Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



MOMENT MATCHING MODEL OF TRANSMISSION
LINES AND APPLICATION TO INTERCONNECT
DELAY ESTIMATION

by

Qingjian Yu and Ernest S. Kuh

Memorandum No. UCB/ERL M94/20

29 January 1994



MOMENT MATCHING MODEL OF TRANSMISSION
LINES AND APPLICATION TO INTERCONNECT
DELAY ESTIMATION

by
Qingjian Yu and Ernest S. Kuh

Memorandum No. UCB/ERL M94/20
29 January 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Moment Matching Model of Transmission Lines
and Application to Interconnect Delay

Estimation

Qingjian Yu *and Ernest S.Kuh
Electronics Research Lab, U.C.Berkeley

January 29, 1994

Abstract

In this paper, we present a method to estimate the signal delay in the intercon-
nection modeled as a general resistor-transmission line-capacitor (R-T-C) network.
The estimation is based on the propagation delay of the transmission lines and the
moment matching techniques. We analyze the contribution of a transmission line
to the moments of the network and provide a method to form a lumped moment
matching model of the line. When the transmission lines are replaced by their
p-th order moment matching models, the network is transformed into a lumped
R-L-C network such that these two networks have exactly the same moments up
to the order of p for each corresponding output node voltage . We also provide
a recursive formula to compute the moments of the R-L-C network so that the

moment matching techniques can be efficiently used in the delay estimation.

1 Introduction

In high speed electronic circuits, the delay due to interconnects is comparable to that

of transistors and will be the dominant part of the entire system delay before long. A
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simple and accurate delay model for interconnects is essential to the design of VLSI
systems.

The interconnects of a VLSI system on different level are modeled differently. The
wires on a chip , on a printed circuit board and on an MCM are usually modeled as
lumped RC lines, lossless transmission lines and lossy transmission lines, respectively
[1]. It is expected that the volume of the products of MCM’s will grow very rapidly,
so that a good delay model for the interconnects in MCM’s is in urgent need by the
designers.

The model of interconnects on one layer of an MCM is made of floating resistors,
grounded capacitors and lossy transmission lines. We now consider the case that the
coupling among the transmission lines on the same layer and on the neighbouring
layers is negligible, each transmission line consists of a floating wire and a ground wire
and whose conductance per unit length is zero. Such a network is called an resistor-
transmission line-capacitor network, or an R-T-C network for abbreviation. In most
practical cases, the resistors and the floating wires of the transmission lines form a tree
, the capacitors are connected between the nodes on the tree and the ground, and the
input to the network is a voltage source connected between the root of the tree and the
ground. Such a network is called an R-T-C tree. In some cases, there are loops among
the resistors and the folating wires of the transmission lines. In this case, it is called
an R-T-C mesh. R-T-C trees and meshes are called R-T-C networks or transmission
line networks in this paper.

Many papers dealing with the analysis of transmission line networks have been pub-
lished in recent years [2-8), and most of them provide time-domain simulation mthods
for such networks. However, It is time consuming to estimate signal delay based on a
time-domain simulation during the design process especially when an optimal design
of interconnects is needed. A more efficient way to do delay estimation is to use the
moment matching technique. After computaion of the moments of an output signal,
the waveform of the signal can be approximated by using the moment matching tech-
nique and the delay can be estimated. The first moment of a node voltage is called
its Elmore delay and is a good estimation of its signal delay when its waveform is

monotonic or nearly monotonic. The formula of Elmore delay of RC tree and mesh



networks is well known [9, 10] and is widely used in the optimal design of interconnects
[12, 13]. However, there is no known simple formula for the Elmore delay of transmis-
sion line networks, not mentioning to those of higher order moments, which are needed
for the dealy estimation when waveforms are nonmonotonic due to the reflection at the
terminals of the transmssion lines.

In this paper, we study the computation of the Elmore delay and higher order
moments of the node voltages of an R-T-C network. We first model a transmission
line by n uniform sections of RLC network and transfer the R-T-C network into an
R-L-C network. We provide simple formulas to compute the Elmore delay and higher
order moments of the R-L-C networks. We let n — oo to evaluate the contribution
of a transmission line to the moments exactly. From the analytical results, we form a
lumped moment matching model with a finite number of sections for the transmission
line. When transmission lines in an R-T-C network T is replaced by their p-th order
moment matching models, a p-th order moment matching R-L-C network 7" is formed
such that the moments of the node voltages in T are exactly the same as those of
the corresponding node voltages in T up to the order of p and the computation of
the moments can be implemented by using the lumped R-L-C network. The delay
estimation is then done by the computation of the propagation delay of the transmission
lines and the rising delay based on the moment matching techniques.

We derive all the formulas from a typical transient process: the network is initially
in zero-state and excited by a unit step voltage source. The results are the same in
another typical transient process: the network is initially in an equilibrium state with
all the capacitor voltages having the same value, all the branch currents equal to zero
and the input terminal is connected to ground at ¢ = 0.

This paper is organized as follows. In Sec.2, we review the definition of moments in
both frequency and time domains. In Sec.3, we present a formula to compute Elmore
delay in an R-T-C tree and an R-T-C mesh and provide simple first order moment
matching models of a tra.nsﬁﬁssion line. In Sec.4, we provide a simple recursive formula
to compute higher order moments of all the voltages in an R-L-C tree with linear time
complexity and a general recursive formula for an R-T-C mesh. In Sec.5, we analyze

the contribution of a line to the moments and present a p-th order moment matching



model of a transmission line. In Sec.6, we provide a delay model of the R-T-C network.

The comparisons between our method with other methods are givien in Sec.7.

2 Basic concept of moments

In this section, we review the definition of moments for the use in the following sections.

Let vin(t) be the input voltage of a linear network, v;(¢) be one of its output voltages,
Vin(s) and V(s) be the Laplace transform of v;,(¢) and v;(t) respectively; then, H;(s) =
Vi(s)/Vin(s) is the transfer function and hi(t) = L~'{H;(s)} is the impulse response.

Expand H;(s) in Taylor series in terms of s, we have

H,'(S) = H:(O i '];":1'£ |a=0 sj (1)
=1J

and the j-th moment of h;(t) ( > 0) is deﬁned as

mi = Sl o @)

where HU)(0) = d?H(s)/ds’ |,=0. From this definition, we have
Hi(s) = Y (=1Ym] = m{ —mls + m?s® = m¥s® + ... (3)
=0
When v;(t) is a zero-state unit-step response, h;(t) = v;(t), and Hi(s) = [5° v;(t)e~*!dt.
Expand e~* into Taylor series of s,
Hi(s) = }_j W / tiv:dt 4)
Jj=0 '
and we have
. 1 oo .
. 3y
= /0 t5;dt (5)
Eqgs. (2) and (5) are two equivalent definitions for the moments: one from frequency
domain, and the other from time domain. When dealing with R-T-C trees, we use the
definition from time domain; and when dealing with R-T-C meshes, we use the one
from frequency domain. Although an R-T-C tree is a special case of an R-T-C mesh
and the methods and algorithms for R-T-C meshes are more general than those for

R-T-C trees, the analysis is simpler and clearer in concept and the algorithms are more
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efficient for the trees than for the meshes. Therefore, our discussion will follow the

order of tree first and mesh next.

