
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



MOMENT MATCHING MODEL OF TRANSMISSION

LINES AND APPLICATION TO INTERCONNECT

DELAY ESTIMATION

by

Qingjian Yu and Ernest S. Kuh

Memorandum No. UCB/ERL M94/20

29 January 1994



MOMENT MATCHING MODEL OF TRANSMISSION

LINES AND APPLICATION TO INTERCONNECT

DELAY ESTIMATION

by

Qingjian Yu and Ernest S. Kuh

Memorandum No. UCB/ERL M94/20

29 January 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California,Berkeley

94720



Moment Matching Model of Transmission Lines

and Application to Interconnect Delay

Estimation

Qingjian Yu *and Ernest S.Kuh

Electronics Research Lab, U.C.Berkeley

January 29, 1994

Abstract

In this paper, wepresent a method to estimate the signal delayin the intercon

nection modeled as a general resistor-transmission line-capacitor (R-T-C) network.

The estimation is based on the propagation delay of the transmission lines and the

moment matching techniques. We analyze the contribution of a transmission line

to the moments of the network and provide a method to form a lumped moment

matching model of the line. When the transmission lines axe replaced by their

p-th order moment matching models, the network is transformed into a lumped

R-L-C network such that these twonetworks have exactly the same moments up

to the order of p for each corresponding output node voltage . We also provide

a recursive formula to compute the moments of the R-L-C network so that the

moment matching techniques can be efficiently used in the delay estimation.

1 Introduction

In high speed electronic circuits, the delay due to interconnects is comparable to that

oftransistors and will be the dominant part of the entire system delay before long. A

*On leavefrom Nanjing University of Science and Technology



simple and accurate delay model for interconnects is essential to the design of VLSI

systems.

The interconnects of a VLSI system on different level are modeled differently. The

wires on a chip , on a printed circuit board and on an MCM are usually modeled as

lumped RC lines, lossless transmission lines and lossy transmission lines, respectively

[1]. It is expected that the volume of the products of MCM's will grow very rapidly,

so that a good delay model for the interconnects in MCM^s is in urgent need by the

designers.

The model of interconnects on one layer of an MCM is made of floating resistors,

grounded capacitors and lossy trainsmission lines. We now consider the case that the

coupling among the transmission lines on the same layer and on the neighbouring

layers is negligible,each transmission line consists of a floating wire and a ground wire

and whose conductance per unit length is zero. Such a network is called an resistor-

transmission line-capacitor network, or an R-T-C network for abbreviation. In most

practical cases, the resistors and the floating wires of the transmission lines form a tree

, the capacitors are connected between the nodes on the tree and the ground, and the

input to the network is a voltage source connected between the root of the tree and the

ground. Such a network is called an R-T-C tree. In some cases, there are loops among

the resistors and the folating wires of the transmission lines. In this case, it is called

an R-T-C mesh. R-T-C trees and meshes are called R-T-C networks or transmission

line networks in this paper.

Many papers dealing with the analysis of transmission line networks have been pub

lished in recent years [2-8], and most of them provide time-domain simulation mthods

for such networks. However, It is time consuming to estimate signal delay based on a

time-domain simulation during the design process especially when an optimal design

of interconnects is needed. A more efficient way to do delay estimation is to use the

moment matching technique. After computaion of the moments of an output signal,

the waveform of the signal can be approximated by using the moment matching tech

nique and the delay can be estimated. The first moment of a node voltage is called

its Elmore delay and is a good estimation of its signal delay when its waveform is

monotonic or nearly monotonic. The formula of Elmore delay of RC tree and mesh



networks is well known [9,10] and is widely used in the optimal design of interconnects

[12, 13]. However, there is no known simple formula for the Elmore delay of transmis

sion line networks, not mentioning to those of higher order moments, which are needed

for the dealy estimation when waveforms are nonmonotonic due to the reflection at the

terminals of the transmssion lines.

In this paper, we study the computation of the Elmore delay and higher order

moments of the node voltages of an R-T-C network. We first model a transmission

line by n uniform sections of RLC network and transfer the R-T-C network into an

R-L-C network. We provide simple formulas to compute the Elmore delay and higher

order moments of the R-L-C networks. We let n —» oo to evaluate the contribution

of a transmission line to the moments exactly. From the analytical results, we form a

lumped moment matching model with a flnite number of sections for the transmission

line. When transmission hnes in an R-T-C network T is replaced by their p-th order

moment matching models, a p-th order moment matching R-L-C network f is formed

such that the moments of the node voltages in T are exactly the same as those of

the corresponding node voltages in T up to the order of p and the computation of

the moments can be implemented by using the lumped R-L-C network. The delay

estimation is then done by the computation of the propagation delay of the transmission

lines and the rising delay based on the moment matching techniques.

We derive all the formulas from a t3rpical transient process: the network is initially

in zero-state and excited by a unit step voltage source. The results are the same in

another typical transient process: the network is initially in an equilibrium state with

all the capacitor voltages having the same value, all the branch currents equal to zero

and the input terminal is connected to ground at t = 0.

This paper is organized as follows. In Sec.2, we review the definition of moments in

both frequency and time domains. In Sec.3, we present a formula to compute Elmore

delay in an R-T-C tree and an R-T-C mesh and provide simple first order moment

matching models of a transmission line. In Sec.4, we provide a simple recursive formula

to compute higher order moments of all the voltages in an R-L-C tree with Hnear time

complexity and a general recursive formula for an R-T-C mesh. In Sec.5, we analyze

the contribution of a line to the moments and present a p-th order moment matching



model of a transmission line. In Sec.6,we provide a delay model of the R-T-C network.

The comparisons between our method with other methods are givien in Sec.7.

2 Basic concept of moments

In this section, wereview the definition ofmoments for the usein the following sections.

Let Vin(t) be the input voltage ofa linear network, v,(<) beoneofits output voltages,

and Vi(s) be the Laplace transform of«,„(<) and respectively; then, Hi(s) =

1^(5)/V^n(5) is the transfer function and h,(t) = is the impulse response.

Expand Hi{s) in Taylor series in terms of s, we have

= + (1)
j=i J'

and the j-th moment of hi{t) {j > 0) is defined as

m{ = (2)

where = d^H{s)/ds^ |,=o- From this definition, we have

Hi(s) = = m? - mjs + - mfs® + ... (3)
i=o

When is a zero-state unit-step response, h,(t) = v,(t), and ^fi(5) = Vi(t)e~'*dt.

Expand e"'* into Taylor series of s.

J21 (—IP . foo .

= (4)
r- Jo

and we have

1

Eqs. (2) and (5) are two equivalent definitions for the moments: one from frequency

domain, and the other from time domain. When dealing with R-T-C trees, we use the

definition from time domain; and when dealing with R-T-C meshes, we use the one

from frequency domain. Although an R-T-C tree is a special case of an R-T-C mesh

and the methods and algorithms for R-T-C meshes are more general thein those for

R-T-C trees, the analysis is simpler and clearer in concept and the algorithms are more



efficient for the trees than for the meshes. Therefore, our discussion will follow the

order of tree first and mesh next.

3 Elmore delay in R-T-C network

3.1 Elmore delay in R-T-C tree

In this section, we first talk about the Elmore delay in an R-L-C tree formed by

replacing each transmission line with a large number of uniform RLC 2-ports, then

present a simple Elmore delay model for a transmission line from which a first moment

matching R-L-C tree can be formed to evaluate the Elmore delay of the original tree

exactly and efficiently.

3.1.1 Elmore delay in R-L-C tree

Def.l

An R-L-C tree is a special kind of RLC network, where the resistors and inductors

are floating from the ground and form a tree, the capacitors are connected between the

nodes on the tree and the ground, and the input voltage source is connected between

the root of the tree and the ground.

For simplicity, the root of an R-L-C tree T is named r, and the other non-grounded

nodes are numbered from 1 to nj- consecutively. Let P,- be the path from root r to node

i, and A(i) = {j\j 6 P{i)^j ^ 0 be the set of ancestors of node i. The nearest ancestor

to node i is called its father and is denoted by z, and node i is called a son node of node

1. Because of the tree structure, each non-root node has a father, and may haveseveral

sons. The set of son nodes of node i is denoted by 5(z). We designate node 1 to be the

only one son node of the root, as if there are many son nodes of node r, the tree can

be decomposed to some trees without interaction. Let D(i) = {j\i G A(j)} and D(i)

is defined as the set of descendents of node i. We denote D(i) = D{i)U{«}' Let Ck be

the capacitance connected to node k, Rk and Lk be the resistance and inductance of

the branch between node k and k, and ik be the current flowing from node k to node

k. Then, from KCL, it is known that



«t= E (6)

For any pair of nodes i and k, let Pit = P, fl Pk be the common part of Pi and Pk

and Rik and Lik be the total resistance and inductance on path P,-fc. The component

of the voltage drop from node r to node i contributed by the capacitance current CkVk

is RikCkVk 4* LikCkVki and the voltage drop from the root r to node i is

+ LikOkVk) (7)
k

where the sum is taken over all the nodes from 1 to nj.

