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Abstract

Previous attempts to capture the phenomenon of output don’t care sequences for a component in an FSM network have been
incomplete. We demonstrate that output don’t care sequences for a component can be expressed using a set of observability
relations given that its state transition function is kept unchanged. Each observability relation is permissible in the sense that
any implementation compatible with one of them is feasible. The representation for a set of permissible observability relations
is not unique. We provide a method to find a set with the minimum number of permissible relations, We briefly discuss the
exploitation of permissible observability relations in state minimization, circuit implementation and signal encoding. We have
implemented these methods and present some preliminary results on a few small artificially constructed examples.

*This project was supported by DARPA under contract number JFBI90-073 and NSF under contract numbers EMC-84-19744 and MIP-87-19546.



Figure 1: A cascade circuit of two FSM’s,

1 Introduction

The flexibility in implementing an isolated combinational logic circuit can be expressed by don’t cares. For an individual
component in a hierarchically designed combinational logic circuit, a Boolean relation, an observability relation or a symbolic
relation is required to express all possible implementations [S, 2, 13, 20). This freedom in implementation is due to
reduced controllability and observability from the environment. By exploiting this information, we often can achieve a better
implementation for that component.

Similarly, sequential don’t cares are important in the optimization of sequential circuits. Several approaches have been
proposed. For example, in [14], unreachable states and equivalent states are exploited in the logic optimization of an isolated
sequential circuit. Damiani ez al. [8] introduced the notion of synchronous relations to deal with the logic optimization
of pipelined sequential circuits. This approach is motivated by a circuit implementation point of view. On the other hand,
a transition relation can be used to represent an isolated finite state machine (FSM). This allows us to deal with symbolic
information, i.e. with unencoded machines. Incompletely specified information often refers to possible implementations.
Exploiting this information may also change the statc minimality of a machine. In general, a transitionrelation can be regarded
as an observability relation or a symbolic relation. State minimization for an isolated machine has been well studied [16, 11].
Although state minimality does not imply that the resultant logic circuit after state encoding is minimized, it is generally
regarded as a good starting point for state encoding to get smaller logic implementations.

In the case of sequential don’t cares for an individual component in a network of FSM’s,! we may need to consider
sequences of don’t cares. There are a few studies related to this problem [12, 9, 17, 25]. Although by flattening a network of
FSM’s into a composite machine we may perform global optimization, the composite machine is often too big to be handled by
synthesis tools. To perform hierarchical synthesis, we must consider the interaction between components. The computation
and exploitation of don’t care information is crucial for the quality of the resultant circuit implementation.

The computation of don’t care information for a component in an FSM network is much harder than its counterpart in
combinational logic. We divide this problem into two parts: sequential input and output don’t cares. In this paper, we deal
with the latter. Consider the cascade machine in Figure 1. The flexibility in implementing M; when cascaded with M, is
called sequential output don’t cares. This was studied by Devadas [9], and later by Rho et al. [17] who generalized Devadas’
procedure to compute fixed-length output don’t care sequences.

In this paper, after reviewing previous work in section 3, we explain why the notion of information lossyness introduced
in [17] can not completely characterize the phenomenon of output don’t care sequences. Then, we discuss the difficulties
in computing and expressing these. We demonstrate that output don’t care sequences for a component can be expressed
using a set of observability relations given that its state transition function is kept unchanged. In section 5, we propose an
implicit enumeration algorithm which exactly computes them. Each observability relation is permissible in the sense that the
behavior of the network is preserved. We describe how to exploit them in state minimization, circuit implementation and
signal encoding. Finally, we give some preliminary results on some artificially constructed circuits.

1n this paper, only synchronous FSM networks with known initial states are considered.



2 Preliminaries

2.1 Finite Automata

A deterministic finite automaton (DFA), A, is a quintuple (K, Z, §, o, F) where K is a finite set of states, Z an alphabet,
go € K the initial state, F' C K the set of final states, and ¢ the transition function, 6 : K x £ — K. A nondeterministic
finite automaton (NFA), A, is a quintuple (KX, X, é, g0, F') where 8, the transition relation, is a finite subset of K x Z* x K,
and Z* the set of all strings obtained by concatenating zero or more symbols from . An input string is accepted by A if it
ends up in one of final states of .A. The language accepted by A, L(.A), is the set of strings it accepts.

2.2 Finite State Machines

A finite state machine (FSM), M, is a six-tuple (I, 0, @, 8, A, qo), where I is a finite input alphabet, O a finite output alphabet,
Q afinite set of states, § the transition function, A the output function, and go the initial state, A machine is of Moore type
if A does not depend on the inputs, and Mealy otherwise. An FSM can be represented by a state transition graph (STG). A
machine in which transitions under all input symbols from every state are defined is a completely specified machine; in other
words, both é and X are complete functions. Otherwise, a machine is incompletely specified.

A distinguishing sequence for two states ¢1, ¢2 € Q is a sequence of inputs such that when applied to M, the last input
produces different outputs depending whether M started at q; or ¢2. In a completely specified machine M, two states ¢; and
q2 are equivalent if there is no distinguishing sequence. In an incompletely specified machine M, two such states ¢; and q;
are compatible.

A cascade of FSM’s M, and M,, denoted M; — M,, is shown in Figure 1. M, is called the driving machine, M, the
driven machine. For ¢ € Qu,, its co-reachable states in M, are {y|ly € Qs such that (z,y) is a reachable state in the
cascade machine M, — M,}. Similarly, a state in M, has co-reachable states in M.

2.3 Set Computation and Operators
Let B designate the set {0,1}.

Definition 1 Let E beasetand S C E. The characteristic function of S is the functionxs : E — B defined by xs(z) = 1
ifz € S, and xs(z) = 0, otherwise.

Definition 2 Let f : B® — B be a Boolean function,and z = {z,, ..., zi} a subset of the input variables. The existential
quantification (smoothing) of f by x, with f, denoting the cofactor of f by literal a is defined as :

3f = fotfm
.f = 3;.3:.f.