3 Elmore delay in R-T-C network

3.1 Elmore delay in R-T-C tree

In this section, we first talk about the Elmore delay in an R-L-C tree formed by
replacing each transmission line with a large number of uniform RLC 2-ports, then
present a simple Elmore delay model for a transmission line from which a first moment
matching R-L-C tree can be formed to evaluate the Elmore delay of the original tree
exactly and efficiently.

3.1.1 Elmore delay in R-L-C tree

Def.1

An R-L-C tree is a special kind of RLC network, where the resistors and inductors
are floating from the ground and form a tree, the capacitors are connected between the
nodes on the tree and the ground, and the input voltage source is connected between
the root of the tree and the ground.

For simplicity, the root of an R-L-C tree T is named r, and the other non-grounded
nodes are numbered from 1 to nr consecutively. Let P; be the path from root r to node
i,and A(2) = {j|j € P(¢),j # i} be the set of ancestors of node i. The nearest ancestor
to node i is called its father and is denoted by 7, and node i is called a son node of node
1. Because of the tree structure, each non-root node has a father, and may have several
sons. The set of son nodes of node i is denoted by S(z). We designate node 1 to be the
only one son node of the root, as if there are many son nodes of node r, the tree can
be decomposed to some trees without interaction. Let D(:) = {j|: € A(j)} and D(:)
is defined as the set of descendents of node i. We denote D(i) = D(i) U{}. Let Ci be
the capacitance connected to node k, R; and L; be the resistance and inductance of
the branch between node k and k, and i be the current flowing from node k to node

k. Then, from KCL, it is known that



k=3 Cji; (6)
JED(K)
For any pair of nodes i and k, let Py = P, P, be the common part of P; and P

and R;;. and L;; be the total resistance and inductance on path P;. The component
of the voltage drop from node r to node i contributed by the capacitance current Cyv;

i8 RixCiVi + LixCi iy, and the voltage drop from the root r to node i is

vr — vi = 9_(RikCirti + LixCiiir) (7
x

where the sum is taken over all the nodes from 1 to ny.

The Elmore delay of node voltage v; is defined as its first moment, i.e.,

Tp; = Lwtégdt= /o°°(1-v.-)dt @)

Note that v, = 1 when ¢t > 0. Substituting Eq.(7) to Eq.(8), we have

Tpi = Y _(RuCr(vi(00) — vk(0)) + 3 (LinCi(vx(00) — 9:(0)) (9)
k k

According to the assumption that the circuit is in zero-initial state, so vx(0) = 0
Vk. When ¢ — oo, vx — 1 and v — 0. For any node k # 1, as v, vg and v; of any of
its son node j and the inductance currents are all zero at t=0, so the current Ciyt3=0
at t=0. For node 1, if L; = 0, then L;; = L, = 0 and the term L;;9,(0) = 0; and if
L, # 0, then from the initial zero state assumption, the current in L, is initially zero

and so 9;(0) = 0. Therefore, we have

Tpi =) RuCi (10)
x

Remarks.

1. The Elmore delay of an R-L-C tree T is the same as that of an RC tree T' obtained
by shorting all the inductances in T} i.e., the inductance plays no role in Elmore
delay. The physical meaning of this result can be explained roughly as follows.
Consider v; of an R-L-C tree T and the corresponding # in the RC tree . The

voltages of the inductances on path P; contribute to the voltage drop v, — v;.
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When t & 0 the currents through these inductances go up, the voltages on these
inductances are positive which make v;(t) < i(t). When ¢ — oo, the currents
through these inductances go down and their voltages become negative, which
make v;(t) > 9;(t). As Elmore delay can be regarded as an average of the signal
delay, these two opposite factors compensate each other and the inductances do

not have any effects on it.

2. The contribution of each capacitance Ci to Tp; is RixCi(vi(00) — vx(0)) =RirCs,

i.e., the waveform of v; has no effect on Tp;.

3. If the R-L-C tree is initially in equilibrium state with all the node voltages equal to
1 and all the currents equal to 0 and the input node r is connected to ground, then

the Elmore delay of this discharging process is the same as expressed in Eq.(10).

4. In the interconnects of printed circuit boards, in order to match the transmission
lines with their loads, some resistors may be connected between the flaoting RL
tree and the ground. The moment computation of such networks is described in

Appendix F.

3.1.2 Elmore delay model of transmission line

Now we consider the Elmore delay Tp; of v; in an R-T-C tree. For a transmission
line TL with total resistance R, inductance L and capacitance C, let its two floating
terminals be ¢, and ¢; and let ¢, be an ancestor node of ¢, when TL is embedded in an
R-T-C tree. We first model it by n sections of I'- typed two port as shown in Fig.1,
designate the internal nodes to be 1,2,...,n —1,¢; = n and let LL = {1,2,...,n}.

The contribution of such a line to Tp; is as follows.

1. Case 1. TL is not on path P.. In this case, R has no contribution to R, and the
contribution of the capacitances is RiCy + RixCa + ...+ RiC, = RiC, i.e., the

transmission line acts as a lumped capacitance C.

2. Case 2. TL is on path P,.. In this case, for any k such that TL is on Py, R
is a part of R;. For any C; connected to the subtree rooted at node t,, the

R plays a role as a lumped resistance. Now consider the contribution of the
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capacitances in the model of the transmission line. Their contribution to Tp;

becomes T = Yserr RitCi with Rix = Ry, + kR/n, so that

n+1
2n

k_C
T= 2 (Rglg‘ <+ ";R); = RglglC <+ RC (11)

keLL

and 7 = Ry,,,C + & when n — oo. It can be seen from this formula that 7
consists of two parts. For the first part R, , C, TL acts as a lumped capacitance
C, and for the second part RC/2, it acts as a lumped resistance R connected

between nodes ¢, and ¢, and a capacitance connected at node t,.

Based on the above discussion, for Elmore delay in an R-T-C tree T, a transmission
line with parameters R,L and C can be modeled as a simple IT -typed RC 2-port
shown in Fig.2a or a T-typed RC 2-port shown in Fig.2b. Such a model is called the
Elmore delay model or first-order moment matching model of the transmission line.
By replacing each transmission line with its 1-st order moment matching model, an
R-L-C tree is formed so that their corresponding node voltages have the same 1-st
order moment as those of the original tree T. Such an R-L-C tree T is called a 1-st
order moment matching tree of the original R-T-C tree T. Thus, the Elmore delay
computation is performed by using 7' with an order of computation time O(r) as will

be described in the next section.

