

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PERMISSIBLE OBSERVABILITY RELATIONS

IN FSM NETWORKS

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M94/15

25 February 1994

PERMISSIBLE OBSERVABILITY RELATIONS

IN FSM NETWORKS

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M94/15

25 February 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PERMISSIBLE OBSERVABILITY RELATIONS

IN FSM NETWORKS

by

Huey-Yih Wang and Robert K. Brayton

Memorandum No. UCB/ERL M94/15

25 February 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Permissible Observability Relations in FSM Networks

Huey-Yih Wang Robert K. Brayton
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

February 25,1994

Abstract

Previous attempts to capture the phenomenon of output don't care sequences for a component in an FSM network have been
incomplete. We demonstrate that output don't care sequences for a component can be expressed using a set of observability
relations given that its state transition function is kept unchanged. Each observability relation is permissible in the sense that
any implementation compatible with one of them is feasible. The representation for a set ofpermissible observability relations
is not unique. We provide a method to find a set with the minimum number of permissible relations. We briefly discuss the
exploitation ofpermissible observability relations in state minimization, circuit implementation and signal encoding. Wehave
implemented these methods and present some preliminary results on a few small artificially constructed examples.

"Thisproject wassupported by DARPA undercontract numberJFBI90-073 and NSFundercontract numbers EMC-84-19744 andMIP-87-19546.

i- o

Figure 1: A cascade circuit of two FSM's.

1 Introduction

The flexibility in implementing an isolated combinational logic circuit can be expressed by don't cares. For an individual
component in a hierarchically designed combinationallogic circuit,a Booleanrelation,an observabilityrelationor a symbolic
relation is required to express all possible implementations [5, 2, 13, 20]. This freedom in implementation is due to
reduced controllability and observability from the environment. By exploiting this information, we often can achieve a better
implementation for that component.

Similarly, sequential don't cares are important in the optimization of sequential circuits. Several approaches have been
proposed. Forexample, in [14], unreachablestatesand equivalentstatesareexploited in the logic optimization of an isolated
sequential circuit. Damiani et al. [8] introducedthe notion of synchronousrelations to deal with the logic optimization
of pipelined sequential circuits. This approach is motivated by a circuit implementation point of view. On the other hand,
a transition relation can be used to represent an isolated finite state machine (FSM). This allows us to deal with symbolic
information, i.e. with unencoded machines. Incompletely specified information often refers to possible implementations.
Exploitingthis informationmay alsochangethestateminimalityofamachine. In general, a transitionrelationcanbe regarded
as an observability relation or a symbolic relation. State minimization for an isolated machine has been well studied [16,11].
Although state minimality does not imply that the resultant logic circuit after state encoding is minimized, it is generally
regardedas a good starting point for state encoding to get smaller logic implementations.

In the caseof sequential don't cares for an individual component in a network of FSM's,1 we may need to consider
sequences of don't cares. There are a few studies related to this problem [12,9,17,25]. Although by flatteninga network of
FSM's intoacompositemachinewe may performglobaloptimization,the compositemachineis often toobig to be handledby
synthesis tools. To performhierarchical synthesis,we must consider the interaction between components. The computation
and exploitation of don't care information is crucial for the quality of the resultant circuit implementation.

The computationof don't care information for a component in an FSM network is much harder than its counterpart in
combinational logic. We divide this problem into two parts: sequential input and output don't cares. In this paper, we deal
with the latter. Consider the cascade machine in Figure 1. The flexibility in implementing M\ when cascaded with M2 is
called sequentialoutputdon't cares. This was studiedby Devadas [9], and laterby Rho et al. [17] who generalized Devadas'
procedure to compute fixed-length output don't care sequences.

In this paper, after reviewing previous work in section 3, we explain why the notion of information lossyness introduced
in [17] can not completely characterize the phenomenon of output don't care sequences. Then, we discuss the difficulties
in computing and expressing these. We demonstrate that output don't care sequences for a component can be expressed
using a set of observability relations given that its state transition function is kept unchanged. In section 5, we proposean
implicit enumeration algorithm which exactly computes them. Each observability relation is permissible in the sense that the
behavior of the network is preserved. We describe how to exploit them in state minimization, circuit implementation and
signal encoding. Finally, we give some preliminary results on some artificially constructed circuits.

1In thispaper, onlysynchronous FSM networks with known initial states are considered.

2 Preliminaries

2.1 Finite Automata

A deterministic finite automaton (DFA), A, is a quintuple (K> E, <5, 90, F) where A' is a finite set of states, £ an alphabet,
90 € K the initial state, F C K the set of final states, and 6 the transition function, <5: A' x L —• A\ A nondeterministic
finite automaton (NFA), A, is a quintuple {K, S, 5,q0, F) where 6, the transition relation, is a finite subsetof K x I* x tf,
and I* the set of all strings obtained by concatenating zero or more symbols from I. An input string is accepted by A if it
ends up in one of final statesof A. The languageacceptedby A, C(A)t is the set of strings it accepts.

2.2 Finite State Machines

A finite statemachine(FSM), M, is a six-tuple(I,0,Q,6,\,qo), where7 is a finite inputalphabet, O a finite outputalphabet,
Q a finite set of states, S the transition function, A the output function, and 90 the initialstate. A machine is of Moore type
if A does not depend on the inputs, and Mealy otherwise. An FSM canbe represented by a statetransition graph (STG). A
machine in which transitions under all input symbols from every state are defined is a completely specified machine; in other
words,both 6 and Aarecomplete functions. Otherwise,a machineis incompletely specified.

A distinguishing sequence for two states 91, q% G Q is a sequence of inputs such that when applied to M, the last input
produces different outputs depending whether M startedat 91 or 92. In a completely specified machine M, two states 91 and
92are equivalent if there is no distinguishing sequence. In an incompletely specified machine M, two such states 91 and 92
are compatible.

A cascade of FSM's M\ and M2, denoted M\ —> M2, is shown in Figure 1. Mi is called the drivingmachine, M2 the
driven machine. For x G Qmx, its co-reachable states in M2 are {y\y G Qm2 such that (x, y) is a reachable statein the
cascade machineMx -* M2}. Similarly, a statein M2 hasco-reachable states in M\.

2.3 Set Computation and Operators

Let B designate the set {0,1}.

Definition 1 LetE be a setandS C E. The characteristic function of Sis thefunction xs ' E —• B defined byxs(x) = 1
ifxeS, andxs{x) = 0, otherwise.

Definition 2 Letf : Bn —• Bbea Booleanfunction, andx = {x\,..., Xk] a subset of theinput variables. The existential
quantification (smoothing) off by x, withfa denoting thecofactor off by literala is defined as:

3xtf = fxi + fxT

Definition 3 Let f : Bn -> Bm bea Booleanfunction, Si C Bn and S2 C Bm. The image of Si by f is /(Si) = {y G
Bm \y = f{x), xeSi}. f(Bn) is the rangeoff. The inverse image ofSibyf is f~l (S2) = {x G Bn\f[x) = y,y€ S2}.

