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Abstract. This paper presents the method of exterior differential systems for
analyzing nonlinear systems. The Goursat normal form is presented, and conditions
are given for converting Pfaffian systems into this normal form. Since the Brunovsky
normal form is a special case of the Goursat normal form, we also show how the
exact linearization conditions for control systems can be restated in the language
of Pfaffian systems. In addition, we give new conditions for converting Pfaffian
systems into Goursat form after prolongation, and for linearizing control systems
using dynamic extension.

Several examples of mobile robots are examined, and it is shown that for some
kinematic arrangements, a prolongation corresponding to a dynamic state feedback
is needed to transform the corresponding Pfaffian system into Goursat form.
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2 TILBURY AND SASTRY

1. INTRODUCTION

There has been a great deal of interest in the use of exterior differential systems
for analyzing nonlinear control systems. We bring together here some of the results
which have been recently published as well as add some of our own contributions to
this area. We show that all of the main results in exact linearization of nonlinear

systems can be restated in terms of exterior differential systems, and in addition, we
present a new set of sufficient conditions for linearization by dynamic extension.

In this paper, we will only make use of a special type of exterior differential system
called a Pfaffian system, and all of our definitions and results are specific to this case.
Loosely speaking, a Pfaffian system is represented by a codistribution of one-forms
defined on the state space, which we will assume to be a connected manifold. These
one-forms may represent constraints on the system velocities, as in the case of mobile
robots where the wheels roll without slipping. A control system with state x € Rn,
input u € Km of the form x = /(x, u) can also be written as a Pfaffian system, with
the constraints defined as the one-forms a* = dxi —fx(x^u)dt on Rn+m+1. Although
special care must be taken for control systems to treat time differently from the state
and input variables, we will show that the main results on transforming Pfaffian
systems into normal forms will carry over into the special case of control systems.

For mechanical systems with linear velocity constraints, such as mobile robots with
wheels that roll without slipping, exterior differential systems are the most appro
priate method for analysis. Using methods from exterior differential systems, we
can, under certain conditions, transform the Pfaffian system defined by the rolling
constraints into a normal form and, in the new coordinates, easily find solution tra
jectories for the system.

The outline of this paper is as follows. First, we present some background mate
rial on exterior algebra and Pfaffian systems. We then give the definitions for the
Goursat normal form and extended Goursat normal form. After stating necessary
and sufficient conditions for converting Pfaffian systems into these normal forms, we
show that several examples of mobile robot systems satisfy these conditions. We then
consider systems which do not satisfy the conditions for this conversion, and present
the concept of prolongation of a Pfaffian system. We give sufficient conditions for
converting a Pfaffian system to extended Goursat normal form using a specific type of
prolongation, and we show an example of a mobile robot system which satisfies these
conditions. Finally, we turn our attention to control systems, expressed as Pfaffian
systems. Since the Brunovsky form is a special case of Goursat normal form, all of
the results for converting Pfaffian systems to Goursat form can be specialized to give
conditions for converting control systems to Brunovsky linear form. We show that
the special type of prolongation we proposed in this paper is the dual of dynamic
extension, or adding integrators to some of the input channels. Thus our theorem for
converting Pfaffian systems to extended Goursat normal form using prolongations can
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be specialized to give sufficient conditions for linearizing control systems by dynamic
extension.

2. Exterior Algebra and Pfaffian systems

We give a brief overview of some of the definitions of exterior algebra and Pfaffian
systems that we will use in this paper. The theory of exterior differential systems
is powerful enough to analyze solutions of systems of partial differential equations;
however, we will restrict ourselves in this paper to systems of first-order ordinary
differential equations. We encourage the interested reader to consult the monograph
by Bryant et. al. [1], from which most of this introductory material was taken, for
more details.

A real vector space V or its dual (covector) space V* generates an exterior algebra
with the exterior or wedge product defined by

a A/? = -/?Aa

a Ao = 0

aa A (&/? + ay) = (ab)a A /? + (ac)a A 7

for all a, /? € V(V*), a, 6,c 6 9ft. The wedge product of two vectors is called a two-
vector. We define A2(V) as the space of two-vectors. We can similarlybuild up higher
vectors and define Ak(V) as the space of all fc-vectors. For completeness, we define
A°(V) = Rand A*(V) =V. The dimension of Ak(V) is (j). From the axioms, it
follows that Ak(V) is empty for k > n.

The exterior algebra over V is a graded algebra,

A(V) = A°(V) © A\V) ©•••© An(V)

Any element A £ A(V) can be written uniquely as

A = A0 + A! + • • • + An

where A,- € A*(V) for i = 1,... ,n.
Now, consider a differentiate manifold M of dimension n and its cotangent bundle

T*M. We construct the bundle A(T*M) whose fibers are the exterior algebra of T*M^
that is:

a(t;m) = a°(t;) e AJ(r;) e a2(t;) © •••e An(r;)

The bundle A(T*M) has AP{T*M) as sub-bundles. A section of the bundle

AP(T*M) = (J a*{t;m)

over M is called an exterior differential form of degree p or simply a p-form.
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For local coordinates on M denoted by x = (jci, ... , xn) , a local basis for TXM is:

{— —}

We denote its dual basis on T*M as

{rfxi,... ,da;„}

defined by

In terms of these local coordinates, a p-form uj can be written as

<*> = 53^l-tpC^) ^»! A•••Arfa:,,, t'i < t2 < ••• < tp

where the coefficient functions to,-,...* (a?) are smooth functions on M.
We will use the notation Clp(M) to mean the module (over the ring of smooth

functions) of all smooth sections of AP(T*M), and fl(M) = ® fip(Af) as the module
of forms on M.

We begin by considering a codistribution / on M, spanned by s one-forms, that is

J ss span{a1,... ,a*}

where a* is in Slx(M) for %= 1,... ,5.

Definition 1. Pfaffian Systems.
On a manifold of dimension n, a Pfaffian system is the smallest ideal J C £l(M),
generated by a codistribution / of one-forms spanned by {a1,... , a5} which is closed
under wedge products.

Any element of X can be written in the form:

t=i

where 0' is any element in ft(M). Throughout the course of this paper we will
deliberately confuse the notation and refer to the codistribution / as the Pfaffian
system.