3.2 Elmore delay in R-T-C mesh

In this subsection, we generalize the results for an R-T-C tree to an R-T-C mesh. In
contrast to the method used in the previous subsection, here we will start from the
definition of moments in frequency domain rather than in time domain as we will not

have the simple formula like Eq. (7).

3.2.1 Elmore delay in an R-L-C mesh

Def.2
An R-L-C mesh is another special kind of RLC network. The resistors and induc-

tors are floating from the ground and form a mesh (i.e., there are loops among these



elements), the capacitors are connected between the nodes in the mesh and the ground,
and the input voltage source is connected between a node on the mesh and the ground.

As in the case of an R-L-C tree, let r be the source node. We denote N as the
floating RL network with ny nodes connected to capacitors as its terminals and r as
its reference terminal. Thus, N is an ny + 1-terminal RL network. Suppose its open
circuit impedance matrix is Z(s) = [Z(s)]. When N is connected to the capacitors
and the voltage source, the input current entering node k is —sCyVi(s). For each node

i,

Vi(s) = Vi(s) = = Y Zie(s)sCrVi(s) (12)
k

and the transfer function H;(s) = Vi(s)/V.(s) becomes

H;(s) =1- ZZ;k(S)SCka(S) (13)
k

Expanding Z;(s) and H;(s) into Taylor series:

Zik(s) = Zu(0) + f: ‘le—J%:k?(s—) ls=o & (14)
ot ds
and
Hi(s) = Hu(0) + 3 (~1)imis’ (15)
=1

from the above three equations, it can be seen that
Tpi=m! = zz;k(O)Cka(O) (16)
k

Note that when s = 0, N becomes a resistive ny + 1-terminal network with open circuit
matrix R = [Ri]. Therefore, Z;:(0) = Rir. As N is a connected network, each element
of R is finite. Also,

H(0) = 77y = lim 75 = Jim wit) = (a7

Therefore, we have

Tpi = )_ RuC: (18)



Eq. (18) is the same as Eq. (10). However, now Ry cannot be computed simply as
in the case of an R-L-C tree, and it takes O(n®) time to compute all the R;’s in the
general case. Also, it is worth mentioning that formula (18) is the same as in RC mesh
case.

Remark.

Sometimes, there are floating capacitors in network V used as accelarate capacitors;
meanwhile, there is at least one dc path from the source node to each other node in

N. In this case, the open circuit resistance matrix R exists and Eq.(18) is still valid.

3.2.2 Elmore delay model of transmission line for R-T-C mesh

In this subsection, we will prove that the Elmore delay models for a transmission line
derived in Sec.3.1.2 for R-T-C trees are also valid for R-T-C meshes.

As in the case of an R-T-C tree, we first consider the contribution of a transmission
line T'L to the Elmore delay Tp; in an R-T-C mesh. From the definition of Ry it is
known that for any pair of (7, k) such that they are not internal in the transmission
line TL, the contribution of T'L to R is determined by its total resistance. Therefore,
when T'L is replaced by its Elmore delay model, all such R;i’s remain unchanged. Now
we consider the contribution of the capacitance of TL to Tp;. There are two cases as

follows.

1. Case 1. TLis a cut of N.

In this case, when T'L is removed (open circuited) from N, N is divided into 2
separate parts N; and N,. We assume that node r and node ¢, are in N; and node
t2isin N;. In the case that node ¢ isin NV, , for anode k € LL Ry = R;;, and the
total contribution of the line to Tp; is Xierr RixCi = Riy, Yrerr C/n = Ray, C.
Therefore, TL acts as a lumped capacitance C. In the case that node i is in N,,

for each node k € LL, let Ry = kR/n, then it is easy to show that

Rl'k = R!ltl + Rk (19)

(See Appendix A.1 for the proof). Therefore, the contribution of the line to Tp;
by the part of Y icrr RikCk is
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n+1

——R€ (20)

n R C
S (R, + k;)"'{ = Ry, C +
k=1

which becomes R;,,C + 3 RC when n — co. This situation is the same as Case
2 of an R-T-C tree. As each transmission line in an R-T-C tree forms a cut
for the network N, and it can easily be understood that the model applied to a
transmission line in an R-T-C tree can be applied to a cut transmission line in an

R-T-C mesh, too.

. Case2. TLisnotacut of N

In this case, in order to evaluate the contribution of the line to Tp;, we derive a
formula relating Ry, , Ry, and R for the k-th internal node of the transmission
line model k € LL. Let Ry = kR/n and R, = (n — k)R/n be the total resistance
of the model between nodes ¢;, k and k, ¢, and N be the remaining part of N as
shown in Fig.3. As the branch made of R and R do not form a cut in network N,
N is connected and its open circuit resistance matrix R = [fzik] exists. Then, we

have the following lemma for Ry.

Lemma 1.
Ry = A1(7) + Bi(i)Re = A2(2) + Bz(i)Rk (21)

Let R, = Ryy, + Ry, —2Ryy1,, then Ay (1) = Riyy +(Rit, — Rit,)(Reyt, — Ruyt) | (R, +
R), Bi(i) = (Ra, — Rir,)/(R,+ R), Aa(i) = Riy + (Rit, — Rity)(Ruye, — Reyy)/(Ro +
R), and B, (i) = (Riy, — Rir,)/ (R, + R) (See Appendix A.2 for the proof). Note that
the coefficients A,(z), B1(z), A2(¢) and B,(i) are independent of node k. In the
case Ry = 0, Ry = Ry, = Ay(?) and in the case that By = 0, Ry = Ry, = A(3).

Therefore, we have
R‘-k = Ritg + B](i)Rk = R{t: + BZ(z)Rk (22)

From Lemma 1 it can be seen that the contribution of the line to Tp; by the part
of Yrerr RikCy is

R.C n+1l_ .

o) = Ry, C + TB;(z)RC (23)

g(Rax +kB() D)
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which becomes R;;,C + %B,(i)RC when n — co. Also, the contribution can be
expressed by R;;,C + 3B,(i)RC. Now consider the case that the transmission
line is replaced by its Elmore delay model. By applying Lemma 1, it can be seen
that when the II-typed model shown in Fig.2a is used, the contribution becomes
Ri,C/2+ (R, + Bi(i)R)C/2 = Ryt,C + 1 B, (i) RC; and when the T-typed model
shown in Fig.2b is used, it becomes (R, + By(i)R/2)C = R.,C + 1By(i)RC.
We can also prove that the contribution by either the model can be expressed as
Rit,C + }B,(i)RC. This proves that the models shown in Fig.2 are also valid for

the use in R-T-C meshes .