Definition 4 Let f : Bn —> B be a Boolean function, only depending on a subset of variables y = {t/i,..., y*}. Let
x = {xi,..., xjt} beanother subset ofvariables, describing another subspace ofBn of thesame dimension. The substitution
ofvariablesy by variablesx in f is thefunction ofx obtained bysubstituting Xifor y,- inf:

(^,x/)(y) = /(*) if ^ = y< for all l<i<k.

Definition 5 Let f : Bn —* Bm be a Boolean function. The relation (characteristic relation) associated with f, F :
Bn x Bm -*• B, is defined as F(x, y) = {(x, y) G Bn x Bm \y = /(x)}. Equivalently, in terms ofBoolean operations:

F(x,y)= J] (Vi = fM)-
Ki<m

Mi

M^Mg

o s>3-
Mc

0
Figure 2: Product machine of Mi and M2

We can use F to obtainthe imageby / of Si CBn, by computingthe projection on Bm of the set F n (Si x Bm):

/(5,)(y) = 3x(F(x,y).5,(x)).

Similarly, the inverseimageby / of 52 C Bm can be computedas:

/-1(52)(x) = 3y(F(x,y).52(y)).

Reduced ordered binary decision diagrams (BDD's) [3] are well suited to represent the characteristic functions of subsets
of a set, and efficient algorithms [3,1] exist to manipulate them to perform all standard Boolean operations. As a result, the
above set operations can be done efficiently.

2.4 Multiple-Valued Functions

Let Xi, X2y •••Xn be multiple-valued variablesrangingover sets Pi, P2,
and n are positive integers. A multiple-valued function / is a mapping

f:PixP2x...xPn^B.

-s.Let Si be a subsetof Pi,andXf' represent the characteristic function

<£Si.
eSi.

rSi _ / o ifxt
k* " \ 1 ifXi

, Pn respectively, where P, = {0, ...,p,- - 1},

Xf* iscalled a literal ofthe variable AT,. If |5,| = 1, this literal isaminterm of X,-. A product term or acube isaBoolean
product (AND) of literals. A sum-of-products is a Boolean sum (OR) of product terms. An implicantof a function / is a
product term which does notcontain any minterm in theOFF-set (/-1(0)) of the function. A prime implicant of / is an
implicantnot contained in any otherimplicantof /.

Let a symbolic variable s assume values from S = {so, •••» «m-i}. It can be represented by a multiple-valued variable,
X, restricted to P = {0,..., m - 1}, whereeach symbolicvalue of s mapsontoa uniqueintegerin P.

We can use multiple-valueddecision diagrams(MDD's) [22] to manipulatemultiple-valued functions just like BDD's for
Boolean functions. Furthermore,similar operations, such as existential, and universal quantification, and substitution, etc., are
well defined in the MDD framework [22]. In the sequel, we just use the term BDD to interchangeably refer to characteristic
functions of multiple-valued variables.

2.5 Finite State Machine Equivalence Checking

Suppose we want to check whether two FSM's Mi and M2 areequivalent. The general approach is as follows. Construct
M, the product machine of Mi and M2% as shown in Figure 2. Now, reformulate this problem to that of checking whether
the output of M, G, is a tautology for all statesreachable from the initialstateof M. The reachable states can be computed
efficiently using implicit state enumerationtechniques introduced by Coudert et al. [6]. These techniques are widely used
in FSM verification [6,7,24], and in design verification [4,23]. This approach is based on representing a set of states by a
characteristic function which can be manipulated effectively using BDD's. In the following, we representan FSM implicitly
by a characteristic function using BDD's.

Figure 3: A cascade of two combinational circuits.

Definition6 The transition relation of an FSM M - (I, O, Q, 6,A, 90) is afunction T-.lxQxQxO^B such that
T(i, p,n, o)- 1 ifand only ifstate n can bereached inone state transitionfrom state pandproduce output owhen input i is
applied.

A predicate transformer is a monotone function operating onthepower setofa finite set. Thesetof states R(p)containing
all states reachable from a given set of initialstates I(p) canbe viewed as theleastfixed pointof thefunction:

T: c{p) h- c(p) + en>p3iiPt0(T(i,p, n, o) •c{p)).

At a fixedpoint, R(p) satisfies:

R(p) = R{p) + en>?3itP)0(T(iy p, n, o) •R(p)).

The least fixedpoint of T can be computed as the limit of the followingsequences:

MP) = HP)
Rm+i(p) = Rm{p) + en,p3i,Pi0(T(iip,n,o)Rm(p))

Roo(p) = Rm(p) if Rm+l(p) = Rm(p) .

3 Previous Work

3.1 Observability Relation for Combinational Logic

In a hierarchically designedcombinational logiccircuit,all possibleimplementations canbe represented by a singleBoolean
relation, anobservability relation ora symbolic relation 2[5,2,13,20]. Forexample, as shown inFigure 3, M isa cascade
machine Mi —• M2,whereMi and M2 are combinational circuits. Let 0(x, z), Oi(x, y), and 02(y, z) be theobservability
relations of M, Mi, and M2, respectively. If 0(x, z) andC?2(y, z) aregiven, Oi(x, y) canbe computed as follows:

0i(x,y) = 3z(0{x,z)-02{y,z)).

0i (x, y) captures all possible implementations of Mi without violating thedesired behavior of thecascade machine M.
Exploiting this freedom in implementation often leads to better logic implementations.

3.2 Sequential Output Don't Cares

If Mi and M2 in Figure 3 are FSM's, computing the flexibilityin implementingMi is much harder. Devadas [9] addressed
thisproblemas computingsequential output don't cares for Mi andproposed a simpleheuristicto computepartialdon't care
information for Mi. Considera transitionedge e in the STGof Mi. Let the output symbol of e be «i. Devadas' procedure
firstcomputes the co-reachable states in M2 corresponding to the present state of transition e. If for every corresponding
co-reachable state in M2,an output symbol v2 from Mi drivesmachineM2 to produce the same output and next state as the
original output symbol vi from Mi does, then theoutput part {t>i} of e is expanded to {vi, vj). This is repeated on e for
eachoutputsymbolvi of Mi. Then the aboveprocess is repeated for each transition edge e in the STG of Mi. Thisoutput
expansion procedure does not change state reachability of the composite machine Mi —• M2.

This procedure, in fact, is restrictive3. First, it considers only one transition edge of Mx at a time, and excludes the
possibilityof simultaneous output expansions amongall transitionedges. That is, an expandedoutput symbolin a transition

2In this paper, wewill not make adistinction among Boolean relations, observability relations and symbolic relations unless necessary.
3This isincontrast tothe comment,"This isnotrestrictive, aslong as wecan assume that M% is state-minimal.", made in[18].

Figure 4: (a) An informationlossless and state-minimal machine, (b) A lossy and state-minimalmachine.

edge may depend on the expanded output symbols of the other transition edges. Furthermore, next states need not be the same
when an outputexpansion takesplace. Tobe morespecific, the set of co-reachable states for each state in Mi maychange
due to simultaneousoutput expansions. In the next subsection,we show this by example.

