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Abstract

Semiconductor Equipment Analysis and Wafer State Prediction
System Using Real-Time Data

by
Sherry Fen-hwei Lee
Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Costas J. Spanos, Chair

The fabrication of modern semiconductor products requires thousands of processing
steps. A key element in achieving high yields and throughput with short cycle-times is to
monitor the equipment to ensure proper processing at each step. This thesis develops a
monitoring method suitable for real-time fault detection, fault diagnosis, and wafer state
prediction. Because not all wafer states can be directly measured while the wafers are
being processed in each piece of equipment, we use real-time signals sensitive to the
equipment state to infer the condition of the wafer. This set of real-time signals is moni-

tored and analyzed by the system, which consists of three distinct modules.

The fault detection module employs time series modeling and multivariate statistics to
detect run-time errors on a second-to-second basis. When a malfunction is detected, the
fault diagnosis module assigns a cause to the problem. Two methods for diagnosis were
investigated. The first uses discriminant analysis techniques, while the second uses a com-
bination of clustering algorithms and neural network models. Examples of faults which
have been detected and diagnosed on a plasma etcher include various levels of miscalibra-
tions in mass flow controllers, pressure gauges, and radio frequency (RF) power genera-

tors.



In addition, the system predicts the wafer state after each process step. Generally,
models for wafer states are built using the input settings of the equipment. Experimental
results in this thesis, however, demonstrate that models built with select real-time signals,
which we call chamber state based (CSB) models, are effective for the prediction of key
wafer states of plasma processes especially after the machine has aged significantly since

the original model was created.

The system as a whole has the potential to reduce the overall cost of ownership of
semiconductor equipment by increasing both the wafer yield and throughput of product
wafers, and decreasing the down-time and mean-time-to-repair of the equipment. Further-
more, this system does not depend upon monitor wafers or expensive metrology; rather, it
uses real-time signals collected automatically and non-invasively from the equipment. As
such, it will enable inexpensive run-to-run and real-time control applications. The system
has been developed and tested on the Lam Rainbow 4400 and Lam TCP 9600 plasma etch

equipment.

_

Committee Chairman
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Chapter 1

Introduction

1.1 Motivation

With the DRAM capacity quadrupling every three years, gigabit chips with linewidths
of less than 0.2pum will be in production around the turn of the century [1.1]. To achieve
these small linewidths and the resulting high density circuitry, it is predicted that the cost
to build a new semiconductor fabrication factory (fab) will exceed the $1 billion mark by
1996 and be in excess of $1.5 to $2 billion in the year 2000 [1.2][1.3]. Over 75% of this
capital for a new factory is attributed to equipment cost. Despite the high cost of modern
semiconductor equipment, the equipment utilization for product is low, estimated between
35% and 50% [1.2][1.3]. Equipment utilization is defined as the percentage of time that
the machine is used to produce good production wafers. As depicted in Figure 1.1, equip-
ment loss, including down-time and time for maintenance, calibrations, set-up, and pilot
runs, presently accounts for 28% of equipment time. Another 11% is due from operating

loss, which includes the time the equipment misprocesses wafers, waits for material, and
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processes bad material. Non-equipment loss, including the time the machine is idle or is
used for training, and special work, including the time to make process adjustments, make
up another 26%. It is estimated that to remain competitive and profitable in the future, at
least 70% to 80% equipment utilization is necessary [1.2][1.3], which will require a sig-

nificant decrease in the areas of both equipment and operating loss.

A key element in achieving this goal is to monitor the equipment to ensure that the
semiconductor wafers are processed properly at each step. The cost in dollars and time to
measure each wafer after it completes each step, however, becomes prohibitive in modern
semiconductor factories, which produce wafers with well over 100 manufacturing steps.
Present practice is to measure monitor wafers periodically, perhaps at the start of each
work shift, after performing maintenance, or after changing the machine settings. Even
with the use of monitor wafers, however, subsequent production wafers may still be pro-

cessed improperly.

Currently, final test is generally performed after all the processing steps have been
completed, as illustrated in Figure 1.2(a). Thus, instead of detecting equipment faults
causing wafer yield loss early in the process flow, wafer yield loss is usually found very
late in the processing line. Defective wafers, or scrap, can be extremely costly depending
on how many processing steps the wafers have completed. The late detection also makes
diagnosis of the problem very difficult. Present practice may require first stripping the
problem wafers layer by layer until the fault is isolated, then tracing the fault back to a
specific piece or group of equipment. While this technique has enjoyed some success
among various yield groups in modern fabs, a more direct approach, catching faults imme-

diately after they have occurred, is much more appealing.

By pushing fault detection earlier in the processing line (Figure 1.2(b)), considerable

resources are saved because once a fault has been detected in a particular machine, that
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Present
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2?5; Loss -
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70% Production -
-

%

14%

35%

Figure 1.1 Equipment Utilization. To remain profitable and competetive in the
future, factories must achieve at least 70% utilization of their equipment [1.2].

machine can be stopped immediately, reducing the number of misprocessed wafers.
Because the equipment causing the fault is easily isolated, faster diagnosis of the problem
is possible. In addition to detecting and diagnosing problems with the machine, the effect
of the fault on the wafer can be assessed, making it possible to ensure that only wafers

worth processing continue down the manufacturing line.

1.2 Thesis Overview

This thesis develops a system, called the Equipment Analysis and Wafer State Predic-
tion System, to perform real-time semiconductor equipment fault analysis and prediction
of wafer state. The system uses real-time signals automatically collected from the equip-
ment via various real-time monitors. As depicted in Figure 1.3, the real-time data is fed
into each of three modules: (1) Fault Detection, (2) Fault Diagnosis, and (3) Wafer State

Prediction. Examples of faults detected and diagnosed on a plasma etcher include a faulty
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blank

wafer

blank
wafer

Figure 1.2 (a) Typical Manufacturing Process: Final test is usually
done after all the processing steps have been completed. (b) Proposed
Manufacturing Process: This thesis pushes fault detection earlier in the
manufacturing line, during the processing of each piece of equipment or
workcell, allowing for less scrap and faster diagnosis. Additionally, the
quality of the wafer can be assessed before it continues down the
manufacturing line.

mass flow controller, an unstable power supply, changes in chamber pressure, and a mis-
calibrated electrode gap spacing. Wafer states of interest may include the etch rate, selec-
tivity, or uniformity of a wafer after it is processed by each piece of equipment. The

system as a whole has the potential to reduce the overall cost of ownership of semiconduc-
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tor equipment by increasing both the wafer yield and throughput of product wafers, and

decreasing the down-time and mean-time-to-repair (MTTR) of the equipment.

Though general enough to be applied to many pieces of semiconductor equipment, the
methodology is verified on plasma processing, one of the costliest operations in the semi-
conductor fabrication line. Plasma processing is not only very expensive, but also is diffi-
cult to control because it is not well understood. In fact, a malfunctioning plasma etcher
can generate up to $100,000 worth of scrap per hour [1.4]. Although there is a tremendous
push to develop models relating the plasma to interesting output characteristics of the
wafer based on basic physical principles, researchers are still years away from developing
models realistic enough to be useful on the factory floor [1.5][1.6][1.7]. Thus, at this time

empirical models are faster and more practical for prediction.

In this work, the models used in each module are empirically based on real-time data
collected while the machine is processing wafers. The following sections briefly describe
the purpose of each system module. Potential impact areas of the Equipment Analysis and

Wafer State Prediction System on the equipment ownership cost are then highlighted.

1.2.1 Fault Detection Module

The Fault Detection Module uses automatically collected real-time data to determine
the health of the semiconductor equipment while the wafer is being processed. Two types
of faults are determined by the module; the first group of faults corresponds to fast equip-
ment fluctuations within the processing time of one wafer, while the second group reflects
longer duration changes in the overall equipment state. The machine status is displayed in
a control chart which can be easily read and interpreted by an operator on the factory floor.

In this way, the complex modeling algorithms are transparent to the user.
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Equipment

Fault Wafer
Detection State
Fault
Diagnosis

Figure 1.3 Schematic of Equipment Analysis and Wafer State
Prediction System: The system contains three modules: (1) Fault Detection,

(2) Fault Diagnosis, and (3) Wafer State Prediction. The modules use data
collected from real-time monitors.

1.2.2 Fault Diagnosis Module

Once an equipment fault has been detected by the Fault Detection Module, the Diag-
nosis Module assigns a cause to the problem. In addition to diagnosing faults that have
already occurred, this module may also predict impending malfunctions, or perform prog-
nosis of faults. For example, it may be possible to determine when preventive mainte-
nance is needed. Two methods are developed which tackle the difficult task of equipment
fault diagnosis and prognosis. The first uses discriminant analysis, while the second uses a
combination of clustering techniques and neural network models. The main idea is to map
the signature of the real-time signals to a specific equipment fault. Each method has

advantages and disadvantages, depending on the type of equipment faults. Examples of
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faults that have been diagnosed include faulty mass flow controllers, miscalibrated power

supplies, changes in chamber pressure, and a change in the electrode gap spacing.

1.2.3 Wafer State Prediction Module

In addition to detecting and diagnosing equipment faults, it is important to assess the
quality of the wafers immediately after each process step. For example, it is useful to
know how a particular equipment fault has impacted the processing of the wafer. The
Wafer State Prediction module performs this task. Good quality wafers can continue down
the fabrication line, while misprocessed wafers can be discarded or reworked. This thesis
shows that models based on real-time equipment data result in effective prediction capa-

bility for plasma etch processes.

1.3 System Impact on Cost of Ownership

The overall goal of the fab is to obtain high yield with a low cycle-time and high
throughput. When implemented on a high volume production line, the Equipment Analy-
sis and Wafer State Prediction System as a whole addresses these issues and can poten-

tially lower the overall ownership cost of the equipment.

A summary of these cost of ownership advantages are listed in Table 1.1. The general
categories for this list are adapted from the SEMATECH Cost of Ownership model [1.8].
The fault detection algorithm can reduce the process scrap yield produced by the equip-
ment, defined as the operational yield of the equipment. For etchers in particular, the sav-
ings can be considerable, as wafers close to completion can be worth several thousands of

dollars.

The diagnostic capability can reduce the equipment down-time. Down-time includes
repair time, non-production time during scheduled maintenance, and engineering usage.

The repair time is impacted by the mean-time-to-repair (MTTR) and the mean-time-
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between-failures (MTBF). The diagnostic module can reduce the MTTR by helping the
engineer pinpoint faults in the equipment. In addition, the module can predict impending
malfunctions, thereby warning the operator to perform preventive maintenance before a

catastrophic fault occurs. This can potentially extend the MTBF.

By predicting the final wafer state, the quality of the wafers at each process step can be
classified to ensure that only wafers worth subsequent processing continue down the fabri-
cation line. This also reduces the need for monitor wafers. Thus, the system has the poten-
tial to positively impact the yield, cycle time, and throughput of the fab as a whole [1.9].

Table 1.1 Cost of Ownership Impact by Each Module of System

Module Ownership Cost Impact
Fault Detection Reduce l;tocess scrap_%ld
Fault Diagnosis Reduce the equipment down time
Wafer State Prediction Determine value of wafer at pro-
cess step

1.4 Thesis Organization

Chapter 2 discusses the real-time data and collection systems used in this work. A
description of the experiments conducted to both develop and verify the algorithms pre-
sented in this thesis follows in Chapter 3. Chapters 4 through 6 develop the theory and
show applications for each of the three modules which make up the overall Equipment
Analysis and Wafer State Prediction System. Specifically, these are the Fault Detection,
Fault Diagnosis, and Wafer State Prediction modules. Finally, conclusions and future

directions for this research are given in Chapter 7.
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Chapter 2
Real-Time Tool Data

2.1 Introduction

The success of the Equipment Analysis and Wafer State Prediction System relies
heavily on the data used for analysis. Therefore, the data used in the system must be care-
fully considered. The most direct solution is to actually measure the etch rate, selectivity,
and anisotropy while the wafer is being processed. This capability, however, is not yet
available. Therefore, empirically based models are used to predict the wafer outcomes.
The choice of signals which best reflect the equipment performance is not obvious, espe-

cially for complex equipment such as the plasma etcher.

Much of the past work involving the medeling of plasma etch equipment has used
classical response surface methodology (RSM) models which map the input settings, such
as the radio frequency (RF) power, chamber pressure, gas flows, and electrode gap spac-

ing, directly to the output states including the etch rate, uniformity, selectivity, and anisot-
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ropy [2.1][2.2]. A limitation with this approach is that for plasma etchers, the same input
settings do not always result in the same output wafer characteristics because the input set-
tings of the machine are not closely coupled with the actual chamber state. In addition,
drift in the machine from natural aging is not accounted for in these models [2.3]. Equally
important, errors such as miscalibrated components will not be detected by examining the
input settings of the machine. For example, if a mass flow controller (mfc) is miscali-
brated, the controllers inside the equipment will not detect the error since the gas flow
reading will appear to be correct even though the actual flow may not be within the desired
specifications. This change in gas flow may subsequently lead to changes in the plasma

characteristics, which in turn impact the etching process.

Because the machine input settings usually do not exert enough direct control over the
desired outcome, there has been a push to use other sensors besides the input settings to
monitor the equipment. Spanos e? al. showed that the electrical and mechanical signals
associated with the plasma RF can be modeled with time series models and used effec-
tively to detect malfunctions [2.4]. Anderson used optical emission spectroscopy and par-
tial least square regression (PLSR) techniques to model plasma wafer characteristics such
as etch rates, selectivities, and uniformity [2.5]. Butler and Stefani performed run-to-run
control of polysilicon gate etch using in situ spectral ellipsometry [2.6]. A group at M.L.T.
is developing a full wafer monitoring system using interferometric imaging to determine
the etch rate, selectivity, and uniformity across an entire wafer [2.7]. The underlying
theme is that researchers are investigating signals which are more accurate than the input

settings in describing the wafer states of interest.

The Equipment Analysis and Wafer State Prediction System presented in this thesis
uses non-invasive real-time equipment signals. This thesis shows that for plasma pro-

cesses in particular, electrical and mechanical signals such as the load impedance and coil
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positions give a more accurate depiction of the chamber state than the input settings and
can be used effectively for fault analysis and prediction of the final wafer state

[2.3][2.8](2.9].

This chapter first details the process by which the real-time signals used for analysis
are chosen. Next, the specific collection systems used for the plasma etch examples are
described, followed by a discussion of the real-time data chosen for each type of etcher. In
this work, two different types of state-of-the-art plasma etchers are investigated, a parallel
plate system and an transformer coupled plasma (TCP) system. These etchers were
selected because they are currently among the most advanced plasma etchers used in the
semiconductor manufacturing industry. Due to different hardware considerations, the real-

time data collected from the systems differ.

2.2 Real-Time Signal Selection

Because the Equipment Analysis and Wafer State Prediction System depends upon the
data used for analysis, selecting the real-time signals most sensitive to the equipment state
is critical. A typical etcher, for example, has well over 400 signals from which to choose
[2.10]. These include signals involved in all steps of the process, from wafer handling to
the pumping of the chamber to the power delivered by the RF generator. Many signals
obviously do not directly affect the chamber, such as the signal determining whether or

not the input cassette is lowered. The case is not as clear, however, for many other signals.

We do not monitor those signals which are tied directly to the input settings of the
machine. Instead, signals which give the most information about the chamber state are
monitored. For example, in plasma systems we do not include the RF power delivered
from the generator for several reasons. First, any deviation in the RF power will be caught

by the machine’s own feedback loop. Second, if the RF generator is miscalibrated, this
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signal will appear to have the proper values even if the incorrect power is delivered. This
is similar in idea to the mass flow controller example in the previous section. Third, the
value of the RF power read by the machine is before the matching network, which is not
as accurate as the actual power delivered to the upper electrode of the etcher. For a typical
etching process, we have found that the difference between the RF power before and after
the matching network can be up to 10%. Therefore, instead of monitoring the RF power

delivered by the generator, we measure the RF power at the upper electrode.

To test the relevance of the remaining chosen signals to the wafer state, the following
steps are taken. First, a standard factorial experiment in which the input settings are varied
over the range of the operating space of the equipment is conducted. The purpose of the
experiment is to change the state of the equipment in a way that will affect the processing
of the wafer. In addition to the factorial experiment, we run several wafers through the
machine at the normal input settings, or baseline conditions, to obtain the “normal” fluctu-
ations of the real-time signal readings. Then the ranges of the real-time signals collected
during the factorial experiment and those collected during the baseline runs are compared.
Those signals which have a substantial range relative to the baseline data are considered to

be “sensitive” to the equipment state. More formally, an F-test is calculated:

2
S fact/ Vfact

2 ovfactsveent (2' 1 )
$"cent/ Veent

where Szfact is the estimated variance of the signal collected during the factorial experi-
ment, s2cem is the estimated variance of the signal collected during the centerpoint runs,
Veact 1S the degrees of freedom in the factorial experiment, and v, is the degrees of free-
dom in the centerpoint runs. Those signals which have F-statistics above a desired level of
significance are collected by the monitoring systems and used in the Equipment Analysis

and Wafer State Prediction System.
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2.3 Real-Time Collection Systems

The data collection systems used in the Equipment Analysis and Wafer State Predic-
tion System monitor both electrical and mechanical signals in real-time. The two collec-
tion systems are: (1) the Brookside LamStation software, which reads the signals from the
SECS-II (SEMI Equipment Communication Standard-II) serial port on the etcher [2.11]
and (2) the Comdel Real Power Monitor (RPM-1), which reads the signals through its
own RS232 interface [2.12]. Figure 2.1 depicts the Comdel monitor in relation to the RF

generator, the matching network, and the upper and lower electrodes.

Matching Network

Comdel
RF monitor

upper electrode

+ RF Generator
- 13.56 MHz

lower electrode

Figure 2.1  Position of the Comdel monitoring system relative to the
matching network, power supply, and electrodes for a parallel plate
reactor.

Plasma etch equipment have well over 400 signals from which to choose [2.10]. These
range from the entrance load lock vacuum sensors, to electrical characteristics of the
chamber, to the state of the gas flow valves. For fault detection, diagnosis, and wafer state
prediction purposes, only a small subset is required. As detailed in the next section, the

signals corresponding to the RF network are most sensitive to changes in the equipment
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state [2.4]. Sample frequencies of 1 Hz have been achieved and were found to be sufficient

for this application.

Since the Comdel RPM-1 resides after the matching network directly above the upper
electrode, it gives more accurate readings of the forward power and other electrical param-
eters delivered to the plasma than does the LamStation software. The Comdel RPM-1
monitors the current, voltage, and DC bias at the upper electrode. Calculated from these
values are the delivered RF power, root-mean-square (RMS) current and voltage values,

RF impedance, and the phase angle between the current and voltage.

Because most of the signals collected are directly tied into the electrical or mechanical
components of the machines, different sets of data are collected depending on the hard-
ware configurations of the etcher. In this work, both the single wafer parallel plate Lam
Rainbow 4400 polysilicon and inductively coupled Lam TCP 9600 metal plasma etchers
are studied. While both the LamStation software and the Comdel RPM-1 RF probe are
used to collect data from the parallel plate etching systems, only the LamStation software

is used to collect data from the metal TCP system.