4 Computation of higher order moments

4.1 R-L-C tree case

In this section, we extend our method of moment computation from the 1-st order
to a higher order. The method for the computation of m? for a node voltage v; on

an R-L-C tree T is based on Theorem 1 with the proof shown in Appendix A.3.
Theorem 1.

The p-th order moment m{ of node voltage v; can be expressed as

mf =Y (RaCim}™" — LyCim}~?) (24)
x

where for any k, m$ and m;! are defined as 1 and 0, respectively.

Theorem 1 suggests a recursive formula to compute the moments from order 1
to an order p successively. From Eq. (24) we derive a formula relating the p-th
order moment of a node k with the p-th order moment of its father node % as
described in Theorem 2. Theorem 2 is useful not only in the derivation of a linear
time complexity algorithm for the computation of all the p-th order moments of
an R-L-C tree, but also in the derivation of a p-th order moment matching model

as will be shown in the next section.
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Theorem 2.

Let k be the father node of node k, R and L; be the resistance and inductance
of branch (k, k) and C}, = ¥ ;ep(r) ™;Cjy then

m} = m§ + RCE! — LiChe’ (25)

The proof is shown in Appendix A 4.

From Theorem 2, we suggest a recursive algorithm to compute the p-th moments
of all node voltages on an R-L-C tree with linear time complexity O(r). The
algorithm is similar to that given in [15] and consists of 2 recursive processes:
findCr(k,p) used to find the C7., from the leaves upwards to the root and
moment(k,p) used to find the moments from the root of the tree downwards

to its leaves, which are described as follows.
Algorithm 1: findCr
findCr(k,p)
{ Ch = miCy;
if k is not a leaf node
for each node j € S(%) do
Chit+ = findCr(j, p);
record C%, and return(C%,); }
}
Algorithm 2: moment(k,p)
moment(k, p)
{if k is the root
m} = 0;
else

mf = mi + RkC:’;-;] - LkC;-Iz;

13



record m};
if k is not a leaf
for each j € S(k) do
moment(j,p);

return; }

}

4.2 R-L-C mesh case

In the case of an R-T-C mesh, from Eqs.(13), (14), (15) and (2), we have

Theorem 3. The p-th moment of node voltage v; in an R-L-C mesh can be ex-

pressed as
P=l 9y . , p=l(_ 1y . .
mi =2 Ci) (—-,—)-R.’kmi’."“ =3 ( .,) Y CiRimi-! (26)
k =0 J° =0 J* %

where R}, = d/Z;(s)/ds’ |,=o.

This is a recursive formula for the p — th moment m? which is based on all of the
moments from order 0 to order p — 1. If we denote R}, by L, then for p = 2,
Eq.(26) becomes the same as Eq.(24). In the general case, for p > 2, Eq.(24) for
an R-L-C tree is simpler than Eq.(26) for an R-L-C mesh . This is because in the
tree case Zix(s) = Rix + sLix and R = 0 for j > 1.

To use formula (26) , we need to compute the derivatives R/ = d?Z(s)/ds’ |,=¢ of
the matrix Z(s), which can be done recursively as follows. Let Y, (s) be the nodal
admittance matrix of network N with node r taken as a reference, then Y,,Z = I,
where I is an n X n unit matrix. Differentiate both side of the above equation

w.r.t. s, wehave Y}Z + Y, Z! = 0, so that

Z' = —ZY}Z |;zo= —RY! |,=0 R (27)

In the general case, we have the following formula to compute the k-th derivative
of Z(s):

14



k-l . . .
R* = d*Z(s)/ds* |,u0= =R Y. CiY*~iRS (28)

Jj=0
where C{ = k!/5'(k — j)!.

5 Moment matching model of RLC transmis-

sion line

Def.3

An RLC line is a special kind of RLC tree such that each node has at most one
son node. Note that an RLC line is a lumped circuit which is different from an

RLC transmission line.

Def.4

An RLC line T'L is called a p-th moment matching tree (mesh) model of an RLC
transmission line T'L iff for any R-T-C tree (mesh) where T'L is embedded, when
TL is replaced by T'L and a new tree (mesh) 7" is formed, for each output node
voltage v; in T and its counterpart ; in T, their moments match each other up

to the order of p.
Def.5

If each RLC transmission line in an R-T-C tree (mesh) T is replaced by its p-th
moment matching tree (mesh) model, the resultant R-L-C tree (mesh) T is called

a p-th moment matching model of T.

The purpose of finding a moment matching model of a transmission line is to form
a moment matching model of an R-T-C tree (mesh) with a minimum number of
nodes so that the computation of the moments of the node voltages can be done
efficiently. Note that from Def4, a p-th moment matching tree (mesh) model
of a transmission line is valid in the use of any R-T-C tree (mesh) under any

termination conditions.
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5.1 R-T-C tree case
5.1.1 Contribution of a transmission line to moments

As in Section 2, we derive the moment matching model of a transmission line TL

from its contribution to the moments m? of any node voltage v; on the R-T-C tree
T where TL is in.

Case 1. TL is not on path P..

In this case, R and L has no contribution to R and L for any node k. For any
node k € LL, Ry = R;y,, Ly = Ly, and the contribution of the capacitances to

m] is

n

Z R,-kam{."l - 2 L,‘kami-z = [l Z m{'l]CR.-t, - [l Z mi_2]CL.'¢, (29)
k=1 k=1 n N1

k=1
We denote
= Jim > (30)
i=en k=1

and
then

A, E(R"‘Ckmi-l — LiCikmi™®) = Ry, VI-' — L, V-2 (32)

k=1

and the function U7 characterizes the contribution of the capacitances in the
transmission line T'L to the moment of node voltage v;. It can be seen that for
j=0, U° = 1 and V" is simply equal to C, the total capacitance of the transmission
line; and for j > 1, U7 is the average of the j — th order moments of the voltages
on the line.

Case 2. TL is on the path of P,.

In this case, the whole node set of the R-L-C tree is divided into three subsects:
L ={k|PuCP,},I={k| P DP,},and I = LL. For any node k € I, the
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transmission line 'L has no contribution to R;x and L;. For any node k € I; and
the term R;;,Ckm{'l - L;kam{'z, the parameters R and L of the line become
- a part of R;x and L, respectively, and the line plays a part as a lumped series
connected branch with a resistance R and an inductance L. Now we consider the

case that k¥ € LL. The total contribution of the line can be expressed as
B = T2 (RaCim]™" — Ly Cymi™?).

Note that Rix = Ry, + £R and Ly = Ly,s, + XL, so that we have

) co . c> . C n . n -
B! = Ry, =Y m{™ = Ly, — Y mi* + —(RY km}™' =LY kmi™?) (33)
Lt n = n k=1 k=1
Let
. . 12 :
Wi = lim ﬁg km} (34)
and
Xi = CW/ (35)
then
B;’ = Rtltlvj-l - Ltltn ‘/j-2 + R.\'j—l - ij-Z (36)

From Egs. (32) and (36), it can be seen that U’ (V?) and W7 (X7)are the two
functions characterizing the contribution of the capacitance of a transmission line

TL to the moments of a R-T-C tree T where T'L is in.