The Elmore delay of node voltage v,- is defined as its first moment, i.e.,

Toi = / tvidt = f (1 —Vi)dt (8)
Jo Jo

Note that Ur = 1 when f > 0. Substituting Eq.(7) to Eq.(8), we have

7b, = "^(RikCkivkioo) - Vifc(O)) + 5I(I,fcC4(t;jt(oo) - Vfc(O)) (9)
k k

According to the assumption that the circuit is in zero-initial state, so Vik(O) = 0

Vfc. When t —> oo, Vit —» 1 and Vk 0. For any node ^ 1, as ujfc, and vj of any of

its son node j and the inductance currents are all zero at t=0, so the current CkVk—0

at t=0. For node 1, if I«i = 0, then Ln = Li = 0 and the term If,iVi(0) = 0; and if

Li ^ 0, then from the initial zero state assumption, the current in is initially zero

and so vi(0) = 0. Therefore, we have

7b," = 5^P,"fcC'jb (10)
k

Remarks.

1. The Elmore delay ofan R-L-C tree T is the sameas that of an RC tree f obtained

by shorting all the inductances in T; i.e., the inductance plays no role in Elmore

delay. The physical meaning of this result can be explained roughly as follows.

Consider u,- of an R-L-C tree T and the corresponding Vi in the RC tree T. The

voltages of the inductances on path Pi contribute to the voltage drop Vr —v,.



Whent 0 the currents through these inductances go up, the voltages on these

inductances are positive which make v,(<) < v,(<). When < —> oo, the cmrrents

through these inductances go down and their voltages become negative, which

make v,(<) > As Elmore delay can be regarded as an average of the signal

delay, these two opposite factors compensate each other and the inductances do

not have any effects on it.

2. The contribution of each capacitance Ck to Toi is i2,jfcCfc(vt{oo) —Vifc(O)) =^^0^,

i.e., the waveform of Vk has no effect on Toi-

3. If the R-L-C tree is initially in equilibriumstate with all the node voltagesequal to

1 and all the currents equal to 0 and the input node r is connected to ground, then

the Elmore delay of this discharging process is the same as expressed in Eq.(lO).

4. In the interconnects of printed circuit boards, in order to match the transmission

lines with their loads, some resistors may be connected between the flaoting RL

tree and the ground. The moment computation of such networks is described in

Appendix F.

3.1.2 Elmore delay model of transmission line

Now we consider the Elmore delay Txj,- of Vi in an R-T-C tree. For a transmission

line TL with total resistance /?, inductance L and capacitance C, let its two floating

terminals be and <2 and let ti be an ancestor node of <2 when TL is embedded in an

R-T-C tree. We first model it by n sections of F- typed two port as shown in Fig.l,

designate the internal nodes to be 1,2,..., n —1 , <2 = n and let LL = {1,2,..., n}.

The contribution of such a line to T^i is as follows.

1. Case 1. Ti is not on path Pi. In this case, R has no contribution to and the

contribution of the capacitances is RikC\ -H RikC2 + ... -I- RikCn = RikC., i.e., the

transmission line acts as a lumped capacitance C.

2. Case 2. TX is on path Pi. In this case, for any k such that TL is on P,fc, R

is a part of Rik- For any Cj connected to the subtree rooted at node *2, the

R plays a role as a lumped resistance. Now consider the contribution of the



capacitances in the model of the transmission line. Their contribution to Td%

becomes r = 'EkeiiRikCk with Rik = Rtiti + kR/n, so that

T= E (Rhu + =Ri,i,C +^RC (11)
k€LL n n 2n

and T —* Ri^tiC + ~ when n —» oo. It can be seen from this formula that t

consists of two parts. For the first part TL acts as a lumped capacitance

C, and for the second part i2C/2, it acts as a lumped resistance R connected

between nodes ti and t2 and a capacitance connected at node ^2*

Based on the above discussion, for Elmore delay in an R-T-C tree T, a transmission

line with parameters and C can be modeled as a simple 11 -t)rped RC 2-port

shown in Fig.2a or a T-typed RC 2-port shown in Fig.2b. Such a model is called the

Elmore delay model or first-order moment matching model of the transmission line.

By replacing each transmission line with its 1-st order moment matching model, an

R-L-C tree is formed so that their corresponding node voltages have the same 1-st

order moment as those of the original tree T. Such an R-L-C tree f is called a 1-st

order moment matching tree of the original R-T-C tree T. Thus, the Elmore delay

computation is performed by using T with an order of computation time 0(n) as will

be described in the next section.

3.2 Elmore delay in R-T-C mesh

In this subsection, we generalize the results for an R-T-C tree to an R-T-C mesh. In

contrast to the method used in the previous subsection, here we will start from the

definition of moments in frequency domain rather than in time domain as we will not

have the simple formula like Eq. (7).

3.2.1 Elmore delay in an R-L-C mesh

Def.2

An R-L-C mesh is another special kind of RLC network. The resistors and induc

tors are floating from the ground and form a mesh (i.e., there are loops among these

8



elements), the capacitors are connected between the nodes in the mesh and the ground,

and the input voltage source is connected between a node on the mesh and the ground.

As in the case of an R-L-C tree, let r be the source node. We denote N as the

floating RL network with tin nodes connected to capacitors as its terminals and r as

its reference terminal. Thus, TV is an n;sr + 1-terminal RL network. Suppose its open

circuit impedance matrix is Z(s) = [Z,jfc(s)]. When N is connected to the capacitors

and the voltage source, the input current entering node k is —For each node

K(s) - V,(s) = Zik{s)sCMs) (12)
k

and the transfer function JV,(s) = Vf(5)/K.(s) becomes

Hi(s) = 1- E Zik{s)sCkHk(s) (13)
k

Expanding Zik(s) and Hk(s) into Taylor series:

Zit(s) =Z;,{0) +f |.=o (14)

and

Hk{s) = Hk{0) + (15)
i=i

from the above three equations, it can be seen that

Tm = mj = £ Zit(0)CtHt(0) (16)
k

Note that when s = 0, TV becomes a resistive +1-terminal networkwith open circuit

matrix R = [i2,vfc]. Therefore, Z,jt(0) = R,*.. As N is a connected network, each element

of R is finite. Also,

Therefore, we have

(18)
k



Eq. (18) is the same as Eq. (10). However, now cannot be computed simply as

in the case of an R-L-C tree, and it takes O(n^) time to compute all the RikS in the

general case. Also, it is worth mentioning that formula (18) is the sameas in RC mesh

case.

Remark.

Sometimes, therearefloating capacitors in network N used as accelarate capacitors;

meanwhile, there is at least one dc path from the source node to each other node in

N. In this case, the open circuit resistance matrix R exists and Eq.(18) is still valid.

3.2.2 Elmore delay model of transmission line for R-T-C mesh

In this subsection, we will prove that the Elmore delay models for a transmission line

derived in Sec.3.1.2 for R-T-C trees are also valid for R-T-C meshes.

As in the case of an R-T-C tree, we first consider the contribution of a transmission

line TL to the Elmore delay 7/j,- in an R-T-C mesh. From the definition of Rik it is

known that for any pair of (i, k) such that they are not internal in the transmission

line rif, the contribution of TX to Rik is determined by its total resistance. Therefore,

when TL is replaced byits Elmore delay model, all such Rik^s remain unchanged. Now

we consider the contribution of the capacitance of TL to Tdi- There are two cases as

follows.

1. Case 1. TL is & cut of N.

In this case, when TL is removed (open circuited) from iVT, N is divided into 2

separate parts Ni and N2. We assume that node r and node ti axe in Ni and node

<2 is in 1^2. In the case that node i is in Ni , for a node k 6 LL Rik = Rui and the

total contribution of the line to Toi is ^keLL^kCk = Riti —RitiC.

Therefore, TL acts as a lumped capacitance C. In the case that node i is in 7^2,

for each node k € LL, let Rk = kR/n, then it is easy to show that

Rik = Rtiti + Rk (19)

(See Appendix A.l for the proof). Therefore, the contribution of the fine to Toi

by the paxt of J2k£LL RikCk is

10



ECi?.... + =K„c +^RC (20)
fcTj n n Zn

which becomes RtitiC + ^RC when n —» oo. This situation is the same as Case

2 of an R-T-C tree. As each transmission line in an R-T-C tree forms a cut

for the network TV, and it can easily be understood that the model applied to a

transmission line in an R-T-C tree can be applied to a cut transmission line in an

R-T-C mesh, too.

2. Case 2. TL is not a cut of N

In this case, in order to evaluate the contribution of the line to To,, we derive a

formula relating Rui, Rita for the k-th internal node of the transmission

line model k G LL. Let Rk = kR/n and Rk = (n —k)Rln be the total resistance

of the model between nodes <i, k and k, <2 and TV be the remaining part of TV as

shown in Fig.3. As the branch made of R and R do not form a cut in network TV,

TV is connected and its open circuit resistance matrix R = [Rik] exists. Then, we

have the following lemma for Rik-

Lemma 1.

