiovanni-Vincentelli, Chair

The feature size shrinkageof integrated circuitshas made accurate three dimensional modeling and

simulation of semiconductor processes anddevices indispensable. The simulation problem consistsof find

ing the solutionto a system of PDEs. This dissertation uses the controlvolume approach which discretizes

the simulation region into a set of subvolumes each represented by a grid point This step transforms the

PDEs into a nonlinear set of equations. Numerical integration methods are then applied to the time depen

dent derivatives and each equation is linearized through the use of the Newton-Raphson method. Finally,

each system of linear equations is solved using the iterative Conjugate Gradient Squared (CGS) method.

Since the number of equations is proportional to the number of grid points, three dimensional simulation is

computationally intensive. This dissertation investigates the applicability of parallelprocessorsto carry out

3-D processand device simulations.Since most of the totalCPU time is spent on the linearsystem solution,

a majoreffort is placed on developing andimplementing parallel preconditioned linear solvers.The solution

process efficiency is improvedthrough the use of multigrid methods,irregular grids, andadaptive grids. Sil

icon pixel detectors and chemicallyamplified resistsarestudiedin detail. The parallel processors used for

thisstudy are thesingle instruction multiple data CM-2 and the multiple instruction multiple data CM-S.

/,-cx D ^-7. •*-—•
Professor AlbeOolL. Sangiovanni-Vincentelli

Committee Chairman
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CHAPTER 1

Introduction to Technology

CAD and Parallel

Processors

1.1 Technology Computer Aided Design

1.1.1 Role ofParticle Distribution

Technology computer-aided design (TCAD) is essential to the development and fabrication of

advancedintegratedcircuits. It reduces development time and cost by allowing engineers to explore differ

ent design and process possibilities without the need for actual implementation. It also allows the design of

hypothetical structuresand processes that arenot possiblewith the current technology. TCAD is divided into

two main areas - process and device simulation. Figure 1.1 illustrates the physical characteristics of the

device structure as the end product of process simulators and the electrical characteristics of the device

structure as the outputofdevice simulators. The electrical characteristics may then be used as an input to cir

cuit simulators.

Technology CAD

Process
Simulation

Profiles

Device
Simulation o

IV/CV

Parameter

Extraction o
Circuit
Simulation

-W-

est

Models

Figure 1.1: Technology Computer-Aided Design



CHAPTER 1: Introduction to Technology CAD andParallel Processors

A maingoal of IC process anddevice simulation is to find the spatial distribution of mobile,charged

orneutral particles as a function of time.The particles are electrons andholes for devicesimulation andare

atomsandmolecules forprocess simulation. The distribution of mobileparticles is governed mainly by par

ticle transport equationsand Maxwell's equations. There arethreecommon methods to solve these partial

differentialequations (PDEs) - particle method, controlvolume, and finiteelement The focus of this disser

tation is in utilizing the control volume approach which divides the simulation spaceinto subvolumes with

aggregate variablesthat describe the averagestateof particles in the subvolume.

Control volume approaches in TCAD areusuallyused to solve the continuity equation.

|f =-V. F (1.1)
where C is the concentration of particles andF is particle flux density. Equation 1.1 statesthat the time rate

of change of the total amountof a particle contained in a control volume is equal to the inward flux of the

particle across the boundaries of the control volume.The particle fluxdensitymay be described by

F =DV C+±DC'E (12)

where D, C\ and Eare thedirfusivity, electrically active particles, and electric field respectively. qy k% and T

are theelectric charge constant, Boltzmann's constant, and temperature, respectively.

Process simulation maybe grouped into four categories - lithography, etching, thermal processing,

and deposition. Thecontinuity equation is solved inthearea of thermal processing specifically in thearea of

oxidation, dopant diffusion, and acid diffusion. One difficulty insolving this equation liesin thespecifica

tion of D. For impurity diffusion, D maybe concentration-dependent in order to model diffusion mecha

nismsthatare controlled by physical quantities such asvacancies andexcessinterstitial concentration. For

acid diffusion, the diffusivity mayalso be concentration-dependent due to interactions between acid and

activated sites. Thiswillbe discussed further inChapter 4.

Device simulation involves the solution of theBoltzmann Transport Equation (BTE) which can be

obtained bygeneralizing the continuity equation [2], For control volume methods, there are two simplifica

tions of the BTE that are commonly solved - drift-diffusion equations and hydrodynamic equations. The

drift-diffusion equations consist of the carrier continuity equations and Poisson's equation. The hydrody

namic model extends the drift-diffusion model bygeneralizing some variables inEquation 1.2 and adding a

third term torepresent acontribution from drift energy. The device simulation equations are further dis

cussed in Chapters 2 and 3.



1.2 Parallel Processors

1.1.2 Current Computationally Expensive Simulation Problems

State of theart TCAD simulations involving thecontrol-volume method are verycomputationally

expensive. For example, a CMOS latch-up simulation takes 5 hours on a Cray-2 [3]. Nishi and Ueda [4]

report theuse of deep-submicron CMOS circuits to investigate theeffects of narrower spacings to propaga

tiondelay and also to get anoptimal process conditions withrespect to gate oxide thickness andthreshold

voltage. CPU time for the simulation of onesample ona 30MIPS machine is 2 hours forprocess simulation

and2.Shours for devicesimulation. Leakage currents dueto parasitic MOSeffectswerestudied by Noell et

al. [5]. Using a48,190 meshsize,a 3-Dsimulation to generate a single current-voltage curvetook8 hours on

a Multiflow Trace 14/300 [30]. Trench-bounded MOSFETs found in DRAM cellshaving a deeptrench stor

age capacitor were simulated by Knepper et al. [6]. Mesh structures with up to 100,000 nodes may be

required to simulate accuratelysubmicron features of the structure. Run times on the orderof 15-30 minutes

per bias point are requiredby an IBM RS/6000.

Although traditional vector machinesmay provide the computationalpower needed for TCAD simu

lations,parallel machinesmay providea goodalternative. The effective use of parallel machines forTCAD

involves a good understanding of parallelmachines, parallel programming methodologies, and the target

TCAD application. The remaining sections of this chapter provides an overview of parallelprocessors and

applications that have been developed for these machines.

1.2 Parallel Processors

1.2.1 Evolution

Due to progressin microelectronics,high-density packaging,advanced processors,memory systems,

and other hardware technology, parallel processing architectures with hundredsor thousandsof processing

elements arenow possible. The evolutioncanbe traced back four decades to the introduction of the first

sequential architecture. This architecture gradually improved through the use of lookahead functions which

allowed the overlappingof instruction fetch, decode, and execution. The lookahead function eventually

maturedto the more general pipelinedarchitecture. Then came the advent of vector processing which per

formedarithmetic or logicaloperations on scalar data items.The independentcomputationsallow very deep

pipelines andminimize instruction fetch. Also, vectorprocessing allowed faster memory accessand control

hazards from branches are made nonexistent.

Parallel machines have been around since the 1960 (Burroughs D825 - 4 processors). Massively Par

allel Processor (MPP) systems started in 1968 with the release of the Illiac IV computer,which had 64 pro-
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cessing elements (PEs) under one controller. However, in the early stages the machines did not have

adequate technology for the architectural concepts involved.To attract users, a parallel processor must offer

substantially better performance overcomputers existing at thetime. A newtechnology mustnotonlycatch,

but alsosurpass an entrenched technology in order to replace it. This is very difficult while the entrenched

technologyis still making good progress.

Today, the progressof the high end von Neumannmachinehas slowed down. In terms ofclock rate,as

shown by Figure 1.4, thecurrent fastest vonNeumann machine is onlya few times faster than thecurrent

state of theart microprocessor. It is notclear if technological barriers for high endvon Neumann machines

are more difficult compared tomicroprocessor development technological challenges. However, there isdef

initely more market demand for microprocessor-based computing platforms. More financial resources are

available for microprocessor development due to economies of scale. Hence, designers of high end

machines are attempting toremove traditional barriers and gain power through scalable use of hundreds or

thousands of off-the-shelf processors.
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1.2 Parallel Processors

1.2.2 Hardware Model

122.1 Flynn's Classification andBeyond

Flynn [7] introduced a classification of computers in 1972. He divided architectures into four catego

ries - SISD, SIMD, MIMD, and MISD. S, I, M,and Ddenote single, instruction, multiple, and data respec

tively. Thus, SIMDmeans single instructions multiple data. SISD such as personal computers andmost

workstations arethe most common. Vector processors and some parallel processors such as the CM-2 and

the MP-1 fall underSIMD. SIMD architectures only require one program. The main distinction between

parallel and vector SIMD is that more parallelism is availablewith parallel SIMD - tens vs. hundreds or

thousands of simultaneous operations. MIMD architectures canbe viewed as SISD architectures with a spe

cial communicationnetworkbetween processors. This architecture may have many programs and hardware

constructioncan be simplified using off-the-shelf uniprocessors. Also, with this architecture, communication

can be merged with computations. MISD machines are not common.

A different program for each MIMD processoris difficult to implement. Hence, a new term "SPMD"

which stands for single programmultiple datahas been introduced.This classificationdenotes that each pro

cessor works on its own data and each processor may be in different parts of the program at one specific

time. There are two variations of SPMD. One variation simplifies programming with coordinated and sepa

rate communication. The other has merged communication which allows the overlapping of computation

and communication. SPMD with separated computation and communication implies programming that is as

simple as SIMD since communication is always synchronized. SPMD with merged communication require

less programming effort than general MIMD.

The naming convention for dedicated parallel computing platforms has evolved over the past three

decades. Originally, they werereferred to as parallel computers or parallel processors. With the introduction

of the CM-2, the term massively parallel processors (MPP) became the standard namingconvention.Today,

if the numberof processors is significantly lower than SIMD architectures, the machines arejust referred to

as parallel processors (PP) or sometimes multiprocessors (MP).

1222 Memory

Parallel machines can also be classified according to the way they access memory - shared memory

and distributed memory.The Cray Y-MP is anexample of machinewith shared memory.Eachof its proces

sorsmay access the same memory location. Forlarger parallelism, distributed memory which means each

processor has its own localmemory is common.There areseveral advantages to using distributed memory.
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First, distributed memory machinesareeasy to build. Second,many applications have locality. Third, using

nearby memory is five to fifty times faster thana centralized memory. And fourth, currentPP hardware and

software arelocalmemory oriented. Hence, distributed memoryis a key to portable code.Distributed mem

ory hasa disadvantage sincecompilers needto know how to use nearby memory. This may be difficultwith

traditional sequential programs. Hence, programmers needto learn to use nearby memory for speed.

Anotherway to classifyparallel machines is through theiraddress space - local andglobal. Intuitively,

distributed machines should have local address space. Somedistributed memory machines such astheCray

T3D andthe KSR-1 have special hardware thatconnects local memories directly. This allowsa global

address space in which a processor can access another processors memory without message passing routines

between processors. With special compilers, machines with local memory can also be programmed witha

global address space.

122.3 Interconnection Network

The interconnection between processors is another aspect that differentiates one parallel machine

from another. There are several criteria for agood interconnection network. The relative importance of each

criteria isdetermined bythe target application and the efficiency of the tools for algorithm implementation.

1.Functionality - themachine's ability to support efficient data routing, interrupt

handling, synchronization,and combine functions.

2. Network Latency - the minimum time delay totransfer data through the net

work.

3. Diameter - theshortest path between any twonodes.

4. Bisection Bandwidth - the minimum number ofcut edges for agiven anetwork

cut equally into two.

5. Hardware Complexity - translates to implementation cost.

6. Scalability - theexpandability of thenetwork.

Figure 1.3 illustrates four example communication networks currently used today. Table 1.1 illustrates

thecharacteristics of these networks based on thecriteria described earlier. Several observations can be

made in interpretingthis table.

1. Mostnetworks have nodes withsmall degree.

2. Hypercube node degree increases with log2N which isbad with large N
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3. High degree ofconcurrent communication may bemore important than the

diameter.

4. Thenumber of linksandnode degree affect network cost

5. Bisection width canbe enhanced bya wider channel width.
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Figure 1.3: Interconnection Network Examples
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Table 1.1: Network Characteristics

Network Type
Node

Degree
Diameter

Number of

Links

Bisection

Width

Remarks on

Network Size

Sample
Machines

2-D Mesh 4 2(r-l) 2N-2r r r=sqrt(N) Paragon

Hypercube n n nN/2 N/2 n = log2N(dim) iPSC/2,
nCUBE,CM-2

Fat Tree 2 2h 4N(l-2-h) 2M) h = log4N 64NodeCM-5

3-D Torus 6 r/2 3N 2r* r> = N T3D

122.4 Current Trends and Target Architectures

A totally coherent taxonomy of parallel processors is difficult to construct. Each aspect of architec

tural consideration influences each other to some degree. Architectural research and development goals

include packaging efficiency, scalability, adaptability to current technology, and backward compatibility.

Current parallel architectures appear tobeconverging toageneric parallel architecture. The generic parallel

architecture uses off-the-shelf processing technology, uses distributed memory, and has a simplified inter

connection network. By using off-the-shelf processing technology, development costis reduced. Survival of

interconnection network in future systems depends on packaging efficiency and scalability. Hence, parallel

processor companies such as Intel and Thinking Machines Corporation have switched from the complicated

hypercube tomuch simpler interconnection networks. Cray and I.B.M. which only recently entered the par

allel processing market also have introduced machines with simple communication networks.

The Connection Machine 2(CM-2) and the Connection Machine 5(CM-5) MPPs are used to imple

ment algorithms presented in this dissertation. The CM-2 isrepresentative of the SIMD technology while

the CM-S has a MIMD architecture.

The Connection Machine 2isamassively parallel computer with up to 65536 processors with acon

ventional computer asa front end. Each processor is bitserial which have aclock rate between 7 to 10 MHz

and can have 64k to 1024k bits oflocal memory. The processors may be equipped with floating point accel

erators which are shared byacluster of 32 processors. The CM-2 isaSingle Instruction Multiple Data

(SIMD) architecture. The nodes exchange data among themselves through the router, NEWS grids, or a

scanning mechanism. Each processor chip contains 16 processors and arouter. The router nodes are wired

together to form aBoolean n-cube. The NEWS grid isbased on the fact that each processor has anorth, east,
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west, and south neighbor inthe various grid configurations. The CM-2 also has special hardware for fast

data combining orspreading throughout theentire array [16].

The Connection Machine 5isamassively parallel computer in which data parallelism can be imple

mented ineither a SIMD mode, or synchronized Multiple Instruction Multiple Data (MIMD) mode. Each

node of the CM-5 isaSPARC microprocessor with up to four vector units and 32 Mbytes ofmemory [17].

The Sparc processor has aclock of33 MHz and a64 Kbyte cache. The processors are interconnected using

three networks: data network, control network, and diagnostic network. The data network isconfigured as a

4-ary fat tree. Each processor has two connections tothe data network which correspond toabandwidth of

40 Mbytes/s in and outof each leafnode. An aggregate bandwidth of 160 Mbytes/s outof a subtree is

achieved with 16 leafnodes since only two parent connections are needed. For four parent connections, a

bandwidth of 10Gbytes/s is obtained. Thebandwidth continues to scale linearly upto 16384nodes [16].

1.2.3 Programming Model

Therearethree ways fora userto program a parallel processor. The first is through theuseof parallel

izing compilers thatautomatically extract parallelism from programs written in existingserial languages.

The programmer may aid this processby specifying data partitioning and assistingcode optimization. Sec

ond is through the use of a seriallanguage augmented with a new constructs that allow the programmer to

specify and properlycoordinate the execution of parallel tasks. Finally, the programmercould write in an

entirely new language designed to make parallelism easierto detect and extract This can be done by elimi

nating side effects and other features that make it difficult to extract parallelism from programs written in

serial languages. Implicit parallelism involves functional programming, dataflow, Prolog, and other "side-

effect-free" languages.

Significant research is also being done in the areaof paralleltools and languages. Ease of program

ming and debugging in obtaining high performance portable code is the main goal. Pancake [33] surveyed

Supercomputing Conference Proceedingsand observed that current programming methodology focuses on

the data parallel and message-passingapproaches which areused to implement algorithms in this disserta

tion. These approaches arebased on programming languages extended to handle the execution of a parallel

task.

In the data parallelcomputing model, each processorhas some memory associated with it The pro

cessors may act under the direction of a serialcomputercalled the front end. Each processorstores the infor

mation for one data point in its local memory; all processorscan then perform the same operation on all the
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data points at the sametime. A programmer canspecifythatonlya particular subsetof the processors is to

carry out an operation. Dataparallel algorithms map well to SIMD architectures such as the CM-2.

In the message-passing environment, each processing node runs an independent copy of single pro

gram, and manages its own computations and data layout Communication between nodes is handled by

calls to communication libraryroutines.These routinesallowsa userto send messages from one processing

node to another in a number of different ways. It also provides function for point-to-pointmessaging and

global operation. It may also provide low-level tools for "active message" operationswhich allow the over

lappingof computation andcommunication.One of the most useful features of message-passing programs is

that they allow the processingnodes to synchronize as frequendy or infrequently as required for a given

application. Message-passing algorithms map well to MIMDarchitectures suchas the CM-5.

PVM (Parallel Virtual Machine) is a software package for using aheterogenous networkof computers

as a singlecomputational resource [34]. Due to current large latencies in representative workstations and

LANS, PVM is designed to provide a message-passing environment for applications withrelatively loosely

coupled, large grain parallelism. However, for homogenous network of processors such astheCM-5, it also

provides a good message-passing environment for highly coupled parallel applications [35].

1.2.4 Parallel Processing Performance

12.4.1 Peak Performance

Computer manufacturers usually state peak performance in terms of MIPS (millions of instructions

per second) or Mflops (millions of floating point operations per second). Figure 1.4 illustrates the peak per

formances of vector machines and parallel machines interms of Mflops [30]. The trend shows an order of

magnitude increase in performance for parallel machines compared to vector machines. Although vector

supercomputers like NEC's SX-3 (4 processors) and Hitachi's S-3800 (4 processors) whose claimed peak of

20 gigaflops and 32 gigaflops respectively may offer the computational power needed, massively parallel

processors (MPPs) that offer apeak ofover 100 gigaflops provide an attractive alternative. The gap between

MPP and vector machine peak performances isexpected towiden. Hence, as shown byTkble 1.2, manufac

turers of traditional vector machines are currently shifting their product line to parallel vector machines.

Supercomputers in the future will unlikely have less than 16 processors. Asaresult, the computational

requirement of current and future sophisticated semiconductor device simulation problems will be satisfied

by parallelmachines.

10
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Figure 1.4: Peak Computation Performance

Table 1.2: Current Parallel Vector Machines

1.2 Parallel Processors

Parallel Vector

Machine

Year of

Introduction

No. of

Processors
PeakGFlops

NECSX-4 1994 16-512 1024

Cray-4 1995 16-128 256

Hitachi SR2001 1994 8-128 ?

7.2.4.2 Sustained Performance

As mentioned earlier, computer manufacturers usually state peak performance in terms of MIPS or

Mflops. These performance metrics areby no means conclusive. The real performance which can also be

called sustained performance is application-driven and programdependent Dongarra [38] has shown the

effectiveness of parallel processors for the Linpack benchmarks.This benchmark may identify key proper

ties such as floating point performance but is not an accurate predictorof general purposeperformance. The

infancy of compiler technology for parallel machine is anotherissue to consider. Sethian [39] reports a fac

tor of five speed-up by just recompiling applicationsa year later.

To make statements on the usefulness of parallelmachines for real applications such as TCAD, it is

necessary to actually design and implement the algorithms. It should be pointed out the best algorithms for

sequential machines are not necessarily the best algorithms for parallelcomputers. The best measure of per-

11
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formance is the wall clock time which is the time it takes a machine to solve the problem. For parallel

machines, the algorithm with the best computational efficiency may not necessarilygive the algorithmwith

the least wall-clock time.

1.2.5 Clustersof Workstations Versus Multiprocessors

Due to its general use, workstation clusters are widely availableand can be viewed as MPPs with a

slowernetwork. Their cost is lower because of economies of scaleleveraged across the entireworkstation

usercommunityandbecause of theirdual use - normal workstation andparallel processor. Also,as pictured

in Table 1.3 [40], MPPs areusually morethan a year behindin termsof utilizing the state of the art micro

processor. Since microprocessors improve50% peryear in termsof speed, a one yearlagwouldresult in a

1.5 factor degradation of an MPP node compared to a workstation. Hence, workstation clusters arevery

attractive forparallel processing. However, the applicability of clusters of workstations will be determined

by global system software, communication network, and thetarget application.

A global system software treats acollection of processors, memory, and disks asa single machine. To

reduce development time, the use of off-the-shelf technology such as existing operating systems isa good

approach. One can justadd communications protocol software and a global system layer such asPVM and

one can already implement parallel software. However, aswill be shown later, existing software layers

degrade the performance of communication networks.

Table 1.3: MPP Technological Delay

MPP Processor Year Workstation

T3D 150 MHz Alpha 93/94 92/93

Paragon 50 MHz i860 92/93 91

CM-5 32MHzSS-2 91/92 89/90

12
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Table 1.4: Data Rates and Latency for Some MPPs

MPP Year Introduced
Data Rate

(Mbits/sec)
Latency (ms)

Intel iPSC 1985 10 1.7

Intel Paragon 1991 1600 0.08

TMC CM-5 1992 320 0.01

CrayT3D 1994 2400 9

For workstation clusters to execute efficiently fine grain parallel algorithms, it must address two key

communication issues. First, its communication network should have a high data rate transfer. Figure 1.5

shows peak data rates for local area networks (LAN) [31] and Table 1.4 illustrates sample data rates for

MPPs. LAN data rates are comparable to MPP data rates. Second, LAN networks should have low-latency.

A physical limit for latency is the speed of light [32]. Information travelling at the speed of light takes 70

microseconds to go halfway around the globe. In terms of hardware considerations, no published theoretical

limits are available since assumptions have to be made about the network topology, hardware implementa

tion, and the manner in which messages are sent

Tables 1.5 and 1.6 present the actual communicationand global operation speeds of workstation clus

ters using PVM [35]. Two important points can be observed. First, the latency is in the order of milliseconds

13
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which is two orders of magnitudeslower comparedto MPPs.Second,actual bandwidthcould be driven at

near theoreticalpeak capacity for large messages.

The slow performance presented in Table 1.5 for Ethernet and FDDI networksis due assumptions

made in traditionalLAN software.These include invoking the operatingsystemon every message, driver

supportfor complexgather/scatter operations, and protocols whichmodelcommunication only in point-to-

point termsrather than in an all-to-allframework. Thecostsof all operations of thecommunication software

including context switching buffer and timermanagement, scheduling, anddatacopying mustbe reduced to

improve performance.

Latency can be hidden by using active messages [37] such that while one process is waiting for a

response, anotherprocesswhichdoes not dependuponthisresponse, mayproceedwithits processing. Mar

tin [36] and vonEicken et al. [37] presentactivemessage implementations on workstation clusters withspe

cial communication hardware.

Table 1.5: Data Transfer Times (milliseconds)

Network

TVpe

Message Length

0 128 IK 16K 64K 1M

Ethernet 1.2 1.5 3.2 24.5 82.3 1211.2

FDDI 1.2 1.5 2.5 16.1 60.3 665.7

Table 1.6: Global Operation Times (milliseconds)

Operation

TVpe

No. of Networked Processors

2 8 32

Barrier 2.2 28.1 107.2

Broadcast 32 15.9 65.9

Opt. Beast \2 11.5 35.1

Martin [36] presents theHPactive message layer (HPAM) which is a software layer thatdelivers

close tothehardware performance touser level programs. The difference between HPAM and typical LAN

communication softwareare the following.