Example 1. We consider the contribution of an RLC transmission line to a second
order moment m?, which is described by the functions U®°, U, W° and W!. It
is easy to show that U° = 1. Let m} be the first order moment of v, and
C1i = iepi,) Cks then U, WO and W? can be expressed as follows with the
derivation shown in Appendix C.1.

1

U1=m“1-l-2

RC + %RC (37)
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1 & 1
WO = = i
and
wi=1m 4 lpc, 4 3
= 3™y + 3en + iRC (39)

5.1.2 Formation of moment matching model of transmission line

A p-th moment matching model of a transmission line T'L is generally an RLC line
shown in Fig.4. Let r be the number of sections in the model. In addition to the
terminal nodes t; and ¢,, there are internal nodes s, s3, ..., 3,1, and we denote
so = t; and s, = t;. The capacitance connected to node s; is denoted by C,,
and the resistance and inductance in the branch between s;_; and s; are denoted
by R,; and L,;, respectively. From Sec.4 and Sec.5.1, it is known that the RLC
line is a p-th order moment matching model of T'L iff the following conditions are
satisfied.

(a) Condition 1:

r

z; R,=R (40)

(b) Condition 2:
i;L,,. =L (41)

(c) Condition 3:
zr(:) Cymi, = CU’ (42)

for j =0,1,...,p — 1. Note that when j = 0, this implies 7_, C,, = C.

(d) As described in Case 2 of Sec.5.1, the contribution of the total model to the
moment m} with P D TL will be Bf = T7_(Ry,s,Comi? — Lyyp,Comi™?).
Note that Ry, = Ry, + Tizy R, and Ly, = Ly, + T, L, , we have

B} = Ry, Tieo Comiy? = Lyyy, g Coii?
+Xiy They R Comdy = 0, Thy L, C,mi2
Compared this expression with the expression of B of Eq.(36) under condition

3, we have two more conditions:
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Condition 4;

35" R,,Comi, = CRW? (43)

i=1 k=1
for j=0,1,...,p—1, and

Condition 5:
r 4

Y Y L,,Comi, = CLW? (44)

=1 k=1
for j=0,1,...,p—2.

Let ax = R,,/Rfor k =1,2,...,r. Compared (44) with (43), it can be seen that if
aset A= {a1,0a,...,a,} is found to satisfy (40) and (43) for j = 1,2,...,p -1,
we can always choose the parameters of the inductances such that L,, = axL
(k=1,2,...,r) to meet with the conditions (41) and (44) for j = 1,2,...,p— 2.
Therefore, we only need to consider conditions 1,3 and 4. Let 8 = C,;/C and

@1; = Yh_; &, then these conditions can be expressed in terms of the a’s and f’s

as follows:
Za; =1 (45)
=1
> Bimi, =U’ (46)
=0
and
ZQI;ﬂ;m{i = Wj (47)

i=1

for j =0,1,...,p—1.

The above equations form the constraints to the parameters of a p-th moment
matching model of an RLC transmission line. There are 2p + 1 equations related
to these parameters. So, r, the number of sections of the model, is at least p.
However, as can be seen from Example 1, for j = 1, each of the U? and W?
consist of 3 terms with the first related to m,,, the second to Cr; and the third
to the parameters of the transmission line R and C. In order that the model be

compatible to any terminations, the corresponding coefficients represented by the
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model should be the same as those of the original ones. Therefore, we have more
than 2p+1 constraints in the general case. In fact, we have found that the number
of constraints is 3p and r = |3p/2] in these cases. This conclusion is proved in

Appendix E.
Example 2.

A second order moment matching tree model of a transmission line is shown in
Fig.5a with the parameters a; = 0.20718, a; = 0.61908, a3 = 0.17375, B =
0.54051, B; = 0.45919 and B = 3.9019¢ — 09 ~ 0. When the line is unloaded, the
model can be simplified to that shown in Fig.5b with the parameters a; = 1/4,
a; = 3/4, fo = 0, By = 2/3 and B, = 1/3. The derivation of such models is
described in Appendix C.2.

5.2 R-T-C mesh case

As in Sec.3.2.2, here we consider two cases for a transmission line TL with total
resistance R, inductance L and capacitance C embedded in an R-T-C mesh. Note
that in either case, as long as the total resistance and inductance of the model
of TL remain R and L respectively, for any pair of nodes ¢ and & not being the
internal nodes of the model, Z; remains unchanged when TL is replaced by its

model.

5.2.1 Case 1. TL is a cut of the resistor-transmission line network N

In Theorem 2, a relationship between the p-th moment of a node voltage v; and
that of its father node vy is established. In an R-T-C mesh, there is no farther
and son relationship between neighbour nodes. However, if a branch between two
nodes k and k with an impedance Z; = R; + sL; from a cut of the R-L mesh N,
we will get a similar result. In this case, let N; and N, be two subcircuits after Z;
is cut, and suppose that nodes r and k are in N, and node & is in N,. Then, it can
be shown that for each i € My, Zy = Zg, and for each i € Np, Zy = Z + 2. If

we denote CT, = Yxen, Cimy, then it is easy to show that Theorem 2 still holds.
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From this result, it can be shown that the p-th moment matching tree model of
the transmission line is valid for the use in a mesh. The proof will follow the same

way as stated in Sec.3.2.2 and is omitted.

5.2.2 Case 2. TL is not a cut of N

In the case that TL does not form a cut, suppose that it is modeled by n sections
RLC 2-port with parameters r;, |; and C;, ¢ = 1,...,n, where z; = r; + sl; is
connected between nodes ¢ — 1 (or ¢; when ¢ = 1) and node ¢ and C; is connected
between node ¢ and the ground. As in Case 2. of Sec.3.2.2, for each node k € LL

and i € N, we have
Ziy. = Ar1(2) + Bi(1) 2k = A2(3) + Bz(i)zk (48)

where Zy = $°%, 2, = Re+sLe with Ry =S¥ rjand Ly = 5, 1;, 2o = 2 - 2,
with Z = Z, = 21+ 22+ ...20. Let 2, = Zy0, + Ziye, — 2201, then A, (i) =
Zi, + Zity = Zi) )2y, = 20,,)/(Zu + Z) \Bu(3) = (Zi — Zit)) /(20 + 2), As(i) =
Z.‘t-.. + (2.‘:. - Zit-.- )(tht: - Zt,t. )/(2, +Z) and By(i) = (Z-'u - Zilz)/(za +Z). Note
that coefficients A and B are functions of s. When k = t, Z; = 0, 4,() = Z,,
so we have Zy = Z;, + Bi(i)Zi. Also, when k = t3, Z; = 0, Ay(i) = Z,,
and we have Zy = Z;;, + By(i)Z;. Now we use the first expression. Note that
(B1()Zk)) = By(i)U) Ry, + jBy(i)9-VLi. Then, from Eq.(26), the contribution
of TL to mf is
p-

B? 2( I)JER ’-’-le

J=0

p-1 J n ,
= ( 1) R‘,’,l Z mi_’-ICk-!-

= J! k=1

( 1) (5) p-j-1
Z B (z)z:m CkRk—
=0 !
p-2
Z( —1Y poi) Zm""‘ICkLk

=0
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Substitute Ry = kR/n, Li = kL/n, Ci = C/n into the above expression and let

n — 0o, we have

Z( 1) R(J)vp-:-l_l_ E ( 1) B(J)( )RXp-J-l Z( ]l) B(J)( )LXp-J—2
=0 ‘ J=0 ‘ =0 *
: (49)

This equation is a generalization of Eq.(36). It can be seen from the equation that

the functions U and W still characterize the contribution of TL to m?.

