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Abstract

Semiconductor Equipment Analysis and Wafer State Prediction
System Using Real-Time Data

by

Sherry Fen-hwei Lee

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Costas J. Spanos, Chair

The fabrication of modern semiconductor products requires thousands of processing

steps. A key element in achieving high yields and throughput with short cycle-times is to

monitor the equipment to ensure proper processing at each step. This thesis develops a

monitoring method suitable for real-time fault detection, fault diagnosis, and wafer state

prediction. Because not all wafer states can be directly measured while the wafers are

being processed in each piece of equipment, we use real-time signals sensitive to the

equipment state to infer the condition of the wafer. This set of real-time signals is moni

tored and analyzed by the system, which consists of three distinct modules.

The fault detection module employs time series modeling and multivariate statistics to

detect run-time errors on a second-to-second basis. When a malfunction is detected, the

fault diagnosis module assigns a cause to the problem. Two methods for diagnosis were

investigated. The first uses discriminant analysis techniques, while the second uses a com

bination of clustering algorithms and neural network models. Examples of faults which

have been detected and diagnosed on a plasma etcher include various levels of miscalibra-

tions in mass flow controllers, pressure gauges, and radio frequency (RF) power genera

tors.



In addition, the system predicts the wafer state after each process step. Generally,

models for wafer states are built using the input settings of the equipment. Experimental

results in this thesis, however, demonstrate that models built with select real-time signals,

which we call chamber state based (CSB) models, are effective for the prediction of key

wafer states of plasma processes especially after the machine has aged significantly since

the original model was created.

The system as a whole has the potential to reduce the overall cost of ownership of

semiconductor equipment by increasing both the wafer yield and throughput of product

wafers, and decreasing the down-time and mean-time-to-repair of the equipment. Further

more, this system does not depend upon monitor wafers or expensive metrology; rather, it

uses real-time signals collected automatically and non-invasively from the equipment. As

such, it will enable inexpensive run-to-run and real-time control applications. The system

has been developed and tested on the Lam Rainbow 4400 and Lam TCP 9600 plasma etch

equipment.

Committee Chairman
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Chapter 1

Introduction

1.1 Motivation

With the DRAM capacity quadrupling every three years, gigabit chips with linewidths

of less than 0.2|nm will be in production around the turn of the century [1.1]. To achieve

these small linewidths and the resulting high density circuitry, it is predicted that the cost

to build a new semiconductor fabrication factory (fab) will exceed the $1 billion mark by

1996 and be in excess of $1.5 to $2 billion in the year 2000 [1.2][1.3]. Over 75% of this

capital for a new factory is attributed to equipment cost. Despite the high cost of modern

semiconductor equipment, the equipment utilization for product is low, estimated between

35% and 50% [1.2][1.3]. Equipment utilization is defined as the percentage of time that

the machine is used to produce good production wafers. As depicted in Figure 1.1, equip

ment loss, including down-time and time for maintenance, calibrations, set-up, and pilot

runs, presently accounts for 28% of equipment time. Another 11% is due from operating

loss, which includes the time the equipment misprocesses wafers, waits for material, and
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processes bad material. Non-equipment loss, including the time the machine is idle or is

used for training, and special work, including the time to make process adjustments, make

up another 26%. It is estimated that to remain competitive and profitable in the future, at

least 70% to 80% equipment utilization is necessary [1.2][1.3], which will require a sig

nificant decrease in the areasof both equipment and operatingloss.

A key element in achieving this goal is to monitor the equipment to ensure that the

semiconductor wafers are processed properly at each step. The cost in dollars and time to

measure each wafer after it completes each step, however, becomes prohibitive in modern

semiconductor factories, which produce wafers with well over 100 manufacturing steps.

Present practice is to measure monitor wafers periodically, perhaps at the start of each

work shift, after performing maintenance, or after changing the machine settings. Even

with the use of monitor wafers, however, subsequent production wafers may still be pro

cessed improperly.

Currently, final test is generally performed after all the processing steps have been

completed, as illustrated in Figure 1.2(a). Thus, instead of detecting equipment faults

causing wafer yield loss early in the process flow, wafer yield loss is usually found very

late in the processing line. Defective wafers, or scrap, can be extremely costly depending

on how many processing steps the wafers have completed. The late detection also makes

diagnosis of the problem very difficult. Present practice may require first stripping the

problem wafers layer by layer until the fault is isolated, then tracing the fault back to a

specific piece or group of equipment. While this technique has enjoyed some success

amongvariousyield groups in modern fabs, a moredirect approach, catching faults imme

diately after they have occurred, is much more appealing.

By pushing fault detection earlier in the processing line (Figure 1.2(b)), considerable

resources are saved because once a fault has been detected in a particular machine, that



Chapter 1

Goal

12%

8%
2%

8%

70%

r,Equipment
Loss

Non-Equipment
Loss

"N
m

Operating Loss \^s

Special Work

Production

Figure 1.1 Equipment Utilization.Toremain profitable and competetive in the

future, factories must achieve at least 70% utilization of their equipment [1.2].

machine can be stopped immediately, reducing the number of misprocessed wafers.

Because the equipment causing the fault is easily isolated, faster diagnosis of the problem

is possible. In addition to detecting and diagnosing problems with the machine, the effect

of the fault on the wafer can be assessed, making it possible to ensure that only wafers

worth processing continue down the manufacturing line.

1.2 Thesis Overview

This thesis develops a system, called the Equipment Analysis and Wafer State Predic

tion System, to perform real-time semiconductorequipment fault analysis and prediction

of wafer state. The system uses real-time signals automatically collected from the equip

ment via various real-time monitors. As depicted in Figure 1.3, the real-time data is fed

into each of three modules: (1) Fault Detection, (2) Fault Diagnosis, and (3) Wafer State

Prediction. Examples of faults detected and diagnosed on a plasma etcher include a faulty
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Figure 1.2 (a) Typical Manufacturing Process: Final test is usually

done after all the processing steps have been completed, (b) Proposed

Manufacturing Process: This thesis pushes fault detection earlier in the

manufacturing line, during the processing of each piece of equipment or

workcell, allowing for less scrap and faster diagnosis. Additionally, the

quality of the wafer can be assessed before it continues down the

manufacturing line.

mass flow controller, an unstable power supply, changes in chamber pressure, and a mis-

calibrated electrode gap spacing. Wafer states of interest may include the etch rate, selec

tivity, or uniformity of a wafer after it is processed by each piece of equipment. The

system as a whole has the potential to reduce the overall cost of ownership of semiconduc-
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tor equipmentby increasing both the wafer yield and throughput of product wafers, and

decreasing the down-time and mean-time-to-repair (MTTR) of the equipment

Though general enough to be applied to many pieces of semiconductor equipment, the

methodologyis verified on plasma processing, one of the costliest operations in the semi

conductor fabrication line. Plasma processing is not only very expensive, but also is diffi

cult to control because it is not well understood. In fact, a malfunctioning plasma etcher

can generate up to $100,000 worth of scrap per hour [1.4]. Although there is a tremendous

push to develop models relating the plasma to interesting output characteristics of the

wafer based on basic physical principles, researchers are still years away from developing

models realistic enough to be useful on the factory floor [1.5][1.6][1.7]. Thus, at this time

empirical models are faster and more practical for prediction.

In this work, the models used in each module are empirically based on real-time data

collected while the machine is processing wafers. The following sections briefly describe

the purpose of each system module. Potential impact areas of the Equipment Analysis and

Wafer State Prediction System on the equipment ownership cost are then highlighted.

1.2.1 Fault Detection Module

The Fault Detection Module uses automatically collected real-time data to determine

the health of the semiconductor equipment while the wafer is being processed. Two types

of faults are determined by the module; the first group of faults corresponds to fast equip

ment fluctuations within the processing time of one wafer, while the second group reflects

longer duration changes in the overall equipment state. The machine status is displayed in

a control chart which can be easily read and interpreted by an operator on the factory floor.

In this way, the complex modeling algorithms are transparent to the user.
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Figure 1.3 Schematic of Equipment Analysis and Wafer State

Prediction System: The system contains three modules: (1) Fault Detection,

(2) Fault Diagnosis, and (3) Wafer State Prediction. The modules use data

collected from real-time monitors.

1.2.2 Fault Diagnosis Module

Once an equipment fault has been detected by the Fault Detection Module, the Diag

nosis Module assigns a cause to the problem. In addition to diagnosing faults that have

already occurred, this module may also predict impending malfunctions, or perform prog

nosis of faults. For example, it may be possible to determine when preventive mainte

nance is needed. Two methods are developed which tackle the difficult task of equipment

fault diagnosisand prognosis. The firstuses discriminant analysis, while the seconduses a

combination of clustering techniques and neural network models. The main idea is to map

the signature of the real-time signals to a specific equipment fault. Each method has

advantages and disadvantages, depending on the type of equipment faults. Examples of
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faults thathave been diagnosed include faulty mass flow controllers, miscalibrated power

supplies, changes in chamber pressure, anda changein the electrode gap spacing.

1.2.3 Wafer State Prediction Module

In addition to detecting and diagnosing equipment faults, it is important to assess the

quality of the wafers immediately after each process step. For example, it is useful to

know how a particular equipment fault has impacted the processing of the wafer. The

Wafer State Prediction module performs this task. Good quality wafers can continue down

the fabrication line, while misprocessed wafers can be discarded or reworked. This thesis

shows that models based on real-time equipment data result in effective prediction capa

bility for plasma etch processes.

1.3 System Impact on Cost of Ownership

The overall goal of the fab is to obtain high yield with a low cycle-time and high

throughput When implemented on a high volume production line, the Equipment Analy

sis and Wafer State Prediction System as a whole addresses these issues and can poten

tially lower the overall ownership cost of the equipment.

A summary of these cost of ownership advantages are listed in Table 1.1. The general

categories for this list are adapted from the SEMATECH Cost of Ownership model [1.8].

The fault detection algorithm can reduce the process scrap yield produced by the equip

ment, defined as the operational yield of the equipment For etchers in particular, the sav

ings can be considerable, as wafers close to completion can be worth several thousands of

dollars.

The diagnostic capability can reduce the equipment down-time. Down-time includes

repair time, non-production time during scheduled maintenance, and engineering usage.

The repair time is impacted by the mean-time-to-repair (MTTR) and the mean-time-
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between-failures (MTBF). The diagnostic module can reduce the MTTR by helping the

engineerpinpoint faults in the equipment. In addition, the modulecan predict impending

malfunctions, thereby warning the operator to perform preventive maintenance before a

catastrophic fault occurs. This can potentially extend the MTBF.

By predicting the final wafer state, the quality of the wafers at each process step can be

classifiedto ensure that only wafers worth subsequentprocessingcontinue down the fabri

cation line. This also reduces the need for monitor wafers. Thus, the system has the poten

tial to positively impact the yield, cycle time, and throughputof the fab as a whole [1.9].

Table 1.1 Cost of Ownership Impact by Each Module of System

Module Ownership Cost Impact

Fault Detection Reduce process scrap yield

Fault Diagnosis Reduce the equipment down time

Wafer State Prediction Determine value of wafer at pro
cess step

1.4 Thesis Organization

Chapter 2 discusses the real-time data and collection systems used in this work. A

description of the experiments conducted to both develop and verify the algorithms pre

sented in this thesis follows in Chapter 3. Chapters 4 through 6 develop the theory and

show applications for each of the three modules which make up the overall Equipment

Analysis and Wafer State Prediction System. Specifically, these are the Fault Detection,

Fault Diagnosis, and Wafer State Prediction modules. Finally, conclusions and future

directions for this research are given in Chapter 7.
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Chapter 2

Real-Time Tool Data

2.1 Introduction

The success of the Equipment Analysis and Wafer State Prediction System relies

heavilyon the data used for analysis. Therefore, the data usedin the system must be care

fully considered. The most direct solution is to actually measure the etchrate, selectivity,

and anisotropy while the wafer is being processed. This capability, however, is not yet

available. Therefore, empirically based models are used to predict the wafer outcomes.

The choice of signals which bestreflect theequipment performance is not obvious, espe

cially for complex equipment such as the plasma etcher.

Much of the past work involving the modeling of plasma etch equipment has used

classical response surface methodology (RSM) models which map the input settings, such

as theradio frequency (RF) power, chamber pressure, gas flows, and electrode gap spac

ing, directly to the output states including the etch rate, uniformity, selectivity, and anisot-
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ropy [2.1][2.2]. A limitation with this approach is that for plasma etchers, the same input

settings do not always result in the same output wafer characteristics because the input set

tings of the machine are not closely coupled with the actual chamber state. In addition,

drift in the machine from naturalaging is not accounted for in these models [2.3]. Equally

important, errors such as miscalibrated components will not be detected by examining the

input settings of the machine. For example, if a mass flow controller (mfc) is miscali

brated, the controllers inside the equipment will not detect the error since the gas flow

reading will appear to be correct even though the actual flow may not be within the desired

specifications. This change in gas flow may subsequently lead to changes in the plasma

characteristics, which in turn impact the etching process.

Because the machine input settings usually do not exert enough direct control over the

desired outcome, there has been a push to use other sensors besides the input settings to

monitor the equipment. Spanos et al. showed that the electrical and mechanical signals

associated with the plasma RF can be modeled with time series models and used effec

tively to detect malfunctions [2.4]. Anderson used optical emission spectroscopy and par

tial least square regression (PLSR) techniques to model plasma wafer characteristics such

as etch rates, selectivities, and uniformity [2.5]. Butler and Stefani performed run-to-run

control of polysilicon gate etch using in situ spectral ellipsometry [2.6]. A group at M.I.T.

is developing a full wafer monitoring system using interferometric imaging to determine

the etch rate, selectivity, and uniformity across an entire wafer [2.7]. The underlying

theme is that researchers are investigating signals which are more accurate than the input

settings in describing the wafer states of interest.

The Equipment Analysis and Wafer State Prediction System presented in this thesis

uses non-invasive real-time equipment signals. This thesis shows that for plasma pro

cesses in particular, electrical and mechanical signals such as the load impedance and coil
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positions give a more accurate depiction of the chamber state than the input settings and

can be used effectively for fault analysis and prediction of the final wafer state

[2.3][2.8][2.9].

This chapter first details the process by which the real-time signals used for analysis

are chosen. Next, the specific collection systems used for the plasma etch examples are

described, followed by a discussion of the real-time data chosen for each type of etcher. In

this work, two different types of state-of-the-art plasma etchers are investigated, a parallel

plate system and an transformer coupled plasma (TCP) system. These etchers were

selected because they are currently among the most advanced plasma etchers used in the

semiconductor manufacturing industry. Due to different hardwareconsiderations, the real

time data collected from the systems differ.

2.2 Real-Time Signal Selection

Because the Equipment Analysis and Wafer State Prediction System depends upon the

data used for analysis, selecting the real-time signals most sensitive to the equipment state

is critical. A typical etcher, for example, has well over 400 signals from which to choose

[2.10]. These include signals involved in all steps of the process, from wafer handling to

the pumping of the chamber to the power delivered by the RF generator. Many signals

obviously do not directly affect the chamber, such as the signal determining whether or

not the input cassette is lowered. The case is not as clear, however, for many other signals.

We do not monitor those signals which are tied directly to the input settings of the

machine. Instead, signals which give the most information about the chamber state are

monitored. For example, in plasma systems we do not include the RF power delivered

from the generator for several reasons. First, any deviation in the RF power will be caught

by the machine's own feedback loop. Second, if the RF generator is miscalibrated, this
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signal will appear to have the proper values even if the incorrect poweris delivered. This

is similar in ideato the mass flow controller example in the previous section. Third, the

value of the RF power read by the machine is before the matching network, which is not

as accurate as the actual powerdelivered to the upperelectrodeof the etcher. Fora typical

etchingprocess, we have found thatthe difference between the RF power before andafter

the matching network can be up to 10%. Therefore, instead of monitoringthe RF power

delivered by the generator, we measure the RF power at the upperelectrode.

To test the relevance of the remaining chosen signals to the wafer state, the following

steps are taken. First, a standard factorial experimentin which the input settingsarevaried

over the range of the operating space of the equipmentis conducted. The purpose of the

experiment is to change the state of the equipment in a way thatwill affect the processing

of the wafer. In addition to the factorial experiment, we run several wafers through the

machine at the normal input settings, or baseline conditions, to obtain the "normal" fluctu

ations of the real-time signal readings. Then the ranges of the real-time signals collected

during the factorial experiment and those collected during the baseline runs are compared.

Those signalswhich have a substantial range relativeto the baseline dataareconsideredto

be "sensitive" to the equipment state. More formally, an F-test is calculated:

S fact/Vfact
~2 ~ ''a'vfact'Vcent vAU
S cent/Vcent

where s fact is the estimated variance of the signal collected during the factorial experi

ment, s2cent is the estimated variance of the signal collected during the centerpoint runs,

Vfact is thedegrees of freedom in the factorial experiment, and v^^ is the degrees of free

dom in the centerpoint runs. Those signals which have F-statisticsabove a desired level of

significance are collected by the monitoring systems and used in the Equipment Analysis

and Wafer State Prediction System.
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2.3 Real-Time Collection Systems

The data collection systems used in the Equipment Analysis and Wafer State Predic

tion System monitor both electrical and mechanical signals in real-time. The two collec

tion systems are: (1) the Brookside LamStation software,which readsthe signals from the

SECS-II (SEMI Equipment Communication Standard-H) serial port on the etcher [2.11]

and (2) the Comdel Real Power Monitor (RPM-1), which reads the signals through its

own RS232 interface [2.12]. Figure 2.1 depicts the Comdel monitor in relation to the RF

generator, the matching network, and the upper and lower electrodes.

RF Generator

13.56 MHz

Matching Network

upper electrode

lower electrode

Figure 2.1 Position of the Comdel monitoring system relative to the

matching network, power supply, and electrodes for a parallel plate

reactor.

Plasma etch equipment have well over 400 signals from which to choose [2.10]. These

range from the entrance load lock vacuum sensors, to electrical characteristics of the

chamber, to the state of the gas flow valves. For fault detection, diagnosis, and wafer state

prediction purposes, only a small subset is required. As detailed in the next section, the

signals corresponding to the RF network are most sensitive to changes in the equipment
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state [2.4]. Sample frequencies of 1 Hz have been achieved and were found to be sufficient

for this application.

Since the Comdel RPM-1 resides after the matching network directly above the upper

electrode, it gives more accurate readings of the forward power and other electrical param

eters delivered to the plasma than does the LamStation software. The Comdel RPM-1

monitors the current, voltage, and DC bias at the upper electrode. Calculated from these

values are the delivered RF power, root-mean-square (RMS) current and voltage values,

RF impedance, and the phase angle between the current and voltage.

Because most of the signals collected are directly tied into the electrical or mechanical

components of the machines, different sets of data are collected depending on the hard

ware configurations of the etcher. In this work, both the single wafer parallel plate Lam

Rainbow 4400 polysilicon and inductively coupled Lam TCP 9600 metal plasma etchers

are studied. While both the LamStation software and the Comdel RPM-1 RF probe are

used to collect data from the parallel plate etching systems, only the LamStation software

is used to collect data from the metal TCP system.

2.3.1 Parallel Plate Etching System

For parallel plate etching systems, between six and thirteen of the collected signals are

used. Six signals are collected or calculated via the Comdel RPM-1. The other seven sig

nalsare collected via LamStation. The signals collected for the Lam Rainbow 4400poly

silicon plasmaby each monitoring system are listed in Table 2.1. The important signals

monitored are: RF Power, RF Voltage, RF Current, Load Impedance, RF Phase Error, DC

Bias, RFTune Vane Position, RF Load Coil Position, Peak-to-Peak Voltage, and Endpoint

Data. Each of the above signals is described in Table 2.2. These signals were chosen

because they are sensitive to changes in the state of the chamber of the etcher, which

directly impacts the wafer. Because these measurements are related electrically or
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mechanically, some signals are highly correlated. Three signals, Load Impedance, Phase

Error, and DC Bias, are collected from differentplaces in the equipment by the two inde

pendent monitoring systems. Although these readings are correlated, they are not identi

cal.