1. Direct user access to the hardware

2. An all-to-all,request-reply modelof communication

14
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3. Carefulmanagementof the networkstate to keep the overheadlow.

Martin [36] describes active message measurements on a network of 4 HP 9000/735 workstations

withMedusaFDDI interfacecards.HPAM achieves a round trip timefor a 20 byte payloadof 29 useeand a

maximum bandwidth of 12 MB/s.The main limitation to scaling,independent of the network, is the buffer

requirements. It requires4*D*Pbuffers per nodewhereD andP are the network depth (numberof outstand

ingpackets to get fullbandwidth) andnumber of processors respectively. Fora shallow network, D = 2 or 4,

it wouldscale well to 64 processors. However, it wouldnot scale to a networkwith 1000processors.

von Eickenet al. [37] evaluates a prototype implementation of the low-latency active messagescom

munication modelon a Sun workstation cluster interconnected by Fore SystemsSBA-100 ATM interfaces

usinga 140Mb/sTAXI fiber. Measurements showapplication-to-application latencies of about 29 microsec

ondsfor smallmessages whichis comparable to theCM-5.The speedcomesfroma carefulintegrationof all

layers,fromthe languagelevel to the kerneltraps.Thekey issuesare avoidingcopiesby having the applica

tionplace thedatawhere thekernel picks it up to move it intothedevice andby passing onlyeasy to check

information. Again, thecost is thelargepre-allocated andpinnedbuffers which doesnot scalewell to a large

number ofprocessors.

Future networks will definitely improve but it is not clear if Martin [36], von Eicken et al. [37], or

other network implementations willbe used.As network latencies improve, more multiprocessor applica

tionswill be ported to workstation clusters. Section 3.5.1 discusses the issuesand possiblesolutionsfor a

workstation cluster implementation of a TCADapplication.

13 Applications of Parallel Processors

1.3.1 General Applications

Numerical processing andsymbolic manipulation are twobroadcategories of applications thatmaybe

donein parallel. Scientific andengineering applications offersomeverylargenumeric computation prob

lems whichincludesparticlecalculations (plasmas), fluid dynamics (weather, aircraftdesign),and com

puter-aided design. Symbolic processing applications include database systems and applied artificial

intelligence. Figure 1.6illustrates thegrand challenges identified in theU.S. High-Performance Computing

andCommunication (HPCC) program. Thisdiagram shows the levels of processing speed andmemory size

required to do both numerical and symbolic manipulations. A significant numberof theseapplications have

beensuccessfully solvedin parallel machines. A briefsurvey of theseproblems with somesimilarity to

TCAD problems will be discussed.
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Considerable effort has been expended in weather simulations due to their benefits to the economy

andthe quality of life. Numerical weather predictions are defined as follows: Given the current state of the

atmosphere (i.e., thevalues of certain specified meteorological quantities), calculate the state atvarious time

inthe future. The state of the atmosphere isdefined byeight quantities - two horizontal components of wind

velocity, temperature, humidity, shifted surface pressure, geopotential, vertical wind velocity, and pressure.

The model consists of therelevant laws of nature expressed as partial differential equations - horizontal

momentum equations, continuity equation, equation of state, first lawof thermodynamics, humidity equa

tion, and the hydrostatic equation. Explicit time integration methods are used tosolve the equations that are

discretized using rectangular grids. Parallel weather code implementations have been described by Kom et

al. [41] and Dennis et al. [42].

Of great importance tothepetroleum industry is the acquisition of undistorted subsurface image from

seismic echo data using seismic migration. By starting with arough velocity profile, the seismologist uses a

cut-and-try iterative procedure togenerate and output image that isconsistent with measurements. A major
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difficulty in seismic migration as compared to other image processing techniques is that propagation veloc

ity ofthe seismic signals can vary by afactor often from one part ofthe seismic image to the other. Typical

solution methods use finite difference techniques to solve the wave equation and to extrapolate the signals

recorded atthe surface downward into the desired region; that is,it solves the wave equation to find out what

subsurface features gave rise totheecho pattern recorded atthesurface. Fourier transforms are used to solve

the wave equation bytransforming the problem from the time domain to the frequency domain. This causes

the frequency tobe theouter loop variable which may beevaluated inanyorder. Hence, theiterations in the

outer loop becomes a pool of tasks thatcan be performed in parallel [43] [44].

The timeevolution of a system of nbodies, each interacting withallother bodies by gravitational

attraction or someother symmetrical force, is another computationally intensive problem. Typical solution

methods [45] for message-passing programs given nbodies can be described as follows: Let each bodybe

mapped to a uniqueprocessor. The innermost loopcomputes the gravitational force betweenthe hostbody

and (n-l)/2 visiting guest bodies. The other code in the inner loop shuttles the guest bodies in and out. The

next outer loop sends the host body's clone out to visit other processes,combines its baggagewith that of the

half-updates clone that stayed at home. With this method, each processoronly needs to send and receive a

total of four messages. For problems with more bodies than processors, the same communication pattern can

be used. However, communication and load balancingissues need to be addressed.

Quantum chromodynamics (QCD) is a theory about particles that make up atomic nuclei. QCD pro

vides a formula for the probability that any specifiedconfiguration of quarks and field at one instant will

arrive at another specifiedconfiguration at somelater instant The space-time continuumis approximated by

anNxNxNxN four dimensional rectangular lattice, and the problem is reduced to the evaluation of an

integral ofover 56 xN4 variables [46]. Deterministic methods ofnumerical integration such as the trapezoi

dal rulewould require astronomical amounts of time even on small lattice structures. Hence, integration

methodsbasedon MonteCarlo statistical sampling areused.Butleret al. [47] presents a MonteCarloproce

dure similar to a parallel Monte Carlo semiconductor device simulator whichis described in Section 1.3.2.

Catlett [48] presents the useof gigabit networks to treat multiple computing resources as singlesys

tem rather than a network of computers. The applications areorganizedinto three general types - computa

tional science, data navigation,and collaborative environments. In computational science, successful

applications such as a coupledatmosphere-ocean general circulation model have been implementedon

supercomputers that are linked together. The useof scientific workstations and theParallel Virtual Machine
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(PVM) havebeen attemptedon tightly coupled algorithms. The efficiency of the algorithms depends mainly

on the amount of computation between communication calls.

Majumdar and Martin [49] presenta parallel preconditioned conjugate gradient algorithm appliedto a

neutron diffusion problem. The paperdescribes an implementationon a distributed workstation (IBM

RS6000) environment using the PVM parallelization software.They claim a very good result of 70% effi

ciency for a one-dimensional fixed-source neutrondiffusion problemon a cluster of7 workstations. How

ever, thereare severalpoints not discussedabout the implementation. First,a single processortakes4927s to

solve a 701 node problem. This is anorderof magnitude longer compared to the solutionof device matrices.

Second, they did not explain the implications of doing 2-Dand 3-Dsimulations. Such simulations may

require a lot morecommunication calls. Third, there is a linear drop in efficiency from one processor to

sevenprocessors. If the trend continues, efficiency for large clusters of workstations wouldbe verypoor.

Somealgorithmic aspects developed for TCAD maybeusefulto other fields andvice versa. Generic

routines such as parallel PDE solvers and Monte Carlo integrators are useful inalotof fields. In implement

ing these algorithms though, application specific issues need tobeaddressed such as preconditioning for the

linear system solution and scattering computation for electron flight for semiconductor device simulation.

1.3.2 TCAD Applications

Since peak performance can only be translated into sustained performance bysoftware, it is the goal

of this dissertation todesign and implement process and device simulation algorithms suitable for MPPs.

MPP algorithms should possess ahigh degree ofparallelism and low communication for good performance.

The performance degradation ofthe parallel algorithm compared to the optimal sequential algorithm should

also becompensated by the added computational power.

In the area of the Monte Carlo device simulation, Sugino etal. [26] presents adevice simulator which

partitions the particles to each processor such that each node in has the same number ofparticles and the ini

tial spatial distribution ofthe particle inside the device must be the same for each node. Hiroki etal. [27]

investigates load balancing further by sorting the particles according to the three events of free-flight,

boundary, and scattering. The particles at each event are then evenly distributed among the processors. This

improved the boundary and scattering routine load balance but has little impact on reducing the total compu

tation time. Ranawake etal. [20] describes aparallel Poisson solver and Monte Carlo simulator. Both shared

memory and distributed memory algorithms were presented. For the distributed memory, the spatial domain

ofthe device was mapped onto separate processors and dynamic load balancing was implemented to main-
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tain approximately thesame number of particles and grid points per processor. Sheng et al. [21] studies the

applicability of SIMD architectures for Monte Carlo simulation. The problem isdecoupled into two disjoint

domains - particle-based and spatially-based. Since theCM-2 supports multiple communication configura

tions, thesimulator can dynamically switch between domains and atthesame time minimize interprocessor

communications. SIMD Monte Carlo performances can be improved through more efficient flight timegen

eration algorithms whichtakeintoaccount theunderlying architecture [22].

Parallel three-dimensional rectangular griddrift-diffusion device simulation algorithms havebeen

designed and implemented by Wu et al. [23], Webber et al. [8], and Tomacruz et al. [9]. Wu et al. [23] pre

sentsthe device simulator STRIDE whichusesincomplete LU decomposition conjugate gradient squared

algorithm to solve asymmetric matrices. Cubic partitioning andan incomplete Nested Dissection ordering

described in Lucaset al. [28] areused to implementan efficientpreconditioner on a MIMD machine. The

contribution of thisdissertation begins withthe development of thea new ordering scheme called the parti

tioned natural ordering [8] which is observed to be suitable for SIMDarchitectures. The partitioned natural

ordering scheme is then extended for MIMD architectures [9]. Multigrid methods useful for parallel

machines are also shown. The ideas and results presentedin Webber et al. [8] and Tomacruz et al. [9] are

described in chapter 2.

Chapter 3 then investigates the feasibility of irregular grid device simulation on MIMD machines.

Parallel algorithms that obtain more than 50% efficiency compared to best sequential algorithms are

described. This is achievedthrough the use of geometrical gridnode partitioning and ILU with fill-ins pre

conditioning routines. This work hasbeen published in Sanghavi et al. [13] andTomacruzet al. [14].

In the area of semiconductor process simulation, Guerrieri et al. [19] presentsa massively parallel

algorithm for 2-D scattering in opticallithography. The method is equivalent to the time-domain finite-dif

ference method used in electromagnetic scattering simulations. Due to the regular structure of the problem,

each grid point is mapped to a CM-2 processor. Calculating the electricand magnetic field requires nearest

neighbor communication. Since the evaluation of boundary conditions require more variables than bulk

equations, the additional "dummy" processors providea local scratch memory. A careful allocationof the

variables reduces the sequentially introduced by the boundary conditions since many instructions used to

updatethe fields in the bulk of the domainarealsousedto compute the boundary condition.A typical simu

lation domain consists of a 1024 x 512 mesh structure and steady-stateis reachedafter about 30-50 wave

cycles which takes about 5 minutes on an 8k CM-2 machine [24]. A 3-D version implemented on the CM-5

has been developed by Wong and Neureuther [25].
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Chapter 4 presents parallel algorithms for thepost-exposure bake process simulation of chemically

amplified resist systems. The simulations involve theaccurate modeling of reaction kinetics anddiffusion of

acid. For therobusmess of thesolver, implicit time integration schemes are used. Thiscreates large linear

systems of equations thatare solvedefficiently witha parallel machine. 1-D and2-D case studies are also

presented to verifythe proposed diffusion models. Thiswork has been published in Tomacruz et al. [10],

Zuniga et al. [11], and Newmark et al. [12].

Chapter 5 summarizes the parallel algorithm and application contributions. A framework for the par

allel solution ofPDEs isconstructed. Generic algorithms which may beuseful inother fields are highlighted

and areas of futurework are presented.
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CHAPTER 2

Rectangular Grid Drift-

Diffusion Device Simulation

2.1 Overview

Numerical modeling of semiconductor devices to predict electrical behavior is important for efficient

design of new devices. CADDETH [17], MINIMOS [18], and SITAR [19] are sequential 3-D rectangular

grid device simulators that have been successfully used for the past decade. However, even with current vec

tor supercomputers, these device simulators still require significant CPU times for the generation ofaccurate

simulation results. In this chapter, parallel algorithms for rectangular grid drift-diffusion simulation are pre

sented. Ordering schemes for preconditioningare developed and tested for parallel execution efficiency and

for convergence robusmess. Multigrid methods are also investigated to improve the initial guess for the

Newton-Raphson solver. Finally, the parallel algorithms are used to simulate silicon pixel detectors.

2.2 Problem Definition

2.2.1 Device Equations

Shockley's paper in 1949 [1] first described the drift-diffusion equations which model the flow of

electrons and holes in a semiconductor material. The steady-state drift-diffusion (DD) model has been used

in this chapter and is based on the Poisson's equation and the continuity equations for electrons and holes

[13].

V. (eV y) = -q {p- n+ Nd-Na) (2.1)

V» (\LnnV \|/-DBV n) -Rn = 0 (2.2)

V. (jyVy +DpV p) -Rp = 0 (2.3)
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where thedependent variables to be determined are theelectrostatic potential, y, and theelectron and hole

carrier concentrations, nand p. Here,nn, \Lp, Dn, Dp are respectively, the mobilities and diffusion coeffi

cients for electrons and holes; e, q, Nd, and Na are thepermittivity, electronic charge, impurity donor den

sity, and impurity acceptor density respectively; Rn and Rp are recombination-generation rates which

include the Auger,Shockley-Read-Hall, andimpact ionization terms.

2.2.2 Device Structures

2.2.2.7 Needfor 3-D Structures

The general 3-Ddrift-diffusion modelwas presented by Shockley [2] and Van RoosBroek's [3] in

1950. However, the development of 3-D simulators did not happen until the early 1980s due tothe computa

tional and applications requirement. The 1980s signalled the arrival of supercomputing platforms that pro

vided the necessary computational power. At this same time, the small semiconductordevice features

necessitated 3-D simulations. When current flow is nolonger predominant toa plane, 2-D mesh structures

are no longer sufficient. For example, as device dimensions shrink for a MOSFET, edge effects which are

characterized by nonlinear current trajectories become important. Another class of 3-D effects is device

cross talk such as parasitic MOS effects that degrade device performance under high bias conditions. Table

2.1 illustrates several examples along with theCPU timesneeded for the simulations.

Table2.1: Examples of 3-D DeviceSimulation Applications

Device or Physical
Phenomena

Mesh Size Machine CPU Time Reference & Comments

EEPROM 35,000 Sun 4/260 570 s/bias point Linton et al. [14]; poisson only

CMOS Latch-up 56,562 Cray-2 5h Heiser et al. [4]

Parasitic MOS 48,190 Multiflow 8h Noelletal. [6]

DRAM 25,000 BMRS/6000 15-30 m/b.p. Knepperetal. [15]

222.2 Sample Structures

Severaltypical device structures, MOSFETs, and BJTs, areused to test the simulator. The MOSFET

shown inFigure 2.1 isan n-channel device with aW/Leff of \\yml\\xm with an oxide thickness of 28nm. The

source and drain regions have an impurity concentration of2x lO20^"3 and ajunction depth of0.3wm. The

substrate impurity is 2.5 x 1016cm"3. The bipolar transistor shown in Figure 2.1 is astandard npn device,

with abase width of 0.1 \xm. Theemitter impurity concentration is 2 x 1020 cm3, the collector is UP°cm'3,
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the active base region is 1.4 x 1018cm"3, the base contact region is 3x 1019cm'3, the buried N+ region is 3x

1019cm"3, and the substrate is 1016cm"3.

[^- 1.6um-^\

p±,:3el

2.0 urn

n: 2e20 cm'3

-3p: 2.5el6 cm 2.aum n+:3el9

<jf

K 2.4 urn- K 3.4um-

Figure 2.1: MOSFET and BJT Structures

23 Solution Method

2.3.1 3-D Grid Generation

K

\

m ilelO

H

1.0 urn

, r
'2.0 urn

at

Figure 2.2: Rectangular Grid

Rectangular grids or tensor-product grids which are illustrated in Figure 2.2 are easy to specify but

can be wasteful since grid lines may need to be extended to quasi-neutral regions. Device simulators that
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used this device structures include CADDETH [17], MINIMOS [18], SITAR [19], and STRIDE [9]. The

parallel implementation ofrectangular grids is themain focus of thischapter.

Prismatic grids canbe generated by replicating a triangular grid in thethird dimension. Thisresults in

a rectangular grid in the third dimension which again canbe extremely wasteful. FIELDAY-3D [20],

SIERRA [21], andHFBELDS [22] useprismatic grids since these simulators were originally 2-D triangular

grid simulators which were extended to 3-Dusing prismatic grids.

Curvilinear grids, whichare illustrated in Figure 2.19, retain the same connectivity asrectangular

grids butallow a more accurate modeling of boundaries due to the flexibility of thelocation of each grid

point. However, it does notallow thelocal refinement of elements which again could bewasteful. Matsuo et

al. [54] presents a device simulator usingthis schemeandit is further evaluated in Section2.7.

Grid generation using themodified octree approach which is shown in Figure 3.1 can be described as

having acuboid, whose octants are repeatedly refined attheir edge midpoints until the boundary and internal

quantities are sufficiently approximated. Non-rectangular elements are used to pass from dense to coarse

mesh regions. Coughran etal. [23] claims an average factor of three improvement ingrid points from rectan

gular to irregular grids. Also, the non-rectangular elements can beused toapproximate arbitrary device sur

faces. This isused by the Second [4], Simul [5] and the device simulator presented inChapter 3.

2.3.2 Drift-Diffusion Solution Method

TheDD equations have been discretized onathree-dimensional tensor-product grid using finite dif

ference (FD) [24] and the Scharfetter-Gummel method [25] described by Section 4.3 for the approximation

of carrier densities. FD is based onreplacing differential operators bydifference operators. The unmodified

FD only uses Unear approximation which is not useful for the exponential variation of the carrier density in

thecontinuity equations. The FD method generalizes to thebox method (BM) which is also known as the

control volume orfinite volume method for irregular grids. The nonlinear equations are solved using a fully-

coupled Newton method, and the asymmetric linear system ofequations are solved using the Conjugate Gra

dient Squared (CGS) method [26] (described inSection 2.4). The general computational steps can besum

marized by Algorithm 2.1. A major portion of the CPU time is spent insolving linear systems of equations.

Hence, themain focus of this chapter is theefficient implementation of a parallel linear solver.
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Algorithm 2.1:Steady-State Drift-Diffusion Computational Steps

problemread-in and setup

Newton-Raphson loop

evaluate the equations for the Jacobian and

right-hand side of the Newton iteration

solve the associated linearsystem

post-processingof results

2.3.3 Partitioning for Parallelization

There arenumerous possibilities for distributing the workload of a device simulator to different pro

cessors - grid, time,voltage, and design. Each scheme has itsownadvantages in terms of ease of implemen

tation and performance improvements. These advantages depend on thealgorithms being implemented and

also thetypeof parallel architecture being used. Partitioning in terms of grid points is used for alltheparallel

algorithms presented in this dissertation. This involvespartitioning the mesh structure into subdomains and

mapping each subdomain to a processor. Partitioning in terms of grid points offer themost general form of

parallelism sinceit can alsobe usedto do voltage sweep, transient, anddesign space simulations.

23.3.1 Grid Point Partitioning

To map the problem ontoa CM-2,each grid point is assigned to a processor. Thus each processor

stores the local values of \jf,n,andp, and thethree rows of thematrix of thecorresponding grid node. Using

this allocation, the grid fitsnaturally on the organization of the machineand,at the sametime, variables hav

ing a strong coupling due to the spatial adjacency are tighdy clustered. The resulting matrixis a banded

matrix, whose sevendiagonals are 3x3 matrices representing theinteraction among thelocal variables.

The CM-5 mesh structureis divided into rectangular blocks each called a subdomain. Each subdo

main is mapped to a processor and thedimensions of thesubdomain are powers of 2. The dimensions in

each axis areequal or almost equal in orderto formcubic subdomains.This minimizes the total surfacearea

which in turn minimizes thedata length of communications between processors. A simple row ordering is
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usedto mapthe subdomains to theCM-5processors since the fattreeconnections allow minimalpenalty for

communications between arbitrary processors[30].

2.33.2 Time Point Partitioning

Han et al. [44] presents a parallel algorithm to solve equations together in parallel at different time-

steps. A processor assigned to a later time-step can start working using a good initial condition before the

processor assigned to thepreceding time-step finishes itscomputation. The initial condition for thelater time

step processor is obtained by thequicksolution of a coarse grid. Details of theimplementation are further

discussed by Han et al. [44]. Thealgorithm was implemented onaMIMD parallel machine and was tested

onaGaAs MESFET device. A 13.7 speed-up isobserved for a 16 processor computer.

Tai et al. [45] describes a 2-D device simulator that is parallel inboth time and space. The simulator

was implemented ona SIMD architecture in which the processors are partitioned todifferent time points.

Each group of processors solves a2-D device structure for a particular time point. A group of processors

assigned toa later time-step can start working using agood initial condition before the group of processors

assigned to the preceding time-step finishes itscomputation. The initial condition for the later time step

group of processors is provided by thecurrent solution of thegroup of processors for the previous time

point. An explicit method is used to donumerical time integration. A speed-up of 8 is observed for an SOI

application.

233.3 Voltage PointPartitioning

Allowing each processor tosolve avoltage point for avoltage sweep simulation isanother way topar

titioning the device simulation problem. However, the Newton algorithm isknown to perform well when a

good initial estimate of the solution isgiven. Hence, aparallel voltage partitioning cannot take advantage of

a usually good initial guess obtained by a projection from twoprevious solutions.

233.4 DesignPointPartitioning

Different geometry features ordoping profile values are needed tobesimulated inoptimizing device

performance orin studying the sensitivity of adevice characteristics. Sensitivity analysis is important for

predicting worst case device performance due tovariations in the geometry and doping profile of the device.

These variations result from the limitations inthe accuracy of semiconductor processing technology. Hence,

each of these geometry and doping features can besimulated in parallel.
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2.4 Linear System Solution

2.4 Linear System'Solution

2.4.1 Iterative Solvers

Thereare twobasicwaysto solvea linearsystemof equations - directand iterative. Directsolversare

usually preferred because of theirreliability andpredictability. Theyare usually basedon variants of Gauss

ianelimination. Theyconstruct a lowertriangular matrix Landan uppertriangular matrix U suchthatLU-

A. Land Uarealsosparse butusually much denser than theoriginal matrix. Nonzeros inLand Uappearing

inzeropositions of theoriginal ofthematrix arecalled fill-ins. Theamount of fill-ins increases superlinearly

with the problem sizeand thedimensionality of theproblem. The numberof fill-ins for a 3-Ddiscretization

is higher than fora 2-Ddiscretization with the same number of gridpoints. Thecombination of thesetwo

factors makes thestorage requirements an issue when switching from 2-Dto 3-Dmodels.

Demmel et al. [31] describes parallel implementations for sparse matrix directsolvers. Sparse matrix

factorization offers moreopportunities forexploiting parallelism beyond thoseavailable withdensematri

ces. However, it maybe more difficult to attaingoodefficiency in the sparse case.The main challenge is

developing a row ordering algorithm and a matrix to processor mapping algorithm such that the number of

fill-ins is minimized andparallelism is maximized. Oneof theearliest parallel algorithms which ispresented

by George et al. [32] maps a group of columns to each processor. Cleverrowordering maycreatecolumns

thatmay beeliminated inparallel. Sequential iterative solvers areobserved tobe significantly more efficient

compared to sequential directsolvers for 3-Ddevice simulation problems. In fact,due to memory and com

putational requirements, large problems canonlybe solved using iterative methods for currentsequential

computing platforms. It will be shown in Section 3.4.7 thateven with 100% efficiency for parallel direct

matrix solvers, parallel iterative solvers arestillmore efficient. However, parallel directsolvers maystillbe

useful for very ill-conditioned matrices thatmayariseforseverely biased semiconductor devices.