3.3 Output Don't Care Sequences

Later, Rho et al. [17] considered sequences of outputdon't cares and used the notionof information lossyness to explain
the phenomenon of thesesequences in a cascade machine. A machine is said to be information lossless if giventhe initial
state, the final state and the output sequence, the corresponding input sequencecan be uniquelydetermined. A machinethat
is not lossless is said to be lossy. A state s of a machine is said to be a lossystateif starting from s there exist two distinct
finite-length input sequences such that their output sequences and final states are the same. An information lossless machine
cannot contain any lossy states.

Consider the cascade machine Mi -*• M2 in Figure 1. Rho et al. [17] interpreted thatoutputdon't care sequences for
Mi are due to the lossyness of M2. Based on this explanation, if M2 has no lossy states, there are no outputdon't care
sequences for Mi. In this sense, onlylossy states in M2 need to be considered forcomputing output don't caresequences.
Accordingly, theygavethefollowing definitions forequivalent sequences andequivalent machines. Inputsequences thatlead
a driven machine M2 fromthe sameinitialstates to the samefinal statet andproduce the sameoutputsequences, are saidto
be equivalent withrespect to state s. Thus, states is a lossystate. Two machines M[and M" are said to be equivalent with
respect to M2 if and only if for each input sequence theyproduceoutputsequences that are in the sameequivalence classof
input sequences of M2, i.e. ending in the same final state if M2 is state-minimal.

According to the above definitions, a heuristic was proposed in [17] to compute a subset of fixed-length output don't
care sequences for Mi. This is an extension of Devadas' procedure [9]. Tocompute fixed-length, say it-length, equivalent
sequences in M2, this procedure first unrolls Mi and M2 for fc-length time frames. Let the unrolled machines of Mi and
M2 be Mf and M2, respectively. An unrolled machine has the same state space as that ofthe original machine except that
for each transition edge the input part is a fc-length inputsequence, and the outputa it-length outputsequence. By sucha
construction, fc-length equivalent sequences starting ata state s of M£ can becomputed. In contrast, Devadas' procedure
computes equivalent value from a state s inM2. Then the output part ofeach transition edge inMf can beexpanded using
thesamerationalein Devadas' procedureexceptthata consistency check needs to be performed between the inputand output
part ofall transition edges inMf. Finally, toconstructanon-unrolled machine ofMf,Mi', aheuristic based on state splitting
may be employed to accommodate this don't care informationas much as possible. This procedure explicitly enumerates
fixed-length output don't care sequences. In general, output don't care sequences are of infinitelength. The complexity of
this procedure may grow exponentiallywith the length ofdon't care sequences.

This procedureis an elegantextensionof [9]. However, their interpretation of outputdon't care sequences is not general.
By theirdefinition, outputdon't care sequences for M] can be interpreted as those inputsequences startingfrom the initial
stateof M2(assumedto be lossyand state-minimal), producingthe sameoutputsequence, and endingin the same finalstate.
Their reasoning is as follows. If the output sequenceof M2 is altered, so is the overall behavior of the cascade. Also, if the
finalstate is different, the behavior of the cascade changes,unless the new final state is equivalentto the original one.

M,

Figure 5: An example : M = Mi —»• M2, where both Mi and M2 are state-minimal and information lossless.

There are several factors not considered in this reasoning.
First, output sequences from Mi may change the equivalence of states in M2 simultaneously, since the complement

of output sequences from Mi are input don't care sequences for M2, which may change the state minimality of M2 [12].
During the process of exploiting output don't care sequences for Mi, the output function of Mi is changed at the same time.
Consequently, we are unable to assume that state minimality of M2 is invariant.

Secondly, by definition, different input sequences applied to an information lossless machine may produce the same
output sequences, but end in different final states. Consequently, if M2 produces the same output sequences for different input
sequences, it is not necessarily lossy. In other words, there might exist output don't care sequences even if M2is information
lossless. For example, machine M in Figure 4(a) is information lossless and state-minimal. Input sequences (11*) and
(00*) produce the same output sequences (01*),but do not end in the same final state. As a consequence, it is not necessary
that input sequences which produce the same output sequences end in the same final state even when the driven machine is
state-minimal. Moreover, this argument is not valid even for a lossy and state-minimal machine. An example is machine N
shown in Figure 4(b). TV is lossy since state1 is a lossy state4. Input sequences (00)* and (10)* produce thesame output
sequences (01)*,butdo notendin thesame final state.

Consider the cascade machine M = Mi —• M2 as shown in Figure 5. This is an example where there are output don't
care sequences for Mi even when M2 is state-minimal and information lossless. Let vi denote the output value of a transition
edge ei in the STG of Mi. The value of (vt, 1%, v^, v4, V5, v6) in Figure 5 is (0,1,0,1,0,1). Since the outputsequences of
Mi are {0,1}*, there are no input don't caresequences for M2. Thus, wecannot useany input don't care information to
simplify M2 first. If we apply Devadas' [9] or Rho's [17] procedures, we cannot find any sequential output don't cares for
Mi. However, any one of the followingvaluesof (t>i, V2,1%, V4, vs, v&) preserves the same behavioras Mi —»• M2.

(«l»V2>V3»«4»tfc,tte) =

(0,1,0,1,0,1)
(0,1,0,0,1,0)
(1,0,1,0,1,0)
(1,0,1,1,0,1)

The reachablestatesof M2are {1,2,3} when(vi, V2, V3, v4> 1/5,w$) = (0,1,0,1,0,1). But when («i, V2, V3, v4, v$, v6) =
(0,1,0,0,1,0), the reachable states of M2 are {1,2}. So, the statereachability maychange when we have different output
sequences from Mi. This is why Devadas' procedure is restrictive.

Consequently, the previous definitions ofmachine equivalence for the driving machine do not include all possible machines
which when cascaded by M2 produce the same behavior as the original cascade machine. As a matter of fact, the general
definition of machine equivalence should be the following: twomachines M/ and Mi" are equivalent with respect to
M2 if and only if M/ —• M2 and Mi" —* M2 have the same input/output behavior. This specifies the full flexibility for
implementing Mi. Therefore, this should be regarded as the general definition of sequentialoutput don'tcares.

4Input sequences 0010,1010 from initial state 1produce thesame output sequence 0101, andendinthe same state 3.

4 Permissible Observability Relations

As mentioned earlier, an incompletely specified FSM can be expressed by a symbolic relation. Using this representation for
an isolated FSM, two kinds of don't care information can be conveyed. The first is known as input-incompletely-specified
don'tcaresor unspecified transitions. They characterize the situation that a given input symbol never occurs when a machine
is in a particular state, since there are limited kinds of sequences that can be applied to the machine. The other kind is called
output-incompletely-specifieddon'tcares. Theyoccur whenwe are not interestedin an output symbolassociatedwitha given
state or state transition. In the following, we investigate whether this representation is powerful enough to convey sequential
don't cares for a component in an interacting FSM network.