Definition 3 Let f : B® — B™ be a Boolean function, S, C B" and S, C B™. The image of S by f is f(S)) = {y €
B™|y = f(z),z € S1}. f(B")is the range of f. The inverse image of S$; by fis f~1(S,) = {z € B*|f(z) = y,y € S, }.

Definitiond Let f : B® — B be a Boolean function, only depending on a subset of variables y = {y,...,yx}. Let
z = {21, ..., 2x} be another subset of variables, describing another subspace of B of the same dimension. The substitution
of variables y by variables z in [ is the function of = obtained by substituting z; for y; inf :

By )W) = f(z) if zi=wi forall 1< i<k

Definition 5 Let f : B® — B™ be a Boolean function. The relation (characteristic relation) associated with f, F :
B" x B™ — B, isdefined as F(z,y) = {(z,y) € B” x B™|y = f(z)}. Equivalently, in terms of Boolean operations :

Fiz,9)= [] =fi=).

1<i<m



Figure 2: Product machine of M; and M;

We can use F to obtain the image by f of S; C B", by computing the projection on B™ of the set F N (S; x B™):

f(S1)(y) = 3:(F(=z,y) - Si(2)).
Similarly, the inverse image by f of S, C B™ can be computed as :

F(S)(2) = 3y(F(z,9) - S2(v) .

Reduced ordered binary decision diagrams (BDD’s) [3] are well suited to represent the characteristic functions of subsets
of a set, and efficient algorithms [3, 1] exist to manipulate them to perform all standard Boolean operations. As a result, the
above set operations can be done efficiently.

2.4 Multiple-Valued Functions

Let X;, X3, - - - X» be multiple-valued variables ranging over sets P, Py, - - -, P, respectively, where P; = {0, ...,p; — 1},
and p; are positive integers. A multiple-valued function f is a mapping

f:PAxPx..xP,—B.
Let S; be a subset of P;, and X represent the characteristic function

X5 = 0 ifX;¢S;.
Tl 1 ifX; €S8,

X5 is called a literal of the variable X;. If |S;| = 1, this literal is a minterm of X;. A product term or a cube is a Boolean
product (AND) of literals. A sum-of-products is a Boolean sum (OR) of product terms. An implicant of a function f is a
product term which does not contain any minterm in the OFF-set (f~1(0)) of the function. A prime implicant of f is an
implicant not contained in any other implicant of f.

Let a symbolic variable s assume values from S = {so, ..., Sm—1}. It can be represented by a multiple-valued variable,
X, restricted to P = {0, ..., m — 1}, wherc each symbolic value of s maps onto a unique integer in P.

We can use multiple-valued decision diagrams (MDD"s) [22] to manipulate multiple-valued functions just like BDD’s for
Boolean functions. Furthermore, similar operations, such as existential, and universal quantification, and substitution, etc., are
well defined in the MDD framework [22]. In the sequel, we just use the term BDD to interchangeably refer to characteristic
functions of multiple-valued variables.

2.5 Finite State Machine Equivalence Checking

Suppose we want to check whether two FSM’s M; and M; are equivalent. The general approach is as follows. Construct
M, the product machine of M; and Ma, as shown in Figure 2. Now, reformulate this problem to that of checking whether
the output of M, G, is a tautology for all states reachable from the initial state of M. The reachable states can be computed
efficiently using implicit state enumeration techniques introduced by Coudert ez al. [6]. These techniques are widely used
in FSM verification [6, 7, 24], and in design verification (4, 23]. This approach is based on representing a set of states by a
characteristic function which can be manipulated effectively using BDD’s. In the following, we represent an FSM implicitly
by a characteristic function using BDD’s.
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Figure 3: A cascade of two combinational circuits.

Definition 6 The transition relationofan FSM M = (1,0,Q,6,),qo) isafunctionT : I x Q@ x Q x O — B such that
T(i,p,n,0) = 1 if and only if state n can be reached in one state transition from state p and produce output o when input i is
applied.

A predicate transformer is a monotone function operating on the power set of a finite set. The set of states R(p) containing
all states reachable from a given set of initial states J(p) can be viewed as the least fixed point of the function :

F 2 e(p) = ¢(p) + 0n,p3i,p,o(T(i, p, 1, 0) - ¢(p)) .
At a fixed point, R(p) satisfies :
R(p) = R(p) + 0n,p3i,p,0(T(i’ pn, 0) . R(p)) .

The least fixed point of 7 can be computed as the limit of the following sequences :

Ro(p) = I(p)
Rm+1(p) = Rm(P)+0n.p3i,p.o(T(ilp’n:o)'Rm(p))
Reo(p) = Rm(p) if Rm1(p) = Rm(p).

3 Previous Work

3.1 Observability Relation for Combinational Logic

In a hierarchically designed combinational logic circuit, all possible implementations can be represented by a single Boolean
relation, an observability relation or a symbolic relation 2 [5, 2, 13, 20]. For example, as shown in Figure 3, M is a cascade
machine M; — M,, where M, and M, are combinational circuits. Let O(z, z), Oy (z, y), and O»(y, z) be the observability
relations of M, M), and M,, respectively. If O(z, z) and O,(y, 2) are given, O)(z, y) can be computed as follows :

Oi(z,y) = 3.(0(z,z) - Ox(y,2)) .

O, (z, y) captures all possible implementations of A, without violating the desired behavior of the cascade machine M.
Exploiting this freedom in implementation often leads to better logic implementations.

3.2 Sequential Qutput Don’t Cares

If M; and M, in Figure 3 are FSM’s, computing the flexibility in implementing M, is much harder. Devadas [9] addressed
this problem as computing sequential output don’t cares for M, and proposed a simple heuristic to compute partial don’t care
information for M,. Consider a transition edge e in the STG of M. Let the output symbol of e be v;. Devadas’ procedure
first computes the co-reachable states in M, corresponding to the present state of transition e. If for every corresponding
co-reachable state in M3, an output symbol v, from M, drives machine M to produce the same output and next state as the
original output symbol v; from M, does, then the output part {v;} of e is expanded to {v,,»,}. This is repeated on e for
each output symbol v, of M;. Then the above process is repeated for each transition edge e in the STG of M;. This output
expansion procedure does not change state reachability of the composite machine M; — M.