2.3.1 Parallel Plate Etching System

For parallel plate etching systems, between six and thirteen of the collected signals are
used. Six signals are collected or calculated via the Comdel RPM-1. The other seven sig-
nals are collected via LamStation. The signals collected for the Lam Rainbow 4400 poly-
silicon plasma by each monitoring system are listed in Table 2.1. The important signals
monitored are: RF Power, RF Voltage, RF Current, Load Impedance? RF Phase Error, DC
Bias, RF Tune Vane Position, RF Load Coil Position, Peak-to-Peak Voltage, and Endpoint
Data. Each of the above signals is described in Table 2.2. These signals were chosen
because they are sensitive to changes in the state of the chamber of the etcher, which

directly impacts the wafer. Because these measurements are related electrically or
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mechanically, some signals are highly correlated. Three signals, Load Impedance, Phase
Error, and DC Bias, are collected from different places in the equipment by the two inde-

pendent monitoring systems. Although these readings are correlated, they are not identi-

cal.

Chapter 2

Table 2.1 Real-Time State Signals Collected for the Lam Rainbow 4400

LamStation Software

RF Load Coil Position

_

Comdel RPM-1
RF Power

RF Tune Vane Position

RF Voltage

Peak-to-Peak Voltage

RF Current

Load Impedance

Load Impedance

RF Phase Error

RF Phase Error

DC Bias

DC Bias

Endpoint

Table 2.2 Description of the Real-Time Signals

Signal

RF Tune Vane Position

Description

Position of the tune vane in the matching network of the
upper electrode; acts as a variable capacitor

RF Load Coil Position

Position of the load coil position in the matching network
of the upper electrode; acts as a variable inductor

RF Load Impedance

Apparent input impedance of the matching network

RF Phase Error

The phase error between the current and voltage (ideally
90°) at the upper electrode

DC Bias

Measures the potential difference of the electrodes

Peak-to-Peak Voltage

Magnitude of voltage on the electrodes

End Point Data

Reads the intensity of the plasma in the chamber at a par-
ticular wavelength

RF Voltage

Root-mean-square (RMS) voltage at the upper electrode

RF Current

RMS current at the upper electrode
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2.3.2 TCP Etching System

The signals of interest for the Lam TCP 9600 metal etcher are slightly different from
those of the parallel plate system since the plasma source of the two systems differ. Instead
of upper and lower electrodes, the TCP source consists of planar coils wound from the
center to the outer radius of the source chamber, one placed at the top of the chamber, the
other at the bottom [2.13]. The plasma is created when the gas near the coil ionizes as a
result of the induced RF electric field. Similar to the parallel plate system, TCP sources
can be driven at 13.56 MHz. Since these systems run at lower pressures and generally pro-
duce higher density plasma than parallel plate systems, they are claimed to produce more

anisotropic etches with smaller linewidths and faster etch rates.

Because the RPM-1 is not suited for the TCP source, the analysis for the TCP machine
was based solely on the data collected from the LamStation software. Many signals simi-
lar to those used for the parallel plate systems are collected for the TCP system, with a few
additional signals. The signals which best reflect the equipment state are related to both
the bottom and upper coils. The signals associated with the bottom coil are similar to those
for the parallel plate system: RF Tune Vane Position, RF Load Coil Position, Line Imped-
ance, RF Phase Error, and DC Bias. As in the parallel plate system, these signals are used
to tune the matching network. Similar signals are collected from the matching network of
the top coil. For example, instead of a tune vane, a tune capacitor is used. One of the most
sensitive signals to process changes is the RF Bias, which measures the DC bias between
the top and bottom sources when both are powered. As in the parallel plate systems, end-
point information is also collected. A description of the real-time signals collected for the

Lam TCP 9600 metal etcher is given in Table 2.3.



18 Chapter 2

Table 2.3 Real-Time State Signals Collected for the Lam TCP 9600

LamStation Description

—

RF Tune Vane Position | Equivalent position of the tune vane posi-
tion in matching network of the lower coil

Bott
TC(;’ ?:I:ﬂ RF Load Coil Position | Equivalent position of the load coil position

in matching network of the lower coil

Line Impedance Apparent input impedance of the lower
matching network
RF Phase Error Phase error between the current and voltage
at the bottom coil
DC Bias Measures the charge on the electrodes
TCP Tune Vane Capacitor | Position of the tune vane capacitor of the
Position matching network for the top coil
Top TCP
Coil TCP Phase Error Phase error between the current and voltage
at the top coil
TCP Load Capacitor Position of the load capacitor of the match-
Position ing network for the top coil
Line Impedance Apparent input impedance of the upper
matching network
RF Bias DC bias when both sources are powered
Endpoint Reads the intensity of the plasma in the

chamber at a particular wavelength

2.4 Pre-filtering of Real-time Data

The raw data collected for both types of etchers includes several peripheral steps in the
etching procedure, such as the stabilization of the pre-etch gases, the pre-etch in which the
native oxide is etched away, the stabilization of the main etch gases, the main etch, and
finally the unloading of the wafer from the chamber. The step of interest in this application
is the main etch step. Although value is gained from examining the loading and stabiliza-

tion steps for gas leaks for example, this work focuses on fault detection and diagnosis
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during the main etch step and determines how the wafer state is impacted. The algorithms

presented can be extended to include the other windows of operation.

The signals collected during the main etch step are concatenated and then filtered as
follows. Characteristics of the real-time signals caused by transient effects during process-
ing must be accounted for before statistical analysis. At the beginning of the main etch
step for each wafer, for example when RF power is applied, a small transient occurs while
power is stabilizing. The analysis is delayed a few seconds until the signals have stabi-
lized. The delay time, based on the stabilization time for a normally processed wafer, is
illustrated in Figure 2.2. If the signal does not stabilize within the specified time, the Fault
Detection Module generates an alarm, as discussed in Chapter 4. To simplify the calcula-
tions in each module, the same number of data points for each collection system is used

for each wafer.

Parameter

A

Delay
\[\/\._/\’\
Delay

e

<N
<

Wafer 1 Wafer 2 time

Figure 2.2 Real-time Signal Filtering
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2.5 Real-Time Data Example

Approximately 30 points are collected per signal per wafer etch for the LamStation
data and 50 points for the RPM-1 data. Since the data are collected sequentially at a sam-
pling rate of 1 Hz for the LamStation data and at 2 Hz for the RPM-1 data, the real-time
signals are autocorrelated in time and demonstrate time series behavior. Time series pat-
terns are observed both within each wafer and across several wafers due to controller
adjustments and equipment aging. The time series nature of the data is exploited for fault

detection, as will be shown in Chapter 4.

Figure 2.3 shows the real-time signals of the RF Load Coil Position and DC Bias for
different fixed input conditions on each of 12 wafers, collected by the LamStation soft-
ware. Notice the instability in wafers #4 and #5 shown in Figure 2.3. (These wafers are
identified as “faulty” by the Fault Detection Module described in Chapter 4.) For an
unknown reason, the RF power dropped significantly during the processing of wafer #4,
causing corresponding adjustments in both Coil Position and DC Bias. Later measure-
ments show that the etch rate for wafer #4 was unusually low due to the drop in RF power.
Therefore, the run corresponding to wafer #4 was rejected from the analysis. As seen in
Figure 2.3, wafer #5 exhibited unstable signals and was also rejected as an outlier. Exclud-
ing wafers #4 and #5, Figure 2.3 also shows that the wafer-to-wafer variance is much

larger than the within-wafer variance.

Figure 2.4, which shows the Load Impedance and RF Tune Vane Position for the dura-
tion of six wafers processed at the same input settings, illustrates that the real-time signals
chosen reflect equipment state better than the input settings. While the input settings are
fixed for all six wafers, the real-time signals vary for each etch, indicating that the specific

real-time data described in the previous sections give a more accurate description of the
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actual equipment state. As a consequence, the real-time data can be used effectively for

fault detection, diagnosis, and prediction of wafer states.

RF Load Coil Position

8
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Figure 2.3 Real-time signals of RF Load Coil Position and DC Bias for
different input conditions on 12 wafers. Wafers #4 and #5 have unstable
real-time signals and are rejected as “bad” wafers [2.8). Notice the large
wafer-to-wafer variance compared to the within-wafer variance.
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Figure 2.4 Real-time signals for six wafers processed with idential input
settings during the duration of the main etch. Unlike the fixed input settings,
the real-time signals reflect changes in machine state.
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Chapter 3

Experimental Design

3.1 Introduction

The experiments conducted to develop and verify the real-time Equipment Analysis
and Wafer State Prediction System are discussed in detail in this chapter. As previously
stated, the plasma etchers used in this work are a Lam Rainbow 4400 polysilicon etcher
and a Lam 9600 metal etcher. First, the set of experiments performed in the Berkeley
Microfabrication Laboratory on a parallel plate polysilicon etcher is described. These
experiments, which form the basis for the majority of the system analysis in the following
chapters, were designed to span a significant amount of time to allow for machine aging.
Next, the experiments conducted on a TCP metal etcher, used to adapt the fault detection
algorithm for multiple recipes, is discussed. Each experiment has its own test structure and

measurement set, which will also be described.
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3.2 Lam Rainbow 4400

This section focuses on the experiments conducted in the Berkeley Microfabrication
Laboratory on a Lam Rainbow 4400. The purpose of this experiment was three-fold. The
first goal was to verify the new fault detection algorithm to detect single faults at diffcrenf
levels of severity; the second was to develop and test the diagnostic capabilities for single
faults; the third was to build models for several pertinent wafer states using the real-time
data, and then test the predictive capability of the models with an independent data set. To
achieve these goals three separate experiments, the Training, Verification, and Diagnostic

Experiments, were conducted.

The Training Experiment is a central composite experiment composed of two phases
[3.1]. Both phases are used to build the wafer state models. The second phase is used to
both test the Fault Detection Module and train the Diagnostic Module. The Verification
Experiment, run one month after the Training Experiment, is extremely important, as it
provides an independent data set used to verify the Wafer State Prediction Module. In a
month’s time, the machine suffers from general wear and tear, such as chamber coating
and electrode conditioning, which affect the performance of the equipment. In a high-vol-
ume manufacturing site where 5,000 wafers are processed every week, the condition of
the chamber gradually changes with time. Therefore, it is important to verify that the pre-
diction models survive these normal machine drifts. The Verification Experiment is also
used to verify the algorithms used in the Diagnosis Module. Because two different data
sets are used, one for training and the other for testing, the actual predictive and diagnostic
capabilities of the modules are determined. The Diagnostic Experiment further tests the
diagnosis algorithms. Since a different test structure was used for this experiment, it tests

the application of the diagnostic algorithms for different wafer loadings.
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3.2.1 Test Structures

Two different test structures were used, one for the Training and Verification Experi-
ments, and the other for the Diagnosis Experiment. The layout of each test structure is dis-

cussed in this section, followed by a brief outline of the process flow.

3.2.1.1 Layout

The wafers for the Training and Verification Experiments are 4” diameter wafers pat-
terned with polysilicon, gate oxide, photoresist, and low temperature oxide. Any exposed
materials on the wafer change the chemical composition of the ionized gas. It has been
observed that the etch characteristics depend not only on the type of layers etched, but also
on the specific patterns created. This effect is known as loading. The test structure was
designed so that the polysilicon, gate oxide, photoresist, and the LTO hard mask will be
simultaneously etched in the same etch step. Due to complex loading effects, this results
in more accurate etch rates and selectivities than etching blanket wafers individually. The
wafer states of interest are the etch rate of polysilicon, selectivity of polysilicon to gate
oxide (ratio of the polysilicon etch rate to the gate oxide etch rate), selectivity of polysili-
con to I-line positive photoresist (ratio of the polysilicon etch rate to the positive photore-
sist etch rate), and the non-uniformity of the polysilicon etch. Due to the small ranges of
selectivities across the design space, models are created for the individual etch rates of
gate oxide and photoresist. The test structure, requiring a three mask process, allows all
models to be developed from the same set of experimentai conditions [3.6]. Figure 3.1
shows a simplified view of the test structure indicating all of the surfaces that were etched

during the Training and Verification Experiments.

Due to technical difficulties with the oxide etcher in the Microfabrication Laboratory,

the process for the Diagnosis Experiment was simplified to a single mask process. As a
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Figure 3.1 Test structure for the Training and Verification Experiments.

result, only polysilicon and photoresist were exposed to the etch during this experiment, as

shown in Figure 3.2.
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Figure 3.2  Test structure for the Diagnosis Experiment.

3.2.1.2 Process Flow

A 600A thermal oxide was first grown on the wafers (“oxide” refers to silicon dioxide,

Si0,) followed by 6000A n+ doped polysilicon, deposited via low pressure chemical
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vapor deposition (LPCVD). After a 20 minute nitrogen anneal at 950°C, 2800A undoped

low temperature oxide (LTO) was deposited by chemical vapor deposition.

Three mask steps are required to build the test structure for the Training and Verifica-
tion Experiments. The first mask defines the gate oxide open regions, and requires both
oxide etching through LTO and polysilicon etches that terminates when the gate oxide is
exposed. Approximately S0A of gate oxide was etched during the polysilicon etch and
overetch. The second mask defines the polysilicon open areas, requiring an LTO etch that
terminates when the polysilicon is exposed. Since the selectivity of LTO to polysilicon is
low in the Lam Autoetch SiO, Etcher, about 500A polysilicon was etched in this step. The
last mask defines the areas with photoresist. (Photoresist is generally used to define the
patterns on the wafer. The regions not covered with photoresist are etched away. The cov-
ered regions are protected from being etched, and are therefore retained.) A more detailed
description of the process is listed in Appendix A. The process flow for the Diagnosis
Experiment test structure, a subset of the above process, follows steps # 1 - 5 outlined in

Appendix A.

3.2.2 Training Experiment

The standard polysilicon plasma etch contains a pre-etch step which etches through
the native oxide layer. (About 20A of native oxide is grown naturally on wafers when
exposed to air. It is a “crud” oxide layer that must be stripped off the wafer.) The pre-etch
is followed by the main etch step, which is the step of interest in this project. Most of the
significant etching occurs during this main etch step. In this experiment, the pre-etch rec-
ipe was constant for all etches, while the main etch recipe was modified. To obtain more
accurate etch rates and thus better selectivity measurements, the main etch, called the cen-

terpoint etch, was a timed etch. The pre-etch and centerpoint recipes are listed below in

Table 3.1.
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Table 3.1 Etch Recipes

Input Parameter Pre-etch Centerpoint
Pressure (mtorr) 400 425
Power (Watts) 200 275
Gap (cm) : 1.0 0.9
Cl, (sccm)? 0 160
SFg¢ (sccm) 100 0
He (sccm) 0 380
He clamp (torr) 8.0 8.0

a. The flow rates are in units of sccm, “standard cubic cen-
timeters per minute”

Given the above recipes, the input parameters varied in the experiment are: Pressure
(P), Power (W), Gap (G), Gas ratio of Cl, to He (R), and the Total gas flow of Cl, and He
(T). Note that because the gas ratio and total gas flows are more significant to the etch
results, they were varied in the experiment instead of the individual gas flows. As previ-
ously stated, the output wafer states, or responses to the experiment, were the etch rate of
polysilicon, selectivity of polysilicon to oxide and I-line positive photoresist, and polysili-

con wafer non-uniformity.

The Training Experiment consisted of two phases. Phase I is the variable screening
stage, which determines which variables are statistically significant in the models. Phase II
assesses the quadratic nature of the system via a star design [3.1]. The input values used
for all experiments are listed in Table 3.2, in terms of percent offset from the nominal val-
ues. Figure 3.3 illustrates the different points for three parameters in the input space cov-
ered by the Training and the Verification Experiments. The particular values were chosen
to cover a wide range of operating conditions of the machine. The next two subsections

describe the two phases of the Training Experiment.
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Table 3.2 Change in Percent From Nominal

. . . Verification
Parameter Training Experiment Experiment
Phase 1 Phase I
— ——
Pressure +15% +22.5% +10%
Power +15% +22.5% +10%
Gap +11% +17% +10%
Flow Ratio +19% +22% +10%
Total Flow +11% +22% +10%

(a) (b) ©
Figure 3.3 Depiction of three input settings for the (a) Training Phase I,
(b) Training Phase II, and (c) Verification experiments.

3.2.2.1 Phase I: Variable Screening

Phase I consists of a two-level, 16 run fractional factorial design and 4 center points.
This is a design of resolution V with no blocking, but drops to resolution I when block-
ing for time and for the fact that the wafers came from two different lots. Since blocking
was not a factor in any of the phase I response surface models, the design is essentially of
resolution V. Thus, no main effects are confounded with one another or with second or
third order effects. Additionally, second order effects are not confounded with one

another. Main effects are, however, confounded with fourth order effects, and second



32 ' Chapter 3

order effects are confounded with third order effects. Assuming that the fourth order

effects are negligible, this experiment provides a good estimate of the main effects.

As mentioned abové, there are two blocks, one for time and one for using two different
lots. The time block is confounded with the three-way interaction among the gas ratio,
power, and electrode gap spacing, or equivalently, the two-way interaction between the
chamber pressure and total flow. The effect of using two different lots is confounded with
the three-way interaction among the chamber pressure, power, and electrode gap spacing,
which is equivalent to the two-way interaction between the gas ratio and total flow.
Although all 20 runs of the experiment were run in one day, the block for time was a pre-

caution in the event the etcher malfunctioned in the middle of the experiment.

The lots were also blocked due to the way the wafers were processed before the etch
step. In particular, the lot non-uniformityl of the polysilicon across a wafer lot grown via
LPCVD was poor. The lot non-uniformity across two boats?, or 24 total wafers, was 41%,
compared with approximately 9% within one boat of 12. The average within wafer non-
uniformity3 in the one boat was 2%. In addition to the degradation of the lot uniformity,
the sheet resistance across two boats suffered as well, showing non-uniformity of 45%.
Across one boat the sheet resistance non-uniformity was reduced by half, to 19%. There-
fore, to reduce the variation across the experiment wafers, only one boat of 12 wafers was
deposited with polysilicon at a time. While both sets of wafers were annealed at the same
time, LTO also was deposited one boat at a time for better uniformity within the boat.
Therefore, the experimental wafers in phase I were blocked for the two different deposi-

tion lots.

1. Lot non-uniformity is calculated as the difference of the average deposition rate between the first and last wafers,
divided by the average deposition rate across all wafers.

2. Wafers in deposition funaces are placed in “boats,” which hold the wafers vertically a fixed distance apart from one
another.

3. Within wafer non-uniformity is calculated as the difference of the average deposition rate near the edge of the wafer
and the average deposition rate near the center of the wafers, scaled by the etch rate of the center average.
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The object of the experiment was to examine the output space given a reasonable
range of input settings for the main etch. The ratio of gases and total gas flow ranges were
constrained by the limits on the mass flow controllers of the He and Cl,which are 500
sccm and 200 sccm, respectively. Given these limits, the design ranges chosen for the gas
ratios and total flows are as large as possible. Table 3.3 shows the values of the input
parameters (+, -) used in the two-level fractional factorial design. The middle level (0)
shows the values for the center-point recipe. The actual flow values corresponding to the

ratio of gases and total flow in the experiment are listed below in Table 3.3.

Table 3.3 Values for Cl, and He

Gas Total Flow = Total Flow =
600 sccm 4380 sccm
Ratio = 0.50 Cl, 200 160
He 400 320
Ratio = 0.34 Cl, 152 122
He 448 358

In the first phase, the values for pressure and power are 15% offset from the nominal
values, gap and total flow values are 11% from the nominal values, and the ratio values are
19% from the nominal value. Before performing the experiment the runs are randomized
in the time blocks including four centerpoint runs to check for non-linearity. The actual

runs conducted, in order of execution, are listed in Table 3.4 and Table 3.5.

