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Heuristic Algorithms for Early Quantification and Partial Product Minimization
Ramin Hojati, Sriram Krishnan,

Robert K. Brayton

Abstract1
A set of interacting finite state machines is often used as a

model for formal verification. Most formal verification algo
rithms, based on Binary Decision Diagrams (BDD's), build the
transition relation of the product machine, and then existentially
quantify out the non-state variables. The early quantification
problem is to compute a schedule for multiplying and existen
tially quantifying variables, such that the maximum size BDD
encountered at any point is minimized. We give two algo
rithms for the early quantification problem, one which is rather
fast (running in linear time on sparse structures), and produces
excellent results and another which produces an optimal sched
ule for a given linear ordering of the terms.

Even with early quantification partial products can become
very large. In this paper, we present techniques to find don't
cares, with respect to which the partial products are minimized.
Some of our techniques involve state minimization and can
result in smaller BDD's for the reachable states set. Two

notions for state minimization are new, and involve approxima
tions to trace equivalence. All the algorithms have been imple
mented and integrated in our formal verification software for
design verification. We present our experimental results.

1 Introduction

Design Verification is the process of answering the question
"Is what I specified what I wanted?" This is accomplished by
specifying the system at a suitable level of abstraction and then
proving properties of the system. For example, in a large design
one can abstract the design to functional blocks and verify that
the communication between blocks is correct. An example of a
property is that no two functional units write to the global bus at
the same time, a so-called safety property.

The most widely used scheme for modeling a system is as a
set of interacting non-deterministic finite state machines, where
the composite behavior is represented by their product machine.
Recendy, Binary Decision Diagrams (BDD's) ([Bry86]) have
been used for representing FSM's. Using this scheme, the tran
sition relation of each machine is represented by a BDD. Let
Tj (*/> »/i >y) be thetransition relation of they'-th FSM, where x,
represents the present state variable of the machine, y, the next

state, and i. the set of inputs and outputs of the machine. We

generally assume that the system is closed, so all inputs to a
machine are produced by some other machine. The product

1. During this work, the firstauthor was supported by SRC
grant 94-DC-008.

machine is then represented by T(x,i,y) = YYTjixpifyj) *

where n is the number of FSM's, x and y are the set of present
and next state variables, and i is the rest of the variables

(referred to as the i/o variables).

Most verification algorithms (see [HTKB92] for example)
work just on the underlying graph, where the i/o variables have
been existentially quantified out. The early quantification prob-

n

lem is toefficiently compute 3(iv ...,im) J"| J.(*,i v.). The

efficiency of this computation is in intelligently interleaving
quantification with conjunction. Assume a partial product
involves avariable ik,which is not usedin anyotherterm. This
variable can be quantified out after this partialproduct has been
formed. A good solution to this problem can make a big differ
ence in the efficiency of the verification tool. This is even more
so, if the variables are poorly ordered.

There have been two earlier attempts at solving this prob
lem. [TSLBS90] suggested using a balanced binary tree, where
a variable is quantified out as soon as possible, i.e. as soon as all
the terms it is present in are part of the current partial product.
[Bur91] suggested multiplying the terms in a left-to-right fash
ion, again quantifying out a variable as soon as possible. Nei
ther one of these methods offer a solution to the problem of
automatically ordering the terms, which greatly affects the com
putation time and the largest BDD observed.

In this paper, we present two algorithms for this problem.The
first a local optimization algorithm (Loc-Opt), is very fast, run
ning in expected linear time on sparse structures, and produces
excellent experimental results. The second algorithm (Ex-Lin-
Ord)returns anoptimum solution given a linear ordering of the
terms. However, it has a cubic dependency on the number of
relations.

Applications of early quantification come up in two places.
The first is the problem mentioned above, where the product
machine of asetof FSM'sis computed. The second place early
quantification arises is the translation of high-level languages,
such as Verilog, into intermediate languages (for example
BLIF-MV [Blifmv93]). During this process, many intermedi
ate relations may be created. Early quantification can then be
used to form the transition relation of the FSM.

The high-level structure of the Loc-Opt algorithm is simple.
At every point, a forest, i.e a set of trees, is given. Each tree
represents a partial product and involves a set of variables. The
best merge is chosen next (some hill-climbing moves are
allowed), and the corresponding trees are combined. A merge



corresponds to multiplying two partial products and existen
tially quantifying out a set of variables. Since actual cost, i.e.
thenumberof resulting BDD nodescannot be used,anapproxi
mation to the cost is needed. As an approximation,we use the
number of variables in the support of the resulting BDD after
the multiplicationand quantification. Although, this cost func
tion is crude, it seems to work well in practice, andit is easy to
compute.

The Ex-Lin-Ord algorithm is based on dynamic program
ming. Given a (fixed) linear ordering of the terms it computes
all ways of computing a product of n terms subject to the
restriction of the linear ordering. We have tried out two differ
ent cost functions. The first one is similar to the above, and
uses the sizes of support sets as abstraction of the size, and 2.
The second one called the early quantification cost function
uses the notion of the cost of a variables, which is the number of
ands starting from the primitive (original) terms performed to
form the partial product from which the variable is being
smoothed out. Ex-Lin-Ord subsumes [TSLBS90] and [Bur91]
since their schedules are amongst the various schedules evalu
ated.

Even with early quantification, the partial productsmay grow
large. We present techniques which minimize the BDD's based
on extractingdon't care information, using various techniques.
Three previous methods have relevance. The first, known as
incremental minimization, was introduced in [BFH92]. The
idea is to minimize the state graphas it is being built. The sec
ond approach, that of [FKM93], presents a BDD-based algo
rithm for state minimization using bisimulation after the
product machine is built. One may wonder why one wants to
minimize a transition relation of a machine after it is built.