This procedure, in fact, is restrictive®. First, it considers only one transition edge of M, at a time, and excludes the
possibility of simultaneous output expansions among all transition edges. That is, an expanded output symbol in a transition

2n this paper, we will not make a distinction among Boolean relations, observability relations and symbolic relations unless necessary.
3This is in contrast to the comment, “This is not restrictive, as long as we can assume that M, is state-minimal”, made in [18).
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Figure 4: (a) An information lossless and state-minimal machine. (b) A lossy and state-minimal machine,

edge may depend on the expanded output symbols of the other transition edges. Furthermore, next states need not be the same
when an output expansion takes place. To be more specific, the set of co-reachable states for each state in M; may change
due to simultaneous output expansions. In the next subsection, we show this by example.

3.3 Output Don’t Care Sequences

Later, Rho et al. [17] considered sequences of output don’t cares and used the notion of information lossyness to explain
the phenomenon of these sequences in a cascade machine. A machine is said to be information lossless if given the initial
state, the final state and the output sequence, the corresponding input sequence can be uniquely determined. A machine that
is not lossless is said to be lossy. A state s of a machine is said to be a lossy state if starting from s there exist two distinct
finite-length input sequences such that their output sequences and final states are the same. An information lossless machine
cannot contain any lossy states.

Consider the cascade machine M, — M, in Figure 1. Rho et al. [17] interpreted that output don’t care sequences for
M, are due to the lossyness of M,. Based on this explanation, if M; has no lossy states, there are no output don’t care
sequences for M,. In this sense, only lossy states in M need to be considered for computing output don’t care sequences.
Accordingly, they gave the following definitions for equivalent sequences and equivalent machines. Input sequences that lead
a driven machine M, from the same initial state s to the same final state ¢ and produce the same output sequences, are said to
be equivalent with respect to state s. Thus, state s is a lossy state. Two machines M| and M|’ are said to be equivalent with
respect to M, if and only if for each input sequence they produce output sequences that are in the same equivalence class of
input sequences of M, i.e. ending in the same final state if M, is state-minimal.

According to the above definitions, a heuristic was proposed in [17] to compute a subset of fixed-length output don’t
care sequences for M;. This is an extension of Devadas’ procedure [9]. To compute fixed-length, say k-length, equivalent
sequences in M, this procedure first unrolls M, and M, for k-length time frames. Let the unrolled machines of M; and
M, be M} and M, respectively. An unrolled machine has the same state space as that of the original machine except that
for each transition edge the input part is a k-length input sequence, and the output a k-length output sequence. By such a
construction, k-length equivalent sequences starting at a state s of Mz" can be computed. In contrast, Devadas’ procedure
computes equivalent value from a state s in M. Then the output part of each transition edge in M can be expanded using
the same rationale in Devadas’ procedure except that a consistency check needs to be performed between the input and output
part of all transition edges in M. Finally, to construct a non-unrolled machine of M¥, M;’, a heuristic based on state splitting
may be employed to accommodate this don’t care information as much as possible, This procedure explicitly enumerates
fixed-length output don’t care sequences. In general, output don’t care sequences are of infinite length. The complexity of
this procedure may grow exponentially with the length of don’t care sequences.

This procedure is an elegant extension of [9]. However, their interpretation of output don’t care sequences is not general.
By their definition, output don’t care sequences for M; can be interpreted as those input sequences starting from the initial
state of M (assumed to be lossy and state-minimal), producing the same output sequence, and ending in the same final state.
Their reasoning is as follows. If the output sequence of M, is altered, so is the overall behavior of the cascade. Also, if the
final state is different, the behavior of the cascade changes, unless the new final state is equivalent to the original one.



Figure 5: An example : M = M, — M>, where both M, and M, are state-minimal and information lossless.

There are several factors not considered in this reasoning,.

First, output sequences from M; may change the equivalence of states in M, simultaneously, since the complement
of output sequences from M, are input don’t care sequences for M,, which may change the state minimality of M, [12].
During the process of exploiting output don’t care sequences for M, the output function of M is changed at the same time.
Consequently, we are unable to assume that state minimality of M, is invariant.

Secondly, by definition, different input sequences applied to an information lossless machine may produce the same
output sequences, but end in different final states. Consequently, if M, produces the same output sequences for different input
sequences, it is not necessarily lossy. In other words, there might exist output don’t care sequences even if M, is information
lossless. For example, machine M in Figure 4(a) is information lossless and state-minimal. Input sequences (11*) and
(00*) produce the same output sequences (01*), but do not end in the same final state. As a consequence, it is not necessary
that input sequences which produce the same output sequences end in the same final state even when the driven machine is
state-minimal. Moreover, this argument is not valid even for a lossy and state-minimal machine. An example is machine N
shown in Figure 4(b). N is lossy since state 1 is a lossy state*. Input sequences (00)* and (10)* produce the same output
sequences (01)", but do not end in the same final state.

Consider the cascade machine M = M; — M, as shown in Figure 5. This is an example where there are output don’t
care sequences for M even when M, is state-minimal and information lossless. Let v; denote the output value of a transition
edge e; in the STG of M;. The value of (v;, v, v3,v4, vs, vg) in Figure 5 is (0,1,0,1,0,1). Since the output sequences of
M are {0,1}", there are no input don’t care sequences for M,. Thus, we cannot use any input don’t care information to
simplify M, first. If we apply Devadas’ [9] or Rho’s [17] procedures, we cannot find any sequential output don’t cares for
M;. However, any one of the following values of (v, va, vs, va, vs, V) prescrves the same behavior as M; — M.