The dimension of a Pfaffian system is defined to be 5, the number of independent
one-forms which generate it. Any n —s linearly independent one-forms which axe
independent of / form a complement to /. The codimension of / is n —s.

An integral curve for a Pfaffian system is a curve c(t) : (—e, c) —> M which satisfies
the constraints, that is, Cm(a%) = 0 for all ax G /. Here the notation c*(a%) is taken
to mean («*,^f))-

A (local) independence condition for a Pfaffian system is a one-form r which does
not vanish on integral curves, that is c*(t) ^ 0. We add the additional condition that



GOURSAT NORMAL FORMS 5

t be integrable, so that our Pfaffian systems will correspond to systems of first-order
ordinary differential equations.

We willneed the notion of congruence moduloa Pfaffian system. For I = {a1,... , a5},
we say that n = f mod 7 if

if-C +E^Ao*
t=l

for some forms 6l in Cl(M).

Definition 2. Exterior Derivative.

The exterior derivative is defined as the unique map d : Q,k(M) —> l7lk+1(M) which
satisfies the following properties:

(1) For / e n°(M),

df=*ldxi +...+ <^dXn,
relative to a local coordinate chart, or the usual gradient.

(2) Fora€ftr,/?€fta,

d(aAP) = da/\P+ (-l)r<* Adj3.

(3) <P = 0.

Definition 3. Derived Flag.
Given a Pfaffian system 7 = {a1,... , a*}, the derived flag is defined to be the nested
chain of codistributions given by 7*°) = 7 and

7<fc+1> = {w € 7<*> : aw = 0 mod 7<*>}

The construction is assumed to terminate at some N, when 1^ = 7<N+1). The
derivedflag is then defined to be the sequence of nested codistributions,

/ = /(o)D/(i)D..o7(W)

We will assume that the dimension of1^ is well-defined for all k.

Remark 1 (Maximally Nonholonomic). The last member of the chain of codistribu
tions, I^N\ is called the bottom derived system. Since 7^ = l(N+1\ we have that
dw = 0 mod I**N) for all u> € 7^, and by the Frobenius theorem, the bottom de
rived system is integrable. That is, there there exist functions hi,... ,hq such that
l(N) = {dh\,... ,dhq}. Solution trajectories of 7 axe then constrained to lie on level
surfaces of h.

A Pfaffian system is said to be nonholonomic if /W is a proper subset of 7. We
will only work with systems which are maximally nonholonomic, that is, with bottom
derived system 7^ = {0}.

For reference, we state here a variant of the familiar Frobenius theorem:
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Theorem 1. Frobenius [1].
Let {w1,... ,u;p} be a set of linearly independent one-forms, and /i,... ,/g a set of
functions whose differentials are linearly independent of each other and of the wx 's.
V

aw* Alj1 A•••Aup Adfx A•••Adfq = 0
for i = 1,... ,p, then there exist coordinate functions z\,... ,zp and coefficient func
tions aij, b{j such that the one-forms w* can be written as:

p 9

<*>* = J] aHdzJ +5ZM/i
i=i i=i

The proof follows from the standard Frobenius theorem and the fact that the
codistribution {w1,... ,wp,df\,... ,dfq} is integrable.

3. Goursat Normal Forms

A great deal of work has been done on transforming Pfaffian systems into normal
forms. Of special interest to us in this paper is the Goursat normal form, originally
proposed by Goursat for Pfaffian systems of codimension two, which has the property
that all its integral curves can be expressed in terms of two arbitrary functions. We
will also examine an extended Goursat normal form for Pfaffian systems of codimen
sion k > 2, for which solution trajectories can be expressed in terms of k arbitrary
functions.

Definition 4. Goursat Normal Form.

A codimension two Pfaffian system 7 on Rn with generators of the form

7 = sp&n{dzn —zn-\dz\,... , dzz —Z2dz\).

is said to be in Goursat Normal Form.

If we define wl(z) = dzn —zn-\dz\,... ,wn~2(z) = dz^ —z2dz\, then the derived
flag of 7 is given by

7(°)= {u,1, a,2, -.., wn-3, wn-2}
/W= {«\ a;2, -.., a;""3}

7<«-4>= {a;1, w2}
7<"-3>= {a;1}
7(»~2) = {0}

From the form of the Pfaffian system in the z coordinates, it follows that inte
gral curves of the system axe unconstrained in their Z\,zn coordinates alone. Once
z\(t), zn(t) are specified as functions of some parameter t, the other coordinates axe
determined as functions of Z\(t),zn(t) and finitely many of their derivatives. The
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following classical theorem gives necessaxy and sufficient conditions for converting a
Pfaffian system into Goursat normal form:

Theorem 2. Goursat Normal Form [1].
A Pfaffian system I of codimension two on Rn has a set of generators which are in
Goursat normal form if and only if there exists a basis set of forms {a1,... ,an~2}
for I and a one-form rr satisfying the congruences:

da* = —a*+l Air mod a1,... , a* t = l,...,n —3 ,..*
dan-2 0 0 mod 7 (lj

In [10] we showed that the Pfaffian system associated with the system of a car
towing n trailers, generated by the constraints that each axle of wheels roll without
slipping, satisfied the conditions for conversion to Goursat normal form. This was
a system of codimension two, corresponding to the fact that the linear and angular
velocities of the front car are the inputs, and thus freely specifiable.

In order to consider Pfaffian systems associated with mobile robots such as the
firetruck [3, 9] or the multi-steering multi-trailer system [11] we need to work with
systems of codimension greater than two. We have the following definition:

•

Definition 5. Extended Goursat Normal Form.

A Pfaffian system 7 on Rn+m+1 of codimension m + 1 is in extended Goursat normal
form if it is generated by n constraints of the form:

7 = sp&n{dz3i —zj+1dz° :j = 1,... ,m; i = 1,... ,-s,}, (2)

We note that this is a direct extension of the Goursat normal form, and all solution
trajectories of (2) axe determined by the m -f 1 functions z°(t),z\(t),... ,z™(t) and
their derivatives with respect to the parameter t.