Since most verification algorithms need to compute the set of
reachable states, and it could be the case that the product
machine can be built, but not the set of reachable states, this
approach has some applicability. Since state minimization
reduces the size of the set of reachable states, it may also reduce
the size of the BDD's representing the set of reachable states.
Finally, the paper [CSSB92] has relevance to our work, since,
in a somewhat different context, they proposed BDD minimiza
tion using don't cares during incremental checking of CTL for
mulas.

We present techniques for minimizing partial products when
BDD's of an early quantification schedule are computed. The
idea is to perform the multiplication and quantification on the
early quantification tree until some BDD becomes large. Algo
rithms, such as state minimization can then be applied to find
one or more sets of don't care information. The BDD's can

then be minimized with respect to this don't care set We refer
to this problem aspartial product minimization.

We present algorithms for minimization using the reachabil
ity set, minimization using simulationequivalenceandbisimu
lation, and minimization using approximations to trace
equivalence. Our algorithms for approximating trace equiva
lence are new, and to the best of our knowledge provide the

only practical ways to find lower bounds on how well bisimula
tiontechniques perform asapproximations to trace equivalence.
Note that minimization with respect to trace equivalence can
obtain more minimization, since bisimulation and simulation
equivalence are conservative approximations to trace equiva
lence. All these algorithms have been implemented and inte
grated in our formal verification tool.

Our initial experiments show that bisimulation based minimi
zation is rather expensive (basically in the sameBDDcomplex
ity class as transitive closure), so it has to be applied with care.
However, there are examples where bisimulation works well
[FKM93]. To get a robust implementation, care is needed. A
scheme,wheremoreexpensiveminimizations are applied at the
beginning, and less expensiveones, such as reachability mini
mization, areapplied at the later stages can be used. Automatic
ways of deciding when to apply each minimization remains an
open question.

The flow of the paper is as follows. Section 2 presents the
algorithm for early quantification. Sections 3 presents the Ex-
Lin-Ord algorithm. Section 4 presents experimental results for
theearly quantification. Section 5 presents techniques for par
tial product minimization. Section 6 presents experimental
results for partial product minimization. Section 7 concludes
the paper.

2 The Problem and the Loc-Opt Algorithm
In this section, we define the early quantification problem,

anddescribe the Loc-Opt algorithm for early quantification. In
what follows, assume a setof relations Tv .... Tn, and a set of
variables Vj,..., vm, to be quantified, aregiven.

2.1 Problem Setup

Definition An (early) quantification tree is a binary tree,
whose leaves are the relations. At each node of the tree, a sub
set of variables va,..., vn, calledthe quantified variables at n,

are marked as being quantified. If a variable is quantified at
node /i, then that variable must occur only in those relations
which are in the subtree of node «. All variables in v,,.... v
have to be quantified at some node of the tree.

Intuitively, a quantification tree is a schedule to multiply and
existentially quantify the variables. Note that by definition a
variable can be quantified only after all relations, in which it
occurs, have been multiplied. We use multiply and and synony
mously with conjunct.

Definition The product ofan early quantification tree is the
relation obtained by recursively taking the product of the chil
dren of a node, and then quantifying the variables of the node.
The partialproduct at a node n is the product of the early quan
tification tree rooted at n.

Definition The support ofa node n, denoted support (n), is
the union of the supports of all relations in the subtree rooted at
n, minus the variables which have been quantified at n or
below. In other words, these are the variables which occur in

some relation in the subtree at n, but have not been marked as



quantified.

Definition The early quantification problem is to find an
early quantification tree, given a set of relations to be multi
plied, and a set of variables to be quantified, such that the maxi
mum support over all nodes in minimized.

Note that we try to minimize the maximum support over all
partial products. This is an approximation to minimizing the
BDD with maximum nodes in the process. Although this cost
function is crude, in practice it works reasonably well, and it is
very easy to compute.

The exact complexity of the problem remains unknown,
although it is easy to prove that the problem is in NP. Though
we have not proved it to be NP-complete, we suspect it is.

12 Overview of the Loc-Opt Algorithm

Definition A valid subtree is a quantification tree where the
leaves are a subsetof relations in Tv .... Tn, the variables being
quantified area subsetof Vj,.... vm,andthe quantified variables
appear only in the relations in the subtree. Intuitively, a valid
subtree can be extended to a full quantification tree.

Definition Assume two disjoint valid subtrees are given,
where no relation appears in both. By merging two subtrees,
we mean a new subtree whose children are the two given sub
trees, and all variables which appear only in the two subtrees
are marked as quantified. Let n be the node obtained by merg
ing subtrees / with subtree r. Then, the cost of the merge is
support (n) - (MAX(support (I), support (r))), which is intu
itively the local increase in the supports after the merge. For
example, if there are 5 variables in the left subtree's support,
and 8 variables, in the right one, and the support after the merge
is 10, then the cost of the merge is 2.

The algorithm is defined as follows:

1. Start with the set of all relations, each in individual subtrees.
Mark as quantified those variables which appear in only one
relation. Set done tofalse.

2. Untildone is true, do thefollowing
If only one subtree, set done to true,
else

2xi Considera subset ofmerges between subtrees.
2.b Choose the minimumcost merge whose support is least.
2.c If the cost ofthe merge is less than some user's maximum

cost, do the merge. Otherwise, set done to true.
Note that the above algorithm builds the quantification tree

from already built subtrees. It is a local optimization algorithm,
since it chooses the merge which (heuristically) minimizes the
increase in the size of a product of two partial products. We
allow some hill-climbing moves by using a one-step look-
ahead.

Definition Three way merges merge three subtrees(by build
ing a subtree on threeleaves). The cost of a threeway mergeis
the difference in the support of the new node minus the maxi
mum of the supports of the three subtrees.