Table 3.4 Randomized Phase I Block I Runs

run # P R \' G T lot wir#
12 489 0.50 | 234 1.0 480 8-1 1
2 489 034 | 234 0.8 430 8-2 23
C1 425 042 | 275 0.9 540 8-1 5
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Table 3.4 Randomized Phase I Block I Runs

run # P R w G T lot wir#
_— _————
1 361 034 | 234 0.8 600 8-1 6

14 | 489 | 034 | 316 | 1.0 | 480 | 82 13
7 361 | 050 | 316 | 08 | 600 | 8-2 17
8 489 | 050 | 316 | 0.8 | 480 | 8-1 12
11 361 | 050 | 234 | 10 | 600 | 82 | 21
C2 | 425 | 042 | 275 | 09 | 540 | 82 19
13 | 361 | 034 | 316 | 1.0 | 600 | 8- 3

Table 3.5 Randomized Phase I Block II Runs
run # P R w G T lo%i
—— = —

9 361 034 | 234 1.0 480 8-2 22
C3 425 | 042 | 275 0.9 540 8-2 16
15 361 0.50 | 316 1.0 480 8-1 2

5 361 034 | 316 0.8 480 8-2 20
10 489 | 034 | 234 1.0 600 8-1 10

3 361 050 | 234 0.8 480 8-1 7
C4 425 | 042 | 275 0.9 540 8-1 11
16 489 | 050 | 316 1.0 600 8-2 15

489 | 034 | 316 0.8 600 8-1 4
4 489 | 050 | 234 0.8 600 8-2 18

After examining the real-time signals, it was noticed that a few wafers from the first
phase experienced equipment faults, such as instabilities in RF power, or phase error. The
affected run numbers are # 1, 5, 10, 14, and 15. These runs were repeated, as shown in

Table 3.6.
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Table 3.6 Replicated Runs of Phase I

run # P R w G T lot wir#
_ ————— =
1 361 0.34 234 0.8 600 9-1 7

5 361 | 034 | 316 0.8 480 | 9-2 20
10 489 | 034 | 234 1.0 600 | 8-2 24
14 489 | 034 | 316 1.0 480 | 9-1 19
15 361 | 050 | 316 1.0 480 | 92 10

The replicated runs #1 and #14 resulted in stable signals, but those for runs #5, 10, and
#15 remained unstable. It is possible that the settings for those runs put the machine in an

unstable state. Therefore, these points were not used in the subsequent models or analysis.

The screening analysis was performed by building models using the input settings.
Statistical significance of each parameter was determined via the student-t test at the 0.05
significance level. Results of the analysis show that although all input settings are not sta-
tistically significant in each model, they are all required to model the output characteristics
of interest. Listed in Table 3.7 are the t-values and p-values of models for the etch rates of
polysilicon, oxide, and photoresist using the Phase I data. All the main effects and two-
way interactions were used to build the models. Only the values for significant coefficients
at the 0.05 level are listed. Surprisingly, pressure and ratio are not significant for the poly-
silicon etch rate model. The model for photoresist etch rate, on the other hand, requires all
of the main input settings. The precise effect of each parameter on the output characteris-

tics is better modeled after the Phase II experiment described below.

3.2.2.2 Phase II: Modeling Non-Linear Effects

In Phase II, additional runs were performed to determine the quadratic behavior of the

system. The model is limited to quadratic terms because as the order of the polynomial
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Table 3.7 Significance Tests for Phase 1 Models

Parameter Polysilicon Oxide Photoresist
t P t P t p
value value value value value value
Pressure (P) 4.0095
Ratio (R) -5.3866 | 0.0004 | 9.3848 | 0.0001
Power (W) || 16.7520 | 0.0000 | 19.3474 | 0.0000 | 45.2959 | 0.0000
Gap (G) -9.9213 | 0.0000 | -9.0391 | 0.0000 | -13.4383 | 0.0000
Total (T) 2.6182 | 0.0307 4.8966 | 0.0027
P*R 3.6911 | 0.0050 |-12.7136 | 0.0000
P*W 6.5525 | 0.0002 | 4.3588 | 0.0018
P*G -3.8305 { 0.0050 -14.0121 | 0.0000
P*T -5.1635 | 0.0009 | -4.7697 | 0.0010
R*W 20.0163 | 0.0000
R*G -6.4071 | 0.0002 | -3.8825 | 0.0037 | -10.3075| 0.0000
R*T -14.0674 | 0.0000
WG -2.7024 | 0.0270 | -2.7276 | 0.0233 | -6.3457 | 0.0007
W*T 23032 | 0.0502
G*T

increases, so does the number of terms required in the model. Thus, as long as the model

fit is reasonable, only linear and quadratic terms will be used in the models [3.1].

The additional runs consist of center points and “star” points, arranged symmetrically
along the axis of each variable (see Figure 3.3). For each variable two star points are run.
Two center points were run, making a total of 12 additional runs. When arranged properly,
these star points are orthogonal to each of the columns of Phase 1. Therefore, the quadratic
nature of the model can be estimated, even if a level shift occurred between Phases I and II
[3.1].
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Table 3.8 shows the star points for the Phase II runs. Table 3.9 and Table 3.10 show the
corresponding gas flows for ratio and total flow. As listed in Table 3.2, each of the values
for pressure and power are 22.5% offset from the nominal value, those for gap are 16.7%,
ratio is 23%, and total flow is 22% from the nominal value. Once again, these values were

chosen to achieve the widest operating range of the equipment.

Table 3.8 Star points

Parameter Low value High value
[ Pressure (mtorr) 20 | sa
Power (W) 213 339
Gap Spacing(cm) 0.75 1.5
Ratio 0.26 0.58
Total Flow (sccm) 420 660

The gas flows which correspond to the above table are as follows:

Table 3.9 Values for Cl, and He for Ratio Star Points

Gas Total Flow =
540 sccm
Ratio = 0=.58 Cl, =238
He 342
Ratio =0.26 | Cl, 112
He 428

Table 3.10 Values for Cl, and He for Total Flow Star Points

Gas Ratio =0.42
— e R —

Total Flow = 660 sccm | Cl, 195
He 465
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Table 3.10 Values for Cl, and He for Total Flow Star Points

Gas Ratio = 0.42
_ —_— 0 |
Total Flow = 420 sccm | Cl, 124
He 296

The randomized star and two center points run in Phase II are listed, in order of execu-

tion, in Table 3.11.

Table 3.11 Randomized Phase II Runs

run # P R w G T lot# | wit#
—" e —

25 425 0.42 339 0.9 540 9-1 4
28 425 042 | 275 | 0.75 540 9-2 16
24 425 026 | 275 0.9 540 9-2 14
G5 425 042 | 275 0.9 540 9-1 1
29 425 042 | 275 0.9 660 9-1 6
22 329 042 | 275 0.9 540 9-2 17
27 425 | 042 | 275 1.5 540 9-1 2
26 425 042 | 213 0.9 540 9-2 18
C6 425 042 | 275 0.9 540 9-2 13
23 425 0.58 275 0.9 540 9-1 5
30 425 042 | 275 0.9 420 9-2 15
21 521 042 | 275 0.9 540 9-1 3

3.2.3 Verification Experiment

The purpose of the Verification Experiment is to collect a second data set which can be
used to test the prediction capability of the models. After the models are built with the data
from the Training Experiment, they are tested with the data from the Verification Experi-

ment to determine a prediction metric that indicates the overall prediction accuracy of the
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models. The Verification Experiment was run about four weeks after the Training Phase II
Experiment. The input settings for this experiment are 10 % from one of the nominal
values at a time. These runs were similar to the star points of Phase II, but at smaller devi-

ations from the nominal values. Table 3.12 shows the run conditions for the Verification

Experiment.
Table 3.12 Verification Experiment Runs
run # P R w G T lot# | wir#
— —_— sSE o —
V1 383 | 042 | 275 0.9 540 10 1
V2 425 | 042 | 275 0.9 540 10 14
V3 425 | 042 | 247 0.9 540 10 13
V4 425 | 042 | 275 | 0.85 | 540 10 8
V5 425 | 042 | 275 0.9 540 10 6
V6 425 | 038 | 275 0.9 540 10 18
V7 425 | 042 | 275 09 513 10 20
V8 425 | 042 | 275 0.9 540 10 4
V9 467 | 042 | 275 0.9 540 10
V10 | 425 | 042 | 303 0.9 540 10 17
Vil 425 | 042 | 275 0.9 540 10 2
V12 | 425 | 042 | 275 | 095 | 540 10 16
V13 | 425 042 | 275 0.9 540 10 19
V14 | 425 046 | 275 0.9 540 10 15
V15 | 425 042 | 275 0.9 567 10 5
3.2.4 Diagnosis Experiment

While the purpose of the previous experiments were to obtain data to develop and ver-
ify all three modules of the system, the objective of the Diagnosis Experiment was to

obtain data sets to further verify the Diagnosis Module, described in detail in Chapter 5. In
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this experiment, the RF power, chamber pressure, and Cl, gas flow were varied one at a
time on the Lam Rainbow 4400 etcher. Recall that in the previous experiments, because
the gas ratio and total flow of the gases are more suitable when modeling etch rates, they
were varied instead of single gas flows. When the gas ratio was varied, the total flow was
kept constant, and vice versa. When detecting and diagnosing equipment faults, however,
it is more probable that one mass flow controller will be faulty at a time, so that the gas
ratio or total flow will not remain constant when the other changes. Therefore, this experi-

ments simulates a faulty mass flow controller by varying the Cl, gas flow alone.

The levels at which the single faults were injected are +15% and +7.5 % from the
same nominal values used in the previous experiments. Table 3.13 summarizes the input
setting values for these percentages. Note that the He flow remained constant at 380 sccm

and the gap spacing was fixed at 0.9 cm for all runs.

Table 3.13 Diagnosis Experiment: Input settings

Input Setting | -15% | -7.5% C:;‘i‘:t" +7.5% | +15%
[Pressurc (mtorm) | 361 | 393 | 425 257 | 489 |
Power (watts) 234 254 275 296 316
Cl, (sccm) 136 148 160 172 184

Runs at each setting were replicated, and four centerpoint wafers were run, making a
total of 28 runs. Half of the runs were used to train the Diagnosis Module, and half were
used to determine the accuracy of diagnosis. Blocks were chosen to account for equipment
aging and chamber seasoning during the experiment, differences in the processing of the
wafers, and different wafer lots. The runs for each block were then randomized. The

resulting blocks are listed, in execution order, in Table 3.14 and Table 3.15.
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Table 3.14 Diagnosis Experiment: Block I Randomized Runs

run# P W Cl, lot# | wir#
11 |45 |25 | 148 | 15 | 8

6 425 296 160 15 23
10 425 275 172 14 19
425 254 160 15 3

425 296 160 14 18
457 275 160 15 9

4 393 275 160 14 20
7 425 254 160 14 24
13 425 275 160 14 15
2 457 275 160 15 14
9 425 275 172 15 20
12 425 275 148 15 19

3 393 275 160 14 13

W | oo

P

Table 3.15 Diagnosis Experiment Block I Randomized Runs

run# P w Cl, lot# | wfr#

m
9 425 275 184 15 4

3 361 275 160 15 7

12 425 275 136 15 21
6 425 316 160 15 11
2 489 275 160 15 5

10 425 275 184 15 18
13 425 275 160 14 16
5 425 316 160 15 24
7 425 234 160 14 23
11 425 275 136 15 15
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Table 3.15 Diagnosis Experiment Block I Randomized Runs

run# P \ Cl, lot# | wir#

4 361 275 160 15 16
425 234 160 14 22
1 489 275 160 14 14

3.2.5 Wafer Measurements

In all the experiments for the Lam Rainbow 4400, film thickness measurements were
taken by a Nanometrics Nanospec AFT system on 9 die per wafer. The points measured
are as depicted in Figure 3.4. An index of refraction of 3.7 was used for polysilicon, 1.456
for oxide, and 1.631 for positive photoresist. The polysilicon measurements were taken
over 600A gate oxide, while the photoresist measurements were taken over 550A gate
oxide. The thinner gate oxide was due from initial endpoint etching of the polysilicon to
clear area for the photoresist. The Alphastep 200 Automatic Step Profiler was used to dou-
ble check the Nanospec measurements. The film thicknesses were measured before and
after etching. Thicknesses of polysilicon, gate oxide, and photoresist were measure for
those wafers etched in the Training and Verification Experiments, while only the thickness

of polysilicon was measured for those etched in the Diagnosis Experiment.

The etch rates at each measured point were calculated by subtracting the post-etch
from the pre-etch measurements, and dividing by the etch time. In the models, etch rates
are averaged over the 5 points in the inner ring, as shown in Figure 3.4. The non-unifor-
mity was calculated by taking the difference between the etch rates of the outer ring of 4

points and the inner ring of 5 points, scaled by the etch rate of the inner ring.
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Figure 3.4 Wafer Measurement Points

3.3 Lam TCP 9600

The second set of experiments was berformed on a Lam TCP 9600 metal etcher. We
used the results of this experiment to develop and verify an algorithm to include various
input recipes in the fault detection algorithm. The actual experiment was conducted by
Texas Instruments in Dallas in the context of a larger study of various sensors and analysis
techniques. The test structure used in this experiment was a multi-layer structure with TiN,
Al, TiN, and oxide on silicon, which mimics the via and contact processes Texas Instru-

ments is developing. A schematic is shown in Figure 3.5.

3.3.1 Static Experiment

The first experiment conducted by Texas Instruments was a three-level, fractional fac-
torial design with six centerpoint and three “checkpoint” wafers. The checkpoint wafers,
run at different levels than the experimental runs, were used to verify the models built

using the data from the experiment. Because the process is proprietary by Texas Instru-
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TiNi

oxide

Figure 3.5 Test Structure for Lam TCP 9600 Experiments.

ments, the experimental design is listed in terms of percent change from nominal in Table

3.17. The three levels used in the experiment are shown in Table 3.16.

Table 3.16 Three Levels and Checkpoints in the TCP Static Experiment

Input Setting - + checkpt 1 | checkpt2 | checkpt 3
RF Top - 40% +40% +14.3% - 149% -21.4%
RF Bottom -20% +20% - 10% +10% - 10%

Cl, -8.13% +6.93& -4% + 4% +6.67%
BCl; -6.93% +8.13% + 4% - 4% - 6.6%
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Table 3.17 TCP Static Experiment
run # .ﬁ; ll‘:ft Cl, | BCl3 || un# ,?; ]l;(l:t Cl, | BCl;
E — —

1 0 0 0 19 0 0 + -
2 - + 0 0 20 0 - - +
3 + + - + 21 0 + 0 0
4 0 + + - 22 - 0 0 0
5 - 0 + - 23 - - + -
6 0 0 - + 24 0 0 0 0
7 0 - 0 0 25 - - 0 0
8 0 0 0 0 26 0 + - +
9 + - + - 27 + - - +
10 + 0 0 0 28 0 - + -
11 - - - + 29 + 0 + -
12 checkpoint 1 30 + + 0 0
13 0 0 0 0 31 0 0 0 0
14 + 0 - + 32 - + + -
15 + + + - 33 - 0 -
16 + - 0 0 34 + - -
17 - + - + 35 checkpoint 2
18 0 0 0 0 36 checkpoint 3

3.3.2 Dynamic Testing and Verification Experiments

Because we are interested in capturing trends in the data due to time, and the Static

Experiment was conducted all in one day (hence the name “static”), we propose the fol-

lowing experiment for the second set of experiments. This Dynamic Experiment is
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designed to produce information that can be used to map the input settings to the real-time

data, while taking into account the time trends in the data.

Five inputs will be varied in the fractional factorial experiment: Top RF Power (A),
Bottom RF Power (B), Cl, (C), BCl; (D), and Pressure (E). The first four parameters were
varied in the first experiment, while pressure will be added in the second experiment. We
propose a three-phase experiment run over a series of days or weeks. The first phase con-
sists of half of the factorial design, as shown in Table 3.18. The fraction was determined
from the blocking equation: block = ABCDE. The second phase consists of one or two
lots of baseline data (nominal recipe). The first and second phases will be used to train the
system, and is called the TCP Training Experiment. Finally, the third phase is the other
half of the factorial design, as listed in Table 3.19. This third phase, called the TCP Verifi-
cation Experiment, will be used to verify and check the validity of the models built using
data collected during the Training Experiment. Note that both fractional factorial designs

should be randomized before the actual experiment.

Table 3.18 TCP Dynamic Experiment: Training Phase I

Trial | RFTop | RFBot Cl, BCl; Pressure | block
1 + ?%?— + +
4 + - -

6 + + - + - +
7 + + - - + +
10 + - + + - +
11 + - + - + +
13 + - - + + +
16 + - - - - +
18 - + + + - +
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Table 3.18 TCP Dynamic Experiment: Training Phase I

Trial | RFTop | RFBot Cl, BCl; Pressure | block
_ —_—

19 - + + - + +
21 - + - + +
24 - + - - - +
25 - - + + +
28 - - - - +
30 - - - + - +
31 - - - - + +

Table 3.19 TCP Dynamic Verification Experiment
Trial | RFTop | RF Bot Cl, BCl; | Pressure | block
2] + | + | + | + | - | - |

3 + + + - -

5 + + - + -

8 + + - - - -

9 + - + + -
12 + - - - -
14 + - - + - -
15 + - - - + -
17 - + + + -
20 - + - - -
22 - + - + - -
23 - + - - + -
26 - - + - -
27 - - - + -

47
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Table 3.19 TCP Dynamic Verification Experiment

Chapter 3

Trial
29

RF Top

RF Bot

—_—

Cl,

BCl,

—_— |

-+

Pressure

+

block

32
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Chapter 4

Fault Detection

4.1 Introduction

This chapter describes the module which detects equipment malfunctions in real-time.
It has been shown by Guo and Spanos e al. that real-time tool signals can be used effec-
tively to detect equipment malfunctions on a real-time basis [4.1][4.2]. Although effective
for equipment fault detection in real-time, the original algorithm sometimes resulted in
false alarms! at the start of a wafer. Moreover, the fault detection algorithm required train-
ing for each recipe on a given machine. While it may not pose a large problem for manu-
facturing houses which produce a few high volume products, training the module can

become unwieldy for manufacturing houses with a large mix of products.

This thesis develops improvements to the original algorithm resulting in more robust

fault detection with fewer false alarms. In addition, the algorithm has been expanded to

1. A false alarm occurs when the module generates an alarm indicating a problem when the process is actually in con-
trol.
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accommodate several different recipes on the same machine. This chapter first gives an
overview of the module and highlights the improvements made to the original fault detec-

tion algorithm, followed by a discussion of using multiple recipes.

4.2 Background and Motivation

To determine whether a machine is functioning properly, standard practice in industry
includes building various statistical process control (SPC) charts based on monitor wafer
output states or input settings. When the monitored parameter exceeds specified limits set
by the process engineer (specification limits), an alarm is generated and a technician is
summoned to diagnose and then correct the problem. Examples of measured wafer states
include etch rate and wafer uniformity. To determine whether or not the wafer states of
interest are within the specification limits, monitor wafers are usually run and measured
on a regular basis, perhaps at the start of each shift and after machine recipe changes
(change of the input settings on the machine). Unfortunately, machine problems which
occur between monitor wafers are undetected until the next monitor wafer is run. This

delay in fault detection can result in considerable scrap produced by the equipment.

In addition to monitor wafers, signals corresponding to the input settings may be mon-
itored for every wafer processed in the equipment. Examples of monitored signals include
the chamber pressure or gas flows. Although control charts based on these equipment sig-
nals can detect faulty wafers during production, this method also suffers from some major
drawbacks. One serious problem is that the monitored signals may not be issuing the cor-
rect information. For example if a mass flow controller (mfc) is miscalibrated, although
the reading on the mfc may be within specifications, the actual flow rate may be outside of

the specification limits.
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Another disadvantage of using this system of plotting individual control charts for
each monitored signal of interest is that as the number of monitored signals grow, so does
the number of control charts that the operator must monitor. Eventually, there may be too
many charts for an operator to realistically monitor. A much more serious problem arises
when the variables plotted in the control charts are correlated. It can be shown that the

false alarm rate escalates quickly when several signals are correlated [4.3].