In a cascade circuit Mi —* M2 as shown in Figure 1, we can compute input don't cares sequences for M2by keeping Mi
unchanged. The general procedure known to solve this problem is due to Kim and Newborn [12]. This procedure summarizes
outputsequences from M} byan NFA A', andthentransforms A' intoa minimal DFA A. Theequivalent machine to M2 with
inputdon't care sequences is theproductmachine A x M2. Theinputdon't caressequences of M2 are unspecified transitions
in the resultant product machine. This product machine captures all input don't cares sequences, and we can represent it as an
incompletely specified FSM. As a consequence, a single observability relation is sufficient to implicitly express input don't
care sequences.

On the other hand, a single observability relation may not be sufficient to express output don't care sequences. We can
compute output don't care sequences for Mi by keeping M2 unchanged. An FSM can be regarded as a languagetransducer,
i.e. transforming a regular language to another regular language. Therefore, output sequences from Mi can be expressed by a
regular language, say C(Mf). We can define an equivalence class oflanguages with respect to M2, [C(M?)]M2, such that any
language in thisequivalence class canbegenerated bya certain machine M[which preserves thesame behavior as Mi -> M2
when cascaded with M2. Next, we explain the intrinsic difficulties in computing sequential output don't cares even when
we adopt the definition of machineequivalence from [17], i.e. equivalent input sequences end up in the same final state if
Mi is state-minimal in isolation. Rho's procedure [17] computes fixed-length equivalent sequences, and then expands these
to be outputdon't care sequences for Mt. Exploiting this information, someequivalent machines maybe derived. Let M{
beanequivalent machine. Then C(M{°), output sequences from Mi', is in [£(Mf)]M . However, the length ofequivalent
sequences may be arbitrarily large. Furthermore, the complexity of this computation may grow exponentially with the length
ofoutputdon't care sequences. Therefore, it ishard toenumerate all languages in [C(M°)]Mj.

From another point of view, we can enumerate all possible languages produced by Mi with its state transition function
unchanged. Let the cardinalityof the transitionedgesof Mi be k,and that of the outputalphabetof Mi be m. If we keep the
state transition function of M\ unchanged, there are mk possible output functions, i.e. m* possible regular languages may be
produced byMt (some ofthem may bethe same). For each output function A/, there isa corresponding machine M[. The
feasibility of A/ canbechecked bytesting if M/ —• M2 preserves thesame behavior as Mi —> M2. This is shown inFigure
6. Using this naive approach, we can check all possible output functions one by one to find all feasible solutions. We may
need m* invocations of FSM equivalence checking.

Wecan interpretthe aboveapproachas simultaneousoutput expansions amongall transitionedges. Anexpandedoutput
symbol in a transition edge may be dependent on the expanded output symbols of other transition edges. Consequently, the
flexibility of implementationscaptured by the above approach is more than for output-incompletely-specified don't cares in
an isolated FSM. All feasible output functions possibly may not be expressed by a single observability relation. In fact, a set
of observability relations is needed. We show this in the next section. Each observability relation is permissible in the sense
that any output functioncompatible with one of the observabilityrelationscorrespondsto a possible implementation.

In the next section, we present an implicit algorithm which finds all such feasible output functions by executing FSM
equivalence checking once.

5 Computation of Permissible Observability Relations

Let Mi = (7i, Oi, Qi, 61, Ai,g,0)and M2 = (I2,02t Q2t h, A2,920) be twoFSM's. M = (J, O,Q, 6,A, qMo) is Mi -*• M2,
the cascade machine. Let Ai denote the set of all possibleoutput functions of Mi while keeping its state transition function
unchanged. Let Mi |A|, denoteamachine which is the same as M] except with an output function Ai' € Ai. Suppose that the
cardinalityof transition edges in Mi is k. For each transitionedge e;, we associate it with a symbolicvariable vj which takes
values from Oi. Let Vdenote the space spanned byi>o, vi,..., Vk-i, i.e. Of.

M Om
M, M,

L o 0-
G

M.

Ci h
M,

o o
Figure 6: Feasibility testing using FSM equivalence checking.

Vk-W°ii

Figure 7: A transition defined in T.

Definition 7 Anyminterm in V is called an output assignment. Anoutputassignmentcorresponds to an outputfunction in
Ai, and vice versa.

Definition 8 An assignment mapping is a bijective mapping M : V —»• Ai which mapsa minterm v € V to an output
function A/ inAi.

Definition 9 An outputfunction A/ € Ai wfeasible (/and o/i/y z/Mi |Aj/ —• M2 preserves the same behaviorasMi —• M2.

Definition 10 Anou/purassignment v is feasible if andonly ifM(v) is afeasibleoutputfunction.

Definition 11 The setoffeasibleoutput assignments is denoted as f(v), the feasibleoutput assignment function.

Our goal isto compute all Ai' e Ai such that Mi |A|, —• M2 preserves the same behavior as Mi -*• M2. This ispictorially
explained in Figure 6.

5.1 Reachability Relation

Here, we present an implicit enumeration method based on a generalization of implicit FSM equivalencechecking. The most
important step in the FSM equivalencechecking is the computationof reachable states. The state space for our equivalence
checking is Qi x Q2x Q,denoted as 5. Foran output assignment v, there is a corresponding output function M(v) anda
set of reachable states which is a subset of S. Different output functions may result in different sets of reachable states. With
this observation, we introduce the concept of reachability relation.

Definition12 A reachability relation is afunction T: SxV —• B such that T(s, v) = 1 ifandonly ifs is reachablefrom
theinitialstatewhen theoutputfunction is M(v).

Foran outputassignment v, the transition relationofMi \M^v) is Tl \M^vy We can compose 7i1^),T2, and TM, and then
use implicitreachability computation to checkwhether G in Figure6 is a tautology. However, this is an explicit enumeration
method since we need to enumerate explicitly for all v € V. To perform implicit enumeration, we construct an abstract
transitionrelation forMi, T{,asfollows. First, givealabeling foreach transitionedgeinMi. Lethbea fc-valued variable. We
substitutej, i.e. the literal h^J,for the output part ofe;-. The abstract transition relation isT{ (%i, pi,n\,h). Let the transition

Figure 8: A state y is reachable from a set of states X at the m-th iteration.

relationofM2 beT2(i2,P2,n2,02) andthatof M, TM{iMipM,nM,oM). Define T(i,h,i2,p,n,o2,oM) = T{T2- TM,
where i = i'i = iM,p —(px, p2, pM)and n = (ni, n2) n\f). The initialstate is qo = (gi0,92o» 9a/o)- The motivation for
constructing the abstract transition relation, T[, is explained below. T contains all possible transitions for anycomposite
machine of Mi \M^vy M2, and M. Consider a transition defined in T(i, n,i2yp, n,02. <>m) as shown in Figure 7. The
expression associated with this transition is (i h •i2 •o2 •o\f). Let the valueof h be j. It means that when theoutputvalue
of ej in Mi is equal to that of i2, this transition is made, and vice versa. Different outputvalues of transitionedge e; resultin
different output assignments. Therefore, this provides a way to relate output assignments to transitions in T.