Rik = Ai(T) + Bi(i)Rk = ^2(1) + B2{i)Rk (21)

Let Rg = Rtxh "^Rtata^^Rtitai then Ai{i) = Rit^ ^\^{Rit^ —Rit^){Rt^tl +

•^)» -^1(0 —{^it2~ R)y A2{i) = Rit^-\-{Riti —Rit2){Rt2t2 ~Rtita)/{Ra
R), and B2(t) = (Riti-Rit^j/lRg-t-R) (SeeAppendixA.2for the proof). Note that

the coefficients Ai(i), Bi(z), A2(i) and ^2(2) are independent of node k. In the

case Rk = 0, Rik = Ritx = >li(0 and in the case that Rk = 0, Rik = Rita —^2(«)-

Therefore, we have

Rik = Riti + Bi{i)Rk = Rita d" ^2{})Rk (22)

Prom Lemma 1 it can be seen that the contribution of the line to Toi by the part

of Hk^LL RikCk is

+ kB,(t)-)- = Ru,C + (i)RC (23)
ibsl ^ ^

11



which becomes Rn^C + ^B\{i)RC when n —» oo. Also, the contribution can be

expressed by iJitjC + ^B2{i)RC. Now consider the case that the transmission

line is replaced by its Elmore delay model. By applying Lemma. 1, it be seen

that when the Il-tjrped model shown in Fig.2a is used, the contribution becomes

RitiCl2 + (Riti + B\{i)R)Cl2 = RnxC + \B\(i)RC\and when the T-typed model

shown in Fig.2b is used, it becomes + Bi(i)Rl2)C = Rn^C + \Bi(i)RC,

We can also prove that the contribution by either the model can be expressed as

RitiC 4- ^B2{i)RC. This proves that the models shown in Fig.2 are also valid for

the use in R-T-C meshes .

4 Computation of higher order moments

4.1 R-L-C tree case

In this section, we extend our method of moment computation from the 1-st order

to a higher order. The method for the computation of mf for a node voltage u,- on

an R-L-C tree T is based on Theorem 1 with the proof shown in Appendix A.3.

Theorem 1.

The p-th order moment of node voltage u,- can be expressed aa

= ^(RikCkml'^ - LikCkml~^) (24)
k

where for any k, and are defined as 1 and 0, respectively.

Theorem 1 suggests a recursive formula to compute the moments from order 1

to an order p successively. From Eq. (24) we derive a formula relating the p-th

order moment of a node k with the p-th order moment of its father node Ic as

described in Theorem 2. Theorem 2 is useful not only in the derivation of a linear

time complexity algorithm for the computation of all the p-th order moments of

an R-L-C tree, but also in the derivation of a p-th order moment matching model

as will be shown in the next section.

12



Theorem 2.

Let Iz be the father node of node Rk and Lk be the resistance and inductance

of branch (j^, k) and C^k =

171^ = rUj + Rk^Xk^ —̂k^Tk^

The proof is shown in Appendix A.4.

From Theorem 2, we suggest a recursive algorithm to compute the p-th moments

of edl node voltages on an R-L-C tree with linear time complexity 0(n), The

algorithm is similar to that given in [15] and consists of 2 recursive processes:

findCxik^p) used to find the from the leaves upwards to the root and

moTnent(kyp) used to find the moments from the root of the tree downwards

to its leaves, which are described as follows.

Algorithm 1: findCx

findCx(k,p)

{ = mjCt;

if k is not a leaf node

for each node j G S{k) do

^rjb+ = findCx(j,p)\

record Cjk and return }

}

Algorithm 2: momeni(kyp)

moment(kyp)

{ifk is the root

mj = 0;

else

= rrij + RkCxk ~ ^kCxk '̂i

13



record mj;

if k is not a leaf

for each j € S(k) do

moment(j,p);

return; }

}

4.2 R-L-C mesh case

In the caseof an R-T-C mesh, from Eqs.(13), (14), (15) and (2), wehave

Theorem 3. The p-th moment of node voltage v,- in an R-L-C mesh ran be ex

pressed as

»"? =E E =E^ E (26)
k j=0 J' jszO J' k

where = d^Zik(s)lds' |,=o-

This is a recursive formula for the p —th moment mf which is based on all of the

moments from order 0 to order p —1. If we denote by L,it, then for p = 2,

Eq.(26) becomes the same as Eq.(24). In the general case, for p > 2, Eq.(24) for

an R-L-C tree is simpler than Eq.(26) for an R-L-C mesh . This is because in the

tree case Zik(s) = Rik + and Rff. = 0 for j > 1.

To use formula (26) , weneed to compute the derivatives = d^Z(s)lds^ |,=o of

the matrix Z(s), which can be done recursively as follows. Let yn(5) be the nodal

admittance matrix of network N with node r takoi as a reference, then y„Z = /,

where J is an n x n unit matrix. Differentiate both side of the above equation

w.r.t. s, we have Y^Z + YnZ^ = 0, so that

= -ZY^Z l.=o= -RY^ |.=o R (27)

In the general case, we have the following formula to compute the k-th derivative

of Z(s):

14



k-l

= ^Z(s)lda'' |.=o= -R Y.CiY^-'R> (28)
i=o

where CjJ = k\lj\{k —j)\.

5 Moment matching model of RXiC tr£msmis-

sion line

Def.3

An RLC line is a special kind of RLC tree such that each node has at most one

son node. Note that an RLC line is a lumped circuit which is different from an

RLC transmission line.

Def.4

An RLC line TL is called a p-th moment matching tree (mesh) model of an RLC

transmission line TL iff for any R-T-C tree (mesh) where TL is embedded, when

TL is replaced by TL and a new tree (mesh) f is formed, for each output node

voltage Vi in T and its counterpart u,- in T*, their moments match each other up

to the order of p.

Def.5

K each RLC transmission line in an R-T-C tree (mesh) T is replaced by its p-th

moment matching tree (mesh) model, the resultant R-L-C tree (mesh) T is called

a p-th moment matching model of T.

The purpose of finding a moment matching model of a transmission line is to form

a moment matching model of an R-T-C tree (mesh) with a minimiiTn number of

nodes so that the computation of the moments of the node voltages can be done

efficiently. Note that from Def.4, a p-th moment matching tree (mesh) model

of a transmission line is valid in the use of any R-T-C tree (mesh) under any

termination conditions.

15



5.1 R-T-C tree case

5.1.1 Contribution of a transmission line to moments

As in Section 2, we derive the moment matching model of a transmission line TL

fromits contributionto the moments mf of any nodevoltage Vi on the R-T-C tree

T where TL is in.

Case 1. TL is not on path Pi.

In this case, R and L has no contribution to Rik and Lik for any node k. For any

node h € LL, Rik = Riti >Lik = Lu^ and the contribution of the capacitances to

mi is

E ftitCimi"• - -£ LitC.mir' =[if: mi-']CRi„ - [i£ mir']CLu, (29)
*=1 Jb=l " ib=l ^ ib=l

We denote

(30)

and

= CU^ (31)

then

Hm - IrtCtmj-^) = V'-' - V'"' (32)

and the function characterizes the contribution of the capacitances in the

transmission line TL to the moment of node voltage v,-. It can be seen that for

j=0, t/® = 1 and V® is simplyequal to C, the total capacitemce of the treinsmission

line; and for i > 1, U' is the average of the j —th order momentsof the voltages

on the line.

Case 2. TL is on the path of Pi.

In this case, the whole node set of the R-L-C tree is divided into three subsects:

Ii = {k\ Pki C Ptj}, l2 = {k\ Pki D Pij}, and I3 = LL. For any node k £ /i, the

16



transmission line TL has no contribution to Rik and Lik. For any node k E I2 aiid

the term RikCkml"^ —LikCkml"^, the parameters R and L of the line become

a part of Rik a^d Liky respectively, and the line plays a p2u:t as a lumped series

connected branch with a resistance R and an inductance L, Now we consider the

case that k G LL. The total contribution of the line can be expressed as

B{ = - liiCtmi"').

Note that Rit = and = i(,(, + 'X, so that we have

Bf =JJ,.,. ^ ^ m{.-' - X,,,,^ ^ + fcrni"' - X̂ W"') (33)
" ik=l " ik:=l " fc=l ik=l

Let

W> = Km ^ V kmi (34)
n—»oo n*

" i=l

and

= CW' (35)

then

Bj = Rt,t, - Lt,t^ + RX'-' - IA^-2

From Eqs. (32) and (36), it can be seen that W (V^) and (X^)aie the two

functions characterizing the contribution of the capacitance of a transmission line

TL to the moments of a R-T-C tree T where TL is in.