The Fault Detection Module presented in this thesis eliminates the problems outlined
above. Instead of relying on monitor wafers or signals based on the input settings to detect
equipment malfunctions, the module uses real-time tool data automatically collected from
the machine. As described in section 2.3, the real-time signals monitored consist of both
electrical and mechanical signals which reflect the actual state of the machine. For exam-
ple, instead of collecting signals from a gas mfc directly, the fault detection module uses
the throttle position and other signals to glean information about the gas flow. The goal is
to monitor those signals which are most sensitive to the actual equipment state. Through
extensive experimentation and analysis described in Chapter 2, the sets of signals (among
those collected by the monitoring systems used in this work) most useful for fault detec-

tion for plasma etchers are listed in section 2.3.

One may be tempted to simply use the standard SPC chart to monitor the real-time
data. Applying standard control charts to the real-time data, however, is not a viable
method. Although the real-time signals contain information about the equipment state,
control charts can not be applied effectively to real-time tool data. Because the real-time
tool signals are collected at either 1 or 2 Hz (depending on which monitor is used) time
series patterns are observed both within each wafer and across several wafers due to con-
troller adjustments and equipment aging. These signals are highly auto- and cross-corre-

lated. In addition, the correlation structure and the mean value for a given signal may also
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vary with time, making the series non-stationary. Thus, the data are not identically, inde-
pendently, normally distributed (IIND), and can not be used directly in a traditional con-

trol chart such as a Shewhart or X - R chart [4.3].

Figure 4.1 shows an example of a standard Shewhart chart applied to an endpoint trace
for eight normal production wafers. The data is filtered as described in section 2.4 so that
only data from the main etch step are included. Note that the endpoint trace for each wafer
is highly auto-correlated, as seen by the rising trend for the first few seconds of each wafer
etch, followed by a steep downward trend. These trends, which occur naturally in the data,
result in alarms when the Western Electric Company (WECO) rules for SPC charts are
applied [4.4]). Following the WECO rules, the process is considered to be out-of-control if

one or more of the following occur:

* One point plots outside of the 3-sigma control limits.
*» Two of three consecutive points plot beyond the 2-sigma limits.

+ Four of five consecutive points plot at a distance of 1-sigma or beyond from the

center line.

« Eight consecutive points plot on one side of the center line.

In addition, Figure 4.1 shows that the overall mean of the endpoint trace across several
wafers changes with time, causing the endpoint trace to dip below the lower control limit
(LCL), resulting in alarms. Since the endpoint data is from production wafers in statistical

control, the autocorrelation and varying mean will result in false alarms.

To make matters worse, applying standard control charts to real-time data also results
in a high missed alarm! rate. Using the same example in Figure 4.1, a change in the trend

or shape of the endpoint trace will not be detected using the control limits as shown. Thus,

1. A missed alarm results when an alarm is not generated when the process is out-of-control.
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to lower the false alarm rate the control limits are widened, which increases the missed

alarm rate.

counts

74

False Alarms

LCL

Missed Alarm False Alarms

Figure4.1 Shewhart control chart applied directly to endpoint trace.

4.3 Fault Detection Algorithm

Given the above problems with applying control charts directly to real-time data, a dif-
ferent approach is taken by the Fault Detection Module to utilize the information found in
the real-time data to perform “real-time SPC.” The module first learns the shape of the in-
control real-time data, and later detects deviations from this shape. More specifically, time
series models are utilized to analyze the real-time signals available from manufacturing
equipment. The models built from data collected while the machine is in-control establish
the baseline behavior of the machine, and are called baseline models. When subsequent
production wafers are processed in the machine, the fault detection module detects devia-
tions from the baseline models in the new signals, and generates alarms. The following

sections describe the algorithm in more detail, beginning with time series models.
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4.3.1 Baseline Behavior Modeling

4.3.1.1 Time Series Models

The first step in the algorithm is to model each signal using a time series model, which
accounts for the expected patterns in the data. Once these patterns (whose presence does
not indicate a malfunction) are filtered from the signal, deviations can be detected in the
filtered signals, suggesting that a malfunction, or equipment fault, has occurred. The time
series model captures the dependencies among sequential readings of the same process
variable. Dependencies within readings collected over time can be described by univariate
time series models such as ARIMA(p, d, g) models, where p is the auto-regressive order, d
is the integration order, and q is the moving average order. The form of the equation for a
non-stationary! time series x, with autoregressive parameters ¢; and moving average

parameters 6, is [4.5]

p ) q
W= = ) W+ Y B3, @.1)
k=1 k=0

where 6, = 1, |¢1| <1, the error a, ~ N(O, 0'2) , and w, are the differenced data

w, = Vix, (4.2)

where V9 is the d'h order of differencing operator, and

2 1 1
1x = Vx.=V \% =X, -
Vi =x,-%x,_;, Vx,=2Vx -V _| =x-2x_;+X,_,.... 4.3)
The assumption behind the univariate analysis is that a significant portion of a real-

time signal’s behavior can be explained by using past observations of the signal. A more

thorough explanation of time series models is given in [4.5][4.6][4.7] and [4.8].

1. A stationary series has a constant mean, variance, and autocorrelation through time. A non-stationary series can often
be made stationary by differencing the data [4.5}[4.7).
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ARIMA(p, d, g) models can be derived from the collected data when the process is
under statistical control; in this way the models describe the baseline behavior of the pro-
cess. Once developed, the models are used with current readings to forecast each new
value. The difference between the forecasted value and the actual value of the signal from
the production wafers is the forecasting error, or residual. When the equipment is in statis-
tical control, the residuals are by definition IIND variables. These IIND residuals can then
be plotted in standard SPC charts to perform “real-time SPC.” An example of a baseline

model and in-control production data is shown in Figure 4.2.

Xr-i X;

Figure 4.2 ARIMA(p, d, q) model: The signals from the production
wafers w, are compared to the model of the baseline wafers W, , resulting in
residuals a, which can be plotted in a standard SPC chart.
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'4.3.1.2 Decomposition of Real-Time Data

The algorithm presented in [4.2] builds one seasonal ARIMA (SARIMA) model for
each sensor variable. As previously mentioned, a major disadvantage of this algorithm is
that false alarms often occur at the start of a wafer. While these false alarms can be antici-
pated and ignored, the new algorithm addresses this problem more formally. First,
SARIMA models are not appropriate to model the real-time data, because as described in
section 2.2.2, the pre-filtered wafer signals from the main etch step are concatenated. This
concatenation means the data do not form a natural continuous stream. One assumption
behind the SARIMA model is that the variance and the mean of the filtered residuals is the
same regardless of the season. Since the discontinuity violates this assumption, the idea of

seasons is eliminated in the new algorithm.

The most significant change in the algorithm is the decomposition of the real-time sig-
nals from each sensor into long-term and short-term components before modeling
[4.10][4.11]. This decomposition is necessary because each component describes a differ-
ent behavior of the process. An example of signal decomposition of the impedance signal
for several wafers is shown in Figure 4.3. The long-term component, comprised of the
average value of the signal for each wafer, models the overall trend across a number of
wafers. On the other hand, the smaller deviations within each wafer create the short-term
component, which captures the short-term patterns during the processing of each wafer.
Most importantly, the variation of the long-term component is much larger than that of the
short-term component, illustrating the point that the short-term components are more sen-
sitive to faster equipment fluctuations, while the long-term components reflect longer
duration changes in overall equipment state. This decomposition of the signals into com-
ponents with drastically different variances is the primary reason the false alarm rate has

been decreased. To simplify later calculations, the short-term components are demeaned
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by wafer, while the long-term components are demeaned by an average of the baseline

wafers after the decomposition.

Notice that the short-term component for each wafer in Figure 4.3 roughly follows a
downward trend. This trend, modeled by the integrative part of the ARIMA model, is cap-
tured for each wafer so that deviations from this trend will be detected. Deviations in each
of the components reflect different changes in equipment state. For example, a shift in RF
power that lasts the duration of the wafer etch will be seen as a shift in the long-term sig-
nal. A short spike in RF power, however, will be exhibited in the short-term signals. As
another example, a dirty film on the wafer results in an alarm by the short-term signals but
not by the long-term signal. Because the decomposition allows us to model two different
types of faults, the resulting algorithm is more robust than the original method, gives sig-
nificantly fewer false alarms, and generates residuals that are much more suited for diag-

nosis.

4.3.2 Monitoring Production Wafers

Once baseline behavior has been established, production wafers can be run through the
machine. As in the training case, the real-time signals from the production wafers are
decomposed into long- and short-term components. In single wafer processing equipment,
these components represent the wafer-to-wafer averages and the within-wafer signal
trends, respectively. Each component is then filtered using the respective baseline time
series model. The residuals x (the difference between the actual and forecasted baseline
values) for each component are then combined using the multivariate Hotelling’s T2 statis-

tic into a single score!:

= rn(:x—())'S'l (x-0)

1. Bold face upper case letters denote matrices. Lower case bold face letters and Greek letters with an underscore ( )
denote column vectors. Scalars are denoted by lowercase letters. Transpose is denoted by ( ')
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Figure 4.3 Real-time Signal Decomposition for the Impedance Signal
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where 7 is the total number of observations and S is the estimated variance-covariance

matrix of the residuals used to build the original baseline models.

The scores are graphically displayed in the resulting double T2 control chart. The use
of the Hotelling’s T? statistic reduces the problems associated with several control charts
of correlated signals resulting in a high false alarm rate [4.3). The resulting Hotelling’s T2
scores for each component are plotted in a one-sided SPC chart. The upper control limits
(UCLs) are scaled so that both sets of scores can share the UCL on the same control chart.
Data points corresponding to run-time faults have residuals which cause the Hotelling’s T2
statistic to be significantly different from zero. One set of scores, obtained from the short-
term components, detects faults during the process time of each of the wafers, while the
second set of scores, obtained from the long-term components, detects faults by looking at

violations in trends across several wafers.

If no equipment faults are detected, normal operation of the machine continues. When
a malfunction is detected, the diagnostic routine is triggered, and an alarm is generated to
alert the operator!. Diagnosis currently uses the long-term residuals (the difference
between the actual real-time signal averages for that wafer and the time series model pre-
dictions for the signal averages) as a signature of the specific equipment malfunction {4.9].

An overview of the real-time SPC data analysis flow is shown in Figure 4.4.

This new algorithm has been implemented in RTSPC, a software package which
includes automated model generation [4.10], data filtering, and a novel double T2 graphi-
cal control chart for the display of alarm conditions [4.11]. RTSPC interfaces with a work-

cell controller and can serve as a platform for future real-time process control.

1. In the examples shown, the relevant data was manually transferred to the diagnostic module. An automated link is
currently under development.
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Figure 44 Real-Time SPC Data Flow: First, the raw data is
decomposed into the long-term and short-term components. They are each
filtered using time series models. The resulting residuals are then applied to
a Hotelling’s T2 filter, and the scores for each set of components are plotted
in the double T? chart. If a fault is detected, the long-term component is
siphoned to the Diagnostic Module.

4.4 Fault Detection Example

To demonstrate the capability of RTSPC, several experiments were conducted in the

Berkeley Microfabrication Laboratory. As described in the previous chapters, the equip-

ment chosen for the experiment was the Lam Rainbow 4400 plasma etcher. The following

sections show examples of both baseline and production processing.

4.4.1 Baseline Processing and Model Generation

To use RTSPC on a specific process, a set of baseline wafers must first be processed to

build the time series models needed for data filtering. During the processing of these
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wafers, it is essential that the machine be operating in statistical process control. In this
example 11 baseline wafers were first processed on the Rainbow 4400 using the given rec-
ipe. The real-time data from five signals (RF impedance, RF phase, endpoint, coil and tune
vane position) were selected to generate a model set using the automatic model generation

routine.

The results of the baseline model generation are shown in Figure 4.5, which displays
the double T? chart for the data used to generate the model. The user may also view the
signals and residuals resulting from the baseline model. Note that in double T2 chart the
long-term signal is never out of control, although the short-term signals show some points
close to the control limit. If the baseline contains alarms, the user may choose to eliminate
the wafers showing alarms and rebuild the model. Note, however, that for an expected
false alarm rate of 0.05, one would expect on average 5 points indicating alarms out of
every 100 points. Therefore, it is normal if on occasion the baseline data indicates alarms,

even when the process is in control.

4.4.2 Real-Time SPC During Processing

Once the time series models for the baseline of this process are created, the RTSPC
software generates real-time alarms in the case of misprocessed wafers. To demonstrate
the alarm generation capability of RTSPC, an additional 15 wafers were processed with
the baseline recipe, along with 3 runs with intentional faults. The same sensor data used in

the baseline models were collected and analyzed by RTSPC.

The results for the additional wafers are shown in Figure 4.6. All but the sixth, twelfth,
and eighteenth wafers were processed when the equipment was in control, and no long- or
short-term component alarms for these wafers were signaled by RTSPC. The sixth wafer
was processed with a 10% decrease from the baseline value of pressure. The gas flow ratio

of the twelfth wafer was decreased by 10% from the baseline value. The power was
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Figure 4.5 Baseline Double T2 Chart. Shown in the one-sided control
chart are the results from both the short-term component and the long-term
component, so that information can be obtained on both a within wafer and
wafer-to-wafer basis. The control limit is scaled so that data from both
components can be plotted on the same chart.

increased by 10% from the baseline value while the eighteenth wafer was processed. The
injected faults simulate a fault in the equipment such as a problem with the chamber
pumping system, miscalibration of a mass flow controller, or a malfunction in the RF
matching network. All three wafers with injected faults resulted in long-term component
alarms. In the current implementation of the RTSPC software, the long-term component
alarm changes color (from green to red on the UNIX console), giving clear visual indica-

tion that a malfunction occurred.

Although not shown, cases exist when the short-term components alone generates
alarms. An example of such alarms occur for wafers with dirty films. These alarms imply
that although the mean values of the real-time signals were in control, the time series pat-

tern of the signals during processing was altered as the equipment compensated for the
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change in film quality. These alarms further show the sensitivity of the RTSPC algorithms

and the importance of the real-time signal decomposition.

2012 _ Double-T42

16.096
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00048 B

4024
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Figure 4.6  Graphical Display of Production Double T2 Control Chart.
The sixth, twelfth, and eighteenth wafers trigger long-term component
alarms. The gas flow ratio of the twelfth wafer was decreased by 10%
from the baseline value. The power was increased by 10% from the
baseline value while the eighteenth wafer was processed.

The RTSPC software can display the real-time signals and residuals to give the opera-
tor additional insight into the cause of the alarms. Figure 4.7 shows the signal for the RF
coil position and its associated long- and short-term residuals, called wafer-to-wafer and
within-wafer residuals, respectively. The residual plots beneath the signal clearly show if
components of the signal caused the alarm. Note the large shifts in the coil position during
the processing of all three faults, as the equipment compensates for the miscalibrations.
This shift in the means is clearly seen in the wafer-to-wafer residual plot, which shows
large residuals in the cases of wafers 6, 12, and 18. When the machine is in control, the

wafer-to-wafer residuals do not exceed the 3-sigma upper and lower control limits. In this
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example, the within-wafer residuals are in control for all wafers. Each modeled compo-
nent can be viewed in the same manner. In the case of an alarm, the software’s interactive
capability allows the user to selectively view any of the signals or residuals to aid in diag-

nosis of the malfunction.

The above example illustrates the important point that several faults map onto changes
in each real-time signal. In the example, all three faults resulted in an positive shift in the
mean of coil position. To distinguish the faults, other signals must be examined. There-
fore, in addition to alarm generation and the display of individual signals, there is a need
for a diagnosis module which can interpret the signatures of the faults to classify faults to
specific equipment problems. Work on the diagnosis algorithms is the subject of the fol-

lowing chapter.

4.5 Multiple Recipes

The fault detection algorithm described in the previous section is extremely sensitive,
catching faults at 5% from nominal values. The algorithm has been successfully applied to
different types of etchers, including both parallel plate and TCP machines. Various faults
have been detected, such as having the improper wafer in the chamber, faulty mfc’s, mis-
calibrated electrode gap spacing, spikes in the RF power, and changes in the chamber
pressure. The limitation of the algorithm is that the baseline behavior of the real-time sig-
nals must be learned for each set of input settings, called a recipe, used on each machine.
Furthermore, processes with different loading from different mask patterns and exposed

surface on the wafers also require individual training runs.

This section proposes an algorithm to train the fault detection module to recognize
several different recipes without having to train each one separately. The main idea is to

use both time series and linear regression models. As before, the time series models cap-
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ture the time domain trends seen in the data. Added to these models are the linear regres-

sion models, which predict the effect of recipe changes.

The general class of models employed are called ARIMAX models, which is an exten-
sion of ARIMA models. The “X” stands for “exogenous,” which simply means the model
now contains additional explanatory variables. The next section briefly describes ARI-

MAX models. A more thorough discussion is given in [4.12][4.13][4.14].

4.5.1 ARIMAX models

ARIMAX models, also known as Transfer Function Models, forecast a time series
using more than one time series from other variables, thus introducing explicitly the rela-
tionship among the signals. The overall ARIMAX model for a stationary series y; based

on the stationary time series x; has the following form [4.13][4.14]:

Cw (B 0 (B
y, = %B))xt_“ﬁ%at (4.4)

where

* B is the backshift operator defined as: kat = X,_i for integers k
o Cis an unknown scale parameter
» the delay b is the number of time periods before x, begins to influence y,

1,
+0(B) = 0, - ®;B—...—wB is the x, operator of order / where / represents

the number of past x; values which influence y;

*8(B) = §,—6,B—... -8 B is the y; operator of order r where r represents the
number of past y, values which influence itself

+6(B) =6,-60,B-...— Bqu where g is the number of moving average terms

in the ARIMA(p, d, q) model for the error component

*¢(B) =¢,-¢,B—-...— cppBP where p is the number of autoregressive terms
in the ARIMA(p, d, q) model for the error component

» and error a -~ N(O, 02).
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The first term in the model accounts for the cross-correlation between series x, and
output y;, while the second term models the error not taken into account by the correlation.
On other words, the first term accounts for the systematic portion of the model based on x,
while the second term is an ARIMA(p,d,q) model for the error. If m parameters are

included in the model, Equation (4.4) can be easily extended to
2 G(B) Sit-b ¢(B) nd

Figure 4.5 shows a schematlc of the above transfer function model [4.13]. The top sec-

4.5)

tion of the figure shows the transfer function which determines the influence of the explan-
atory variables x; i, X 1, ... »Xj ¢ » --- »Xp¢ ON the dependent variable y,. The lower section
shows the univariate model for the noise term, modeled with a standard univariate

ARIMA(p, d, q) model.