(0,1,0,1,0,1)
_ J (0,1,0,0,1,0)

(1)1,1)2,1)3,‘!)4,‘05,06) - (1;071)01110)
(1,0,1,1,0,1)

The reachable states of M, are {1,2,3} when (v, v2, v3, v3,9s,%) = (0,1,0,1,0,1). But when (vy, v, v3, v4, vs, %) =
(0,1,0,0,1,0), the reachable states of M; are {1,2}. So, the state reachability may change when we have different output
sequences from M. This is why Devadas® procedure is restrictive.

Consequently, the previous definitions of machine equivalence for the driving machine do not include all possible machines
which when cascaded by M; produce the same behavior as the original cascade machine. As a matter of fact, the general
definition of machine equivalence should be the following : two machines M,’ and M," are equivalent with respect to
M, if and only if M, — M, and M,"” — M, have the same input/output behavior. This specifies the full flexibility for
implementing M,. Therefore, this should be regarded as the general definition of sequential output don’t cares.

4Input sequences 0010, 1010 from initial state 1 produce the same output sequence 0101, and end in the same state 3.



4 Permissible Observability Relations

As mentioned earlier, an incompletely specified FSM can be expressed by a symbolic relation. Using this representation for
an isolated FSM, two kinds of don’t care information can be conveyed. The first is known as input-incompletely-specified
don’t cares or unspecified transitions. They characterize the situation that a given input symbol never occurs when a machine
is in a particular state, since there are limited kinds of sequences that can be applied to the machine. The other kind is called
output-incompletely-specified don’t cares. They occur when we are not interested in an output symbol associated with a given
state or state transition. In the following, we investigate whether this representation is powerful enough to convey sequential
don’t cares for a component in an interacting FSM network.

In a cascade circuit M; — M; as shown in Figure 1, we can compute input don’t cares sequences for M by keeping M,
unchanged. The general procedure known to solve this problem is due to Kim and Newborn {12]. This procedure summarizes
output sequences from M, by an NFA A’, and then transforms A’ into a minimal DFA .A. The equivalent machine to M, with
input don’t care sequences is the product machine A x M,. The input don’t cares sequences of M are unspecified transitions
in the resultant product machine. This product machine captures all input don’t cares sequences, and we can represent it as an
incompletely specified FSM. As a consequence, a single observability relation is sufficient to implicitly express input don't
care sequences.

On the other hand, a single observability relation may not be sufficient to express output don’t care sequences. We can
compute output don’t care sequences for M; by keeping M, unchanged. An FSM can be regarded as a language transducer,
i.e. transforming a regular language to another regular language. Therefore, output sequences from M can be expressed by a
regular language, say £(M’). We can define an equivalence class of languages with respect to My, [L(M7)],, such that any
language in this equivalence class can be generated by a certain machine M{ which preserves the same behavior as My — M,
when cascaded with M>. Next, we explain the intrinsic difficulties in computing sequential output don’t cares even when
we adopt the definition of machine equivalence from [17], i.e. equivalent input sequences end up in the same final state if
M, is state-minimal in isolation. Rho’s procedure [17] computes fixed-length equivalent sequences, and then expands these
to be output don’t care sequences for M;. Exploiting this information, some equivalent machines may be derived. Let M{
be an equivalent machine. Then £(M;°), output sequences from M,’, is in [C(M?)],,. However, the length of equivalent
sequences may be arbitrarily large. Furthermore, the complexity of this computation may grow exponentially with the length
of output don’t care sequences. Therefore, it is hard to enumerate all languages in [L(M})] .

From another point of view, we can enumerate all possible languages produced by M, with its state transition function
unchanged. Let the cardinality of the transition edges of M be £, and that of the output alphabet of M) be m. If we keep the
state transition function of M, unchanged, there are m* possible output functions, i.e. m* possible regular languages may be
produced by M; (some of them may be the same). For each output function ), ’, there is a corresponding machine M/, The
feasibility of );’ can be checked by testing if M’ — M, preserves the same behavior as M; — Ma. This is shown in Figure
6. Using this naive approach, we can check all possible output functions one by one to find all feasible solutions. We may
need m* invocations of FSM equivalence checking.

We can interpret the above approach as simultaneous output expansions among all transition edges. An expanded output
symbol in a transition edge may be dependent on the expanded output symbols of other transition edges. Consequently, the
flexibility of implementations captured by the above approach is more than for output-incompletely-specified don’t cares in
an isolated FSM. All feasible output functions possibly may not be expressed by a single observability relation. In fact, a set
of observability relations is needed. We show this in the next section. Each observability relation is permissible in the sense
that any output function compatible with one of the observability relations corresponds to a possible implementation.

In the next section, we present an implicit algorithm which finds all such feasible output functions by executing FSM
equivalence checking once.

5 Computation of Permissible Observability Relations

Let Ml = (Il [} Ol ) Qh 61 ) ’\l) lIlo) and MZ = (IZ: 02: QZ) 62) AZ: 420) be twoFSM’s. M = (I: 0) Q: 61 Ay qMo) is Ml - M29
the cascade machine. Let A; denote the set of all possible output functions of M, while keeping its state transition function
unchanged. Let M, | A, denotea machine which is the same as M; except with an output function A, € A;. Suppose that the
cardinality of transition edges in M is k. For each transition edge ¢;, we associate it with a symbolic variable v; which takes
values from O;. Let V denote the space spanned by vo, v1, . . ., vk—1, i.e. Of.
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Figure 6: Feasibility testing using FSM equivalence checking.
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Figure 7: A transition defined in T

Definition 7 Any minterm in V is called an output assignment. An output assignment corresponds to an output function in
A;, and vice versa.

Definition 8 An assignment mapping is a bijective mapping M : V — A, which maps a minterm v € V to an output
function X' in A,.

Definition 9 An output function \,' € A, is feasible if and only if M, | x¢ — M preserves the same behavior as M, — M.
Definition 10 An output assignment v is feasible if and only if M(v) is a feasible output function.
Definition 11 The set of feasible output assignments is denoted as f(v), the feasible output assignment function.

Our goal is tocompute all A, € A; such that M; |, — M; preserves the same behavior as M, — Ma. This is pictoriaily
explained in Figure 6.