Example 1. We consider the contribution of an RLC transmission line to a second

order moment mj, which is described by the functions t/°, C/^, and W^. It

is easy to show that C/® = 1. Let mj^ be the first order moment of Vt^ and

Cti = 5Zfc€^(tj) C'jk, then £/*, W® and can be expressed as follows with the

derivation shown in Appendix C.l.

+ (37)
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= 5 (38)
" fc=l ^

and

W= +jRCti +^RC (39)

5.1.2 Formation of moment matching model of transmission line

A p-th moment matching model ofa transmission line TL is generally an RLC line

shown in Fig.4. Let r be the number of sections in the model. In addition to the

terminal nodes and <2) there are internal nodes Si, S2, . •.i 5r-i, and wedenote

So = <1 and Sr = <2* The capacitance connected to node s,- is denoted by C,.

and the resistance and inductance in the branch between s,_i and s,- are denoted

by Rgf and respectively. From Sec.4 and Sec.5.1, it is known that the RLC

line is a p-th order moment matching model of TL iff the following conditions are

satisfied.

(a) Condition 1:

(b) Condition 2:

(c) Condition 3:

(40)
1=1

(41)
1=1

EC„mJ, = C£;> (42)
1=0

for j = 0,1,... ,p - 1. Note that when j = 0, this implies C,. = C.

(d) As described in Case 2 of Sec.5.1, the contribution of the total model to the

moment mj with Pk D TL will be Bf =

Note that = Rt^tl + + Ejk=i wehave

•S/ = ^i=0 ^~ ^

+ K=1Ei=i Rs,Cg,mir' - ELi EUi

Compared this expression with the expression of of Eq.(36)under condition

3, we have two more conditions:
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Condition 4;

E E (43)
1=1 ifc=i

for j = 0,1,... ,p —1, and

Condition 5:

Y:'L^-^C.,mi, = CLWi (44)
t=l ibsl

for j = 0,1,... ,p —2.

Let Qfc = Ra^lR for A: = 1,2,..., r. Compared (44) with (43), it can be seen that if

a set A = {oi,a2» ••♦»Qcr} is found to satisfy (40) and (43) for j = 1,2,... ,p —1,

we can always choose the parameters of the inductances such that =: OkL

(Ar = 1,2,... ,r) to meet with the conditions (41) and (44) for j = 1,2,... ,p —2.

Therefore, we only need to consider conditions 1,3 and 4. Let ^k = CakjC and

otu = 12k=iQk, then these conditions can be expressed in terms of the or^s and

as follows:

Eo. = l (45)
1=1

i2ffirni =U> (46)
1=0

and

= Wi (47)
1=1

for j = 0,l,...,p-l.

The above equations form the constraints to the parameters of a p-th moment

matching model of an RLC transmission Hne. There are 2p + 1 equations related

to these parameters. So, r, the number of sections of the model, is at least p.

However, as can be seen from Example 1, for j = 1, each of the and

consist of 3 terms with the first related to m<,, the second to Cr/ and the third

to the parameters of the transmission hne R and C. In order that the model be

compatible to any terminations, the corresponding coefficients represented by the
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model should be the same as those of the original ones. Therefore, we have more

than 2p-\-1 constraints in the general case. In fact, wehavefound that the number

of constraints is 3p and r = [3j3/2j in these cases. This conclusion is proved in

Appendix E.

Example 2.

A second order moment matching tree model of a transnoission line is shown in

Fig.Sa with the parameters oi = 0.20718, Q2 = 0.61908, = 0.17375, =

0.54051, ^ = 0.45919 and ^ = 3.9019e —09 « 0. When the line is unloaded, the

model can be simplified to that shown in Fig.5b with the parameters qi = 1/4,

02 = 3/4, Po = 0, = 2/3 and ^ —1/3. The derivation of such models is

described in Appendix C.2.

5.2 R-T-C mesh case

As in Sec.3.2.2, here we consider two cases for a transmission line TL with total

resistance i2, inductance L and capacitance C embedded in an R-T-C mesh. Note

that in either case, as long as the total resistance and inductance of the model

oiTL remain R and L respectively, for any pair of nodes i and k not being the

internal nodes of the model, Zik remains unchanged when TL is replaced by its

model.

5.2.1 Case 1. TL is a cut of the resistor-transmission line network N

In Theorem 2, a relationship between the p-th moment of a node voltage Vk and

that of its father node Vf. is established. In an R-T-C mesh, there is no farther

and son relationship between neighbour nodes. However,if a branch between two

nodes k and k with an impedamce Zk^ Rk-\- sLk from a cut of the R-L mesh N,

we will get a similar result. In this case, let Ni and N2 be two subdrcuits after Zk

is cut, and suppose that nodes r and k are in Ni and node k is in N2. Then, it can

be shown that for each f € Ni, Zik = 2^., and for each i e N2^ Zik = Zij^-\- Zk. If

we denote = Hk^N^ easy to show that Theorem 2 still holds.
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From this result, it can be shown that the p-th moment matching tree model of

the transmission line is valid for the use in a mesh. The proof will follow the same

way as stated in Sec.3.2.2 and is omitted.

5.2.2 Case 2. XL is not a cut of N

In the case that TL does not form a cut, suppose that it is modeled by n sections

RLC 2-port with parameters r,-, /,• and C,-, i = where = r,- -f sU is

connected between nodes i —1 (or ti when i = 1) and node i and C,- is connected

between node i and the ground. As in Case 2. of Sec.3.2.2, for each node k € LL

and i 6 iV, we have

Zik = Ai(f) + Bi(i)Zk = ^2(1) + B2{i)Zk (48)

where Zk = E>=i Zj = Rk-^sLk with Rk = £*^1 rj and Lk = 0, Zk = Z-Zk

with Z = Zn —Z\ Z2... Zfi. Let Z^ —Ztiti d* then Ai(f) =

"b ~~ —Ztit2)l{Za + Z) ,Bi(z) = (Zit^ —Z,f, )/(Za + Z), ^2(2) =

Zit2 + —Zit^ )(^«2<3 —Zt^ti)/{Za + Z) and B2{i) = {Zu^ —Z,<j)/{Za + Z). Note
that coefficients A and B are functions of s. When /: = ti, = 0, Ai(z) = Z,•/^,

so we have Z,jt = Zit^ + Bi{i)Zk. Also, when k = t2, Zk = 0, ^2(2) = Z,*,,

and we have Z,fc = Z,<j + B2(2)Zfc. Now we use the first expression. Note that

(Bi{i)ZkY^^ = Bi{iY^^Rk + jBiliY '̂̂ ^Lk. Then, from £q.(26), the contribution

of TL to mf is

jsO A=1

i=:0 J' jfc=l

y=0 J' fc=l

i=o J' k=i
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Substitute Rk = kRfn^ Lk = kLfn^ Ck = C/n into the above expression and let

n —> 00, we have

•Bf =X v-'-'+£ 2
i=o j=o j=o J*

(49)

This equation is a generalization of Eq.(36). It can be seenfrom the equation that

the functions U and W still characterize the contributionof TL to mj*.

In order to use the aboveequation to derive the moment metching model for the

use in an R-T-C mesh, we need a formula relating m{ (i € LL) to m{^ similar
to Eq.(25) in the tree case. Let P = 1/(Z + Z,), Q = {Zt^n - Zt^t2)l(Z + Z,)

and , the formula is 2is follows with the

derivation shown in Appendix B.

mf = mf, + RiC^jT^ - Ck(Rkm '̂ - Lfcmr')+
fc=i

+Ri £ Cimr'-Ii f:
ik=i+l fc=i+l i=0 3' k=l

*[P^^RkRi+jP"-'HRkLi+RiLt)+i^^-^P '̂-^^LiLt+Q '̂̂ Ri+jQ '̂-'̂ Li] (50)

This formula can be used for the model formed by a large number (n —♦ oo) of

uniform RLC sections or by a finite number of nonuniform RLC sections. In the

first case, we have

i RC * n
m? = mf. + -(RC^- '̂ - +—(^ km^ +i j: m^)-

" " k=l fc=i+l

t rnn-E^{^(P'''R+jP''-'̂ L)iikrnr-'+
" *=1 ik=i+l i=0 j' ^ k=\
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LC i — 1 " C "

+ E fcmr-' +-j((?«iJ+iQ«-'»L)i i; mr-'}
^ ^ k=l ^ fc=l

(51)

Example 3.