There are conditions due to Murray [6] for converting a Pfaffian system to extended
Goursat normal form. We restate and prove this with the additional condition (cor
rection) that 7r needs to be integrable:

Theorem 3. Extended Goursat Normal Form [6].
Let I be a Pfaffian system of codimension m + 1. If there exists a set of generators
{oj : j = 1,... , m; i = 1,... , Sj] for I and an integrable one-form ic such that for
allj,

dc4 = -aj+1 Ait mod 7(*>""^ t = 1,... ,Sj —1 , .
dai. £ 0 mod 7 W

then there exists a set of coordinates z such that I is in Goursat normal form,

7 = {dzj - zj+1dz° :; = !,... ,m;t = 1,... ,Sj}.
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Proof. If the Pfaffian system is already in extended Goursat normal form, the con
gruences axe satisfied with n = dz° and the basis of constraints aj = dz\ —zl+1dz°.

Now assume that we have found a basis of constraints for 7 which satisfies the

congruences (3). It is easily checked that this basis is adapted to the derived flag,
that is:

I{k) = {c4 : j = l,... ,m; i = 1,... ,s; - k}
We will now construct the coordinates z which comprise the Goursat normal form.

Since n is integrable, any first integral of it can be used for the coordinate z°. If
necessaxy, we can rescale the constraints oj so that the congruences (3) axe satisfied
with dz°:

dc4 = -oj+i Adz° mod /<•'-*> i = 1,... ,Sj - 1
and we can renumber the constraints so that Si > s2 > " • > sm.

Now consider the last nontrivial derived system, 7(*1_1). The one-forms {a},... ,aj:}
form a basis for this codistribution, where Si = 52 = ••• = sri. From the fact that

da{=-o{Adz0 mod^1"1),

it follows that the one-forms a},... jaj1 satisfy the Frobenius condition:

da{ Act\ A•••Aaj1 Adz° = 0

and thus, by the Frobenius theorem, we can find coordinates z\,... ,z[l such that

"«i' " dz\ '
: = A :

. «? . dzl1
+ Bdz°

We note that the matrix A must be nonsingular, since the oj's axe a basis for 7^1-1^
and they axe independent of dz°. Therefore, we can define a new basis dj as:

'51' ""J" " dz\ '
: :=A~X • =

:

A. . a? . dzl1
-r (A~1B)dzl

and we define the coordinates z?2 := (A~1B)j, so that the one-forms or} have the form

a} = dz{— z^dz0

for; = 1,... ,7*!.
By the proof of the standard Goursat theorem, all of the coordinates in the jth

tower can be found from z{ and z°, thus by the above procedure, we have effectively
found all the coordinates in the first r\ towers.

To find the coordinates for the other towers, we need to look at the lowest derived
systems in which they appeax. The coordinates for the longest towers were found
first, next we will find those for the next-longest tower(s).
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Consider the smallest integer k such that dim 7^1_Ar) > kri\ more towers will
appeax at this level. We know that a basis for /(*»-*) is

{a},... ,a£,... ,a?,... ,a?,a?+\... ,a?+"}
where af = dzf —^+i^° for j = 1,... ,ri, as found in the first step, and a{ for
j = ri + 1,... ,r2 are the one-forms we started with, which satisfy the congruences
(3) and axe adapted to the derived flag. The lengths of these towers axe sr,+i =
•••sT1+r3 = si —k+1. For notational convenience, we will define z3,^ := (z{,... ,z{)
forj = l,... ,ri.

By the Goursat congruences, we know that da{ = —oj A dz° mod 7(*1-*) for
j = ri + 1,... , 7*i + 7*2, thus the Frobenius condition

da{ Act[1+1 A•••Aa?+r2 A<fej A•••Adz\ A••♦ Adz? A•••Adz? Adz° = 0
is satisfied for j = ri + 1,... , ri -{- r2. Using the Frobenius theorem, we can find new
coordinates, 2rJ1+1,... , 2[1+r% such that

" a?+1 " " dzl1+1 ' " <**(*) "
| = A i + Bdz° + C •

<*?+r2 . dzl1+r> m .d4.
Since the congruences axe only defined up to mod /(*»-*), we can eliminate the last
group of terms (those multiplied by the matrix C) by adding in the appropriate
multiples of aj = dz\ —zj+1dz° for j = 1,... ,t*i and i = 1,... ,k. This will change
the B matrix, and we will be left with

' a[1+1 '
= A

" dzl1+1 '

5r,+r2 dzl1+r2 m
-rBdz1

Again, we note that A must be nonsingulax because the a{ 's are linearly independent
mod 7(ai-Ar) and also independent of dz°, and so we can define

dzl1+1
+ (A-1B)dz° =

' a[1+1 ' ' a?+1 "
'. := A'1 :

. "i**2 . . &i+r2

+ (A~1B)dzi
dz?+r>

We then define the coordinates z32 := (A~lB)j for j = r\ + 1,... ,t*i + r2 so that
aj = dzj —z^dz0. Again, by the standard Goursat theorem, all of the coordinates in
the towers r\ + 1,... , r\ -r r2 are now defined.

The coordinates for the rest of the towers are defined in a manner exactly analogous
to those of the second-longest tower.

If ir is not integrable, then we cannot use the Frobenius theorem to find the coor
dinates. In the special case where si > s2, that is, there is only one tower which is
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longest, it can be shown that if there exists any it which satisfies the congruences,
then there also exists an integrable tt' which also satisfies the congruences (with a
rescaling of the basis forms), see [2, 6]. However, if «i = $2, or there axe at least two
towers which are longest, this is no longer true. Thus, we need the assumption that
7r is integrable. •

If 7 can be converted to extended Goursat normal form, then the derived flag of 7
has the structure:

7= {a}, •••, •••, <-i, <, ••*, «r. •••, <L-i, <J
7^)= {a}, -.., •••, <_i, -.., of, •••, a-_i}

7<*--1>= {a}, •••, <-,m+i, ••', "J1}

7<*>-2) = {a}, a2}
J<i-D = {a}}

7<*')= {0}

where the forms in each level have been arranged to show the different "towers" which
result. The superscripts j indicate the tower to which each form belongs, and the
subscripts i index the position of the form within the jth tower. There axe Sj forms
in the jth tower. An algorithm for converting systems to extended Goursat normal
form is given in [2].