5.1 Reachability Relation

Here, we present an implicit enumeration method based on a generalization of implicit FSM equivalence checking. The most
important step in the FSM equivalence checking is the computation of reachable states. The state space for our equivalence
checking is @ x @ x @, denoted as S. For an output assignment v, there is a corresponding output function M(v) and a
set of reachable states which is a subset of S. Different output functions may result in different sets of reachable states. With
this observation, we introduce the concept of reachability relation.

Definition 12 A reachability relation is a function F : S x V — B such that F(s,v) = 1ifand onlyif s is reachable from
the initial state when the output function is M(v).

For an output assignment v, the transitionrelation of My | vy, is Ti| p(v)- We can compose T | m(vy» T2, and Ty, and then
use implicit reachability computation to check whether G in Figure 6 is a tautology. However, this is an explicit enumeration
method since we need to enumerate explicitly for all v € V. To perform implicit enumeration, we construct an abstract
transition relation for My, T}, as follows. First, givealabeling for each transition edge in M. Let hbea k-valued variable. We
substitute j, i.e. the literal 217}, for the output part of e;. The abstract transition relation is 7} (é;, p1, n1. k). Let the transition



Figure 8: A state y is reachable from a set of states X at the m-th iteration.

relation of M, be Ta(i2, p2, n2, 02) and that of M, Tar(ing, pm, nm, 0n). Define T(i, h, iz, p,n,02,0p) = T, - T3 - T,
where i = i} = iy, p = (p1,p2,Pm) and n = (ny,np, npy). The initial state is go = (g19, 920, gM0)- The motivation for
constructing the abstract transition relation, T}, is explained below. T contains all possible transitions for any composite
machine of M| M(vy M2, and M. Consider a transition defined in T'(, h, i3, p, n, 02, 0pr) as shown in Figure 7. The
expression associated with this transitionis (i - h - é3 - 0 - opr). Let the value of  be j. It means that when the output value
of e; in M is equal to that of ¢, this transition is made, and vice versa. Different output values of transition edge e; result in
different output assignments. Therefore, this provides a way to relate output assignments to transitions in 7",

Since ¥ C S x V, F is a finite set. In the following theorem, we demonstrate that the reachability relation can be
computed by a least fixed point computation.

Theorem 5.1 Let P(p, n,v) be defined as follows :

k=1
P(p,n,v) = Z0iz.vj{[(ai,o;.oMT)](;x:j)}- 1)

j=0
F(p, v) is the limit of the following sequence :
Fo = (p=9)-1
fm = 9,,_,3,,{.7:";_1 : P(p, n, v)} + Tm-]

Proof Induction on the number of iterations, m. Initially, go is reachable for every output assignment; thus the construction
of Fo is correct. Variables 2, 02, opr have no contribution in computing reachability relation, so we can smooth them out from
T in the first place. Suppose the reachability relation up to the (m — 1)-th iteration is ,,,—,. Consider transitions traversed
at the m-th iteration. Suppose a state y is reached at the m-th iteration from a set of states X, reached up to the (m — 1)-th
iteration. This is shown in Figure 8. For z € X, by induction hypothesis, state z is reachable only when output assignments
are (Fm—1 )Pn. The value of A, say j, in the transition from z to y means that the output value of transition edge e; in M,
contributes the transition from z to y. Consequently, the value of v; should be equal to that of i, to make this transition from
z to y. P(p,n,v) defined in Equation (1) characterizes all such conditions. State y is reachable when z is reachable under
the output assignments (Fin—1),, and v; equals the value of i;. Then summing up over z € X and over all possible values
of h (i.e. {0,...,k— 1}), we can get the corresponding output assignments of y at the m-th iteration. This corresponds to
the expression : 3, {Fm-1 - P(p, n,v)}. By implicit enumeration, we can get all such y, the next state image at the m-th
iteration. In order to get F,,, the reachability relation up to the m-th iteration, we still need to add Fy,—;. This proves the
correctness of constructing F,,. Furthermore, we have Fo C F; C --- C Fn, Vm, and F is a finite set; consequently,
when Fr, = Fyyi,wehave Foo = Frp. w

Corollary 5.2 For an output assignment c, its corresponding set of reachable states up to the m-th iteration (Rm(p)), is
(Fm(p,v))y=q- In particular, the set of reachable states is (Roo(1))q = (Foo(P,))y=q-

Proof Follows directly from the Theorem 5.1. =
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5.2 Feasible Output Assignment Function

An FSM can be regarded as a language transducer, i.e. transforming a regular language to another regular language. If M,
is completely specified, Mz maps L, to another regular language. That is, for all input sequences, the behavior of M, is
defined. First, we consider the case when M; is completely specified.

For each output assignment v, there is a corresponding set of reachable states in S. This results in T} M(v)» the transition
relation of the composite machine of M |y,), Mz and M. If there are different values between o; and op in a transition
of T| M(v)» G in Figure 6 is not a tautology. Therefore, v is not a feasible output assignment. An output assignment v is
infeasible if and only if T'| o,, has a transition with (0; # op). Consider a transition in 7" as shown in Figure 7. Let the
value of h be j, and the value of #; be r. Therefore, when the output value of e; in M is equal to that of i, this transition
is made. State z is reachable if and only if the output assignments are in (F),. If this transition is with (02 # on),
(Foo)p=z * (v; = r) are infeasible output assignments. We need to enumerate all transitions of T' with (0, # o) to compute
the set of all infeasible output assignments; the set of feasible output assignments is just the complement. In the following
theorem, we present an implicit enumeration method to find the feasible output assignment function, f(v).

Theorem 5.3 (M; : completely specified)
Let W(p, v) be defined as follows :

k-1

Wp,v) = 3 0,0, {Fn.0m,a((3iT) - (02 £ 08y} - @
j=0

The feasible output assignment function f(v) is :

f(v) = 3p(Fo - W(p,v)).