Matrixsplittingmethods suchas Jacobi,Gauss-Seidel, and Successive Over-Relaxation (SOR)do not

playa significant rolein thesolution of linear systems indevice simulation. Splitting matrices usually donot

meet the requirements for convergence. Another class of iterative solvers involves the minimization of a

convex function. These solvers arecomposed of routines forgenerating thesearch direction andfor finding

the minimum in the current search direction. Thesimplest method is thesteepest descent solver. It uses the

negative gradient at thecurrent position as its search direction. Unfortunately, thespeed of convergence may

be relativelyslow for a relativelyflat steep-sided valley. The algorithm is forced to traverseback and forth

across the valleyrather than down the valleysince the gradientdirectionsfor each iterationare too similar.
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Toavoid the pitfalls of steepest descent, search direction generation algorithms thattakeintoaccount

previous search directions have been created. For example, Generalized Conjugate Residuals (GCR) [34]

selects anewsearch direction based on thecurrent residual plus a linear combination of theprevious search

directions. Dueto storage requirements and computational increase as the number of iteration increases,

GCR is restarted atregular intervals. Instead of throwing away previous search directions when restarting,

the same amount of memory can be saved by throwing theoldest search direction. Thisapproach is called

truncation and thetruncated version of GCR is called Orthomin [36]. Further improvements in terms of find

ing the minimum of the current search direction have created the Generalized Minimal Residual Method

(GMRES) [35]. Thesesolvers still fail for typically ill-conditioned device matrices [4,33].

The only successful algorithms for device matrices come from the family of biorthogonalization

methods which includes Biconjugate Gradients (BiCG) [37] and itsvariants. BiCG notonly solves the pri

mal linear system butalso thedual linear system which is composed of thematrix transpose. BiCG is usu

ally able to solve device matrices where restartedGMRES or truncatedOrthomin fail. Two famous variants

of BiCG are theConjugate Gradient Squared (CGS) [26] which is described by Algorithm 2.3 and theBi-

CGSTAB [38]. CGS reformulates BiCG with theabsence of transposed matrix operations. It is able to

achieve this bysquaring the update formulas for the residual and the search direction. Bysetting the residual

function of CGS as a function of thesquared update formulas, amore convergent solver is observed. The

reason is the"contraction effect" which can bedescribed informally as follows: The fan combined residual

can be written as aproduct ofapolynomial ®k (A) and the initial residue. Assume BiCG converge in the

residual, that is, || rk\\ is smaller than || rfl||. Hence, the polynomial Ofc (A) contracts II rJI. It is then possi

ble that 4>k (A) contracts || rk\\ as well. As aresult, the "contraction effect" of <&j* (A) applied to || rQ\\ is
expected to be stronger than that ofO^ (A).Search direction routines can then be generated consistent with

thematrix polynomial Withdevice matrices, a speed-up of twoisobserved.

Bi-CGSTAB isbased onthe same matrix polynomials as CGS, butinstead ofbeing squared, this poly

nomial is premultiplied by another polynomial which isbased onthe steepest descent. The second polyno

mial damps theeffectof divergence in the BiCG polynomial. Pommerell and Fichtner [39] present a

comparison of BiCG and its variants.

TheBiCG method and its variants require the same basic linear algebra operations - inner products,

vector updates, matrix vector products, and preconditioning. Vector updates are trivially parallelizable since

each processor updates its"own" segment for a grid point partitioning illustrated by Section 2.3.3.1. Only

theinner products (x • x), matrix vector products (Ax), and possibly the preconditioning (U~lL~xA) would

31



2.4 Linear System Solution

require communication calls. The innerproducts can easily be parallelized. Each processor computes the

inner product of twosegments of each vector. Theresults are sentto other processors in order to be reduced

to the required global inner product. Matrix vector products require theneed for communication to acquire

theelements of thevector. Since onlynearby nodes are connected, processors are onlyrequired to communi

catewith a few otherprocessors. After parallel communications calls,all computations can efficiently be

done in parallel. The preconditioning part is oftenthe most problematic in terms of parallel implementation

due to its sequential nature. Section 2.4.2 discusses this problem in detail. Pommerell [40] presents a

detailed analysis of iterative methods relevant to device simulation. Tong [41] givesa comparative studyof

Lanczosmethods appliedto otherapplications.

Jones et al. [57] [58], andDemmelet al. [31] present successful implementations of parallel iterative

linear solvers. Jones et al. [57] [58] describes a parallel preconditioned conjugate gradient applied to matri

ces arising from finite elementmodels.The papers conclude thatincrease in parallelism generated by color

ing-based orderings morethan offsets any increase in the number of iterations required for the convergence

of the conjugate gradient algorithm. Demmelet al. [31] reports several approaches to obtain parallelism in

preconditioning. Most publications emphasize the importance of ordering for preconditioning of matrices

which is very problem dependent. This dependency will be furtherexamined in the next subsections. Also,

research work hasalsobeen done on rearranging computational steps fordatalocality,reductionof synchro

nization points,andimprovedoverlapping of communication andcomputation [59].

2.4.2 Preconditioning

The convergencebehaviorin solving Ax = b to a given accuracy using an iterative solver depends

heavilyon the problem underconsideration. All the methodsconvergein one single step if the matrixis an

identitymatrix.Preconditioning transforms the original linear system to Ax = b such that A is close to the

characteristics of the identity. Hence, one can expect thatan iterative methodwill solve the preconditioned

system in feweriterations thanthe original system.This approach is useful if the totaltime to perform all the

transformations and the needed preconditioned iterations is smallerthan the time for an unpreconditioned

solution.

A is calculated by multiplying A with its approximate inverse A and b is obtainedby multiplying

b with A~ . The usual way of obtaining A~ is to factorize A into components thatare easily invertible.

One choice is LU-factorization, a variant of Gaussian Elimination which computes the lower triangular L,

and the upper triangular U such that A = LU.A common preconditioner is incomplete LU (ILU). Algo-
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rithm 2.2describes ILUdecomposition which is equivalent toLUdecomposition if allthe fill-ins in step 4

are included. Fill-ins are defined asmatrix entries in A that are zero butare notequal tozero inL orU.Since

A is onlyanoperator for matrix-vector multiplication in BiCG and itsvariants, thepreconditioner is applied

bythe following order ofoperations - (IT1 (IT1 (Av))) where v isavector (Algorithm 2.3 illustrates a

ILU preconditioned CGS). Using Av may seem more efficient butcalculating A is difficult since it is not

sparse.

Preconditioning is essential for the convergence of BiCG andits variants fordevice matrices [39].

Between no preconditioning and full LU,there is a spectrum of preconditioners that offera wide variety of

efficiency-robustness trade-offs. The design of the preconditioner addressed inthis chapter requires parallel-

ization considerations in addition to therobusmess issues. For a parallel preconditioner, we would liketo

minimize the total CPU time needed bythe parallel machine tocomplete the solution of the linear systems.

Theparallel algorithm uses a variation of the incomplete LU factorization for preconditioning since

ILU isobserved tobe the most efficient for device matrices [39]. The ordering of the equations for this fac

torization has asignificant effect onthe convergence behavior of the CGS algorithm as well as onthe num

ber of operations that can becarried out inparallel. Unfortunately, more parallelism yields ingeneral slower

convergence, sothat finding anordering that minimizes theoverall running timeis nottrivial.

There are numerous orderings of nodes possible [27]. Two criteria are used toexamine the orderings

inthe next subsections. First, the preconditioner should make the iterative algorithm converge for typical ill-

conditioned device matrices. Second, it should beable tominimize the total elapsed time toobtain the solu

tion. Processor utilization iscorrelated tothe second criterion but isnot the primary concern inperformance

evaluation.
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Algorithm 22: ILU Preconditioning

ILU decomposition:

Given:

Step 0:
Step 1:

A, a nonsingular nxn matrix.
Set* = 7.

Set the **row ofUequal to the** row ofthe matrix A.

Step 2:
Step 3:

ukj = <*kj'> j-k,k+l,...,n
If £ = n then stop.
Obtain the kth column of L.

Step 4:
lik = aikfukk; i = k+l,...,n
Update A. Fill-ins may be introduced.

Step 5:
aij =aij-1ik«kj; i,j =k+l,k+2,...,n
Incrementkand return to step 1.

Forward substitution:

*-i

; = 1

Backward substitution:

[yk- I uqxA
xk- V '=*+1 y; k=n,n-l 1

ukk
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Algorithm 2.3: Preconditioned CGS

Leu

r0 = r= IT1L-X (b-Ax0), p = l,p = 0, q = 0

While(r«r>e) {

P = 1/p ; p = r»r0; P = pp;

w = P? + r; v = $p + q; p = Pv + k;

v = U~xL~lAp ; a = vr0; a = p/o;

q - -ctv+v ; v = u + q ; u = lTxL-xAv;

r = r-au ; x = x+av

)

2A3 Ordering of Nodes for the CM-2

2.43.1 Natural Ordering andRed-Black Ordering

A commonly usedordering for preconditioning on sequential machines is the natural ordering. This

has beensuccessfully usedby the device simulator CADDETH [17]. In thisordering, grid nodes (hence

matrix equations) are numbered first in thex direction, then in they direction, and finally in thez direction

(or some other permutation of x, y,and z). Specifically, the index for theequation atgrid point i,j, k is given

bythe formula i +Nxj +Nx Ny kwhere Nx, Ny and Nz are the number ofgrid points in the x, y, and zdirec

tions respectively.
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Figure 2.3: Two Dimensional Grid with Natural Ordering

During the LU factorization and the forward and backward substitution, the condition that determines

whetheror not a node can be eliminated is thatall adjacent nodes that have a lower index must have been

eliminatedalready. At firstglancethis is a completelysequential algorithm. On closer inspectionhowever,a

significantnumber of operations can be carried out in parallel as shown in Figure2.3 where a two dimen

sionalexample is shown. The setsof equations thatcanbe processed in parallel form diagonal lines passing

through the grid. In this example, these sets are: {1}, {2,5}, {3,6,9},{4,7,10,13}, {8,11,14), {12,15),

and {16}. In three dimensions, these sets form diagonal planes. The number of steps required by the algo

rithm in three dimensions on amassively parallel computer is Nx +Ny +N2.2, which is 0(N1/3) ifthe num

ber of grid nodes is increased uniformly ineach of the three dimensions which is0(N1/3) if the number of

grid nodes is increased uniformly in each of the three dimensions.

A preconditioner using the natural ordering has good convergence behavior, but it does not exploit

well the architecture of amassively parallel processor. In fact, the time per iteration, 0(N1/3), grows fast

with the number of grid points.

A Red-Black ordering [28] provides for a much more efficient parallel implementation of the matrix

operations, but as we shall see later, the convergenceof the CGS method is significantly slower.This order

ing labels each grid node either red or black such that each node is not adjacent to any node of the same

color. Thus, given the assumptionof no fill-ins, eachred node is independentof every other red node, and

2.4 Linear System Solution
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each black node is independent of everyotherblacknode. With this ordering, during the LU factorization,

forward and backward substitutions, allof thered nodes can beeliminated simultaneously first, followed by

allof the black nodes alsosimultaneously.
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Figure 2.4:Convergence of Natural and Red-BlackOrdering

This ordering is very efficient for parallel computers since it needs constant time per matrix iteration,

and is themethod of choice for solving Poisson's equation [29] where the speed of convergence of the con

jugate gradient method is not strongly affected when compared to the natural ordering. However, for the

solution of the coupled drift diffusion equations, the CGS method with the red-black ordering converges

much slower than the natural ordering as shown inFigure 2.4 for aMOSFET simulation on a 16x16x2 grid.

The error isdefined tobethe maximum residual generated bythe CGS algorithm. The total time for solving

a matrix using the red-black ordering is larger than that for the natural ordering even though the latter

requires much more time per iteration.

2.43.2 Partitioned Natural Ordering

Given that the natural ordering performswell for CGS, we examined a modification to the basic

scheme toyield anew method that would allow more parallel operations, the partitioned natural ordering. In

the natural ordering, the sets of nodes that can beeliminated in parallel form diagonal planes through the

grid as shown inFigure 2.3 and aplane has towait for the factorization process toterminate on the preced

ing plane. Now if weignore the dependency between the nodes on plane m+1 and the nodes onplane m,

37



2.4 Linear System Solution

then we partition theoriginal matrix into two parts: theone from plane 1(theleft-top node) to plane mand

the other from plane m to plane n, the last plane (the right-bottom node) of the grid. In this case, at the first

stepof the iteration, allthe nodes on planes 1 and m+1 can be processed in parallel. After this step,all the

nodeson planes 2 andm+2canbe processed in parallel, and so on. Using the examplein Figure 2.3, the

groupsof nodes that can be eliminatedin parallel arenow: {1,8,11,14}, {2,5,12,15}, {3,6,9,16}, and

{4,7,10,13}.

This methodwas first applied to the incomplete LU factorization, but gavedisappointing results since

many iterations wereneededto achieve convergence. However, note thattheCGS methodrequires only one

LU factorization per matrixsolution, but several forward andbackward substitutions (one of eachperitera

tion).Thus it is more important to speedup the forward andbackward substitution processes thanthe factor

ization process. Hence, the partitionednatural orderingmethod was applied to forward and backward

substitution as follows.

The incomplete LU factorization is carried out using the natural orderingand then entries in the L and

U factors that link the elements of the matrixcorresponding to the nodes acrossthe partition, arediscarded.

In this way, the numerical values of the entriesof the LU factors are the same as in the natural ordering,but

the results of the forward and backwardsubstitutionprocessaredifferent.

If the point at which the planesarepartitioned is the same forboth the forward and backwardsubstitu

tions, there would be no data transferred between the partitions because all of the matrix elements connect

ing the partitionswould be set to zero.Therefore the point at which the planesare partitionedis offset for the

backward substitution compared to the forward substitution.For example, referring to Figure2.3, if the par

tition for the forward substitution is between planes4 and 5, then for the backward substitution it would be

between planes 3 and 4.
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Figure 2.5: Effect of Number of Partitions to Number of Iterations

Of course, thistechnique is not limited to two partitions. Figure 2.5 shows howtheconvergence is

affected by increasing thenumber of partitions. As can be seen, thespeed of convergence is slower asthe

number of partitions is increased, but notby orders of magnitude. Figure 2.6 shows theCPU time forthe

complete solution of amatrix withrespect tothenumber of partitions using this algorithm. Thematrix being

solved was generated from a MOSFET simulation ona 16x32x8 grid, sothenumber of sets of equivalent

nodes in the dependency graph (orplanes through thegrid) is 54.This graph shows thatthe CPU time is

minimized when thenumber of partitions is inapproximately the range of 15 through 27,or, inother words,

when there are approximately twoorthree planes per partition. As the number of partitions increases beyond

half the total number of planes, the number of iterations for convergence increases significandy. Allof the

results presented inthis paper related to the partitioned natural ordering use two planes per partition since

this partition offers the maximum amount of parallelism without affecting the convergence speed by an

intolerable amount.
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Figure 2.6: Effect of Number of Partitions to Total CPU Time

Sincethe partitioned natural ordering usesa fixed numberof planes perpartition (two), the CPU time

permatrix iteration is now a constant, as it waswith the red-black ordering, but at the sametime retainsmost

of the convergence properties of the full natural ordering.

Even with this approach to speed up forward and backward substitutions, it is observed that the time

for the LU factorization (even though it is computed with the full natural order) is always significandy

smaller, and growing at a smaller rate, than the time for the forward and backward substitutions.

2.43.3 Three-Color and Nested Dissection

The two-colorordering labelseachgridnodeeitherred or black such thateachnode is not adjacent to

any node of the same color. The equation to do incomplete two-color LU decomposition is shown as fol

lows.

(2.4)

Since the fill-insonly occur in the E partof the U matrix, the black nodes should be divided into more

groups to allow fill-ins to influence E. The simplest approachis to divide the black nodes into two groups,

Bl and B2. The same rule used to create red and black nodes can be used to create Bl and B2 nodes by
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assuming red nodesdo not exists. This produces a threecolorordering andthe equation for incomplete LU

decomposition is shown as follows.

*R ARB\ ARB2

AB\R !B\ °
z:

AB2R ° IB2_
LB\R JB\

LB2R LB2B\ !B2\

lR URB\ VRB2

0 EB\ VB\B2 (2.5)

L>B2Bi ^d Ubib2 aredie fill-ins thatare supposed to improve the preconditioner. Table2.2 shows that

while the threecolorschemeimprovedthe quality of the preconditioner, the CPU time required did not

make it competitive overall with the simpler red-black ordering.

Table 2.2:16x32x8 MOS Three-Color Results

Method
CPU Time

(relative)
Total Linear

Iterations

R/BBCG 1.8 2388

R/BCGS 1.9 3846

R/B1/B2CGS 13 3544

Natural CGS 1 104
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Figure 2.7: Nested Dissection Ordering
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Thenested dissection ordering [42] has been used for a parallel direct solution of sparse matrices [43].

This ordering minimizes the number of dependencies betweennodeswhich in turn should minimize the

number of discarded fill-ins for apreconditioner. Thebasic idea is torecursively split themesh structure into

two pieces of roughly equal rectangular blocksanda separator plane. A 2-D nesteddissection schemeis

applied tothe separator plane and red-black ordering isused for thenodes that donotbelong to any separa

torsets. Thered and black nodes are mapped to thetop of thelinear matrix. Then, theseparator grid points

are allocated their corresponding rows in thematrix. Thered and black nodes can be individually executed

in parallel. Theseparator nodes can also beexecuted in parallel using a parallel row ordering scheme. This

algorithm is applied to a 3x3x3mesh structure and theresults are shown in Figure 2.7.All nodes labelled

with the same number can be executed in parallel except for nodes labelled 3. Group 3 nodes are further

labelled withnumbers enclosed in parenthesis. Nodes withthesame number can be done in parallel.

Current results for nesteddissection do not showsignificant improvements fordiode simulations. In

fact, MOS simulations runintoconvergence problems. It is observed thatbetterresults areobtained when

thecoupling of nodesis maintained instead of minimizing the discarded fill-ins.

2.4.4 Orderingof Nodes for the CM-5

2.4.4.1 PartitionedNaturalOrdering

The partitioned natural ordering [8] has been extended to the MIMD MPPCM-5 architecture. This

ordering compares favorably withother wellknown techniques such asthered-black ordering and thenatu

ralordering on a SIMD CM-2.The CM-2andCM-5 implementations aretestedwith a 32x32x16 MOS tran

sistor and results are presented in Table 2.3 for a single bias point. Generating the linear matrix is relatively

inexpensive for both CM-2 andCM-5 implementations. The linear solverstake more than95% of the CPU

timefor both implementations. TheCM-2 version spends more timein thepreconditioning step(incomplete

LU factorization or ILU) since this sequential step forces theCM-2to havemorecomputational resources

idle compared to the CM-5.

Table 2.3: CPU Time Breakdown

Operation CM-2 CM-5

Jacobian 2.0% 3.3%

ILU 30.0% 10.1%

CGS 68.0% 86.5%
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Table 2.3: CPU Time Breakdown

Operation CM-2 CM-5

CGS matrix times vector 26.8% 36.3%

CGS Forward/Backward
Substitution (CGS-FBS)

33.4% 42.2%

CGS-FBS Communication 12.1% 15.4%

2.4.42 BlockPartitionedNaturalOrdering (BPNO)

A new ordering scheme tailored for the CM-5 called the blockpartitioned natural ordering is intro

duced. To alloweach processor of the CM-5 to execute in parallel, each subdomain mappedinto each pro

cessor should be disconnected from other subdomains while doing forward and backward substitution.

Using the ideaof not having the same cut points for the forward andbackward substitution proposed by

Webber et al. [8], a new preconditioner called theblockpartitioned natural ordering preconditioner is pro

posed.This preconditioner still cuts the links at the boundary of subdomains for forward substitution as

shown in Figure 2.8. However, the cut planes for the backward substitution is movedby an offset of one

which is illustrated by Figure 2.9. Natural ordering backward substitution isdone consecutively from set 1to

set4. Set 2 is composed of two planes of nodes,set 3 is composed of three linesof nodes, andset4 hasone

node. Doing simple subdomain partitioning for backward substitution would have disconnected the set 4

node from its three neighbor subdomains by processing it firstThis partitioning gave poor results. The off

setof oneallows information to travel from onesubdomain toanother during thepreconditioning of thelin

earmatrix. An offset thatcuts through themiddleof the subdomain gives similar results.

0 © 0 dn>

(p © d) 0

Figure 2.8: BPNO Forward Substitution Subdomain
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Figure 2.9: BPNO Backward Substitution Subdomain

Fill-ins within each CM-5 subdomain can be included. Thearchitecture and large local memory of the

processing nodes of theCM-5 allow several levels of fill-ins within each subdomain while doing incomplete

LUdecomposition, forward substitution, and backward substitution. Allowing fill-ins onlyin theincomplete

LU decomposition did not improve the linear solver. A significantreductionin the total number of inner

loop iterations isobserved when fill-ins are also allowed inthe forward and backward substitution process.

2.4.5 Results

Results for a bipolar transistor described by Figure 2.1 with Vte=0.8 and V^LO are shown in Fig

ures 2.10 and 2.11. PNO, NO, and BPNO signify partitioned natural ordering, natural ordering, and block

partitioned natural ordering respectively. The numberattached to BPNO indicates the fill-in levels allowed.

64 processors withno vector units are used for CM-5 simulations and 8k processors with floating point

accelerators are usedfor CM-2simulations. Fill-ins decreased thetotal inner loopiterations but nottheCPU

time. BPNOO is twotimes faster than PNO-CM5 for the32kmesh and produces thelowest CPU time for the

CM-5. Itisalso more robust since PNO does not converge for the 64kmesh. PNO still gives the best perfor

mance for the CM-2.
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Figure 2.11: CPU Time (sec) vs. Mesh Size (K)

It is stated by Webberet al. [8] that the CM-2algorithm exceeds vectorsupercomputer performance

forproblems greater then 15,000 grid nodes. With reference to Figure 4 which showscomparable perfor

manceforthe 8K CM-2 anda 64 nodeCM-5,a 128 nodeCM-5 canbe concluded to provide a vectorsuper

computer performance. It should be noted that the best known algorithm for each architecture is used for

making the performancecomparison.
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More memory for each CM-5 processor overeach CM-2 processor produces a significant improve

mentintheconvergence behavior since more coupling between grid points givebetter preconditioners. This

decrease in inner loop iterations along with faster CM-5 processor elements render abetter performance rel

ative to CM-2 typearchitectures astheproblem sizegets larger for the proposed algorithms and discretiza

tion technique.

Several performance metrics for MPPs discussed by Zorpette [7] are significant for the implemented

CM-5 devicesimulator. The simulator hasan 80% to 20% computation to communication ratio which is

important in determining which MPP architecture to use and which MPP architectural and software aspects

need tobe improved. TheCM-5 algorithm does not take advantage of overlapping communication and can

be executed in adata parallel SIMD mode. These twoarchitectural considerations maybecome important

when nonuniform grids are used. The bisection bandwidth, the rate at which half the processors in the

machine can send data to theother half, is important since adjacent subdomains which are arbitrarily

mapped todifferent processors need tocommunicate with each other. Latency time, thetimeit takes to pre

pare for communication, isunimportant because each communication call usually involves transferring hun

dreds of floating point numbers. Finally, a user specified mapping that takes advantage of certain regular

properties inthealgorithm and the architecture should give comparable, if notbetter, performance over MPP

architectures thatmimic shared-memory.