In order to use the above equation to derive the moment metching model for the
use in an R-T-C mesh, we need a formula relating m? (i € LL) to m{'l similar
to Eq.(25) in the tree case. Let P = 1/(Z + 2,), Q = (Zi4, — Z0,0,)/(Z + 2.)
and CPy = Tiep Ck Theo S Ba(K)Imf 7 | the formula is as follows with the

derivation shown in Appendix B.

P=mf + R.C”' - L; C”'2 + 2 Ci(Rimb™! — Lkmp’2)+

«[PYRR;+jPU-V(R,L;+R; Lk)+](‘7 )P(""’)L L+ QUIR4+5QU-V L, (50)

This formula can be used for the model formed by a large number (n — o0) of
uniform RLC sections or by a finite number of nonuniform RLC sections. In the

first case, we have

m? = mf, + —(RCP — LCr) + (Z kmiTl i 30 miT)-
! ''n TN k=1 k=641
Lc ¢ -2, v p-2) RC o)  DG-1)71; % p-j-1
—= ki Y m z = —(PY'R+;jPU-DLY Y kmi~ "'+
k=1 k=i+1 J=0 k=1
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n

+I;—Sj(P"'")R+ 2 ; 2 pU-aL); 3 kmp? +%(Q(5)R+jQ(j“’L)i 3 mp)
k=1 k=1
(81)
Example 3.
Consider the case that p = 1. In this case, CR.o = ¥, . Cx = Cpg and
1ot 42 RC i B8 _ ipep i
m; =m, + nRCTN+ — (ne 2 + 2) an CcP nQRC
Let n — oo, then we have
Lo, 1 1 1, 1
U'=ml + =RCy4 + =RC — ~R!CP — ~QRC (52)
2 3 4 2
and
W' = 2m} ++RCpy + —RC — LR2CP - LQRC (53)
2 1T 3TN T o 6 3

Compared these equations with Egs.(37) and (39), it can be seen that the coeffi-
cients for the first three terms are correspondingly equal. Also, from the expression
of m}, it can be understood that in U? the coefficients of —QRC are the same
as that of RCry and the coefficient of —R?CP is just one half of it. A similar
situation happens in the expression of W!. This means that these coefficients
do not set independent constraints and can be neglegted, and we can understand
that the equations used to determine the parameters of the 2-nd order moment
matching model for a mesh will be similar to those for a tree. However, in the
case of a tree, node t, is an ancestor of node ¢, and we have seen that the model
is dissymmetrical. In the case of a mesh, no difference can be told between nodes
t; and t;. Eq.(50) is derived w.r.t. node ¢,, and a similar formula can be obtained
w.r.t. node ¢;. In order that the model be fitted with the constraints given by the
two equations, the moment matching model should be symmetrical. It happens
that the 1-st moment matching model is symmetrical, so it can be used in both a
tree and a mesh; but for a higher order moment matching model, the one used in

a mesh will be more complicated than that used in a tree.

Example 4. A 2-nd order moment matching mesh model.
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The circuit of the model is a symmetric 2-port as shown in Fig.5¢c with a; =
0.24283, a; = 0.25623, B = 0.10275, B; = 0.26222 and B, = 0.26862. The

derivation is shown in Appendix C.

6 Delay model of R-T-C network

Let d; be the signal delay of node voltage v; w.r.t. the input voltage v,. In an
R-T-C network, d; consists of two parts: the propagation delay d;, and the rising
delay d;, as shown in Fig.6.

6.1 Propagation delay

The propagation delay d;, of v; is caused by the propagation time of the trans-
mission lines in the network. For a transmission line with total inductance L and
total capacitance C, its propagation time is 7 = /IC; i.e., any change of signal
at t=0 at one port of the line will cause the change of signal at the other port only
after ¢ = 7. Therefore, in an R-T-C network, when a step excitation is applied
at the source terminal, it takes 7; = d;, to propagate to node i, and in the time
period t € (0,d;;] v; stays at 0. When the path from node r to node i is relatively
long, d, becomes the main part of the signal delay of v;.

Given an R-T-C network T, The propagation delay d;, for each node i can be
found by using a graph G(V, E). In the graph, vertex i in V corresponds to node
1 in T, and each edge e;; =< ¢,j > corresponds to a branch between nodes i and
j in T. H this branch is made of a transmission line with a prapagation time 7;;,
the distance of edge e;; is defined as 7;;; otherwise, if it is made of a resistor, then
its distance is defined as 0. Then, the propagation delay d;, from the source node
r to any node ? is equal to the distance of the shortest path between vertices r

and ¢ which can be found by using the famous Dikstra algorithm [21].
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6.2 Rising delay

To compute the rising delay d;, of v;, we use the moment matching technique.

Suppose that the transfer function of node i is Fi(s) = Vi(s)/V:(s) and its prop-
agation delay is d;,, then F(s) can be expressed as F;(s) = H;(s)e~%»°. Let
ui(t) = L~Y(H;(s)/s), then v;(t) = u(t — d;p) and the rising delay d;, can be
determined by using u;(t).