Table 2.1 Real-Time State Signals Collected for the Lam Rainbow 4400

LamStation Software Comdel RPM-1

RF Load Coil Position RF Power

RF Tune Vane Position RF Voltage

Peak-to-Peak Voltage RF Current

Load Impedance Load Impedance

RF Phase Error RF Phase Error

DC Bias DC Bias

Endpoint

Table 2.2 Description of the Real-Time Signals

Signal Description

RF Tune Vane Position Position of the tune vane in the matching network of the
upper electrode; acts as a variable capacitor

RF Load Coil Position Position of the load coil position in the matching network
of the upper electrode; acts as a variable inductor

RF Load Impedance Apparent input impedance of the matching network

RF Phase Error The phase error between the current and voltage (ideally
90°) at the upper electrode

DC Bias Measures the potential difference of the electrodes

Peak-to-Peak Voltage Magnitude of voltage on the electrodes

End Point Data Reads the intensity of the plasma in the chamber at a par
ticular wavelength

RF Voltage Root-mean-square (RMS) voltage at the upper electrode

RF Current RMS current at the upper electrode
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23.2 TCP Etching System

The signals of interest for the Lam TCP 9600 metal etcher are slightly different from

those of the parallel plate system since the plasma source of the two systems differ. Instead

of upper and lower electrodes, the TCP source consists of planar coils wound from the

center to the outer radius of the source chamber, one placed at the top of the chamber, the

other at the bottom [2.13]. The plasma is created when the gas near the coil ionizes as a

result of the induced RF electric field. Similar to the parallel plate system, TCP sources

can be driven at 13.56 MHz. Since these systems run at lower pressures and generally pro

duce higher density plasma than parallel plate systems, they are claimed to produce more

anisotropic etches with smaller linewidths and faster etch rates.

Because the RPM-1 is not suited for the TCP source, the analysis for the TCP machine

was based solely on the data collected from the LamStation software. Many signals simi

lar to those used for the parallel plate systems are collected for the TCP system, with a few

additional signals. The signals which best reflect the equipment state are related to both

the bottom and upper coils. The signals associated with the bottom coil are similar to those

for the parallel plate system: RF Tune Vane Position, RF Load Coil Position, Line Imped

ance, RF Phase Error, and DC Bias. As in the parallel plate system, these signals are used

to tune the matching network. Similar signals are collected from the matching network of

the top coil. For example, instead of a tune vane, a tune capacitor is used. One of the most

sensitive signals to process changes is the RF Bias, which measures the DC bias between

the top and bottom sources when both are powered. As in the parallel plate systems, end-

point information is also collected. A description of the real-time signals collected for the

Lam TCP 9600 metal etcher is given in Table 2.3.
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Table 2.3 Real-Time State Signals Collected for the Lam TCP 9600

LamStation Description

Bottom

TCP Coil

RF Tune Vane Position Equivalent position of the tune vane posi
tion in matching network of the lower coil

RF Load Coil Position Equivalent position of the load coil position
in matching network of the lower coil

Line Impedance Apparent input impedance of the lower
matching network

RF Phase Error Phase error between the current and voltage
at the bottom coil

DC Bias Measures the charge on the electrodes

Top TCP
Coil

TCP Tune Vane Capacitor
Position

Position of the tune vane capacitor of the
matching network for the top coil

TCP Phase Error Phase error between the current and voltage
at the top coil

TCP Load Capacitor
Position

Position of the load capacitor of the match
ing network for the top coil

Line Impedance Apparent input impedance of the upper
matching network

RFBias DC bias when both sources are powered

Endpoint Reads the intensity of the plasma in the
chamber at a particular wavelength

2.4 Pre-filtering of Real-time Data

The raw data collected for both types of etchers includes several peripheral steps in the

etching procedure, such as the stabilization of the pre-etch gases, the pre-etch in which the

native oxide is etched away, the stabilization of the main etch gases, the main etch, and

finally the unloading of the wafer from the chamber. The step of interest in this application

is the main etch step. Although value is gained from examining the loading and stabiliza

tion steps for gas leaks for example, this work focuses on fault detection and diagnosis
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duringthe main etch step and determines how the wafer state is impacted. The algorithms

presented can be extended to include the other windows of operation.

The signals collected during the main etch step are concatenated and then filtered as

follows. Characteristics of thereal-time signals caused by transient effects during process

ing must be accounted for before statistical analysis. At the beginning of the main etch

step for each wafer, for example when RF power is applied, a small transient occurs while

power is stabilizing. The analysis is delayed a few seconds until the signals have stabi

lized. The delay time, based on the stabilization time for a normally processed wafer, is

illustrated in Figure2.2. If the signal does not stabilize within the specified time, the Fault

Detection Module generates an alarm, as discussed in Chapter 4. To simplify the calcula

tions in each module, the same numberof data points for each collection system is used

for each wafer.

Parameter

A
Delay

N H

ss-
Waferl Wafer 2 time

Figure 2.2 Real-time Signal Filtering
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2.5 Real-Time Data Example

Approximately 30 points are collected per signal per wafer etch for the LamStation

data and50 points for the RPM-1 data. Since the data are collected sequentially at a sam

pling rate of 1 Hz for the LamStation data and at 2 Hz for the RPM-1 data, the real-time

signals areautocorrelated in time and demonstrate time series behavior. Time series pat

terns are observed both within each wafer and across several wafers due to controller

adjustments and equipment aging. The time series nature of the data is exploited for fault

detection, as will be shown in Chapter4.

Figure 2.3 shows the real-time signals of the RF Load Coil Position and DC Bias for

different fixed input conditions on each of 12 wafers, collected by the LamStation soft

ware. Notice the instability in wafers #4 and #5 shown in Figure 2.3. (These wafers are

identified as "faulty" by the Fault Detection Module described in Chapter 4.) For an

unknown reason, the RF power dropped significantly during the processing of wafer #4,

causing corresponding adjustments in both Coil Position and DC Bias. Later measure

ments show that the etch rate for wafer #4 was unusually low due to the drop in RF power.

Therefore, the run corresponding to wafer #4 was rejected from the analysis. As seen in

Figure 2.3, wafer #5 exhibited unstable signals andwas alsorejected as an outlier. Exclud

ing wafers #4 and #5, Figure 2.3 also shows that the wafer-to-wafer variance is much

larger than the within-wafer variance.

Figure 2.4, which shows the Load Impedance andRF Tune Vane Position for the dura

tion of six wafers processed at the same input settings, illustrates that the real-time signals

chosen reflect equipment state better than the input settings. While the input settings are

fixed for all six wafers, thereal-time signals vary for each etch,indicating thatthe specific

real-time data described in the previous sections give a more accurate description of the
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actual equipment state. As a consequence, the real-time data can be used effectively for

fault detection, diagnosis, and prediction of wafer states.
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Figure 2.3 Real-time signals of RF Load Coil Position and DC Bias for

different input conditions on 12 wafers. Wafers #4 and #5 have unstable

real-time signals and are rejected as "bad" wafers [2.8]. Notice the large

wafer-to-wafer variance compared to the within-wafer variance.
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Load Impedance RF Tune Vane Position

B-

• •

Figure 2.4 Real-time signals for six wafers processed with idential input

settings during the duration of the main etch. Unlike the fixed input settings,

the real-time signals reflect changes in machine state.
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Chapter 3

Experimental Design

3.1 Introduction

The experiments conducted to develop and verify the real-time Equipment Analysis

and Wafer State Prediction System are discussed in detail in this chapter. As previously

stated, the plasma etchers used in this work are a Lam Rainbow 4400 polysilicon etcher

and a Lam 9600 metal etcher. First, the set of experiments performed in the Berkeley

Microfabrication Laboratory on a parallel plate polysilicon etcher is described. These

experiments, which form the basis for the majority of the system analysis in the following

chapters, were designed to span a significant amount of time to allow for machine aging.

Next, the experiments conducted on a TCP metal etcher, used to adapt the fault detection

algorithm for multiple recipes, is discussed. Each experiment has its own test structure and

measurement set, which will also be described.
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3.2 Lam Rainbow 4400

This section focuses on the experiments conducted in the Berkeley Microfabrication

Laboratory on a Lam Rainbow 4400. The purpose of this experiment was three-fold. The

first goal was to verify the new fault detection algorithm to detect single faults at different

levels of severity; the second was to develop and test the diagnostic capabilities for single

faults; the third was to build models for several pertinentwafer states using the real-time

data, and then test the predictive capability of the models with an independent data set. To

achieve these goals three separateexperiments, the Training, Verification, and Diagnostic

Experiments, were conducted.

The Training Experiment is a central composite experiment composed of two phases

[3.1]. Both phases are used to build the wafer state models. The second phase is used to

both test the Fault Detection Module and train the Diagnostic Module. The Verification

Experiment, run one month after the Training Experiment, is extremely important, as it

provides an independent data set used to verify the Wafer State Prediction Module. In a

month's time, the machine suffers from general wear and tear, such as chamber coating

and electrode conditioning, which affect the performance of the equipment. In a high-vol

ume manufacturing site where 5,000 wafers are processed every week, the condition of

the chamber gradually changes with time. Therefore, it is important to verify that the pre

diction models survive these normal machine drifts. The Verification Experiment is also

used to verify the algorithms used in the Diagnosis Module. Because two different data

sets areused, one for training and the other for testing, the actualpredictive and diagnostic

capabilities of the modules are determined. The Diagnostic Experiment further tests the

diagnosis algorithms. Since a different test structure was used for this experiment, it tests

the application of the diagnostic algorithms for different wafer loadings.
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3.2.1 Test Structures

Two different test structures were used, one for the Training and Verification Experi

ments, and the other for the Diagnosis Experiment. The layout of each test structure is dis

cussed in this section, followed by a briefoutline of the processflow.

3.2.1.1 Layout

The wafers for the Training and Verification Experiments are 4" diameter wafers pat

terned with polysilicon, gate oxide, photoresist, and low temperature oxide. Any exposed

materials on the wafer change the chemical composition of the ionized gas. It has been

observed that the etch characteristicsdepend not only on the type of layers etched, but also

on the specific patterns created. This effect is known as loading. The test structure was

designed so that the polysilicon, gate oxide, photoresist, and the LTO hard mask will be

simultaneously etched in the same etch step. Due to complex loading effects, this results

in more accurate etch rates and selectivities than etching blanket wafers individually. The

wafer states of interest are the etch rate of polysilicon, selectivity of polysilicon to gate

oxide (ratio of the polysilicon etch rate to the gate oxideetch rate), selectivity of polysili

con to I-line positivephotoresist (ratio of the polysilicon etch rate to the positivephotore

sist etch rate), and the non-uniformity of the polysilicon etch. Due to the small ranges of

selectivities across the design space, models are created for the individual etch rates of

gate oxide and photoresist. The test structure, requiring a three mask process, allows all

models to be developed from the same set of experimental conditions [3.6]. Figure 3.1

shows a simplified view of the test structure indicating all of the surfaces that were etched

during the Training and Verification Experiments.

Due to technical difficulties with the oxideetcher in the Microfabrication Laboratory,

the process for the Diagnosis Experiment was simplified to a single mask process. As a
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Figure 3.1 Test structure for theTraining and Verification Experiments.

result,onlypolysilicon andphotoresist wereexposed to theetchduringthisexperiment, as

shown in Figure 3.2.
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Figure 3.2 Test structure for the Diagnosis Experiment.
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3.2.1.2 Process Flow

A600A thermal oxide was first grown on the wafers ("oxide" refers to silicon dioxide,

Si02) followed by 6000A n+ doped polysilicon, deposited via low pressure chemical
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vapor deposition (LPCVD). After a20 minute nitrogen anneal at 950°C, 2800A undoped

low temperature oxide (LTO) was deposited by chemical vapor deposition.

Three mask steps are required to build thetest structure for theTraining and Verifica

tion Experiments. The first mask defines the gate oxide open regions, and requires both

oxideetching through LTO and polysilicon etches that terminates when the gate oxideis

exposed. Approximately 50A of gate oxide was etched during the polysilicon etch and

overetch. The second mask defines the polysilicon open areas, requiring an LTO etch that

terminates whenthe polysilicon is exposed. Since the selectivity of LTO to polysilicon is

low in the Lam Autoetch Si02 Etcher, about 500A polysilicon was etched inthis step. The

last mask defines the areas with photoresist. (Photoresist is generally used to define the

patterns on the wafer. The regions not covered with photoresist are etched away. The cov

ered regions are protected from beingetched, and are therefore retained.) A more detailed

description of the process is listed in Appendix A. The process flow for the Diagnosis

Experiment test structure, a subset of the above process, follows steps #1-5 outlined in

Appendix A.

3.2.2 Training Experiment

The standard polysilicon plasma etch contains a pre-etch step which etches through

the native oxide layer. (About 20A of native oxide is grown naturally on wafers when

exposed to air. It is a"crud" oxide layer that mustbe stripped off the wafer.) The pre-etch

is followed by the main etch step, which is the step of interest in this project. Most of the

significant etching occurs during this main etch step. In this experiment, the pre-etch rec

ipe was constant for all etches, while the main etch recipe was modified. To obtain more

accurate etch rates and thus better selectivity measurements, the main etch, called the cen

terpoint etch, was a timed etch. The pre-etch and centerpoint recipes are listed below in

Table 3.1.
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Table 3.1 Etch Recipes

Input Parameter Pre-etch Centerpoint

Pressure (mtorr) 400 425

Power (Watts) 200 275

Gap (cm) 1.0 0.9

Cl2 (sccm)a 0 160

SF6(seem) 100 0

He (seem) 0 380

He clamp (torr) 8.0 8.0

Chapter 3

a. The flow rates are in units of seem, "standard cubic cen
timeters per minute"

Given the above recipes, the input parameters varied in the experiment are: Pressure

(P),Power (W),Gap (G), Gas ratio of Cl2 to He (R), and the Total gas flow of Cl2 and He

(T). Note that because the gas ratio and total gas flows are more significant to the etch

results, they were varied in the experiment instead of the individual gas flows. As previ

ously stated, the output wafer states, or responses to the experiment, were the etch rate of

polysilicon, selectivity of polysilicon to oxide and I-line positive photoresist, and polysili

con wafer non-uniformity.

The Training Experiment consisted of two phases. Phase I is the variable screening

stage, which determines which variables are statistically significant in the models. Phase II

assesses the quadratic nature of the system via a star design [3.1]. The input values used

for all experiments are listed in Table 3.2, in terms of percent offset from the nominal val

ues. Figure 3.3 illustrates the different points for three parameters in the input space cov

ered by the Training and the Verification Experiments. The particular values were chosen

to cover a wide range of operating conditions of the machine. The next two subsections

describe the two phases of the Training Experiment.
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Table 3.2 Change in Percent From Nominal

Parameter Training Experiment

Phase I Phase II

Verification

Experiment

Pressure ±15% ±22.5% ±10%

Power ±15% ±22.5% ±10%

Gap ±11% ±17% ±10%

Flow Ratio ±19% ±22% ±10%

Total Flow ±11% ±22% ±10%

31

o —

/I

J I

— o

/I

^ J—L.
I I

1/
— oo

(a) (b) (c)
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3.2.2.1 Phase I: Variable Screening

Phase I consists of a two-level, 16 run fractional factorial design and 4 center points.

This is a design of resolution V with no blocking, but drops to resolution lH when block

ing for time and for the fact that the wafers came from two different lots. Sinceblocking

was not a factor in any of the phase I responsesurfacemodels, the design is essentially of

resolution V. Thus, no main effects are confounded with one another or with second or

third order effects. Additionally, second order effects are not confounded with one

another. Main effects are, however, confounded with fourth order effects, and second
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order effects are confounded with third order effects. Assuming that the fourth order

effects are negligible, this experimentprovides a good estimate of the main effects.

As mentioned above,there are two blocks,one for time andone forusingtwo different

lots. The time block is confounded with the three-way interaction among the gas ratio,

power, and electrode gap spacing, or equivalentiy, the two-way interaction between the

chamber pressure and total flow. The effect of using two different lots is confounded with

the three-way interaction among the chamberpressure, power, and electrode gap spacing,

which is equivalent to the two-way interaction between the gas ratio and total flow.

Although all 20 runs of the experiment were run in one day, the block for time was a pre

caution in the event the etchermalfunctioned in the middle of the experiment.

The lots were also blocked due to the way the wafers were processed before the etch

step. In particular, the lot non-uniformity1 of the polysilicon across awafer lot grown via

LPCVD was poor. The lotnon-uniformity across two boats2, or 24 total wafers, was 41%,

compared with approximately 9% within one boat of 12. The average within wafer non-

uniformity3 in the one boat was 2%. In addition to the degradation ofthe lot uniformity,

the sheet resistance across two boats suffered as well, showing non-uniformity of 45%.

Across one boat the sheet resistance non-uniformity was reduced by half, to 19%.There

fore, to reduce the variation across the experiment wafers, only one boat of 12 wafers was

deposited with polysilicon at a time. While both sets of wafers were annealed at the same

time, LTO also was deposited one boat at a time for better uniformity within the boat.

Therefore, the experimental wafers in phase I were blocked for the two different deposi

tion lots.

1. Lotnon-uniformity is calculated asthedifference of the average deposition rate between the first and last wafers,
divided by the average deposition rateacross allwafers.

2. Wafers in deposition furnaces are placed in"boats," which hold thewafers vertically a fixed distance apart from one
another.

3. Within wafer non-uniformity iscalculated asthedifference of theaverage deposition rate near theedge of thewafer
and theaverage deposition rate near thecenter of thewafers, scaled by theetch rate of thecenter average.
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The object of the experiment was to examine the output space given a reasonable

range of input settings for the main etch. The ratio of gases and total gas flow ranges were

constrained by the limits on the mass flow controllers of the He and Cl2which are 500

seem and 200 seem, respectively. Given these limits, the design ranges chosen for the gas

ratios and total flows are as large as possible. Table 3.3 shows the values of the input

parameters (+, -) used in the two-level fractional factorial design. The middle level (0)

shows the values for the center-point recipe. The actual flow values corresponding to the

ratio of gases and total flow in the experiment are listed below in Table 3.3.

Table 3.3 Valuesfor Cl2 and He

Gas
Total Flow =

600 seem

Total How =

480 seem

Ratio = 0.50 Cl2 200 160

He 400 320

Ratio = 0.34 Cl2 152 122

He 448 358

In the first phase, the values for pressure and power are 15% offset from the nominal

values, gap and total flow values are 11% from the nominal values, and the ratio values are

19% from the nominal value. Before performing the experiment the runs are randomized

in the time blocks including four centerpoint runs to check for non-linearity. The actual

runs conducted, in order of execution, are listed in Table 3.4 and Table 3.5.