Proof Variable 7 has no contribution to compute f(v), so it can be smoothed out from T first. Now, consider the transitions
in T A state z can transit to a set of states by different values of . First, we can aggregate transition edges which start from
z with different values between o and ops. Let the corresponding set of next states be Y. Any one of these transitions is
infeasible in the sense that it causes G in Figure 6 not to be a tautology. Let y € Y. The value of A, say j, in the transition
from z to y means that transition edge e; in M, contributes to this transition, and the value of v; must be the same as that
of #;. This is the condition to make an infeasible transition from z. We can implicitly sum up over Y to get the condition
to make infeasible transitions from z. W(p, v} is the relation which associates a state p with the corresponding condition to
make infeasible transitions starting at p. For each state z, we intersect W(p, v),,—, With (¥e),=., the output assignments
for reaching x. These are infeasible output assignments. With summation over every possible reachable state, we get the set
of infeasible output assignments; the set of feasible output assignments is just the complement. =

The feasible output assignment function f(v) may be a relatively small subset of all output assignments, V. Moreover, it
is not necessary to construct ¥ first using the method in Theorem 5.1, and then remove all infeasible output assignments using
Theorem 5.3. We may incrementally remove the infeasible output assignments during the construction of the reachability
relation. In the next theorem, we present an incremental approach.

Theorem 5.4 (M; : completely specified)

The set of feasible output assignments f(v) is the limit of the following sequence, where C.(p, v) is the reachability relation
restricted to fm(v), the feasible output assignment function up to the m-th iteration. P(p, n,v) and W(p, v) are defined in
Equations (1) and (2), respectively.

G = (p=q)-1, folv) =1
Cm' 0n,p3p{Cm-1 - P(p,n,v)} + Cm—y
fm(v) = ap(cm, ‘W(p,v)) + fm-1(v)
Cn = Cm'- Jm(v)
Co = Cmy, fo = fm if Cn = Cimy1.

In particular, C, is the reachability relation restricted to f(v), the feasible output assignment function.
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Proof Induction on the number of iterations, m. Initially, go is reachable for every output assignment, thus the construction
of Cp and fo(v) is correct. Now suppose at the (m — 1)-th iteration, the reachability relation restricted to the feasible output
assignments up to the (rn — 1)-th iteration is Cp,—1. By the proof in Theorem 5.1, Cy,,” is the reachability relation up to the
m-th iteration but may contain infeasible output assignments. However, from Theorem 5.3, fr(v) is the set of infeasible
output assignments up to the m-th iteration. Consequently, Cp, gives the reachability relation restricted to the feasible output
assignments up to the m-th iteration. When C,;, reaches the fixed point, we have Co and foo. m

When M, is input-incompletely-specified (i.e. with unspecified transitions), we need to modify the above theorem to
compute f(v). As explained in the previous section, input-incompletely-specified don’t cares are due to the interaction with
other machines (in our case, M;). Let E(M-j ) denote the input sequences of M, where the behavior is defined. We can
construct an automaton .4 to accept £(Mj) as follows. Every state of M, is a final state. For each transition in the STG
of M, remove the output part. Then for each state with unspecified input values, create a transition edge to the dead state
(a non-final state), and associate those unspecified values to that transition. Any input sequences not in L‘.(Mz" ) drive M, to
exhibit undefined behavior. Suppose M = M; — M, does not have undefined behavior. Then a feasible output assignment
v, M| M(v) — M2 should not have undefined behavior, either. In other words, if v is a feasible output assignment, the output
sequences generated by M, lM(U) must be in £(M}) (i.e. E(M;’)[M(U) C L(M)).

Theorem 5.5 (M, : input-incompletely-specified)
Let W(p, v) be defined as follows :

s & 35000)
k-1

W(p,v) = Zoiz,v;{[Tzc + 3n 01,0, ((3iT) - (02 # OM)))(h:j)} :
i=0

The feasible output assignment function f(v) is the limit of the following sequence, where P(p, n, v) is defined in Equation (1)
and Cy,(p, v) is the reachability relation restricted to fm (v), the feasible output assignment function up to the m-th iteration.
Co = (p=q)-1, folv) =1
™ =" 05 =1 P} F Cny
fn@) = 3(Cn" W(p,0)) + fna(v)
Cin v i 28Cm of(1)
Coo =" =S e G =00

In particular, Cos is the reachability relation restricted to f(v), the feasible output assignment function.

Proof We define 75 (p2,42) = 1 if and only if i, is an unspecified value at state p; of M,. We construct T (p2, 12) as
follows. We smooth out variable o, since it is irrelevant to the computation of Tf. Then we implicitly summarize the input
values over transitions starting from a state of M, by smoothing out n,. For each state, those values not defined on it are
obtained by complementing the relation, and we get 75°. An output assignment v that causes transitions in T will force
M| p0) € L(Mj}). Consequently, W(p, v) needs to include 75~ . The rest of the proof is the same as that of Theorem 5.4. =

We can compute the feasible output assignment function f(v) using Theorem 5.4 or 5.5 depending on whether M, is
input completely specified. As an example, consider the cascade machine in Figure 5, where M, is completely specified. The
feasible output assignments f(v) can be computed by the above algorithms.

f(v1, v, v3,v4, 05, 06) = V1 2 T3 V4 Us V6 + VU1 V2 V3 Vg Us Vg + V1 T3 V3 Ta Vs Tg + ¥y U3 V3 Vg Ts Vg .

5.3 Relationship Between Feasible Qutput Assignments and Permissible Observability Relations

The feasible output assignment function, f(v), is a multiple-valued function, thus it can be expressed in terms of a multiple-
valued sum-of-products.

Lemma 5.6 Let ¢ be a multiple-valued cube in the space of V. Tj IM(C) can be expressed using a single symbolic relation.

Conversely, the output assignments of a symbolic relation Ty (i, p1,n1,01) can be expressed in terms of a multiple-valued
cube in the space of V.
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Proof Letcbe vEovf' - v.%', where Lo, Ly, ..., Le—; are subsets of Oy. Ti| M(e) €an be achieved by substituting every

L; in the output of transition ¢; of M;. Consequently, it can be expressed in terms of a single symbolic relation. Conversely,
let the output values of a transition edge ¢; in T; be L}, a subset of O;. We can express the output assignments of T} as
u§°v, tees vfﬁ;‘ » which is a cube in the space of V. =

Definition 13 Let c be a cube of f(v), the feasible output assignment function. T | M(c) is called a permissible observability
relation in the sense that any implementation compatible with T, | M(c) IS feasible.