In this application, a simplified version of the above equation was employed to model
both the time series and recipe changes. First, the input settings from an experimental
design were fitted in a linear regression model to model each real-time parameter. Next,
the residuals, which contain a time component, are fitted using ARIMA(p, d, q) models.
This is equivalent to setting the ratio ——— @i (B)

8 (B)
the coefficients to the linear regression model

= 1 in the above equation and setting C; to

4.5.2 Example of Multiple Recipes

The experiment conducted to evaluate this theory was performed at Texas Instruments
on a metal etcher, as described in section 3.3. Ten real-time signals were collected and
four input settings were varied during the experiment. The eleven real-time signals are:
RF Tune Vane Position, RF Load Coil Position, Line Impedance, RF Phase Error, DC
Bias, TCP Tune Vane Capacitor Position, TCP Load Capacitor Position, TCP Line Imped-
ance, TCP Phase Error, Endpoint, and RF Bias. They are described in greater detail in sec-

tion 2.3.2. The input settings were: RF power of the top coil, RF power of the bottom
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Figure 48 Transfer Function Model. The top section of the figure
shows the transfer function which determines the influence of the
explanatory variables x; j, X3, ... )Xjy » ... X ON the dependent variable y,.
The lower section shows the univariate model for the noise term, modeled
with a standard univariate ARIMA model [4.13].

electrode, Cl; flow, and BCl; flow. The data from the 32 runs were used to build regres-
sion models for each long-term component for each signal. The statistical software pack-

age S-PLUS was used to build both the regression and time series models .

All four input settings and their corresponding two-way interactions, for a total of 10
parameters, were used as input to build the models, with the exception of TCP Load
Capacitor Position, which required all the main squared terms in addition. Because the
input settings having different units, which could potentially bias the models, the input

data were scaled so that each parameter has a mean of 0 and variance of 1. Principal com-
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ponent regression (PCR) models were built for each long-term component. The first seven
principal components (PC’s) explain 99% of the variation in the data. Models were chosen
so that the coefficients of each term in the model is significant at the 0.05 level. PCR is
described in more detail in section 6.3.3. The results of the regression models are summa-
rized in the following ANOVA tables. The ANOVA tables show the degrees of freedom
(d.f.), the sum of squares (SS), and mean sum of squares (MS) for the regression, the
residuals from the regression, and the residuals from the ARIMAX models. The test statis-
tics for the regression models, which follow F-distributions, are calculated as the regres-
sion MS divided by the residual MS. The corresponding P-values give a measure of the
model significance. Also listed is the adjusted R? statistic for the regression models, which

takes into account the number of terms used in the model.

Note that models for the long-term components of RF Line Impedance and RF Phase
Error are poor, in terms of both the F and the adjusted R? statistics. In addition, significant
models for the long-term components of TCP Line Impedance and TCP Phase Error could
not be found, and thus are not listed. This is because for these signals the range of the cen-
terpoint data is large compared with the experimental runs, indicating that the input set-

tings do not greatly affect these real-time signals.

Table 4.1 ANOVA Table for TCP Tune Vane Capacitor Position

Source df. SS MS F P-value
e a— e e —
Regression 5 9.15¢7 1.83e7 2505 0
Residual 30 | 2.19e5 7.30e3

adj. R? = 0.997
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Table 4.2 ANOVA Table for TCP Load Capacitor Position

Source df. SS MS F P-value
Residual 32 | 1.36e6 4.246e4
ARIMAX 28 | 8.74e5 3.13¢4 1.36 0.206
adj. R%=0.804
Table 4.3 ANOVA Table for Endpoint
Source d.f. SS MS F P-value
=Regression =:5 5.92¢8 1.18e7 TO_—_
Residual 32 | 6.43e6 2.14e5
ARIMAX 28 |5.17¢6 1.85e5 1.16 0.348
adj. R?=0.988
Table 4.4 ANOVA Table for RF Bias
Source df. SS MS F P-value
Regression 6 1.99¢4 3.31e3 333.9 0
Residual 29 | 287.7 9.92
ARIMAX 24 | 186 7.75 1.28 0.271
adj. R?=0.983

Table 4.5 ANOVA Table for RF Load Coil Position

Source df. SS MS F P-value
Rogression | 5 | 3.42¢6 | 6835 | 3626 |0 |
Residual 30 {5.65¢4 1884
ARIMAX 29 | 5.40e4 1863 1.01 0.490
adj. R2=0.980

Once the regression models have been determined, the residuals are modeled using

71
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Table 4.6 ANOVA Table for DC Bias

Source df. SS MS F P-value
Residual 30 | 331.1 11.0
ARIMAX 26 | 249 9.58 1.15 0.361
adj. R2=0.981

Table 4.7 ANOVA Table for RF Line Impedance

Source df. SS MS F P-value
Regression |1 | 131e5 | 131e5 | 1239 | 0.001253 |
Residual 34 | 3.60e5 1.06e4
ARIMAX 32 | 3.15e5 9.84e3 1.08 0.415
adj. R? = 0.207

Table 4.8 ANOVA Table for RF Phase Error

Source df. SS MS F P-value
Residual 33 | 4.58e6 1.39¢5
adj. R2 = 0.281

Table 4.9 ANOVA Table for RF Tune Vane Position

Source df. SS MS F P-value
'Regre_TT 6 2.44¢e6 4.07e5 1421 0
Residual 29 |8.32e4 287
ARIMAX 25 | 6.65¢3 266 1.08 0.462
adj. R%2=0.996

ARIMA models, as described in section 4.3.1.1. The ARIMA model orders for the residu-
als which could be modeled are listed in Table 4.10. When combined with the regression
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models, the time series models result in smaller absolute MS values for the majority of the
signals. Figure 4.6 shows the predicted vs. actual plot for the TCP Load Capacitor Posi-
tion. Both the original regression model and the new ARIMAX model are plotted. The fig-
ure shows that the ARIMAX model results in slightly better models.

Table 4.10 ARIMA(p, d, q) Models for the Residuals

Real-Time Signal ARIMA(p, d, q)
RF Tune Vane Position ARIMA(2,0, 2)
RF DC Bias ARIMA(2,1,1)
RF Load Coil Position ARIMA(1, 0, 0)
RF Line Impedance ARIMA(,0,1)
Endpoint ARIMA(1,0,1)
RF Bias : ARIMAG, 1, 1)

The improvement in the models, unfortunately, is not statistically significant when
tested with the F-statistic, as shown in Table 4.1 through Table 4.9. The second F-statistic
in the ANOVA tables compares the regression and ARIMAX models, and is calculated as
the ratio of the residual MS to the ARIMAX residual MS. The statistically insignificant
improvement in the models may be due to the fact that the experimental runs were con-
ducted in consecutive order all in the same day. Thus, little time effect was apparently cap-
tured in the data. Although the ARIMA models add improvement to the regression
models, the original models are already very well-fitted so the additional improvement to
the models is not as drastic as it may be when a larger time dependence appears in the
data. When the equipment is operational on the factory floor, the time component in the
data will be more significant than seen in this experiment. Thus, because significant time

series models can be built from the regression residuals and as a result the absolute resid-
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ual MS values are smaller for ARIMAX models, further study of the algorithm is war-

ranted.
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Figure 4.9 Predicted vs. Actual plot of TCP Load Capacitor Position.
Both results from (1) standard principal component regression and (2)
ARIMAX models are shown.

4.5.3 Future Work on the Multiple Recipe Algorithm

To simulate more realistic use of the equipment, and thus drifts in the equipment due

to time, we proposed a second experiment which will be conducted at Texas Instruments
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over a span of several weeks. In addition to adding a time element to the experiment, we
make sure the experiment itself has not overshadowed the actual time patterns in the data.
Thus, the experiment, described in detail in section 3.3, attempts to separate the experi-
mental design and the time patterns in the data. More specifically, the experiment consists
of a fractional factorial design from which the linear regression models for the long-term
component signals can be determined, followed by a series of baseline runs from which
the time series models can be obtained for each signal. The third phase of the experiment

consists of another fractional factorial design which can be used to test the algorithm.

4.6 Fault Detection Module Summary

The fault detection module is powerful in that it uses the non-invasive real-time sig-
nals automatically collected from the equipment during run-time to detect equipment mal-
functions. These faults include any abnormal behavior of the machine ranging from

miscalibrated mfc’s to loading the incorrect cassette of wafers into the machine.

In this chapter, we have demonstrated an improved algorithm for use in real-time SPC
applications. This algorithm, based on time series modeling and multivariate statistical
techniques, decomposes the real-time data from equipment sensors into two components
and produces a novel double T2 control chart for SPC. Examples using RTSPC, the soft-
ware utility implementing this new fault detection algorithm, were shown for fault detec-
tion on data collected from various plasma etchers. In addition, an algorithm combining
principal component regression and ARIMA modeling has been investigated to extend the

algorithm to include multiple recipes.
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Chapter 5

Fault Diagnosis

5.1 Introduction

There are several benefits of having a real-time diagnosis system. First, by detecting
and troubleshooting faults while the wafer is being processed, improvements in the capa-
bility and uptime of critical process equipment are possible. Second, a diagnostic system
can provide early indication of impending malfunctions, or prognosis, so that potential
problems can be corrected before a catastrophic failure occurs. An advantage of using
real-time tool data is that it can be collected automatically and inexpensively, and can be

used either independently or with other information, such as wafer measurements.

Once the Fault Detection Module described in the previous chapter has detected an
equipment fault, the residuals from the long-term component are siphoned to the Fault
Diagnosis Module. These residuals form a signature that can be traced back to a specific

equipment fault or group of faults. The types of faults identified include changes in the
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input settings such as pressure, RF power, and flow changes. Just as the fault detection
module requires training to recognize in-control, or baseline, behavior, the fault diagnosis
module requires training to recognize the signature of “faulty” signals. Thus, the module
is first trained by injecting known faults into the equipment. During production, when a
new fault is detected the fault diagnosis module will recognize the signature of the long

term component residuals and diagnose the root cause of the fault.

While the real-time residuals of the long term component contain relevant informa-
tion, diagnosis of the faults is not straightforward. For example, Figure 5.1 shows a two-
dimensional plot of the coil position residuals versus the impedance residuals. The two
fault clusters shown can not be easily distinguished by projecting the data on either of the
axes. Thus, two methods for fault diagnosis were developed. The first uses discriminant
analysis techniques. While this method has shown promise, it is not scale invariant and
potentially requires many training runs. The second method, which we call staged cluster-
ing and neural network analysis, overcomes this problem at the expense of more complex
training. Before describing the different fault diagnosis methods, however, the method

used to measure of accuracy of each diagnosis system is described.

5.2 Probabilities of Misdiagnosis

Once the module has been trained, it is important to know the accuracy of the diagno-
sis system, or the probability of misdiagnosis. In general, the probability of misdiagnosis
is defined as the probability of incorrectly allocating an individual point from fault popula-
tion [1; to population []; and is denoted as pj;. The estimate of p;; is [5.1]

. n;;
Py; = T (5.1)
where nj; is the number of individuals from fault population [I; which were allocated to

one of the other fault populations [I; (i #j), and n is the total number of points. In other
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Figure 5.1 Plot of Coil Position Residuals vs. Impedance Residuals from
the long term components. Two distinct fault types are shown.

words, the estimate of the probability of misdiagnosis is given by the ratio of the number
of misallocated faults to the total number of faults n. Three methods to test the validity of
the discrimination, resubstitution, cross-validation, and an independent test set, are

described in this section.

5.2.1 Resubstitution

The most straight-forward method, called resubstitution, is to test the system with the
same data set used to train it [5.2]. An estimate of the probability of misdiagnosis is sim-
ply the ratio of incorrectly diagnosed points to the total number of points. Because the
same data set used to train the system is also used to evaluate the diagnostic capability,
this method only describes how well the original data were trained and gives no informa-
tion about the actual accuracy of diagnosis of other data. Therefore, the resubstitution

method tends to result in optimistic misdiagnosis probabilities [5.3][5.4].
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5.2.2 Cross-Validation

Cross-validation, also known as the U-method or jack-knifing, is more objective than
resubstitution [5.4]. In this method, one point is taken out of the training analysis, and then
used to test the system. This occurs for each set of observations, so that for a total of n
observation sets, n different discriminant rules are determined using a subset of (n -1)
observation sets. This method results in more accurate estimates of p;; than the resubstitu-

tion method for multinormal populations with the same covariance matrices.

5.2.3 Independent Test Set

The most reliable method to determine the probability of misdiagnosis is to test the
system on an independent data set not used to generate the discrimination rule. The only
criterion is that the test set should be representative of possible faults that the equipment
may encounter. Although it requires more experiments, this method is the most accurate of

the three, and thus was chosen for this work.

5.3 Diagnosis Based on Discriminant Analysis

5.3.1 Theory

The analysis in this section is based on a diagnostic algorithm which uses discriminant
analysis techniques to analyze the long-term component residual data. In general, discrim-
inant analysis techniques classify a set of measurements into one or more known popula-
tions. In this case, the long-term component residuals comprise the measurement sets and
the populations are specific equipment faults. There are several methods to perform dis-
criminant analysis, depending on the distributions of the residuals and available informa-

tion.

The simplest case to analyze is one in which the exact probability density functions

(p.d.f.s) are known [5.1]. Although this is rarely seen in experimental work, the distribu-
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tions can be estimated fairly accurately for large samples. The training data sets for equip-
ment faults, however, are rather small and number fewer than 20 points. Furthermore, for
this application the cost of producing enough samples to obtain distribution estimates is

prohibitive.

Another case occurs when the overall form of the distributions are known, but certain
parameters of the distributions must be estimated. Two methods to perform discriminant
analysis for this case are maximum likelihood and likelihood ratio methods. If the proba-
bilities of each fault population are known a priori, Bayesian methods can also be utilized.
For the data set used in this application, however, prior probabilities are not known. It is
conceivable that if enough runs are performed on the machine, and the faults are tracked
and categorized, reasonable a priori probabilities for certain faults can be obtained. This
requires a large number of runs which becomes extremely expensive in a semiconductor

manufacturing environment.

Tests for normality such as the kurtosis or skewness tests show that the data can not be
assumed to be normally distributed. More importantly, the nature of the problem at hand
does not fit well into the maximum likelihood, likelihood ratio, or Bayesian methods. In
this application, the actual real-time residual signatures are mapped directly to the fault.
Since this signature is fixed and does not change from run to run, none of the above meth-

ods is the best approach.

5.3.2 Training via Fisher’s Linear Discriminant Method

Instead, the method of choice for this thesis is Fisher’s linear discriminant method,
which assumes nothing about the distributions and instead finds a reasonable method to
discriminate the groups. Fisher’s linear discriminant analysis compares the variances
among populations to the variance within a certain population. For discrimination to

occur, the ratio of the variances should be significant. More formally, we determine the
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vector a; which maximizes the ratio of the between-groups sum of squares (B) to the

within-groups sum of squares (W) of data matrix X= (X1 X5 x3...)T [5.1]:

T
maxal Ba, 5.2)
T :
a, Wa,
B =Yn(%-%) (%-%)" (5.3)
W = Y'nS, (5.4)

where X; (n; x p) represents n; observations from fault population ]'lj. S; is the sample
covariance matrix, X; is the sample mean, and n; is the number of samples in each fault

group, so thatn = y'n;.
i

The vector a; which maximizes the above ratio is the eigenvector of W'B corre-
sponding to the largest eigenvalue. The set of linear discriminant functions is Xa;, Xa,,
Xaj,..., Xapwhere a, is the eigenvector corresponding to the second largest eigenvalue of
W'B, a3 is the eigenvector corresponding to the third largest eigenvalue, and so on. Thus,
Xa, is the linear combination of the signals that will maximally discriminate among the

faults in one dimension.

5.3.3 Diagnosis

Once the linear discriminant functions are found, classification of the populations can
be performed using the Euclidean distance scheme. In one dimension, an observation x is
allocated to one of the populations based on its “discriminant score” a;x [5.1]. The sample

means X, have scores a;x;. Observation x is allocated to fault population II; if

|aTx - aijI < IaTx - aTin foralli=#j. (5.5)

This can easily be extended to several dimensions. Essentially, the boundary among

faults is determined by a hyperplane equidistant from the geometric mean of each fault in

the space of the linear discriminant functions. Figure 5.2(a) shows two fault clusters in the
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space of two long-term component residuals. Axis Xa, is the first linear discriminant
function which maximizes the ratio of the between groups sum of squares to the within
groups sum of squares of the two faults. The geometric mean of each fault is then calcu-
lated, and an equidistant line determines the boundary between the faults. The new point
can be easily diagnosed. Discrimination of three faults using two linear discriminant func-
tions is shown in Figure 5.2(b). The geometric means are shown, along with the classifica-
tion boundaries. Once again, the new faulty point can be diagnosed. For some cases, more

dimensions are necessary for maximal discrimination.
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Figure 52 Examples of fault diagnosis. (a) The two fault clusters in the
space of the long-term component residuals. Axis Xa, is the first linear
discriminant function. The geometric mean of each fault is then calculated,
and an equidistant line determines the boundary between the faults. In this
way, the new point can be easily diagnosed to the proper fault. (b) The
geometric means of three faults in the space of the first two linear
discriminant functions. The new data point can also be diagnosed.
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5.3.4 Examples Using Discriminant Analysis

The example in Figure 5.3 shows discrimination among six equipment faults (labelled
1-6) in a Lam Rainbow 4600 metal plasma etcher. The faults are individual runs in a frac-
tional factorial design, where RF forward power, chamber pressure, Cl, gas flow, and the
He backflow behind the wafer were varied *5 %. During the etcher operation, seven tool
signals were monitored: RF tune vane position, RF coil, RF phase, RF impedance, DC
bias, peak voltage, and an optical endpoint emission signal. These signals were monitored
using the LamStation software at a rate of approximately one sample per second. The dia-

gram shows the six regions used to classify the six faults in the space of the first two linear

discriminant functions.
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Figure 5.3  Training of Six Faults (labelled 1-6) using Discriminant
Analysis. The projection in the space of the first two linear discriminant
functions is shown. This example was conducted on a Lam Rainbow 4600
metal plasma etcher.
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After the discriminant rule was determined during the training stage, it was tested with
additional wafers run at the same operating conditions as faults numbered 5 and 6. The
projection in the space of the first two linear discriminant functions is shown in Figure 5.3.
The geometric means of the training runs are also shown in the figure. The diagnosis algo-
rithm was performed in three dimensions, so that the faults labelled 6 and 4 could be dis-
tinguished. In three dimensions, the geometric mean of fault number 6 falls above the
page, while that of fault number 4 is below the page. The misdiagnosis rate in three
dimensions is 10% using this independent test set. (The resubstitution method estimated

an optimistic 0% misdiagnosis probability.)
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Figure 54  Diagnosis of two types of faulty runs, corresponding to
faults 5 and 6. The projection in the space of the first two linear discriminant
functions is shown. Note that the means from the training runs are also
shown. This example was conducted on a Lam Rainbow 4600 metal plasma
etcher.
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The second example shows diagnosis of single faults. The system was trained with the
data from the Training Phase II Experiment described in section 3.2.2. The seven single
faults were £20 % changes in chamber pressure, electrode gap spacing, and gas flow ratio,
and a 20% increase in RF power. Later, a wafer processed with a 20% decrease in gas flow
ratio was correctly diagnosed, as shown in Figure 5.3. In three dimensions, thirteen runs
were diagnosed properly, and two were diagnosed improperly as fault 4, corresponding to

a misdiagnosis rate of 13.3%.

1
&- ®
7
[ @ o
g 6
[=}
g . 3
5 8 .
g
é o m
= Y
2
Aa 5
34 °
-150 -100 -50 0 50 100

Discriminant Function Xa,

Figure 5.5  Diagnosis of single fault (increase in the ratio of the gas
flows by 20%), corresponding to fault 2. The projection in the space of the
first two linear discriminant functions is shown. Note that the means from
the training runs are also shown. This example was conducted on a Lam
Rainbow 4400 polysilicon plasma etcher.