Since T C S x V, T is a finite set. In the following theorem, we demonstrate that the reachability relation can be
computed by a least fixed point computation.

Theorem 5.1 LetV(p, n,v)be defined asfollows:

k-l

V(p,nyv) = J29^M3i,02,oMT)\h=j)] . (1)
i=o

T(p, v) is thelimit ofthefollowing sequence :

?0 = (p = q0) •1

Tm = 0nlP3P{:Fm-i •?(?, n,t;)}+:Fm_i

Proof Induction on the number of iterations, m. Initially, 90is reachable for every output assignment; thus the construction
of To is correct. Variables i, o2,om have no contribution in computing reachability relation, so we can smooth them out from
T in the first place. Suppose the reachability relationup to the (m - l)-th iterationis Tm-\. Consider transitionstraversed
at the m-th iteration. Supposea state y is reachedat the m-th iterationfrom a set of states X, reached up to the (m - l)-th
iteration. This is shownin Figure 8. For x e X, by inductionhypothesis, state x is reachableonly when output assignments
are (Tm-i)p=x. The value ofh, say j, inthe transition from x toy means that the output value oftransition edge e; in Mi
contributes the transition from x to y. Consequently, the value of vj should be equal to that of i2 to make this transition from
x to y. V(p, n, v) defined in Equation (1) characterizes all such conditions. State y is reachablewhen x is reachableunder
the output assignments (Tm-\)p-x and vj equals the value of i2. Then summing up over x e X and over all possible values
of h (i.e. {0,..., k - 1}),we can get thecorresponding output assignments of y at the m-th iteration. Thiscorresponds to
theexpression : 3P {Tm-i •V(p,n,v)}. Byimplicit enumeration, wecanget all such y, the nextstateimage at the m-th
iteration. In order to get Tm, the reachability relation up to the m-th iteration, we still need to add Tm-i. This proves the
correcmess of constructing Tm. Furthermore, we have ^)C/iC---Cfm, Vm, and T^ is a finite set; consequently,
when^n = ^m+i, we have ^"oo = Fm- •

Corollary5.2 For an output assignment a, its corresponding set of reachable states up to the m-th iteration {Rm(p))Q is
{Fm (p> v))v=a. Inparticular, the setofreachable states is {Roo (p))Q = (^oo (p,v))v=a.

Proof Follows directly from the Theorem 5.1. •

10

5.2 Feasible Output Assignment Function

An FSM can be regarded as a language transducer, i.e. transforming a regular language to another regular language. If M2
is completely specified, M2 maps I2 to another regular language. That is, for all input sequences, the behavior of M2 is
defined. First, we consider the case when M2 is completely specified.

For each output assignment v, there isacorresponding set ofreachable states inS. This results inT\M{yy the transition
relation ofthe composite machine of Mi \M^vy M2 and M. If there are different values between 02 and oM ina transition
of T\M(vy GinFigure 6 is not a tautology. Therefore, v isnot a feasible output assignment. An output assignment v is
infeasible ifand only ifT\M^ has a transition with (02 £ om). Consider a transition inT as shown in Figure 7. Let the
valueof h be j, and the valueof i2 be r. Therefore, when the outputvalueof ej in Mi is equal to that of z'2, this transition
is made. State x is reachable if and only if the output assignments are in (Foo)pstx. If this transition is with (02 £ om),
{Toa)pszx •(vj = r) are infeasible output assignments. We need to enumerate all transitions ofTwith (02 ^ om) to compute
the set of all infeasible output assignments; the set of feasible output assignments is just the complement In the following
theorem,we presentan implicit enumerationmethodto findthe feasibleoutputassignmentfunction, f(v).

Theorem S3 (M2 : completelyspecified)
LetW{p,v) be defined asfollows:

*-l

W(p, v) = £ei2iVj{[3n,OMt0i((3iT) •(02 £ oM))\h=j)} . (2)
i=o

Thefeasible output assignmentfunctionf(v) is:

f(v) = 3p(^oo. W(p,v)).

Proof Variable i has no contributionto compute f(v), so it can be smoothedout from T first. Now,consider the transitions
in T. A state x can transit to a set of states by differentvaluesof i2. First, we can aggregate transitionedges which start from
x with different values between 02 and oM. Let the corresponding set of next states be Y. Any one of these transitions is
infeasiblein the sense that it causes G in Figure 6 not to be a tautology. Let y e Y. The value of h, say j, in the transition
from x to y means that transitionedge cj in Mi contributes to this transition, and the valueof vj must be the same as that
of i2. This is the condition to make an infeasible transitionfrom x. We can implicitly sum up over Y to get the condition
to make infeasible transitions from x. VV(p, v) is the relationwhichassociates a state p with the corresponding conditionto
make infeasible transitions starting at p. For each state x, we intersect W(p, v)p=.x with (?oq)p=x, the output assignments
for reaching x. These are infeasible output assignments. With summation over every possible reachable state, we get the set
of infeasible output assignments; the set of feasible output assignments is just the complement •

The feasibleoutputassignmentfunction f(v) maybe a relatively smallsubsetof all outputassignments, V. Moreover, it
is not necessary to construct T first using the methodin Theorem5.1, and then removeall infeasibleoutput assignmentsusing
Theorem 5.3. We may incrementally remove the infeasible output assignments during the construction of the reachability
relation. In the next theorem, we present an incremental approach.

Theorem 5.4 (M2 : completely specified)
The setoffeasible output assignments f{v) is thelimit of thefollowing sequence, where Cm(p, v) is the reachability relation
restricted to fm(v), thefeasible output assignmentfunction upto the m-th iteration. V(p, n, v) and W(p, v) aredefined in
Equations (1) and (2), respectively.

Co = (p = q0) • 1 , fo{v) = 1
Cm' = 9n>p3p{Cm-iV(p,n,v)} + Cm-i

fm{v) = 3p(Cm'W(p,t;)) + /m_1(t;)

^m = ^m ' Jm\v)

t*oo = ^m? /oo — Jm lj km = trn+1 •

Inparticular, Coo is thereachability relation restricted to f(v), thefeasible output assignmentfunction.