Definition 14 Let p be a prime of f(v), the feasible output assignment function. Then T, | Mm(p) iscalleda prime permissible
observability relation in the sense that it is not contained in any other permissible observability relations.

Theorem 5.7 Let f(v) be thefeasible output assignment function. {T; | M(S(v)) } is a set of permissible observability relations.

Proof Let f(v) beexpressed in terms of a sum-of-products, {¢1, ¢z, . . ., ¢ }. From Lemma 5.6, a cube c; of f(v) corresponds
to a permissible observability relation Tj | M(ar)* Therefore, {T}| M (v ))} corresponds to a set of permissible observability
rela[ions, {T'] IM(C])’ T] |M(Oz)’ ceay T'l |M(cn)}' [ ]

Therefore, all feasible output functions can be expressed in terms of a set of permissible observability relations, and vice
versa. By Lemma 5.6, a permissible observability relation covers some feasible output functions. Therefore, the representation
for a set of permissible observability relations is not unique. The minimum set of permissible observability relations is a cover
which covers all feasible output functions with the minimum number of permissible observability relations.

Theorem 5.8 The cardinality of the minimum set of permissible observability relations is equal to the cardinality of the
minimum sum-of-products cover of f(v), the corresponding feasible output assignment function.

Proof Any feasible output assignment is contained in a minimum sum-of-products cover of f(v), Cyv) = {p1,P2,.--,Pn}.
The corresponding set of permissible observability relations, Ca(s(v)) = {Ti | pmepy) Tilmipa): - - 1 Tibaacp, )} i @ minimum
cover. Suppose Ca(s(v)) is not a minimum cover of permissible observability relations, then there exists a cover C’ pms(v))
with smaller cardinality. By Lemma 5.6, this implies Cy(y) is not the minimum cover of f(v). This is a contradiction. =

In contrast, we only need to use a single observability relation, say O(z, 0) (where i is the input, and o is the output),
to express all the flexibility of implementation for a component in a hierarchically designed combinational logic circuit. A
minterm of ¢ may map to several minterms of o, and it is independent of other minterms of i. However, this is not true in
the sequential case. That is, a minterm of i may map to several minterms of o, but it is dependent on the other minterms of
i. Consequently, the notion of Boolean relations must be generalized for hierarchical designed sequential circuits, i.e. sets of
permissible observability relations.

5.4 Permissible Observability Relations vs. Output Don’t Care Sequences

In the next theorem, we state the relationship between the set of permissible observability relations and output don’t care
sequences.

Theorem 5.9 If the transition function of M, is not changed, and f(v) is the feasible output assignment function, then the
corresponding set of permissible observability relations, {T\| M( f(,,))}, exactly captures output don’t care sequences for M,.

In a sense, our algorithms compute a class of permissible machines, and these machines can be expressed in terms of a set of
permissible observability relations.

Although we have only considered one-way-communication circuits (i.e. cascade machines) so far, the above algorithms
can be directly applied to compute permissible relations for a component in a two-way-communication circuit as shown in
Figure 9. An interesting extension is to use these algorithms to compute permissible relations for both submachines M; and
M in Figure 9 simultaneously. We simply keep both state transition functions of M, and M, intact, and then use the above
algorithms to get the feasible output function assignments of both machines simultaneously, i.e. the new output assignment
space is the Cartesian product of output assignment spaces of M; and M,. Note that the flexibility in implementing one
submachine is dependent on that of the other. That is, their flexibility of implementation need to be compatible. With this
approach, we are able to compute this compatible flexibility in implementing these submachines.
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—] M1 - Mz -

Figure 9: A two-way-communication FSM network.

5.5 Further Discussion

A restriction on our algorithms is that during the computation step the state transition function of M; is kept unchanged,
although the state transition function may change after the exploitation of output don’t care information using state minimization
procedures for incompletely specified FSM’s. This may limit possible exploitation of other output don’t care information.
Therefore, the don’t care information derived using our algorithms may be affected by the given state transition function of
M. In contrast, Rho’s procedure [17] employs a heuristic based on state splitting to accommodate don’t care information
(a subset of output don’t care sequences with a fixed-length) as much as possible. Therefore, the state transition function
of the component may change. This limits the exploitation of other possible output don’t care information as well since the
definitions of equivalent sequences in [17] is not general as explained in Section 3.3. Moreover, our algorithms implicitly
enumerate infinite-length output don’t care sequences using FSM equivalence checking, while Rho’s procedure is limited to
Jfixed-length sequences. Besides, our algorithms can be directly applied to handle two-way-communication circuits as shown
Figure 9, and can be extended to compute compatible flexibility in implementing these two interacting components.

Consider the following case. Let M| be a machine with the same input and output alphabets as those of M, but with a
different state space Q] and a different transition function 6{. Our algorithms can be applied to check if there exists an output
function A} such that M| — M; and M; — M, have the same 1/O behavior.

Based on the above discussion, a possible approach to effectively compute and exploit output don’t care sequences is as
follows. Some fixed-length output don’t sequences can be exploited by using state splitting. Therefore, the state transition
function of M, changes. Infinite-length output don’t care sequences can be implicitly enumerated to check if there exist better
feasible output functions under this new transition function. Thus, how to perform state splitting properly such that as much
output don’t care information as possible can be exploited is of interest. Currently, we are investigating this problem.

6 Exploitation of Permissible Observability Relations

In the following, we discuss different aspects of exploiting permissible observability relations.

6.1 State Minimization

Limited observability may be beneficial in minimizing the number of states of a machine. A machine with the minimum
number of states may not have the best implementation. However, it can be a good starting point for state assignment if the
machine is not encoded yet, or for sequential logic optimization if the machine is encoded.