Table 3.4 Randomized Phase I Block I Runs

run# P R W G T lot wft#

12 489 0.50 234 1.0 480 8-1 1

2 489 0.34 234 0.8 480 8-2 23

CI 425 0.42 275 0.9 540 8-1 5



34 Chapter 3

Table3.4 Randomized Phase IBlockIRuns

run# P R W G T lot wfr#

1 361 0.34 234 0.8 600 8-1 6

14 489' 0.34 316 1.0 480 8-2 13

7 361 0.50 316 0.8 600 8-2 17

8 489 0.50 316 0.8 480 8-1 12

11 361 0.50 234 1.0 600 8-2 21

C2 425 0.42 275 0.9 540 8-2 19

13 361 0.34 316 1.0 600 8-1 3

Table 3.5 Randomized PhaseIBlock II Runs

run# P R W G T lot wfr#

9 361 0.34 234 1.0 480 8-2 22

C3 425 0.42 275 0.9 540 8-2 16

15 361 0.50 316 1.0 480 8-1 2

5 361 0.34 316 0.8 480 8-2 20

10 489 0.34 234 1.0 600 8-1 10

3 361 0.50 234 0.8 480 8-1 7

C4 425 0.42 275 0.9 540 8-1 11

16 489 0.50 316 1.0 600 8-2 15

6 489 0.34 316 0.8 600 8-1 4

4 489 0.50 234 0.8 600 8-2 18

After examining the real-time signals, it was noticed that a few wafers from the first

phase experienced equipment faults, such as instabilities in RF power, or phase error. The

affected run numbers are # 1,5, 10, 14, and 15. These runs were repeated, as shown in

Table 3.6.
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Table 3.6 Replicated Runs of Phase I

run# P R W G T lot wfr#

1 361 0.34 234 0.8 600 9-1 7

5 361 0.34 316 0.8 480 9-2 20

10 489 0.34 234 1.0 600 8-2 24

14 489 0.34 316 1.0 480 9-1 19

15 361 0.50 316 1.0 480 9-2 10
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The replicated runs #1 and #14 resulted in stable signals, but those for runs #5,10, and

#15 remained unstable. It is possible that the settings for those runs put the machine in an

unstable state. Therefore, these points were not used in the subsequent models or analysis.

The screening analysis was performed by building models using the input settings.

Statistical significance of each parameter was determined via the student-t test at the 0.05

significance level. Results of the analysis show that although all input settings are not sta

tistically significant in each model, they are all required to model the output characteristics

of interest. Listed in Table 3.7 are the t-values and p-values of models for the etch rates of

polysilicon, oxide, and photoresist using the Phase I data. All the main effects and two-

way interactions were used to build the models. Only the values for significant coefficients

at the 0.05 level are listed. Surprisingly, pressure and ratio are not significant for the poly

silicon etch rate model. The model for photoresistetch rate, on the other hand, requires all

of the main input settings. The precise effect of each parameter on the output characteris

tics is better modeled after the Phase II experiment described below.

3.2.2.2 Phase II: Modeling Non-Linear Effects

In Phase n, additional runs were performed to determine the quadratic behavior of the

system. The model is limited to quadratic terms because as the order of the polynomial
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Table 3.7 Significance Tests for Phase I Models

Parameter Polysilicon Oxide Photoresist

t

value
P

value

t

value
P

value

t

value
P

value

Pressure (P) 4.0095 0.0070

Ratio (R) -5.3866 0.0004 9.3848 0.0001

Power (W) 16.7520 0.0000 19.3474 0.0000 45.2959 0.0000

Gap (G) -9.9213 0.0000 -9.0391 0.0000 -13.4383 0.0000

Total (T) 2.6182 0.0307 4.8966 0.0027

P*R 3.6911 0.0050 -12.7136 0.0000

P*W 6.5525 0.0002 4.3588 0.0018

P*G -3.8305 0.0050 -14.0121 0.0000

p*T -5.1635 0.0009 -4.7697 0.0010

R*W 20.0163 0.0000

R*G -6.4071 0.0002 -3.8825 0.0037 -10.3075 0.0000

R*T -14.0674 0.0000

W*G -2.7024 0.0270 -2.7276 0.0233 -6.3457 0.0007

W*T 2.3032 0.0502

G*T

increases, so does the number of terms required in the model. Thus, as long as the model

fit is reasonable, only linear and quadratic terms will be used in the models [3.1].

The additional runs consist of center points and "star" points, arranged symmetrically

along the axis of each variable (see Figure 3.3). For each variable two star points are run.

Two center points were run, making a total of 12 additional runs. When arranged properly,

these star points are orthogonal to each of the columns of Phase I. Therefore, the quadratic

nature of the model can be estimated, even if a level shift occurred between Phases I and II

[3.1].
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Table 3.8 shows the star points for the Phase II runs. Table 3.9 and Table 3.10 show the

corresponding gas flows for ratio and total flow. As listed in Table 3.2, each of the values

for pressure and power are 22.5% offset from the nominal value, those for gap are 16.7%,

ratio is 23%, and total flow is 22% from the nominalvalue. Once again, these values were

chosen to achieve the widest operatingrange of the equipment

Table 3.8 Star points

Parameter Low value High value

Pressure (mtorr) 329 521

Power (W) 213 339

Gap Spacing(cm) 0.75 1.5

Ratio 0.26 0.58

Total Flow (seem) 420 660

The gas flows which correspond to the above table are as follows:

Table 3.9 Values for Cl2and He for Ratio Star Points

Gas
Total Row =

540 seem

Ratio = 0.58 Cl2 238

He 342

Ratio = 0.26 ci2 112

He 428

Table 3.10 Values for Cl2and He for Total Flow Star Points

Gas Ratio = 0.42

Total How = 660 seem Cl2 195

He 465



38

Table 3.10 Values for Cl2 and He for Total Row Star Points

Gas Ratio = 0.42

Total Row = 420 seem ci2 124

He 296
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The randomized star and two center points run in Phase II are listed, in order of execu

tion, in Table 3.11.

Table 3.11 Randomized Phase II Runs

run# P R W G T lot# wfr#

25 425 0.42 339 0.9 540 9-1 4

28 425 0.42 275 0.75 540 9-2 16

24 425 0.26 275 0.9 540 9-2 14

C5 425 0.42 275 0.9 540 9-1 1

29 425 0.42 275 0.9 660 9-1 6

22 329 0.42 275 0.9 540 9-2 17

27 425 0.42 275 1.5 540 9-1 2

26 425 0.42 213 0.9 540 9-2 18

C6 425 0.42 275 0.9 540 9-2 13

23 425 0.58 275 0.9 540 9-1 5

30 425 0.42 275 0.9 420 9-2 15

21 521 0.42 275 0.9 540 9-1 3

3.2.3 Verification Experiment

The purpose of the Verification Experiment is to collect a second data set which can be

used to test the prediction capability of the models. After the models are built with the data

from the Training Experiment, they are tested with the data from the Verification Experi

ment to determine a prediction metric that indicates the overall prediction accuracy of the
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models. The Verification Experiment wasrun aboutfour weeksafter the Training PhaseII

Experiment The input settings for this experiment are ±10 % from one of the nominal

valuesat a time.These runs were similar to the starpoints of Phase n, but at smallerdevi

ations from the nominal values. Table 3.12 shows the run conditions for the Verification

Experiment.

Table 3.12 Verification Experiment Runs

run# P R W G T lot# wfr#

VI 383 0.42 275 0.9 540 10 1

V2 425 0.42 275 0.9 540 10 14

V3 425 0.42 247 0.9 540 10 13

V4 425 0.42 275 0.85 540 10 8

V5 425 0.42 275 0.9 540 10 6

V6 425 0.38 275 0.9 540 10 18

V7 425 0.42 275 0.9 513 10 20

V8 425 0.42 275 0.9 540 10 4

V9 467 0.42 275 0.9 540 10 7

V10 425 0.42 303 0.9 540 10 17

Vll 425 0.42 275 0.9 540 10 2

V12 425 0.42 275 0.95 540 10 16

V13 425 0.42 275 0.9 540 10 19

V14 425 0.46 275 0.9 540 10 15

V15 425 0.42 275 0.9 567 10 5

3.2.4 Diagnosis Experiment

While the purpose of theprevious experiments were to obtain data to develop andver

ify all three modules of the system, the objective of the Diagnosis Experiment was to

obtain datasetsto further verify theDiagnosis Module, described in detail in Chapter 5. In
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this experiment, the RF power, chamber pressure, and Cl2 gas flow were varied one at a

time on the Lam Rainbow 4400 etcher. Recall that in the previous experiments, because

the gas ratio and total flow of the gases are more suitable when modeling etch rates, they

were varied instead of single gas flows. When the gas ratio was varied, the total flow was

kept constant, and vice versa. When detecting and diagnosing equipment faults, however,

it is more probable that one mass flow controller will be faulty at a time, so that the gas

ratio or total flow will not remain constant when the other changes. Therefore, this experi

ments simulates a faultymassflow controller byvarying the Cl2 gas flow alone.

The levels at which the single faults were injected are ±15 % and ±7.5 % from the

same nominal values used in the previous experiments. Table 3.13 summarizes the input

setting values for these percentages. Note that the He flow remained constant at 380 seem

and the gap spacing was fixed at 0.9 cm for all runs.

Table 3.13 Diagnosis Experiment: Input settings

Input Setting -15% - 7.5%
Center-

point
+ 7.5% + 15%

Pressure (mtorr) 361 393 425 457 489

Power (watts) 234 254 275 296 316

Cl2 (seem) 136 148 160 172 184

Runs at each setting were replicated, and four centerpoint wafers were run, making a

total of 28 runs. Half of the runs were used to train the DiagnosisModule, and half were

usedto determine the accuracy of diagnosis. Blocks werechosento accountfor equipment

aging and chamber seasoning during the experiment, differences in the processing of the

wafers, and different wafer lots. The runs for each block were then randomized. The

resulting blocks are listed, in execution order, in Table 3.14 and Table 3.15.
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Table 3.14 Diagnosis Experiment Block I Randomized Runs

run# P W ci2 lot# wfr#

11 425 275 148 15 8

6 425 296 160 15 23

10 425 275 172 14 19

8 425 254 160 15 3

5 425 296 160 14 18

1 457 275 160 15 9

4 393 275 160 14 20

7 425 254 160 14 24

13 425 275 160 14 15

2 457 275 160 15 14

9 425 275 172 15 20

12 425 275 148 15 19

3 393 275 160 14 13

lable 3.15 Diagnosis Experiment Block II Randomized Runs

run# P W Cl2 lot# wfr#

9 425 275 184 15 4

3 361 275 160 15 7

12 425 275 136 15 21

6 425 316 160 15 11

2 489 275 160 15 5

10 425 275 184 15 18

13 425 275 160 14 16

5 425 316 160 15 24

7 425 234 160 14 23

11 425 275 136 15 15

41
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Table 3.15 Diagnosis Experiment Block II Randomized Runs

run# P W Cl2 lot# wft#

4 361 275 160 15 16

8 425 234 160 14 22

1 489 275 160 14 14
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3.2.5 Wafer Measurements

In all the experiments for the Lam Rainbow 4400, film thickness measurements were

taken by a Nanometrics Nanospec AFT system on 9 die per wafer. The points measured

are as depicted in Figure 3.4. An index of refraction of 3.7 was used for polysilicon, 1.456

for oxide, and 1.631 for positive photoresist. The polysilicon measurements were taken

over 600A gate oxide, while the photoresist measurements were taken over 550A gate

oxide. The thinner gate oxide was due from initial endpoint etching of the polysilicon to

clear area for the photoresist. The Alphastep200 AutomaticStep Profiler was used to dou

ble check the Nanospec measurements. The film thicknesses were measured before and

after etching. Thicknesses of polysilicon, gate oxide, and photoresist were measure for

thosewafers etched in the Trainingand Verification Experiments, while only the thickness

of polysilicon was measured for thoseetched in the Diagnosis Experiment.

The etch rates at each measured point were calculated by subtracting the post-etch

from the pre-etch measurements, and dividing by the etch time. In the models, etch rates

are averaged over the 5 points in the inner ring, as shown in Figure 3.4. The non-unifor

mity was calculated by taking the difference between the etch rates of the outer ring of 4

points and the inner ring of 5 points, scaled by the etch rate of the inner ring.
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Outer Ring

Inner Ring

Figure 3.4 Wafer Measurement Points

3.3 Lam TCP 9600

The second set of experiments wasperformed on a Lam TCP 9600 metal etcher. We

used the results of this experiment to develop andverifyan algorithm to include various

input recipes in the fault detection algorithm. The actual experiment was conducted by

Texas Instruments in Dallas in the context of a larger study of various sensors and analysis

techniques. The teststructure used in this experiment wasa multi-layer structure with TiN,

Al, TiN, and oxide on silicon, which mimics the via and contact processes Texas Instru

ments is developing. A schematic is shown in Figure 3.5.

3.3.1 Static Experiment

The firstexperiment conducted by Texas Instruments was a three-level, fractional fac

torial design with six centerpointand three"checkpoint"wafers. The checkpointwafers,

run at different levels than the experimental runs, were used to verify the models built

using the data from the experiment. Because the process is proprietary by Texas Instru-
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oxide

Bulk Si

Figure 3.5 Test Structure for Lam TCP 9600 Experiments.

ments, the experimental design is listed in terms of percent change from nominal in Table

3.17. The three levels used in the experiment are shown in Table 3.16.

Table 3.16 Three Levels and Checkpoints in the TCP Static Experiment

Input Setting - + checkpt 1 checkpt 2 checkpt 3

RFTop -40% + 40% + 14.3% - 14% -21.4%

RF Bottom -20% + 20% -10% + 10% -10%

Cl2 -8.13% + 6.93& -4% + 4% + 6.67%

BC13 - 6.93% + 8.13% + 4% -4% - 6.6%



Chapter 3 45

Table 3.17 TCP Static Experiment

run#
RF

Top
RF

Bot ci2 BC13

1 0 0 0 0

2
- + 0 0

3 + + - +

4 0 + + -

5 - 0 + -

6 0 0 - +

7 0 - 0 0

8 0 0 0 0

9 + - + -

10 + 0 0 0

11
- - - +

12 checkpoint 1

13 0 0 0 0

14 + 0 - +

15 + + + -

16 + - 0 0

17 - + - +

18 0 0 0 0

run#
RF

Top
RF

Bot
Cl2 BC13

19 0 0 + -

20 0 - - +

21 0 + 0 0

22 - 0 0 0

23 - - + -

24 0 0 0 0

25 - - 0 0

26 0 + - +

27 + - - +

28 0 - + -

29 + 0 + -

30 + + 0 0

31 0 0 0 0

32 - + + -

33 - 0 - +

34 + - - +

35 checkpoint 2

36 checkpoint 3

3.3.2 Dynamic Testing and Verification Experiments

Because we are interested in capturing trends in the data due to time, and the Static

Experiment was conducted all in one day (hence the name "static"), we propose the fol

lowing experiment for the second set of experiments. This Dynamic Experiment is
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designed to produce information that can be used to map the input settings to the real-time

data, while taking into account the time trends in the data.

Five inputs will be varied in the fractional factorial experiment: Top RF Power (A),

Bottom RF Power (B), Cl2(C), BC13 (D), and Pressure (E).The firstfour parameterswere

varied in the first experiment, while pressure will be added in the second experiment We

propose a three-phase experiment run over a series of days or weeks. The first phase con

sists of half of the factorial design, as shown in Table 3.18. The fraction was determined

from the blocking equation: block = ABCDE. The second phase consists of one or two

lots of baseline data (nominal recipe). The first and second phases will be used to train the

system, and is called the TCP Training Experiment. Finally, the third phase is the other

half of the factorial design, as listed in Table 3.19. This third phase, called the TCP Verifi

cation Experiment, will be used to verify and check the validity of the models built using

data collected during the Training Experiment. Note that both fractional factorial designs

should be randomized before the actual experiment.

Table 3.18 TCP Dynamic Experiment: Training Phase I

Trial RFTop RFBot ci2 BC13 Pressure block

1 + + + + + +

4 + + + - - +

6 + + - + - +

7 + + - - + +

10 + - + + - +

11 + - + - + +

13 + - - + + +

16 + - - - - +

18
- + + + - +
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Table 3.18 TCPDyinamic Experiment: Training Phase I

Trial RFTop RFBot ci2 BC13 Pressure block

19 - + + - + +

21
- + - + + +

24 - + - - - +

25 - - + + + +

28 - - + - - +

30 - - - + - +

31 - - - - + +

Table 3.19 TCP Dynamic Verification Experiment

Trial RFTop RFBot Cl2 BC13 Pressure block

2 + + + + - -

3 + + + - + -

5 + + - + + -

8 + + - - - -

9 + - + + + -

12 + - + - - -

14 + - - + - -

15 + - - - + -

17 - + + + + -

20 - + + - - -

22
- + - + - -

23 - + - - + -

26 - - + + - -

27 - - + - + -

47
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Table 3.19 TCP Dynamic Verification Experiment

Trial RFTop RFBot a2 BC13 Pressure block

29 - - - + + -

32 - - - - - -
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Chapter 4

Fault Detection

4.1 Introduction

This chapter describes the module which detectsequipmentmalfunctionsin real-time.

It has been shown by Guo and Spanos et al. that real-time tool signals can be used effec

tively to detectequipment malfunctions on a real-time basis [4.1] [4.2]. Although effective

for equipment fault detection in real-time, the original algorithm sometimes resulted in

false alarms1 at the start ofawafer. Moreover, the fault detection algorithm required train

ing for each recipe on a given machine. While it may not pose a large problem for manu

facturing houses which produce a few high volume products, training the module can

become unwieldy for manufacturing houseswith a large mix of products.

This thesis develops improvements to the original algorithm resulting in more robust

fault detection with fewer false alarms. In addition, the algorithm has been expanded to

1. A false alarm occurs when themodule generates analarm indicating aproblem when theprocess is actually incon
trol.
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accommodate several different recipes on the same machine. This chapter first gives an

overview of the module and highlights the improvements made to the original fault detec

tion algorithm, followed by a discussion of using multiple recipes.

4.2 Background and Motivation

To determine whether a machine is functioning properly, standard practice in industry

includes building various statistical process control (SPC) charts based on monitor wafer

output states or input settings. When the monitored parameterexceeds specified limits set

by the process engineer (specification limits), an alarm is generated and a technician is

summoned to diagnose and then correct the problem. Examples of measured wafer states

include etch rate and wafer uniformity. To determine whether or not the wafer states of

interest are within the specification limits, monitor wafers are usually run and measured

on a regular basis, perhaps at the start of each shift and after machine recipe changes

(change of the input settings on the machine). Unfortunately, machine problems which

occur between monitor wafers are undetected until the next monitor wafer is run. This

delay in fault detection can result in considerable scrapproduced by the equipment.

In addition to monitor wafers, signals correspondingto the input settings may be mon

itored for every wafer processed in the equipment. Examples of monitored signals include

the chamber pressure or gas flows. Although control charts based on these equipment sig

nals can detect faulty wafers during production, this method also suffers from some major

drawbacks. One serious problem is that the monitored signals may not be issuing the cor

rect information. For example if a mass flow controller (mfc) is miscalibrated, although

the readingon the mfc may be within specifications, the actual flow rate may be outside of

the specification limits.
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Another disadvantage of using this system of plotting individual control charts for

each momtored signal of interest is that as the number of monitored signals grow, so does

the number of control charts that the operator must monitor. Eventually, there may be too

many charts for an operator to realistically monitor. A much more serious problem arises

when the variables plotted in the control charts are correlated. It can be shown that the

false alarm rateescalates quickly when several signals are correlated [4.3].

The Fault Detection Module presented in this thesis elirninates the problems outlined

above. Instead of relying on monitor wafersor signals based on the input settingsto detect

equipment malfunctions, the module uses real-time tool data automatically collected from

the machine. As described in section 2.3, the real-time signalsmonitored consist of both

electrical and mechanical signals which reflect the actual state of the machine. For exam

ple, instead of collecting signals from a gas mfc directly, the fault detection module uses

the throttle position and other signals to glean information about the gas flow. The goal is

to monitor those signals which are most sensitive to the actual equipment state. Through

extensive experimentation and analysis described in Chapter 2, the sets of signals (among

those collected by the monitoring systems used in this work) most useful for fault detec

tion for plasma etchers are listed in section 2.3.