We also give another version of this theorem, which is easier to check, since it
does not require finding a basis which satisfies the congruences but only one which
is adapted to the derived flag. We also give the proof for this theorem, since only a
special case is proved in [7].

Theorem 4. Extended Goursat Normal Form [7].
A Pfaffian system I of codimension m + 1 on Rn+m+1 can be converted to Goursat
normal form if and only if there exists a one-form w such that {7^,7r} is integrable
fork = 0,... ,N-1.

Proof. The only if part is easily shown by taking n = dz° and noting that

7<*> = {dz\ - zi^dz0 : j = l,...,m;t = ib+l>...,*,-}
{7<*),?r} = {dzj,dz°: j = 1,... ,m;i = k+ 1,... ,«,-}•

which is integrable.
For the if part, assume that such a tt exists. First, we find the derived flag of the

system, 7 =: 7^ D 1^ D ••• D 1^ = {0}. We will iteratively construct a basis
which is adapted to the derived flag and which satisfies the Goursat congruences (3).

We claim that the lengths of each tower are determined from the dimensions of
the derived flag. Indeed, the longest tower of forms has length s\. If the dimension
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of 7(a'-1) is n, then there are rt towers which each have length s\\ and we have
Sl = s2 = •-- = sri. Now, if the dimension of 7**1"2) is 2t*i + r2, then there axe r2
towers with length s\ —1, and we have sri+i = ••• = sri+r2 = si —1. We find each
Sj similarly.

We note here that a tt which satisfies the conditions must be in the complement
of 7, for if 7T were in 7, then {7,7r} integrable means that 7 is integrable, and this
contradicts our assumption that 7 ismaximally nonholonomic, that is 7*N) = {0} for
some N.

Consider the last nontrivial derived system, 7<*1~1). Let {q},... ,0?} be a basis
for 7^1-1). The definition of the derived flag, specifically /<•»> = {0}, implies that

da{£0 mod7(ai"1) j = l,...,ri (4)

Also, the assumption that {I^k\ir} is integrable gives us

da{=0 mod{7^-1),7r} j = l,...,7*i (5)

combining equations (4) and (5), we have that

da{ = 7T A& mod 7<S1-1} j = 1,... , t*i (6)

for some 03 £ 0 mod 7<ai~1>.
Now, we also have from the definition of the derived flag that

da{=0 mod7(ai_2) j = l,...,ri

which combined with (6) gives us that ft3 is in l(*l~2\
Claim. /31,... ,/?ri are linearly independent mod 7^1_1).
Proof of Claim. The proof is by contradiction. Suppose there exists some combination
of the /3J,s, say

/? = &i£1 + ... + 6ri£ri =0 mod/*'1"1)
with not all of the 6/s equal to zero. Consider a = bict\ -f ♦ •• + 6riaJ!. We must
have q^O because the aj are a basis for 7^*,~1^. The exterior derivativeof a can be
found by the product rule,

ri ri

da = ^2 bjda{ +£3<% Aa{
i=i i=i

= Jtbj(*APJ) mod7('1-1)

= *A(£>/?') mod^31"1*

= 0 mod Z^"1)
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which implies that a is in I^8lK However, this contradicts our assumption that
7(a") = {0}. Thus the /?J's are linearly independent mod 7^1_1), and the claim is
proven.

Define aj := j33 for j = 1,... , t*i. Note that these basis elements satisfy the first
level of Goursat congruences, that is:

<foj = -aJA7r mod7(*1"1) j = l,...,n

Ifthe dimension of I^8l~2) isgreater than 2t*i, then choose one-forms aj1+1,... ,aj1+r2
such that that

\a1,... ,a1 ,a2,... ,a2 ,ai ,...,a1 j

is a basis for 7^1-2^.
For the induction step, we assume that we have a basis for /W,

{a},... ,aia,aj,... ,a£2,... ,aj,... ,a£e}

which satisfies the Goursat congruences up to this level:

dai = -oj+1 A7T mod/<*'-*> j = l,...,c; k= 1,... ,*,- - 1

Note we have assumed that c towers of forms have appeared in I^K Consider only
the last form in each tower that appears in /W, that is a^.^j = 1,... ,c. By the
construction of this basis (or from the Goursat congruences), we have that oj. is in
/W but is not in J<-"+1>, thus

dai.-£0 mod7(i) j = l,...,c

The assumption that {I^*\tt} is integrable assures us that

dc£.=Q mod{7<'V} j = l,...,c

thus we have that da3^ must be a multiple of 7r mod I^*\

da3k.='KAP3 mod7(i) j = l,...,c

for some f33 ^ 0 mod 1^. We also have, from the fact that aj:. is in /W and the
definition of the derived flag, that

da{.=0 mod^-"1* j = l,...,c

which implies that p3 € 7^~1^. By a similar argument to the claim above, we can
show that the /?J's are independent mod jW. We define a{.+1 = j3J\ and thus

{a},... ,aj1+i,a?,...,ajk+i,... ,<*?>•• ,<*ckc+1}
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forms part of a basis of 7^-1^. If the dimension of 7*t_1) is greater than k\+ k2 -\ \-
kc + c, then we completethe basis of 7**""1) with any linearly independent one-forms
aj+1,... ,a;+rc such that

{a1,... ,afcl+1,aj,... ,afc2+1,... ,af,... ,aje+1,aj ,... ,aj r°}

is a basis for 7^t_1).
Repeated application of this procedure will construct a basis for 7 which is not

only adapted to the derived flag, but also satisfies the Goursat congruences.
We note that by assumption, tt is integrable mod the last nontrivial derived system,

7(*i-1). Looking at the congruences (3), we see that any integrable one-form tt' which
is congruent to ir up to a scaling factor,

x' = dt = fr mod/*'1"1*

will satisfy the same set of congruences up to a rescaling of the constraint basis by
multiples of this factor /. D

4. Pfaffian Systems generated by Mobile Robots

We now consider some multi-steering mobile robot systems and show that the
Pfaffian systems generated by the constraints that the wheels roll without slipping
satisfy the extended Goursat conditions.