However, current state minimization algorithms only manipulate one observability relation (transition relation) at a time.
By Lemma 5.6, a cube of f(v) corresponds to a permissible observability relation. So in order to fully exploit the set of
permissible observability relations, one must run state minimization procedures several times. Let p be a prime of f(v).
Then Th IM(,,) is a prime permissible observability relation which can not be contained in any other permissible observability
relations. Therefore, a state minimization procedure needs to be executed as many times as the number of primes of f(v).

6.2 Implementation

In the case of combinational logic, a Boolean relation is sufficient to capture all the freedom of implementation. However, in
the case of FSM networks, a set of permissible observability relations may be needed to represent output don’t care sequences
for a component. Each minterm of f(v) corresponds to a feasible implementation. Now, suppose the machine is encoded. In
order to find the best implementation, we need to consider every minterm of f(v). From Theorem 5.8, the minimum number
of times we need to run the Boolean relation minimizer to find the best implementation is equal to the number of terms in a
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circuit driving driven feasible | permissible | CPU |
PI | PO [ states || PI | PO [ states || assignments relations | time
P 1 1 3 1 1 3 4 4 0.1
bbara-bbtas 4 2 7 2 2 6 203584 61| 515
bbtas-ex5 2 2 6 2 2 8 2096 5 1.9
bbtas-ex7 2 2 6 2 2 8 160512 4 1.6
dk27-lion 1 2 7 2 1 4 499941 18 | 41.1
ex2-ex5 2 2 19 2 2 8 32768 1] 578
ex2-ex7 2 2 19 2 2 8 8704 2| 204
ex3-bbtas 2 2 11 2 2 6 81 1 4.2
ex3-ex7 2 2 11 2 2 8 12 1 79
ex5-bbtas 2 2 8 2 2 6 243 1 2.6
ex5-ex7 2 2 8 2 2 8 128 1 3.2
ex3-ex5 2 2 11 2 2 8 1 1 109
ex2-ex3 2 2 19 2 2 11 H 1 1] 209
Table 1: Experimental results
states : number of states in isolation

feasible assignments:  number of feasible output assignments of the driving machine
permissible relations:  minimum number of permissible observability relations
CPU time : in seconds on a DEC 50007260 with 128 MB

minimum sum-of-products for f(v). The rationale is as follows : A product term in the minimized sum-of-products form of
f(v) corresponds to a Boolean relation, and every minterm of f(v) is covered by the sum-of-products form with minimum
cardinality. Consequently, we can pick the best result from all Boolean minimization executions.

6.3 Encoding of Interconnection Signals

Another direct application to permissible observability relations is the encoding of signals between interacting FSM’s. We
may convert the set of interacting binary signals between components into a symbolic variable for the purpose of re-encoding.
For example, let us consider a cascade machine M; — M,. A good output encoding of M; may be a bad input encoding for
M3, and vice versa. Re-encoding can be imagined as a means of moving logic between two interacting machines [9].

Shen et al. [21] give a formulation to this problem but without experimental results. They simply combine the /O
constraints from each individual component and convert them into a dichotomy covering problem with some conflict resolution
techniques. Then they try to satisfy as many constraints as possible. However, this is not an exact formulation since it does
not consider the exact output encoding (e.g., GPI's [10]) or any don’t care information (e.g. symbolic relation). Moreover,
they did not consider sequential don’t cares (e.g. permissible observability relations and input don’t care sequences arc not
used). The general formulation is still an open problem.

Permissible observability relations allow us to have many feasible output functions, and in theory these should be useful
for encoding the interacting signals.

7 Experimental Results

In this section, we present some preliminary results. Most of the examples are obtained by interconnecting FSM’s from the
MCNC benchmarks. These FSM’s are completely specified and state-minimal in isolation. Example P is shown in Figure 5.

Table 1 shows the results of some cascade circuits consisting of two FSM’s. The minimum number of permissible relations
is obtained using ESPRESSO-MYV [19]. The CPU time indicated includes both the computation of feasible output assignments
and ESPRESSQ-MV. Although the feasible output functions of examples ex2-ex5, ex3-bbtas,ex3-ex7,ex5-bbtas
and ex5-ex7 can be expressed by a single relation individually, they cannot be computed using either Devadas® or Rho’s
procedures. In examples P, bbara-bbtas, bbtas-ex5, bbtas-ex7, dk27-1ion and ex2~ex7, the minimum
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number of permissible relations to express the feasible output functions is more than one. The number of feasible output
functions in examples ex3-ex5 and ex2-ex3 is one.

Our implicit algorithm based on BDD’s deals with all output assignments at a time. With our current implementation, we
can handle small-size examples in a reasonable amount of CPU time as shown in Table 1. In contrast, the explicit algorithm
which enumerates all possible output assignments one by one is very inefficient since the number of all output assignments
is too large. For instance, there are 2'52 possible output assignments in example ex2-ex7, but only 8704 of them are
feasible. The feasible output assignment function, f(v), is normally a relatively small subset of V/, the set of all output
assignments. Therefore, proper BDD variable ordering or use of 0-Sup-BDDs [15] should enhance the ability and efficiency
of our algorithms. Currently, we are studying a good BDD variable ordering to handle larger examples.

The output part of a transition edge in a permissible relation is a multiple-valued literal. As pointed out in [9), pairwise
compatibility of a set of states S does not imply S is compatible. Thus, additional checking has to be performed during state
minimization. At the present time, there are no state minimization programs with this ability in our logic synthesis system.

8 Conclusion

We discussed intrinsic difficulties in computing output don’t care sequences for a component in an FSM network. We pointed
out that these can not be explained using information lossyness [17]. We demonstrated that output don’t care sequences for
a component can be expressed using a set of permissible observability relations given that its state transition function is kept
unchanged. We presented a novel approach to exactly compute them. The representation for a set of permissible observability
relations is not unique. We provided a method to find a set with the minimum number of permissible observability relations.
We also discussed the applications of permissible observability relations in different contexts, such as state minimization,
circuit implementation and signal encoding.
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