One may be tempted to simply use the standard SPC chart to monitor the real-time

data. Applying standard control charts to the real-time data, however, is not a viable

method. Although the real-time signalscontain information about the equipment state,

control charts can not be applied effectively to real-time tool data. Because the real-time

tool signals are collected at either 1 or 2 Hz (depending on which monitor is used) time

series patterns are observed both within each wafer and across several wafers due to con

troller adjustments and equipment aging. These signals arehighly auto- and cross-corre

lated. In addition, the correlation structure and the meanvalue for a given signal may also
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vary with time, making the series non-stationary. Thus, the data arenot identically, inde

pendently, normally distributed (IIND), and can not be used directly in a traditional con

trol chart such as a Shewhart or X - R chart [4.3].

Figure 4.1 shows an example of a standard Shewhartchartapplied to an endpoint trace

for eight normal production wafers. The data is filtered as described in section 2.4 so that

only data from the main etch step are included. Note that the endpoint trace for eachwafer

is highly auto-correlated, as seen by the risingtrend for the first few secondsof eachwafer

etch, followed by a steep downwardtrend. These trends, which occur naturallyin the data,

result in alarms when the Western Electric Company (WECO) rules for SPC charts are

applied [4.4]. Following the WECO rules, the process is consideredto be out-of-control if

one or more of the following occur:

• One point plots outside of the 3-sigma control limits.

♦ Two of three consecutive points plot beyond the 2-sigma limits.

• Fourof five consecutive points plot at a distance of 1-sigma or beyond from the

center line.

♦ Eight consecutive points plot on one side of the center line.

In addition,Figure 4.1 shows that the overall mean of the endpoint traceacross several

wafers changes with time, causing the endpoint trace to dip below the lower control limit

(LCL), resulting in alarms. Since the endpoint data is from productionwafers in statistical

control, the autocorrelation and varying mean will result in false alarms.

To make matters worse, applying standard control charts to real-time data also results

in ahigh missed alarm1 rate. Using the same example in Figure 4.1, achange in the trend

or shapeof the endpoint tracewill not be detected using the control limits as shown. Thus,

1. A missed alarm results when an alarmis not generated when the processis out-of-control.
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to lower the false alarm rate the control limits are widened, which increases the missed

alarm rate.

UCL

c

o

Missed Alarm

False Alarms

False Alarms

Figure 4.1 Shewhartcontrol chart applied directlyto endpoint trace.

4.3 Fault Detection Algorithm

Given the aboveproblemswith applying controlchartsdirectly to real-timedata, a dif

ferent approach is taken by the Fault DetectionModule to utilize the information found in

the real-time data to perform"real-timeSPC."The module first learns the shapeof the in-

control real-time data, and later detects deviations from this shape. Morespecifically, time

series models are utilized to analyze the real-time signals available from manufacturing

equipment. The models built from data collected while the machine is in-control establish

the baseline behavior of the machine, and are called baseline models. When subsequent

production wafers are processed in the machine, the fault detection module detects devia

tions from the baseline models in the new signals, and generates alarms. The following

sections describethe algorithm in moredetail, beginning with time series models.
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43.1 Baseline Behavior Modeling

4.3.1.1 Time Series Models

The first step in the algorithm istomodel each signal using a time series model, which

accounts for the expected patterns in the data. Once these patterns (whose presence does

notindicate a malfunction) are filtered from the signal, deviations canbe detected in the

filtered signals, suggesting that a malfunction, or equipment fault, has occurred. The time

series model captures the dependencies among sequential readings of thesame process

variable. Dependencies within readings collected over time can bedescribed byunivariate

timeseries models such as ARIMA(p, d, q)models, where p is theauto-regressive order, d

is the integration order, and q is the moving average order. Theform of theequation for a

non-stationary1 time series xt with autoregressive parameters <fo and moving average

parameters 0k is [4.5]

p q

wt =-X*kwt-k+X9*at-k W-1)
k=l k=0

where 60 =1, jt^ <1, the error at - N^O, a J, and wt are the differenced data

wt = Vdxt (4.2)

where Vd is the dth order of differencing operator, and

2 11V^sxj-x^j, V xt =V xt-V xt_j = xt-2xt_1+xt_2,.... (4.3)

The assumption behind the univariate analysis is that a significant portion of a real

time signal's behavior can be explained by using pastobservations of the signal. A more

thoroughexplanationof time seriesmodels is given in [4.5][4.6] [4.7] and [4.8].

1. A stationary series hasaconstant mean,variance, andautocorrelation through time. A non-stationary series canoften
be made stationary by differencing the data [4.5][4.7].
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ARIMA(p, d, q) models can be derived from the collected data when the process is

under statistical control; in this way the models describe the baseline behavior of the pro

cess. Once developed, the models are used with current readings to forecast each new

value. The difference between the forecasted value and the actual value of the signal from

the production wafers is the forecasting error, or residual. When the equipment is in statis

tical control, the residuals are by definition END variables. These END residuals can then

be plotted in standard SPC charts to perform "real-time SPC." An example of a baseline

model and in-control production data is shown in Figure 4.2.

't="X<|)iWt-i +Xejat-J
= 1 j = l

at ~N(0,o2)

lt-i

Figure 4.2 ARIMA(p, d, q) model: The signals from the production
wafers wt are compared to the model ofthe baseline wafers wt, resulting in
residuals at which can beplotted in a standard SPC chart.
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43.1.2 Decomposition of Real-Time Data

The algorithm presented in [4.2] builds one seasonal ARIMA (SARIMA) model for

each sensor variable. As previouslymentioned, a major disadvantage of this algorithm is

that false alarms often occur at the start of a wafer. While these false alarms can be antici

pated and ignored, the new algorithm addresses this problem more formally. First,

SARIMA models are not appropriate to model the real-time data, because as described in

section 2.2.2, the pre-filtered wafer signals from the main etch step are concatenated. This

concatenation means the data do not form a natural continuous stream. One assumption

behind the SARIMA model is that the variance and the mean of the filtered residuals is the

same regardless of the season. Since the discontinuity violates this assumption, the idea of

seasons is eliminated in the new algorithm.

The most significant change in the algorithm is the decomposition of the real-time sig

nals from each sensor into long-term and short-term components before modeling

[4.10][4.11]. This decomposition is necessary because each component describes a differ

ent behavior of the process. An example of signal decomposition of the impedance signal

for several wafers is shown in Figure 4.3. The long-term component, comprised of the

average value of the signal for each wafer, models the overall trend across a number of

wafers. On the other hand, the smaller deviations within each wafer create the short-term

component, which captures the short-term patterns during the processing of each wafer.

Most importantly, the variation of the long-term component is much larger than that of the

short-term component, illustrating the point that the short-term components are more sen

sitive to faster equipment fluctuations, while the long-term components reflect longer

duration changes in overall equipment state. This decomposition of the signals into com

ponents with drastically different variances is the primary reason the false alarm rate has

been decreased. To simplify later calculations, the short-term components are demeaned
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by wafer, while the long-term components are demeaned by an average of the baseline

wafers after the decomposition.

Notice that the short-term componentfor each wafer in Figure 4.3 roughly follows a

downward trend. This trend, modeled by the integrative part of the ARIMA model,is cap

tured for each wafer so that deviations from this trend will be detected. Deviations in each

of the components reflect different changes in equipment state. Forexample, a shiftin RF

power that lasts the duration of the waferetch will be seenas a shift in the long-term sig

nal. A short spike in RF power, however, will be exhibited in the short-term signals. As

another example, a dirty film on thewafer results in an alarm by the short-term signals but

not by the long-term signal. Because the decomposition allows us to model two different

types of faults, the resulting algorithm is more robust than the original method, gives sig

nificantly fewer false alarms, and generates residuals that aremuch more suited for diag

nosis.

4.3.2 Monitoring Production Wafers

Once baseline behavior hasbeen established, production wafers can berunthrough the

machine. As in the training case, the real-time signals from the production wafers are

decomposed into long- and short-term components. Insingle wafer processing equipment,

these components represent the wafer-to-wafer averages and the within-wafer signal

trends, respectively. Each component is then filtered using the respective baseline time

series model. The residuals x (the difference between the actual and forecasted baseline

values) for each component are then combined using the multivariate Hotelling's T2 statis

tic into a single score1:

T2 = n(x-0),S"1(x-0)

1. Bold face upper case letters denote matrices. Lower case bold face letters and Greek letters with an underscore ( )
denote column vectors. Scalars are denoted bylowercase letters. Transpose is denoted by( ').
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where n is the total number of observations and S is the estimated variance-covariance

matrix of the residuals used to build the original baselinemodels.

The scores are graphically displayed in the resulting double T2 control chart. The use

of the Hotelling's T2 statistic reduces the problems associated with several control charts

ofcorrelated signals resulting in ahigh false alarm rate [4.3]. The resulting Hotelling's T2

scores for each component are plotted in a one-sided SPC chart The upper control limits

(UCLs) are scaled so that both sets of scores can share the UCL on the same control chart

Data points corresponding to run-time faults have residuals which cause the Hotelling's T2

statistic to be significantly different from zero. One set of scores, obtained from the short-

term components, detects faults during the process time of each of the wafers, while the

second set of scores, obtained from the long-term components, detects faults by looking at

violations in trends across several wafers.

If no equipment faults aredetected, normal operation of the machine continues. When

a malfunction is detected, the diagnostic routine is triggered, and an alarmis generated to

alert the operator1. Diagnosis currently uses the long-term residuals (the difference

between the actual real-time signal averages for that wafer and the time series model pre

dictions for the signal averages) as a signature of the specificequipment malfunction [4.9].

An overview of the real-time SPC data analysis flow is shown in Figure4.4.

This new algorithm has been implemented in RTSPC, a software package which

includes automated model generation [4.10], data filtering, and anovel double T2 graphi

cal control chart for the display of alarm conditions [4.11]. RTSPC interfaces with a work-

cell controller andcan serve as a platform for future real-time process control.

1. In the examples shown,the relevant data wasmanually transferred to thediagnostic module. An automated link is
currently under development
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Figure 4.4 Real-Time SPC Data Row: First, the raw data is

decomposed into the long-term and short-term components. They are each

filtered using time series models. Theresulting residuals are then applied to

a Hotelling's T filter, and the scoresfor each set of componentsare plotted

in the double T^ chart If a fault is detected, the long-term component is
siphoned to the Diagnostic Module.

4.4 Fault Detection Example

To demonstrate the capability of RTSPC, several experiments were conducted in the

Berkeley Microfabrication Laboratory. Asdescribed in the previous chapters, the equip

ment chosen for theexperiment was theLam Rainbow 4400 plasma etcher. Thefollowing

sections show examples of both baseline and production processing.

4.4.1 Baseline Processing and Model Generation

To useRTSPC ona specific process, a setof baseline wafers must first beprocessed to

build the time series models needed for data filtering. During the processing of these
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wafers, it is essential that the machine be operating in statisticalprocess control. In this

example 11 baseline wafers were firstprocessed on the Rainbow 4400 using the givenrec

ipe.The real-time datafrom five signals (RFimpedance, RFphase, endpoint, coil and tune

vane position) were selected to generate a model set using the automatic model generation

routine.

The results of the baseline model generation are shown in Figure 4.5, which displays

the double Tz chart for the data used to generate the model. The user may also view the

signals and residuals resulting from the baseline model. Note that indouble T2 chart the

long-term signal is never out of control, although the short-termsignals show some points

close to the control limit. If the baselinecontains alarms, the user may choose to eliminate

the wafers showing alarms and rebuild the model. Note, however, that for an expected

false alarm rate of 0.05, one would expect on average 5 points indicating alarms out of

every 100 points. Therefore, it is normal if on occasion the baseline data indicates alarms,

even when the process is in control.

4.4.2 Real-Time SPC During Processing

Once the time series models for the baseline of this process are created, the RTSPC

software generates real-time alarms in the case of misprocessed wafers. To demonstrate

the alarm generation capability of RTSPC, an additional 15 wafers were processed with

the baseline recipe, along with 3 runs with intentional faults. The same sensor data used in

the baseline models were collected and analyzed by RTSPC.

The results for the additional wafers are shown in Figure 4.6. All but the sixth, twelfth,

andeighteenth waferswereprocessed whenthe equipment was in control, and no long- or

short-term component alarms for these waferswere signaled by RTSPC. The sixth wafer

was processed with a 10% decrease from the baseline value of pressure. The gas flow ratio

of the twelfth wafer was decreased by 10% from the baseline value. The power was
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20.12 Doubte-TA2

10 11

Figure 4.5 Baseline Double T2 Chart Shown in the one-sided control
chart are the results from both the short-term component and the long-term

component, so that information can be obtained on both a within wafer and

wafer-to-wafer basis. The control limit is scaled so that data from both

components can be plotted on the same chart.

increased by 10% from the baseline value while theeighteenth wafer wasprocessed. The

injected faults simulate a fault in the equipment such as a problem with the chamber

pumping system, miscalibration of a mass flow controller, or a malfunction in the RF

matching network. All three wafers with injected faults resulted in long-term component

alarms. In the current implementation of the RTSPC software, the long-term component

alarm changes color (from green to red on the UNIX console), giving clearvisual indica

tion that a malfunction occurred.

Although not shown, cases existwhen the short-term components alone generates

alarms. An example of such alarms occur for wafers with dirty films. These alarms imply

that although the mean values ofthe real-time signals were incontrol, the time series pat

tern of the signals during processing was altered as the equipment compensated for the
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change in film quality. These alarms further show the sensitivity of the RTSPC algorithms

and the importance of the real-time signal decomposition.

20.12
DouUe-TA2
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Figure 4.6 Graphical Display of Production Double T2 Control Chart.
The sixth, twelfth, and eighteenth wafers trigger long-term component

alarms. The gas flow ratio of the twelfth wafer was decreased by 10%

from the baseline value. The power was increased by 10% from the

baselinevalue while the eighteenth waferwas processed.

The RTSPC software can display the real-time signals and residuals to give the opera

tor additional insight into the cause of the alarms. Figure4.7 shows the signal for the RF

coil position and its associated long- and short-term residuals, called wafer-to-wafer and

within-wafer residuals, respectively. The residual plots beneath the signalclearly showif

components of the signal caused the alarm. Notethe largeshiftsin the coil position during

the processing of all three faults, as the equipment compensates for the miscalibrations.

This shift in the means is clearly seen in the wafer-to-wafer residualplot, which shows

large residuals in the cases of wafers 6, 12, and 18. When the machine is in control, the

wafer-to-wafer residualsdo not exceed the 3-sigmaupper and lower control limits. In this
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example, the within-waferresiduals are in control for all wafers. Each modeled compo

nent can be viewed in the same manner. In the case of an alarm, the software's interactive

capability allows the user to selectively view any of the signals or residuals to aid in diag

nosis of the malfunction.

The above example illustrates the important point that several faults map onto changes

in each real-time signal. In the example, all three faults resulted in an positive shift in the

mean of coil position. To distinguish the faults, other signals must be examined. There

fore, in addition to alarm generation and the display of individual signals, there is a need

for a diagnosis module which can interpret the signatures of the faults to classify faults to

specific equipment problems. Work on the diagnosis algorithms is the subject of the fol

lowing chapter.

4.5 Multiple Recipes

The fault detection algorithm described in the previous section is extremely sensitive,

catching faults at 5% from nominal values. The algorithm has been successfully applied to

different types of etchers, including both parallel plate and TCP machines. Various faults

have been detected, such as having the improper wafer in the chamber, faulty mfc's, mis

calibrated electrode gap spacing, spikes in the RF power, and changes in the chamber

pressure.The limitation of the algorithm is that the baseline behavior of the real-time sig

nals must be learned for each set of input settings, called a recipe, used on each machine.

Furthermore, processes with different loading from different mask patterns and exposed

surface on the wafers also require individual training runs.

This section proposes an algorithm to train the fault detection module to recognize

several different recipes without having to train each one separately. The main idea is to

use both time series and linear regression models. As before, the time series models cap-
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ture the time domain trends seen in the data. Added to these models are the linear regres

sion models, which predict the effect of recipe changes.

The general class of models employed are called ARIMAX models, which is an exten

sion of ARIMA models. The "X" stands for "exogenous," which simply means the model

now contains additional explanatory variables. The next section briefly describes ARI

MAX models. A more thorough discussion is given in [4.12][4.13] [4.14].

4.5.1 ARIMAX models

ARIMAX models, also known as Transfer Function Models, forecast a time series

using more than one time series from other variables, thus introducing explicitly the rela

tionship among the signals. The overall ARIMAX model for a stationary series yt based

on the stationary time series xt has the following form [4.13][4.14]:

_ Cco(B) 6(B) (44)
y'" 8(B) X'-b +((.(B)a' (4'4)

where

• B is thebackshift operator defined as: B xt = xt_k for integers k

• C is an unknown scale parameter

• the delay b is the number of time periods before xt begins to influence yt

• (D(B) = coo-co1B-...-co/B is thextoperator of order / where / represents

the number of past xt values which influence yt

•8(B) =80-81B-...- 8rBr is the yt operator oforder r where r represents the

number of past yt values which influenceitself

• 9(B) = 0O~61B-...- 0 Bq where qis the number of moving average terms
in the ARIMA(p, d, q) model for the error component

•<|>(B) =(|)0-(()1B-...- <(> BP wherep is the numberof autoregressive terms

in the ARIMA(p, d, q) model for the error component

• and error at ~Nl 0, a J.
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The first term in the model accounts for the cross-correlation between series xt and

output yt, while the second term models the error not taken into account by the correlation.

On otherwords, the first term accounts for the systematic portion of the modelbasedon xt

while the second term is an ARIMA(p,d,q) model for the error. If m parameters are

included in the model, Equation (4.4) can be easilyextended to

™WB) e(B)
y. =I-5^Xi->+;RB)V (4-5)

Figure 4.5 shows a schematic of the above transfer function model [4.13]. The top sec

tionof the figure showsthe transferfunction which determines the influence of the explan

atory variables xlt, x2yt,... ,xit,... ,xmton the dependent variable yt. The lower section

shows the univariate model for the noise term, modeled with a standard univariate

ARIMA(p, d, q) model.

In this application, a simplified version of the above equation was employed to model

both the time series and recipe changes. First, the input settings from an experimental

design were fitted in a linear regression model to model each real-timeparameter. Next,

the residuals, which contain a time component, are fitted using ARIMA(p, d, q) models.
co-(B)

This is equivalent to setting the ratio R = 1 in the above equation and setting Q to
Oj(B)

the coefficients to the linear regression model.

4.5.2 Example of Multiple Recipes

The experiment conducted to evaluate this theory wasperformed at TexasInstruments

on a metal etcher, as described in section 3.3. Ten real-time signals were collected and

four input settings were varied during the experiment. The eleven real-time signalsare:

RF Tune Vane Position, RF Load Coil Position, Line Impedance, RF Phase Error, DC

Bias, TCP Tune Vane Capacitor Position, TCP Load Capacitor Position, TCP Line Imped

ance, TCPPhase Error, Endpoint, andRFBias. They aredescribed in greater detail in sec

tion 2.3.2. The input settings were: RF power of the top coil, RF power of the bottom
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Figure 4.8 Transfer Function Model. The top section of the figure
shows the transfer function which determines the influence of the

explanatory variables xlt, x2jt,... ,xit,... ,xm ton the dependent variable yt.
The lower section shows the univariate model for the noise term, modeled

with a standard univariate ARIMA model [4.13].

69

electrode, Cl2 flow, and BC13 flow. The data from the 32runs were used to build regres

sion models for each long-term component for each signal. The statistical software pack

age S-PLUS was used to build both the regression and time series models .