11

Proof Inductionon the number of iterations,m. Initially,qo is reachablefor every output assignment,thus the construction
of C0 and f0(v) is correct. Now suppose at the (m - l)-th iteration, thereachability relation restricted to the feasible output
assignments up to the (m —l)-th iteration is Cm-\. By theproofin Theorem 5.1, Cm' is the reachability relation up to the
"i-th iteration but may contain infeasible output assignments. However, from Theorem 5.3, fm{v) is the set of infeasible
outputassignments up to the m-ih iteration. Consequently, Cm gives the reachabilityrelation restricted to the feasible output
assignments up to the m-th iteration. When Cm reaches the fixed point, we have Coo and foo. •

When M2 is input-incompletely-specified (i.e. with unspecified transitions), we need to modify the above theorem to
compute /(")• As explained in the previous section, input-incompletely-specified don't cares are due to the interaction with
other machines (in our case, Mi). Let C(M2) denote the input sequences of M2 where the behavior is defined. We can
construct an automaton A to accept C(M2) as follows. Every state of M2 is a final state. For each transition in the STG
of M2, remove the output part. Then for each state with unspecified input values, create a transition edge to the dead state
(a non-final state),and associate those unspecified values to that transition. Any input sequences not in C{M2) drive M2 to
exhibit undefined behavior. Suppose M = Mi —• M2 does not have undefined behavior. Then a feasible output assignment
v, M\ \mm -~* ^2 should not have undefined behavior, either. Inother words, if v isa feasible output assignment, the output
sequences generated by M\ \M,V\ must beinC(M2) (i.e. C(Mi)\M*v\ C C(M2)).

Theorem 5.5 (M2 : input-incompletely-specified)
Let W(p, v) bedefined asfollows:

T2c(i2,P2) = Bn^CJi)
fc-1

j=0

Thefeasible output assignmentfunction f(v) is the limit of thefollowing sequence, where T(p,n,v) is defined inEquation (1)
andCm(p, v) is the reachability relation restricted to fm{v), thefeasible output assignmentfunction up to the m-th iteration.

Co = (p = g0) •1 , fo(v) = 1

Cm' = 0n,P3p{Cm-l-'P{P,n,v)}+Cm-i
fm(v) = 3p(Cm'-W{p,v)) + fm-i(v)

Cm = Cm'-fm{v)
^oo — L-m 1 Joo = Jm IJ t-m — ^m+1 •

Inparticular, Coo is thereachability relation restricted to f(v), thefeasible output assignmentfunction.

Proof We define T2c(p2. i2) = 1if and only if i2 is an unspecified value at state P2 of M2. We construct T2c{pi, i2) as
follows. We smooth out variable 02 since it is irrelevant to the computationof T2 . Then we implicitly summarize the input
values over transitions starting from a state of M2 by smoothing out n2. For each state, those values not defined on it are
obtained by complementing the relation, and we get T2 . An output assignment v that causes transitions in T2 will force
M\\m(v) &AM2). Consequently, W(p, v) needs to include T2 . The rest ofthe proof is the same as that ofTheorem 5.4. •

We can compute the feasible output assignment function f(v) using Theorem 5.4 or 5.5 depending on whether M2 is
input completely specified. As an example, consider the cascade machine in Figure 5, where M2 is completely specified. The
feasible output assignments f(v) can be computed by the above algorithms.

f{v\ , V2, V$, t>4, V5, V6) = Vl V2 Vi V4 V$ V6 + Vi V2 Vi Vl V5 Vl+ Vi vi V3 v^ v5 v£ + v\ vi v-i v4 v$ v6.

53 Relationship Between Feasible Output Assignments and Permissible Observability Relations

The feasible outputassignment function, f(v), is a multiple-valued function, thus it can be expressed in termsof a multiple-
valued sum-of-products.

Lemma 5.6 Let c be a multiple-valued cube in the space ofV. T\ \M^ can be expressed using a single symbolic relation.
Conversely, the output assignments of a symbolic relation T\(i\,pi, rii, o{) can be expressed in terms of a multiple-valued
cube in the space of V.

12

Proof Let cbe vfi° vf' •••ut *-', where L0, Li,..., Lk-i are subsets of Oi. Ti |M^ can be achieved by substituting every
Lj in theoutputof transition ej of Mi. Consequently, it canbeexpressed in terms of a singlesymbolic relation. Conversely,
letthe output values of a transition edge ej in Ti be LJ, a subset of Oi. We can express the output assignments of Ti as
l' l' l'v0 °v,l •••v4 *Y', which isa cube inthespace of V. •

Definition 13 Let cbe acube off(v), thefeasible output assignmentfunction. Ti \M (c) wcalledapermissible observability
relation inthe sense that any implementation compatible with T\ \Mtc\ isfeasible.

Definition 14 Let pbe aprime off{v), thefeasible outputassignmentfunction. Then Ti\M,p^is calledaprime permissible
observability relation in the sense that itisnot contained in any otherpermissible observability relations.

Theorem 5.7 Letf(v) be thefeasible outputassignmentfunction. {Ti \M^V^} isaset ofpermissibleobservabilityrelations.

Proof Let/(v) beexpressed interms ofasum-of-products, {ci,c2,..., c„}. From Lemma 5.6,acube c* of/(v) corresponds
to a permissible observability relation Tx \M(Cly Therefore, {Ti |̂ (y(„))} corresponds to a set ofpermissible observability
relations, {Ti\M(clyTi\Miei),.. .,Ti\M{Cn)}. •

Therefore,all feasibleoutput functionscan be expressed in termsof a set of permissibleobservability relations,and vice
versa. ByLemma 5.6, a permissibleobservabilityrelationcoverssomefeasibleoutput functions. Therefore,therepresentation
for a set of permissibleobservabilityrelationsis not unique. The minimum setofpermissible observability relations is a cover
which covers all feasible output functions with the minimum number of permissible observability relations.

Theorem 5.8 The cardinality of the minimum set of permissible observability relations is equal to the cardinality of the
minimum sum-of-products cover of f{v), thecorrespondingfeasibleoutput assignmentfunction.

Proof Any feasible outputassignment iscontained ina minimum sum-of-products cover of /(«), C/(„) = {pi,P2> •.Pn}.
The corresponding set ofpermissible observability relations, CMu(v)) = {Ti \M(pt>, Tx \Mij>2),..., Ti \M{j>n >}, is aminimum
cover. Suppose Cm(j{v)) isnot a minimum cover ofpermissible observability relations, then there exists a cover C'mu{v))
withsmaller cardinality. ByLemma 5.6,thisimplies C/(„) is nottheminimum cover of f{v). This is a contradiction. •

In contrast, we only need to use a singleobservability relation, say 0(i, 6) (where i is the input, and o is the output),
to express all the flexibility of implementation for a component in a hierarchically designed combinational logic circuit. A
minterm of i may map to several minterms of o, and it is independent of other minterms of i. However, this is not true in
the sequential case. That is, a minterm of i may map to several mintermsof o, but it is dependent on the other mintermsof
i. Consequently, the notionof Boolean relations mustbe generalized for hierarchical designed sequential circuits, i.e. setsof
permissible observability relations.

5.4 Permissible Observability Relations vs. Output Don't Care Sequences

In the next theorem, we state the relationship between the set of permissibleobservabilityrelations and output don't care
sequences.

Theorem 5.9 If thetransitionfunction of Mi is notchanged, andf(v) is thefeasible output assignmentfunction, then the
corresponding set ofpermissible observability relations, {Ti Ui(/(t>)))» exactly captures output don't care sequencesfor Mi.

In a sense, our algorithms compute a class of permissible machines, and these machines can be expressed in terms of a set of
permissible observability relations.