In choosing the bestnext merge,bothtwo andthreeway merges
can be considered in the above algorithm.

23 Data Structures

To efficiently implement the algorithm, we need some data
structures.

Definition Given a forest of subtrees, active variables are
those which must be quantified but have not been quantified
yet The connections ofan active variable are all subtrees in
which it appears. Note that, after step 1 of the above algorithm,
each active variable has at least two connections.

Definition A variable connection table (defined for active
variables) is a hash table which contains for each variable the
set of all subtrees in which the variable appears. Note that
insertions and deletions into a variable connection table can be

done in constant time. With every variable, we keep the num
ber of connections it has. Hence, checking the number of con
nections of a variable can be done in constant time. This table

is always kept up to date, i.e. after every merge it is updated.

Lemma 1 The size of the variable connection table is

bounded by O (mn).

Proof For each variable, there can be at most n connections.
The lemma follows (QED).

Definition A merge consists of a type (two way or three
way), all the subtrees involved in the merge, the support after
merge, and the cost of the merge. Each merge points to its next
links in the bucket (to be defined below).

Remark Every subtree is assigned a unique identifier (start
ing from 0). In the following discussion, we sometimes refer to
subtrees as nodes.

Lemma 2 A merge can be built in O (m) time, where m is the
number of variables.

Proof It suffices to show that the support and quantified vari
ables can be determined in O (m) time. For every subtree, we
keep the list of variables in the subtree in sorted order. To find
the new support after a merge, scan the set of supports in
increasing order. For every variable, if the variable has two or
three connections and all its connections are in the merge, quan
tify the variable. Note checking the number of connections of a
variable can be done in constant time. Otherwise, leave it in the

support. These operations can be done in O (m) time (QED).

Definition A merge table consists of two node arrays,corre
sponding to two way and three way merges respectively. Each
subtree has a location in each node array (based on its id),
which points to a hash table (calledthe node's merge list), con
taining the set of merges the subtree is involved in.

Lemma 3 Insertion or deletion of amerge in the merge table
can be done in constant time.

Proof Denote themerge inquestion by M. Based on thetype
of M, selectthe corresponding nodearray. Foreachnode in M,
addor delete the merge in the node's hashtable(QED).

Definition A cost array is an array with a position for each
cost. Each location C in the cost array points to abucketitem,
which has three pieces of information:

1. A support array, which is an array of merges having a bin
for each possible support size. All merges in a bin are linked



together. Forexample, all merges of cost C with support5 are
in the same bin.

2. A low and a high mark pointer, which say what the lowest
andhighestpossiblesupports are in the current cost category C.

Definition A bucket consists of two (cost array, position)
pairs, corresponding to two way and three way merges. Each
position points to the merge with smallest cost in each cost
array.

Lemma 4 Insertion of a merge in a bucket can be done in
constant time.

Proof Denotethe mergein questionby M. Basedon the type
of M, get the corresponding cost array. Based on the cost of the
merge, find the bucket item. Based on the support of M, find
the corresponding bin. Insert the merge at the beginning of the
bin. Adjust the low and high marks (QED).

In practice, eachsupportarray has a fixed size, let's say 200.
Hence, all merges whose support is more than 200 will be in the
same bin.

Lemma 5 Deletion of a merge from a bucket can be done in
constant time.

Proof Since the items in abin aremaintainedusing alink list,
where the pointers are maintained inside the merges, deletion
from a bin can be done in constant time. We need to adjust the
low andhigh mark pointers. Since the support arrays have con
stant size, this takes constant time (QED).

The high mark pointer is only used to signify empty bucket
items. Forexample, assume there is only one merge of cost 5.
Assume the support of the merge is 10. If this merge is deleted,
its bin becomes empty. Since, the high mark pointer is set at 10,
we do not need to march up the support arrays to find that it is
empty.

2.4 Algorithm's Details

The detail of step 2 of algorithm of section 2.3 are as follows.
1. Create small merge table.
2. Perform merges withsome small maximumcost.
3. Create thefull merge table.
4. Perform merges with large maximumcost.

Each step of the algorithm is described below.

Creating small merge table. The purpose behind creating the
small merge table is to do the easy merges on a reasonable sub
set of possible merges. For example, in some examples (in our
formal verification tool), the algorithm is called with thousands
of relations. In such cases, it is important that the algorithm
works efficiently. In practice, this step prunes the number of
subtrees substantially. The algorithm is as follows.

1. For active variables with only two connections, createa merge
between the two subtrees in which the variable appears.

2. For active variableswithonly threeconnections,createa three
way merge between all the subtrees in which the variable
appears.

3. For all other variables, do nothing.
In practice, when the number of relations is large, there are
many variables which are used in just two relations; since we
have a subset of all possible merges, we will perform "safe"

merges, i.e. those with low cost.

Lemma 6 The number of merges created by the small merge
table algorithm is bounded by O (m).

Proof Clearby definitionof the algorithm.
Performing the merges. We assume some maximum cost is

given. In our implementation, for the small merge table it is 0,
whereas it is <» for the large merge table. The algorithm is as
follows.

1. Choose thebestmerge, i.e. one with leastcost, and least sup
port.

2. Ifthecostis notgreater than maximum cost,perform themerge.
To perform the merge, we proceedas follows.
1. Create a newnode. Deletetheoldnodesinvolved in themerge

from the merge table.
2. Consider themerge lists of the nodes involved in themerge.

Updateall the merges i.e.
a. Delete those merges which were among the nodes in the
merge,

b. update the merges between a node not in the merge and
nodesinthemerge, to involve thenewnode in themerge.

Creating thefull merging table. The following algorithm is
used.