All four inputsettings and their corresponding two-way interactions, for a totalof 10

parameters, were used as input to build the models, with the exception of TCP Load

Capacitor Position, which required all the main squared terms in addition. Because the

input settings having different units, which could potentially bias the models, the input

data were scaled so that each parameter has a mean of0 and variance of 1. Principal com-
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ponentregression (PCR) models were built for each long-term component The first seven

principal components (PC's) explain 99% of the variation in the data. Models were chosen

so that the coefficients of each term in the model is significant at the 0.05 level. PCR is

described in more detail in section 6.3.3.The results of the regression models are summa

rized in the following ANOVA tables. The ANOVA tables show the degrees of freedom

(d.f.), the sum of squares (SS), and mean sum of squares (MS) for the regression, the

residuals from the regression, and the residuals from the ARIMAX models. The test statis

tics for the regression models, which follow F-distributions, are calculated as the regres

sion MS divided by the residual MS. The corresponding P-values give a measure of the

model significance. Also listed is the adjusted R2 statistic for the regression models, which

takes into account the number of terms used in the model.

Note that models for the long-term componentsof RF Line Impedance and RF Phase

Error are poor, in terms ofboth the F and the adjusted R2 statistics. In addition, significant

models for the long-term components of TCP Line Impedance and TCP Phase Error could

not be found, and thus are not listed. This is because for these signals the range of the cen

terpoint data is large compared with the experimental runs, indicating that the input set

tings do not greatly affect these real-time signals.

Table 4.1 ANOVA Table for TCP Tune Vane Capacitor Position

Source d.f. SS MS F P-value

Regression 5 9.15e7 1.83e7 2505 0

Residual 30 2.19e5 7.30e3

adj. R2 =0.997
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Table 4.2 ANOVA Tablefor TCP Load CapacitorPosition

Source d.f. SS MS F P-value

Regression 3 6.19e6 2.06e6 48.62 5.07e-12

Residual 32 1.36e6 4.246e4

ARIMAX 28 8.74e5 3.13e4 1.36 0.206

adj. R2= 0.804

Table 4.3 ANOVA Table for Endpoint

Source d.f. SS MS F P-value

Regression 5 5.92e8 1.18e7 552.4 0

Residual 32 6.43e6 2.14e5

ARIMAX 28 5.17e6 1.85e5 1.16 0.348

adj. R2 =0.988

Table 4.4 ANOVA Table for RF Bias

Source d.f. SS MS F P-value

Regression 6 1.99e4 3.3 le3 333.9 0

Residual 29 287.7 9.92

ARIMAX 24 186 7.75 1.28 0.271

adj. R2 =0.983

Table 4.5 ANOVA Table for RF Load CoU Position

Source d.f. SS MS F P-value

Regression 5 3.42e6 6.83e5 362.6 0

Residual 30 5.65e4 1884

ARIMAX 29 5.40e4 1863 1.01 0.490

adj. R2 =0.980

71

Once the regression models have beendetermined, the residuals are modeled using
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lable 4.6 ANOVA Table for DC Bias

Source d.f. SS MS F P-value

Regression 5 1.98e4 3.96e3 358.5 0

Residual 30 331.1 11.0

ARIMAX 26 249 9.58 1.15 0.361

adj. R2 =0.981

Table 4.7 ANOVA Table for RF LineImpedance

Source d.f. SS MS F P-value

Regression 1 1.31e5 1.31e5 12.39 0.001253

Residual 34 3.60e5 1.06e4

ARIMAX 32 3.15e5 9.84e3 1.08 0.415

adj. R2 =0.207

Table 4.8 ANOVA Table for RF Phase Error

Source d.f. SS MS F P-value

Regression 2 2.09e6 1.05e6 7.53 0.00202

Residual 33 4.58e6 1.39e5

adj. R2 = 0.281

Table 4.9 ANOVA Table for RF Tune Vane Position

Source d.f. SS MS F P-value

Regression 6 2.44e6 4.07e5 1421 0

Residual 29 8.32e4 287

ARIMAX 25 6.65e3 266 1.08 0.462

adj. R2 = 0.996

ARIMA models, as described in section 4.3.1.1. The ARIMA model orders for the residu

als which could be modeled are listed in Table 4.10. When combined with theregression
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models, the time series modelsresult in smallerabsoluteMS values for the majority of the

signals. Figure 4.6 shows the predicted vs. actual plot for the TCP Load Capacitor Posi

tion. Both the originalregressionmodeland the new ARIMAXmodel are plotted. The fig

ure shows that the ARIMAX model results in slightly better models.

Table 4.10 ARIMA(p, d, q) Models for the Residuals

Real-Time Signal ARIMA(p, d, q)

TCP Load Capacitor Position ARIMA(2,0,2)

RF Tune Vane Position ARIMA(2,0,2)

RF DC Bias ARIMA(2,1,1)

RF Load Coil Position ARIMA(1,0,0)

RF Line Impedance ARIMA(1,0,1)

Endpoint ARIMA(1,0,1)

RF Bias ARIMA(3,1,1)

The improvement in the models, unfortunately, is not statistically significant when

tested with the F-statistic, as shown in Table 4.1 through Table 4.9. The second F-statistic

in the ANOVA tables compares the regression and ARIMAX models, and is calculated as

the ratio of the residual MS to the ARIMAX residual MS. The statistically insignificant

improvement in the models may be due to the fact that the experimental runs were con

ducted in consecutive order all in the same day.Thus, little time effect was apparently cap

tured in the data. Although the ARIMA models add improvement to the regression

models, the original models are already very well-fitted so the additional improvement to

the models is not as drastic as it may be when a larger time dependence appears in the

data. When the equipment is operational on the factory floor, the time component in the

data will be more significant than seen in this experiment. Thus, because significant time

series models can be built from the regression residuals and as a result the absolute resid-
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ual MS values are smaller for ARIMAX models, further study of the algorithm is war

ranted.
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Figure 4.9 Predicted vs. Actual plot of TCP Load Capacitor Position.
Both results from (1) standard principal component regression and (2)
ARIMAX models are shown.

4.53 Future Work on the Multiple Recipe Algorithm

To simulate more realistic use of the equipment, and thusdrifts in the equipment due

to time, we proposed a second experiment which will be conducted at Texas Instruments
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over a span of several weeks. In addition to adding a time element to the experiment, we

make surethe experiment itself has not overshadowed the actual time patterns in the data.

Thus, the experiment, described in detail in section 3.3, attempts to separate the experi

mental design and the time patterns in the data. More specifically, the experiment consists

of a fractional factorial design from which the linearregression models for the long-term

component signals can be determined, followed by a series of baseline runs from which

the time seriesmodels can be obtained for each signal. The third phase of the experiment

consists of another fractional factorial design which can be used to test the algorithm.

4.6 Fault Detection Module Summary

The fault detection module is powerful in that it uses the non-invasive real-time sig

nals automaticallycollected from the equipment duringrun-time to detect equipment mal

functions. These faults include any abnormal behavior of the machine ranging from

miscalibrated mfc's to loading the incorrect cassette of wafers into the machine.

In this chapter, we have demonstrated an improved algorithm for use in real-time SPC

applications. This algorithm, based on time series modeling and multivariate statistical

techniques, decomposes the real-time data from equipment sensors into two components

and produces anovel double T2 control chart for SPC. Examples using RTSPC, the soft

ware utility implementing this new fault detection algorithm, were shown for fault detec

tion on data collected from various plasma etchers. In addition, an algorithm combining

principal component regression and ARIMA modeling has been investigated to extend the

algorithm to include multiple recipes.
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Chapter 5

Fault Diagnosis

5.1 Introduction

There are several benefits of having a real-time diagnosis system. First, by detecting

and troubleshooting faults while the wafer is being processed, improvements in thecapa

bility and uptime of critical process equipment are possible. Second, adiagnostic system

can provide early indication of impending malfunctions, or prognosis, so that potential

problems can be corrected before a catastrophic failure occurs. An advantage of using

real-time tool data is that it can becollected automatically and inexpensively, and can be

used either independently or with other information, such as wafer measurements.

Once the Fault Detection Module described in the previous chapter has detected an

equipment fault, theresiduals from the long-term component are siphoned to the Fault

Diagnosis Module. These residuals form a signature that can be traced back to aspecific

equipment fault or group of faults. The types of faults identified include changes in the
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input settings such as pressure, RF power, and flow changes. Just as the fault detection

module requires training to recognize in-control, or baseline, behavior, the fault diagnosis

module requires training to recognize the signature of "faulty" signals. Thus, the module

is first trained by injecting known faults into the equipment During production, when a

new fault is detected the fault diagnosis module will recognize the signature of the long

term component residuals and diagnose the root cause of the fault

While the real-time residuals of the long term component contain relevant informa

tion, diagnosis of the faults is not straightforward. For example, Figure 5.1 shows a two-

dimensional plot of the coil position residuals versus the impedance residuals. The two

fault clusters shown can not be easily distinguished by projecting the data on either of the

axes. Thus, two methods for fault diagnosis were developed. The first uses discriminant

analysis techniques. While this method has shown promise, it is not scale invariant and

potentially requires many training runs. The second method, which we call staged cluster

ing and neural network analysis, overcomes this problem at the expense of more complex

training. Before describing the different fault diagnosis methods, however, the method

used to measure of accuracy of each diagnosis system is described.

5.2 Probabilities of Misdiagnosis

Once the module has been trained, it is important to know the accuracyof the diagno

sis system, or the probability of misdiagnosis. In general, the probability of misdiagnosis

is defined as the probability of incorrectly allocating an individual point from fault popula

tion H to population Ilj and is denoted as py. The estimate ofp^ is [5.1]

niiPij = J (5.1)

where n^ is the number of individuals from fault population IIj which were allocated to

one of the other fault populations Ilj (i * j), and n is the total number of points. In other



80

Impedance

residuals

o °0
8 o o oo

Coil Position

residuals

Chapter 5

Figure5.1 Plot of CoilPosition Residuals vs. Impedance Residuals from

the long term components. Twodistinct fault types are shown.

words, the estimate of the probability of misdiagnosis is given by the ratio of the number

of misallocated faults to the total numberof faults n. Three methods to test the validity of

the discrimination, resubstitution, cross-validation, and an independent test set, are

described in this section.

5.2.1 Resubstitution

The most straight-forward method,called resubstitution, is to test the system with the

same data set used to train it [5.2]. An estimate of the probability of misdiagnosis is sim

ply the ratio of incorrectly diagnosed points to the total number of points. Because the

same data set used to train the system is also used to evaluate the diagnostic capability,

this method onlydescribes howwell theoriginal datawere trained and gives no informa

tion about the actual accuracy of diagnosis of other data. Therefore, the resubstitution

methodtends to result in optimisticmisdiagnosis probabilities [5.3][5.4].
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5.2.2 Cross-Validation

Cross-validation, also known as the U-method or jack-knifing, is more objective than

resubstitution [5.4]. In this method, one point is taken out of the training analysis, and then

used to test the system. This occurs for each set of observations, so that for a total of n

observation sets, n different discriminant rules are determined using a subset of (n -1)

observation sets. This method results inmore accurate estimates ofpy than the resubstitu

tion method for multinomial populations with the same covariance matrices.

5.2.3 Independent Test Set

The most reliable method to determine the probability of misdiagnosis is to test the

system on an independent data set not used to generate the discrimination rule. The only

criterion is that the test set should be representative of possible faults that the equipment

may encounter. Although it requires more experiments, this method is the most accurate of

the three, and thus was chosen for this work.

5.3 Diagnosis Based on Discriminant Analysis

5.3.1 Theory

The analysis in this section is based on a diagnostic algorithm which uses discriminant

analysis techniques to analyze the long-term component residual data. In general, discrim

inant analysis techniques classify a set of measurements into one or more known popula

tions. In this case, the long-term component residuals comprise the measurement sets and

the populations are specific equipment faults. There are several methods to perform dis

criminant analysis, depending on the distributions of the residuals and available informa

tion.

The simplest case to analyze is one in which the exact probability density functions

(p.d.f.s) are known [5.1]. Although this is rarely seen in experimental work, the distribu-
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tions can be estimated fairly accurately for large samples. Thetraining data sets forequip

mentfaults, however, are rather smalland number fewer than 20 points. Furthermore, for

this application the cost of producing enough samples to obtaindistribution estimates is

prohibitive.

Another case occurs when the overall form of the distributions are known, but certain

parameters of the distributions mustbe estimated. Two methods to perform discriminant

analysis for thiscase are maximum likelihood and likelihood ratio methods. If the proba

bilities of each faultpopulation areknown apriori, Bayesian methods canalsobe utilized.

For the data set used in this application, however, prior probabilities are not known. It is

conceivable that if enough runs are performed on the machine, and the faults are tracked

and categorized, reasonable a prioriprobabilities for certain faults can be obtained. This

requires a large number of runs which becomes extremely expensive in a semiconductor

manufacturing environment.

Tests for normality such as the kurtosis or skewness tests show that the data can not be

assumed to be normally distributed. More importantly, the nature of the problem at hand

does not fit well into the maximum likelihood, likelihood ratio, or Bayesian methods. In

this application, the actual real-time residual signatures are mapped directly to the fault.

Since this signature is fixed anddoes notchange from run to run, noneof the above meth

ods is the best approach.

5.3.2 Training via Fisher's Linear Discriminant Method

Instead, the method of choice for this thesis is Fisher's linear discriminant method,

which assumes nothing about the distributions and instead finds a reasonable method to

discriminate the groups. Fisher's linear discriminant analysis compares the variances

among populations to the variance within a certain population. For discrimination to

occur, the ratio of the variances should be significant More formally, we determine the
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vector a} which maximizes the ratio of the between-groups sum of squares (B) to the

within-groups sum ofsquares (W) ofdata matrix X= (xj x2 x3...)T [5.1]:
T

a, Ba«
maxA* - (5.2)

ax Waj

B=£ni(Si-X)(Xi-X)T (5.3)

W = X^iSi (5.4)

where Xj (nj x p) represents nj observations from fault population Tlj- S, is the sample

covariance matrix, x^ is the sample mean, and nj is the number of samples in each fault

group, so that n =^n^
i

The vector aj which maximizes the above ratio is the eigenvector of W~ B corre

sponding to the largest eigenvalue. The setof linear discriminant functions is Xaj, Xa2,

Xa3,..., Xapwhere a2 is the eigenvector corresponding to the second largest eigenvalue of

W B, a3 is the eigenvector corresponding to the third largest eigenvalue, and so on. Thus,

Xaj is the linear combination of the signals thatwill maximally discriminate among the

faults in one dimension.

5.3.3 Diagnosis

Once the linear discriminant functions are found, classification of the populations can

be performed using the Euclidean distance scheme. In one dimension, an observation x is

allocated to one of the populations based onits "discriminant score" atx [5.1]. The sample

means Xj have scores aiXj. Observation x isallocated to fault population Ilj if

IT t I It t Ia x-a Xj|<|a x-a Xj foralli^j. (5.5)

This can easily be extended to several dimensions. Essentially, the boundaryamong

faults is determined by a hyperplane equidistant from the geometric mean of each fault in

the space of the linear discriminant functions. Figure5.2(a) shows two fault clusters in the
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space of two long-term component residuals. Axis Xaj is the first linear discriminant

function which maximizes the ratio of the between groups sum of squares to the within

groups sum of squares of the two faults. The geometric mean of each fault is then calcu

lated, and an equidistant line determines the boundary between the faults. The new point

can be easily diagnosed. Discrimination of three faults using two linear m'scriminant func

tions is shown in Figure 5.2(b). The geometric means are shown, along with the classifica

tion boundaries. Once again, the new faulty point can be diagnosed.For some cases, more

dimensions are necessary for maximal discrimination.

Impedance
residuals new point

^ geometric
y. mean

Xa

(a)

Coil
•• position

residuals
(b)

new point

geometric
mean

Figure 5.2 Examples of fault diagnosis, (a) The two fault clusters in the

space of the long-term component residuals. Axis Xaj is the first linear

discriminant function. The geometric mean of each fault is then calculated,

and an equidistant line determines the boundary between the faults. In this

way, the new point can be easily diagnosed to the proper fault, (b) The

geometric means of three faults in the space of the first two linear

discriminant functions. The new data point can also be diagnosed.
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53.4 Examples Using Discriminant Analysis

The example in Figure5.3 shows discrimination among six equipment faults (labelled

1-6) in a Lam Rainbow4600 metal plasmaetcher. The faults are individualruns in a frac

tional factorial design, where RF forward power, chamber pressure, d2 gas flow, and the

He backflow behind the wafer werevaried ±5 %. During the etcher operation, seven tool

signals were monitored: RF tune vane position, RF coil, RF phase, RF impedance, DC

bias,peak voltage, and an optical endpoint emission signal. These signalswere monitored

using the LamStation software at a rate of approximately one sampleper second. The dia

gram shows the six regions used to classifythe six faults in the space of the first two linear

discriminant functions.
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Figure 5.3 Training of Six Faults (labelled 1-6) using Discriminant

Analysis. The projection in the space of the first two linear discriminant

functions is shown. This example was conducted on a Lam Rainbow 4600

metal plasma etcher.
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After the discriminant rule was determinedduring the training stage, it was tested with

additional wafers run at the same operating conditions as faults numbered 5 and 6. The

projectionin the space of the firsttwo linear discriminant functions is shownin Figure 5.3.

The geometric means of the training runs are also shownin the figure. The diagnosis algo

rithm was performed in three dimensions, so that the faults labelled 6 and 4 could be dis

tinguished. In three dimensions, the geometric mean of fault number 6 falls above the

page, while that of fault number 4 is below the page. The misdiagnosis rate in three

dimensions is 10% using this independent test set. (The resubstitution method estimated

an optimistic 0% misdiagnosis probability.)
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Figure 5.4 Diagnosis of two types of faulty runs, corresponding to
faults 5 and 6. The projectionin the spaceof the first two lineardiscriminant

functions is shown. Note that the means from the training runs are also
shown. Thisexample was conducted ona Lam Rainbow 4600 metal plasma
etcher.
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The second example shows diagnosis of single faults. The systemwas trained with the

data from the Training Phase II Experiment described in section 3.2.2. The seven single

faults were ±20 % changes in chamberpressure, electrode gap spacing, and gas flowratio,

and a 20%increase in RF power. Later, a waferprocessedwith a 20% decreasein gas flow

ratio was correctly diagnosed, as shown in Figure 5.3. In three dimensions, thirteen runs

were diagnosed properly, and two were diagnosed improperly as fault 4, corresponding to

a misdiagnosis rate of 13.3%.
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Figure 5.5 Diagnosis of single fault (increase in the ratio of the gas

flows by 20%), corresponding to fault 2. The projection in the space of the

first two linear discriminant functions is shown. Note that the means from

the training runs are also shown. This example was conducted on a Lam

Rainbow 4400 polysilicon plasma etcher.

Thus by employing time-series models and discriminant analysis techniques, real-time

sensor data can be used effectively to detect and classify equipment faults. The main



88 Chapter 5

advantages of using discriminant analysis techniques is that training the system is easy,

since it simply requires a set of long-termcomponentresiduals andknown faults. The user

does not need to be an expert on the system, as the algorithm is completely data-driven.

The computations are simple matrix algebra functions, which are fast on modern comput

ers.Therefore, it is easy to maintain a library of faults. For example, if a new fault is seen

by the module and can not be properly classified, the real-timeresidual data can be stored

until the technician has diagnosed the fault. Once the fault has been correctly diagnosed,

that information can be fed back into the training data set. Then a new discriminantrule

can be calculated to include the new fault.