Consider the case that p = 1. In this case, and

i RC *2 j ,* fm} =m> + +_(„i - ^ +5) - -it'CP - -QJtC

Let n —» 00 , then we have

- ip'CP - igpc (52)

and

W" =5< +jfiCj.;, +̂ PC - ip'CP - jQPC (53)
Compared these equations with Eqs.(37) and (39), it can be seen that the coeffi

cientsfor the first three termsare correspondingly equal. Also, fromthe expression

of ml, it can be understood that in the coefficients of —QRC are the same

as that of RCj^ and the coefficient of —R?CP is just one half of it. A similar

situation happens in the expression of W^. This means that these coefficients

do not set independent constraints and can be neglegted, and wecan understand

that the equations used to determine the parameters of the 2-nd order moment

matching model for a mesh will be similar to those for a tree. However, in the

case of a tree, node <1 is an ancestor of node <2 and we have seen that the model

is dissymmetrical. In the case of a mesh, no difference can be told between nodes

<1 and <2* Eq.(50) is derived w.r.t. node ti, and a similar formula can be obtained

w.r.t. node <2* Li order that the model be fitted with the constraints given by the

two equations, the moment matching model should be S3rmmetrical. It happens

that the 1-st moment matching model is symmetrical, so it can be used in both a

tree and a mesh; but for a higher order moment matching model, the oneused in

a mesh will be more complicated than that used in a tree.

Example 4. A 2-nd order moment matching mesh model.
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The circuit of the model is a symmetric 2-port as shown in Fig.Sc with Oi =

0.24283, a2 = 0.25623, A) = 0.10275, = 0.26222 and = 0.26862. The

derivation is shown in Appendix C.

6 Delay model of R-T-C network

Let di be the signal delay of node voltage v,- w.r.t. the input voltage Vf. In an

R-T-C network, d, consists of two parts: the propagation delay dip and the rising

delay d,> as shown in Fig.6.

6.1 Propagation delay

The propagation delay dip of u, is caused by the propagation time of the trans

mission lines in the network. For a transmission Une with total inductance L and

total capacitance C, its propagation time is t = y/LC\ i.e., any change of signal

at t=0 at one port of the Hne will cause the change of signalat the other port only

after f = t. Therefore, in an R-T-C network, when a step excitation is apphed

at the source terminal, it takes r,- = dip to propagate to node i, and in the time

period t € [0,d,p] v,- stays at 0. When the path from node r to node i is relatively

long, dip becomes the main part of the signal delay of u,-.

Given an R-T-C network T, The propagation delay dip for each node i can be

found by using a graph G(V, E). In the graph, vertex i in V corresponds to node

t in r, and each edge e,j =< > corresponds to a branch between nodes i and

j in T. If this branch is made of a transmission line with a prapagation time r,j,

the distance of edge e,j is defined as t.-j-; otherwise, if it is made of a resistor, then

its distance is defined as 0. Then, the propagation delay dip from the source node

r to any node i is equal to the distance of the shortest path between vertices r

and i which can be found by using the famous Dikstra algorithm [21].
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6.2 Rising delay

To compute the rising delay dir of v,-, we use the moment matching technique.

Suppose that the transfer fimction of node i is i^(5) = Vi(s)/VI.(5) and its prop

agation delay is d,p, then F,(s) can be expressed as ^<(5) = , Let

Ui(f) = then v,(<) = Ui(f —dip) and the rising delay d,v can be

detomiined by using u,(t).

We find an approximation u,(<) of by approximating by a rational

function Hi(s) such that Hi{s) is a p-th order Pade approximation of Hi(s) at

s=0, i.e., their moments match from order 0 to order p. Given the moments mjy

of function Fi(s) for j=0 to p, from the definition, Hi{s) = and the

moments mj of Hi(s) can be found by using the following formula:

= E (54)
fc=o

Let Hi(s) be expressed as B(s)/A(s) = (b^s"^ + biS 6o)/(s" +

-I- ... + ais -H qq) . We need u,(0) = Ui(0) = 0, which implies that

limt^oUi{t) = Hma^oo(sUi(s)) = lime-.ooH(s) = 0. Therefore, m <n. We choose

= L(P ~ l)/2j and n = [(P + l)/2l; i.e., when p = + 1 is odd, m = k and

n = A: -1- 1, and when p = 2/; is even, m = k —1 and n = 4- 1. In order that

H(s) be a p-th order Fade approximation of jff(5), the first p + 1 coefficients of

the Taylor series expansion of Hi{s) should be the same as those of Hi(s), i.e.,

bmS"'-¥bm-is"''-'^...'\-biS + bo , , . 22 . / o „ .
; ; = 1 —m.-s d- mfs* —... + (—+ ...

s«-f ...4-aiS + ao ' * ^ v ; . t

and we have

A B

where
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® f̂lO 0.\ ••• fln-l bo 61 ... 6^ j (5®)



i4isa(p+l)xn submatrix such that

A =

-1

m}

-m

-1

m} -1

(-l)"mr' (-l)"-^mr'

(-l)"+»m? (-l)"mr^ (-1)

(_l)P+i,nf

B =

mj

—mi

-1

m3

(_l)i>-"+3„j?-»+» (_l)p—+3mf-"+'
(57)

•'(m+l)x(m+l)

Onx(m+l)

where I(m+i)x(m+i) >3 a unit matrix, and 0„x(„4.j) is a zero element matrix, and

(58)

=[0 ... 01 -m} mf ... (-l)P-'mf"" ] (59)

Solving the above equations, we get the coefhcients a's and 6's. Let the n roots of

j4(s) be denoted by pi, p2, •••» Pn- Then, Ui(s) = can be expressed by

where kj = B(pj)lpjA^(pj), and «,(t) will be approximated by

«.(<) = 1 +
i=i

(60)

(61)

Given any voltage level0 < Kh < 1, the rising delay d,r can be found by solving

the equation

= V,^-l (62)
i=i

and the signal delay d,- = dip + d,r.

We give three examples to illustrate our method. In these examples, Vi^ is set to

0.5, dip , dir and d,- axe the propagation delay, rising delay and total delayof node

voltage Vi computed by using our method, d,,5p,ce is the delay obtained from the
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dp dr d dtpice 8

0.23461 0.11665 0.35126 0.33225 5.4%

V2 0.35183 0.21733 0.52608 0.56916 7.5%

V3 0.23459 0.11289 0.34748 0.35770 2.8%

Table 1: Delay Estimation of Example 6

SPICE simulation result and 6 =| di/di^,pice —1 | is the relative error. Prom these

examples, it can be seen that our model is efficient and accurate for practical use.

Exeunple 5. For the output voltage Vi in the interconnect circuit shown in Fig.8,

by using the Elmore delay model, it is found that dip = 6.5041ns, d,> = 47.836ns,

di = 54.341ns while di,ap,ce = 54.165ns, and 6 = 0.32%.

Example 6. We compute the signal delay of the output voltages ui, V2 and of

the interconnect circuit shown in Fig.9 by using a 3-rd order moment matching

model. The results axe listed in Table 1 with all the time in unit ns.

Example 7. This is an example of a transmission line mesh shown in Fig.lO. The

parameters of the vertical lines are: R = 0.05n/mm, L = 0.b025nHlmm and C =

0.1552pF/mm, and the parameters of the horizontal lines are: R = 0.06D/mm,

L = O.biSnHImm and C = 0.1423pF/mm. The length of each line is 30mm [18].

For the output voltage Ui, when an Elmore delay model is used, dip = 0.79478ns,

dir = 2.6733ns, di = 3.4681ns, di^jnoe = 3.7566ns and 8 = 7.7%.

7 Conclusion

In this paper, we present formulas and models to compute the moments of node

voltages in a transmssion line network and a delay model based on the moment

matching technique. The main contribution of this paper is the following.

(a) We provide a recursiveformula to compute the moments of an R-L-C network.

This formula is especiallysimple and efficient in the typical case of R-L-C tree
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networks. For an R-L-C tree with n folating nodes, the computation of the

moments ofall the nodevoltages from order 1 up to orderp takes 0(pn) time.

In the more general R-L-C mesh case, such a computation takes 0(pn®) time.

However, if in the floating network N the number of link branches / is much

smaller than the number of tree branches n, a more efficient way ran be

used to compute the matrices [14] so that the computaion can be done in

0{pln^) time.

(b) We present a p-th order moment matching model of a transmission line em

bedded in transmission line networks. The model is made of RLC sections and

is either dissymmetric when used in an R-T-C tree or symmetric when used

in an R-T-C mesh. The necessary and sufficient conditions for such models

are derived and the models from order 1 to order 3 are presented. In both

the tree and the mesh case, the number of sections of the model r = 0{p)

and r = 1 when p = 1. When the transmission lines are replaced by their

p-th order moment matching models, a p-th order moment matching R-L-C

network is formed such that the moments of the node voltages of the R-L-C

network are exactly the same as the correspoding ones in the original R-T-

C network. Then, the computation of the moments can be implemented by

using the R-L-C network exactly and efficiently.

There are some other known methods to do moment computaion and delay esti

mation in transmission line networks. The comparisons between our method and

these methods are as follows.

(a) Using a large number sections of RLC network as a model of a transmission

line [16]. Such a model is not only time-consuming but also inaccurate.