TheCM-5 implementation of thepreconditioner can be made more efficient by improving communi

cation and computation routines. For thecommunication routines, the maximum experimental node tonode

transfer is found tobe 8 Mbytes/sec which is well-below the peak bandwidth of 20 Mbytes/sec [30]. It is

expected that this is going to increase with newer versions of the CMMD communications library [30]. For

thecomputation routines, each CM-5 node may have upto four vector units. Each processor can be treated

as a4 processor SIMD computer. Each vector unit iscapable of 32Megaflops/sec. With reference toFigures

1and 2,allnodes withthesame number can beexecuted in parallel by thevector units.

2.5 Multigrid

TheNewton algorithm is known toperform best when agood initial estimate of the solution is given.

A good initial guess is usually obtained by a projection from twoprevious solutions whose bias conditions

differ onlyatonecontact to a newapplied bias at that contact. The initial guess for the first two solutions

may be obtainedby the initialization described by Webber et al. [8]. The simulations are initialized with

piecewise constant potential and carrier concentration which associate with each region the potential of its

46



CHAPTER 2: Rectangular Grid Drift-Diffusion Device Simulation

contact and the concentration of themajority carrier. This can be accelerated by a multigrid initial guess

which does notrequire any specific knowledge of thedevice and theregion of operation upon which it is

simulated. It should benoted that voltage sweeps donotnecessarily need to start with zero bias. Measuring

threshold voltage ordevice breakdown for example only involves thesimulation of acertain segment of the

IV curves. Hence, the first twobias points maysignificandy affect thetotal CPU timeof voltage segment

simulations. The next subsections will present algorithms to obtain theinitial bias points efficiently. It may

be noted that thesealgorithms arealsoapplicable to sequential machines.

2.5.1 Multigrid Discretization

The scheme is based on two coarse grid mesh structures intertwined asshown in Figure 2.12. These

coarse grids areconstructed from 4 setsof discretization nodes. Coarse grid 1 is defined asthe union of sets

1 and 2, and coarse grid 2 is defined as the union of sets 3 and4. Set 1 is defined to be nodes with even coor

dinate values in all three grid axes, and set 3 is defined to be nodes with odd coordinate values in all three

grid axes. Set2 isdefined tobethenodes connecting the nodes of set1,and set4 isthenodes connecting the

nodes of set 3. If the solution of theequations on oneof thecoarse grids previously defined is carried out

while the other coarse grid meshstructure is usedasa boundary condition, the nodes in sets2 and4 will

haveonly two activeneighbors, thus makingpossible the static elimination of the variables associated with

thenodes themselves. Thisultimately allows theuseof a smaller grid mesh structure composed solely of set

1 or 3. In addition, the elimination of set 2 or 4 decreases the number of variables which decreases the search

space of the linear solver and hence, reduces the number of linear solver iterations.

Figure 2.12: Multigrid Discretization
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2.5.2 Multigrid Initial Guess

Themultigrid discretization is used todefine an approximate decoupled Newton scheme to produce a

goodinitial guess for the full Newton algorithm. Thealgorithms consist of the following steps: First,do a

simulation of set 1 nodes. Using set 1as a boundary condition, an initial guess for set2 nodes is computed

by doing threeextended simulations. Eachextended simulation uses the actual fine grid discretization for

oneaxisandtheset 1discretization for theremaining twoaxes. Using sets 1and 2 as boundary conditions,

an initial guess is calculated forsets3 and4. Asa final step,sets3 and4 areusedas boundary conditions to

improve the initialguessfor sets 1 and2. These simulation stepsare summarized as follows (B.C. denotes

Dirichlet boundary conditions).

Algorithm 2.4: Multigrid Initial Guess

1. Set 1 Simulation(B.C. = 0)

2. Set 2 Simulation (B.C. = Set 1)

a. extended x

b. extended y

c. extended z

3. Sets 3 and 4 Simulation (B.C. = Sets 1 and 2)

4. Sets 1 and 2 Simulation (B.C. = Sets 3 and 4)

Simulations witha multigrid initial guess aredone for a 31x31x15 MOSFET, a 63x63x31 MOSFET,

and a63x63x31 bipolar transistor described byFigure 2.1 with varying bias conditions using a CM-2. Afac

tormore than 2 inCPU time improvement is observed compared tosimulations with initial guess generated

by Webber et al. [8] for largeand highly biased problems. It is alsoobserved thatas the bias conditions of

thedevices become harder to solve, themultigrid initial guess gives a better relative performance. These

results aresummarized inTable 2.4andsimilar results areexpected for theCM-5.

Interpolation schemes were also tried instead ofdoing a Block Newton Simulation forSteps 3 and 4.

Linearly interpolated potential and carrier concentrations did not produce a good initial guess for step 4.The

useofNeumann instead of Dirichlet boundary conditions alsoproduced a poorinitial guess.
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Table 2.4: Multigrid Initial Guess Results

Device Bias Conditions
CPU Time

Speed-up

31x31x15 MOS Vg=3.0,Vd=5.0 1.3

31x31x15 MOS Vg=4.0,Vd=5.0 1.8

63x63x31 MOS Vg=0.5,Vd=0.1 ?

63x63x31 MOS Vg=0.5,Vd=0.5 2.3

63x63x31 MOS Vg=0.5,Vd=1.0 9

63x63x31 BJT Vb=0.6,Vc=0.5 ?

63x63x31 BJT Vb=0.6,Vc=1.0 1.5

63x63x31BJT Vb=0.6,Vc=:3.0 2.5

?=Original simulator didnotconverge; Newsimulator converges

2.5.3 AlternatingCoarseGrid Simulation(ACG)

An iterative blockrelaxation Newton can be also defined on thebasis of ourmultigrid discretization.

Thisbasically involves looping through steps 3and 4 of themultigrid grid initial guess routine until acertain

convergence criterion is met. It is observed thatdoing steps 3 and 4 produce well-conditioned linear matri

ces.This allows theuseof partitioned natural ordering incomplete LUdecompositions.

Defining convergence as steps3 and4 taking only oneNewton iteration each to meet the potential

convergence criterion, a 10% to 30% CPU time reduction is observed for BJTs. The MOS CPU simulation

times did not have any significantreductions.

2.5.4 ACG with Intermediate Selected Nodes Simulation

To improve performance, a simulation of nodes withthe largest error is proposed after doing steps 3

and 4. These steps are summarized as follows.
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Algorithm 2.5: ACG with Intermediate Selected Nodes

1. Set 1 Simulation (B.C. = 0)

2. Set 2 Simulation (B.C. = Set 1)

a. extended x

b. extended y

c. extended z

3. Sets 3 and 4 Simulation (B.C. = Sets 1 and 2)

4. Sets 1 and 2 Simulation (B.C. = Sets 3 and 4)

4.5 Simulate nodes with largesterror

5. Repeat steps 3 to 4.5 until convergence

2.5 Multigrid

Experimental simulations are done to determine which nodes are to be included in the intermediate

selected nodessimulation. Poor results are observed for taking the top 12.5% nodeswith the largest error. A

2.5decrease in total final fine grid linear solver iterations isobserved fortaking the top 1.5% andtheirneigh

bors for the intermediate selected nodes.

In implementinga CM-2 version of the schemepresented above, the intermediate selectednodes are

proposed to be chosento fit insidearectangular mesh structure foreasyandefficientmapping into the CM-

2 architecture. The top 1.5% plusneighbor is stillused asa criteria for the important nodes to simulate. The

first selection is done by enclosing in a rectangular grid box the mostnumber of important nodes. Twoother

variations aredoneby dividing thecovering box intotwoboxesand intoeightsmaller boxes. It is observed

that the single box is competitive with the 2 and 8 box selection. Efficient routines are still needed to be

developed to solve this covering problem. A CM-5 implementation doesnot require rectangular intermedi

ate selected nodes for efficient simulation.

A rectangular covering heuristic is needed for the CM-2 implementation of ACG with intermediate

selectednodes in orderto do timing comparisons. A CM-5 implementation of ACG with intermediate

selected nodes will require someload balancing heuristics whendoing step4.5.

50



CHAPTER2: Rectangular Grid Drift-Diffusion Device Simulation

2.6 Silicon Pixel Detector Application

2.6.1 Background

Silicon pixel detectors are being given more attention in the high energy physics community since

they canbeused as very effective tracking devices. Pixel Detectors may offer very small detection elements

(as small as 30 x 30 urn2) with low capacitance, low leakage current and no ambiguities in multiple-hit

events. This implies a very high noise immunity and an intrinsic radiation resistance, which are good fea

tures for applications with future high luminosity machines.

Four Pixel Simulation Area Cxy

-~Cx

Figure 2.13: Definition of Pixel Capacitances

The pixel capacitances play a crucial role in the system design since they determine the noise and

cross-talk ofthe detector. Capacitances for 100 x 100 urn2 pixel detectors illustrated in Figure 2.13 are mea

sured and simulated. By comparing experimental and simulation results, the pixel capacitances for varying

geometries are expected to be modelled. Eachpixel is a P+-implant with an aluminum contact on top, laid-

out at a fixed lOOum pitch with varying gaps (5,10,15,20,25, and 30urn). The otherside of the implant has

an n+-implant that serves as a back contact. The main concern is with the surface capacitances Cx and Cxy

defined inFigure 2.13. Theback capacitance issimulated toberoughly equal tothearea of the pixel (pitch2)

divided by the silicon thickness (Cback = 3.5/F for the pixels) with a slight dependence onthe gap, similar to

the one observed in strip detectors [46].

Section 2.6.2 illustrates the special measurement techniques thathad to be developed to account for

stray capacitances. Section 2.6.3 describes the method used for calculating capacitances from simulation

results and compares the simulation with measured data.
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2.6.2 Measurements

The main sources of error in the measurement of small capacitancesare the noise in the system and

the stray capacitances. Bosisio et al. [47] describes the difficulty and method of the experimental measure

ments. One interesting observation is that thepixel capacitances lay in the 10fF range and, even with coax

ial probes, the residual capacitance of the tips placed at 100 um distance, Cpp, is the order of 10fF. Its

proper subtraction is crucial for the correct measurement of pixel capacitance and to measure it, the wafer

has to be lowered from the contact positionas shown in Figure 2.14. Unfortunately, the residual probe tips

capacitance depends rather strongly on the separation d of the probetips from thewaferconductive plane.

LO

Conductive Plane

Figure 2.14: Probe Tips Set-up for Cpp Measurement

Cpp(fF)

14.00
1 1 1 1 I l l

13.50
-

/

13.00
- /

12.50
- /

12.00
/

11.50
-

11.00
I I i i I l I

3 le+01 3 lc+02 3 lc+03 3

Separation (um)

Figure 2.15: Probe Tips Residual Capacitance
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Figure 2.15 shows the Cpp measurements and itcan be interpreted asfollows: For large separations (d

>tip length (2mm)), the conductive plane isunseen and Cpp isconstant For medium separations (tip-to-tip

distance (100 um) <d<tip length), the conductive plane isbeginning to"eat-up" some ofthe field lines and

the capacitance decreases. The dependence is Cpp a log(d) as the probe tips areseen at this distance as

wires. Forshort separations (10 um <d < 100 um), the geometry gets more complex because the distance

between the tips iscomparable with separation. For very short distances (d < lOum), Cpp isflat again and is

basically the capacitance ofthe probe tips laying on aconductive plane with an infinitely thin insulator layer

on top. TheCpp measurement is donewithdequal to 10um which is where thecurveis almost flat

Capacitance (fF)

5.00 10.00 15.00 20.00 25.00 30.00

Gap (um)

Figure 2.16: Cx and Cy Measurements

To separately measurethe various components Cxand Cxy of the pixel capacitance, a specific test

structure described by Bosisio et al. [47] is designed. Theresults from separate measurements ofCxand Cxy

are shown in Figure 2.16forgapsvarying between 5 and30um. A remarkable feature of theplot is that the

diagonal is of thesameorder, or equal to, theadjacent coupling. Thiseffect maybe dueto theaccumulation

channel created between pixels by thefixed oxide charge, thatcreates a relatively high conduction path and

increases longrange coupling. Thispicture is confirmed bythefactthatat small gaps, when theresistance of

the accumulation layerincreases, the sizeof thediagonal coupling to Cxdecreases. If thecapacitances are

correcdy measured, one expects a simple relationship between Cx, Cxy, and Cone: Cone = 4(Cx + Cxy).
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2.6 SiliconPixel Detector Application

This is actually the case in the measurements, as can beseen inFigure 2.17, where thetwoquantities are

plotted on the same graph.

2.6.3 Comparison with Simulations

Total Capacitance(fF)

90.00

J 1 I
5.00 10.00 15.00 20.00 25.00 30.00

Gap(um)

Figure 2.17: Cone from Experimental and Simulation Measurements

Thesimulation of capacitances in semiconductor devices requires abasic steady state solution for the

desired operating condition plus some means of estimating the small signal response of the device. Laux

[50] describes three methods tomeasure the capacitance -charge partitioning (CP), fourier decomposition of

transient analysis (FD), and sinusoidal steady state analysis (S3A). The CP method iscurrendy utilized since

it has the least computational requirements. In CP method, after the basic solution is found, avoltage step

AVj is applied to the electrode./ and the new, slightly modified DC solution is calculated. The element ofthe

capacitance matrix Cij isgiven bythe charge variation on electrode i divided bythe voltage step: Cij = AQ.

IAVj. The difficulty lies tin the definition of AQit that generally must include not only the charge induced

on thecontact butalso thebulk charge associated with that electrode. For this association to beeffective, a

device dependent physical insight is needed. For the pixel detectors being described, the charge region

boundaries wereplaced in themiddle of the gaps between pixels.

The parallel device simulator described earlier is used tosimulate four and nine pixel devices. Differ

ent mesh structures are used depending upon thedevice being simulated - 16x16x16, 32x32x32, and

64x64x64. The comparison of measurements with simulation is shown inFigure 2.17. There are two simula-
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tion curves thatrefer to different values of fixed positive oxide charge. This interface charge [51] is formed

during theoxidation process andis localized at the Si-Si02 interface. Unfortunately thesimulation lacks the

code to handle a surface charge, andwe therefore distribute it in the oxide volume. We added a rough factor

of twoin the equivalence to take into account thediminished effectiveness on the accumulation layerof a

volume distributed charge, so that (volume charge) = 2(surface charge)/(oxide thickness). In any case,

although the oxidechargeis needed to havea good agreement with measurements, the simulation results

show a ratherweak dependence on theprecise value of thecharge. We see from Figure 2.17 that the best

agreement is found for Qox = 4x 10ncw"2 and in fact direct measurements of the interface charge on

MOS capacitors give Qox~2-4x 1011 cm'2.

Thesimulation of theseparate contributions of Cx and Cxy does notfor themoment agree very well

with the data due tothe uncertainties in the definition ofthe charge region. Asdiscussed byWard and Dutton

[52] for a MOS transistor, when the charge region boundary lies in an undepleted zone, which is thecaseof

the gap between pixels when the fixed oxidecharge is present, its exactplacement can become critical and

undermine the capacitance simulation. Various algorithms for the charge region boundary placement are

under study. The straight line superimposed on Figure 2.17 represents a rough extrapolation from strip

detectors data [48] obtained by scaling theinterstrip capacitance perunit length CIS with thepixelperimeter.

It must be noted thatno data exist for strip detectors with very small gaps, andhence, the Unear dependence

shown by CIS at largergaps was extrapolated.

N+ Implants P-Blocking Strips

Figure 2.18: P-Type Substrate
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Tousep-type substrate detectors, it is necessary to putp-blocking stripsbetween eachn+ pixel. This

prevents theinversion of surface, which isdueto thepresence ofoxidecharge, from shorting then+regions.

Simulations show a factor of 2 increase in totalpixel capacitance. A probable reason is theamplification of

longrange effectsdue to the blockingstrips.

Table 2.5 shows the CPU times required for the simulation of mesh structures with different sizes.

Simulations for structures with fixed oxide charge required a voltage rampfor convergence. A 16x 16x 16

anda 32x 32 x 32simulation is donefor the4-pixel N-Subdevice. Onlya 5% difference is observed. TheP-

Subdevicesimulation only needed twovoltage steps. However, the matrices weremoreill-conditioned and

required the natural ordering preconditioner in some casesfor convergence. Ninepixelsimulations arealso

done to see the long range couplingof pixels.Only a 5% increaseis observed for the current structures.All

simulations are done witha 16KCM-2equipped with floating point accelerators.

Table 2.5: CPU Times for Silicon Pixel Detector Simulations

Device

Oxide

Charge
cm"5

Mesh
Voltage
Steps

Total

Newton

Iterations

Total Inner

Loop
Iterations

Total CPU

Time (sec)

4-pixel N-Sub 0 16x16x16 2 13 1020 98

4-pixel N-Sub le22 16x16x16 27 366 28776 2774

4-pixel N-Sub le22 32x32x32 27 413 103050 19491

4-pixel P-sub 0 32x32x32 2 37 28673 11040

9-pixel N-sub 0 30x26x16 2 21 1838 191

2.7 Extensions to Curvilinear Grids

As integrated circuits decrease in size,device simulation techniques which can accurately treatpn-

boundaries or shapesof internal boundaries between semiconductors and insulators become important. One

limitation of rectangular gridsis that they do notallow theexactmodeling of nonrectangular device bound

aries. Boundary conditions need to beapproximated using fine rectangular discretizations which may intro

duce inaccuracies and redundant grid points.An alternative is the use of curvilinear coordinate systems

(CCS) [53] whichcan model arbitrarilyshapedboundaries.
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Figure2.19:Curvilinear Coordinate System

Figure 2.19 illustrates a sample CCS mesh structure. The connectivity between grids is identical toa

rectangular mesh. Hence, algorithms presented earlier for parallel rectangular grid device simulation are

applicable for this discretization. Instead ofusing information from 7 points for each control volume, 27

points are necessary for a general CCS. Matsuo etal. [54] presents a simplified version which only requires

information from 11 points for each control volume. Both methods can easily beincorporated to ina parallel

implementation since the 27and 11 point discretizations will still only require regular neighbor communica

tion. As shown earlier, this can beeasily and efficiendy done for parallel processor architectures.

Matsuo et al. [54] presents the simulation of narrow channel effects in MOSFETs using CCS. The

increase in threshold voltage (applied gate voltage when drain current is InA) fornarrow channels dueto

boron channel-stop encroachment into the channel region issimulated. Tanaka etal. [55] shows the applica

tion ofCADDETH-NP [54] to thesimulation ofa grooved gate MOSFET. The short-channel effects in the

sub-O.l-um regime is shown tobesuppressed though the use ofsimulations bya grooved gate MOSFET.

This suppression isdue tothe concave corner ofthe gate insulator which isextremely grid wasteful tosimu

late with rectangular grids. Tanaka etal. [56] presents experimental results that confirms the suppression

characteristics.

Matsuo et al. [54], and Tanakaet al. [55] [56] use CADDETH-NP for CCS device simulation.The

samenatural ordering incomplete LUpreconditioner used byCADDETH [17] is utilized for these CCS sim

ulations. The matrix components generated from rectangular grids and CCS are similar. Hence, rectangular

and CCS matrices should have similar conditioning characteristics. Based on the results presented inFigure

2.10, BPNO with enough levels offill-ins should beable to converge quickly with CCS matrices. To imple

ment a parallel CCS device simulator from a parallel rectangular grid simulator, modifications of thematrix
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generator and the matrix-times-vector routines would be needed to handle the additional neighbor connec

tions.

2.8 Summary

3-D simulation is harder than 2-Dsimulation in several ways. First, thememory requirements grow

linearly with theproblem size.Second, theCPU timeper iteration of thelinear solver is proportional to the

numberof equations. The conditioningof the matrix tends to deteriorate with increasing number of

unknowns. Hence, the simulation time grows superlinearly with problem size.Third, more sophisticated

visualization programsare needed to examine simulation data.

Three-dimensional device simulations are observed to be very computationally intensiveeven with

vectorsupercomputers. The maincomputational taskis the solution of the sparse linear system ofequations

which may have more than amillion equations. The efficiency of the iterative linear solver is determined by

the preconditioning scheme. The partitioned natural ordering has been developed and published by Webber

et al. [8]. It is observed to give the best results for the CM-2 in terms of CPU time minimization. Another

contribution is a preconditioner called theblockpartitioned natural ordering (BPNO) foraCM-5driftdiffu

sion simulator. BPNO hasbeenpublished by Tomacruz et al. [60] andit givesanefficient iterative linear

solver. It is observed thatpreconditioners that maintain coupling between nodesgive the bestresults. Also,

nothaving thesame cutpoints for forward and backward substitution is important for producing converging

preconditioners.

A multigrid discretization hasalsobeendeveloped to provide a framework to perform ablockNewton

iteration [60]. Three variations of a blockNewton iteration are shown to be effective in generating a good

initial guess for thedevice simulator without having any knowledge of thedevice structure and theoperating

region. Theseschemes are observed to decrease theCPU timeby a factor of two.

The parallel algorithms are shownto successfully simulate silicon pixel detectors [47]. Three dimen

sional capacitance simulations which match experimental results are observed tobe significandy different

from twodimensional simulations. 3-D long range pixel coupling are observed to beamplified due to the

blocking strips.
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CHAPTER 3

Irregular Grid Drift-

Diffusion Device Simulation

3.1 Overview

The simulation of complex three-dimensional semiconductor devices requires computers withsignifi

cantcomputational power. Chapter 2 (published by Webber et al. [1] andTomacruz et al. [44]), Wu et al. [3]

and Dutton et al. [4] have shown howmassively parallel computers can beused efficiently for drift-diffusion

device simulation. Allthese simulators used rectangular grids since they are easy toimplement, have perfect

load balance, and have regular communication patterns. However, irregular grids are important in the field

of device simulations since they allow the modeling of nomectangular device boundaries and donotrequire

grids for quasi-neutral regions. Coughran etal. [5] gives an example of adiagonal alpha particle track that

would require 2,000,000 rectangular grid points tomodel accurately whereas ageneral irregular grid would

only require 6900 grid points toachieve the same accuracy. Even with the reduction of grid points obtained

by the use of irregular grids, semiconductor simulation still requires significant computational power. A

standard latch-up problem, which requires over 50,000 irregular grid nodes, may take five hours tosimulate

onvector machines such as the Cray-2 [6]. Other applications such as SOI, parasitic MOSFETs [7], and sili

con pbtel detectors [8] may require more computational power. Although faster vector supercomputers may

offer the computational power needed, parallel processors provide an attractive alternative.

AConnection Machine 5(CM-5) [9] device simulator that uses an irregular grid automatically gener

ated by the Omega program [10,11] will be presented. For sequential device simulators, the nonlinear alge

braic system ofequations arising from the discretization is efficiendy and accurately solved by avariation of

the basic Newton-Raphson algorithm. As usual in this algorithm, most of the computation time isspent on

the solution ofthe linearized system ofequations. The focus ofthe work is to speed-up this step. Heuristics

for partitioning, communication scheduling, and preconditioning for the efficient implementation ofaparal-
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lei iterative linear solver #illbe illustrated. Parallel results are compared with a sequential program called

PILS [12].