Although we have only consideredone-way-communication circuits (i.e. cascade machines) so far, the abovealgorithms
can be directly applied to compute permissible relations for a component in a two-way-communication circuit as shown in
Figure 9. An interesting extension is to use these algorithms to compute permissible relations for both submachines Mi and
M2 in Figure 9 simultaneously. We simply keep both state transition functions of Mi and M2 intact, and then use the above
algorithms to get the feasible output function assignments of both machines simultaneously, i.e. the new output assignment
space is the Cartesian product of output assignment spaces of Mi and M2. Note that the flexibility in implementing one
submachine is dependent on that of the other. That is, their flexibilityof implementation need to be compatible. With this
approach, we are able to compute this compatible flexibility in implementing these submachines.

13

Figure9: A two-way-communication FSM network.

5 .5 Further Discussion

A restriction on ouralgorithms is that during thecomputation step the state transition function of Mx is kept unchanged,
although thestate transition function maychangeafter theexploitationofoutputdon'tcareinformation using stateminimization
procedures for incompletely specified FSM's. This maylimitpossible exploitation of other output don't care information.
Therefore, the don't care information derived usingouralgorithms may be affectedby the given statetransition function of
Mi. In contrast, Rho's procedure [17] employs a heuristic based on statesplitting to accommodate don't care information
(a subset of output don't care sequences with a fixed-length) as much as possible. Therefore, the state transition function
of the componentmay change. This limits the exploitation of otherpossibleoutput don't care information as well since the
definitions of equivalent sequences in [17] is notgeneral as explained in Section 3.3. Moreover, ouralgorithms implicitly
enumerate infinite-length outputdon't care sequences using FSMequivalence checking, whileRho's procedure is limited to
fixed-length sequences. Besides,ouralgorithms canbe directly applied to handletwo-way-communication circuits as shown
Figure 9, and can be extended to compute compatibleflexibility in implementing thesetwo interacting components.

Consider the following case. Let M[be a machine withthesame input and output alphabets as those of Mi butwitha
different state space Q[and adifferent transition function 6[. Our algorithms can beapplied tocheck if there exists an output
function A{ suchthatM[—• M2 and Mi —• M2 have thesame I/Obehavior.

Based on theabove discussion, a possible approach to effectively compute and exploit output don't care sequences is as
follows. Some fixed-length outputdon't sequences can be exploited by using statesplitting. Therefore, the statetransition
function of Mi changes. Infinite-length outputdon't care sequences can be implicitlyenumerated to checkif there existbetter
feasible output functions under thisnew transition function. Thus, how to perform statesplitting properly suchthatas much
outputdon't care information as possible can be exploited is of interest. Currently, we areinvestigating this problem.

6 Exploitation of Permissible Observability Relations

In the following, we discuss differentaspects of exploiting permissible observability relations.

6.1 State Minimization

Limited observability may be beneficial in minimizing the number of states of a machine. A machine with the minimum
number of states may not have the best implementation. However, it can be a goodstarting pointfor state assignment if the
machine is not encoded yet, or for sequential logic optimization if the machine is encoded.

However, currentstateminimizationalgorithms only manipulate one observabilityrelation (transition relation) at a time.
By Lemma 5.6, a cube of f(v) corresponds to a permissible observability relation. So in order to fully exploit theset of
permissible observability relations, one mustrun state minimization procedures several times. Let p be a prime of f{v).
Then Ti 1^) isaprime permissible observability relation which can not be contained in any other permissible observability
relations. Therefore, a stateminimizationprocedure needs tobeexecuted asmany times as the number ofprimes off(v).

6.2 Implementation

In the caseofcombinational logic,a Boolean relation is sufficient to capture all the freedom of implementation. However, in
thecase of FSMnetworks, asetof permissible observability relations maybeneeded torepresent outputdon'tcare sequences
for acomponent. Each minterm of f(v) corresponds toa feasible implementation. Now, suppose themachine is encoded. In
orderto find the best implementation, we need to consider every mintermof f(v). FromTheorem 5.8, the minimum number
of times we needto run theBoolean relation minimizer tofind thebest implementation is equalto thenumber of terms in a

14

circuit driving driven feasible

assignments
permissible

relations

CPU

timePI PO states PI PO states

P 1 1 3 1 1 3 4 4 0.1

bbara-bbtas 4 2 7 2 2 6 203584 6 51.5

bbtas-ex5 2 2 6 2 2 8 2096 5 1.9

bbtas-ex7 2 2 6 2 2 8 160512 4 1.6

dk27-lion 1 2 7 2 1 4 499941 18 41.1

ex2-ex5 2 2 19 2 2 8 32768 1 57.8

ex2-cx7 2 2 19 2 2 8 8704 2 20.4

ex3-bbtas 2 2 11 2 2 6 81 4.2

ex3-ex7 2 2 11 2 2 8 12 7.9

ex5-bbtas 2 2 8 2 2 6 243 2.6

ex5-ex7 2 2 8 2 2 8 128 3.2

ex3-ex5 2 2 11 2 2 8 1 10.9

ex2-ex3 2 2 19 2 2 11 1 20.9

Table 1: Experimental results

states: number of states in isolation

feasible assignments: number of feasibleoutput assignments of the driving machine
permissible relations: minimum number of permissible observabilityrelations
CPU time : in seconds on a DEC 5000/260 with 128 MB

minimum sum-of-productsfor f(v). The rationale is as follows: A productterm in the minimized sum-of-products formof
f(v) corresponds to a Boolean relation, and every minterm of f(v) is coveredby the sum-of-products form with minimum
cardinality. Consequently, we can pick the best result from all Boolean minimization executions.

6.3 Encoding of Interconnection Signals

Another direct application to permissible observability relations is the encoding of signals between interacting FSM's. We
may convert the set of interacting binary signals between components into a symbolic variable for the purpose ofre-encoding.
For example, let us consider a cascade machine Mi —• M2. A good output encoding of Mi may be a bad input encoding for
M2, and vice versa. Re-encoding can be imagined as a means of moving logic between two interacting machines [9].

Shen et al. [21] give a formulation to this problem but without experimental results. They simply combine the I/O
constraints from each individual component and convert them into a dichotomy covering problem with some conflict resolution
techniques. Then they try to satisfy as many constraints as possible. However, this is not an exact formulation since it does
not consider the exact output encoding (e.g., GPI's [10]) or any don't care information (e.g. symbolic relation). Moreover,
they did not consider sequential don't cares (e.g. permissible observability relations and input don't care sequences arc not
used). The general formulation is still an open problem.

Permissible observability relations allow us to have many feasible output functions, and in theory these should be useful
for encoding the interacting signals.

7 Experimental Results

In this section, we present some preliminary results. Most of the examples are obtained by interconnecting FSM's from the
MCNC benchmarks. These FSM's arecompletely specified and state-minimal in isolation. Example P is shown in Figure5.