1. For variables having connections less than some threshold
value, createall pairwise mergesamong the relations which
use the variable.

2. For variables having connections more than some threshold,
arrange the relations in the connection list in a circular order.
Create a linkfromeveryrelation lo its neighbor.

The threshold value we use in our implementation is 50.

Lemma 7 The number of merges created by the full merge
table algorithm is bounded by O (m).

Proof Clear by description of the algorithm (QED).

2.5 Complexity of Algorithm.
We first analyze the worst case complexities, and then the

complexity for sparse structures. We assume that the total num
ber of variables in supportof relations is O(m).

Definition Let the connection table T be the table, which
indicatesthe variablesused in the support of each relation.

Lemma 8 The space consumption of the algorithm is

bounded by max (O(m2), O(mn)).
Proof This follows by lemmas 1,6,7 andby the fact that the

space consumption of a merge is O (m) (QED).

Lemma 9 Updating the variable connection table after a
merge can be done in O (m) time.

Proof A merge can involve variables. Forevery variable, the
variable connection table has to be updated. Each update takes
constant time. The results follows (QED).

Lemma 10 The running time of the algorithm is bounded by

max(0(n2m),0(m2)).
Proof By lemmas 6 and 7, there are at most O (m) merges

created initially. By lemmas 1 and 9 creating the small and full

merge tables takes atmost O(m2) time. Toconstruct thequan
tification tree, O (n) merges are needed. After every merge, at



most O(n) merges must be deleted and created, where each
deletion or insertion by lemma 9 lakes O(m) time. Hence, the

total time for merging and updating is bounded by O(n2m).
The result follows (QED).

We believe the above lemma is very pessimistic, and the
experimental data supports this. In practice, if the number of
relations is large, then the connection table is very "sparse", i.e.
every variable is used in a constant number of relations, and
every relation has a constant number of variables in it. Note
that for sparse connection tables O(n) = 0(m). A more
meaningful theorem is the following.

Theorem 11 If the connection table is "sparse", then the run
ning time (and hence space consumption) of the algorithm is
0(n).

Proof The difference with the above proof in the analysis is
that updating after every merge can be done in constant time,
since every subtree has a constant number of merges, and creat
ing a merge takes constant time. Since, there are O (n) merges
to be done, the linear bound follows (QED).

Note that having efficient data structures is a must to get this
bound.

2.6 Constant Propagation

In practice, one can take advantage of some structural infor
mation about the input to speed up the algorithm. We have
noticed one technique known as constant propagation works
well in practice. A constant BDD is one whose supports
includes only one variable, and the number of minterms it rep
resents is 1. An example is the BDD for relation x = 5. Our
constant propagation algorithm is described below.

1. Put all constants in a constant list.

2. Until the constant list is not empty
2.a Pick a constant from the list.
2.b Multiply the constant everywhere it is used. Quantify the
variable in the support ofthe constant BDD from the result.

3 Exact algorithm for linear ordering of terms
In this section we describe the Ex-Lin-Ord algorithm. We
assume that we are given a linear ordering of the terms.

3.1 The algorithm

Definition Let cost[i,j] =cost j\\Ti]• Intuitively

cost [ij] is thecostof realizing theproduct of Tt,...,T- quanti
fyingout all variables which can be quantified.The algorithmis
based on dynamic programming and goes as follows:

1. As a preprocessing step quantify out any variables present in
only one relation.

2. Initializethe costfunction of the leaves: initialize cost [i, i].
3. For I = 2,...,n

do for i - 1 to n + / - 1
cost[i,j] = oo

for k = i to j'- 1
q = compute - cost

if q< cos/[i,y]

then cost[i,j] = q
seperator[i,j] = k

return cost and separator
As a preprocessing step we quantify out any variables present

in the support of only one function. The separator data structure
keeps the index of the right most term in the left partial product
fortheoptimumrealizationofthepartialproduct 7",.,.... T>.

We calculate the best way to realize partial products of
increasing sizes. In step 2, we calculate the cost of the original
terms. Then we calculate the best way to realize partial products
of size 2, i.e. involving two neighboring terms of the linear
order, and so on. The cost of realizing a larger partial product is
calculated as the best way to compute it by using the optimum
way of computing subproblems.

3.2 Complexity

By examining the loop structure of the algorithm we get the fol
lowing lemma:

Lemma 12The algorithm Ex-Lin-Ord runs in time O(n3m),
where n is the number of relations and m is the number of vari

ables to be quantified.

Proof The algorithm computes the value of cost [i,j] for

i = 1,.... n- 1 and j >i. There are O(n2) such calculations. To
compute cost [i,j] we have to compute the cost of merging par

tial products i,...,;' and j, ...,k for i<k<j. There are 0(n2)
such calculations. The cost of each merge can be computed in
O (m) time. The result follows (QED).

Remark The space consumption of the algorithm is O(n2m)
33 Optimality

Theorem 13 Given a linear ordering, Ex-Lin-Ord determines
the optimum schedule for the given cost function.

Proof The proof is by induction on the size of the partial
products, i.e the number of primitive terms in a partial product.
The base case holds since there is only one way of realizing a
partial product. Assume the cost function is such that the cost of
realizing the current partial product can be calculated from the
cost of realizing smaller partial products optimally. Thus if we
try all possible waysof realizing the current partialproduct we
are guaranteed to find the optimum. The algorithm of section
3.1 tries all possible ways of realizing a partial product from
sub-partial products subject to the linear order restriction
(QED).

3.4 Cost Functions

We have experimented with two cost functions. The first one
is that of thesupport set. The costof a partial product p, real
ized as a product of / and r is
MAX (support (p) .support (/) .support (r)). This cost function
approximates ourobjective of minimizing thelargest BDD seen
through the computation.