We find an approximation #(t) of u;(t) by approximating H;(s) by a rational
function H;(s) such that H;(s) is a p-th order Padé approximation of H;(s) at
s=0, i.e., their moments match from order 0 to order p. Given the moments m;i,
of function Fi(s) for j=0 to p, from the definition, H;(s) = e%»*F;(s), and the

moments m} of H;(s) can be found by using the following formula:

PR AN o Y Ay

ml = ,:Z%Tm"’ di, (54)
Let H;(s) be expressed as B(s)/A(S) = (bpns™ + bn_1s™ ... + bys + bo)/(s" +
an18™ 1 4+ ... 4+ a18 + ap) . We need 4;(0) = u;(0) = 0, which implies that
lim,otii(t) = lim,enoo(sU;(s)) = lim,_.oH(s) = 0. Therefore, m < n. We choose
m=|(p—1)/2) and n = [(p+1)/2]; i.e., when p = 2k + 1 is odd, m = k and
n=k+1, and when p = 2k iseven,m = k—1 and n = k + 1. In order that
H(s) be a p-th order Padé approximation of H(s), the first p + 1 coefficients of

the Taylor series expansion of H;(s) should be the same as those of Hi(s), i.e.,

bns™ + b,,.-;s'”"‘ oot b13 + bg
S"ta, 18" 1+...+a18s+ap

=1-—mls+mis?— ...+ (=1)PmPsP +...

and we have

[ A B ] z=C (55)
where

x=[ao @y ... Gy by b ... bn ]' (56)
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Aisa (p+1) X n submatrix such that

-1
m)} -1
A=
(=1)"mi=t (=) 'mPm? (—1)tmP L m}
(-1)™mp  (“1)PmPt (<1)tmp? —m}
(1)PHmP  (“1PmE (—1pimEE L (—LpmdmpnHE (_p)p-nidpmpen
| (57)
Im 1)x{(m
B = | Jmtnxemin) (58)
0mt(m+1)

where J(m41)x(m+1) i @ unit matrix, and Opy (m41) is 2 zero element matrix, and
t
C= [0 e 001 —m}! m? ... (=1)p"mP" ] (59)

Solving the above equations, we get the coeflicients a’s and b’s. Let the n roots of

A(s) be denoted by py, pz, ..., Pa. Then, Ui(s) = H;(s)/s can be expressed by

1 n kj

U=-+ 60
W (60

where k; = B(p;)/p;A'(p;), and u;(t) will be approximated by
4(t) =14 ) kjePs* (61)

)=1
Given any voltage level 0 < V;;, < 1, the rising delay d;, can be found by solving

the equation
n
2 kjepid" =Vin-1 (62)

j=1

and the signal delay d; = d;, + d,.

We give three examples to illustrate our method. In these examples, Vi, is set to
0.5, dip , di; and d; are the propagation delay, rising delay and total delay of node

voltage v; computed by using our method, d; pice is the delay obtained from the
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d, dy d | dpi 5
v; | 0.23461 | 0.11665 | 0.35126 | 0.33225 | 5.4%
v, | 0.35183 | 0.21733 | 0.52608 | 0.56916 | 7.5%
vs | 0.23459 | 0.11289 | 0.34748 | 0.35770 | 2.8%

Table 1: Delay Estimation of Example 6

SPICE simulation result and é =| d;/d; ,picc — 1 | is the relative error. From these

examples, it can be seen that our model is efficient and accurate for practical use.

Example 5. For the output voltage v, in the interconnect circuit shown in Fig.8,
by using the Elmore delay model, it is found that d,, = 6.5041ns, d;, = 47.836ns,
d, = 54.341ns while d) ypice = 54.165ns, and § = 0.32%.

Example 6. We compute the signal delay of the output voltages v;, v, and v3 of
the interconnect circuit shown in Fig.9 by using a 3-rd order moment matching

model. The results are listed in Table 1 with all the time in unit ns.

Example 7. This is an example of a transmission line mesh shown in Fig.10. The
parameters of the vertical lines are: R = 0.05/mm, L = 0.5025nH/mm and C =
0.1552pF /mm, and the parameters of the horizontal lines are: R = 0.06Q0/mm,
L = 0.548nH/mm and C = 0.1423pF/mm. The length of each line is 30mm [18).
For the output voltage v;, when an Elmore delay model is used, d;, = 0.79478ns,
dy, = 2.6733ns, di = 3.4681ns, dy 4pice = 3.7566ns and § = 7.7%.

7 Conclusion

In this paper, we present formulas and models to compute the moments of node
voltages in a transmssion line network and a delay model based on the moment

matching technique. The main contribution of this paper is the following.

(a) We provide a recursive formula to compute the moments of an R-L-C network.

This formula is especially simple and efficient in the typical case of R-L-C tree
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networks. For an R-L-C tree with n folating nodes, the computation of the
moments of all the node voltages from order 1 up to ord;zr p takes O(pn) time.
In the more general R-L-C mesh case, such a computation takes O(pn®) time.
However, if in the floating network N the number of link branches ! is much
smaller than the number of tree branches n, a more efficient way can be
used to compute the matrices R’ [14] so that the computaion can be done in
O(pln?) time.

(b) We present a p-th order moment matching model of a transmission line em-
bedded in transmission line networks. The model is made of RLC sections and
is either dissymmetric when used in an R-T-C tree or symmetric when used
in an R-T-C mesh. The necessary and sufficient conditions for such models
are derived and the models from order 1 to order 3 are presented. In both
the tree and the mesh case, the number of sections of the model r = O(p)
and r = 1 when p = 1. When the transmission lines are replaced by their
p-th order moment matching models, a p-th order moment matching R-L-C
network is formed such that the moments of the node voltages of the R-L-C
network are exactly the same as the correspoding ones in the original R-T-
C network. Then, the computation of the moments can be implemented by

using the R-L-C network exactly and efficiently.

There are some other known methods to do moment computaion and delay esti-
mation in transmission line networks. The comparisons between our method and

these methods are as follows.

(a) Using a large number sections of RLC network as a model of a transmission

line [16]. Such a model is not only time-consuming but also inaccurate.

(b) Using the model suggeted by [11] to compute the moments. The authors of
[11] suggested a moment matching model for a transmission line under the
condition that the output port of the line is open. Therefore, their model
cannot be accurate for a transmission line embedded in any part of a trans-
mission network. Even in the case that a transmission line is open-loaded,

only an accurate 2nd order model is given there.
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(c) A scattering parameter based mathod to compute the moments is provided in
[17]. It takes O(pn) time to compute the moments from order 1 to order p for
one node voltage, and takes O(pn?) time to compute the moments for all the
node voltages. Therefore, our method is more efficient than theirs. In another
paper [18], the authors provide a method to extract the "time-of-flight” (the
propagation delay) based on the operation on the scattering metrices of each

part of the network, which takes much more time than our method.

(d) Our method is different from AWE [19, 20]. AWE uses the characteristic 2-
port model of transmission lines and computes the moments of node voltages
by recursively solving equations, while ours uses direct computation which
is more efficient for the transmission line tree and mesh cases. If a moment
matching R-L-C tree with n grounded capacitors and n floating inductors is
formed by using our moment matching model and AWE is applied on that
circuit, then AWE forms a set of state equations with 2n variables, and it is
estimated that the computation of all the moments of all the node voltages

is about 8 times slower than using our formulas.