Thus by employing time-series models and discriminant analysis techniques, real-time

sensor data can be used effectively to detect and classify equipment faults. The main
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advantages of using discriminant analysis techniques is that training the system is easy,
since it simply requires a set of long-term component residuals and known faults. The user
does not need to be an expert on the system, as the algorithm is completely data-driven.
The computations are simple matrix algebra functions, which are fast on modern comput-
ers. Therefore, it is easy to maintain a library of faults. For example, if a new fault is seen
by the module and can not be properly classified, the real-time residual data can be stored
until the technician has diagnosed the fault. Once the fault has been correctly diagnosed,
that information can be fed back into the training data set. Then a new discriminant rule

can be calculated to include the new fault.

The major disadvantage with the discriminant analysis technique is that it is not scale
invariant. For example, if the module has been trained to recognize a change in RF power
of 20%, it will not recognize a change in RF power of 10%. Therefore, the system must be
trained to recognize the signature of each fault, which potentially requires many training
runs. This problem is addressed by the second diagnostic method discussed in the follow-

ing section.

5.4 Diagnosis Based on Staged Clustering and Neural Network Analysis

The second method developed for equipment diagnosis, which uses staged clustering
and neural network analysis, diagnoses various levels of equipment faults while requiring
few training runs. Unlike the previous method using Fisher’s discriminant analysis func-
tion which was easily trained, this method requires slightly more complex and interactive
training. The general idea is that clustering techniques exploit the trends in the long-term
component residuals to diagnose certain faults, while the neural networks extract the finer
details in the data to diagnose other faults. For the Lam Rainbow 4400 plasma etcher, the

clustering techniques have trouble separating changes in chamber pressure from changes
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in individual gas flows, so neural networks are employed to separate these two particular

faults. A brief discussion of cluster analysis and neural networks follows.

5.4.1 Clustering Methods

Clustering algorithms group similar objects, and are used in this section to perform the
diagnosis and prognosis of equipment faults. These algorithms are heuristic in nature, and
are purely data-driven. Furthermore, there are few standard measures of clustering valid-
ity. Despite the heuristic nature of cluster analysis, we found it to be quite promising in
diagnosing and prognosing equipment faults based on the data set obtained from the

Training Phase II, Verification, and Diagnosis Experiments, described in Chapter 3.

First, a vector of measurements which characterize the objects to be clustered is deter-
mined. In this case, the vector consists of the real-time signals collected from the equip-
ment, and is referred to in this chapter as the “real-time signals vector.” Next, a similarity
metric on which to base similarity or dissimilarity among data points is determined. These
include several well-known distance metrics such as the Euclidean, Manhattan (absolute),
and Mahalanobis distances. In this module, the Euclidean distance method resulted in the
most effective clustering, where the distance between data vectors i and j with p parame-

ters is defined as:

P 2
dyj = |2 (=% (5.6)
k=1

where X, is the value of the kth term in the ith vector [5.5].

Two commonly used clustering techniques are the hierarchical and optimization meth-
ods. In hierarchical clustering, the data is separated in stages. Once a particular point has
been separated into a cluster, it can not be reallocated. On the other hand, optimization
techniques allow the data to be reallocated through an iteration. Many of these techniques,

however, require that the number of distinct clusters in the data be known, and that the
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clusters are spatially homogeneous. Because it is not known exactly how many faults are
in the data set, hierarchical clustering was chosen for this thesis. Within hierarchical clus-
tering techniques, the two main methods used to cluster the data are the agglomerative and
the divisive methods. Agglomerative methods fuse individuals or groups of data which are
the closest by some measure, while divisive methods split groups successively into
smaller clusters. Due to the nature of the data in the diagnostic module, agglomerative

methods were investigated.

Many agglomerative clustering methods exist, of which two are described here. For a
more thorough discussion of the other methods, [5.5], [5.6], and [5.7] are excellent
sources. The nearest-neighbor, or single-link, method connects points or groups based on
the distance between their nearest neighbors. This method tends to result in groups with a
small number of members, “chained” together by single links. Because it results in many
small groups linked together rather than a few larger groups, this method is unsatisfactory
for diagnosis, where data points need to be grouped distinctly into fault clusters. The fur-
thest-neighbor, or complete linkage, method has the opposite algorithm, in which clusters
are formed based on the distance of the farthest neighbors of each group. Because this
method results in larger groups of clusters that are easily separated, it is used in the diag-

nostic module.

5.4.2 Neural Networks

Neural network models are empirically-based models which train a combination of
“neurons,” or nodes, to learn and model relationships between a set of inputs and outputs.
The connections among the nodes are weighted. Each node receives a net input computed
from the sum of the weighted outputs of the nodes preceding it, “squashed” by an activa-

tion function. A common activation function used for each node is a logistic function of
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the form f(x) =

— - The output of the node can also be transformed by a function,
which is usually ta}«;.r-lio be the identity function.

There are three types of nodes; those whose inputs are the inputs of the problem are
called the input nodes, and make up the input layer; those whose outputs are the output of
the problem form the output layer; the nodes connecting the input and output nodes form
the hidden layer. These three layers are depicted in Figure 5.6, which shows three nodes in
the input layer, and two nodes in the hidden and output layers. Also shown are connections
between the input nodes and the hidden nodes, and between the hidden nodes and the out-

put nodes.

Input Hidden Output
Layer Layer Layer

Figure 5.6 Small neural network with three layers of units. The figure
shows three input nodes, one hidden layer with two nodes, and two output
nodes. The connectivity used is between the input units and hidden layer,
and between the hidden layer and output units.

The neural network algorithm selected for this analysis is the feed-forward, error back-

ward propagation (FFEBP) method, which has shown to be effective in modelling noisy
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input and output data’[5.8][5.9]. In this algorithm, the inputs are fed forward through the
layers of the network until reaching the output layer. The result at the output layer of node
Jj is compared with the desired, or teaching, output. The difference, called the error, is used
with the output of node i to calculate the new weighting of the connection between node i
and node j. These errors are then used to calculate the weight changes for the connection
“between the input and hidden units. Because the weight corrections depend upon the cor-
rections previously computed from the neighboring layer, the error in effect is propagated
backward through the network [5.10]. In the FFEBP method, the gradient search method

is used to minimize the sum of the squared errors [5.11].

For this application, we have selected to use a FFEBP neural network with one input
layer, one hidden layer, and one output layer. An experimental analysis led to a network
with 13 nodes in the input layer, 8 nodes in the hidden layer, and two nodes in the output
layer. The connectivity chosen is between the input units and hidden layer, and between
the hidden layer and output layer. The Stuttgart Neural Network Simulator (SNNS) was
used to simulate and train the neural networks [5.10]. The network learns the relationship
between the input and output patterns as it undergoes learning iterations. To determine
when to stop training, a separate testing data set was used. Training stopped when the test-
ing set achieved its lowest error. This is a usual practice to eliminate over-training, which

results in decreased generalization capability of the network model.

5.4.3 Pre-filtering of the Long-term Component Residuals

Before performing training and diagnosis, the residuals obtained from the long-term
time series models (section 4.3) are pre-filtered to determine which data are significantly
different from the baseline process. This test of statistical significance is performed by

using the student-t test, with the significance level of 0.01:

X —Heent -
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where p_ . is the mean of the centerpoint data, 6__ . is the standard deviation of the cen-

cent
terpoint data, o is the significant level for the test, and v is the degrees of freedom. The
residuals which are not statistically significantly different from zero are replaced with a
value of zero. The average real-time readings per wafer run are filtered for the clustering
stages. The resulting filtered real-time readings make up the real-time signal vector used

to calculate the distance between groups of faults. Fifteen points per wafer are used to

train the neural network.

5.4.4 Training

To train the system, a set of heuristics is developed specifically for each type of
machine. The idea is to determine the distance of the real-time signal vector as calculated
in Equation (5.6) among two or more runs of a particular type of fault (for example, Fault
A), and the other faults. The midpoint between the largest distance among runs of Fault A
and the smallest distance between Fault A and the other faults is considered to be the cut-
off value. During diagnosis, new runs with distances less than the cut-off value are
assigned to Fault A. These distance measures and corresponding cut-off values are calcu-
lated for each training fault, requiring at least two training runs per fault type. When lim-
ited training data is available, for example if no replicated points are conducted in a
central composite design with star points, the same class of faults are grouped together
regardless of magnitude. Then the signs of one of the runs are flipped so that both an
increase and decrease in the particular parameter have the same signal characteristics. For
example, if the training data contains only one run with an increase in power and one run
with a decrease in power, the signs of the latter run are flipped so that the data from both
now correspond to an increase in power. The diagnosis, then, will simply indicate which
parameter has changed, and will not indicate whether it was an increase or decrease from

nominal.
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To group the faults, the filtered data is first converted to +1, -1, or O if the value of the
residual is positive, negative, or zero, respectively. Upon clustering, the data forms two
groups, separating the faults between positive and negative changes from the nominal
value. The signs of those faults with negative changes are flipped, so that all the faults,
regardless of magnitude, are in one group. This simplifies the analysis, and can be done
when the real-time signals are either monotonically increasing or decreasing around the
centerpoint data. Otherwise, two sets of analysis can be performed so that increasing and

decreasing faults can be diagnosed separately.

In the case of the Lam Rainbow 4400 plasma etcher, the trends in the real-time signals
are used to distinguish among three groups: runs with no faults (center points), those with
RF power problems, and the rest. Table 5.1 shows the trends for a subset of the long-term
component residuals from the RPM-1 signals for various single equipment faults on a
Lam Rainbow 4400 plasma etcher. Each of the listed faults are increasing from nominal
levels; for example, the faults in the table include an increase in RF power, chamber pres-
sure, ratio of the two gases, or electrode gap spacing. The data was collected during the
Training (Phase IT) and Diagnosis Experiments, as described in sections 3.2.2 and 3.2.3.
The table shows that an increase in RF power is captured by the signals as an increase in
delivered RF power, RMS voltage, and RMS current, and a decrease in the phase angle
and DC bias, while an increase in chamber pressure leads to an increase in RF power,
phase angle, and DC bias, and a decrease in RMS voltage and RMS current. It is interest-
ing to note that although it is expected that an increase in RF power leads to an increase in
the measured RF power, an increase in chamber pressure or gas flow also result in an
increase in the measured RF power, illustrating why multiple signals are necessary for

fault diagnosis.
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Table 5.1 Trends of Long-Term Component Residuals for Various Equipment Faults on a
Lam Rainbow 4400 plasma etcher

Trends of Long-Term Component Residuals

(increase) RF
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Table 5.1 also shows that trends are not enough to distinguish among all the faults. An
increase in either the chamber pressure or the gas flow, and a decrease in the electrode gap
spacing have the same trends. This is also true when the data collected via LamStation is
included. Thus, the magnitude of the signals must be used to diagnose these faults, includ-
ing faults with the electrode gap spacing and the total gas flow. Other faults can not be
diagnosed by staged clustering, since the trends and magnitudes of the signals are so simi-
lar. For example, decreases in chamber pressure are confused with decreases in the Cl, gas
flow. For these cases, neural networks are used to model the subtle differences between

the signal sets, as explained next.

Standard FFBEPNN was used on 15 readings per wafer for training and during diag-
nosis. First, the pre-filtered real-time residuals are scaled so that the ranges of both the
input and output are between 0 and 1. The training output is set at O for decreases from

nominal, 1 for increases, and 0.5 for normal behavior.

5.4.5 Diagnosis/Prognosis

Both the data used for training and the heuristic limits derived in the training stage are

needed for diagnosis. The training data are used to represent the various faults, while the
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heuristics determine the fault group to which the new point belongs. To begin the diagno-
sis, the trends of the data are used. The faults are determined in consecutive stages as out-
lined in Figure 5.7. The first two stages classify faults with distinct trends in the filtered
real-time data. First, the algorithm checks to see if the data is from a normal run. Since
after pre-filtering most of the parameters from centerpoint runs will be set to zero in the
real-time signal vector, they can easily be distinguished from the faulty runs. If the algo-
rithm determines that the new data is not a centerpoint run, it then checks for a fault in the
RF power by examining the trends in the filtered real-time data. If the RF power seems
normal, the training data corresponding to faults in the RF power are eliminated, and the
remaining data is sent to the next stage. The algorithm then looks for other faults, one at a
time. Because the other faults can not be distinguished solely by trends in the real-time
signals, the magnitudes of the filtered real-time data are clustered for the remainder of the
analysis. The first is electrode gap spacing, which uses the DC Bias readings. Voltage, cur-
rent, impedance, phase angle, DC Bias, endpoint, and phase error readings are all required
to separate changes in total gas flow from changes in chamber pressure and Cl, gas flows.
Once again, after each stage, the training data corresponding to each of the tested faults

are removed from the data set.

At this point, the data is sent to the neural network model, which has been trained to
recognize the remaining faults. For the Lam Rainbow 4400, these include changes in
chamber pressure and Cl, gas flows. The neural network assigns one fault to each point.
Because 15 points are associated with each wafer, the final fault assigned to the wafer is

the fault which has been assigned eight or more times to that wafer.

5.4.6 Example Using Staged Clustering and Neural Network Analysis

In this example, two sets of training experiments were conducted. The first is the

Training Phase IT Experiment (section 3.2.2), in which wafers with single faults of approx-
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Figure 5.7 Diagnosis Using the Staged Clustering and Neural Network
Technique for the Lam Rainbow 4400. Clustering methods are used to
diagnose problems with RF power, electrode gap spacing, and total flow,
while a straight forward neural network is used to distinguish between
chamber pressure and Cl, gas flow changes.

imately £20 % from nominal were etched. The input settings which were varied are the
chamber pressure (P), the ratio of the gases (R), the RF power (W), the electrode gap spac-

ing (G), and the total flow of the gases (T). Because it is unlikely that the total flow will



98 . Chapter 5

remain constant when the ratio of the gases changes and vice versa, the Training Phase II
Experiment is unrealistic in simulating a problem with a mass flow controller. Therefore,
the Diagnostic Experiment Block I (section 3.2.4) was designed to investigate single gas
flow faults. This experiment varied the input chamber pressure, Cl, flow (F), and RF
power settings by 15 % from nominal. The data from the two experiments can not be
combined into one data set for the analysis because as described in Chapter 3, the mask
loading of the two experiments are different. Therefore, only the staged cluster analysis is
performed on the data from the Training Experiment, while the entire staged clustering

and neural network analysis is applied to the data from the Diagnosis Experiment.

Two test sets were also conducted, corresponding to each of the training experiments.
The first is the Verification Experiment (section 3.2.3), which varied the same input set-
tings as the Training Phase II Experiment at +10 % from nominal and included five cen-
terpoint (C) runs at the nominal values. The Diagnosis Experiment Block II simulated the

same faults as Block I, but at +7.5 % from nominal.

First, all the data was filtered following the method described in section 5.4.3. During
training, the cut-off values were calculated using the .Training Phase II Experiment for
centerpoints and faults including RF power, electrode gap spacing, and total flow. The
neural network was trained to recognize the chamber pressure and gas flow changes from
the Diagnostic Experiment Block 1. We used a feed-forward error back propégation neural
network (FFEBPNN) with 13 input nodes, one hidden layer with eight nodes, and two out-

put nodes, one for changes in chamber pressure, the other for changes in gas flows.

The data from the Verification Experiment were used to test the clustering stages of the
algorithm. The results are shown in Table 5.3. The first column of each group indicates the
type and magnitude of the fault injected into the machine, while the second column shows

whether the fault was correctly (v) or incorrectly (X) diagnosed. Because the faults were
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initially grouped, the diagnosis simply states which input parameter has changed, and does

not give indication if the faulty parameter has shifted up or down.

The results show that all wafers run at the centerpoint values were correctly diagnosed
as having no faults. In addition, changes in both RF power and electrode gap spacing were
correctly diagnosed. Furthermore, a decrease in total flow was diagnosed as such. An
increase in the total flow, however, was misdiagnosed as having no fault. Upon examina-
tion of the signals, it was found that none of the signals differed from the centerpoint val-
ues. In fact, the final etch rates, selectivities, and uniformities of that particular wafer did
not indicate a faulty condition, so the staged clustering algorithm was indeed correct in

diagnosing the run as a centerpoint.

Table 5.2 Diagnosis After Clustering Stages: Verification Experiment

Fault Diag? Fault Diag?
mc | v |[ c v
C v C v/

W (+15%) 4 W (- 15%) 4
G (+15%) v G (- 15%) v
T (+ 15%) X T (- 15%) 4

The neural network stage, which classifies the run as having a problem with either the
chamber pressure or the gas flow, was tested with the data from Block II of the Diagnosis
Experiment. Because the experiment also contained centerpoints and runs with RF power
changes, the data was first pre-filtered and sent through the clustering stages. The same
algorithm used for the previous experiment was applied successfully to this new data set
to isolate those runs at centerpoint conditions and those with changes in the RF power.

The fact that the same algorithm held for both experiments shows a strength of the
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method, since it can be applied to two sets of data with different wafer loading due to pat-

terning differences (section 3.2).

Once both centerpoint and RF power data were removed from the data set, the data
were sent to the neural network. The results of the clustering and neural network stages
are listed in Table 5.3. Both centerpoints were diagnosed properly using cluster analysis,
as were the runs with RF power changes. The neural network diagnosed all changes in Cl,

flows properly, as well as three of four chamber pressure changes.

Table 5.3 Diagnosis After Staged Clustering and Neural Networks: Diagnosis

Experiment
Fault Diag? Fault Diag?
T c [ v |[ ¢ | v |
W (+7.5%) 4 W (- 7.5%) v
W (+7.5%) v W (- 7.5%) v
P (+7.5%) 4 P (- 7.5%) 4
P (+7.5%) X P (- 7.5%) v
F (+ 7.5%) v F (- 7.5%) v
F (+ 7.5%) / F (- 7.5%) v/

On the whole, the results of the staged clustering and neural network method are very
promising. Because the method is scale invariant, it requires fewer runs for training than
using discriminant analysis. The experiment used for training is a simple star design,
which is generally conducted by the fabs during the qualification of the machines to
choose a proper operating point, so this method does not require the fab to conduct addi-
tional runs strictly for diagnosis purposes. Although it requires longer training, the staged
clustering and neural network algorithm successfully diagnosed faults which were at dif-

ferent levels from the training faults.
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5.5 Fault Diagnosis Module Summary
The difficult and lengthy process of trouble-shooting equipment faults makes diagnos-

tic capability an important addition to SPC. Two methods for equipment diagnosis were
developed and demonstrated in this chapter. The long-term component residual from the
fault detection module are used in both diagnosis methods. The first employs Fisher’s dis-
criminant analysis techniques to separate faults. The method has been demonstrated on
both single and multiple faults. This method enjoys certain advantages, such as fast and
simple training. The disadvantage of the method is that it is not scale invariant, so it
requires many training runs. The second method, using staged clustering and neural net-
work analysis, is scale invariant. Examples of single faults at different levels from the
training faults were shown. Coupled with the benefits of real-time SPC, diagnosis will

greatly reduce the cost of ownership of manufacturing equipment.
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Chapter 6
Wafer State Prediction

6.1 Introduction

The Wafer State Prediction Module uses empirical models based on real-time equip-
ment data to predict the outcome of each wafer immediately after processing by each
piece of equipment, reducing the need for costly and time-consuming wafer measure-
ments. The prediction capability also allows the quality of the wafer to be known immedi-
ately after each process step, thereby obtaining important yield information to ensure that
only wafers worth processing continue down the line. In high volume fabs, where several
thousand wafers are processed each week, the chamber condition of the etchers changes
over time. Therefore, it is crucial to verify that the equipment models survive these normal
machine drifts. In this thesis, “prediction capability” refers to the proven ability of the
model to describe the chamber, without further adjustments to the original model, after a

significant number of wafers have caused the chamber to age.
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- As described in Chapter 4, the real-time data is decomposed into the long- and short-
term components in the Fault Detection Module. In addition to being used to determine
faulty behavior of the equipment, the long-term components are also used in the Wafer
State Prediction Module to predict the wafer states immediately after the equipment has
finished processing. In this way, it is possible to determine the effect of faults on the wafer
quality. If the fault negatively impacts the wafer, the defective wafer can be eliminated
from further processing, thereby saving the resources of the subsequent equipment. On the
other hand, if the fault does not impact the wafer, the wafer can continue with the process-

ing sequence.