(b) Using the model suggeted by [11] to compute the moments. The authors of

[11] suggested a moment matching model for a transmission line under the

condition that the output port of the line is open. Therefore, their model

cannot be accurate for a transmission line embedded in any part of a trans

mission network. Even in the case that a transmission line is open-loaded,

only an accurate 2nd order model is given there.
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(c) A scattering parameter based matbod to compute the moments is provided in

[17]. It takes 0(pn) time to compute the moments from order 1 to order p for

one node voltage, and takes O(pn^) time to compute the moments for all the

node voltages. Therefore, our method is more efficient than theirs. In another

paper [18], the authors provide a method to extract the "time-of-flight" (the

propagation delay) based on the operation on the scattering metrices of each

part of the network, which takes much more time than our method.

(d) Our method is different from AWE [19, 20]. AWE uses the characteristic 2-

port model of transmission lines and computes the moments of node voltages

by recursively solving equations, while ours uses direct computation which

is more efficient for the transmission line tree and mesh cases. If a moment

matching R-L-C tree with n grounded capacitors and n floating inductors is

formed by using our moment matching model and AWE is applied on that

circuit, then AWE forms a set of state equations with 2n variables, and it is

estimated that the computation of all the moments of all the node voltages

is about 8 times slower than using our formulas.

Note that the methods and models presented in this paper can be appHed not only

to transmission line networks, but also to distributed RC Hnenetworks. Therefore,

they can be efficiently used in the design of VLSI systems.
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A Proof

A.l Proof of Eq. (19)

In this case, network N looks like that shown in Fig.Al. As Rik = Rki, we input

a unit current to terminal i. By KCL, u = 1. Therefore, Rki = Vk = Vij + Vkti =

Riti + Rk' Note that if the current is injected directly to node fi, vti remains

unchanged. Therefore, Ru^ = Rt^ti and Eq.(19) follows. •

A.2 Proof of Eq.(21)

Using the relation Rik = Rki, we input a imit current to terminal i as shown in

Fig.A2a. Let v, and R, be the voltage and internal resistance of the Tevenin's

equvalent 1-port looked from terminals ti and <2 to the left. Then v. = Rit^ —Rn^.

For Ra , we form the circuit shown in Fig.A2b and split the unit current source as

shown in Fig.A2c, then we have J?, = Rt,ti-Rt2U-(Rut2-Rt2t2) = Rtxh-^Rht^-

^Rtiti' Then, Itxt^ ~ "1* and Rik ~ Rki ~ ^tit2Rk ~{" ~ —R-k^tit^

with utj = Rit^ + ItxhiKti - Kh) v<, = Rih + - Rtxu)' Then
Eq.(21) follows from these equalities. •

A.3 Proof of Theorem 1

To prove Theorem 1, we first prove the following lemmas.

Lemma 2.

lira <"(1 - v.(t)) = 0

Proof. Vi can be expressed as

k

where Si^k > 0 and Pi,k(t) can be expressed as
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>=0

SO the Lemma follows.

Lemma 3.

lim fvAt) = 0
t-*oo ^ '

Proof.

ViCf) = ^k{Pi,kW — and the Lemma follows.

Lemma 4.

Proof.

mf"* = —^ f i^Vidt
pi Jo

J i^Vidt =J f'dvi =fv,- \o^ —J P^it^ =—j?!mf ^

Lemma 5.

The p-th moment of v,- is

"•' =(FTTTTi"-"'('"A
Proof. Let Aff(r) = /J"tHi{i)dt^ then mf = hmr-»oo Now

•Wf(T) = /J" tHi(t)di = /J* t''dv,(t) = T^Vi(T) - p/J"t^-^Vidt

= - p/J" + p/J" - p/J" i^-^Vidt

= - 1) +p/J'<""^1 - Vi(f))dt

Let T —> GO, by Lemma 2,

Mf(oo) =p/ ^"^(l —i;,(t))dt
Jo
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and

mf =^Mf(oo) = <"-•(! - Vi(t))dt
Proof of Theorem 1.

Prom Eq.(7) and Lemma 5, we have

"^(RikCk jT t^-^Vkdt +LikCk f ^Vkdt)
From the definition of the moment,

:h)!(p-l)!

and from Lemma 4,

= -n.r'
(p-1)

SO the theorem holds. •

A.4 Proof of Theorem 2

Proof.

ml = ^(RkiCiml^^ - LkiCiml~'̂ )
i

and

- LkiCiml''̂ )
i

Let the node set I = {1,2,... ,n} be divided into 2 subsets Ij and I2 such that

Ji = {i I Pki = Pki) and I2 = {i | Pki D Pje,}. As k is the father node of node k,

so that I2 = D(k) . Correspondingly, mj and are divided into two parts with

respect to Ii and I2', i.e..

mlj = - LkiCiml
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and

ielj

for j=l and 2. For each t € /i, as Pki = Pjn so that P^i = and

1 = TTij j. For each node i € /2> -Rti = -RtJE» f'ti = -^fci = H" sJid

Lki = Lkk + Lk' Therefore,

-2^k,2 ~ ^k,2 {PkCi^i ^—LkCiTTli —*71^ 2 ^k^^Tk^ ^k^Jk
•€/>(*)

and the theorem follows. •

B Derivation of £q.(50)

The derivation of Eq.(50) is as follows.

For node <i,

mf. = E E = "»f„i+miLj
it j=o J'

where mf,,. = C„

mj", 2 Similarly, for node i € ii, mj =

<x+<2 with ml, =EieAf C* EJiJ and mf,, =EkeLL Ck ^Ri,mlr'-\
Now we abbreviate Ai{k) and Bi(k) as Ak and Bk. Note that for each Jk € N,

Zik = Ztik + Bk(s)Zi with Zf = JZ,-, Z} = L, and Zf = 0 for j > 1. Then, we have

Ki - '"('i.i =

=Zk^f, C, EJ=J ^BilUmlr'-'-

-Ete,» l^sr'l.mr-' =
= Ri c, E^JizfBimlr'-'-

Let =E^f) Ck E%1 ^Bimlr'-\ then we have
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K. - mr„, =

For mfj — we have

<2 - <.2 = E <^t(E
fc=l i=0 J-

Note that in the above equation, (^ijb — is counted at s = 0. We now d^ive

the formula for Zik —Zt^k- We enter a imit current to node h and let the voltage

at node ti and node i be VJj and respectively. Then, Zik —Zt^k = V5 - K, as

shown in Fig.AS. Let Ii and I2 be the currentsflowing from node k to node t\ and

from node k to node <2, from theequations 14 = J\(Zk + Zt^n) + hZt^t^ = h(Zk +

Zt^t2)'̂ hZt^i2) and h-\-l2 = 1,we have/, = + -Zt,t,)/(Z + Z,) and

h = (Zk-\-Zt,t,-Zt,t2)l(Z-\-Z,). Then, when k < i, Vi-Vt, = ZkIi-(Zi-Zk)l2 =

Zk-ZkZil(Z-\'Zt)-(Zt^tx-Zt^t2)l(Z-\-Zt)Zi\ and when k > i, Vi-Vt^ = ZJi =

Zi{Z-Zk^Zi,t,-Zt,t,)l{Z+Z,) = Zi-ZkZil{Z-¥Z,)-(Zt,t,'-Zt,t,)l(Z^Z,)Zi.
Let P = ll(Z Za) and Q = (Zt^t^ —Zi^i^l{Z + Z,), then wehave

Zik —Zt^k — *•
Zk —PZiZk —QZi k <i

Zi —PZiZk —QZi k > i

Note that (PZiZkYi) = P^^)RiRkjP^^-'̂ RiLk + RkLi) + 2i2^pU'i)LiLk and
{QZiY^^ = Q^^^Ri + where P^^^ and are defined as 0 when j < 0.

Therefore,

PZ3 (^J JL
j^o fcTi

<2 - <,2 = E ^ E Ckmir'-\Zik - Zt.kY^^ =

^Ck(Rkml-'-Lkm^r^^)-\-Ri ^ Ckm '̂- Li £ CfcrnJ"'-
fc=i fc=i+i Jk=j+i

- E^ E +jP^-'HRtLi +RiLt)+
i=0 J' k=l
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and we have

mf = mf, + - LiC^^ +£ Ct(JJtmr' - £tm^")+
i=l

+Ri Ckmlr'-Li £ Ctmr'-E^^ECtmr'-'*
Ar=i+1 ksi+1 j=0 /fc=l

*[P '̂̂ RtRi +jP^-'\RtLi+ftii +M^p{j-t)LiLi, +QW'A +jQ"-"Xi]

C Second order moment matching model of trans

mission line

We derive the second order moment matching model of a transmission line in the

section.

C.l Computation of and

In order to compute W and , wefirst need to compute the first order moments

mi for A: = 1 to n.