Example 1. Firetruck.
Consider the example of a firetruck [3]. There are two steering wheels in the system:
one at the front, for the driver, and another at the rear, for the tiller. We model

FIGURE 1. A sketch of the Firetruck, with steering wheels on the front
and back axles.

the firetruck as a Pfaffian system generated by the constraints that the three pairs of
wheels roll without slipping:
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In coordinates, the constraints can be written as:

a0 = sin(#i -j- </>i)dx0 —cos(0i + <f>i)dy0
a1 = sin $idxi —cos0\dy\
a2 = sin(02 + <f>2)dx2 —cos(02 + <l>2)dy2

Since the coordinates x0, j/o»x2,y2 are determined by a*i,yi,0i,02, we can parame
terize the state space by q = {a*i,yi,0i,02»^i»^2}« A complement to the system is
{dxi,d(f>i,d<t>2}. It can be shown that the constraints axe adapted to the derived flag,

7= {a0,a1,a2}
7<J>= {a1}
7<2> = {0}

and that the systems {7,<fa:i} and {I^l\dx\} axe integrable. By Theorem 4, the
system can be converted into extended Goursat normal form. We refer the reader
to [3, 9] for the coordinate transformation (into chained form, which is the dual of
Goursat form), and methods for steering the system.

A multi-steering trailer system was examined in [11], and it was shown how to
transform such a system into chained form (which is the dual of Goursat normal
form) using dynamic state feedback. That is, states were added to the system and
this augmented system was transformed into the dual of Goursat normal form. In this
section, we show that this augmentation is not always necessary; some configurations
of the multi-steering trailer system can be transformed into Goursat form using only
static state feedback.

We concentrate on the specific case of a 5-axle system with two steering wheels.
Assuming that the first axle is steerable, there axe four possible positions for the
second steering wheel. We examine these four cases to show the variety of results
that can be obtained from a relatively simple system configuration.

Example 2. 5-axle, 1-2 steering trailer system.
Consider the case of a 5-axle trailer system with the first two axles steerable. A
sketch of this system is shown in Figure 2. The state space is parameterized by
q = {x5,ys,05,$4,$3,$2,0iy<i>}, the x,y position of the last axle, the angle of each
hitch 0{, and the extra steering angle <f>. We note that the a;,-, y,- positions of the other
axles can be written in terms of the state variables q.

The constraints axe that each axle roll without slipping:

a* = sin Oidxi —cos 0{dyi i = 1,3,4,5

a2 = sin <j>dx2 —cos</>dy2

The Pfaffian system is 7 = {a1,a2,a3, a4,a5}, a complement to this system is given
by {d</>,d$i,dx5}, and 7 has codimension three.
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FIGURE 2. A 5-axle trailer system with the first two axles steerable.

This basis is adapted to the derived flag,

{a1, a2, a3, a4, a5}
{a3, a4, a5}

{a4, a5}
{a5}

{0}

and the congruences are. satisfied with this basis as well:

da5 = c5(q) a4 Adx& mod 7(3)
= c4(g) a3 A dx5
= c3(g) a2 A dx5
= c2(tf) d<f> A dxs
= Ci(q)d$iAdx5

7 =

7(2) =

7(3) =
7(4) =

rfa4

<fa3
da2
da1

mod 7<2>
mod 7*1*
mod 7

mod 7

15

We note here that by a simple rescaling of the basis, the functions c,(g) can be
eliminated to get the Goursat congruences (3) exactly. This is done as follows. First
define a4 := —c^(q)a4 to get da5 = —a4Adxs mod I^3\ Then, taking the derivative
of a4, we see that

da4 = —c5(q)da4 —dc$(q) Aa4
= —Cs(q)c4(q)a3 Adx5 mod 7^

since a4 is in I^2\ Defining d3 := c5(g)c4(g)a3, we have da4 = —d3 A dx5 mod I&\
The other constraints axe scaled similarly. For the rest of this paper, we will assert
that the Goursat congruences axe satisfied if we have the modified congruences

daj = cj+1 {q) ai+1 Ait mod /<•'-*> i =1,... ,Sj - 1 (.
da{ ± 0 mod 7 {()8j 7-

instead of the original congruences (3).
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Example 3. 5-axle, 1-5 steering trailer system.
Now consider the same 5-axle system as in the previous example with the first and
fifth (last) axles steerable, as sketched in Figure 3. The configuration space can be

FIGURE 3. A 5-axle trailer system with steering wheels on the first
and last axles.

parameterized by: q = {2*4,y4,05,04,03,02)0i}0}5 the x,y position of the second-to-
last axle, the angle of each hitch, and the angles of the steering wheels. As before,
the X{,yi positions of the other axles can be written in terms of the coordinates q.

The constraints are that each axle roll without slipping,

a* = sin Oidxi —cos ${dyi i = 1,2,3,4

a5 = sin </>dxs —cos <j>dys

The Pfaffian system is 7 = {a1,a2,a3,a4,a5}. A complement to this system is given
by {d<j>,d6\,dxA}\ I has codimension three. This basis is adapted to the derived flag,

7 = {a !, a2, a3, a4, a5}
/(D = {a2, a3, a4}
7(2) = {a3, a4}
7(3) = {a4}
7(4) = {0}

The congruences are satisfied with this basis as well,

da4 = c4(q) a3 AdxA mod 7(3)
da3

da2

da1

da5

= c3(q) a2 Adx4 mod 7^
= c2(q) a1 Adx4 mod 7^
= ci(?) d$i A dx mod 7
= c5(q) d<t> Adx4 mod 7
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and the Pfaffian system can be converted to extended Goursat normal form.

Example 4. 5-axle, 1-4 steering trailer system.
We now consider the 5-axle system with the first and fourth axles steerable, as
sketched in Figure 4. The configuration space can be parameterized by the xyy

FIGURE 4. A 5-axle trailer system with the first and fourth axles steerable.

position of the third axle, the hitch angles 0,-, and the steering angle of the third
axle <f>. We let q represent the state, q= {x3,t/3,05,04,03i02,0u<j>}. The other xiyy{
positions can be written in terms of q.