Theother costfunction, the early quantification costfunction
minimizes the cost of quantifying the variables that have been
quantified from the current partial product orits component par-



tial products. Define \p\ to be the number of ands needed to
formpartialproduct p starting from the originalrelations. Thus

cost (p) = £ (|p| -1) +cost (/) +cost(r), where p is realized
V

as a product of partial products / and r. The summation runs
over the variables that are spread across / and r, i.e those that
can be quantified from p but not from either / and r.

Remark Both of these cost functions are such that the best
wayof realizing a partialproductis by combining smallerpar
tial products realized optimally.

3.5 Ordering the terms

Remark Corresponding to every quantification tree there
exists a linear ordering of the terms such that the tree can be
realized for that ordering by Ex-Lin-Ord.

Thus the optimum solution can be found by picking a suitable
linear order and running Ex-Lin-Ord. This also serves as an
easy way to see that the Early Quantification problem is in NP.

4 Experiments with Early Quantification
Since our package is used primarily in our verification tool, to

test the package we have chosen a set of examples from verifi
cation. Some of these are from industry, while others are aca
demic.

The input language to our system is Verilog, extended to han
dle non-determinism. Many high-level designs are described as
a set of interacting non-deterministic FSM's. Early quantifica
tion comes up in two places:

1. As each FSM is translated into our intermediate format,
BLIF-MV, many small non-deterministic relation are created
(one can think of them as non-deterministic gates). To form the
transition relation for the FSM, all the relations have to be mul
tiplied, and intermediate variables quantified out Since the
relations are non-deterministic, i.e. they are not functions, the
recursive techniques which work for combinational logic can
not be applied (these techniques amount to computing the func
tion for each gate in terms of functions of its inputs). In this
application, it is not uncommon to require early quantification
with thousands of relations.

2. After the transition relation for each FSM is built, all these
relation must be multiplied and non-state variables quantified
out. In this application, the input usually consists of less than
100 relations.

The next two sections summarize our experience within each
of these applications. For ease of programming, our initial
implementation sometimes differs somewhat from the algo
rithms presented. So, the run times given may be a bit pessi
mistic.

4.1 Building Transition Relation of a Process
Wequoteresults from our experiments withbuilding the transi
tion relations of FSM's written in the BLIF-MV format. While
some of these examples have more than the few machines
quoted here, we have the largest amongst them in the table.
Gigamax is a multiprocessor cachecoherency protocol distrib

uted with the tool SMV[McM93]. Scheduler is from [Mil89].
2mdlcis a messagedata linkcontrollerobtainedfrom industry.

Column b gives the number of relations in the call to our
package. The number after the / is the number of relations after
constant propagation. Column (c) is likewise is the number of
variables being quantified out Column (d) gives the sum of the
times (in seconds) to compute the schedule and perform the
conjunction and existential quantification. In column (g), L
stands for Loc-Opt, T for [TSLBS90], and B for [Bur91]. All
our experiments were performed on a DECsystem 5900 with
440MB of physical memory.

Our experimentalobservations are as follows. The support set
seems to track well with the size of the BDD's. In the vast

majority of our experiments the algorithms of both [TSLBS90]
and[Bur91] perform far worsein timeand minimizing the larg
est BDDsizes, thanLoc-Opt. In manyexamples,constantprop
agation (CP) significantly reduced the number of relations and
variables to be quantified. The results quoted in the column (d)
include the times for CP. For one FSM in 2mdlc (on the last
call) we were unable to build the transition relation using the T
andB methods but finished in about 12seconds with the largest
BDDobserved having only 1644nodes using Loc-Opt. In the
other calls T was on average about 5 times slower with BDD's
sometimes an order of magnitude larger. B was always slower
and on average produced larger BDD's.

Table 1: Experimentaldata for transitionrein,
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4.2 Building the Product Machine

The first step in the verification of a system of interacting



machines is the formation of the product machine. For the
product machine construction we also tried out the Ex-Lin-Ord
algorithm. Though the Ex-Lin-Ord algorithm has a cubic
dependency on the number of relations, the schedule can be
computed in less than a second for 1-30 relations. On larger
instances on some examples the extra time in computing the
schedule could some times be justified by savings in performing
the operations.

ES stands for Ex-Lin-Ord with the support cost function and
EE, for using the early quantification cost function of section
3.4. For ES we used the linear order corresponding to the quan
tification tree obtained with Loc-Opt, and for EE a greedy algo
rithm for a [Bur91] like scheme. Column (e) indicates the cost
of the final solution. In the case of T and B methods it is the

maximum support for their respective schedules.

The Ex-Lin-Ord algorithm always returns a better a priori
cost than Loc-Opt. However, Scheduler is an example where
the largest bdd observed was not smaller than with Loc-Opt,
indicating that the support abstraction of size does not always
work. However, it is our experience that it serves well in a vast
majority of cases.

For the product machine application both [TSLBS90] and
[Bur91] were slower and resulted in larger BDD's, sometimes
several orders of magnitude. For example in Scheduler, both T
and B spaced out. Using the Ex-Lin-Ord algorithm on the linear
order returned by Loc-Opt produces some optimization in most
cases.

We comment on other applications of Early Quantification
and in particular Ex-Lin-Ord in section 7.

Table 2: Product machine construction
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5 Partial Product Minimization

In this section, we assume we are building the product
machine of a set of interacting FSM's. Even when early quanti
fication is used for this purpose, the partial products can grow
large. In the same spirit as [CSSB92], we pose the problem of
minimizing the BDD's for partial products as finding don't
cares. Our algorithm can be viewed as follows.

Given an early quantification tree, recursively multiply rela
tions and quantify variables according to the schedule given by
the tree. In current BDD packages, multiplication and quantifi
cation can be done in one step. We will refer to this procedure
as and-quantify.