This chapter isorganized asfollows. An overview ofthe device equations and how they are generally

solved is first given. Section 3.3 describes a parallel linear solver. Results are provided and analyzed inSec

tion 3.4. Finally, possible extensions are described in Section 3.5.

3.2 Problem Definition and Solution Method

Thesteady-state drift-diffusion model of semiconductor devices described byEquations 2.1 - 2.3 has

been used in this chapter.The box method(BM) [16] along with the Scharfetter-Gummel method [15]

describedby Section4.3 is used to obtainedthe discrete equations. The solutionmethodfor these discrete

equations is summarizedby Algorithm 2.1. BM uses Gauss's theoremto equate the divergenceof a vector

field to a scalar source term. It is equivalent to the finite differencemethod for rectangulargrids. BM pro

duces coupling between different grid points only if the points are neighbors. Hence, the linear system

resultingfrom the Newtonschemeis very sparsewithabout 10nonzeroes per row.Eachgrid nodemapsinto

three rows of the matrix. Because of grid irregularity, the sparsity structure is complex when compared to a

simple band structure arising from standard partial differentialequations.

For spatial discretization, the grid generator Omega [10,11]which refines mesh density according to

geometry and gradient of impurity concentration is used. Omega also computes the cross sections perpen

dicular to each edge which are required for integrating the device equations with the box method. The

desired mesh density inside the device is obtained through recursive refinementof prisms, pyramids, and

cuboids. For example in refiningalong one, two, or three coordinateaxes, the cube is subdivided into two

halves,four quadrants,and eightoctants,respectively. The elementswithadditional edge midpointsare then

subdivided into tetrahedra, pyramids, prisms, or bricks. Sample mesh structuresare illustrated by Figures

3.1 - 3.2.A CM-2mapping in whicheach irregular grid is mapped to a processor wouldresult in a veryinef

ficient device simulator since CM-2 non-neighborcommunication routines are in the order of milliseconds.

Taking advantage of near neighborcommunication through ingenious mappings is difficult since the differ

ence between the smallest and the largestnode degrees is more than ten. Hence,only a CM-5 implementa

tion is developed since the CM-5 does not require near neighborsfor efficientcommunication.

Heiseret al. [6] states that for a typicalsequential 3-D irregular grid simulation with a numberof grid

points of the order of 100,000,between 70 and 90% of the total simulationtime is used to solve linear sys

tems. Hence, for the current implementation,linear device matricesare currendy generatedwith the sequen-
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tial program called Second [6]. Matrix generation is easily parallelizable since itonly requires neighbor

information and its optimization isnot important since itisonly executed once for each Newton iteration.

3J Static Grid Algorithms

3.3.1 Preconditioned LinearSystem Solution

The CGS [17] iterative solver which has been presented inSection 2.4.1 isagain used forthe solution

ofthe linear system. As discussed in Section 2.4.1, inner product, matrix times vector, and preconditioning

operations may require interprocessor communication. Acommunication scheduling algorithm (presented

later in Section.3.3.4) based ona graph algorithm is now used tohandle theirregularity of communication

calls. Thesamescheduling routine may be used forpreconditioning purposes.

The irregularity of the mesh structure makes the useof blockpartitioned natural ordering(BPNO)

described in Section2.4.4.2difficult Keeping trackof subdomain boundaries and movingthe subdomain

boundary is not trivialto implement. Hence, we investigate simplified preconditioners generatedby the fol

lowing combinationof ILU preconditioning and FBS techniques: parallel ILU / parallel FBS, sequential

ILU / parallel FBS, and sequential ILU / sequential FBS. The parallel version ignores communication com

pletely as opposed to its sequential counterpart. The reverse Cuthill-McKee, minimum degree, and maxi

mum degree algorithms [19] are implemented for ordering processor and grid nodes within each processor.

The reverse Cuthill-Mckee ordering starts with the node with the least edge degree. It then selects the neigh

boring nodes in ascending edge degree order. The algorithm repeats the same process for each neighbor until

all the nodes have been ordered. The minimum degree ordering arranges the nodes in ascending edge degree

order. The maximum degree does the order in a descending manner. No particular ordering is followed when

there are nodes with equivalent edge degrees for all three orderings.

3.3.2 Partitioning

332.1 Complexity of the Objective Function

The goal is to minimize the total elapsed time needed to obtain the solution. The total elapsed time is

determined by the processor that has the longest CPU time requirement to carry out its alloted computation

and communication task. Hence, the goal of a partitioner is, for a given algorithm, to achieve computational

balance, to achieve communication balance, and to minimize communication requirements.

To achieve computational balance in conjugate gradient based iterative solvers, there are three issues.

First, the linear algebra operations between synchronization points must be computationally balanced by

65



CHAPTER 3: Irregular Grid Drift-Diffusion Device Simulation

balancing the number of grid nodes. These synchronization points which require processor to processor

communication are the dot product and matrix times vectoroperations. Second,balancing the matrix times

vectoroperation is dependentupon the numberof gridpointsand the sum of node degrees. Finally, balanc

ing the application of the preconditioner is a function of the sum of node degreesin a reachability graph for

a given node ordering and level ofallowed fill-ins.

Two issues need to be addressed to achieve communication balance and to minimize the total commu

nication requirement fora given algorithm. First, the average andmaximumnumbers of processor neighbors

need to be minimized. Processor neighborsaredefined as the numberof processors a specific processor

needs to communicate with to accomplish its computational task. Minimizing processor neighbors would

imply minimizing the latency time required for each communication call. Second, the average and maxi

mum numbers of edges cut foreach processorneed to be minimized.

There are three operations thatmayrequire communication for a CGbased solver - dot product,

matrix times vector, and application of preconditioner. Dot product communication can be done easily

through the use of the CM-5 reduction operation. To minimize the number of edges cut and the processor

neighbors for amatrix times vector operation, weonly have tolook atthe actual connectivity mesh structure.

For preconditioner communication, we have tolook into the edges ofthe reachability graph that go from one

processor to another. This reachability graph is dependent upon thegiven node ordering and thecriterion

used for allowed fill-ins.

332.2 Simplified ObjectiveFunction

Itisdifficult to devise an objective function for apartitioner with aCG based solver as its target algo

rithm when dealing with all the issues described in the previous section. We simplify the criterion for the

partitioner byfocusing on the following parameters with the actual mesh as the basis graph:

1. time to run the partitioner

2. difference between the processor with the most nodes and the processor with the

least nodes (node loadbalance)

3. average number of processor neighbors

4. maximumnumber of processor neighbors

5. total edges cut

6. difference between the processor with the most edges and the processor with the

least edges (edge load balance)
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These parameters will have different significances for the unpreconditioned CG basedsolverand for

thetypeof preconditioner used. We investigate the geometrical, topographical, and spectral partitioning heu

ristics that recursively bipartition [20] thegraph representing theinput mesh structure. Each partitioner has

strengths and weaknesses based on theparameters presented above. The significance of each parameter can

be determined by the totalelapsed CPUtime results foreachpartition.

3323 Geometrical Partitioner

The geometrical partitioner, described by Algorithm 3.1,sorts the gridpoints according to theircoor

dinates along theaxis thathasthe mostnumber of unique coordinate points. Several criteria canbe usedto

choose the partition point.

1. node with a coordinate different from its neighbor closestto the middle

2. node at the middle of the list

3. nodethatdivides thelist intotwo partitions withanequal sum of nodedegrees

For criterion 2, the gridpointsat the boundary (grid points with the samecoordinates as the nodeat

the middle of thelist) are further sorted using the other twoaxes. This enables mostadjacent boundary grid

points to remain in the same partition.

Algorithm 3.1: Geometrical Partitioner

Step 1: For the given set of points, createthree sorted list in terms of
coordinates for each axis.

Step 2: Use the list with the most number of grid pointsandcreate two
groupsof pointsbasedon a specificpartitioning criteria.

Step 3: Repeatrecursively.

The partitioner based on the first and second criteria can be enhanced further by swapping nodes

between the two partitions to obtain sumof nodedegrees balance. More heuristics maybe used to choose

theregion in which to allow theswapping of nodes. Thebasic idea is to first swap nodes near theboundary

and gradually move in until the desired sum of nodedegrees balance is obtained.

332.4 Topographical Partitioner

The Fiduccia-Mattheyses algorithm [21], which is an improvement of a local search algorithm first

presented by Kemighan and Lin [22], is used to implement a topographical partitioner. The basic algorithm

moves anode from onepartition totheother partition inan attempt tominimize thecutset whilemaintaining
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the load balance betweendie two partitions within a specified tolerance. A cutsetis defined asthenumber of

edges thatconnect nodes in different partitions. Thealgorithm has acost function thatis allowed to increase

inorder tohelp thepartitioner get outofa local minima. Algorithm 3.2summarizes thetopographical parti

tioning steps. Ten trials are executed for each partitioning result inorder todesensitize the partitioning out

come from the random initial guess. A 5% maximum loadbalance deviation tolerance is used for each

binary partition.

Stepl:
Step 2:

Step 3:
Step 4:

Algorithm 3.2: Topographical Partitioner

Randompartitioning of gridpoints into two groups.
Switch grid pointsbetween the two groups. Keep track of total
edges cut at each step.
Use partition with lowest numberof totaledges cut
Repeat recursively.

3323 Spectral Partitioner

The spectral partitioner [23] described by Algorithm 3.3 is based on thecomputation of thesecond

largest eigenvalue and the corresponding eigenvector of the Laplacian matrix of the connectivity graph. The

connectivitygraph is the device mesh structure. This eigenvector whichis calledthe Fiedler vector [24]

gives distance information about the nodes. Sorting the nodes according to this information provides away

of partitioning the mesh.

Algorithm 3.3: Spectral Partitioner

Step 1: Compute Fiedler vector for graph using Lanczos algorithm [24].
Step 2: Sortvertices according to sizeof entries in Fiedler Vector
Step 3: Assign half of the verticesto each subdomain
Step 4: Repeatrecursively.

3.3.3 Domain to Processor Mapping

No particular order is followed inmapping each mesh subdomain toa processor. Thepartition number

generated by thepartitioner for each subdomain isalso used astheprocessor number. The fat tree network of

theCM-5 minimizes themaximum distance between processors [25]. Hence, weexpect minimal communi

cation penalty for using a simple domain to processor mapping.
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3.3.4 Communication Scheduling

Givena partition of gridnodesamong processors, theabstract modelused forscheduling communica

tionis a processor-communication graph. Each vertex represents a processor and each edge(ij) represents

the existence of at leastone meshedgethat hasgrid nodes in processors i andj. Therefore, anedgein pro

cessor-communication graph represents communication either in one direction (preconditioner computation,

forward substitution, andbackward substitution) orin bothdirections (matrix-vector multiplication).

The communication scheduling algorithm formatrix-vector multiplication is basedon the repeated

application of the maximalnonbipartite matching heuristic. We decided to use a heuristic algorithm instead

of anexactminimizingalgorithm sincethe heuristic algorithm is significandy faster to executeandthe heu

ristic solution is comparable to theexactminimized solution. Each pass of the matching heuristic selects the

maximal number of communication edges such that notwohavea common vertex. At each stepof themax

imal matching heuristic, an edge that connects a vertex of maximum degree to its neighbor with largest

degree is extracted asa matched edgeanddeleted from the graph along with the matched vertices and their

incidentedges.Therefore, this greedy matching heuristic tries to minimize the numberof passes while

attempting to maximize the number of matched edgeduring eachpass.

The communication scheduling algorithm for the preconditioner computationthat needs to send the

rows of a matrix from one processor to another is implemented by a simple heuristic thatreceivesdata from

and sends data to neighboring processors in a specific order. The sameheuristic is used forscheduling com

munication for the forward and backward substitution.

3.4 Experimental Results

3.4.1 Data Structures andCode Optimization

A hash table is usedto store each row of thematrix and corresponding vectors. A doubly linkedlistof

two-dimensional dense blocks is used to represent each row. Arrays are used to transfer data from onepro

cessor to another.

The performance of eachCGS iteration is improved by several modifications. First, the removal of

subroutine calls avoids unnecessary memory loads and stores. Second, CGS loopreorganization, which is

doneby movingsome independent CGS steps, improves the cache performance. Third, the combination of

several linear algebra operations minimizes memory loads and stores. Fourth, address precomputation

speeds-up memoryaccess. Application of all these modifications provides a 4X speed-up for CGS with no

preconditioning anda 3X speed-up forCGS with preconditioning.
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3.4.2 Computing Environment &Test Examples

Allresults in Sections 4.4and4.5areobtained with a 64node CM-5 with no vector units. 32, 64,and

128 node CM-5s with no vector units are used togenerate the results inSection 3.4.6. The algorithms are

implemented using the Cprogramming language with the CMMD 3.0 communications library [26]. Only

blocking communication calls which prevents the overlap ofcomputation and communication are currently

used.

Figure 3.1: ECL grid

Figure 3.2: LOCOS grid
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Figure 3.3: MCT Grid

Several device structures described by Hitschfeld [27] are used to study the partitioning schemes

described above. ECL is a trench-isolated bipolar transistor, LOCOS is a shortchannel MOS transistor with

surrounding locos isolation, and MCT is a MOS-controlled Thyristor with integrated MOS conu-olled n+

emitter shorts and a bipolar gate. It is adevice used in high power applications such as traction, high-voltage

transmission and motor control. Varying bias conditions and initial guess values areused totest thesolver.

3.4.3 Partitioning Results

In terms ofsingle Sparc partitioning CPU time shown in Table 3.1, both topographical and spectral

partitioner are an order ofmagnitude slower than the geometrical partitioner. Criterion 1in Section 3.3.2.3 is

used for the geometrical partitioning results in this section. The topographical partitioner can be accelerated

by decreasing the number of random initial guesses. However, this significantly degrades partitioning

results. Table 3.2 illustrates that the spectral partitioner gives the best node load balance (L.B.). By using

Criterion 2in Section 3.3.2.3, the geometrical partitioner will give perfect node load balance. The topo

graphical partitioner can also be modified to give good load balance by tightening the node load balance tol

erance in the cost function.
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Table 3.1: Single processor partitioning time(sec)

Device
Total

Nodes
Total Edges

GEOM

CPU Time

TOPOCPU

Time

SPEC CPU

Time

eel 17678 58794 72.4 1722.7 793.6

locos 16586 57335 67.0 1492.0 1250.6

met 41122 140529 178.0 7486.4 Failed

Table 3.2: Load balance results

Device

GEOM

L.B.

min (max)

TOPOL.B.

min (max)
SPECL.B.

min (max)

eel 208(339) 205 (396) 276(277)

locos 210(308) 252(267) 259(260)

met 548(736) 625(666) Failed

Processorneighbors(P.N.) are definedas the numberof processorsa processorneeds to communicate

with while doing a matrix times vector operation that is basically represented by the mesh connectivity

graph. The geometricalpartitioner is shown by Table3.3 to give the best minimizationofaverage and maxi

mum number of processor neighbors. This results degrades when the cost function is adjusted to improve

node load balance. The topographical partitioner is illustrated by Table 3.4 to give the lowest number of

edges cut for the three sample devices. The number of edges cut increases when the cost function is adjusted

to improve the node load balance. The total number of edges cut for the geometrical and the spectral parti

tions may be improved by applying a variation of the topographical algorithm. Grid nodes at partition

boundariesmay be swapped to decrease the numberof edges cut and, at same time, still maintainthe node

load balance. In terms of the difference between processors with the most edges and the least edges, the

three partitionersgave comparableresults. The sum of node degrees has a worst case deviationof 30% from

the average.

Table 3.3: Processor neighbor results

Device
GEOM

Ave., Max.
TOPO

Ave, Max
SPEC

Ave, Max

eel 8.0,17 8.5,17 10.5,19

locos 7.9,14 9.8,15 11.2,19

met 7.1,14 8.0,20 Failed
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Table 3.4: Edges cut results

Device
GEOM

E.C.

TOPO

E.C.

SPEC

E.C.

eel 9112 7749 11641

locos 9294 8155 12223

met 15396 13601 Failed

3.4 Experimental Results

We focused on thegeometrical partitioner since itcan beeasily modified and executed to produce par

titions with varying characteristics. The topographical and spectral partitioners are alsoexamined to see if

thebestresults obtained withthe geometrical partitioner can be improved.

3.4.4 CGS with No Preconditioning

With regards to the simplifiedcost function, thereis a trade-offbetween loadbalanceand communica

tion balance. Comparable results were obtained with different partitioning goals - node load balance, edge

load balance, andminimization of processor neighbors. The only major performance degradation observed

waswhileusing the partitioning with the perfect node and edgebalance. This partition resulted in a severe

number of processor neighbors and of total edges cut Hence, it can be concluded thatthe performance of

CGS withno preconditioning is relatively insensitive to thetypeof partitioning.

A variation from 10to40%of thetotal CPU timeis currendy spent on communication. The variation

isdue tothe fact that there isacomputational imbalance between communication calls, imbalance of proces

sor communication requirements, and idle time due to thedifference in processor neighbors. Minimizing

total edges cutbyusing the topographical partitioner did notimprove theperformance.

A speed-up of more than 40X for 100 CGS iterations with nopreconditioning is obtained for large

problems with thegeometrical partitioner. This speed-up corresponds toan efficiency of more than 60% in

obtaining the theoretical maximum speed-up. The results are shown in Figure 3.4. Thesame speed-up is

obtained for a41,122 node MCT. It should bepointed outthat PILS isa highly optimized sequential solver

andtheparallel codeis also optimized asdescribed in theprevious section.
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Figure 3.4: CGS with no preconditioning results

3.4.5 CGS with Preconditioning

3.43.1 ILU with Magnitude Threshold Fill-ins

In implementingthe preconditioner on the CM-5, we observed thatany variation of the sequential

FBS produced unsatisfactory resultseven with differentvariations of ordering schemes. Since FBS is

applied twice in each iteration, its sequentiality left a majorportion of the processors idle. Hence, we

decided to use a parallel FBS which did not require any communication and focused on improving the

matrix decomposition routine. The parallel LU (PLU) preconditioner obtained by performing acomplete LU

decomposition withineach processor is found to be robust in practice andcompletely parallel sincecommu

nication betweenprocessors is now eliminated. However, PLUis verycomputationally expensivein the cal

culation of L andU. This problem is alleviated by introducing anincomplete LU routinewith some allowed

fill-ins. The fill-ins arekept ordiscarded depending upon their magnitude. A sequential version called ILUV

hasbeen shown to be effective on the hydrodynamic equations by Zhaoet al. [28].

Gauss's algorithm [29] is usedto generate the incomplete LU decomposition. Fill-ins are generated in

Step 4 of the algorithm. Fora coupledsolution, a fill-in unit is a three by threematrixand is kept if at least

one of the entries is largerthan the specified threshold.
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Figure 3.5: Effect of fill-ins on number of iterations
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Figure 3.6: ILU CPU time

Figure3.5 illustratesthe influence of the number of fill-inson the number of iterationsneeded for con

vergence. ECL2, ECL3, LOCOS2, and LOCOS3 are 25969,34877,27288, and 35875 node devices respec

tively. Figure 3.6 shows how much faster it is tocompute L and U when less fill-ins are retained. Figure 3.7

shows how threshold levels influence the total CPU time which is the composed of ILU computation and of
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the total time needed forCGS to converge. Optimal results showa factor of more than 35X speed-up com

pared to PILS. However, differences in the conditioningof the matrix requiredifferent threshold levels for

optimal performance.

CPU Time (sec)
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Figure 3.7: Total CPU time
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Figure 3.8: Sequential and parallel results
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3.45.2 AutomaticSelectionof Threshold

Figure 3.7 shows that for large problems, no fill-ins are needed toobtain the optimum performance.

However, for smaller problems, optimum performance isobserved with fill-ins. We implement aroutine that

automatically searches for the threshold that willcreate a number of fill-ins comparable to thenumber of

entries in thematrix being solved. The threshold search is done using a bisection method. Matrix decompo

sition is aborted atearly stages of thecomputation if thecurrent fill-in count predicts asubstantially lower or

higher final count comparedto the number ofblocks in the A matrix.

Figure 3.8 show that results of automatic threshold selection algorithm and of the sequential PILS

solution. Sequential results are obtained using CGS with an ILU preconditioning which iscommonly used in

sequential device simulation. The time to do the incomplete factorization forPILS is less than2% of the

total CPU time to solve the linear systemof equations. Automatic selection of the threshold is alsoused for

larger problems and minimal CPU time penalty isobserved. Sequential to parallel speed-up increases asthe

problem size increases. Speed-ups of 50% of thetheoretical maximum are observed for large problems.

Similar speed-up is obtained for the MCT device.

3.453 Effects of Partitioning

For simulations withlittle orno fill-ins, thebestresults are obtained withpartitions having perfect

node load balance. Since there is noincrease incommunication compared to CGS with nopreconditioning,

a variation from 2 to 10% of the total CPU time is spenton communication. The samereasons discussed in

Section 4.4 explain this variation.

For simulation with fill-ins, an increase in problem size increases the computational imbalance for

FBS. Balancing the number of grid points perprocessor is not sufficient for computational balance. For

example, in the 25969 nodeECL device with400 nodes for each processor, there is a worst-case 27/35 dis

crepancy in terms of sum of node degrees. Thisproduced a49/85 discrepancy in thenumber of fill-ins gen

erated by the LU decomposition within each processor. This imbalance produced a factor of 2 difference in

CPU time. The edge imbalance is corrected by anenhanced geometrical partitioner described earlier. How

ever, thisdidnotimprove theresults since thenumber of fill-ins generated isnotonlyinfluenced by theorig

inal nonzero elements butalso by themanner in which thenodes are connected. Again, thebestresults are

still obtained with perfect node load balance.
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3.45.4 EffectsofOrdering

As mentioned earlier, thereverse Cuthill-Mckee, minimum degree, andmaximum degree algorithms

[19] are implemented for ordering processors and grid nodes within each processor. No ordering is needed

for the processors since the linksacross processors during preconditioning havebeen removed for parallel

execution. From ourexperiences, theminimum degree grid nodeordering gives thebestconvergence behav

ior for theECLand LOCOS devices. Reverse Cuthill-Mckee ordering is observed to givethenextbestcon

vergence behavior. The node with the minimum degree is usedas the starting node forthe reverse Cuthill-

Mckee ordering. Bothordering schemes maintain a significant portion of coupling between nodes when fill-

insare allowed. Maintaining thecoupling of nodes for rectangular grids has been illustrated by Tomacruz et

al. [44] to givethebestpreconditioners. Thisalso appears tobea good criteria for irregular grids.

3.4.6 Scalability
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Figure 3.9: Scalability with problem size
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Figure 3.10: Scalability with machine size

Figure 3.9 shows the increase in efficiency as the problem size becomeslarger. These results are

obtained for a64 nodeCM-5using theECLdevice. Sequential to parallel speed-up increases as the number

of processors is increased. However, the efficiencyof the algorithm is shown in Figure 3.10 to decrease as

the number of processorsincreases.This is due to the fact that, for a static mesh size, the connectivity of the

mesh structure is compromised further as the number of processors increases. This degrades the perfor

mance of the preconditioner which results in an increase of the total number of iterations required for con

vergence.

It shouldbe pointedout that due to memory limitations of the sequential matrix generator, the largest

mesh size solved is about 50,000 nodes. A major portionof three-dimensional device simulation applica

tionsareexpected to require nodesin the order of a hundred thousand. Therefore, with larger parallel com

puters, we still expect a 50%computational efficiencywith the simulation of larger device problems.

3.4.7 Discussion

Parallel computers are shown to be effectivein doing irregular grid drift-diffusion device simulation.