Let Cti = IZjfcg2)(tj) Ck' From Theorem 2, we have

"^1 ~ ^\i + = mj^ + ^(C + Cti)'

mj = m5 + ^Ct2

~ + ^Ti) + ^{^C + Cti)

= <+f((l + ^)C + 2Cr/)
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= mj-i + ^Crk

= < + ?((1 + + •••+ + ACr,)

= '"'i + n{('' ~ ~ l)l2n)C + kCn)

+ f ((" - n(n - l)/2n)C+ nCri)

Therefore, i j;j_, mj

= K + ^ ELi kCn + ^(EZ=. k- i{EL. - T,Ui k))

= "»<. + - JL("("+'»'"+') _ SSspl))
Let n —* oo,

U' =ml +-RCt, +jiJC

Now we consider function W. According to the definition,

and

where

IV" = Um 4Jfc =X

= hm VI
n—»oo n* "

" fc=l

A:mJ = A:(mJj + ~((^ ~ ~ l)/2n)C + A:Cr/))

Therefore, we have

w' = +^RC
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C.2 Dissymetric model

We derive a second order moment matching tree model of a transmission line as

follows. According to what stated in Sec.5.1.2, it is known that the number of

constraints is 6 and the number of sections in the model is r = 3. We set = 0

and let a,- and /?, for i from 1 to 3 be unknown parameters.

Prom Condition 1, we have

<*1 + Q!2 + 03 = 1 (63)

For j=0, from Condition 3, we have

A + /?2 + ^3 = 1 (64)

and from Condition 4,

Ql/?1 +a\202 +OCl3^3 = 2 (®^)

Now we consider Conditions 3 and 4 for j=l. Let Cji be expressed by by ^iC and

let I3k3 = 2?=jb then the first moments of the node voltages mj. for i = 1,2,3

can be expressed as follows;

*^1, = "ij, + + C,, + Cji) = + aijSiRC + aifii^RC

^^2 = + ^Ti)

— "b + {0Ll^\3 + 0C2^23)RC

and

= mt, + Qis^iRC (oi^is + 012^23 + oiz^^RC.

Therefore, from Condition 3,

0\rn\ +
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— + Oi2^2 +

+ (Q^iAA3 + ^2(Olfil3 + 012^23) + A(Q;i/Si3 + Ot2fi23 + oczp:i))RC

Compared the above expression with Eq.(37) with the reference to Eq.(65), it can

be seen that the coefficient of mj^ is 1 and the coefficient of Cti = ^iC is ijR.

Therefore, we have one more constraint:

OClPl0l3 + /?2(Qi As + 012^23) + A(cnAs + Ol2^23 + O^sA) = T (66)
o

which is equivalent to

aiA^3 +Ot2^23 + ^
Now we consider Condition 4 for j = 1. We have

+ oi\2^2m\^ + cusA"^!,

= (oiA + ttisA + oci2fiz)m\

+(Qfj A + 0^1202 + <^13A)-^^A + (<*iA As + 0^12^2

(O^l As + OC2023) + O^lsACO'l As + 012^23 + OLzfizYjRC.

Compared with Eq.(39) and taking Eqs.(63), (64) and (65) into consideration, we

have two more constraints:

Q'lA+Qf?2A +A=I (67)
and

ajA + oc\2^2(oi\ + Of2/92s) + A/2 = — (68)

Now we have a set of nonlinear equations. We use the function "fsolve" in

MATLAB[22] to solve these equations and get the parameters qi = 0.20718,
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02 = 0.61908, Q3 = 0.17375, A = 0.54051, /?2 = 0.45919 and = 3.9019e - 09 »

0.

Remarks.

(a) From the above derivations, it can be seen that the coefficients of fiiRC in

is the same as the coefficient of m]^ in and the equations set bymatching

the corresponding coefficients of the model with these two coefficients are the

same, as they can be both expressed by ^l-i Qik^k- In fact, If we denote

fit = the coefficient of ^{RC in W and the coefficient

of mfj in are both aik^k-

(b) In this example, for the model circuit, and can be expressed as =

-^biRC/3i-jrCiRC and = Aim}^ BiRC/^i + CiRC, where ci, 6i, Ci,

i4i, Bi and Ci are functions of the or's and Compared with Eqs. (37) and

(39), if we let the coefficients of the corresponding terms be equal, we have

six equations with the one related to Ai the same as that related to 6i, and

it can be shown that these equations are just the same as those from Eq.(64)

to Eq.(68). Therefore, another way to set up the constraints for a p-th order

moment matching model is to get the expressions of and Wp~^ in terms

of the a's and and the expressions in terms of the parameters of the line

and let the coefficients of the correspoding terms be equal. The equations

formed in this way in addition to the constraint ai = 1 form the whole

set of constraints.

C.3 Open-ended model

When a transmission Hne is open-loaded, then Eq.(67) is missing and we have

only 5 constraints. We may use a simplified model with only 2 sections as shown

in Fig.5b. The parameters are determined by the following 5 equations:

ai -H Qr2 = 1
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^0 + A + = 1

+/?2 = 2

aiA +5^2 =I
and

<»?A +5^2 =^
Solving these equations, we have ai = 1/4, 02 = 3/4, A) = Oj A = 2/3 and

/?2 = 1/3.

C.4 Symmetric model

This is the model used in R-T-C meshes. We have seen that there are 6 constrints

for a second order model, but we have sdso found that when the model is sym

metric, when Condition 1 and Condition 2 for j = 0 are satisfied. Condition 3 for

j = 0 is automatically satisfied. Therefore, wemay used the modelshown in Fig.Sc

with 5 unknown parameters. Let 012 = 01+ 02, 013 = Qu + Q21 <*14 = Qis +

^34 = A + A4 = A + A4 and A4 = A + A41 then the equations for the q's

and are as follows:

012 = 0.5

2(A + A) + A = 1

Qlfil +oljPl +0?3^1 +0^1400 =J
5

0^1 A A4 + Qfi2A(Q^iA4 + 0^2A4) + Qfi3A(<^iA4 + 0^2A4 + 0(2^34) + A/2 = ~

Solve these equations, we have oi = 0.24283, 02 = 0.25623, A = 0.10275, A =

0.26222 and A = 0.26862.
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D Third order moment matching model of trans

mission line

We derive the third order moment matching model of a transmission line in this

section.

D.l Computation of XP and W'̂

D.l.l Computation of

Let Cji = Y^kef)(t3) ^k^k' From the definition,

= lirrin^oo- 53
^ k=l

where

Let + a2RC]'i —azLCji —a^LC + a^RC. Then

1 "
fli = lirrin^oo- 13 1 = 1

02 = 03 = «m„^oo-rik^^n 2

1 A 1 rw, 1 Xa, =;.m„_«-g-[fc(l+-)--]
1 " 1

n n2 2n

_ 1 _ 1 1 _ 1
~ 2 2 3 ~ 3

1 " 1OS = /zm„_oo-13 —("^1 + 2mJ + ... + k{ml + ... + mj,))
n n

= ®51 — <*52
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where

1 " 1051 = Hrrin^oo- ^ -j("i} + 2ml + •••+
Tl • « Tt

=W" =imf. +jRCt, +^RC

1 "
052 = '«'̂ n-oo-3 + ^^1+2 + •..+ ("- &)mi)

" fc=l

Let the expression in the sum of above equation be bk^ i.e.,

bk =mi+i +2m\^2 +•.. +(«- Ar)mi = ^ {j- k)m].

Note that

1 I .R^ RCf,, 1 . P,
m, = m..+j-Cr, + —[,{! + -)--]

Let bk be expressed by c/kim}^ + Ck2RCTi + CkzRC, then

and

CA:1 = ^ U- k) « i(n2 - k^) - k{n - k) =i(n - A:)^,
j^k+i ^ ^

= ± «i[i(„3 _e) - |(n3 - k^)]
j=k+i n n 6 I

«. £ifa-wi.i)-£i=

Let 052 be expressed by dim}^ + d2RCTi + dzRC^ then

.. 1 A 111
A
k=\

di= Hm AVcfci=-x- = -,n-oon3j^ " 2 3 6'

d2 = lim i V Ck2 =-(1 - i) - i(i - i) =i
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and

, 1 A 1,, 1. Iv 1/1 1. 1/1 Ix 3
^3 = - 53 = ^(1 - 7) - 7(1 7(7 - 7) + «(o - l) = 77T

Therefore,

„^oo„3j^ 3V 4/ gv 5/ 2^2 4' 6'2 5' 40

i<+±iJC„ +i
and

as = Csi —052 = + T^RCt

IP =m?, +ifiC]., +iiJCmJ. +^iJ'CCr, +̂ (.RCf - ixC - ^LCt,

D.1.2 Computation of

Let = liin„_»oo 1315=1 expressed by

then

and

where

"b —Csl/Cxt —G4LC+ 65^0*,

1 " 1

61 = hm A E i
^ k^i 2

1 A 162 = 63 = hm -r > — = -
n-»oo n2 n 3

„^oo„3^i 2n^ 2n^ 3 8 24

1 "

^ + 2m5 + ... + *:(mi + ... + m^)) = 651 - C52
" k=i

651 = lim 5ZAr(m} + 2ml + ... + nmi) = (lim ~ E k)W^ =n—00 n'* ^n—00 ,i2 ^ '
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1 "
E Hml+r + 2m^2 + (n- k)m\) =

1

~" rl^ioo ^ E ^klROjl + CkzRC) = + /z-^C^T/ + /s-RC',
" Jk=l

then

/i = lim i^itcH =-(i-i)-(i-i) =i,
2^2 4^ ^3 4^ 24

3^2 5' 2^3 s' 30'
and

<• _ f 1 •^i 1/1 1\ 1/1 Ix 1/1 In 1/1 In 73 „iS)n4E *^*^3 2(2 5) gCg g) 2^3 5^"'"6^ 6^~ 360*
Then,

and

=S'"'. +5^<^" + +̂ Jt'CCr, +̂ (RC)' - ^LC - ^LCt,.
Remarks.