Table 1 shows the results ofsome cascadecircuitsconsistingof two FSM's. The minimum number ofpermissiblerelations
is obtained using ESPRESSO-MV [19]. The CPU time indicated includes both the computation of feasibleoutputassignments
and ESPRESSO-MV. Although the feasible output functions ofexamples ex2-ex5, ex3-bbtas, ex3-ex7, ex5-bbtas
and ex5-ex7 can be expressed by a single relation individually, they cannot be computed using either Devadas' or Rho's
procedures. In examples P, bbara-bbtas, bbtas-ex5, bbtas-ex7, dk27-lion and ex2-ex7, the minimum

15

number of permissible relations to express the feasible output functions is more than one. The number of feasible output
functions in examples ex3-ex5 and ex2-ex3 is one.

Our implicit algorithm based on BDD's deals with all output assignments at a time. With our current implementation, we
can handle small-size examples in a reasonableamount ofCPU time as shown in Table 1. In contrast, the explicit algorithm
which enumerates all possible output assignments one by one is very inefficient since the number of all output assignments
is too large. For instance, there are 2152 possible output assignments in example ex2-ex7, but only 8704 of them are
feasible. The feasible output assignment function, f(v), is normally a relatively small subset of V, the set of all output
assignments. Therefore, proper BDD variable ordering or use of 0-Sup-BDDs [15] should enhance the ability and efficiency
of our algorithms. Currently, we are studying a good BDD variable ordering to handle largerexamples.

The output partof a transition edge in a permissible relation is a multiple-valued literal. As pointed out in [9], pairwise
compatibilityof a set of statesS does not imply S is compatible. Thus, additional checking has to be performedduringstate
minimization. At the present time, there are no state minimization programs with this ability in our logic synthesis system.

8 Conclusion

We discussed intrinsic difficulties in computing output don't care sequences for a component in an FSM network. We pointed
out that these can not be explained using information lossyness [17]. We demonstrated that output don't care sequences for
a component can be expressed using a set of permissible observability relations given that its state transition function is kept
unchanged. We presented a novel approachto exactly compute them. The representation for a set of permissible observability
relationsis not unique. We provided a method to find a set with the minimum number of permissible observability relations.
We also discussed the applications of permissible observability relations in different contexts, such as state minimization,
circuit implementation and signal encoding.

9 Acknowledgements

The authors are thankful to Dr. June-Kyung Rho for providing valuable information. We thank Dr. Rajeev Murgai for reading
and improving this manuscript. Also special thanks to Szu-Tsung Cheng and Thomas Shiple for helpful discussions on the
BDD package.

References

[1] K. L. Brace, R. E. Bryant, and R. L. Rudell. Efficient Implementation of a BDD Package. In 27th ACM/IEEEDesign Automation
Conference,-pages 40-45, June 1990.

[2] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification of Logic Networks. In VLSI'89, August 1989.

[3] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEETransactionson Computers, C-35(8):677-691,
August 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification Using Symbolic Model Checking. In 27th
ACM/IEEEDesign AutomationConference, pages 46-51, Orlando, June 1990.

[5] E. Cemy and M. A. Marin. An Approach to Unified Methodology of Combinational Switching Circuits. In IEEE Transactions on
Computers, pages 745-756, August 1977.

[6] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based on Symbolic Execution. In Proceedings ofthe
Workshop on Automatic Verification Methodsfor Finite StateSystems,Grenoble,France, 1989.

[7] O. Coudert and J.C. Madre. A Unified Framework for the FormalVerificationofSequential Circuits. In IEEEInternationalConference
on Computer-Aided Design,pages126-129, November 1990.

[8] M. Damiani and G. De Micheli. Recurrence Equations and the Optimization of Synchronous Circuits. In 28th ACM/IEEE Design
Automation Conference, pages556-561, June 1992.

[9] S. Devadas. Optimizing Interacting Finite State Machines Using Sequential Don't Cares. In IEEE Transactions on ComputerAided
Designof Integrated CircuitsandSystems,pages 1473-1484,December1991.

[10] S. Devadas and A. R. Newton. Exact Alogrithms for Output Encoding, State Assignment and Four-levelBoolean Minimization. In
IEEE Transactions on ComputerAided Design ofIntegratedCircuits and Systems,pages 13-27, January1991.

16

[11] G. Hachtel, J. K. Rho, F.Somenzi, and R. Jacoby. Exact and Heuristic Algorithms for the Minimization of Incompletely Specified
State Machines. In The EuropeanConferenceon Design Automation,1991.

[12] J. Kim and M. M. Newborn. The SimplificationofSequentialMachinesWith Input Restrictions. In IEEE Transactions onComputers,
pages 1440-1443, December 1972.

[13] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In IEEE International Conference on Computer-Aided Design, pages
88-91, November 1990.

[14] B. Lin, H. Touati, and A. R. Newton. Don't Care Minimization of Multi-Level Sequential Logic Networks. In IEEEInternational
Conferenceon Computer-AidedDesign, pages 414-417, November 1990.

[15] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In 30th ACM/IEEE Design Automation
Conference,pages 272-277, June 1993.

[16] M. C. Paulland S. H. Unger. Minimizing the Number of States in Incompletely Specified Sequential Circuits. In IRETransactions
on ElectronicComputers,pages 356-366, September 1959.

[17] J. K. Rho, G. Hachtel, and F. Somenzi. Don't Care Sequences and the Optimization of Interacting Finite State Machines. In IEEE
International Conference onComputer-Aided Design,pages418-421, November 1991.

[18] J. K. Rho, G. Hachtel, and F. Somenzi. Don't Care Sequences and the Optimization of Interacting Finite State Machines. In
International Workship onLogic Synthesis,May 1991.

[19] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued Minimization for PLA Optimization. In IEEETransactionson Computer
Aided Design ofIntegratedCircuit and Systems, pages 727-750,1987.

[20] H. Savoj and R. K. Brayton. Observability Relations and Observability Don't Cares. In IEEEInternationalConferenceon Computer-
Aided Design, pages 518-521, November 1991.

[21] J. J. Shen, Zafar Hasan, and M. J. Ciesielski. State Assignment forGeneral FSM Networks. In TheEuropean Conference on Design
Automation, pages 245-249,1992.

[22] A. Srinivasan.T. Kam, S. Malik, andR. K. Brayton. Algorithms forDiscreteFunction Manipulation. In IEEEInternationalConference
on Computer-AidedDesign, pages 92-95, November 1990.

[23] H. Touati, R. K. Brayton, and R. Kurshan. Testing Language Containment for co-Automata using BDD's. In Proceedings of
ACMlSIGDA International Workshop on Formal Methods in VLSI Designs, Miami, January1991.

[24] H.Touati, H. Savoj,B. Lin, R. K. Brayton,andA. Sangiovanni-Vincentelli. Implicit State Enumeration of FiniteStateMachinesusing
BDD's. In IEEEInternationalConferenceon Computer-AidedDesign, pages 130-133, November 1990.

[25] H. Y. Wang and R. K. Brayton. Input Don't CareSequences in FSM Networks. In IEEE International Conference on Computer-Aided
Design, pages 321-328, November 1993.

17

	Copyright notice 1994
	ERL-94-15