A 50% efficiency is obtained for the solution of large device matrices utilizing the iterativeCGS linear

solver with preconditioning. The best preconditioner observed usesincomplete LU decomposition with fill-

ins. Preconditioning is parallelized by removing links betweenprocessors during ILU and FBS. Hence,

communication callsareonly necessary fordot product andmatrixtimes vectoroperations. Fill-insaregen-
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erated using amagmtude*threshold criteria that isadjusted toprovide fill-ins comparable tothe number of

entries in thematrix being solved. Theminimum degree node ordering isobserved to give the best results.

Dueto the total parallelism of the preconditioner, noprocessor ordering is necessary.

Perfect nodeload balance is observed to be themost important partitioning parameter. The geometri

calpartitioner is thepreferred partitioning algorithm since it can obtain perfect node load balance partitions

anorder of magnitude faster than the topographical andspectral partitioners. It canobtain thisresult and,at

the same time, it tends to minimize average andmaximum processor neighbors. Minimizingtotaledgescut,

as obtained by the topographical partitioner, is not important sincethe CGS with preconditioning algorithm

spends less than 10% of the total CPU time doing communication calls. The computational cost of the

sequential geometrical partitioner is not significant since it is only done once, while a typical device simula

tion requiresthe solution of numerous time points or voltage points.

If a Cray-2 is used to runPILS,a40X performance improvement over Sparc workstation performance

is obtained [6]. Hence, it canbe concluded thata 128 nodeCM-5with no vectorunitswill exceed Cray-2

performance for largeirregular grid semiconductordrift-diffusiondevice simulations.

MFLOPS ratings for the solution of device matrices are notuseful. The bestalgorithms (algorithm

that minimizes wall clock time and has good convergence properties) are different for sequential and parallel

implementations. The parallel algorithm will require more total floating point operations toconverge since

parallelization degrades thequality of thepreconditioner.

The current implementation uses a sequential matrix generator which takes 10-30% of the total

sequential CPU time [6]. This should be easy to parallelize since the communication requirement isthe same

asthe matrix times vector operation. Also, the algorithm speed can be further increased with the use of vec

tor units. Groups ofnodes within each processor may be done in parallel with the vector units while using
ILU with minimal fill-ins.

The CPU time required for aparallel direct solver isdetermined by the number ofoperations and the

percentage that can be done in parallel. The ordering ofthe nodes determines the number ofoperations and

the amount ofparallel work that can be done. Evaluating these parameters is difficult for irregular grids. It

has to predict the number offill-ins and also areas ofparallel processing given an ordering. An upper bound

can be set bylooking at direct dense matrix solvers. In computing the floating-point execution rate, use 2/r3/

3+In2 operations independent of the actual method used. Dongarra [30] reports 64 node CM-5 perfor
mance of 3.8Gflop/s for LLNPACK. Hence, a64 node CM-5 direct dense matrix solver would take more

than 48 hours to solve a100,000 node matrix. It is still not clear how well sparse direct solvers can be imple-
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mentedon a parallel machine.AlgorithmsofO^ wherex is less than2 may be possible forsparse matrices

with a specific structure. Whether thesealgorithms maybe usedwith goodparallel efficiency forthe irregu

larproblems defined in this chapter still needs to be determined.

3S Extensions

3.5.1 Active Messages and Workstation Clusters

Martin [31] or von Eickenet al. [32] networkreport communication latencies comparable to MPPs. It

is not clearif such specialnetworkset-upswill be available in future workstation clusters. These future clus

ters will be characterized by the useof off-the-shelf components thataddress a widerange of taskrequire

ments. Hence, implementation of the parallel algorithms onworkstation clusters wouldonlybe confined to

currentavailable technology.

Tables 1.5 shows message-passing times in the orderof milliseconds for an unloaded workstationand

an unloaded network.Table 1.6illustrates broadcast andbarrier synchronization times in the orderof tensof

milliseconds for a 32node cluster. These communication latencies maybe hidden through theuseof active

messages. Theefficient useof active messages maydetermine theusefulness of workstation clusters for par

allel TCAD simulations.

The presented algorithms revolve around theefficient solution of the preconditioned CGS algorithm.

Activemessages willnotsignificandy improve the performance of an MPP implementation since only 10%

of the current CPU time is spent on communication. However, activemessages may be able to hide the

latency inherent in workstation clusters. The first criterion to check is the time for each iteration. For the

devices presented in this chapter, eachiteration CPU Time is in the orderof the hundredsof milliseconds

which would imply the possible applicability ofactive messages. The focus would then beondot products

and matrix timesvectoroperations since theyrequire communication calls.

Active messages can beapplied todot products bymaking each processor send their local dot prod

ucts toahost processor. Thehost processor can then add upthe partial dotproducts and send it back to the

processors. It iscurrendy not clear how much computation can bedone while the processors are waiting for

thedotproduct By rearranging some operations likemoving theupdate of x to location after the first dot

product in the inner loop and byhaving large enough data set within each processor, physical latency due to

dot products may be hidden by active messages.

Active messages can also beefficiendy used in the matrix times vector routine since each processor

can first send all the data needed byitsneighbors and then work on its own data while waiting for the data it
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needs from itsneighbors..Again, the physical latency can behidden byhaving large enough data within each

processor.

Hence, by working onlarge data within each processor and by careful arrangement of linear algebra

operations, it maybe possible to useactive messages toefficiently implement CGS routines onworkstation

clusters. However, Lewis and van deGeijn [33] report that the use ofactive messages complicates the imple

mentation of matrix times vector routines for an Intel iPSC/860. The running time of their algorithm is diffi

cultto estimate accurately because each node maybecomputing and have numerous messages in transit at

any time. A more crucial issue is the rapidly increasing number of messages which mayprevent thealgo

rithm from scaling toa verylarge number of nodes. It should be pointed outthat high efficiency maynotbe

necessary to justify the use of workstation clusters sinceworkstations for sequential computing should

already justify the acquisition andoperating cost.

3.5.2 Explicit Methods

Tai et al. [36], Kurata et al. [35], and Pleumeekers et al. [34] present explicit drift-diffusion device

simulators. Explicit methods do notrequire thesolution of a linear system of equations. Hence, theyhave

small memoryrequirements and are simpleto implement bothin sequential and parallel form. Tai et al. [36]

presents aparallel explicit 2-D device simulator that has aspeed-up of 8 for an SOI application due to paral

lelism in the timedomain. However, nocomparisons are made between implicit and explicit methods. The

2-Ddevice wasmapped intoan16K CM-2 machine by making multiple copies and mapping each grid point

to a processor. Eachdevice represents a time pointandthe speed-up wasthencalculated basedon the perfor

manceof a singledevice simulation. Kurata et al. [35] uses anexplicit algorithm on 2-Dbipolar transistor

examples to obtain results thattake5 to 10timesmoreCPU timescompared to the implicitdevicesimulator

TONADDE2. Pleumeekers et al. [34] performed 3-Dexplicit simulations on diodes,BJTs,andFETs. In all

cases, the solutionswere obtained with a factor of 10to 50 degradation in CPUtime compared to implicit

simulations. Fortheseresultsandthe previous observation of 50% parallel processing efficiency forimplicit

methods,it canbe concluded thateven with 100% parallel efficiency for current explicitmethods, the most

efficient parallel device simulator will still be basedon implicitmethods.

3.5.3 Adaptive Grids

Three-dimensional adaptive semiconductor devicesimulation havebeen presented by Coughran et al.

[38] andBurgler et al. [39]. Adaptivegridsimulators modify meshstructures during simulation to compen

sate forunpredictable andchanging fields andcurrents in order to achieve accuracy andefficiency. Adaptive
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grids are particularly useful for time-dependent simulations where theactive region of thedevice changes in

time.

Coughran et al. [38] illustrates a typical outline of a grid generation procedure used by adaptive grid

simulators. The process simulator supplies the topology and thedoping profile to the initial grid generator.

Theadaptive refinement uses thedoping profile, current mesh, and current solution asabasis for creating the

new grid. Using thishigh-level procedure, theapplicability of parallel processors to 3-D adaptive device

simulation is examined.

Figure 3.11 illustrates a proposed adaptive grid simulator. It usesthe sequential geometrical parti

tioner andthe parallel static gridsimulator presented earlier. Several new issuesneedto be addressed - initial

gridgeneration, error indicators, andparallel adaptive refinement.

A

Sequential
Initial Grid Generation

Sequential Geometrical
Partitioning

iaiue
titioni

Parallel Solve PDEs at bias

o
Parallel Computation of

Error Indicator

Obtained Desired
Accuracy?

A

Parallel
Adaptive
Refinement

Next Bias or
Time Point

Figure 3.11: Proposed Parallel Adaptive Grid Simulator

The goal is to minimize the numberof adaptive refinement iterations needed to obtain the desired

accuracy. Theinitial grid should also notbeoverly fine since this will degrade the efficiency of theprogram.

A goodinitial grid generator is OMEGA [11]. To generate a meshstructure with about 100,000 nodes for a

CMOS inverter would take 600 sec on aSUN-SPARC1 [10]. Using parallel processors comparable inper

formance totraditional vector supercomputers (128 node CM-5 =Cray-2 from previous section), an Omega
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initial grid generator would require negligible CPU time compared tothe 5 hrs required for the actual device

simulation [6]. Based onextrapolation of the data inTable 3.1, partitioning can bedone inless than 300 sec

which againcan be neglected in terms of totalCPUtime.

Local error estimators based on the formalism proposed by Bank and Weiser [41] has been found to

give excellent results [38], [39], [40]. Anedge isrefined based on an error computation that only requires

data from the two control volumes theedgeconnects. The scheme has beenshownto be successful in simu

lating bipolar transistors, MOS devices, and CCD [38] [39]. Due to the locality, error evaluations can be

done in parallel.

From theprevious paragraph, there exists for each element an indicator telling across which axes of

the element needs further refinement. Refinement rules presented by Hitschfeld et al. [11] can then be

applied. This process may bedone onasequential or parallel manner. A sequential methods avoids the prob

lem of implementing a parallel Omega algorithm. However, when grids points are added ordeleted for the

next simulation, clever allocation routines are needed tobedeveloped. These routines should beknowledge

able of the current partitioning of nodes, beable tomaintain load balance bymoving grid points from one

processor to its neighbors, and be able toeasily modify thecommunication scheduling algorithm. Thesec

ondoptionof implementing a parallel meshgenerator wouldalsoneedthesecleverallocation routines andat

the same time beable toefficiendy represent aparallel mesh data structure. One difficulty lies on grid points

atthesubdomain boundaries which are made denser orcoarser. This may require communication with other

processors.

3.5.4 Hydrodynamic Models

Drift-diffusion device simulators ignore the spatial variation of theaverage carrier energy and assume

that the mobility and diffusion parameters are uniquely specified by the local electric field. These limitations

can beremoved by adding theenergy balance equation which will produce a setof equations called the

hydrodynamic equations since the system is similar tothat which describes the flow of fluids. The energy

balance equations are derived from the second-order moments of the Boltzmann Transport Equation (BTE)

[43,44].

BWC _> „ dWc= -V.Fw+Jc.E+{ c) (3.6)
°* Ot COLL

where W, F, J, C,and E are theenergy densities, energy flows, current densities, carrier type (n orp),and

electric field, respectively. The energy flowis defined as:
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K =-XCV7C-(1-s) kJ!jLjc (3.7)
where Tc represents thetemperature, %e the related thermal conductivity, and s is a weakly-varying correc

tion, related with the dominant scattering mechanism. The hydrodynamic model extends the drift-diffusion

model through three modifications on the particle flux density equation. The first term is the diffusion cur

rent for whicha generalized Einstein relation between mobility and diffusivitycan be recognized. Second,

the E term is modified to include the thermoelectric contribution whicharises from the gradients in thecar

rier temperature. And finally, a third term is added torepresent contribution from thedriftenergy.

Jc =±<mcp£v c+cv (*^±v)]+!^L">cv. £ as)
The average energydensityof the carrier subsystems canbe expressed as follows:

WH=lkBTcC+±mcv2cC (3.9)
where m is thecarrier effectivemass and v thedrift-velocity. In theusual energy transport model,the second

termis neglected. In the hydrodynamic model (HD), this assumption is not made,and the drift energy is

included in the kinetic energy tensor.

Energy balance and HD device simulators do not have the same region of validity as Monte Carlo

device simulators. Monte Carlo calculates the full distribution function without assumptions of its form. Any

moment-basedapproach (energy balance or full hydrodynamic) only obtains the first few moments of the

distribution function. A good example is page 105ofLundstrom [45]. This shows the distributionin the base

of a heterojunctionbipolar transistor (HBT). In a thin base HBT, most of the current is carriedin the "ballis

tic peak". Using only the energy balance equation will notmodel this properly. Hydrodynamic simulation

may be able to model it. However, anything sensitive to the "thermalized" part of the distribution would

probably not be simulated accurately by HD. The base recombination current mightbe a parameter thatis

strongly dependent on the thermalized part which wouldbe neglected by HD.

There are several versions of HD simulators. Pierantoni et al. [44] features anaccurate description of

theenergy exchange among electrons, holes, and lattice, and is therefore suitable for self-consistendy simu

lating thermal effectsandnon-stationary phenomena, as well as theirpossible interactions. Ann et al. [46]

presents a hydrodynamic model thataccurately computes the highenergy tailelectrons which contributes to

theimpact ionization and theinjection of current into thegate oxide. Ramaswamy et al. [47] makes a survey

of somehydrodynamic models andpresents a scheme to determine theaccuracy of themodels.
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Gardner et al. [48] demonstrated that block successive under relaxation converges for a 1-D submi-

crometer semiconductor device using the hydrodynamic model. They obtained a parallel speed-up of

approximately 2.5 on 10 processors using a chaotic relaxation and thepreconditioned conjugate gradient

method for the parallel diagonal block solver.

Inimplementing thehydrodynamic simulator, thepresented framework and algorithms may again be

used. There are nowsix unknowns that can besolved together orinsome decoupled scheme. Implementing

a good multigrid initial guess routine along witha good preconditioner mayagain determine theusefulness

of a MP HD simulator. Other issues toberesolved are themesh structure type and thegrid generation algo

rithm to be used.

Sample matrices are obtained from Pierantoni et al. [44]. Unfortunately, thematrices are notarranged

inaccordance tothe grid point they belong to. Also, nocompletely coupled solution ofthethermal-hydrody

namic model isavailable. The solution is divided into two blocks - [y, n, p] and [/„, tp, t{\. One sample

matrix came from a BJT device. The total number of equations is 52908 - the first 17637 are the Poisson

equations, thesecond 17637 block are for the electron equations and the last block are for thehole equations.

This particular matrix is solvedby a sequential CGS solver in 327iterations (253 seconds in a 365-IBM

RISC 6000). Another sample matrix came from a MOS simulation. It had 20000 equations and it took the

same sequential machine 33 seconds to solve. Using theparallel solver, presented in this chapter, nospeed

upis obtained dueto thesmall sizes of thematrices and theinefficient partitioning of thenodes. However,

theconditioning of matrices is comparable to regular drift-diffusion since the parallel solver takes less than

100 iterations tosolve the matrices. Hence, it isexpected that the parallel solver will show significant speed

up for larger problems.

Animportant issue is when does MP solution of BTE moments become more computationally expen

sivecompared to MP Monte Carlo solution. Sequential Monte Carlo simulations are an order of magnitude

slower than sequential thermal-hydrodynamic simulations. For sequential Monte Carlo simulation, Brisset et

al. [49] reports that contrary to thecase of 2Dmodeling, theCPU time used for solving Poisson's equation

becomes non-negligible. Thetotal CPU time is strongly dependent onthe number of simulated particles, the

number of meshes, and thetimestep. For a20x 20x 40mesh, 12500 particles and a \fs time step, thesim

ulation of 10ps on SUN Sparc 10/20 took28.5 hours. 16.5% of theCPU timewas spent oncalculating the

motion of theparticles while 77% of theCPU timewas spent solving Poisson's equation.

Section 1.3.2presents four publications on parallel MonteCarlo semiconductor device simulation.

Ranawake et al. [50] reports a 70% efficiency for 256x 16x 128 mesh structure. Even by assuming a 100%
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efficiency for parallel Monte Carlo algorithms and a50% efficient for parallel hydrodynamic simulators,

hydrodynamic simulators are still expected tobean order of magnitude faster.

Another factor that may influence auser's choice of models isease of use inobtaining accurate

results. Ease ofuse isacombination ofseveral factors. First, the user needs to discretize the problem accu

rately for meaningful results. For hydrodynamic simulation, the user may specify simple rectangular grids or

complicated irregular grids to minimize the number ofgrid points. For 3-D Monte Carlo, rectangular grids

are usually used since this allows easy book keeping of particles for each subdomain. Second, the user needs

tosetup the simulation parameters. Both methods require careful choice ofsimulation time steps. For hydro-

dynamic models, other parameters such initial bias conditions and thecollision terms which are calculated

by relaxation-time approximation need to provided. In many cases, Monte Carlo simulations are needed to

give the right hydrodynamic parameters. For Monte Carlo, the user would need tospecify the positions and

velocities ofmobile carriers. There are also several physical parameters that need tobe set depending upon

the problem characteristics such as the type ofmaterial used. Third, the convergence behavior of the solution

methods is another important considerationto the user.The block newton iteration with an iterative linear

solve inner loop typically used for hydrodynamic simulation maynotconverge. Monte Carlo simulators usu

ally produce simulation results after each run. However, itsaccuracy is dependent upon the parameter set

ting. Finally, the user musthave confidence on hismodels. Monte Carlo simulators definitely have more

accurate models. Hence, several papers have been publishedthat attempts to combine drift-diffusion and

monte-carlo to retain the computational efficiency of the pde-based method as well as the accuracy of the

MonteCarlo technique. Kosina andSelberherr [51] describe thebasicideasof thecoupledtechnique.

3.5.5 Noise Simulation for Nonlinear DynamicCircuits

The iterative solver developed in this chapter is also used for circuit noise simulation.Noise repre

sents a lower limit to the size of electrical signals thatcanbe amplified without significant deterioration in

signal quality. It alsorepresents an upperlimit forthe usefulamplifier gain. Demiret al. [37] presentsa time-

domain non-MonteCarlo noise simulation for nonlinear dynamic circuits with arbitrary excitations.

The noise simulation method was implemented inside the circuit simulator SPICE3. Time domain

simulation is done along with the transientsimulation in SPICE3.The transient simulation in SPICE3 solves

the MNA equationswithout noises for the circuit. The circuitvariables consist of node voltages and branch

currents for some elements. The circuitequations consistof the node equationsand branch equationsof the

elements for which branch currents are included in the circuit variables vector.
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The noise simulationis done concurrently with the transient simulation. First, the stochastic differen

tial equation for noise is derived from MNA formulation of the nonlinearcircuit equations. Second, the sto

chastic differential equation for noise is transformed in state-equation form. Finally, the stochastic

differential equation for noise is solved.

k\t) = E{t)Kl{t)+Klit)Eit)T+F{t)F(t)T (3.10)

where K1 (t) represents the noise covariance matrix of circuit variables as a function of time, E(t) repre

sents a matrix which is a function of the derivatives of the MNA equations,and F(t) is the MNA equation

for the circuit. Equation 3.10 is a system of m(m+l)/2 lineardifferential equations where m is close to the

number of nodes. The Backward Euler scheme is used to solve the equation which transforms the problem

into the solution of a sparselinear system of equations. The system of linearequationswould be tridiagonal

if the secondtermofEquation3.10was not included. This secondtermcomplicates the solutionprocessdue

to the need of generalpurpose sparsematrix solvers.

Directmethodsare first investigated for the solution of the linear system. A BJT activemixer with 65

nodes is usedas anexample. The noisesimulation requires thesolution of 2145 linear equations at each of

the 250timepoints. This took approximately 17hours on a DECstation 5900/260.95% of theCPU time is

used for thesolution of large sparse matrices using a direct solver. Using a sequential iterative solver, the

total simulation timewasreduced to0.5hours. CGS with nopreconditioning implemented inPILS [12] was

used astheiterative linear solver. Parallel solution of thisproblem took20x250 seconds.

Another example involved the noise simulation ofa 16 component delay line inwhich each compo

nent had 13 transistors. The matrix generated bythis example has 29403 rows. Due to the size of the prob

lem, direct solvers are not feasible due tomemory and speed limitations of current computing platforms.

PILS running ona MIPS R4400/60MHz processor took 1950 seconds to solvethe D.C. state noise matrix.

The parallel solver took 330 seconds to calculate thesame solution. Since MIPS R4400/60MHz is more2

times faster than aSparc II (CM-5 processors), an efficiency ofmore 20% isobserved. Larger problems are

expectedto give betterefficiencyresults.

3.6 Summary

The use of parallel processors for the solution ofdrift-diffusion semiconductor device equations using

an irregular grid discretization has been developed and published [52]. Preconditioning, partitioning, and

communication scheduling algorithms are developed to implement an efficient and robust iterative linear
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solver with preconditioning. The parallel program is executed on a64 node CM-5 and iscompared with

PILS running on asingle processor. We observe an efficiency increase in obtaining parallel speed-ups as the

problem size increases. A60% efficiency for CGS with no preconditioning isobtained for large problems.

Using CGS with processor ILU and magnitude threshold fill-in preconditioning for the CM-5 and CGS with

ILU for PILS, a50% efficiency for the solution of thelarge matrices isattained. Perfect node load balance is

observed to be the most important partitioning parameter.

In trying toimprove the simulator, explicit methods are shown notbeas efficient compared toimplicit

methods for thedrift-diffusion equations. An adaptive grid algorithm is described along with thedifficulties

in its implementation. Theproposed irregular grid algorithm is also used insolving thehydrodynamic and

circuit noise equations. It is observed that thehydrodynamic and drift-diffusion matrices have comparable

conditioning. Also, for large hydrodynamic and circuit noise problems, good parallel efficiency areexpected

to be observed.
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CHAPTER 4

Reaction Kinetics and

Diffusion Simulation in

Chemically Amplified

Resist

4.1 Background

Various lithographic strategies thathavea primary difference in the typeof radiation usedto expose

the resist havebeendeveloped over the past 30 years. All thesestrategies are limitedby resist sensitivity

which mustbe commensurate with the exposure parameters of the lithography equipment for efficient pro

duction. Factors such as less efficientradiation sources,photon dependency chemical transformations, or

increase in wafer size from four inches to eight inchesand beyondmay necessitate the need for increased

resistsensitivity. Chemically amplified resistsystems which maybe twoordersof magnitude moresensitive

[2]are beingdeveloped to maintain and improveproductivity in termsof wafer exposuresper hour. Chemi

callyamplified systems producean acid through a photolytic reaction in the initialexposure. The acid then

catalyzesa secondchemicalreactionduring post-exposure bake. The extent of the catalyticreactiondeter

mines the dissolution rate duringdevelopment Figure4.1 demonstrates a generalprocessflowfor a chemi

cal amplification resist consisting of the exposure, a criticalpost-exposure bake, and development steps.

Chemically amplified resist systems have both nonlinear chemical reaction kinetics [12] and simulta

neous concentration dependent diffusion. Experimental results such as the lost of standing wave features

(Figure 4.5) andT-topping suggestaciddiffusion. Linearlinewidth changeexperimental results presented by

Zunigaet al. [32]and illustrated by Figure4.11 showevidencethat the diffusion is concentration dependent.