The constraints are that each axle rolls without slipping:

a* = sin 0{dxi —cos 0{dyi i = 1,2,3,5
a4 = sin <f>dx4 —cos <l>dy4

The Pfaffian system is thus 7 = {a1, a2, a3, a4, a5} and a complement to this system
is: {d<f>,d$i,dx3}. This basis is adapted to the the derived flag,

7= {a1, a2, a3, a4, a5}
J*1* = {a2, a3, a5}
7<2) = {a3}
7<3> = {0}

and also satisfies the Goursat congruences:

c3(fl) q2 Adxz mod 7^2^
°2{q) a1 Adx3 mod 1^
c\(q) d0\ Adxz mod 7
cs(a) q4 Adxz mod /M
C4(q) d<f) Adxz mod 7

and thus the Pfaffian system can be converted to extended Goursat normal form.

Example 5. 5-axle, 1-S steering.
The final instance of the 5-axle trailer system has the first and third axles steerable, as
sketched in Figure 5. The state space is parameterized by: q = {x5, y5,05,04,03,02, $i, <j>},

da3
da2
da1
da5
da4
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FIGURE 5. A 5-axle trailer system with the first and third axles steer
able. This is the only configuration of the 5-axle system with two
steering wheels which does not satisfy the conditions for converting to
extended Goursat normal form.

and the other a*,-, y,- can be written in terms of q.
The constraints axe that each axle roll without slipping:

a

a"

= sin Oidxi —cos 9{dyi i = 1,2,4,5

= sin <j>dx$ —cos <*Wy3

The Pfaffian system is 7 = {a1,a2,a3,a4,a5}, and a complement to the system is
given by {d<f>}d9\,dxs).

This basis is adapted to the derived flag,

7= {a\a2,
IM = {a2,
7(2) =
7(3) =

however, the congruences are not satisfied:

da5
da4

da2
da3
da1

a* a4, a5}

{a5}
{0}

a"

cs(q) a4 Adx3
c4(q) a3 Adxz
c2(q) a1 Adxz + k2(q) a1 Aa3
c3(q) d</> A dxz
c\(q) d0\ Adxz

mod 7<2>
mod 7<x>
mod 7*1*
mod 7

mod 7

In order to have {7(2),7r} integrable, we must choose tt = dx3 (mod {a4, a5}). This
will also give us {7°,7r} integrable, but {71,7r} is not integrable. Thus, this system
does not satisfy the conditions for conversion to extended Goursat normal form. We
will return to this example in the next section.

5. PROLONGATIONS

If a Pfaffian system 7 of codimension k satisfies the necessary and sufficient con
ditions for converting into extended Goursat form, then its solution trajectories axe
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determined by k arbitrary functions. However, even if a system cannot be trans
formed into Goursat form, its solution trajectories may still have this property. If so,
then we say that 7 is absolutely equivalent in the sense of Cartan to the trivial system
(the system with no constraints) on R*. Although we will not examine the concept of
absolute equivalence in its full generality, we will give some sufficient conditions for a
Pfaffian system to have a prolongation which can beconverted to Goursat form, and
thus the solution trajectories of 7 are determined by k independent functions.

A general type of prolongation which preserves a one to one correspondence be
tween solution trajectories of the original and prolonged system is a Cartan prolon
gation.

Definition 6. Cartan Prolongation.
Let 7 be a Pfaffian system on a manifold M. A system J on M x Rp is a Cartan
prolongation of 7 if :

(1) 7T*(7) C J
(2) For every solution curve c : (-e,e) —• M of 7 there exists a unique solution

curve c : (—e, e) —> M x Rp of J with n o c = c.
If 7 isequipped with a given independence condition t, then we also require that ic*t
be the independence condition for J.

A canonical way to prolong a system with independence condition dt is to take an
integrable one-form dn in the complement of 7, and augment 7 with the additional
form dn —ydt, where y is a new coordinate on R. In effect, this adds the derivative
of rj (with respect to the independence condition) as a state variable. As long as all
solution trajectories axe "smooth enough" (we will assume C°°), there will be a one-
one correspondence between solution trajectories of the original and the prolonged
system.

We consider a special type of Cartan prolongation which consists of many of these
canonical prolongations.

Definition 7. Prolongation by differentiation.
Let 7 be a Pfaffian system of codimension m -f 1 on Rn+m+1 with coordinates (z, u, t)
for which dt is an independencecondition and {rf«i,... ,dvm, dt] forms a complement.
Let 6i,... ,6m be nonnegative integers and let b denote their sum. The system 7
augmented by

dv\ —v\dt, ... , dvl1'1 —v\xdt,
dv2 —v\dt, ... , dv%~x —v%*dt

dvm - v^dt, ... , ... , dv*™-1 - vfrdt,

is called a prolongation by differentiation of 7. The augmented system is defined on
]j*> n+m+6+l ^
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We note here that since the original system and independence condition corre
sponded to a set of first order ordinary differential equations, the prolonged system
has the same independence condition and also corresponds to a set of first order
ordinary differential equations.

We can now give sufficient conditions for a Pfaffian system to have a prolongation
which is equivalent to extended Goursat form.

Theorem 5. Conversion to Goursat form using prolongation by differen
tiation.

Consider a Pfaffian system I = {a1,... ,an} on Rn+m+1 with independence con
dition dz° and complement {dvi,... ,dvmidz0}. If there exists a list of integers
bi-,. •• , bm such that the prolonged system

I = { a1,'... ,an,<foi - v\dz°,... .duj1"1 - v^dz0,
...,dvm- vlmdz°,... ,dv^-1 - vtdz0}

satisfies the condition that {I^k\dz0} is integrable for all k, then I can be transformed
to extended Goursat normal form using a prolongation by differentiation.

Proof. The proof is by application of Theorem 4 to the prolonged system 7. •

Although this is a very specific form of prolongation of a Pfaffian system, and the
conditions ofthe theorem must bechecked ina specific coordinate system witha given
independence condition, there do exist practical systems which can be converted into
extended Goursat form using this type of prolongation.

Example 6. 5-axle, 1-3 steering, revisited.
We return to the 5-axle trailer system with the first and third axles steerable, which
did not satisfy the conditions for conversion to extended Goursat form.