Assume at some point, the children of a partial product grow
too large. At that point, apply a minimizations technique to
gather some (independent) don't care information for each
child. The don't care information on the children can be used

during the and-quantify at the current node to minimize the
resulting BDD. Currently, no procedure is available for such
minimization. So, as an approximation, the two children are
minimized with respect to their individual don't cares, and the
and-quantify is applied.

The techniques to find don't cares can be divided into three
kinds: minimization with respect to reachable set, simulation
equivalence and bisimulation state minimization, and trace
equivalence state minimization. We describe our techniques in
an environment based on language containment, with no fair
ness constraints. We will then comment on how our techniques
can be extended to handle fairness constraints and CTL model

checking. [HSBK93] describes the basics of our verification
environment.

Using language containment for verification, the system is
described as a set of automata. A set of fairness constraints are

placed on the automata to remove extra behavior introduced by
abstraction. The property is given as an automaton with fair
ness constraints. The property is complemented, and it is
checked whether the intersection of the language of all autom
ata (including the complement of the property automaton) is
empty. To check for emptiness, the product machine is built,
using early quantification. The techniques described here show
how partial products of this computation can be minimized.

5.1 Reachability Based Minimization

Each partial product corresponds to the product of transition
relations of a set of machines. The set of initial states corre

sponding to these automata can be computed. Assume the set
of reachable states of this partial product is given. A set of
don't cares can be obtained at this step, which are all the edges
which originate from the unreachable set. The partial product
can be minimized with respect to this set

5.2 State Minimization Using Bisimulation and Simula
tion Equivalence

So farin theliterature, bisimulation hasbeen mostly used for
verification purposes. Toprovea system correct, a specification
of the property is given in terms of an automaton. It is then



proved that the implementation is bisimilar to its specification.
We feel that this form of verification is too restrictive (we share
this view with [Mcm93]). Following [BFH92] & [FKM93],we
proposeto use bisimulation and simulation equivalence as state

minimization techniques.1 We will describe our algorithms
below, which are simpler than those of [FKM93], since they
keep track of partitions explicitly.

Definition Let a finite automaton A be given, with L(A)
denoting its language. Two states x and y aretrace equivalent
iff L(B) = L (C), where B and C are exactly the same as A
except the firsthas x as its initial state and the second y.

Bisimulation and simulation equivalence are stronger than
trace equivalence, i.e. two states x and y may be trace equiva
lent but not bisimulation equivalent. We will define these
notions below.

Definition Let an equivalence relation £,_ l (x,y) be given.
The one-step simulation relation of Ei_l(x,y), denoted by
£, (x,y), is defined as follows:

E((x,y) = VaV2(7(jf,a,z) ->3wT(y,ct, w) a£,._ , (z, w)),
which is read as y one step simulates x if whenever x can make
a move to z on some action a, then there exists a state w such

that y can makea transition to w on a, and (z,w) e Ei,_,.

Definition State a is said to simulate state b if
(a,b) 6 Es(x,y), where Es is defined as the greatest fixpoint
of the following computation:

1. Start with all states related to all other states, i.e.
E0(x,y) = 1.

2. Applyone step simulationsuntil convergence.
Remark We usually define E0 to only relate the reachable

states to each other. This can be significant for convergence,
since the unreachable states may have poor convergence with
respect to simulation relation.

Definition An equivalence relation E(x, y) is said to be sym
metric if whenever (x,y) e E, (y,x) e E. By making E(x,y),
we mean the relation E(x, y) a E(y, x), where the pair
(x,y) € £ is removed if (y,x) c £.

Definition Two states x and y are simulation equivalent if x
simulates y and y simulates x. To compute the set of simula
tionequivalent states, EE (x,y), use the following algorithm.

1. Compute Es(x,y) as inthe definition ofsimulation.
2. Make Es(x,y) symmetric.
Definition State a is said to be bisimilar to b if

(a,b) e EBS (x, y), where EB is defined as the greatest fixpoint
of the following computation:

/. Start with all states related to all other states, i.e.

E0(x,y) = 1.
2. Apply thefollowing until convergence,

1. Since we assume a synchronous concurrencymodel, weak
bisimulation does not make sense.

a. Apply one step simulation to £f. _ j (x,y) in order to gel
£,(*,».

b. Make £,.(x,y) symmetric.
Note thatEB (x,y) is symmetric. Note also thatthe only differ
encebetweenalgorithms forbisimulation andsimulation equiv
alence is that for bisimulation the equivalence relation is made
symmetric after each step, whereas for simulation equivalence
it is made symmetric after the simulation relation has con
verged.

The difference between simulation equivalence and bisimula
tion can be subtle. The following example reveals this differ
ence. Using bisimulation, we get 6 states, with states 1 and 7,
and 2 and 6, being equivalent. Using simulation equivalence,
we get 5 states,with state 1 being equivalent to 5, in addition to
the other equivalences.

This example shows
the difference between

simulation equiva
lence and bisimula

tion.

[HTKB92] defined a complexity hierarchy for BDD compu
tations. Basically, the complexity of a fixpoint computation is
dependent on the ariry of the relation which is being iterated on.
For example, the arity of the iterated relation in reachable set
computation is 1, whereas for transitive closure it is 2. In this
sense, the above computation are equivalent to transitive clo
sure, since we are iterating on E(x,y), which is a binaryrela
tion.

53 Don't Cares Arising from State Minimization

The information aboutequivalent statescan lead to two differ
ent sets of don't cares: the internal and external don't cares. Let

£(jt,y) denote the set of equivalent states. The internal don't
care set is obtained by adding transitions into equivalentstates.
The following formula computes this

sel:T(x,a,y) a 3z3w (£ (jc, z) a £ (y, w) a T(z, a, w)). Intu

itively, if a transition T (z, a, w) exists in the original machine,
the transition T(x, a, y) is a don't care if it is not a transition in

the original machine, and x is equivalent to z, and y to w.