(a) It can beseen from theexpressions of and W^, thecoefficients ofRC^i and

R^CCti in are the same as the coefficients of and m]^RC in W^. The
coefficient of RC^-i in and in are 02 = ei = hm„_»oo Efc=i k= ^
The coefficient of R^CCji in can be expressed by limn-^oo-^h and the

coefficient of mj^RC in can be expressed by fr*m„_»oo where

n k n n n

•^1 = E(Ei^ + E = E E^fci
k=l j-l j=k+l k=lj=l

where

and

Pkj =
P j <k

jk j > k

h = ^ k(Y,j + k(n - k)).
fc=i i=i
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Ii can be rewritten into the following form:

n j

J=1 k=l J=1 fcsl h^j+l i=l 4=1

Exchanging the symbols j and it can be seen that Ii = 12- Also, it can be

seen in the next section that the constraints set by each corresponding pair

of coefficients are the same. This observation is useful to prove that the total

constraints for a p-th order moment matching model is 3p.

(b) It can be seen that the coefficients of the term —LCji and —LC in IP are

correspondingly the same as those ofRC^i and RCm\^ and the constraints set

by these coefficients are correspodingly the same. Similar situations happen

in wherethe coefficients of —LCji and RC^^ and coefficients of —LC and

mjj RC are correspondingly the same. Therefore, thereis no need to consider

the constraints set by the terms with L. This coincides with what mentioned

in Sec.5.1.2.

D.2 Dissymmetric model

The dissymmetric 3-rd order moment matching model is used for R-T-C trees and

is shown in Fig.7a. There are 9 constraints to determine the q*s and jS^s. The

number of sections in the model is now r = 4. We have the following equations:

Qrir = 1

^Or = l

OCk^kr =\
ib=l ^

k=l ^

k=l ^

Let Pr = Qirfir and pk = pk+i + ocikPk (A: = r - 1,r - 2,..., 1), we have

E OkPk^kr =^
*=1
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Let qi = Oi^ir and qk = qk-i + ockfikr (A; = 2,... ,r), we have

k=l

Let Or = alk^k and a* = ajt+i - (ai^+i - (A: = r - 1,..., 1), then

we have the last two constraints

^ OCk^kO-k =^
k^i 15

and

Solving these equations, we have Q\ = 0.13412, 02 = 0.35234, Q3 = 0.31730,

04 = 0.19624, /9o = 7.9144e - 04, A = 0.33288, ^ = 0.29853, ^ = 0.34972 and

^4 = 0.018081.

D.3 Open-ended model

When the transmission line is open ended, the model is simplified as shown in

Fig.7b with 3 sections. In the above equations, the 5-th and the 8-th are missing

and now r = 3. Solving the equations, we have Oi = 0.33197, Q2 = 0.11001,

Q3 = 0.55823, A = 0.12293, A = 0.24794, ^ = 0.37937 and /% = 0.24973.

D.4 Symmetric model

This is the model used in R-T-C meshes. As in the case of the 2nd order model,

the 3rd constraint is automatically satisfied by the 1st and 2nd constraints and the

symmetric structure so that we have8 constraints. The model is shown in Fig.7c

with the number of sections r = 7. In order to use the equations given in Sec.D.2,

for A; > 4, let a* = os-fc and fik = ^i-k- Then wehave ai = 0.15071, oc2 = 0.11338,

^3 = 0.15370, ^4 = 0.15157, ^0 = 0.069663, = 0.13903, ^ = 0.13980 and

= 0.15802.

46



E Number of constraints to p-th order moment

matching model

In this section, we prove that the number of constraints to a p>th order moment

matching model is 3p as stated in Sec.5.1.2.

This conclusion is based on the following observations. Please refer to the remarks

given in Appedices C and D to help understanding the reasoning.

(a) As has been illustrated in Remark (b) of Appendix C, the constraints set by

Condition 3(See Eq.(46) in Sec.5.1.2) for j = 0,l,...,p —1 is equivalent to

the constraints set by matching the coefficients of the terms

for j = p —l,p —2,..., 1, the coefficients of the terms for

j = p —2,p —1,...,0 and the coefficient of the term {RCy^^. The number

of these constraints is 2p —1 in total.

(b) Similarly, the number of constraints set by Condition 4 is 2p —1, too. As has

been illustrated in Appendix D, the 4p--2 constraints set by Conditions 3 and

4 are not totally independent. We have seen that in the 3-nd order model, the

coefficients of RCji and R^CCji in are correspondingly the same as those

of and mj^ RC in W^. In the general case, it canbe shown that for a p-th

order model, the coefficient of the term RC^i(RCY~^'* in is the same

as the coefficient of the term (RCy~'̂ ~* in for t = 0,1,... ,p —2.

Therefore, there are p —1 constraints set by and in common, and

the number of independent constraints set by both Conditions 3 and 4 are

reduced to 2(2p —1) —(p —1) = 3p —1. In addition to Condition 1, the

number of constraints is 3p. •
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F Moment computation ofR-L-C tree with leak

age resistors

In this section, weconsider the momentcomputaion of an R-L-C tree with leakage

resistors. Such a network consists of a floating RL tree grounded capacitors

and groimded resistors (leakage resistors) connected between the nodes of the RL

tree and the ground. Let Zik = Rik + sLik Le total impedance of the path Pik as

defined before. By the Substitution Theorem, each capacitor Ck is replaced by a

curr^t source sC/bl4(-s). By the superposition theorem, each node voltage Vi(s)

is composed of two components: I^,r(s) caused by the source voltage K-(5) when

all the capacitors are disconnected and K",c(5) caused by the capacitance currents;

i.e.,

Vi{s) = V:,.(a) - •£ Zik(s)sCtVt{s) (69)
k

Let K>(s)/l'^(s) be denoted by Ti{s) and 14(s)/H(5) by Hk{s), then wehave

Hi(s) = Ti{s) - Y, Zit(s)sCkHk(s) (70)
k

Note that Ti{s) is different from Hi{s) in that Ti{s) is the trsinsfer function

Vir(s)/K(s) when all the capacitances are disconnected to the floating RLnetwork

and only the leakage resistorsare connected. If there are no leakage resistors, then

Ti(s) = 1 and Eq.(70) becomes Eq.(13).

Let thej—thmoment ofTi(s) and Hi(s) beexpressed by and m{ respectively.

From Eq.( 70), we have

mf = mlt+ ^{RikCkmlr^ - LikCkml'̂ ) (71)
k

Note that when p = 1, the term LikCkm '̂̂ is missing, and

m2 = Hk(0) = 1^Vfc(f) = Vifc(oo) (72)

In the case there exist leakage resistors, vjfc(oo) < 1, and the Elmore delay of node

voltage u,- can be expressed as

Tdi = -h ^ RikCkVk(oo) (73)
k
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In order to use Eq.(71) to compute moments, we need to compute the moments

of fimction Ti(s), which can be done as follows.

Let N be the network consisting of the floating RL network N, the voltage source

and the leakage resistors, NR be the node set where the leakage resistors are

connected, and gk be the conductance of the leakage resistor connected to node

k, then we have

K>(a) = Vr{s) - "£ Zik9kVkr(s) (74)
keNR

Ti(s) = 1—53 ^ik9kTk(s) (75)
k£NR

= 1- 53 Rik9kmlt (76)
keNR

and

^it = - 13 ^k9kTni^t + 51 ^ik9kmi'}^ (77)
k^NR k^NR

Let NR = {l,2,...,nr} for simplicity. Let matrix A = [aifc]„rxnr be such

that a.jfc = Rik9k for i ^ k and an = Rngi + 1, vector = [5J]„r be such

that when j = 0, 6 '̂ = 1 Vi and when j > 0,

M/ = [m{ i^ ..., mj,. J', From Eqs.(76) and (77), we have the following set of

equations to solve m\^ from j = 0 to j = p recursively.

AM{ = (78)

From Eqs.(71) it csin be shown that the moment matching models derived so far

are valid for the use of R-T-C network with leakage resistors. The reasoning is

as follows. As the total resistance and inductance of each model reconin the same

as those of the original transmission line, all the elements of the open circuit

impedance matrix Z = [zifc] and all the functions ri(s) remain imchanged. For

each moment mf, the capacitance of a transmission line has no contribution to its

first part mf ^and the contribution to its second part is the same as its model as

proved in Sec.5.
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