Recall that the derived flag was of the form:

7 = {a1, a2, a3, a4, a5}
7*1) = {a2, a4, a5}
7<2> = {a5}
7<3> = {0}

but that the congruences were not satisfied:

da5 = c6(q) a4 Adx3 mod 7^2^
da4 = c4(q) a3 Adx3 mod jW
da2 = c2(q) a1 Adx3 + k2(q) a1 Aa3 mod /W
da3 = c3(q) d<j> Adx3 mod 7
da1 = ci(g) d$i Adx3 mod 7

We can look at the equations for the exterior derivatives of the constraints to see
if after prolongation, the augmented Pfaffian system will satisfy the conditions for
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conversion to extended Goursat form. We see that tt = dx& will give us {I^2\tt}
integrable. However, {I^\dxs} is not integrable since da2 has a term k2(q) a1 Aa3.
If either a1 or a3 could be added to I^\ that term would no longer cause a problem.
We note that if a1 were added to fll\ then da2 = 0 mod 7^ and we will still have
the same problem,except now with 7^2^. If we cansomehow add a3 to I^\ it appears
that the conditions of Theorem 4 will be satisfied (the only thing remaining to be
checked is that da3 = 0 mod or2, a3,a4,a5,(fa's.)

We prolong 7 by differentiation, and augment it by the additional form u = d<f> —
vdx3. The derived flag of the augmented system is:

7 = {a1, a2, w, a3, a4, a5}
7(J) = {a2, a3, a4, a5}
7<2> = {a4, a5}
7<3> = {a5}
7<4) = {0}

and the systems {I^k\dx3} are integrable for all k, as can be seen from looking at
the Goursat congruences,

da5 = c5(q) a4 Adx3 mod 7^
da4 = c4(q) a3 Adx3 mod 1^
da3 = c3(q) dw Adx3 mod H1)
dw = Cu,(q) dv A dx3 mod 7

da2 = c2(q) a1 Adx3 mod /M
da1 = Ci(<j) d9\ A dx3 mod 7

Thus, the prolonged system 7 can be converted into extended Goursat normal form.
This extension is shown in [11], as are methods for steering this type of system.

6. CONTROL SYSTEMS

As we mentioned in the introduction, control systems are a special type of Pfaffian
system, and therefore all of the results presented thus fax can be specialized to control
systems. Most of the previous work analyzing nonlinear control systems has been
from the vector field point of view, taking a system x = f(x) -H <7i(a*)ui H gm(x)um,
and looking at properties of the vector fields /,#. The Pfaffian systems formulation
is the dual of this.

Definition 8. Control System.
A control system x = f(x, u) with the state x € Rn, the input u € Rm, and the
derivative of the state taken with respect to time t 6 R, generates a Pfaffian system
7 on Rn+m+1

7 = {dxi - /'(a:,u)dt: i = 1,... ,n} (8)
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with complement {eh*i,... ,dumidt}. The natural independence condition to choose
is dt, since we want dt ^ 0 along all solution trajectories of the system.

Any Pfaffian system 7 of codimension m + 1 on Rn+m+1 with coordinates (a*,u,i)
can be called a control system if it has a set of generators of the form (8).

Brunovsky showed that any controllable linear system x = Ax + Bu with x € Rn,
it € Rm can be converted to a "canonical" form given by

x\ =lii
a*2 = 3*i

x2 = u2
2*2 = 2*i

x? = um
JUtn — _to
j?2 — ^i

: :

»m Arm—1
»

r2 - r?xfc2 — xk2-l
4, = 4,--i

(9)

with n = ki + ••• + km. A control system is said to be linearizable if and only
if it can be converted to Brunovsky form using a nonlinear coordinate change and
state feedback. Since Brunovsky linear form for a control system is a special case
of extended Goursat normal form (2) with dz° = dt and z\1+1 = Wj, the theorems
for transforming to Goursat form can be specialized to give conditions for exact
linearization.

Theorem 6. Exact Linearization [5].
If a control system I defined onRn+m+1 has a set ofgenerators {a\ : j = 1,... ,m; %: =

1,... , Sj] such that for all j,

dc4 = -aj+i Adt mod 7^"*) i = 1,... ,Sj - 1 , m
da{. ik 0 mod 7 ^

then there exists a set of coordinates z such that I is in Brunovsky normal form,

I = {dt? - zi+1dt :j = l,... ,m;z = l,... ,Sj}.
An algorithm for converting systems to Brunovsky normal form is also given in [5],

and it is shown that if the control system is time-invariant and affine in the inputs,
then the resulting feedback transformation is also autonomous and input-affine.

The control systems version of Theorem 4 is given by

Theorem 7. Exact Linearization [8].
A control system I can be converted to linear form if and only if{I^k\ dt} is integrable

for every k.

By way of example, we examine a control system which is not linearizable but can
be converted to Goursat normal form. The transformation scales time by a function
of one of the states.
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Example 7. Goursat normal form for a control system.
Consider the single-input control system [4],

Xi = x2 + x32
x2 = £3

x3 = u

This control system generates a Pfaffian system,

7 = {dxi - (x2 + x32)dt, dx2 - x3dt, dx3 - udt} (11)

7 is of codimension two on R5 with coordinates (a*,u,<). The derived flag of 7 is

7={a\a2,a3}

lW={a\a2}
7<2>={a1}

7<3> ={0}

where the one-forms adapted to the derived flag axe given by

a1 = dx\ —2x3dx2 -f (x32 —x2)dt
a2 = dx2 —x3dt
a3 = dx3 —udt

Note that this is not the basis of (11) which generated 7. Since {I^2\dt} is not
integrable, the system is not feedback linearizable by Theorem 7.

We find however that the Goursat congruences (1) are satisfied, for tt = dr =
dt —2dx3:

da1 = a2 A dr
da2 = c(u) a3 Adr
da3 = c(u) du Adr mod a3

Thus, there does exist a transformation $(a:,u,<) = (z, v,r) to Goursat normal form,
which is given by

T = t-2x3
u

V

l-2w
Z\ = x3

z2 = x2 — x3

zz = X\ —2x2 2 3
3X3
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and it is easily checked that

dz\

dr = "
dz2

* " Zl
dz3

IF " *»
This formulation of the system makes it simple to analyze the possible trajectories
of the system in state/time space. Also, a controller could be designed using linear
techniques which would be valid in certain regions of the state space.