The compatibleprojectionoperator ([LN91])is an operator
which chooses a representative for each equivalence class. The
external don't cares can be obtained as follows.

1. Run the compatible projection operator.
2. Build the slate minimized machine, called the quotient
machine.

3. Minimize with respect to the unreachable set of the quotient
machine.

Note that the unreachable set of the quotient machine includes
some reachable states of the original machine. Using the exter
nal don't cares has the advantage that the reachable state set
changes. This can be crucial, if the reachable state set cannot be



built.

5.4 Approximations to Trace Equivalence

Using trace equivalence, one can possibly get more statemin
imization, compared to minimization using bisimulation or sim
ulation equivalence. However, state minimization for non-
deterministic automata is PSPACE-complete. Even if we start
with deterministic automata, as we quantify out variables, the
automata become non-deterministic. Here, we present two
approximations to trace equivalence. These approximations are
not conservative, i.e. two states may be equivalent according to
these approximations, which are not actually trace equivalent
Such approximationhave at least the following uses.

1. They can be used as abstractions. The minimization infor
mation using these approximations can be used to add behavior.
One way to ensure this is by using internal don't care set. In a
language containment based environment, if the check passes
(i.e. the language of the product machine is empty), we are
assured that the original check has passed. On the other hand, if
it fails (in the same spirit as [BS93]), we can check the error
trace. If the error trace is an error trace in the un-minimized

system (for this check we don't need the product machine), then
we have a counter-example. If not, we have to do some refine
ments based on some strategy.

2. These approximations can also be used as lower bounds
on how well simulation equivalence and bisimulation perform
as conservative approximations to language containment. We
feel that this is an important contribution, since using current
techniques (which check whether two states are equivalent by
determinizing the machine) lower bounds on automata with
only a few hundred states could be obtained. This is so, even
when BDD's areused, since for determinization, usually one bit
per state is created. Current BDD techniques can handle BDD's
with only several hundred binary variables. Using our tech
nique, we may be able to handle automata with several thou
sand or even more states.

Definition State xn is output simulated by y0 if for all
sequences of states x0,xv ...,*„, where T(xn_va,xn), there
exists a sequence of states y0,yj, ...,yn, such that
T(yn _i. a, yn). Intuitively, if state x0 can do action a in n
steps, then >0 can do action a in n steps.

Definition Two states are output simulation equivalent if
each output simulates the other.

To compute output equivalent states, the following algorithm
can be used.

J. LetT0(x,i,y) = T(x, i,y), E0(x,y) = 1.
2. Repeatuntilconvergence:

2.a £i+,(x,y) = £,.(;c,y) a Va(7\(x,a) <->7\(y,a)).
2.b Ti+ j (x, a,y) = 3z3p (7\ (x, p, z) a T(z, a, y)).

T(x,a) represents a transition relation where the y variables
have been quantified out. Note that (x, a,y) is an edge in
Ti+ j (x, a, y) if there is a path of length n between x and y

whose last label is a. The BDD complexity of the abovealgo

rithm is the same as computing the transitive closure.

Lemma 14 If two states are not output simulation equivalent,
then they are not trace equivalent.

Proof This basically follows from the definition: if two states
x and y are not output simulation equivalent, then there is a
path of length n, let's say from x, which is labeled with a on
the n-th step. We cannot have any path from y which has the
label a on its n-th edge. The result follows.

Definition Two states x and y are n-trace equivalent, iff for
all paths of length n from x with labels a,,..., an, there exists a
path of length n from y with exactly the same labels, and vice
versa.

Lemma If two states are not n-trace equivalent for some n,
then they are not trace equivalent.

Proof Follows by definition.

The following algorithm can be used to find the set of states
which are n-trace equivalent.

1. LetEx(x,y) = l.r^x.ij.y) = T(x,i,y).
2. For j = 2, ...,n, do thefollowing:
2.aTj(x,iv...,ij,y) = 3zT(x, i,,.... i}_ j.z) *T(z,ij,y).
2.bLetIj= (iv...,ij).
2.c Let Tj(x, Ij,y) = Tj(x,«,,.... ify).

2A Perform one step simulation relation on E,(x,y) and

Tj (x,/, y) with the selection variables being /..
2e. Make E• (x, y) symmetric.

Intuitively, this algorithm builds relations 7\(x, i,, ...,Ly),
where two states x and y arerelated iff there is a path of length
n between them in T(x, i, y), remembering all the labels on the
path between x and y.

Lemma 15The above algorithmcomputes the n-trace equiv
alent states.

Proof Assume two states x and y are n-traceequivalent. Let
j <, n. Then, if x has a transition to z by a path which assignsa
set of values to /., then y has a path of length /' to some slate w

with the same assignment to /.. States x and y will remain in

the same equivalence class for j < n. Now assume that x and y
arenot n-trace equivalent. Then, there exists a path of length j
whichdistinguishes them. In the y'-th step, x and y will be sep
arated by the one step simulation relation(QED Lemma).

Unfortunately, in the abovealgorithm, if £(x,y) converges,
we cannot be sure that we have reached traceequivalence. The
following is an example where in iteration 3 nothing changes,
butwe havenotreached trace equivalence. The following theo
rem puts a bound on how many iterations are needed.



This example shows
that the n-trace algo
rithm can converge,
where there are still un-

equivalent states. After
iteration 2, 1=6, 2 !=7,
31=8, 4!=9. Iteration3
does not change any
thing.