The majordisadvantage with the discriminant analysis technique is that it is not scale

invariant. For example, if the modulehas been trained to recognize a change in RF power

of 20%,it will not recognize a change in RF power of 10%. Therefore, the system must be

trained to recognize the signature of each fault, which potentially requires many training

runs. This problemis addressed by the second diagnostic method discussed in the follow

ing section.

5.4 Diagnosis Based on Staged Clustering and Neural Network Analysis

The second method developed for equipment diagnosis, which uses staged clustering

and neural network analysis, diagnoses various levels of equipment faults while requiring

few training runs. Unlike the previous method using Fisher's discriminant analysis func

tion which was easily trained, this method requires slightly more complex and interactive

training. The general idea is that clustering techniques exploit the trends in the long-term

component residuals to diagnose certain faults, while the neural networks extract the finer

details in thedata to diagnose other faults. For the Lam Rainbow 4400 plasma etcher, the

clustering techniques have trouble separating changes in chamber pressure from changes
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in individual gas flows, so neural networks are employed to separate these two particular

faults. A brief discussion of cluster analysis and neural networks follows.

5.4.1 Clustering Methods

Clustering algorithms group similar objects, and are used in this section to perform the

diagnosis and prognosis of equipment faults. These algorithms are heuristic in nature, and

are purely data-driven. Furthermore, there are few standard measures of clustering valid

ity. Despite the heuristic nature of cluster analysis, we found it to be quite promising in

diagnosing and prognosing equipment faults based on the data set obtained from the

Training Phase n, Verification, and Diagnosis Experiments, described in Chapter 3.

First, a vector of measurements which characterize the objects to be clustered is deter

mined. In this case, the vector consists of the real-time signals collected from the equip

ment, and is referred to in this chapter as the "real-time signals vector." Next, a similarity

metric on which to base similarity or dissimilarity among data points is determined. These

include several well-known distance metrics such as the Euclidean, Manhattan (absolute),

and Mahalanobis distances. In this module, the Euclidean distance method resulted in the

most effective clustering, where the distance between data vectors i andy with p parame

ters is defined as:

dij =JX<*ik-*jk>2 (5.6)
lk=l

where xik is thevalueof the kth term in the ithvector [5.5].

Two commonly used clustering techniques are the hierarchical and optimization meth

ods. In hierarchical clustering, the data is separated in stages. Once a particular point has

been separated into a cluster, it can not be reallocated. On the other hand, optimization

techniques allow the data to be reallocated through an iteration. Many of these techniques,

however, require that the number of distinct clusters in the data be known, and that the
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clusters are spatially homogeneous. Because it is not known exactly how many faults are

in the data set, hierarchical clustering was chosen for this thesis. Within hierarchical clus

tering techniques, the two main methods used to cluster the data are the agglomerative and

the divisive methods. Agglomerative methods fuse individuals or groups of data which are

the closest by some measure, while divisive methods split groups successively into

smaller clusters. Due to the nature of the data in the diagnostic module, agglomerative

methods were investigated.

Many agglomerative clustering methods exist, of which two are described here. For a

more thorough discussion of the other methods, [5.5], [5.6], and [5.7] are excellent

sources. The nearest-neighbor, or single-link, method connects points or groups based on

the distance between their nearest neighbors. This method tends to result in groups with a

small number of members, "chained" together by single links. Because it results in many

small groups linked together rather than a few larger groups, this method is unsatisfactory

for diagnosis, where data points need to be grouped distinctly into fault clusters. The fur

thest-neighbor, or complete linkage, method has the opposite algorithm, in which clusters

are formed based on the distance of the farthest neighbors of each group. Because this

method results in larger groups of clusters that are easily separated, it is used in the diag

nostic module.

5.4.2 Neural Networks

Neural network models are empirically-based models which train a combination of

"neurons," or nodes, to learn and model relationships between a set of inputs and outputs.

The connections among the nodes are weighted. Each node receives a net input computed

from the sum of the weighted outputs of the nodes preceding it, "squashed" by an activa

tion function. A common activation function used for each node is a logistic function of



Chapter 5 91

the form f(x) = . The output of the node can also be transformed by a function,
1+e *

which is usually taken to be the identity function.

There are three types of nodes; those whose inputs are the inputs of the problem are

called the input nodes, and make up the input layer, those whose outputs are the output of

the problem form the output layer; the nodes connecting the input and output nodes form

the hidden layer. These three layers are depicted in Figure 5.6, which shows three nodes in

the input layer, and two nodes in the hidden and output layers. Also shown are connections

between the input nodes and the hidden nodes, and between the hidden nodes and the out

put nodes.

Input
Layer

Hidden
Layer

Output
Layer

Figure 5.6 Small neural network with three layers of units. The figure

shows three input nodes, one hidden layer with two nodes, and two output

nodes. The connectivity used is between the input units and hidden layer,

and between the hidden layer and output units.

The neural network algorithm selectedfor this analysis is the feed-forward, error back

ward propagation (FFEBP) method, which has shown to be effective in modelling noisy



92 Chapter 5

inputand outputdata [5.8][5.9]. In this algorithm, the inputs are fed forward through the

layers of the network until reaching the output layer. Theresultat the outputlayerof node

j is compared withthedesired, or teaching, output Thedifference, called theerror, is used

with the outputof node i to calculate the newweighting of the connection between node i

and nodey. These errors are then used to calculate the weight changes for the connection

between the input and hidden units. Because the weight corrections depend upon the cor

rections previously computed from theneighboring layer, theerror in effect is propagated

backward through the network [5.10]. In the FFEBP method, the gradient search method

is used to minimize the sum of the squared errors[5.11].

For this application, we have selected to usea FFEBP neural network with one input

layer, one hidden layer, and one outputlayer. An experimental analysis led to a network

with 13 nodes in the inputlayer, 8 nodes in thehidden layer, and two nodes in the output

layer. The connectivity chosen is between the inputunits and hidden layer, and between

the hidden layer and output layer. The StuttgartNeural Network Simulator (SNNS) was

used to simulate and train the neural networks [5.10]. Thenetwork learns therelationship

between the input and output patterns as it undergoes learning iterations. To determine

when to stop training, a separate testing datasetwas used. Training stopped when thetest

ingset achieved its lowest error. This is a usual practice to eliminate over-training, which

results in decreased generalization capability of the networkmodel.

5.4.3 Pre-filtering of the Long-term Component Residuals

Before performing training and diagnosis, the residuals obtained from the long-term

time series models (section 4.3) are pre-filtered to determine which data aresignificantly

different from the baseline process. This testof statistical significance is performed by

using the student-t test, with the significance level of 0.01:

X-^cent
a t av

cent
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where (icent isthe mean ofthe centerpoint data, acent isthe standard deviation ofthe cen

terpoint data, a is the significant level for the test, and v is the degrees of freedom. The

residuals which are notstatistically significantly different from zero are replaced with a

value of zero. The average real-time readings perwafer run arefiltered for theclustering

stages. Theresulting filtered real-time readings make up the real-time signal vectorused

to calculate the distance between groups of faults. Fifteen points per wafer are used to

train the neural network.

5.4.4 Training

To train the system, a set of heuristics is developed specifically for each type of

machine. The ideais to determine thedistance of the real-time signal vector as calculated

in Equation (5.6) among two or more runs of a particular type of fault (forexample, Fault

A), and theother faults. Themidpoint between thelargest distance among runsof Fault A

and the smallest distance between Fault A and the other faults is considered to be the cut

off value. During diagnosis, new runs with distances less than the cut-off value are

assigned to FaultA. These distance measures and corresponding cut-off values are calcu

lated for each training fault, requiring at least two training runs per fault type. When lim

ited training data is available, for example if no replicated points are conducted in a

central composite design with star points, the same class of faults are grouped together

regardless of magnitude. Then the signs of one of the runs are flipped so that both an

increase and decrease in theparticular parameter have the samesignal characteristics. For

example, if the training data contains only one run with an increase in power and onerun

with a decrease in power, the signs of thelatter run are flipped so that the datafrom both

now correspond to an increase in power. The diagnosis, then, will simplyindicate which

parameter has changed, and will not indicate whether it was an increase or decrease from

nominal.
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To group the faults, the filtered data is first converted to +1, -1, or 0 if the value of the

residual is positive, negative, or zero, respectively. Upon clustering, the data forms two

groups, separating the faults between positive and negative changes from the nominal

value. The signs of those faults with negativechanges are flipped, so that all the faults,

regardless of magnitude, are in one group. This simplifies the analysis, and can be done

when the real-time signals are either monotonically increasing or decreasing around the

centerpoint data. Otherwise, two sets of analysis can be performed so that increasing and

decreasing faults can be diagnosed separately.

In the caseof the Lam Rainbow 4400 plasma etcher, the trends in the real-time signals

are used to distinguish amongthree groups: runs with no faults (center points), those with

RF powerproblems, and the rest. Table 5.1 shows the trends for a subsetof the long-term

component residuals from the RPM-1 signals for various single equipment faults on a

Lam Rainbow 4400 plasma etcher. Each of the listed faults are increasing from nominal

levels; for example, the faults in the table include an increase in RF power, chamber pres

sure, ratio of the two gases, orelectrode gap spacing. The data was collected during the

Training (Phase II) and Diagnosis Experiments, as described in sections 3.2.2 and 3.2.3.

The table shows that an increase in RF power is captured by the signals as an increase in

delivered RF power, RMS voltage, and RMS current, and a decrease in the phase angle

and DC bias, while an increase in chamber pressure leads to an increase in RF power,

phase angle, and DC bias, and a decrease in RMS voltage and RMS current. It is interest

ingto note that although it is expected that an increase in RFpower leads to an increase in

the measured RF power, an increase in chamber pressure or gas flow also result in an

increase in the measured RF power, illustrating why multiple signals are necessary for

fault diagnosis.
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Table 5.1 Trends ofLong-Term Component Residuals forVarious Equipment Faults on a
Lam Rainbow 4400 plasma etcher

Fault

(increase)

Trends of Long-TermComponent Residuals

RF

Power
Voltage Current Angle DC Bias

RF Power * * * ** «*

Pressure * ** ** * *

Cl2 Flow * s ^ * *

Gap v * * V v

Total Flow * ^ ** * *

Table 5.1 also showsthat trends are notenough to distinguish amongall the faults. An

increase in either thechamber pressure or thegasflow, and a decrease in theelectrode gap

spacing have the same trends. This is also true when the data collected via LamStation is

included. Thus, the magnitude of the signals mustbe used to diagnosethese faults, includ

ing faults with the electrode gap spacing and the total gas flow. Other faults can not be

diagnosed by staged clustering, sincethe trends andmagnitudes of the signals are so simi

lar. Forexample, decreases inchamber pressure are confused with decreases in theCl2 gas

flow. For these cases, neural networks are used to model the subtle differences between

the signal sets, as explained next.

Standard FFBEPNN was used on 15 readings per waferfor training and during diag

nosis. First, the pre-filtered real-timeresiduals are scaled so that the ranges of both the

input and output are between 0 and 1. The training output is set at 0 for decreases from

nominal, 1 for increases, and 0.5 for normal behavior.

5.4.5 Diagnosis/Prognosis

Both thedataused for training and theheuristic limits derived in the training stage are

needed for diagnosis. The training data are used to represent the various faults, while the
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heuristics determine the fault group to which the new point belongs. To begin the diagno

sis, the trends of the data are used. The faults are determined in consecutive stages as out

lined in Figure 5.7. The first two stages classify faults with distinct trends in the filtered

real-time data. First, the algorithm checks to see if the data is from a normal run. Since

after pre-filtering most of the parameters from centerpoint runs will be set to zero in the

real-time signal vector, they can easily be distinguished from the faulty runs. If the algo

rithm determines that the new data is not a centerpoint run, it then checks for a fault in the

RF power by examining the trends in the filtered real-time data. If the RF power seems

normal, the training data corresponding to faults in the RF power are eliminated, and the

remaining data is sent to the next stage. The algorithm then looks for other faults, one at a

time. Because the other faults can not be distinguished solely by trends in the real-time

signals, the magnitudes of the filtered real-time data are clustered for the remainder of the

analysis. The first is electrode gap spacing, which uses the DC Bias readings. Voltage,cur

rent, impedance, phase angle, DC Bias, endpoint, and phase error readings are all required

to separate changes in total gas flow from changes in chamber pressure and Cl2gas flows.

Once again, after each stage, the training data corresponding to each of the tested faults

are removed from the data set.

At this point, the data is sent to the neural network model, which has been trained to

recognize the remaining faults. For the Lam Rainbow 4400, these include changes in

chamber pressure and Cl2 gas flows. The neural network assigns one fault to each point

Because 15 points are associated with each wafer, the final fault assigned to the wafer is

the fault which has been assigned eight or more times to that wafer.

5.4.6 Example Using Staged Clustering and Neural Network Analysis

In this example, two sets of training experiments were conducted. The first is the

Training Phase II Experiment (section 3.2.2), in which wafers with single faults of approx-
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Neural Network Model

Pressure
or

CI2Flow?

Fault

Report

Figure 5.7 Diagnosis Using the Staged Clustering and Neural Network

Technique for the Lam Rainbow 4400. Clustering methods are used to

diagnose problems with RF power, electrode gap spacing, and total flow,

while a straight forward neural network is used to distinguish between

chamber pressure and Cl2 gas flow changes.
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imately ±20 % from nominal were etched. The input settings which were varied are the

chamber pressure (P), the ratio of the gases (R), the RF power (W), the electrode gap spac

ing (G), and the total flow of the gases (T). Because it is unlikely that the total flow will
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remain constant when the ratio of the gases changesand vice versa, the Training Phase II

Experiment is unrealistic in simulating a problem with a mass flow controller. Therefore,

the Diagnostic Experiment Block I (section 3.2.4) was designed to investigate single gas

flow faults. This experiment varied the input chamber pressure, Cl2 flow (F), and RF

power settings by ±15 % from nominal. The data from the two experiments can not be

combined into one data set for the analysis because as described in Chapter 3, the mask

loading of the two experiments aredifferent Therefore, only the staged cluster analysis is

performed on the data from the Training Experiment, while the entire staged clustering

and neural network analysis is appliedto the data from the Diagnosis Experiment.

Two test sets were also conducted,corresponding to each of the training experiments.

The first is the Verification Experiment (section 3.2.3), which varied the same input set

tings as the Training Phase II Experiment at ±10% from nominal and included five cen

terpoint (C) runs at the nominal values. The Diagnosis Experiment Block II simulated the

same faults as Block I, but at ±7.5 % from nominal.

First, all the data was filtered following the methoddescribed in section 5.4.3. During

training, the cut-off values were calculated using the Training Phase II Experiment for

centerpoints and faults including RF power, electrode gap spacing, and total flow. The

neural network was trained to recognize the chamber pressure and gas flow changes from

the Diagnostic Experiment Block I.We used a feed-forward error backpropagation neural

network (FFEBPNN) with 13inputnodes, one hidden layer with eightnodes,andtwo out

put nodes,one for changes in chamber pressure, the other for changes in gas flows.

The data from theVerification Experiment were usedto testthe clustering stages of the

algorithm. Theresults are shown inTable 5.3. The first column of each group indicates the

type and magnitude of the fault injected into the machine, while the second column shows

whether the fault was correctly (/) or incorrectly (X) diagnosed. Because the faults were
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initially grouped, thediagnosis simply states which input parameter has changed, and does

notgive indication if thefaulty parameter hasshifted up or down.

Theresults show thatall wafers runat thecenterpoint values were correctly diagnosed

as having nofaults. In addition, changes inboth RFpower and electrode gap spacing were

correctly diagnosed. Furthermore, a decrease in total flow was diagnosed as such. An

increase in the total flow, however, was misdiagnosed as having no fault Upon examina

tion of the signals, it was found that none of the signals differed from thecenterpoint val

ues. In fact, the final etch rates, selectivities, and uniformities of that particular wafer did

not indicate a faulty condition, so the staged clustering algorithm was indeed correct in

diagnosing the run as a centerpoint

Table 5.2 Diagnosis After Clustering Stages: Verification Experiment

Fault Diag?

C /

C /

W (+ 15%) /

G (+15%) /

T(+15%) X

Fault Diag?

C /

C •

W(-15%) /

G (-15%) /

T (-15%) /

The neural network stage, whichclassifies the run as having a problem with either the

chamber pressure or the gas flow, was tested with the data from BlockII of the Diagnosis

Experiment Because the experiment also contained centerpoints and runs withRF power

changes, the data was first pre-filtered and sent through the clustering stages. The same

algorithm used for the previous experiment was applied successfully to this new data set

to isolate those runs at centerpoint conditions and those with changes in the RF power.

The fact that the same algorithm held for both experiments shows a strength of the
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method, since it can be applied to two sets of data with different wafer loading due to pat

terning differences (section 3.2).

Once both centerpoint and RF power data were removed from the data set, the data

were sent to the neural network. The results of the clustering and neural network stages

are listed in Table 5.3. Both centerpoints were diagnosed properly using cluster analysis,

as were the runs with RF power changes. The neuralnetworkdiagnosed all changes in Cl2

flows properly, as well as three of four chamber pressure changes.

Table 5.3 Diagnosis After Staged Clustering and Neural Networks: Diagnosis
Experiment

Fault Diag?

C /

W(+7.5%) /

W(+7.5%) /

P(+7.5%) /

P(+7.5%) X

F(+7.5%) /

F(+7.5%) /

Fault Diag?

C /

W (- 7.5%) /

W(-7.5%) /

P(-7.5%) /

P(-7.5%) /

F(-7.5%) /

F(-7.5%) /

On the whole, the resultsof the staged clustering and neural network method are very

promising. Because the method is scaleinvariant, it requires fewer runs for training than

using discriminant analysis. The experiment used for training is a simple star design,

which is generally conducted by the fabs during the qualification of the machines to

choosea proper operating point, so this method does not require the fab to conduct addi

tional runs strictly for diagnosis purposes. Although it requires longer training, the staged

clustering and neural network algorithm successfully diagnosed faults which were at dif

ferent levels from the training faults.
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5.5 Fault Diagnosis Module Summary

The difficult and lengthy process of trouble-shooting equipment faults makes diagnos

tic capability an important addition to SPC. Two methods for equipment diagnosis were

developed and demonstrated in this chapter. The long-term component residual from the

fault detection module are used in both diagnosis methods. The first employsFisher's dis

criminant analysis techniques to separate faults. The method has been demonstrated on

both single and multiple faults. This method enjoys certain advantages, such as fast and

simple training. The disadvantage of the method is that it is not scale invariant, so it

requires many training runs. The second method, using staged clustering and neural net

work analysis, is scale invariant. Examples of single faults at different levels from the

training faults were shown. Coupled with the benefits of real-time SPC, diagnosis will

greatiyreduce the cost of ownership of manufacturing equipment
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Chapter 6

Wafer State Prediction

6.1 Introduction

The Wafer State Prediction Module usesempirical models based on real-time equip

ment data to predict the outcome of each wafer immediately after processing by each

piece of equipment, reducing the need for costly and time-consuming wafer measure

ments. The prediction capability alsoallowsthe quality of the wafer to be known immedi

ately after each process step, thereby obtaining important yield information to ensure that

only wafers worth processing continue down the line. In high volume fabs, where several

thousand wafers are processed each week, the chamber condition of the etchers changes

overtime.Therefore, it is crucial to verify that theequipment modelssurvive thesenormal

machine drifts. In this thesis,"prediction capability" refers to the proven ability of the

modelto describe the chamber, without further adjustments to the original model, after a

significant number of wafers have caused thechamber to age.
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As described in Chapter 4, the real-time data is decomposed into the long- and short-

term components in the Fault Detection Module. In addition to being used to determine

faulty behavior of the equipment, the long-term components are also used in the Wafer

State Prediction Module to predict the wafer states immediately after the equipment has

finished processing. In this way, it is possible to determine the effect of faults on the wafer

quality. If the fault negatively impacts the wafer, the defective wafer can be eliminated

from further processing, thereby saving the resourcesof the subsequent equipment On the

other hand, if the fault does not impact the wafer, the wafer can continue with the process

ing sequence.