The level of complexity in modeling these reaction and diffusion effects is similar to that involved in model

ing impurity concentration and point defect dependent diffusion in silicon. New mathematical methods in

conjunctionwith experimentalresults are needed to be developedto verify reactionparameters. The use of

high post-baketemperatures is preferredas resist sensitivity improves. However, it also results in increased

diffusionand its effectson resolution must be examined in three dimensions. The nonlinearity of the reac-
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tions and the dependence of the diffusion on the local concentration can lead to improved performance.

Understanding and balancing these mechanisms is the key goal in designing production worthy resists.

Exposure

Acid generation

Bake

Acid

Diffusion

A

Acid catalyzes to

produce activated

sites

Development

Areas with high concentrations

of activated sites are insoluble

Figure 4.1: Process Flow for a Chemical Amplification Resist

This chaptermodels the 3-D movement and reaction of species in the post-exposure bakeof chemi

cally amplified resist systems. Both weak andstrong dependencies of diffusion on species concentration are

considered by investigating several diffusion models. Combinations of nonlinear reaction kinetics and con

centration dependent diffusion scenarios are being considered for both acid-hardening (negative) resist and

deprotection reaction (positive) resist. Specifically, wefocus ourstudies on the Shipley SNR-248,1.B.M.

Apex-E, and I.B.M. Apex-M chemically amplified resists. Due to the predicted large computational require

ments of3-D simulations, the target architectures ofalgorithms developed inthis chapter areparallel proces

sors.

This chapter isorganized asfollows: Section 4.2describes the equations being solved. Computational

steps to solve the problem implicitly and parallelprocessor programming consideration are illustrated in

Section 4.3. Section 4.4 explains the discretization method and the matrix assembly equations are described

inSection 4.5. The diffusion models are examined in section 4.6. Section 4.7 describes possible applications

and justifies the use ofparallel processors. Section 4.8 presents an adaptive grid method that may beused to

accelerate the simulations. Section 4.9 explores possible extensions and applications of the algorithms pre

sented.
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4.2 Computational Models

4.2.1 Modeling the Exposure

The SPLATprogram [19] is used to determine the intensity distribution as a function of the user spec

ifiedmask.The programis capableof simulating the effectsof lens aberrations, apodization, spatial filtering,

focus, and magnification effectsfor highNA,and modified illumination. The intensity distribution is a result

of the coherent and incoherentsuperposition of a large numberof multiplyreflectedwaves within the thin-

film structure. It uses the Hopkins theory of partially coherent imaging to simulate projection-printing with

partialcoherence. SPLAT extendsHopkins theory to simulate non-vertical propagation effects in thin-film

interference. Such effects have beenshown tobe important inphotolithography when theRayleigh depth of

focus R=XP.(NA)2 is comparable to or less than the thickness hof the photoresist divided by the real partn

ofitsrefractive index. Themask isspecified asa setofrectangles and triangles whose size, position, andrel

ative transmittance are specifiedby the user.

Togenerate a 3-Ddistribution ofabsorbed energy, theSPLAT program hasanindependent calculation

foreach layer in thethird dimension. This may be inefficient since symmetry calculations need only bedone

forone z-layer andit may bepossible tocompute intensity at a smaller number of z-layers andto useinter

polation for the layersbetween. Helmsen et al. [28] reports that for a 50x50x93 mesh structure, an I.B.M.

RISC-6000 took 6.8hours to run Splat. Byrunning this program ona parallel machine or a group of work

stations, eachlayercanbe done concurrently. Since there is no need forcommunication, Splatcanbe exe

cutedwith closeto perfect parallel speed-up efficiency.

Dill'sABC model [24] canbe used tosimulate thegeneration of acid during theexposure through a

simplephotolytic reaction.Dill's equations are summarized below.

^/(z,0 =-(AM(z,t) +B)I(z,t) (4.1)

jM{z,t) = -CM(z,t)I(z,t) (4.2)

where / andMare the intensity distribution and the normalized concentration of photoactive compound

respectively. A,B, and C are Dill's fitting parameters.

4.2.2 Modeling the Post-Exposure Bake

In chemically amplified resists, onephotogenerated molecule drives several reaction cycles during a

post-exposure bake. Ferguson et al. [12] describes the onium salt bake model which is used in this research

project. Although much work has beendone, manyof the mechanisms such as diffusion which determine
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resist performance are still not well understood. Hence, we develop ageneral model for two interacting and

onediffusing species which is summarized by theequations below.

3cigj-Ml-tyc? (4.3)
ac2-^ =V* (D2VC2)+*2C2 (4.4)

$f2(*>y>*) =WBoundary (4.5)
C,(*,y,z) =0'<=0 (4.6)

C2(x,y,z) =C5lf=0 (4.7)

where C1 is the concentration ofactivated sites, C2 is theconcentration ofacid, kj is thereaction rate coeffi

cient, k2 is the rate coefficient forthe acid lossreaction, and m is a fitting parameter (m>l).D2 is the diffu

sioncoefficient whichmay be dependent on Cj. Equation 4.3describes theremoval of the t-BOCprotecting

groups. Equation 4.4 is the mathematical theory of diffusion in isotropicsubstanceswhich is based on the

hypothesisthat the rateof transfer of a diffusing substance through the unitarea of a sectionis proportional

to the concentration gradientmeasurednormal to the section.The second term of Equation4.4 describes

acid loss. Equation 4.5 specifiesthatno net flowof acidoccurs across the simulation boundaries. Equation

4.7 sets the initial value of the acid by using Dill's equationsand the exposure data generated by SPLAT

[19].

The diffusion coefficient^ is not well understood andmight be dependent on 1) the acidconcentra

tion itself (constant), (2) the presence of deprotection siteswhich provide additional stepping stones (linear

model),or (3) the increase in free volume with the deprotection reaction whichcreates a very rapid increase

in diffusionpathways (exponential model).The free volumetheory is basedon the assumption thata diffus

ing molecule can only move from one place to anotherwhen the local free volume around that molecule

exceed a certain critical value [31]. Relatively smallchanges in free volume canleadto a large changein the

diffusioncoefficient [14] which canbe modeledusinganexponential equation. These threepossibilities are

illustrated by Equations 4.8 - 4.10. The secondand third modelsaretype II diffusion models which are

defined to have concentration dependent coefficients. To explore the possibility of these various classes of

acidconcentration and material statedependent diffusion,a general purpose 3-D reaction-diffusion simula

tor is proposed. For eachof the three classes of increasingly higher nonlinearity anappropriate algorithm is

chosen.
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D2 = a

D2 = y+pq

D2 = "kexpit&Ci)

where a, y, P, X,and CO are constant parameters.

4.3 ComputationalSteps

(4.8)

(4.9)

(4.10)

43 Computational Steps

Rectangular grids with nonuniformly spaced lines are used for the discretization. The second order

trapezoidal method is used fornumerical integration and thenonlinear equations are solved using theNew

ton-Raphson method. TheConjugate Gradient Squared (CGS) iterative algorithm described bySection 2.4.1

is used tosolve the unsymmetric sparse matrix. Incomplete LU decomposition described bySection 2.4.2

with thered-black ordering defined bySection 2.4.3.1 isused asa preconditioner forthelinear solver. These

computational stepscanbe summarized by Algorithm 4.1.

The CM-2 is used as the target machine for the algorithms. Grid point partitioning described by Sec

tion 2.3.3.1 isused for parallelization. With 256k bits ofmemory for each processor, a virtual processor ratio

of 64 isobtained. Hence, an8kCM-2 with 256k bits ofmemory for each processor would allow a user to

simulate a 512k mesh structure.

Algorithm 4.1: Time-Dependent Computational Steps

problem read-in and setup

time integrationloop

Newton-Raphson loop

evaluate the equations for the Jacobian and

right-hand side of the Newton iteration

solve theassociated linearsystem

post-processing of results

4.4 Discretization

Ferguson [27] uses a second-order Taylor series approximation forthespatial derivatives forconstant

diffusion coefficients. For concentration dependent diffusion coefficient scheme, a first order Taylor series

approximation is used.
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Since the exponential diffusion coefficient isahighly non-linear function of the variables, the standard

difference discretization isnot suitable for the task unless the grid spacings are made very small. To attain a

more stable discretization, a technique proposed byScharfetter and Gummel [9] which isnow widely used

for the discretization of the semiconductor device equations isutilized. The same approach is used for the

discretization of the linear diffusion coefficient. Taking the limits of the linear diffusion coefficient discreti

zation, the discretization for the constant diffusion coefficient is obtained.

Given that theflow of species C2, isdescribed respectively as

J = A.«p(G)Cj)VC2 (4.11)

where Cj is theother species interacting with C2, twosimplifying assumptions are made. First, C; is linearly

discretized. Second, the flow of C2 is constant between grid nodes in a one-dimensional grid. Using tech

niques used by Scharfetter and Gummel, theconstant value of the flux can be extracted. For theexponential

model, we canintegrate theprevious expression between twoadjacent grid nodes, i-1 and i, on aone-dimen

sional domain.

Vi xi-\

H(-*> (cU-^i(«-i)> ("P(~PCl(i)) "'y("pcK'-D))) =C2(0-C2(i-D (4.13)
The constant value of the flux can now be extracted.

-<o(cl{i)- cx (._ 1}) c2 (<) - c2 (._ 1}
J = K- ; r — (4.14){exp (-oCj(f)) - exp (-oCj (._ 1} ) ) x{ - x._ j

Equating the flow going from nodei-1 to node i to the flow going from i to i+1, anequation which is linear

in the values of Ci andnonlinear as a function of C\ is obtained. The previous formulation is customarily

extendedto multidimensional domain by assuming thatthe projection of the flux along eachlineconnecting

adjacent nodes can be considered constant.

The same steps can de used to derive the constant value of the flux for the constant and linear models.

_ C2(Q~C2(«-1)
J = a (4.15)

x,-*,-i

P(cl(Q"ci(t-i)) c2(0 " c2(i-1)j = .—__ : (4.16)
i-1

U+eci(i-i)J
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4.5 Linear Matrix Assembly

4.5.1 Definition of the Jacobian

The nonlinear equations are solved using theNewton-Raphson method whichis given by:

CH+i-Cn-\h(f(yn+l) +/(yn)) =F(CB+1) =0 (4.17)

D(C(n+l)(l)) (C(«+l)(i+l)~C'(n+l)(i)) = -^(C(»+l)(i)) (4-18)

where D (C„) is thejacobian matrix of thediffusion and bake equations calculated using the values

obtained from the previous Newton-Raphson iteration. The model tobeused involves two species and is

summarized by the equationsbelow.

Jtl=k1(l-Cl)C^=fl(CvC2)
dC2
-^ =V. (D2V C2) +k2C2 =/2(C1,C2)

(4.19)

(420)

where Cj is the concentration ofactivated sites and C2 isthe concentration ofacid. The boundary conditions

discussed earlier will be used with the addition ofCx(t=0)=0, and C2(t=0) =C(x,yj). D2 isthe exponential

function discussed earlier with C} equal to C\.

Thejacobian of the matrix for twospecies is defined by:

D(CltC2) =

dFx 3Fj
oCj oC2

oCj oC2

(4.21)

If the diffusion coefficient Dj isequal to zero, the matrix dF1/BCl isdiagonal. Atthe same time, matrix

BFl/dC2 is also diagonal since the generation and recombination are functions of thelocal values of the

variables. Note that matrix dF2/dC2 is symmetric as is easily recognized from the discretization, while dF2/

dCl is asymmetric. The matrix elements for the first species are derived from the trapezoidal rule equation
as follows:

fi(cKn+i)(,rc2(B+i)(o^ =cK«+i)(o**ci(»)"2*(/»(CK»+i)(0'c2(«+i)(o)+A<ci(»)»c2(n))) (4-22)

^r—--i-l*""1)*!^!)) (4.23)
i(n+ l)
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a^=4A(*.(1-ci(-+i)>^42>^(-+i)> v4-24)

The matrix elements forthe second species arederived as follows:

F2<Cl(a+l)<O'C2(« +l)<0> ° C2(«+l)(0~C2(n)-2*V2<Cl(«+l)(0'C2(»+l)(0>+/2<Cl(ii)'C2(«))) (425)

' i-y. i \ x-J, i \ i-\ 1/+- I-- j+- J-- A+- *--

f2(CvC2) = \ * \ 2+ \ 2+**C2 (4«26)
where Ax, /ty, and hx are the dimensions of the control volume. Each control volume is divided into eight

subvolumesto handleboundary conditions. Hence, the equations aretransformed as follows:

g2(cvc2)=hyh(j^i-J_iYhxhy(\i-J iV\\p i-' iV*,W*c2 (4-27)
^ +2 ~V ^+2 *~V ^*+2 k~V

F2<C1(»+1) (i),C2(n+l)(ip =*MCi(«+l) (0~*«A/*C2(«) ~2fc^2^Cl(n+l) (0'C2(*+1) (i)> +*2<Cl(n)'C2(n)» (4.28)

Usingthe resultof the derivation forthespatial discretization andmanipulating the exponential terms,

we get Equation4.30 as the flux for the exponentialmodel.

I _ ~PtCl(Q~Cl(f-l)> C2(Q"C2(f-l) .. ««.
f.i" («v(-pc1(0)-«p(-pc1(l_l))) *,-*,._, a K^y)

Jf.iB^^i(i-i))*<^(ci(0-ci(i-i)>>fa"I^(|"W^ <430>

where b (x) =—i- which is the Bernoulli function.The matrix terms can now be derived in terms of the Ber-
e'-l

noulli function.

a/
i-1

3^=«V(PC1(,.I))B(-*(CI(0-C1CI.I))) (—i—a) (4.31)

^— =«»(PCi{i-i))*'(-P(Cl(l)-c,^)) (-P)f 2('° /(<"l}a] (4.32)
'l(yt) V */~*i-l /
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BC

2 f 2(0 — 2(/-l) \

V^° I *t-*i-i aJ(PMy(PC'tf-l)>)(a("P(CKO-Clt*-l)»*y^<Ci(0-Ci(f-i)») <4'33)

The matrixterms for the linear model canbe derived the sameway.

BJ

a/
i-i

2

3C
1«W

l
/—

2

BJ

•--; CKO"Ci(i-i)
bc.2(0*) o+pc1(0 x *,-*,_!

w+pc1(1._„;

P C2(l)~C2(i-l)
a+pc1(J) . *,-*,_,

^0+pCl(|._,)>/

P C2(0"C2({-1)

>-(Ci(o-Cl(|.i)) ra+PCI(0 .
K^pc^)<-^(o>J

dci(f-ii*> , ( a+Pci(j) ^ xrxi-i
-1 +(Cj (n-c, (l_ 1}) ———

pCi/ «TH^i(n \

(4.34)

(4.35)

(4.36)

A special case iswhen PC, (i) approaches PC, ^.^. The limits for Equations 4.34 -4.36 are shown by

Equations 4.37 - 4.38.

BJ

lim
'"a a+Pci(/-i)

PCl(0~»PCJ(i-l)3C2(yik) *i~*i-l (4.37)

* i

lim
'"2 C2(0_C2(f-l) B

'UO-^MI-O90!(yt) *{"*;-1
(x) (4.38)

a/

lim
C2(0-C2a-1) B

PCKi)"*PciO-l)3Cl (/-!;*) xi~xi-\ 2
(4.39)

4.5.2 Matrix Size Reduction

A reduction of the size of the matrix can be obtained byinverting the diagonal matrix dFJdCx and

obtaining dCt as a function of dC2.

3F, -» 3F.
(4.40)
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Replacing now theprevious expression in thefollowing equation:

We obtain:

dF2 . ^2 .
WidCl) +8T(ac2) =RHS* (4'41)

f 3 dFx -1 dFx dF2~] dF2 BF, _1
[~&f*<1c? (ar-)+ac-JaC2 =/?^-^<^> msi <4'42>

4.6 Verifying the Diffusion Models

Different resistsystems exhibit different diffusion behaviors. Forexample, SAL601 [13] exhibits a

Fickian diffusion behavior. APEX-E [21] is reported to show typeII diffusion behavior. We verify and

extendthese studiesby focusing on the PEB characteristics of a positive-tone DUV resist used by IBM

which is basedon theacidcatalyzed deprotection of APEX-E anda generic t-BOC resist [32].

Eibet al. [21] reports that theDillAparameter forAPEX-E is approximately zero. Hence, an expres

sion for normalized concentration P (P = 1- M)canbe obtained.

P(z,t) = l-exp(-CI(z)t) (4.43)

The Dill parameters are measured tobeA - -0.0l\im~l, B = 0.16u.m-1, and C = 0.004cm2m/-1 using

PEB temperaturesranging from 70C to 100C.

4.6.1 Determination of EquationParameters

Thecurves generated by different dosesrepresent different concentrations of acidat the startof the

bake. Thespacing between the curves can be increased by raising the acidconcentration mto a power

greater than one.If theresist dissolution rateis assumed tobedetermined by theextent ofdeprotection, then

a highervalueof the acid exponent, m,will lead to increased resistcontrast.

Theactivated sites, C2, canbe observed with a Fourier transform infrared (FTTR) spectroscopy. An

increase in activated siteswould decrease the infrared absorbance of theresist. Figure 4.2 illustrates the

FTIR characteristics of a fully and patternedexposed Apex-E resist with no reflection. Withoutdiffusion,

equations 4.3 - 4.4 can be solvedanalytically.

C^C^l-^-C^Jo-*-"*))) (4.44)

102



4.6 Verifying the Diffusion Models

where CCs isaconstant representing the total concentration of cross-linking sites and C2o is the initial con

centration of thephoto-generated acid. By using the fully exposed FITR data and theLevenberg-Marquardt

method [29] applied onequation 4.44, the reaction kinetics parameters, kJt k2, and m, are determined tobe

0.4,0.0, and 1.6, respectively. By using the patterned exposed FTIR data, a, y, P, X,and CD are deter

mined tobe4.0e-16,1.0e-16,4.0e-16,1.0e-16, and 2.5,respectively.

Absorbance

1.00

r-r 1 2.0e-17.oxp(6.25Cl) •
unpatternecLexp *—N:
— ^KpfYmi.iMiiHMMi *~-"7i?22£XJ& —

I unpattemedj
0.80k J

0.00

.0e-16exp(2.5Cl) -

2.00 4.00

Bake Time x 10*3 (sec)

Figure 4.2: FTIR Experimental and Simulation Results

4.6.2 1-D Simulations

The diffusion models are examined using a initial source of acid and making it diffuse in onedimen

sion. Diffusion parameters obtained from the previous section are used for the 1-D simulations. Figures 4.3

and 4.4 illustratethe simulation results for the three diffusion models. Constant and lineardiffusion models

give similar results while the exponential model isable tosustain the acid front as it propagates through the

resist. The steepness of the acid front isdetermined bythe magnimde of the exponential coefficient Figure

4.4 illustrates a0.3 um linewidth difference byusing a98% deprotection level for the constant and the expo

nential model with ahigh exponential coefficient A larger linewidth change for the exponential model is

also illustrated for results presented in Section 4.6.4. Including aacid loss term (nonzero k^affects the mag

nitude, propagation speed, and curvature of theprofiles.
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Figure 4.3: Acid Profiles at t = 1000 sees
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Figure 4.4: Activated Site Profiles at t = 1000 sees

4.6.3 Experimental Results for a RIM PSM with Annular Illumination

To extendoptical lithography to smaller features, resolution enhancement techniques arebeinginves

tigated. One example described by Newmark etal. [23] is theuseof rim phase-shifting masks inconjunction

with annular illumination. SEM Results of this technique are shown in Figure 4.5 whichillustrates experi-
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mental results for a OMum and a IMum spacing. Although a large depth of focus for varying pitch lines is

obtained, thedimensional control of the semi-isolated lines is a problem. Figure 4.5 illustrates thattheline-

width change between dense and isolated features is 30% or60nm. Although inaccuracies with the image,

and substrate reflections partially explain the proximity effects, a major portion of the difference is still

unaccounted for. A possible explanation is diffusion inAPEX-E. Newmark et al. [23] show the peak aerial

image intensity of the dense lines tobeonly 0.9while thepeak of theisolated lineis 1.9. Since acidconcen

tration isproportional to the peak aerial image intensity as illustrated in section 4.2.1, there isa big differ

ence in acid concentration between the dense and isolated lines.

^^«v
111 $lf!

lll$l|f
BP^a S&v?-"^
Br-'™1:* m^"

1 1
':V:::::v:->;:

Figure 4.5: 0.44um and 1.08um SEM Cross-Sections
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Figure 4.6: Dense Line Initial Acid Concentration
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Figure 4.7: Isolated Line Initial Acid Concentration

We investigate the applicability of the three diffusion models in explaining the proximity effects.

Intensity distributions are generated by Splat using themask features described by Newmark et al. [23].

Acidconcentration is calculated using Dill's equation and theexperimental dose of 16.8 mJ/cm2. Figures

4.6 and 4.7 show the initial acid concentration after exposure for dense and isolated lines respectively.

Standing waves result from coherentinterferenceof monochromatic radiation. These dataaresimulatedwith

parameters obtained from the FTIR data in Section 4.6.1. It is observed that all three models are able to

remove the standing waves which is shown by Figures 4.8and 4.9 for theconstant and exponential model

after abake time of SO sees. However, theparameters of the exponential model may beadjusted toretain the

standing waves and atthesame time is still consistent with theFTIR data. This is illustrated by Figure 4.10

which isobtained by lowering the pre-exponential coefficient and compensating it with a larger exponential

coefficient.
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Figure 4.10: Exponential Model with Low Pre-exponential Coefficient Activated Sites Con
tour

The simulation results givetheactivated sites for dense and isolated lines. Thedeprotection level,

which isdefined as the amount of activated sites needed for the resist toberemoved, is determined by set

ting it tothe value ofC2 atthe simulation boundary of the linewidth consistent with the 0.44um pitch exper

imentalresults.This deprotection level is then used to determinethe CD of othersimulationswith a different

pitch. Table 4.1 shows that the exponentially activated acid diffusion in Apex-E may explain the observed

proximity effects. Thelower pre-exponential coefficient isabetter model since the standing waves are more

diffused compared to thelarge pre-exponential coefficient model. Initial acid conditions with nostanding

waves werealsoexamined to decrease the number of grid points necessary for the simulation. However,

results obtained do not show proximity effectsconsistent with the experimental results. The low contour

level obtained in determining theCDis probably due to thedelay in heating theresist. Newmathematical

methods inconjunction with experimental results are being developed tofurther clarify the reaction parame

ters.

Table 4.1: Critical Dimension Simulation Results at t=50 sec

Diffusion

Model

Contour

Level

CD (pitch=
0.44 um)

CD (pitch=
1.08 um)

0 0.044 0.210 0.184
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4.6 Verifying the Diffusion Models

Table 4.1: Critical Dimension Simulation Results at t=50 sec

Diffusion

Model

Contour

Level

CD (pitch=
0.44 um)

CD (pitch=
1.08 um)

4.0xlO-10 0.035 0.210 0.0

2.0xlO-17e^L'1 0.030 0.210 0.170

l.OxlO'V'301 0.034 0.210 0.141

4.6.4 Linewidth Measurements

Direct linewidth measurementswith the correctdeprotection level should further differentiate the dif

fusion models. Figure4.11 illustrates experimental linewidth versus post-exposure bake time behaviorof

different resist systems. Figures 4.12 and 4.13 illustrate simulation linewidth measurements for a generic

positive tone t-BOC [32]. There is anobservable differencebetweenthe constantand the exponentialmodel.

With properreactionkinetics parameters, linewidth measurementsthroughsimulationsmay explain in better

detail the diffusion mechanisms of the resist systems in Figure 4.11.