Theorem 16 If two states are n2-trace equivalent, then they
are trace equivalent.

Proof Consider two states x0 and y0. Consider the product
machine of T(x,y) by itself, where the initial state is

(*0,)>q) . Assume the two states are not trace equivalent.
Without loss of generality assume, there is a trace from x0
which y0 cannot produce. Then, there is a path in the product

machine of length k<n2 to some product state (x^, yk) such
that xk has a transition on some symbol a, but yk does not.

Moreover, for all reachable states (xk,yk) in exactly * steps,

with the same labels as the path between (*0, )>g) ^d

(xk,yk),y* does not have a transition on a. The transitionrela

tion Tk(x,lk,y) will expose this difference, and hence x0 and
y0 will not be in the same equivalence class after the Jt-th step.
By the algorithm, once two states get into two differentequiva
lence classes, they can never get into the same class in the sub
sequent iterations. The theorem follows.

5.5 Minimization and CTL Model Checking

From among the minimization techniques that we presented,
reachability minimization and bisimulation preserve all CTL
properties ([BCG87]). Simulation equivalence perseveres
ACTL formulas (GL91]), which are CTL formulas involving
universal quantifiers only. Trace equivalence minimization
cannot in general be used with CTL model checking. We will
consider how bisimulation minimization can be done in the

CTL model checking paradigm. The case of simulation equiva
lence is similar.

Assume a CTL formula is given. If the CTL formula
involves only output variables, then the minimization can be
done as before. The output variables denote a set of states of
the original machine. This set has to be modified to reflect the
state spaces of the quotient machine. If the formula involves
state variables as well, then the initial equivalence relation has
to be built so that only those states are equivalent whose state
values for the state variables used in the CTL formula is the

same.

5.6 Minimization and Fairness Constraints

We assume we are given a set of fairness constraints, which
must all hold. One can then extend reachability minimization

10

to minimize with respect to the set of fair reachable states,
whichare thosestates thatcan reachsome faircycle, i.e. a cycle
satisfying all fairness constraints. When languagecontainment
is used, if the set of fair reachablestatesof a partialproduct is
empty, then the language of the product machine is empty, and
the languagecontainmentcheck has passed.

Now, assume we are dealing with a state minimization tech
nique. We account for fairnessconstraints in the initial step of
our algorithms, when the initial equivalence relation is built.
Forsimplicity, assumethe fairnessconstraints are given to us in
Buchi form. Then, the equivalence classes are initialized so
that all final states are in the same class, and all non-final states
are in the same class. Note that in general, a final state can be
equivalent to a non-final state. Hence, our approximation is
conservative.

Remark Using the language containment paradigm, safety
properties can be specified with a Buchi automaton with all
states final except for one, which acts as a non-accepting sink
state. Usually, in proving safety properties, no fairness con
straintson the system is needed. In this case, our algorithms
give the maximum optimizations. On the other hand if the
safety property was specified using a CTL formula, since there
are no fairness constraints, maximum optimization is possible.
We think of our algorithms as being most suitable in this con
text. Effective state minimization in the presence of fairness
constraints remains a challenge with the work of [DHW91]
being a starting point.

6 Initial Experiments with Partial Product
Minimization

Wehavejust begun experimenting with partialproductmini
mization. In this section, we describe the results of our initial
experience.

1. We have experimented with various minimization tech
niques on a few examples. In only one example, bisimulation
and simulation equivalence gave different results. Simulation
equivalence and n-trace equivalence, where the n-trace equiva
lence algorithm is stopped after convergence is achieved,
always return the same answer. This is rather interesting since
it implies that simulation equivalence may be a good approxi
mation to trace equivalence. Output simulation equivalence in
general returns a different answer than other methods. We
believe output simulation equivalence can be used as an
abstraction technique: it is not so naive so that all of the struc
ture is removed, and it is not too restrictive so that some details
is hidden.

2. Automation of when to apply what minimization tech
nique remains a challenge. Simple strategies, such as apply
some minimization technique after the number of BDD nodes
grows beyond some threshold bound, do not yield good results.
For example, carelessly applying state minimization can lead to
long run-times. Currently, we have made a minimization envi
ronment which is interactive, where the user chooses what min

imization method to apply next.



3. The notion of minimization after partial collapsing
appears to be very powerful. For example, consider Milner's
[Mil89] scheduler, which is ring of processes Px, .•.,/*„, and a
set of processes Qx Qn, where Qi communicates only with

Pr One can visualize this as a ring of processeswitheachpro
cess in the ring having another process hanging from it.

Webuilt the product machine of the system and computed the
reachable states. The number of reachable states in the rings
without any minimization was 608655. The quantification tree
we get back from earlyquantification first merges each Qi into
its corresponding Pt, and then multiplies these partial products

by going around the ring. We did bisimulation minimization
aftercollapsingof each Qi into its corresponding P-. The num
ber of reachable states was reduced to 4288. The CPU time for

the operation increased from 12 seconds to 22 seconds. This
experiment suggests that state minimization can be used after
local collapsing to reduce the number of reachable states with
little cost. In cases, where the reachable set cannot be built, this
technique may be vital.

7 Conclusion and Future Work

In this paper, we have presented two algorithms for the early
quantification problem. Our first algorithm is fast and produces
very good results. The other one can be used as an optimizer to
improve the quality of the first one. We are examining the uses
of our algorithms, especially Ex-Lin-Ord, in the case that we
cannot form the product machine using the techniques pre
sented here. We have presented experimental results for our
algorithms. Even when early quantification is used, the sizes of
the partial products can grow large. We have presented several
techniques for reducing the size of partial products. We have
done some initial experimentation with these techniques, which
was presented here. An algorithm which controls when each
minimization should be applied remains an open research ques
tion.
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