Because the strength of this module relies on the models used for prediction, much of

this chapter focuses on both the signals and the modeling methods used for prediction. To

provide useful prediction capabilities, robust prediction models of the plasma etchers are

required. The industry standard is to build models relating the input settings of the etchers

to the output wafer state using methods such as response surface methodology (RSM)

(Figure 6.1). Models using input settings, however, become unusable with time as the

machine drifts with regular use, rendering them ineffective for prediction. Recently there

has been much interestin using real-time tool data for modeling purposes. Eltaet al. use

information about the gas concentrations, the bias voltage, and the chamber pressure to

model the wafer states for control purposes [6.1]. Anderson et al and Wangmaneerat

showed that etch rate, selectivities, and uniformity can be well modelled with optical

emission spectroscopy using partial least squares regression techniques [6.2][6.3]. While

they have shown that models can be built relating real-timesignals to wafer states,thus far

they havenot demonstrated actual prediction capability of the models spanning a signifi

cantnumberof wafers which will cause the machine to age. Work by Rietman and Lory

show that neural network models can map the input settings and a few real-time signals,



Chapter 6 105

including the induced DC biasand reflected RF power, to oxide thicknesses in the source

and drain regions of CMOS devices [6.4].

In thischapter weshow thatsuccessful wafer state prediction canbeachieved byusing

a set of real-time data from key sensors inside the equipment. The signals used in this

module reflect theRF components of theetcher, andwerepreviously described in detailin

Chapter 2. Because thesereal-time signals provide important information aboutthe cham

ber state, we call the models built withreal-time data chamber state based (CSB) models.

This chapter shows that CSB models are effective for prediction because the real-time

data reflect the actual state of the equipment as it changes over time.

Input Settings

Pressure

Power

Gas Flow 1

Gas Flow 2

Gap

standard RSM

C Real-timeSignalsJ

Tune Vane Position

Load Coil Position

Impedance

Phase Error

CSB

Output States

Etch Rate

Uniformity

Selectivity

Anisotropy

Figure 6.1 WaferState Prediction: This paper shows that Chamber State

Based (CSB) models, which map the real-timedata to the output states, are

effective for prediction even in the presence of equipment aging.

To develop the prediction models, two sets of experiments were conducted. Duringthe

experiments, both the input settings and the real-time data were simultaneously collected.
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The wafer states of interest are the etch rates, selectivity, and uniformity. The first experi

ment, the Training Experiment, consists of a central composite design. The models using

data from the Training Experiment relating either the input settings or chamber state data

to the wafer states are called the training models. The second experiment, the Verification

Experiment, was conducted several weeks later to determine the actual prediction capabil

ity of the training models. Two sets of models were developed. The first maps input set

tings directly to the output states, and will be referred to as standard RSM models. The

second set of models are the CSB models, mapping the real-time signals to the output

wafer states.

Three types of regression modelingmethods, ordinary leastsquares regression, princi

pal component regression, and partial least squares regression, for both sets of prediction

models are explored. These regression models are also compared to models developed

using feed-forward neural networks. The final prediction metric is determined by how

well the training model predicts the wafer states of the Verification Experiment. This met

ric is a good measureof the actual predictive capability of the models becauseit is deter

mined from runs performed much later in time and not included in model generation.

The goal of this chapter, then, is to show that real-time data collected while the

machine is processing are well-suited for prediction of the wafer state. We also demon

strate the importance of the Verification Experiment and show how it affects the model

prediction. The chapter begins with a briefrecap of the real-time data used for the module,

followed by a discussion of the methodology and modelsused to determine the wafer state

prediction capability of the models. The modeling results based on the experiments

described in Chapter 3 are then discussed.
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6.2 Real-Time Data

As discussed in section 2.5, when the state of the chamber changes, the wafer-to-wafer

variance of the real-time signals is much larger than the within-wafer variance. Thus, the

input for the CSB models arethe long-term components from the Fault Detection Module,

which are the average values per signal over the duration of the main etch step of each

wafer (after the native oxide breakthrough etch and before the overetch). In this chapter,

the data used was collected during the Training and Verification Experiments described in

Chapter 3. Approximately 30 points are collected per signal per wafer etch via LamSta

tion, and 50 points via Real Power Monitor (RPM-1).

As illustrated in Figure 2.4 which shows the Load Impedance and RF Tune Vane Posi

tion for the duration of six wafers processed at the same input settings, the real-time sig

nals change with the state of the machine even when the input settings remain fixed. A

consequence is that the real-time data chosen for this analysis describe the actual equip

ment state more accurately than the input settings. Thus, the real-time data results in better

predictive capability than the input settings, as is shown in section 6.8.

6.3 Wafer State Modelling Methods

This section outlines the basic advantages and disadvantages of four modeling meth

ods, and discusses the prediction metric used to compare the prediction capability of the

models. The first method under discussion is ordinary least squares regression. Since this

method results in poor prediction capability when the modeling variables are correlated,

othermethods are investigated. Principal componentregression and partial least squares

regression can handlecorrelated data, and have the added advantage that they can reduce

the dimensionality of the model. Simple feed-forward neural networksarealsobrieflydis

cussed as an alternative modeling method.
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6.3.1 Ordinary Least Squares Regression

The first regression method discussed is ordinary least squares regression (OLSR).

The equation for the linear regression model is1

$ = Xp (6.1)

where y (n x 1) is the prediction of the response y, X (n xp) is the input matrix, and p

is a p x 1 vector of estimated model coefficients defined as

§ = (X'X^X'y (6.2)

provided that (X'X) is positive definite and therefore can be inverted. Throughout the

chapter, n is the numberof observations andp is the numberof modelparameters.

Prediction problems arise when the columns of X exhibit multicollinearity. The main

idea is that high correlation in X leads to smalleigenvalues in X'X, which can result in a

high variance in both the estimate of the coefficients and the predicted responses. For

example, let y0 = x0p bea predicted value. The variance of this predicted value canbe

solved in terms ofthe eigenvalues Wj and eigenvectors Vj ofX'X:

var(y0) =var[x0§J =xocov[p, §]x'0

2 i, vivi' 2i x«viv';X'

j=i j j=i j

where cov [p, P] = a (X'X) when cov [Y, Y] =a2 ln. Equation (6.3) shows that the

varianceof the predicted values depends on both the value of the eigenvalues and the

1. Bold face upper caseletters denote matrices. Lower case bold face letters and Greekletters with anunderscore ( )
denote column vectors. Scalars are denoted by lowercase letters. Transpose is denoted by ( ').
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direction of the input xo. The variance will be large for small eigenvalues and large values

of x0Vj. The consequence of large variances in the predicted values is that the error in the

prediction can potentially be huge. Thus, when the columns ofXexhibit multicollinearity,

both the estimates of the coefficients and the prediction capability of the model can be

very poor.

6.3.2 Principal Component Regression

Principal component regression (PCR) addresses the problem of multicollinearity.

When building models with real-time data, it is common to havelarge numbers of corre

lated input variables X. This number can easily escalate when interactions are included.

For example, 13 main signals are collected, resulting in 90 model variables when the cor

responding two-way interactions are included. Because manyof the signalsare correlated,

not all 90 coefficients should (or can) be estimated independently.

Instead of artificially reducing the correlation among variables as in ridge regression,

PCR transforms the input variables to a set of orthogonalvariables. The transformed vari

ables Z, known as the principal components (PC's), are linear combinations of the original

variables. The value of these PC's are called the scores. The coefficients of the original

variables, or loadings, are the eigenvectors V of X'X. The equation for the transformed

variables Z is

Z = (X-IX')V (6.4)

where X1 is the vector of average values of each variable in X and 1 is a column vector of

1's. All or a subset of the PC's can be used as the input matrix for regression. Because the

PC's are orthogonal, there are no multicollinearity problems, and standard least squares

techniques can be employed. The resulting model is

S = Zy (6.5)



110 Chapter 6

where ^ is the estimate ofthe coefficients using the equation ^ = (Z'Z) Z'y.

Because much of the variability can be captured in a subsetof the PC's, PCRreduces

the dimensionality of the models to its most dominant factors. Assuming independence,

the subset of statistically significant PC's in the modelcan be determined by calculating

the student-t test for each of the coefficients. Only those PC's with statistically significant

coefficients at a certain level (0.05 significance level is used in the examples of section

6.5) are retained in the model.

While PCR decreases the number of terms in the model, each model term still consists

of a linear combination of input variables. Ideally, those input variables in X which do not

significantlycontribute to the model should be left out When there are such large numbers

of input variables, however, it is often very difficult to determine which of these simply

add noise to the model and which are significant. An empirical method we developed to

determine the "streamlined" models is to transform PCRmodelback to the input spaceof

X. Assuming that the model is of the form shown in Equation (6.7) and using Equation

(6.6) to substitute in for Z,

J = (X - IX') VJ = XVy- lxVy = X§ - lxp (6.6)

where p = Vy. The general rule of thumb we found was to eliminate those input vari-

ables which have p values a magnitude or more smaller than the average of thefew larg-

est p values. This is similar to Cattell's "screeplots" used to determine the number of

PC's which explain mostof thevariation in theoriginal data [6.7]. We then regenerate the

PCR model with the reduced set of inputvariables, using the student-t test to calculate the

significance of the new PC's. Finally, we continue to reduce the inputvariable space as

described above until the model prediction no longer improves. (An effectivemetric to
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determine prediction is described in section 6.4.) This simple, yet effective empirical

method handles large numbers ofinput variables easily.

6.3.3 Partial Least Squares Regression

The last statistical modeling technique under discussion ispartial least squares regres

sion (PLSR). This method is widely used in chemometrics, a field of chemistry thatuses

statistical methods forchemical data analysis [6.8][6.9]. Because themethod is fairly new

to statisticians, there hasbeen much debate over its formal statistical properties andits rel

ative predictivecapabilities over OLSR, RR, and PCR. For example, it is often claimed

that because the modelgeneration uses information from both the input and output,PLSR

results in better predictive models. This is not always the case, however, especially when

the response data is noisy [6.10].

The general idea of the PLSR algorithm is similar to that of PCR. A reduced set of

parameters that sufficiently describe the input data is found and then used as the regressors

on Y. The notion of factor loadings and scores introduced in the context of PCR is also

used in PLSR. Instead of one set of loadings as was the case in PCR, two sets are used in

PLSR, one for the input matrix and another for the response. The algorithm for one

response follows.

Let Amax be the maximum number of PLSR factors. At the start of the algorithm,

Amax should be larger than anticipated to allow for unexpected factors. The following

steps are then performed for each factor a = 1,2,..., Amax [6.8][6.9][6.10].

I. Determine the loading weight vector wa using the model:

Xa_! =ya_1wa + e.

where e is the error. Use ordinary least squares to solve the following equation for w
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A, y'a-lXa-l . v

since the length of y is 1 after scaling. Taking the transpose and scaling so that the

length of wa is 1,

^a-l^a-l
*a =K-iya-iir

The loadings wa are orthonormal vectors which maximizethe covariance between

Xa_j and ya_j. In other words, tV = (wlfw2, ...,wA) relates the input and

response, and will be used to calculate the responsein the model.

2. Estimate the scores ta bytaking the projection of Xa_ xonto wa:

xa-i =V'. +e.

Rewriting the model and solving for ta:

Taking the transpose:

x'a-i = w.f. +e

t' = . a.~* - w' X'

a a-1 a

ta indicates how much of the response is correlated with the input data, and

T = (tj, t2,..., tA) is the reduced set oforthogonal scores that are used as regressors

for Y. Orthogonal vectors are necessary to deal with the problem ofmulticollinearity.

3. Estimate the input loadings pa using the model:

xa-i = tap'a +e.
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Solving for p :

p' = a -1
u

and thus taking the transpose,

Pa =
^a-l^a

p = (Pi» &2» •••» Pa) is similar tothe eigenvector matrix V in PCR, in that it consists

of the loadings for the input. Although Pis chosen to ensure that the ta vectors are

orthogonal, the pa vectors are generally not orthogonal. Unlike the loadings in PCA,

the first pa vector does not explain the maximum variance in the input matrix; rather,

it explains as much variance aspossible whilecorrelating with theresponse.

4. Estimate theresponse loadings qa using the model:

va-i =Ua +Y-

Solving for qa:

y'.-ita
qa»

Thus, Q = (qj, q2,..., qA) is the additional loading term which brings theresponse

into the model. It relates the score ta to the response, minimizing the residual sum of

squares of theresponse. Note that qa are scalars since thismodel is for oneresponse.

5. Create the new residuals e and P bysubtracting the estimated values found inthe pre

vious steps from the actual values:

a
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The product tap'a estimates the input matrix, while the product taqa estimates the

response matrix. Replace Xa_ j and ya_ j by the new residuals and increment a:

Xa = e,ya = f\anda=a+l.

Go back to Step 1.

6. Once the number (A) of valid PLSR factors is determined, the estimate of the coeffi

cients to be used in the prediction model J = 1130 + Xp are

P=W(FW)_1q and p0 =y-X'§. (6.7)
Using Equation (6.9) as an estimate of the coefficients, the same type of "streamlin

ing" method described for PCR to reduce the number of input parameters can also be

applied to PLSR.

Like PCR, the scores of PLSR are notscale invariant For example, suppose twovari

ables are measured in meters and kilograms, and the desired scores are to beexpressed in

centimeters and grams. One way to achieve this is to first transform the variables to the

desired units of centimeters and grams, and then carry outthe PLS analysis. The second

method is to first perform the PLS analysis inmeters and kilograms and then multiply the

elements of the relevant scores by the proper scaling factors (100 and 1000, respectively).

The two methods do not result in the same solutions since the scores of a random vector

are not scale invariant Thus, as was suggested for PCR, it is sometimes useful to stan

dardize the data so that all variables are equally weighted in the analysis. For computa

tional purposes, centering and scaling reduces round off and overflow problems. If it is

known, however, that variables with small values (in magnitude) are less important than

those with larger values, scaling is inappropriate.
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63.4 Feed-Forward ErrorBackward Propagation Neural Networks

The last modeling method investigated is neural networks, which has emerged as an

effective modeling method for semiconductor equipment [6.4][6.11][6.12][6.13]. Neural

networks are useful for modeling complex relationships, such as the plasma etching pro

cess. Furthermore, the form of the models is derived from the actual data, and not set a

priori as is done for regression. Neural networks, however, do not provide information

about the physics of the processes [6.13][6.4][6.12].

The network selected for this analysis is the feed-forward error back propagation

(FFEBP) algorithm, which wasdescribed in section 5.4.2. In this application, one hidden

layer was used, making a total of three layers in the network. Several different structures

were investigated, and the final structure chosen was the one which resulted in the small

est error. The connections are between the input nodes and the hidden nodes, and between

the hidden nodes and the output nodes. No bias was applied to the first layer. The output

function for the remaining layers is the "squashing" activation function of the form

f(x) = , where x is the sum of the weighted outputs of the nodes preceding this
l+e"x

particular node.

As in Chapter 5, the Stuttgart Neural Network Simulator (SNNS) was used to train and

simulate the neural networks [6.14]. The network learns the relationship between the input

and output patterns as it undergoes learning iterations. To determine when to stop training,

the neural network model was applied to the verification data set. Training stopped when

this testing set achieved its lowest error. This is a usual practice to eliminate over-training,

which results in decreased generalization capability of the network model.
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6.4 Testing the Prediction Capability of the Models

This section describes the methodology used to determine the prediction capability of

the models. As stated in section 6.1, two sets of experiments were conducted, the first for

model generation and the second for model verification. These aredescribed in detail in

sections 3.2.2 and 3.2.3. It is importantto note that the two experiments were conducted

several weeks apart, and that between the experiments the equipment underwent normal

use and maintenance. The Verification Experiment is used to determine if the training

models can withstand small changes in the equipment that occur with time.

The often neglected verification stage is one of the most important in prediction model

building. In many modeling situations, the assumption is made that if the model has a

good fit (for example, ahigh adjusted R2 and statistically significant terms), the model can

be used well for prediction. Unfortunately, this is not the case for plasma etcherson a pro

duction line. Because the machines go through regular maintenance and may drift with

use, the model with the best fit based on one experiment conducted in a short time frame

may not capturethese changes in the machine.The model may also be too specific for the

particular runs. These combined deficiencies result in unsatisfactory predictive capability.

The verification experiment is designed to determine the best predictive model which

takes into account normal equipmentchanges.

The prediction metric determining the bestmodel is based on how well the training

model predicts theverification wafers. Because theverification data is notincluded during

model generation, the true prediction capability of the modelscan be gauged. The metric

used is the standard error of prediction (SEP), where Y; is the ith observation, Yj is the

predicted value of the fth point, and n is thenumber of observations in theexperiment:
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i (v,-*,)2
SEP = jL^i - . (6.8)

y n-1

Essentially, the SEP metric measures thespread of the difference between thepre

dicted and actual values, called the residuals. The examples shown in section 6.5 rate the

different models according to their normalized SEP metrics. To determine whether two

SEP values are statistically significantly different, we employ the standard F-test of

hypothesis, assuming that the residuals are approximately normallydistributed. The null

hypothesis is that the squared SEPs are equal, while the test statistic is the ratio of the

squared SEPs.

6.5 Polysilicon Etch Rate Modeling Results

In this section, a detailed discussion is given for the CSB polysilicon etch rate model

analysis using the four different modeling techniques described in the previous sections.

Since the same type of analysis is conducted for the other wafer states, those results are

summarized in the following two sections.

6.5.1 Ordinary Least Squares and Ridge Regression

Using standard methods oudined in section 6.3.1, the first prediction modeling method

investigated is OLSR. Due to restrictions on the degrees of freedom, only the main effects

and interactions of the RPM-1 data was used to build the model. The data was scaled to

have zero mean and unity variance after the interactions were created. Backward stepwise

regression was employed to choose the significant terms in the model at the 0.05 signifi

cance level.

The results of the regression models are summarized in the ANOVA table in Table 6.1.

The table shows the degrees of freedom (d.f.), the sum of squares (SS), and mean sum of
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squares (MS) of both the regression and residual. The test statistic, which has an F-distri-

bution, is calculated as the regression MS divided by the residual MS. Also listed is the

adjusted R2 statistic, which takes into account the number ofterms used inthe model.

Table 6.1 ANOVA Table for OLSR Model of Polysilicon Etch Rate

Source d.f. SS MS F

Regression 15 3.06xl06 2.04xl05 24.9

Residual 11 9.01xl04 8.19xl03

adj. R2 =0.930

Despite a high adjusted R2 statistic of0.93 the model fails as aprediction /min model,

with a verification SEP metric of1138 A(22.2% when normalized by the average polysil

icon etch rate of the Verification Experiment). Depending on the input variables used in

the OLSR models, the prediction errorcan become quitelarge, even when all the termsin

the model are statistically significant at the 0.05 level. For example, when the main vari

ables and some interactions from the Lam Station data are included in the model, the SEP

metric is 6767 A/min (132%), despite that all terms are statistically significant and the

adjusted R^ statistic is 0.999. This example illustrates the importance of evaluating the

models against data not used to build the model because the usual metrics such as the

adjusted R statistic can bemisleading. This is because the correlations among the input

variables lead to high correlations among the estimated coefficients, resulting in unstable

prediction. Thus, standard OLSR techniques are not satisfactory for predicting polysilicon

etch rate based on highly correlated real-time signals. Similar results are found for the

other wafer states of interest

6.5.2Principal Component Regression

Because of their ability to handle large amounts of correlated data, PCR and PLSR

methods are much better suited to handle real-time data. The PCR model has an input
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variable space consisting of all 13 real-time signals with their corresponding two-way

interactions, making a total of90 parameters. In this analysis, the 13signals werescaled to

have zero mean and unity variance before forming the interactions. The PC's which

explain 99% of the variance were then included in model generation. Variable selection,

using the student-t test at the 0.05 significance level, resulted in a model with an intercept

and three PC's, resulting in a verification SEP metric of 704 A/min (10.7%). This is a tre

mendous improvement over the OLSR model.