Because the strength of this module relies on the models used for prediction, much of
this chapter focuses on both the signals and the modeling methods used for prediction. To
provide useful prediction capabilities, robust prediction models of the plasma etchers are
required. The industry standard is to build models relating the input settings of the etchers
to the output wafer state using methods such as response surface methodology (RSM)
(Figure 6.1). Models using input settings, however, become unusable with time as the
machine drifts with regular use, rendering them ineffective for prediction. Recently there
has been much interest in using real-time tool data for modeling purposes. Elta et al. use
information about the gas concentrations, the bias voltage, and the chamber pressure to
model the wafer states for control purposes [6.1]. Anderson et al and Wangmaneerat
showed that etch rate, selectivities, and uniformity can be well modelled with optical
emission spectroscopy using partial least squares regression techniques [6.2](6.3]. While
they have shown that models can be built relating real-time signals to wafer states, thus far
they have not demonstrated actual prediction capability of the models spanning a signifi-
cant number of wafers which will cause the machine to age. Work by Rietman and Lory

show that neural network models can map the input settings and a few real-time signals,
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including the induced DC bias and reflected RF power, to oxide thicknesses in the source
and drain regions of CMOS devices [6.4].

In this chapter we show that successful wafer state prediction can be achieved by using
a set of real-time data from key sensors inside the equipment. The signals used in this
module reflect the RF components of the etcher, and were previously described in detail in
Chapter 2. Because these real-time signals provide important information about the cham-
ber state, we call the models built with real-time data chamber state based (CSB) models.
This chapter shows that CSB models are effective for prediction because the real-time

data reflect the actual state of the equipment as it changes over time.

standard RSM \‘
( Real-time Slgnals)

Input Settings Output States

Pressure —> Tune Vane POSithIl
i iti jumeeal- Etch Rate
Load Coil Position
Power sl o
peseea-  Uniformity
Gas Flow | sl Impedance -
electivity
Gas Flow 2 el Phase Error |
¢ Anisotropy
Gap i o

___
Figure 6.1 Wafer State Prediction: This paper shows that Chamber State

Based (CSB) models, which map the real-time data to the output states, are
effective for prediction even in the presence of equipment aging.

To develop the prediction models, two sets of experiments were conducted. During the

experiments, both the input settings and the real-time data were simultaneously collected.
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The wafer states of interest are the etch rates, selectivity, and uniformity. The first experi-
ment, the Training Experiment, consists of a central composite design. The models using
data from the Training Experiment relating either the input settings or chamber state data
to the wafer states are called the training models. The second experiment, the Verification
Experiment, was conducted several weeks later to determine the actual prediction capabil-
“ity of the training models. Two sets of models were developed. The first maps input set-
tings directly to the output states, and will be referred to as standard RSM models. The
second set of models are the CSB models, mapping the real-time signals to the output

wafer states.

Three types of regression modeling methods, ordinary least squares regression, princi-
pal component regression, and partial least squares regression, for both sets of prediction
models are explored. These regression models are also compared to models developed
using feed-forward neural networks. The final prediction metric is determined by how
well the training model predicts the wafer states of the Verification Experiment. This met-
ric is a good measure of the actual predictive capability of the models because it is deter-

mined from runs performed much later in time and not included in model generation.

The goal of this chapter, then, is to show that real-time data collected while the
machine is processing are well-suited for prediction of the wafer state. We also demon-
strate the importance of the Verification Experiment and show how it affects the model
prediction. The chapter begins with a brief recap of the real-time data used for the module,
followed by a discussion of the methodology and models used to determine the wafer state
prediction capability of the models. The modeling results based on the experiments

described in Chapter 3 are then discussed.



Chapter 6 . 107

6.2 Real-Time Data

As discussed in section 2.5, when the state of the chamber changes, the wafer-to-wafer
variance of the real-time signals is much larger than the within-wafer variance. Thus, the
input for the CSB models are the long-term components from the Fault Detection Module,
which are the average values per signal over the duration of the main etch step of each
wafer (after the native oxide breakthrough etch and before the overetch). In this chapter,
the data used was collected during the Training and Verification Experiments described in
Chapter 3. Approximately 30 points are collected per signal per wafer etch via LamSta-

tion, and 50 points via Real Power Monitor (RPM-1).

As illustrated in Figure 2.4 which shows the Load Impedance and RF Tune Vane Posi-
tion for the duration of six wafers processed at the same input settings, the real-time sig-
nals change with the state of the machine even when the input settings remain fixed. A
consequence is that the real-time data chosen for this analysis describe the actual equip-
ment state more accurately than the input settings. Thus, the real-time data results in better

predictive capability than the input settings, as is shown in section 6.8.

6.3 Wafer State Modelling Methods

This section outlines the basic advantages and disadvantages of four modeling meth-
ods, and discusses the prediction metric used to compare the prediction capability of the
models. The first method under discussion is ordinary least squares regression. Since this
method results in poor prediction capability when the modeling variables are correlated,
other methods are investigated. Principal component regression and partial least squares
regression can handle correlated data, and have the added advantage that they can reduce
the dimensionality of the model. Simple feed-forward neural networks are also briefly dis-

cussed as an alternative modeling method.
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6.3.1 Ordinary Least Squares Regression

The first regression method discussed is ordinary least squares regression (OLSR).

The equation for the linear regression model is!

§ = Xp (6.1)

where § (nx 1) is the prediction of the response y, X (n X p) is the input matrix, and [3

isa px 1 vector of estimated model coefficients defined as

= (X'X)7'X'y (6.2)

provided that (X'X) is positive definite and therefore can be inverted. Throughout the

chapter, n is the number of observations and p is the number of model parameters.

Prediction problems arise when the columns of X exhibit multicollinearity. The main
idea is that high correlation in X leads to small eigenvalues in X'X, which can result in a

high variance in both the estimate of the coefficients and the predicted responses. For

A~

example, let § = x B be a predicted value. The variance of this predicted value can be

solved in terms of the eigenvalues w; and eigenvectors v;of X'X:

var(§,) = var(xoﬁ) = x,cov[p, B]x,

' P
= o'x, Y, Lix, _02#- 6.3)

j=1 J j=1 J

where cov[B, B] = o’ (X'X) ™ when cov [Y, Y] = 62 I,,. Equation (6.3) shows that the

variance of the predicted values depends on both the value of the eigenvalues and the

1. Bold face upper case letters denote matrices. Lower case bold face letters and Greek letters with an underscore ( )
denote column vectors. Scalars are denoted by lowercase letters. Transpose is denoted by ( ').
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direction of the input X, - The variance will be large for small eigenvalues and large values
of x v i The consequence of large variances in the predicted values is that the error in the
prediction can potentially be huge. Thus, when the columns of X exhibit multicollinearity,

both the estimates of the coefficients and the prediction capability of the model can be

Vvery poor.

6.3.2 Principal Component Regression

Principal component regression (PCR) addresses the problem of multicollinearity.
When building models with real-time data, it is common to have large numbers of corre-
lated input variables X. This number can easily escalate when interactions are included.
For example, 13 main signals are collected, resulting in 90 model variables when the cor-
responding two-way interactions are included. Because many of the signals are correlated,

not all 90 coefficients should (or can) be estimated independently.

Instead of artificially reducing the correlation among variables as in ridge regression,
PCR transforms the input variables to a set of orthogonal variables. The transformed vari-
ables Z, known as the principal components (PC’s), are linear combinations of the original
variables. The value of these PC’s are called the scores. The coefficients of the original
variables, or loadings, are the eigenvectors V of X'X. The equation for the transformed

variables Z is

Z= (X-1%)V 64

where X' is the vector of average values of each variable in X and 1 is a column vector of
1’s. All or a subset of the PC’s can be used as the input matrix for regression. Because the
PC’s are orthogonal, there are no multicollinearity problems, and standard least squares

techniques can be employed. The resulting model is

=12 (6.5)

1=
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. R
where ’:y is the estimate of the coefficients using the equation ? = (Z2) ZYy.

Because much of the variability can be captured in a subset of the PC’s, PCR reduces
the dimensionality of the models to its most dominant factors. Assuming independence,
the subset of statistically significant PC’s in the model can be determined by calculating
the student-t test for each of the coefficients. Only those PC’s with statistically significant
coefficients at a certain level (0.05 significance level is used in the examples of section

6.5) are retained in the model.

While PCR decreases the number of terms in the model, each model term still consists
of a linear combination of input variables. Ideally, those input variables in X which do not
significantly contribute to the model should be left out. When there are such large numbers
of input variables, however, it is often very difficult to determine which of these simply
add noise to the model and which are significant. An empirical method we developed to
determine the “streamlined” models is to transform PCR model back to the input space of
X. Assuming that the model is of the form shown in Equation (6.7) and using Equation

(6.6) to substitute in for Z,

§ = (X-1%)V§ = XV§-1%V§ = XP-1%B (6.6)

where |§ = V':y. The general rule of thumb we found was to eliminate those input vari-
ables which have |§ values a magnitude or more smaller than the average of the few larg-
est |§ values. This is similar to Cattell’s “scree plots” used to determine the number of
PC’s which explain most of the variation in the original data [6.7]. We then regenerate the
PCR model with the reduced set of input variables, using the student-t test to calculate the
significance of the new PC’s. Finally, we continue to reduce the input variable space as

described above until the model prediction no longer improves. (An effective metric to
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determine prediction is described in section 6.4.) This simple, yet effective empirical

method handles large numbers of input variables easily.

6.3.3 Partial Least Squares Regression

The last statistical modeling technique under discussion is partial least squares regres-
sion (PLSR). This method is widely used in chemometrics, a field of chemistry that uses
statistical methods for chemical data analysis [6.8][6.9]. Because the method is fairly new
to statisticians, there has been much debate over its formal statistical properties and its rel-
ative predictive capabilities over OLSR, RR, and PCR. For example, it is often claimed
that because the model generation uses information from both the input and output, PLSR
results in better predictive models. This is not always the case, however, especially when

the response data is noisy [6.10].

The general idea of the PLSR algorithm is similar to that of PCR. A reduced set of
parameters that sufficiently describe the input data is found and then used as the regressors
on Y. The notion of factor loadings and scores introduced in the context of PCR is also
used in PLSR. Instead of one set of loadings as was the case in PCR, two sets are used in
PLSR, one for the input matrix and another for the response. The algorithm for one

response follows.

Let Ap,x be the maximum number of PLSR factors. At the start of the algorithm,
Apax should be larger than anticipated to allow for unexpected factors. The following

steps are then performed for each factor a = 1, 2,..., A« [6.8]1[6.9]{6.10].

1. Determine the loading weight vector W, using the model:

p— 1
Xa_1 = Y,_1W,+E.

where ¢ is the error. Use ordinary least squares to solve the following equation for W,
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]
W = ya-lxa-l

a-1

since the length of y is 1 after scaling. Taking the transpose and scaling so that the

length of W, is 1,

w = x'a—lya-l
2 "x'a- 1Ya- 1"

The loadings W, are orthonormal vectors which maximize the covariance between
X,_; and y,_,. In other words, W = (W, W,, ..., W,) relates the input and

response, and will be used to calculate the response in the model.

2. Estimate the scores {, by taking the projection of X,_; onto W,:

- '
X,.1 =W +e.

Rewriting the model and solving for £, :
X, =wt +¢
W'aX'a_

t, = - = W X'

Taking the transpose:

t, indicates how much of the response is correlated with the input data, and
T = (i1, 1, ....T,) isthe reduced set of orthogonal scores that are used as regressors

for Y. Orthogonal vectors are necessary to deal with the problem of multicollinearity.

3. Estimate the input loadings p, using the model:

X, ; =tp, +¢.

a-—
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Solving for p, :
i\)t - i'axa— 1
o
and thus taking the transpose,
l'j - x'a- lia
a ||'£8||

P = (P Py ... B,) is similar to the eigenvector matrix V in PCR, in that it consists
of the loadings for the input. Although Pis chosen to ensure that the t, vectors are
orthogonal, the p, vectors are generally not orthogonal. Unlike the loadings in PCA,
the first p, vector does not explain the maximum variance in the input matrix; rather,

it explains as much variance as possible while correlating with the response.

4. Estimate the response loadings §, using the model:

ya_] = faqa+Y‘

Solving for g, :

q - y a-— ]ia
Thus, Q = (4;,Qy .--»4,) is the additional loading term which brings the response
into the model. It relates the score £, to the response, minimizing the residual sum of

squares of the response. Note that §, are scalars since this model is for one response.

5. Create the new residuals & and F' by subtracting the estimated values found in the pre-

vious steps from the actual values:
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The product {,p', estimates the input matrix, while the product £,g, estimates the

response matrix. Replace X, , and y, _, by the new residuals and increment a:

X,=8,y,=F,anda=a+1

Go back to Step 1.

6. Once the number (A) of valid PLSR factors is determined, the estimate of the coeffi-

cients to be used in the prediction model § = 1 ﬁo + XI:S are

A ~ A A —l A ~
@ = W(PW) qandf, = 7——!'[_3. 6.7)
Using Equation (6.9) as an estimate of the coefficients, the same type of “streamlin-

ing” method described for PCR to reduce the number of input parameters can also be

applied to PLSR.

Like PCR, the scores of PLSR are not scale invariant. For example, suppose two vari-
ables are measured in meters and kilograms, and the desired scores are to be expressed in
centimeters and grams. One way to achieve this is to first transform the variables to the
desired units of centimeters and grams, and then carry out the PLS analysis. The second
method is to first perform the PLS analysis in meters and kilograms and then multiply the
elements of the relevant scores by the proper scaling factors (100 and 1000, respectively).
The two methods do not result in the same solutions since the scores of a random vector
are not scale invariant. Thus, as was suggested for PCR, it is sometimes useful to stan-
dardize the data so that all variables are equally weighted in the analysis. For computa-
tional purposes, centering and scaling reduces round off and overflow problems. If it is
known, however, that variables with small values (in magnitude) are less important than

those with larger values, scaling is inappropriate.
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6.3.4 Feed-Forward Error Backward Propagation Neural Networks

The last modeling method investigated is neural networks, which has emerged as an
effective modeling method for semiconductor equipment [6.4][6.11][6.12][6.13]. Neural
networks are useful for modeling complex relationships, such as the plasma etching pro-
cess. Furthermore, the form of the models is derived from the actual data, and not set a
priori as is done for regression. Neural networks, however, do not provide information

about the physics of the processes [6.13][6.4][6.12].

The network selected for this analysis is the feed-forward error back propagation
(FFEBP) algorithm, which was described in section 5.4.2. In this application, one hidden
layer was used, making a total of three layers in the network. Several different structures
were investigated, and the final structure chosen was the one which resulted in the small-
est error. The connections are between the input nodes and the hidden nodes, and between

the hidden nodes and the output nodes. No bias was applied to the first layer. The output

function for the remaining layers is the “squashing” activation function of the form
— » Where x is the sum of the weighted outputs of the nodes preceding this

f(x) =
1+e

particular node.

As in Chapter 5, the Stuttgart Neural Network Simulator (SNNS) was used to train and
simulate the neural networks [6.14]. The network learns the relationship between the input
and output patterns as it undergoes learning iterations. To determine when to stop training,
the neural network model was applied to the verification data set. Training stopped when
this testing set achieved its lowest error. This is a usual practice to eliminate over-training,

which results in decreased generalization capability of the network model.
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6.4 Testing the Prediction Capability of the Models

This section describes the methodology used to determine the prediction capability of
the models. As stated in section 6.1, two sets of experiments were conducted, the first for
model generation and the second for model verification. These are described in detail in
sections 3.2.2 and 3.2.3. It is important to note that the two experiments were conducted
several weeks apart, and that between the experiments the equipment underwent normal
use and maintenance. The Verification Experiment is used to determine if the training

models can withstand small changes in the equipment that occur with time.

The often neglected verification stage is one of the most important in prediction model
building. In many modeling situations, the assumption is made that if the model has a
good fit (for example, a high adjusted R2 and statistically significant terms), the model can
be used well for prediction. Unfortunately, this is not the case for plasma etchers on a pro-
duction line. Because the machines go through regular maintenance and may drift with
use, the model with the best fit based on one experiment conducted in a short time frame
may not capture these changes in the machine. The model may also be too specific for the
particular runs. These combined deficiencies result in unsatisfactory predictive capability.
The verification experiment is designed to determine the best predictive model which

takes into account normal equipment changes.

The prediction metric determining the best model is based on how well the training
model predicts the verification wafers. Because the verification data is not included during
model generation, the true prediction capability of the models can be gauged. The metric
used is the standard error of prediction (SEP), where Y, is the ith observation, ?i is the

predicted value of the ith point, and » is the number of observations in the experiment:
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2 (-t

SEP = j[1=1 — . (6.8)

Essentially, the SEP metric measures the spread of the difference between the pre-
dicted and actual values, called the residuals. The examples shown in section 6.5 rate the
different models according to their normalized SEP metrics. To determine whether two
SEP values are statistically significantly different, we employ the standard F-test of
hypothesis, assuming that the residuals are approximately normally distributed. The null
hypothesis is that the squared SEPs are equal, while the test statistic is the ratio of the
squared SEPs.

6.5 Polysilicon Etch Rate Modeling Results

In this section, a detailed discussion is given for the CSB polysilicon etch rate model
analysis using the four different modeling techniques described in the previous sections.
Since the same type of analysis is conducted for the other wafer states, those results are

summarized in the following two sections.

6.5.1 Ordinary Least Squares and Ridge Regression

Using standard methods outlined in section 6.3.1, the first prediction modeling method
investigated is OLSR. Due to restrictions on the degrees of freedom, only the main effects
and interactions of the RPM-1 data was used to build the model. The data was scaled to
have zero mean and unity variance after the interactions were created. Backward stepwise
regression was employed to choose the significant terms in the model at the 0.05 signifi-

cance level.

The results of the regression models are summarized in the ANOVA table in Table 6.1.

The table shows the degrees of freedom (d.f.), the sum of squares (SS), and mean sum of
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squares (MS) of both the regression and residual. The test statistic, which has an F-distri-
bution, is calculated as the regression MS divided by the residual MS. Also listed is the
adjusted R? statistic, which takes into account the number of terms used in the model.

Table 6.1 ANOVA Table for OLSR Model of Polysilicon Etch Rate

Source d.f. SS MS F
e — 5 _— ~——
Regression |15 |3.06x10°% |2.04x10° | 249
Residual 11 |9.01x10* | 8.19x103
adj. R? = 0.930

Despite a high adjusted R statistic of 0.93 the model fails as a prediction /min model,
with a verification SEP metric of 1138 A (22.2% when normalized by the average polysil-
icon etch rate of the Verification Experiment). Depending on the input variables used in
the OLSR models, the prediction error can become quite large, even when all the terms in
the model are statistically significant at the 0.05 level. For example, when the main vari-
ables and some interactions from the Lam Station data are included in the model, the SEP
metric is 6767 A/min (132%), despite that all terms are statistically significant and the
adjusted R? statistic is 0.999. This example illustrates the importance of evaluating the
models against data not used to build the model because the usual metrics such as the
adjusted R? statistic can be misleading. This is because the correlations among the input
variables lead to high correlations among the estimated coefficients, resulting in unstable
prediction. Thus, standard OLSR techniques are not satisfactory for predicting polysilicon

etch rate based on highly correlated real-time signals. Similar results are found for the

other wafer states of interest.