Converting control systems to Goursat normal form may not be the most useful
thing to do. However, linearizing control system using dynamic extension isa problem
that has been studied extensively. A dynamic extension of a control system is an
augmented system with integrators added to the inputs; for example, a simple first-
order dynamic extension is given by:

x = /(x,w)

uk = v

where an integrator is added to the kth input channel.
The prolongation by differentiation which we defined in Section 5 is exactly the

dual of dynamic extension in the language of forms. Thus, we have the control
systems version of Theorem 5:

Theorem 8. Linearization by dynamic extension.
Consider a control system I on Rn+m+1 with coordinates (x,u,t), independence con
dition dt, and complement {dui,... ,dum,<ft}. If there exists a prolongation by dif
ferentiation of dimension b = b\ H \-bm such that the augmented system

I = { a* = dx{ —/*(x, u)dt: i = 1,... ,n;
# = duj"1 - ti)<tt : j = l,... ,m;fc = 0,... ,&,-}

on Rn+m+6+1 satisfies the condition {Hk\dt} is integrable for every k, then the orig
inal system I is linearizable by dynamic extension.

Proof. Apply Theorem 7 to the extended system 7. •

This theorem is similar to the one stated by Charlet, Levine, and Marino [4] which
also gave sufficient conditions for linearizing systems by dynamic extension. Their
conditions also relied on the existence of some integers 6; which axe the number of
integrators added to the ith input channel. However, the existence of a dynamic
extension of order 6 = (&i,... ,6m) which is linearizable does not imply that the
conditions of their theorem axe satisfied for that 6; whereas if there exists a dynamic
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extension of order b = (61,... , 6m) which can be linearized, our conditions will always
be satisfied for that 6.

We present a simple example to show how the theorem can be applied to linearize
control systems using dynamic extension.

Example 8. A control system satisfying the conditions of Theorem 8 but
not the conditions of [4].
Consider a 4-state, 2-input control system:

X\ = x2 + x3u2

X2 = X3 -f X\U2

x3 = «i + x2u2

X4 — u2

The corresponding Pfaffian system on R7 is

7 = {dxi —(x2 + x3u2)dt, dx2 —(x3 + x\U2)dt, dx3 —(u\ + x2u2)dt, dx4 —u2dt}
(12)

with independence condition dt and complement {dui,du2ldt}. The derived flag has
the form:

7= {a\ a2, a3, a4}
7<J)= {a\ a4}
7<2>= {0}

The one-forms a* which are adapted to the derived flag are not the same as those of
(12) which generated 7,

a = dx\ —x2dt

a2 = dx2 —(x3 + x\u2)dt
a3 = dx3 —(tti + x2u2)dt
a = dx4 + x3dx2 —x3dt

The structure equations are fairly simple to find,

da1 = -a2Adt

da2 = —x\du2 A dt
da3 = —dui Adt —x2du2 Adt
da4 = —a2 Aa3 + (2:3 + x\u2 —\)a3 Adt —(x2u2 + ui)a2 Adt

and we note that {I^\dt} is not integrable, thus the system is not linearizable by
static state feedback.

Now consider a prolongation by differentiation of 7 on R10,
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with the additional one-forms

ft1 = du2 —vdt
ft2 = dv—wdt
03 = dw-zdt

and additional coordinates v,w,z. A complement to 7 is {dui,dz, dt}. The derived
flag of the extended system has the form

7 = {«\ u;2, a;3, a;4, /91, )52, 03}
/<!> = {u\ u2, u>\ fi\ /32}
/(2) = W\ w4, ^}
/(3) = V}
/(4) = {0}

where the one-forms adapted to the derived flag axe

LJ1 = dx\ —u2dx2 -f \u2 X\ —x2)dt

u,2 = dx2 —(u2X\ -\- x3)dt
u,3 = dx3 —(u\ + u2x2)dt

LJ4 = dx4 —u2dt

The structure equations are

dw1 = (-1 -|- u3 + v) u>2 A<f< mod 7(2)
dw2 = -u3Adt mod7(1)

dw3 = —du\ A dt mod 7

dw4 = -P Adt
dp1 = -P2 Adt
d/32 = -P3 Adt
dp3 = —dz A dt

from which it is easily seen that each {/(•), dt} is integrable, hence the prolonged
system 7 can be feedback linearized.

We note that although this example can be linearized by dynamic extension, it is
shown in [4] that it does not satisfy the sufficient conditions given in that paper.

Remark 2. Dynamic State Feedback.
We have shown that a prolongation by differentiation of a control system corresponds
to a dynamic extension. A general dynamic state feedback corresponds to adding
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some states to the system and putting feedback around them, such as

x = f(x,u)
z = g(x,z,v)
u = p(x,z,v)

This general form does not correspond to a Cartan prolongation, since there may
not be a one-one correspondence between trajectories of the extended system and
trajectories of the original system. This is especially obvious if the added z states
have their own dynamics, independent of x, such as in the example due to [12]

x = f(x,u)

z\ = z2

z2 — —Z\

u = P(z)v.

where harmonics are added in the dynamic state feedback. This example corresponds
to a prolongation of the original system, but not a Cartan prolongation, since there
are many possible trajectories in (x, z) space for every trajectory in x, depending on
the initial conditions of the z coordinates.

7. CONCLUSIONS

In this paper, we presented the method of exterior differential systems for analyzing
nonlinear systems. We have given necessary and sufficient conditions for converting
Pfaffian systems to Goursat normal form, and we contributed sufficient conditions for
converting systems to Goursat form using prolongations. In addition, we showedhow
the techniques that we described for general Pfaffian systems could be specialized to
control systems, and the conditions for exactly linearizing systems could be restated
in the language of forms. Since dynamic extension is the dual of prolongation by
differentiation, our theorem for converting Pfaffian systems to Goursat form using
prolongation could be specialized to give conditions for converting control systems to
Brunovsky form using dynamic extension and nonlinear feedback. We showed that
these conditions are closer to necessary and sufficient than those which exist in the
literature.

Future directions of research include investigating other types of prolongation be
sides prolongation by differentiation as well as algorithms for systematically prolong
ing Pfaffian systems to achieve equivalence to Goursat forms.
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