Linewidth (lA10-9)
1 1 1

400.00
-

350.00 -

300.00 -

X^Apex—E

-

250.00

Apex-M

200.00

i i '

100.00 150.00 200.00

Bake Time (sec)

Figure 4.11: Linewidth Measurements for Different Resist Systems
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Figure 4.13: Exponential Model Linewidth Measurement
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4.7 Applications and Performance Issues

4.7.1 Comparing ImplicitandExplicitMethods

Weimplement a fourth-order Runge-Kutta method toexamine the feasibility of an explicit solver. The

Runge-Kutta method has been successfully used to solve numerous partial differential equations and has

been usedby Ferguson [27] to solve a constant acid diffusion model. Using the diffusion parameters

obtained in Section 4.6.1,the performance of theRunge-Kutta methodis evaluated with the three diffusion

models. Since current and future resist materials have different diffusion parameters, the explicit and

implicit methods are further examined by increasing and decreasing experimentally determined diffusion

parameters.

Tables 4.2and 4.3 show the time step and CPU time needed for both implicit and explicit methods to

achieve thesame acid profiles after 500 sees for an initial condition coming from the25secresults described

inSection 4.6.2. This allows the removal of the steep gradient of the initial condition which would require

small initial time steps. Solutions are obtained by using the largest time step possible and still keeping the

desired accuracy. The implicit method with nopreconditioning is observed tobe superior for all the diffu

sion models in terms of CPU time minimization. Figure 4.14 illustrates that the effectiveness of implicit

methods over explicit methods interms ofCPU time minimization increases for increasing diffusivity.

Table42: Variations of Constant Diffusion Model (t =500 sec)

D Value

Explicit
Time Step

(sec)

Explicit
CPU

Time

(sec)

Implicit
Time Step

(sec)

Implicit
Iter (No

Pre)

Implicit
CPU

Time (No
Pre)

Implicit
Iter (Pre)

Implicit
CPU

Time

(Pre)

1.0e-17 25 19.7 200 99 4.7 31 4.6

4.0e-16 0.5 617.5 125 523 14.3 290 18.3

1.0e-15 0.2 2475.0 50 1000 33 675 47.0

Table 4.3: Variations of Exponential Diffusion Model (t =500sec)

Exp
Coefficient

Value

Explicit
Time Step

(sec)

Explicit
CPU

Time

(sec)

Implicit
Time Step

(sec)

Implicit
Iter (No

Pre)

Implicit
CPU

Tune (No
Pre)

Implicit
Iter (Pre)

Implicit
CPU

Time

(Pre)

0.5 5.0 57.0 200 260 7.7 271 15.7

2.5 1.0 260.0 100 902 24.0 569 33.1

7.0 0.5 625.0 50 1334 39.0 1702 106.7
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Figure 4.14: Speed-up for Using Implicit Methods

4.7.2 Two and Three Dimensional Simulation

Table 4.4: Machine Scalability (t =500 sec)

Machine

Size

CPU Time

(sec)

IK 1031.3

8K 152.3

16K 88.3

Table 4.1 shows the machine scalability of the simulator for theparameters used to generate Figure

4.9. Scalability does not equal 100% since lesscommunication requirements are needed for the smaller

machines. Figure 4.15 illustrates the acid contour with a matchhead characteristic. The initial condition

shown in Figure 4.7is used. However, acid concentration atthe top 5% simulation region isequated to zero

tosimulate possible evaporation effects. A more accurate model can beimplemented bymodifying Equation

4.5 to a nonzero value at the topof the simulation region. These simulations maybe helpful in explaining

matchhead effects observedby Reuhman-Huisken et al. [25].
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Figure 4.15: Acid Contour with Matchhead Characteristics (t=50 sec)
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Figure 4.16: 3-D L-Shape Initial Acid Concentration

Three-dimensional simulation of movement and reaction of species in the post-exposure bake of

chemically amplified resist systems is invaluable innumerous applications. 3-D endof line simulations may

modelmatchhead effectsmore accurately since bothevaporation and diffusion due to end of line effects can

besimulated. Another possible application areholes in resists created by reflective notching [26]. Resist dif-
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fusion may be used to remove theholes. Figure 4.16 shows an L-shape initial acidconcentration thatmay

also require 3-D simulationdue to standing waveeffects.

2-D simulations done in section4.6.3required a 64 x 128meshstructure. For a lineardiffusion model

simulation timeof 50 secanda required timestepof 5 sec,it took a IK CM-2 227seconds to generate the

results. Extending this to three dimensions to simulate effects such as matchhead formation would result in

mesh structures with over500,000 nodes. If a IK CM-2 hadenough memory, it would require more than4

hours to do the 3-Dsimulation. Thisestimate is a lower bound since it is assuming that the3-Dsimulation

would require the same number of newton andlinear system iterations. In reality, theadditional complexity

of the third dimension makes the linear systemless conditioned whichwould result in more linear solver

iterations. Hence,supercomputing machines are necessary to obtainsimulation results in a morereasonable

amount of time. A 16KnodeCM-2 anda 64nodeCM-5 offer thecomputation powerneeded.

4.8 Vertical Fronts and Adaptive Grids

Figure 4.3 shows acid profiles for the three diffusion models. A vertical front is observed for some

exponential diffusion simulations. Sturtevant et al. [20] supports theexistence of fronts byillustrating exper

imental datashowing a nearlinear dependence of linespace change versus postexposure bake time. Small

gridspacings mustbe used in thevertical front areainorderto evaluate thegradient of theacidconcentra

tionproperly. Thiswould be computationally expensive fora static gridsinceit would imply a fine grid

spacing for the entire area in which thevertical front propagates through. Anadaptive grid is proposed to

minimized thenumber of gridpoints. Figure 4.14 illustrates a static fine grid(left) andan adaptive grid

(right) simulation. In theadaptive gridsimulation, a fine gridregion follows thevertical front
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Figure 4.17: Adaptive Grids for Vertical Fronts

The adaptive approach is executed as follows: First, at the beginningof the simulation,the fine grid

meshis located on thestarting front As the simulation progresses, thevelocity andsizeof the front is calcu

lated. The size of the front is determined by marking its boundaries as pointsthatarea certain factor less

than the maximumslopeoradjacent pointsthathaveslopes thatonly differby a certain fraction. The veloc

ity of the front is calculated by comparing the location of the maximumslope for two consecutive time

points. From these information, grid points are transferred from behind the tail of the front to locations

beyond thehead of the front The location of thenewpoints are determined by dividing thedistance between

currently existing adjacent points by oneplusthenumber of new points specified to be added betweenexist

ing points.

It is important to place newpoints atlocations withnoactivity yet inorder toaccurately linearly inter

polate solutions for thenewgrid points. The interpolation function works as follows: First, determining the

unknown nodes with the most number of knownneighbors. Second, linearly interpolate thesenodes from

the values of the known neighbors. Finally, repeat the first stepuntil there areno moreunknownnodes.

This scheme will work for fronts that propagate in the direction of one of the coordinateaxis. The

decrease in thenumber of grids will depend upon thesizeandspeed of the fronts andtheduration of the sim

ulation. Corner effects and standing waves mayincrease the number of grid points.
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The adaptive gridalgorithm is tested with a cubic initial acid condition illustrated byFigure 4.18.One

cornerof the cube is allowed to propagate into theresistin orderto observe the 3-Deffectson propagating

fronts. Thewidth of thefront is observed tobe4 times larger compared toa 1-D front using the same param

eters (exponentialparameterwith steepacid vertical front) obtained in Section4.6.1 for a simulation time of

25 seconds. However, evenwith the widening of the front, a factor of 2 speed-up is stillobserved with the

use of adaptive grids.
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Figure 4.18: 3-D Corner Acid Front

4.9 Extension to Other Models

4.9.1 Generic T-Boc Model

Walraff et al. [30] characterizes two other deep UV resist materials, PTBOCST and PTBMA. Models

were proposed for the thermal and acid catalyzed deprotection and extracted rate coefficients using a sto

chastic kinetics simulator. The time dependent thermal deprotection and the acid-catalyzed deprotection

models are summarized by the following equations.

dC3
«r = k2CiC4 - k_2C3C2

ac,
5- = -klCl-k2ClC4 + k_2C2C2 + V» (D,V Cj)

dC2
^ = k2Cx C4 - k_2C3C2 +kx Cj +V« (D2V C2)

ac4 _
3- - —k2CiC4 + k_2C2C3
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4.9 Extension to Other Models

where C\ is theprotonated TBOC, C2 is theprotonated HOST, C3 is theunprotonated TBOC, and C4 is the

unprotonated HOST, ki is thethermal deprotection rate coefficient, k^, and k.2 are theprotonation reaction

rate coefficients. Dx and D2 are thediffusion coefficients which mayhave nonlinear dependencies.

Simulation results are easily generated by using the proposed algorithms presented in Section 4.3.

Only the matrix generation algorithms which are basically the derivatives of Equations 4.45 - 4.48 are

needed to be added. The same diffusion term matrix generator procedures are used. Figure 4.19 showsthat

experimental and simulations results agree for flood exposures. FTIR simulation data are generated with

constant diffusion modelandthey fittheexperimental data quitewell.

L atknhmt (fee 3
655aoo

Figure 4.19: Generic T-Boc Experimental and Simulation Results

The addition of two more variables for this new model required twice thememory size. Though each

iteration required more CPU time, the proposed solution method works well for both models. The algorith

mic behavior isdetermined bythe diffusion terms which couples the matrix rows and makes the linear sys

tem of equations harder to solve. Both models appear to create linear systems of equations with similar

conditioning characteristics even though thegeneric t-Bocmodelhastwo diffusion terms.

4.9.2 Moving Boundary Dueto Volume Shrinkage

The chemically amplified resist simulator has both nonlinearchemical reaction kinetics and simulta

neous concentration dependent diffusion. Theequations mayvary with thetypeof resist being used. An

important phenomena not yet modelled isthe volume shrinkage of deprotected areas. Shrinkage of upto
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30% are observed in resistsystems. Thevolume shrinkage is needed tobe modelled to accurately simulate

diffusion. Thisis a moving boundary problem which will present new challenges foran MPP solver imple

mentation.

The problem may be tackled by initially formulating volume shrinkage equations. This formulation

maybe influenced by workdoneon silylation andoxidation. A boundary-fitted curvilinear coordinate sys

tem which has been successfully usedfor device simulation andsilicon oxidation [33]maybe usedto solve

thisproblem. Two variations, an 11 pointdiscretization using Voronoi prism control volume anda 27-point

discretization usingVoronoi polyhedron control volume canbe utilized. Bothimplementations will handle

moving boundaries and,at thesametime, retain thesame number ofgridpoints andgridconnections. Since,

gridconnections of a boundary-fitted curvilinear coordinate gridstructure is equivalent to thatofa rectangu

lar grid, there is perfect load and communication balance.

4.10 Summary

The importance of chemicallyamplified resist systems has necessitated the proper modelingfor effi

cient use of thesesystems. Twokey contributions are presented in this chapter - modeling and a solution

method.

Threediffusion models, constant, linearandexponential, havebeenpresented to simulate acid motion

within the resist. The diffusionmodels are differentiated through the examination of 1-D and 2-D simula

tions. The usefulness of the exponential model hasbeen illustrated by theproximity effect simulations pre

sentedin Section4.6.3 for the Apex-E resist system. The free volume theory [31] is a possiblephysical

explanation sincerelatively smallchanges in freevolume can leadto a largechange in the diffusion coeffi

cient Standingwave initial conditions are also shown to be important in this section.Wallraff et al. [30]

reactionkinetic modelshave also been successfully implemented and extended with diffusion effects.This

modelis observed to be accurate for two typesof UV resist materials, PTBOCSTand PTBMA.The conver

gencepropertiesfor this new model is similarto the Apex-E model. The successful implementation of Fer

guson et al. [12] and Walraffet al. [30] models and their extensions show the generalityof the simulator.

Newreaction,diffusion, and boundary modelsare easilyimplemented by addingor modifying matrixgener

ation procedures.

The efficientand accuratesimulation of the models necessitates thedevelopment and implementation

of a new discretizationschemeand parallelsolutionalgorithms. The nonlinearities of some diffusion models

require the careful discretizationof the problemthroughthe use of the Scharfetterand Gummel method [IS].
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4.10 Summary

Implicit methods areobserved tobea lotmore efficient than theexplicit Runge-Kutta method forsolving the

equations presented in this chapter. Dueto thesparsity of the matrix, the iterative solution methods pre

sented in theprevious chapters used for semiconductor device simulation areefficiently usedin chemically

amplified resistdiffusion simulation. The 3-Dnature of problems likeend of line or L-shape features are

shownto requirelarge meshstructures that mayeven reachhalf a millionnodes.Toobtain the solution at a

reasonable amount of time, large parallel machinesare needed to do the simulations.
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CHAPTER 5

Conclusions and Future

Work

5.1 A Summary of Contributions

Theworkpresented in theprevious chapters have been published in several conferences andjournals.

The contributions are summarized as follows:

CM-2 rectangular grid drift-diffusion device simulator [1] - Based on a CGS linear solver with a

partitioned natural ordering preconditioner, a newmassively parallelalgorithm for 3-D devicesimulation is

presented. Compared to a sequential machine running the best sequential algorithm, the CM-2 achieves

supercomputer performance for problems withmorethan 15,000grid nodes.

CM-2 multigrid approach [2], [3]- A multigrid discretization has been developed to providea

framework to perform a block Newton iteration.Three variations of a block Newton iteration are shown to

be effective in generating a good initial guess forthedevice simulator without having anyknowledge of the

device structure andtheoperating region. A factor of twospeed-up is observed for large MOS andBJTsim

ulations.

CM-5 rectangular grid drift-diffusion simulator [2], [3]-A newpreconditioner calledthe block

partitioned natural ordering fora CM-5 drift-diffusion simulator gives a robust and efficient iterative linear

solver. It is observed thatpreconditioners thatmaintain coupling between nodes give thebestresults. Also,

nothaving thesame cutpoints forforward andbackward substitution is important forproducing converging

preconditioners. A 128 nodeCM-5 is observed toprovide a vector supercomputer performance.

Capacitance of Silicon Pixel Detectors [4] - Astudy of thecapacitance ofpixel detectors tobeused

as tracking devices for high energy physics experiments. The pixel capacitance matrix plays an important

role insystem design issues such aspreamplifier matching and cross-talk among pixels. Agood agreement
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between simulations andmeasurements of pixelcapacitance is found. The CM-2drift-diffusion devicesim

ulator is currently being used to improve thedesign of thesilicon pixel detectors.

CM-2chemically amplified resistsdiffusion simulator [5], [6], [7] - A massively parallel frame

work for accurate, efficient, andconvergent simulation of diffusion models is presented. This involves the

use of the solution process used for the CM-2 drift-diffusion simulator. New ideas such as the Scharfetter

and Gummel discretization method for acid discretization is utilized along withthe useof adaptive grids

which were found to improve the simulator performance. Experimental and simulation results on proximity

effects show theapplicability of anexponential diffusion model. Implicit methods are shown tobe more effi

cientcompared to explicit methods for allthediffusion models. Three-dimensional simulation of resist sys

tems areobserved to be very computationallyintensive but canbe simulatedin a reasonable amount of time

on MPPs.

CM-5 irregulargrid drift-diffusion devicesimulator[8], [9]- A device simulator thatuses anirreg

ular grid generated by OMEGAis presented. The problem is solved by initially partitioning thegrids using

thegeometrical, topographical, andspectral partitioning heuristics. Communication scheduling is then done

through therepeated useof themaximal nonbipartite matching heuristic. Finally, thepreconditioning prob

lem is solvedby experimenting with several variations of ILUcomputations andof the forward and back

ward substitution algorithms. For large problems, a 60% efficiency for CGS with no preconditioning and

50% efficiency for the solution of thematrix. CGS with processor ILU and automatic magnitude threshold

fill-in preconditioning is used for the CM-5 while CGS with ILU is used forPILS.

5.2 Conclusions

In thisthesis, theuseof parallel processors for device and process simulation hasbeeninvestigated. In

chapter 2, three-dimensional devicesimulations are observed tobeverycomputationally intensive evenwith

vectorsupercomputers. The maincomputational taskis the solution of the sparse linear systemof equations

which mayhavemorethan a millionequations. Hie efficiency of theiterative linear solver is determined by

the preconditioning scheme. The partitioned natural ordering is observed to give thebestresults for theCM-

2 in terms ofCPU time minimization. A preconditioner called theblockpartitioned natural ordering for a

CM-5 driftdiffusionsimulator gives a robust andefficient iterative linear solver. It is observed thatprecon

ditioners thatmaintain coupling between nodes givethebestresults. Also,nothaving thesame cut points for

forward andbackward substitution is important forproducing converging preconditioners. A multigrid dis

cretizationhas been developed to provide a framework to performa block Newton iteration. Three varia-
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tions of a block Newton iteration are shown to be effective in generating a good initial guess for the device

simulator withouthaving any knowledge of the device structure andthe operating region. The parallel algo

rithms are successfully used to simulate silicon pixeldetectors. Threedimensional capacitance simulations

which match experimentalresults are observedto be significantly different from two dimensional simula

tions. 3-Dlongrange pbtel coupling areobserved to be amplified dueto the blocking strips.

In chapter 3, a parallel irregular griddrift-diffusion device simulator has been presented. A compari

son between the best sequential algorithm and the proposed parallel algorithm has revealed a parallel effi

ciencythatexceeds 50% for large problems. Perfect nodeload balance is observed to be the most important

partitioning parameter. In trying to improvethe simulator, explicit methods are shown not be as efficient

compared to implicit methods for the drift-diffusion equations. An adaptive grid algorithm is described

alongwith the difficulties in its implementation. The proposed irregular gridalgorithm is alsoused in solv

ing the hydrodynamic andcircuitnoiseequations. It is observed that the hydrodynamic anddrift-diffusion

matrices havecomparable conditioning. Also, for large hydrodynamic andcircuit noise problems, good par

allel efficiency are expected to be observed.

In chapter 4, threediffusion models havebeen presented to accurately simulatethe motion of acid

within theresistThe nonlinearity of some diffusion models require thecareful discretization of the problem

through the use of the Scharfetter andGummelmethod. The usefulness of the exponential model hasbeen

illustrated by the proximityeffect simulations presented in Section 4.6.3 for the Apex-E resist system.

Standing wave initial conditionsarealso shown to be important in this section. Implicit methods are

observed to be a lot moreefficient than theexplicit Runge-Kutta methodfor solving theequations presented

in thischapter. Dueto the sparsity of thematrix, the iterative solution methods presented in the previous

chapters used for semiconductor device simulation are efficiently usedin chemically amplified resist diffu

sion simulation. The 3-D nature of problems likeend of lineorL-shape features require the useof large

mesh structures that may even reach half a million nodes, lb obtain the solution at a reasonable amount of

time, large parallel machines are needed to do the simulations. The solution process is also shownto be

effective for twoother types ofUV resist materials, PTBOCST and PTBMA. New models are easily imple

mentedby adding a new matrix generation procedure. The convergence properties for this new model is

similar to the Apex-E model.

A framework for solving PDEs can be formulated. First, thetypeof meshstructure (rectangular, trian

gular, terminated line,etc.)andgrid generation algorithm hasto be chosen. Each type hasits own advan

tages and disadvantages with respect to performance issues and difficulty of implementation. After
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discretization, thegrids have tobepartitioned to different processors with load andcommunication balance

as keygoals. Several algorithms areavailable such as thegeometrical, topographical, andspectral partition

ers.Based on thecommunication pattern andstructure of thecommunication network, each partition is then

physically mapped toa specific processor. With therequired algorithms forthesolution process chosen, a

communication scheduling is then done.

Efficient parallel PDE solvers areusually characterized bygood load balancing and low communica

tion requirements. Efficiency is defined asminimizing the CPU time required to solve theproblem. Hence,

processor utilization may bea good indicator of efficiency. However, thebestsequential algorithm may not

necessarily be thebestparallel algorithm. Asshown inChapter 2 forexample, red-black ordering forpre

conditioning may give good processor utilization butmay notconverge to therightsolution. MFLOPs rat

ings therefore forparallel solution ofTCAD equations arenotgood indicators ofefficiency.

Besides the framework, several otherpresented algorithms are of general use. First,a linear system

solver is needed for solving any linearized equations thatare usually products of stiffPDEs. Significant

research is being done on improving theiterative solver itself. Creativity is also needed in thedesign and

implementation of thepreconditioner. Thesuccess of theiterative algorithm and thepreconditioner is very

problem specific. Second, multigrid methods canbeused effectively to improve theinitial guess of theNew

ton-Raphson iteration. Third,adaptivegrid methods can be used to optimizethe use of computational

resources.

Tosummarize, it is observed thatMPPs arevery useful toTCAD problems. Future peak performance

improvement of MPPs over vector supercomputers will make MPPs more attractive forTCAD problems.

Since peakperformance canonly be translated intosustained performance by software, success of MPP

TCAD applications willdepend significantly on thedesign and implementation of algorithms. Anapplica

tions developer would also need to take intoaccount thetype of architecture, speed, memory, communica

tion bandwidth, and other hardware considerations in order to produce an efficientparallel TCAD

implementation. Thepresented framework andalgorithms should give a TCAD MPP applications developer

direction andflexibility in implementing an efficient MPP application.

53 Future Work

Several areasof futurework havebeen identified in the previous chapters. In chapter 2, curvilinear

coordinate systems maybe usedas an alternative to rectangular grids to allow the modeling of arbitrarily

shapedboundaries. Sincethe connectivity between gridsis identical to a rectangular mesh, algorithms used
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for parallel rectangular grid may be applicable for thisdiscretization. Parallel rectangular grids simulators

alsohavea lot of potential applications. For example, a moredetailed studyof silicondetectors wouldbe of

significant interest to thenuclear physics community. Other applications such asparasitic MOSandDRAM

devices areof greatimportance due to the constantreductionin feature size.

Inchapter 3,a parallel adaptive grid ismotivated tobeagood extension of theparallel static grid sim

ulator. Adaptive grids are veryuseful since theymodifymesh structures during simulation to compensate for

unpredictable and changing fields and current Theapplication of static grid algorithms to thehydrodynamic

modelsis another possible extension sincedrift-diffusion simulators lose theirvalidity as feature sizes

shrink. A third possible extension is the use of the same algorithms for noise simulation of nonlinear

dynamic circuits, lime-domain non-Monte Carlo simulation for nonlinear dynamic circuits with arbitrary

excitations require thesolutions of large linear systems of equations which maybe significantly accelerated

with parallel machines. Chapter 3 also motivates thepossibility of using workstation cluster as a parallel

processing environment. Workstation clusters require more complicated code to hidethelatency of sending

messages through thenetwork. However, obtaining good efficiency onthis platform mayhaveamore signif

icant impact compared to MPP based TCAD tools since workstation clusters are very accessible to most

engineers.

In chapter 4, moreaccurate modelingcanbe done through the addition of nonzeroderivativebound

ary conditions to model evaporation. New species can be introduced by adding more variables and equati-

ions. These newspecies may be modeled to decrease acid concentration astheydiffuse through theresist

area. The solution algorithms are shown tobe easily adaptable to other resist systems. Onlythematrix gen

erations routines are needed to be added. The same diffusion term matrix generator procedures are used. A

possible extension of the work is the automatic generation of matrix terms givena setof reaction anddiffu

sion equations. This will require routines that evaluate the derivative of theequations theuser is supplying.

Another possible extension is theuseof thecurvilinear coordinate system to model moving boundaries due

tovolume shrinkage. Curvilinear coordinates systems have already been used successfully for thesequential

solution of moving boundary problems resulting from silicon oxidation [10].
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