The coefficients of this PCR model with 90 input variables can be transformed from

PCA space back to the input space X using the equation p = V^, derived in section 6.3.3.

None of the coefficients are orders of magnitudes greater than the others, which is a conse

quence of scaling the input variables of X. Several of the coefficients have values that are

close to zero, however, and may not be important to the model. Following the algorithm

outlined in section 6.3.3 to "streamline" the models, thirteen variables corresponding to

those columns of X with small (< 4.0) estimated coefficients were eliminated from the

input space of the original PCR model, resulting in 77 terms in X. The results from using

the eigenvalues that explain 99% ofthe variation were: adjusted R2 =0.70, Mallow's Cp =

7, and SEP = 688 A/min (13%), which is a slight improvement over the previous model.

An additional 25 input variables were eliminated on the next "streamlining" iteration,

which resulted in the best prediction. The SEP is496 A/min (9.7%). Five terms are in the

model, one intercept term and four PC's corresponding to the 3rd, 5th, 6th, and 8th largest

eigenvalues. The ANOVA table listed below in Table 6.2 summarizes the model.

Table 6.2 ANOVA Table for PCR Model of Polysilicon Etch Rate

Source d.f. SS MS F

Regression 4 2.23xl06 5.58xl05 13.27

Residual 22 9.25xl05 4.20xl04

adj. R2 =0.640
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The plot of predicted vs. actual polysilicon etch rate inunits of A/min is shown inFig

ure 6.2. If the models were perfect, all the points would lie on the y-x line. The spread of

the training and verification data is about equal, and the model shows a full range of out

put coverage. Furtherreductions in the input spacedid not lead to better prediction.

•*

o
o
o
r-

OS o
J5 *>

o

c
o

#o

J? °

o

O
o

A

A

» ' . /'•

•fr ...-' m a

>*
a

•

•

/' m

•

• $ Training Data

A Verification Data

r 1

4000 5000 6000

Actual Polysilicon Etch Rate (A/min)
7000

Figure 6.2 Predicted versus actual polysilicon etch rate plot of the best
predictive model found viaprincipal component regression. SEP= 9.7%.

6.5.3 Partial Least Squares Regression

Like PCR, partial least squares regression also reduces the number of terms in the

model. Although the transformed variables are not orthogonal, they relate the response to
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the inputs. As in the previous section, the first model is built using input matrix X, which

consists of the 13 main effects and all thetwo-way interactions, making a total of 90vari

ables in X. The 13 variables were scaled before forming theinteractions. Models ranging

from oneto 21 terms were builtusing PLSR. Like PCR, theprediction error does notesca

lateas severely for overfitted modelsasit does for OLS regression.

Themodel with four terms has an SEP value of 549 A/min (10.7%). When themodels
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Figure 6.3 Predicted versus actual polysilicon etch rate plot of the best

predictive model found via partial least squares regression. SEP = 10.5%.

were "streamlined," the SEP dropped slightly to539 A/min (10.5%). This model is shown
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in Figure 6.3. The main benefit in using PCR and PLSR models is that they are much less

sensitive to overfitting and resulted in more stable models than OLSR.

6.5.4 Feed-Forward Error Backward Propagation Neural Networks

The predictive capability of the FFEBPNN model is about the same as the PCR model,

with a slighdy higher SEP value, 500 A/min (9.8%). The input and output patterns of the

neural network model were first scaled to lie between 0 and 1. The best FFEBPNN model

structure was of the form 6-5-1, where the six input nodes correspond to the 6 signals col

lected via the RPM-1, and the 3 output nodes were the etch rates of polysilicon, oxide, and

photoresist. Learning was fast, with only 100 iterations needed to attain the best FFEB

PNN model for polysilicon etch rate. As in the previous statistical models, 27 runs were

used for training, and 15 were used for testing of the model.

6.5.5 Comparison of the Models

Table 6.3 gives a comparison of all four modeling methods, in terms of the number of

variables in X in each model, the verification SEP, and the normalized SEP. The F-test

shows that the SEP values of the PCR, PLSR, and FFEBPNN models are statistically bet

ter than that of the OLSR model at the 0.05 level. Furthermore, PCR, PLSR, and FFEB

PNN methods applied to the real-time data are equally good for polysilicon etch rate

prediction sincetheir SEPvaluescan not be distinquished fromone another.

Table 6.3 Summary of CSB Models ForPolysilicon Etch Rate

Training Model Description Verification

Model type # of Input Variables
inX

SEP (A/min) normalized

SEP

OLSR 16 1138 22.2%

PCR 52 496 9.7%

PLSR 63 540 10.5%
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Table 6.3 Summary ofCSB Models For Polysilicon Etch Rate

TrainingModel Description Verification

Model type # of Input Variables
inX

SEP (A/min) normalized

SEP

FFEBPNN 90 500 9.8%

6.6 Selectivity Models

Dueto the small ranges of selectivities across the design space, models are created for

the individual etchratesof gateoxide and photoresist instead of modeling the selectivities.

Since the analysis for these etch rates is similar to thatof polysilicon, onlya summary of

the models is given here.

Like the case for polysilicon etch rate, the PCR, PLSR, and FFEBPNN models for

oxide etch rate resulted in statistically significantly better prediction than the OLSR

model, as shown in Table 6.4. Once again, the PCR and PLSR models can not be distin

guished. The best PCR model was built with unsealed data, while the PLSR used scaled

(mean 0, variance 1) data. The neural network models, however, resulted in statistically

significantly worse prediction than the regression models for the oxide etch rate at the 0.05

level. Several structures were tested, and the best FFEBPNN model had the 6-5-3 struc

ture, where once again, the inputs corresponded to the RPM signals, and the data was

scaled to lie between 0 and 1.

Table 6.4 Summary of CSB Models For Oxide Etch Rate

Training Model Description Verification

Model type
# of Input Variables

inX
SEP (A/min) normalized

SEP

OLSR 16 216 52.7%

PCR 39 39 6.1%
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Table 6.4 Summary of CSB Models For Oxide Etch Rate

Training Model Description Verification

Model type
# of Input Variables

inX
SEP (A/min) normalized

SEP

PLSR 35 31 7.5%

FFEBPNN 6 70 16.9%

While the OLSR model resulted in the worst prediction error for the photoresist etch

rate, the PCR model and the neural network model, using all 13 signals as input, 5 nodes

in the hidden layer,and 3 output nodes, resulted in the bestpredictioncapability. As in the

models for gate oxide, the best PCR model was built with unsealed data, the PLSR used

scaled data, and the neural network inputs were scaled to lie between 0 and 1. The model

results are listed in Table 6.5.

Table 6.5 Summary of CSB Models For Photoresist Etch Rate

Training Model Description Verification

Model type # of Input Variables
inX

SEP (A/min) normalized

SEP

OLSR 13 901 29.1%

PCR 39 148 4.8%

PLSR 90 280 9.0%

FFEBPNN 13 117 3.8%

6.7 Polysilicon Uniformity Models

As shown in Table 10, none of the models for polysilicon uniformity are useful for

prediction. Themodels for uniformity may be improved if additional signals are included

in the analysis. The real-time signals used in this paper areessentially an average of the

specific etch processes, and as such,giveno spatial information aboutthe chamber. There-
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fore, the real-time signals used in this paper are notideal to provide meaningful unifor

mity measurements. A set of chamber state signals which have shown promise for

uniformity prediction is spatially resolved optical emission spectroscopy [6.3]. PLSR,

designed specifically to model OES data, has been shown to be effective for training uni

formity models based on OES data [6.3], and mayprove to be the modeling method of

choice. Thus far, however, the predictive capability has not been tested for OES data.

Another new sensorshowing promise is the full wafer interferometry system, which has

the potential of calculating the etch rate of points across the entire wafer. This method,

however, requires hardware changesto manypresent etching systems since it relies on a

top view of the wafer [6.15].

Table 6.6 Summary of CSB Models For Polysilicon Uniformity

Training Model Description Verification

Model type
# of Input Variables

inX
SEP (A/min) normalized

SEP

OLSR 18 35.5 546%

PCR 90 4.8 73.8%

PLSR 90 4.34 66.8%

FFEBPNN 13 8.2 126%

6.8 Comparison of Chamber State Based and Response Surface
Methodology Models

In this section, the prediction capability of the CSB and standard RSM models are

compared. All four modeling methods described in the previous sections were investi

gated, and the model with the smallest SEP for each set of inputs was chosen for compari

son. In all cases, the CSB models built with the real-time data are have approximately the

same prediction capability as the models built with input settings.
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Although these examples show the prediction capability to be similar, we expect that

the CSB models will prove to be superior when more time has elapsed and the equipment

has drifted from its original setpoint because unlike the fixed input settings, the real-time

signals change with the state of the machine. Figure 6.6 compares the modeling results of

six centerpoint wafers. The standard RSM model built with the fixed input settings pre

dicts a constant etch rate, while the real-time model adjusts the prediction as a result of

small changes in the machine state. Thus, we surmise that models built using real-time

data may predict etch rates with more accuracy than those built with input settings in the

presence of machine drift One reason this is not seen with the present test case is because

the range of the Verification Experimentwas simply not large enough to stress the models.

Only one variable was altered at a time, and the range was quite small. As a result, the

range of the etch rate was not much greater than the natural variation of the centerpoint

data. A better experimentto perform should includechanges to more than one input set

ting at a time. In addition, the range of the settings should havea largerrange.

Input Setting Model

Actual Data
Chamber State Based Model

1 2 3 4 5 6

Replication Wafer #

Figure 6.4 Comparison of themodel built with input settings versus the
chamberstate basedmodel builtwithreal-time signals.
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6.9 Wafer State Prediction Module Summary

Plasma etch models using real-time equipment signals lead to excellent prediction

models for etch rates (and thus selectivities as well). Additional signals maybeneeded for

moreaccurate prediction of waferuniformity. Four differentmodeling techniques, ordi

nary least squares regression (OLSR), principal component regression (PCR), partial least

squares regression (PLSR), and feed-forward error back propagation neural networks

(FFEBPNN) were implemented. OLSR can not be used successfully for wafer state pre

diction because the real-time signals are highly correlated, resulting in severe instabilities

in the predicted values. PCR, PLSR, and FFEBPNN are well-suited to handle large num

bers of correlated input variables. The prediction capability was verified on data collected

several weeks after the initial experiment. Because real-time data reflects the actual cham

ber state of the equipment, models based on this real-time data, called chamber state based

(CSB) models, can be used effectively for prediction of etch rates.

The Wafer State Prediction Module presented is especially powerful because it uses

non-invasive real-time signals collected automatically from the tool while the wafer is

processing. Since the wafer parameters are predicted immediately after the wafer has fin

ished processing in the machine, important yield information is obtained on a run-to-run

basis, making it possible to ensure that only wafers worth processing continue down the

line. The real-time signals can also be used to qualify equipment to determine if the

machine is operating properly.
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Chapter 7

Conclusions

7.1 Thesis Summary

This thesis presented a system which detects equipment malfunctions in real-time,

assigns a cause to the problem, and finally determines the impact of the fault on the final

wafer characteristics. Key to the success of this Equipment Analysis and Wafer State Pre

diction System is the data used in the analysis, namely non-invasive real-time signals

which can be automatically collected from theequipment while the wafers are processed.

For plasma etchers in particular, we haveisolated a few key signals from two collection

systems, the Brookside LamStation software and the Comdel Real Power Monitor. These

signals have shown to be much more sensitive to the actual state of the chamber than the

input settings of the machine [7.1].

The real-time signals are used in each of the system's three modules, the Fault Detec

tion, Fault Diagnosis, and Wafer State Prediction Modules. We have improved the Fault
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Detection Module, which uses time series modeling and Hotelling's T2 statistic to detect

equipment malfunctions [7.2]. Algorithms have also been investigated toextend the mod

ule to include multiple recipes without retraining the system for each recipe. The Fault

Detection Module has been successfully applied to many single wafer etching systems.

Two methods have been studied toperform fault diagnosis and prognosis for the Diag

nosis Module. The first, using discriminant analysis, is easy to train and requires no

knowledge of the equipment [7.3]. It is scale sensitive, however, and may require numer

ous training runs. The second method, using clustering and neural network techniques, is

based onheuristics. It is scale invariant and can beused for prognosis aswellasdiagnosis.

Examples showing effective equipmentdiagnosis using both methods have been demon

strated.

The third module, Wafer State Prediction Module, assesses the quality of the wafer

once it has completed processing. This module relies on accurate models of the critical

output wafer states. Four modelling techniques were evaluated, ordinary least squares

regression (OLSR), principal component regression (PCR), partial least squaresregres

sion (PLSR), and feed-forward error back propagation neural networks (FFEBPNN). The

prediction capability of the models was measured by using data collected several weeks

after the training set, and not used to build the models. It was shown that the techniques

which handle highly correlated data, namely PCR, PLSR, and NN, result in more stable

models than OLSR. Chamber state based (CSB) models, which use the real-time data, are

effective in predicting the output wafer states [7.1].

Although the examples developed in this thesis are basedon data collected from single

waferplasma etchers usingthe LamStation and Comdel RPM-1 sensors, the methodology

presented is general and can be applied to other types of equipment and sensor data. For

example, datacollected via opticalemission spectroscopycan be used in exactly the same
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manner. A current research area is to determine the sensor data set which precisely

describes the chamber state. At present we have found data collected from the Brookside

LamStation software and the Comdel Real Power Monitor to be sufficient to show the

power of this class of real-time equipment data. This system can also be applied to other

semiconductor equipment. The most straight-forward extension is most likely to chemical

vapor deposition furnaces, cluster tools, and multi-chamber systems.

7.2 Future Directions

7.2.1 Short-Term

A few areas in each module require more study and research. First, the ideas to use

ARIMAX models to extend the Fault Detection Module to several different recipes must

be verified. A more difficult problem is to include effects of different wafer loading of the

wafers. This is important for fabs which produce a large mix of products. Second, the

staged clustering method in the Fault DiagnosisModulepotentiallyrequires different clas

sification heuristics for each typeof etcher. It is alsounclear howthis algorithm extends to

multiple faults. Third, the uniformity models in the Wafer State Prediction Module are

unsatisfactory for production use. Other sets of data, such as spatially resolved optical

emission spectroscopy, mayresult in much more accurate uniformity models [7.4][7.5].

Also promising is the full wafer interferometric imaging system, which extracts the etch

rates across an entire wafer during processing [7.6].

7.2.2 Long-Term

The FaultDetection Module can presently be run as a stand-alone package, or within

the existing BerkeleyComputerAided Manufacturing (BCAM) Framework [7.7], which

has capabilities to perform recipe generation and run-to-run control. In the future, the

Fault Diagnosis Module can fit into the BCAM Dempster-Shafer Evidential Reasoning
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Diagnostic Framework, which collects evidence from three process stages: equipment

maintenance history before the wafer enters the equipment, real-time sensor data while the

wafer is processing, and the in-line measurements when the wafer leaves the equipment

[7.8]. To take advantage of thecomplete diagnostic method, however, this fault classifica

tion should be translated into a form of numericalbelief about malfunctions. The real-time

equipment faults can be classified into different sets, each with a certain misclassification

rate. Therefore, we can determine the probability that a certain equipment fault has

occurred. This probability valuecan be used as support within the BCAM evidential rea

soning system. This system will effectivelycombine this support with the evidence col

lected during the maintenance and in-line diagnostic phases in order to produce a valid,

ranked fault list. The challenge in this translation is the design of an efficient experiment

to determine baselinebehaviorand fault categories, and the creation of evidence combina

tion rules that effectively take advantage of the real-timeinformation [7.3].

A consequence of the predictioncapability of the CSB models in the Wafer State Pre

diction Module is that inexpensive run-to-run control is possible. In the absenceof reliable

wafer state prediction, work in run-to-run control specifically for plasma etching has

included the use of in-situ sensors such as spectral ellipsometry [7.9][7.10]. Wafer state

prediction will allow a run-to-run control schemeof plasma etch equipment that will bring

specified output parameters back to their target value in the case of equipment drift.
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Appendix A

Test Structure Process Steps for Lam
Rainbow 4400 Experiments

The following is the sequence of steps used to fabricate the test structures used in the

Lam Rainbow 4400 Experiments.

1. p-type B<100> wafers, 14-22 ohms*cm.

2. Gateox: Tylan5,2.5 hours at 950°C. recipe: sgateox (-580A)

3. n+doped poly: Tylan 11,3.5 hoursrecipe: sdopolyh (~6000A)

• Use the center boat, grow one lot of 12 wafers at a time.

• Tylan7 anneal 15 min at 950°C.

• Anneal all 24 wafers together.

4. LTO: Tylan 12,450C 02:SiH4 = 90sccm: 60sccm 16min recipe: vdoltoc (-3000A)
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• Use the rear boat, grow one lot of 12 wafers at a time.

5. Mask 1: Hardbake at least 40 min

• HMDS 2 - 3 min.

• Eaton I-line resist, standard process (#15), resist thickness ~0.9um

• GCA expose mask 1 at standard focus, at exposure dose that can resolve 0.8um

elbows. This is generally 31% more than the standard.

• Post-exposurebake 60 sec. at 120°C

• MTI develop standardrecipe (#70)

• Technics-C descum for 1 min. at 50W

• Hardbake 20 min. at 120°C

6. Etch LTO: lam2 standard recipe, 750W, 85%endpoint, 30sec. overetch

7. Etch poly: lam4 standard recipe(Cl2: He). Etch to endpoint.

8. Strip resist: Technics-C, 400W, 7min.

9. Mask 2: Hardbake at least 40 min.

• HMDS 2 - 3 min.

• Eaton I-line resist, standard process (#15), resist thickness ~l.lum

• GCA expose mask 2 at standard focus, atexposure dose thatcaresolve 0.8um

elbows

• Post-exposure bake 60 sec. at 120°C

• MTI develop standard recipe (#70)

• Technics-C descum for 1 min. at 50W

• Hardbake 20 min. at 120°C

10. Etch LTO: lam2 standard recipe 850W 95% endpoint, 30sec. overetch
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11. Strip resist: Technics-C, 400W, 7min.

12. Mask 3: Hardbake at leastovernight.

• HMDS 2 - 3 min.

• Eaton I-line resist, standard process (#15), resist thickness ~l.lum

• GCA expose mask 3 at standard focus, and at exposure dose thatcanresolve

0.8um elbows

• Post-exposure bake 60 sec. at 120°C

• MTI develop standard recipe (#70)

• Technics-c descum for 1 min. at 50W

• Hardbake 30 min. at 120°C



AppendixB 138

Appendix B

Discriminant Analysis Algorithm

The following C code generates the S-PLUS code used to train the discriminant analy

sis algorithm. Inputs to the code are: (1) the name of the data file, (2) the number of faults

that you would like to diagnose, (3) the number of real-time signals used in the analysis,

and (4) the name of the output file. The program will then prompt the user for the number

of runs per fault. A sample outputis included after the program.
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^ Appendix C

Appendix C

Staged Clustering and Neural
Networks Algorithm

The following S-PLUS code performs the staged clustering section of the algorithm.

The code shown on the following pages is specific for the Lam Rainbow 4400 polysilicon

etcher.
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