6.5.2 Principal Component Regression

Because of their ability to handle large amounts of correlated data, PCR and PLSR

methods are much better suited to handle real-time data. The PCR model has an input
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variable space consisting of all 13 real-time signals with their corresponding two-way
interactions, making a total of 90 parameters. In this analysis, the 13 signals were scaled to
have zero mean and unity variance before forming the interactions. The PC’s which
explain 99% of the variance were then included in model generation. Variable selection,
using the student-t test at the 0.05 significance level, resulted in a model with an intercept
and three PC’s, resulting in a verification SEP metric of 704 A/min (10.7%). This is a tre-

mendous improvement over the OLSR model.

The coefficients of this PCR model with 90 input variables can be transformed from
PCA space back to the input space X using the equation [:3 = V¥, derived in section 6.3.3.
None of the coefficients are orders of magnitudes greater than the others, which is a conse-
quence of scaling the input variables of X. Several of the coefficients have values that are
close to zero, however, and may not be important to the model. Following the algorithm
outlined in section 6.3.3 to “streamline” the models, thirteen variables corresponding to
those columns of X with small (< 4.0) estimated coefficients were eliminated from the
input space of the original PCR model, resulting in 77 terms in X. The results from using
the eigenvalues that explain 99% of the variation were: adjusted R? =0.70, Mallow’s Cp=
7, and SEP = 688 A/min (13%), which is a slight improvement over the previous model.
An additional 25 input variables were eliminated on the next “streamlining” iteration,
which resulted in the best prediction. The SEP is 496 A/min (9.7%). Five terms are in the
model, one intercept term and four PC’s corresponding to the 3rd, 5th, 6th, and 8th largest
eigenvalues. The ANOVA table listed below in Table 6.2 summarizes the model.

Table 6.2 ANOVA Table for PCR Model of Polysilicon Etch Rate

Source d.f. SS MS F
= —

Regression |4 |223x10% |5.58x10° | 13.27
Residual 22 |9.25x10° | 4.20x10%

adj. R? = 0.640
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The plot of predicted vs. actual polysilicon etch rate in units of A/min is shown in Fig-
ure 6.2. If the models were perfect, all the points would lie on the y=x line. The spread of
the training and verification data is about equal, and the model shows a full range of out-

put coverage. Further reductions in the input space did not lead to better prediction.
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Figure 6.2 Predicted versus actual polysilicon etch rate plot of the best
predictive model found via principal component regression. SEP = 9.7%.

6.5.3 Partial Least Squares Regression

Like PCR, partial least squares regression also reduces the number of terms in the

model. Although the transformed variables are not orthogonal, they relate the response to
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the inputs. As in the previous section, the first model is built using input matrix X, which
consists of the 13 main effects and all the two-way interactions, making a total of 90 vari-
ables in X. The 13 variables were scaled before forming the interactions. Models ranging
from one to 21 terms were built using PLSR. Like PCR, the prediction error does not esca-

late as severely for overfitted models as it does for OLS regression.

The model with four terms has an SEP value of 549 A/min (10.7%). When the models
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Figure 6.3 Predicted versus actual polysilicon etch rate plot of the best
predictive model found via partial least squares regression. SEP = 10.5%.

were “streamlined,” the SEP dropped slightly to 539 A/min (10.5%). This model is shown



122 : Chapter 6

in Figure 6.3. The main benefit in using PCR and PLSR models is that they are much less

sensitive to overfitting and resulted in more stable models than OLSR.

6.5.4 Feed-Forward Error Backward Propagation Neural Networks

The predictive capability of the FFEBPNN model is about the same as the PCR model,
with a slightly higher SEP value, 500 A/min (9.8%). The input and output patterns of the
neural network model were first scaled to lie between 0 and 1. The best FFEBPNN model
structure was of the form 6-5-1, where the six input nodes correspond to the 6 signals col-
lected via the RPM-1, and the 3 output nodes were the etch rates of polysilicon, oxide, and
photoresist. Learning was fast, with only 100 iterations needed to attain the best FFEB-
PNN model for polysilicon etch rate. As in the previous statistical models, 27 runs were

used for training, and 15 were used for testing of the model.

6.5.5 Comparison of the Models

Table 6.3 gives a comparison of all four modeling methods, in terms of the number of
variables in X in each model, the verification SEP, and the normalized SEP. The F-test
shows that the SEP values of the PCR, PLSR, and FFEBPNN models are statistically bet-
ter than that of the OLSR model at the 0.05 level. Furthermore, PCR, PLSR, and FFEB-
PNN methods applied to the real-time data are equally good for polysilicon etch rate

prediction since their SEP values can not be distinquished from one another.

Table 6.3 Summary of CSB Models For Polysilicon Etch Rate

Training Model Description Verification
# of Input Variables . normalized
Model type in X SEP (A/mm) SEP
———— = — ——— —_— e ————————
OLSR 16 1138 22.2%
PCR 52 496 9.7%
PLSR 63 540 10.5%
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Table 6.3 Summary of CSB Models For Polysilicon Etch Rate

Training Model Description Verification
# of Input Variables . normalized
Model type in X SEP (A/min) SEP

FFEBPNN 90 500 9.8%

6.6 Selectivity Models

Due to the small ranges of selectivities across the design space, models are created for
the individual etch rates of gate oxide and photoresist instead of modeling the selectivities.
Since the analysis for these etch rates is similar to that of polysilicon, only a summary of

the models is given here.

Like the case for polysilicon etch rate, the PCR, PLSR, and FFEBPNN models for
oxide etch rate resulted in statistically significantly better prediction than the OLSR
model, as shown in Table 6.4. Once again, the PCR and PLSR models can not be distin-
guished. The best PCR model was built with unscaled data, while the PLSR used scaled
(mean 0, variance 1) data. The neural network models, however, resulted in statistically
significantly worse prediction than the regression models for the oxide etch rate at the 0.05
level. Several structures were tested, and the best FFEBPNN model had the 6-5-3 struc-
ture, where once again, the inputs corresponded to the RPM signals, and the data was

scaled to lie between 0 and 1.

Table 6.4 Summary of CSB Models For Oxide Etch Rate

Training Model Description Verification
# of Input Variables . normalized
Model type X SEP (A/min) SEP
| —— = —
OLSR 16 216 52.7%
PCR 39 39 6.1%
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Table 6.4 Summary of CSB Models For Oxide Etch Rate

Training Model Description Verification
Model type # of Inpil:]t ;(/anables SEP (A /min) norr;ggzed
PLSR 35 31 7.5%
FFEBPNN 6 70 16.9%

While the OLSR model resulted in the worst prediction error for the photoresist etch
rate, the PCR model and the neural network model, using all 13 signals as input, 5 nodes
in the hidden layer, and 3 output nodes, resulted in the best prediction capability. As in the
models for gate oxide, the best PCR model was built with unscaled data, the PLSR used
scaled data, and the neural network inputs were scaled to lie between 0 and 1. The model

results are listed in Table 6.5.

Table 6.5 Summary of CSB Models For Photoresist Etch Rate

Training Model Description Verification
Model type # of Inpiunt )\(/anables SEP (A/min) norrsngll;zcd
—_——
OLSR 13 901 29.1%
PCR 39 148 4.8%
PLSR 90 280 9.0%
FFEBPNN 13 117 3.8%

6.7 Polysilicon Uniformity Models

As shown in Table 10, none of the models for polysilicon uniformity are useful for
prediction. The models for uniformity may be improved if additional signals are included
in the analysis. The real-time signals used in this paper are essentially an average of the

specific etch processes, and as such, give no spatial information about the chamber. There-
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fore, the real-time signals used in this paper are not ideal to provide meaningful unifor-
mity measurements. A set of chamber state signals which have shown promise for
uniformity prediction is spatially resolved optical emission spectroscopy [6.3]. PLSR,
designed specifically to model OES data, has been shown to be effective for training uni-
formity models based on OES data [6.3], and may prove to be the modeling method of
choice. Thus far, however, the predictive capability has not been tested for OES data.
Another new sensor showing promise is the full wafer interferometry system, which has
the potential of calculating the etch rate of points across the entire wafer. This method,
however, requires hardware changes to many present etching systems since it relies on a

top view of the wafer [6.15].

Table 6.6 Summary of CSB Models For Polysilicon Uniformity

Training Model Description Verification
Model type # of Inpit:lt ;\(/ariables SEP (A/min) norrsnéil;zed
OLSR 18 35.5 546%
PCR 90 4.8 73.8%
PLSR 90 4.34 66.8%
FFEBPNN 13 8.2 126%

6.8 Comparison of Chamber State Based and Response Surface
Methodology Models

In this section, the prediction capability of the CSB and standard RSM models are
compared. All four modeling methods described in the previous sections were investi-
gated, and the model with the smallest SEP for each set of inputs was chosen for compari-
son. In all cases, the CSB models built with the real-time data are have approximately the

same prediction capability as the models built with input settings.
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Although these examples show the prediction capability to be similar, we expect that
the CSB models will prove to be superior when more time has elapsed and the equipment
has drifted from its original setpoint because unlike the fixed input settings, the real-time
signals change with the state of the machine. Figure 6.6 compares the modeling results of
six centerpoint wafers. The standard RSM model built with the fixed input settings pre-
dicts a constant etch rate, while the real-time model adjusts the prediction as a result of
small changes in the machine state. Thus, we surmise that models built using real-time
data may predict etch rates with more accuracy than those built with input settings in the
presence of machine drift. One reason this is not seen with the present test case is because
the range of the Verification Experiment was simply not large enough to stress the models.
Only one variable was altered at a time, and the range was quite small. As a result, the
range of the etch rate was not much greater than the natural variation of the centerpoint
data. A better experiment to perform should include changes to more than one input set-

ting at a time. In addition, the range of the settings should have a larger range.

Input Setting Model
§ ] - R )
sl %---.. . - .-
m B -
Actual Data Chamber State Based Model
1 2 3 4 5 p
Replication Wafer #

Figure 6.4 Comparison of the model built with input settings versus the
chamber state based model built with real-time signals.
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6.9 Wafer State Prediction Module Summary

Plasma etch models using real-time equipment signals lead to excellent prediction
models for etch rates (and thus selectivities as well). Additional signals may be needed for
more accurate prediction of wafer uniformity. Four different modeling techniques, ordi-
nary least squares regression (OLSR), principal component regression (PCR), partial least
squares regression (PLSR), and feed-forward error back propagation neural networks
(FFEBPNN) were implemented. OLSR can not be used successfully for wafer state pre-
diction because the real-time signals are highly correlated, resulting in severe instabilities
in the predicted values. PCR, PLSR, and FFEBPNN are well-suited to handle large num-
bers of correlated input variables. The prediction capability was verified on data collected
several weeks after the initial experiment. Because real-time data reflects the actual cham-
ber state of the equipment, models based on this real-time data, called chamber state based

(CSB) models, can be used effectively for prediction of etch rates.

The Wafer State Prediction Module presented is especially powerful because it uses
non-invasive real-time signals collected automatically from the tool while the wafer is
processing. Since the wafer parameters are predicted immediately after the wafer has fin-
ished processing in the machine, important yield information is obtained on a run-to-run
basis, making it possible to ensure that only wafers worth processing continue down the
line. The real-time signals can also be used to qualify equipment to determine if the

machine is operating properly.
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Chapter 7

Conclusions

7.1 Thesis Summary

This thesis presented a system which detects equipment malfunctions in real-time,
assigns a cause to the problem, and finally determines the impact of the fault on the final
wafer characteristics. Key to the success of this Equipment Analysis and Wafer State Pre-
diction System is the data used in the analysis, namely non-invasive real-time signals
which can be automatically collected from the equipment while the wafers are processed.
For plasma etchers in particular, we have isolated a few key signals from two collection
systems, the Brookside LamStation software and the Comdel Real Power Monitor. These
signals have shown to be much more sensitive to the actual state of the chamber than the

input settings of the machine [7.1].

The real-time signals are used in each of the system’s three modules, the Fault Detec-

tion, Fault Diagnosis, and Wafer State Prediction Modules. We have improved the Fault
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Detection Module, which uses time series modeling and Hotelling’s T? statistic to detect
equipment malfunctions [7.2]. Algorithms have also been investigated to extend the mod-
ule to include multiple recipes without retraining the system for each recipe. The Fault

Detection Module has been successfully applied to many single wafer etching systems.

Two methods have been studied to perform fault diagnosis and prognosis for the Diag-
nosis Module. The first, using discriminant analysis, is easy to train and requires no
knowledge of the equipment [7.3]. It is scale sensitive, however, and may require numer-
ous training runs. The second method, using clustering and neural network techniques, is
based on heuristics. It is scale invariant and can be used for prognosis as well as diagnosis.
Examples showing effective equipment diagnosis using both methods have been demon-

strated.

The third module, Wafer State Prediction Module, assesses the quality of the wafer
once it has completed processing. This module relies on accurate models of the critical
output wafer states. Four modelling techniques were evaluated, ordinary least squares
regression (OLSR), principal component regression (PCR), partial least squares regres-
sion (PLSR), and feed-forward error back propagation neural networks (FFEBPNN). The
prediction capability of the models was measured by using data collected several weeks
after the training set, and not used to build the models. It was shown that the techniques
which handle highly correlated data, namely PCR, PLSR, and NN, result in more stable
models than OLSR. Chamber state based (CSB) models, which use the real-time data, are

effective in predicting the output wafer states [7.1].

Although the examples developed in this thesis are based on data collected from single
wafer plasma etchers using the LamStation and Comdel RPM-1 sensors, the methodology
presented is general and can be applied to other types of equipment and sensor data. For

example, data collected via optical emission spectroscopy can be used in exactly the same
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manner. A current research area is to determine the sensor data set which precisely
describes the chamber state. At present we have found data collected from the Brookside
LamStation software and the Comdel Real Power Monitor to be sufficient to show the
power of this class of real-time equipment data. This system can also be applied to other
semiconductor equipment. The most straight-forward extension is most likely to chemical

vapor deposition furnaces, cluster tools, and multi-chamber systems.

7.2 Future Directions

7.2.1 Short-Term

A few areas in each module require more study and research. First, the ideas to use
ARIMAX models to extend the Fault Detection Module to several different recipes must
be verified. A more difficult problem is to include effects of different wafer loading of the
wafers. This is important for fabs which produce a large mix of products. Second, the
staged clustering method in the Fault Diagnosis Module potentially requires different clas-
sification heuristics for each type of etcher. It is also unclear how this algorithm extends to
multiple faults. Third, the uniformity models in the Wafer State Prediction Module are
unsatisfactory for production use. Other sets of data, such as spatially resolved optical
emission spectroscopy, may result in much more accurate uniformity models [7.4][7.5].
Also promising is the full wafer interferometric imaging system, which extracts the etch

rates across an entire wafer during processing [7.6].

7.2.2 Long-Term

The Fault Detection Module can presently be run as a stand-alone package, or within
the existing Berkeley Computer Aided Manufacturing (BCAM) Framework [7.7], which
has capabilities to perform recipe generation and run-to-run control. In the future, the

Fault Diagnosis Module can fit into the BCAM Dempster-Shafer Evidential Reasoning



Chapter 7 133

Diagnostic Framework, which collects evidence from three process stages: equipment
maintenance history before the wafer enters the equipment, real-time sensor data while the
wafer is processing, and the in-line measurements when the wafer leaves the equipment
[7.8]. To take advantage of the complete diagnostic method, however, this fault classifica-
tion should be translated into a form of numerical belief about malfunctions. The real-time
equipment faults can be classified into different sets, each with a certain misclassification
rate. Therefore, we can determine the probability that a certain equipment fault has
occurred. This probability value can be used as support within the BCAM evidential rea-
soning system. This system will effectively combine this support with the evidence col-
lected during the maintenance and in-line diagnostic phases in order to produce a valid,
ranked fault list. The challenge in this translation is the design of an efficient experiment
to determine baseline behavior and fault categories, and the creation of evidence combina-

tion rules that effectively take advantage of the real-time information [7.3].

A consequence of the prediction capability of the CSB models in the Wafer State Pre-
diction Module is that inexpensive run-to-run control is possible. In the absence of reliable
wafer state prediction, work in run-to-run control specifically for plasma etching has
included the use of in-situ sensors such as spectral ellipsometry [7.9][7.10]. Wafer state
prediction will allow a run-to-run control scheme of plasma etch equipment that will bring

specified output parameters back to their target value in the case of equipment drift.
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Appendix A

Test Structure Process Steps for Lam
Rainbow 4400 Experiments

The following is the sequence of steps used to fabricate the test structures used in the

Lam Rainbow 4400 Experiments.
1. p-type B<100> wafers, 14-22 ohms*cm.
2. Gate ox: Tylan5, 2.5 hours at 950°C. recipe: sgateox (~580A)

3. n+ doped poly: Tylan 11, 3.5 hours recipe: sdopolyh (~6000A)

« Use the center boat, grow one lot of 12 wafers at a time.
+ Tylan7 anneal 15 min at 950°C.
* Anneal all 24 wafers together.

4. LTO: Tylan 12, 450C 02:SiH4 = 90sccm: 60sccm 16min recipe: vdoltoc (~3000A)
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o Use the rear boat, grow one lot of 12 wafers at a time.

5. Mask 1: Hardbake at least 40 min

e« HMDS 2 - 3 min.
* Eaton I-line resist, standard process (#15), resist thickness ~0.9um

» GCA expose mask 1 at standard focus, at exposure dose that can resolve 0.8um

elbows. This is generally 31% more than the standard.
» Post-exposure bake 60 sec. at 120°C
* MTI develop standard recipe (#70)
* Technics-C descum for 1 min. at 50W

+ Hardbake 20 min. at 120°C

6. Etch LTO: lam2 standard recipe, 750W, 85%endpoint, 30sec. overetch
7. Etch poly: lam4 standard recipe (Cl,: He). Etch to endpoint.
8. Strip resist: Technics-C, 400W, 7min.

9. Mask 2: Hardbake at least 40 min.

* HMDS 2 - 3 min.
+ Eaton I-line resist, standard process (#15), resist thickness ~1.1um

» GCA expose mask 2 at standard focus, at exposure dose that ca resolve 0.8um

elbows
* Post-exposure bake 60 sec. at 120°C
» MTI develop standard recipe (#70)
* Technics-C descum for 1 min. at 50W

» Hardbake 20 min. at 120°C

10. Etch LTO: lam2 standard recipe 850W 95% endpoint, 30sec. overetch
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11. Strip resist: Technics-C, 400W, 7min.

12. Mask 3: Hardbake at least overnight.

e HMDS 2 - 3 min.
+ Eaton I-line resist, standard process (#15), resist thickness ~1.1um

» GCA expose mask 3 at standard focus, and at exposure dose that can resolve

0.8um elbows
+ Post-exposure bake 60 sec. at 120°C
* MTI develop standard recipe (#70)
* Technics-c descum for 1 min. at SOW

 Hardbake 30 min. at 120°C
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Appendix B

Discriminant Analysis Algorithm

The following C code generates the S-PLUS code used to train the discriminant analy-
sis algorithm. Inputs to the code are: (1) the name of the data file, (2) the number of faults
that you would like to diagnose, (3) the number of real-time signals used in the analysis,
and (4) the name of the output file. The program will then prompt the user for the number

of runs per fault. A sample output is included after the program.
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Appendix C

Staged Clustering and Neural
Networks Algorithm

The following S-PLUS code performs the staged clustering section of the algorithm.
The code shown on the following pages is specific for the Lam Rainbow 4400 polysilicon

etcher.
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