Note that the methods and models presented in this paper can be applied not only
to transmission line networks, but also to distributed RC line networks. Therefore,

they can be efficiently used in the design of VLSI systems.
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A Proof

A.1 Proof of Eq.(19)

In this case, network N looks like that shown in Fig.Al. As Ry = Ry, we input
a unit current to terminal i. By KCL, ¢x = 1. Therefore, Ry; = vx = vy, + v, =
Ry, + R;. Note that if the current is injected directly to node ¢;, v;, Temains
unchanged. Therefore, Ry, = R, and Eq.(19) follows. O

A.2 Proof of Eq.(21)

Using the relation R = Ry, we input a unit current to terminal i as shown in
Fig.A2a. Let v, and R, be the voltage and internal resistance of the Tevenin’s
equvalent 1-port looked from terminals ¢; and ¢, to the left. Then v, = R,-,l - fl.-,,.
For R, , we form the circuit shown in Fig.A2b and split the unit current source as
shown in Fig.A2c, then we have R, = R., t— ﬁ,,,, - (R,,,, —-R,,,,) = ﬁ.,,, +f1‘¢,¢, -
2Ry,. Then, I, = v,/(R, + R) and Ry = Ry = I, Ric + v, = vy, — Riliys,
with vy, = Ry + Liyty(Reye, — Ruy,) and vy, = R, + Ii(Ryye, — Ryyy,). Then
Eq.(21) follows from these equalities. D

A.3 Proof of Theorem 1

To prove Theorem 1, we first prove the following lemmas.

Lemma 2.

lim (1 - vi(t)) = 0

Proof. v; can be expressed as

vilt) =143 Pia(t)e
k

where 6;x > 0 and P, i(t) can be expressed as
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J(i k) _
Pir(t)= Y aipjt'cos(wirt + din)
3=0
so the Lemma follows.

Lemma 3.

‘lj’r‘r,l‘> tPo;(t) =0
Proof.

0i(t) = Tp(Pix(t) — 6ixPix(t))e=%4t, and the Lemma follows.

Lemma 4.

(-
mi~! = “I',IT /0 tPhidt

Proof.

o0 o0 [+ <] 1
/ tPiidt = / tPdv; = tP; | — / poitP=1dt = —plm?-
0 0 o

Lemma 5.

The p-th moment of v; is

m} = (p_—ll_)!/ow tP=1(1 — vi(t))dt

Proof. Let MP(7) = Jg tPvi(t)dt, then mf = lim,_. 5 MF(7). Now
MP(7) = [g tPoi(t)dt = [g tPdvi(t) = TPvi(T) — p Jg tP~ vidt

= TPyi(1) — pJy tP~1dt + p J5 tP~1dt — p fg tP1vidt

= 7P(vi(r) = 1) + pJg P71 (1 — vi(t))dt

Let 7 = oo, by Lemma 2,
M(oo)=p [ 771(1 — ui(t))dt
0
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and

= i P = ; *® p—1 .

= M) = =, /o 1P=1(1 — vy(t))dt
Proof of Theorem 1.

From Eq.(7) and Lemma 5, we have

(P'— 0 Z(R.kck/ tP— lvkdt-l-L:ka/ A ’vkdt)

From the definition of the moment,

p-1
(p—l)'/ tPlopdt =

and from Lemma 4,

p-2

1 o .
WL L vkdt —-my

so the theorem holds. O

A.4 Proof of Theorem 2

Proof.
mf = Z(Rk.-C.-mf" - Lkicim?-z)
and

m§ = 3 (RgCimf™! — Lg;,Cim?™?)

Let the node set I = {1,2,...,n} be divided into 2 subsets I, and I, such that
I = {i| P = Pg;} and I = {i | Pxi D Pg;}. As k is the father node of node k,
so that I, = D(k) . Correspondingly, m® and m}, are divided into two parts with

respect to I; and L,; i.e.,

mh ;=Y (RuCim?™ — Li,Cim?™?)
i€l
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and

" = Z(REOC mp —1 - LE: mp—2)
i€l;

for j=1 and 2. For each ¢ € I}, as Py; = Py, so that Ry, = Rg;, L = Lg; and
mi‘l = mil. For each node ¢ € Iy, Ry; = Ry, Ly; = Lgg, Rii = Ryx + Rk, and
Ly; = Lgg + Li. Therefore,

mia=mp,+ 3 (RiCim?™' — LiCim!™") = mf , + RiCR} — LiCR;’
ieD(k)

and the theorem follows. O

B Derivation of Eq.(50)

The derivation of Eq.(50) is as follows.

For node ¢,

.r' p—j-1 __ P p
=>.C Z Ry, my My + My 2
k =0
P _ p-1 (-1 p-J-l
where m} ; = Tren Ck =0 LV)—R,‘ 0
— - J -1 . . .
and m} ; = Trerr Ce T000 :, R k™M -1, Similarly, for node i € LL, mf =

-1 g—l) -1 -1 (=1)) —j=1
miy+mf, withm?, =3, x Ce T0o RymE ™! and m? 2 = 2keLl Ck Xhoo 7 mp,

Now we abbreviate A4;(k) and B,(k) as A; and Bi. Note that for each k € N,
Zy = Zy i + Bi(s)Z; with Z? = R;, Z} = L, and Z} = 0 for j > 1. Then, we have

mfy —mf | =
=Tken Cr T52b SEBiRim 7~
-Teen Ce T SHSr Bi ' Limf 7 =
= Ri Tyen Cr Tino S Bimy 7=
—L;i Tyen Cr 525 '(:H—Bj Imp=I-2
Let C7' = Tien Cr Thoo %)-B’ m§~71, then we have
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1 4 P p.P-1 r-2
ml',l - m‘hl - R‘CTN - L'CTN
For m}, — m§ ,, we have

p—l

mt,z—ZC (Z

J=0

mE N Za = Zu))

Note that in the above equation, (Z;x — Z,,x)"9) is counted at s = 0. We now derive
the formula for Z;; — Z;,;,. We enter a unit current to node k and let the voltage
at node ¢; and node ¢ be V;, and V;, respectively. Then, Zy — Z,, = Vi — Vi, as
shown in Fig.A3. Let I; and I, be the currents flowing from node k to node ¢, and
from node k to node ¢,, from the equations Vi = Ij(Zk + Zu,1, ) + L2 24,0, = 1(Z2i +
Zie)+hZyy,) and L+ = 1, we have Iy = (2 — Zp+ Zyyg, — 20,0, ) /(2 + 2,) and

= (Ze+2y,0, = Zu,1,)/(Z+2,). Then,when k < i, Vi=V,, = ZiJy—(Zi—Zi)I, =
Zi—-212:/(Z+ 2,) = (Zeyy = 201,) (2 + 2,) Z;; and when k > i, V; =V, = Z:], =
Z{Z-Zk+ 20— 20,,) (24 2,) = Zi= 20 Zi(Z+ 2,) — (Zoye, -z..,,)/(z+z.)z.-.
Let P=1/(Z + Z,) and Q = (24,1, — Z4,1,)/(Z + Z,), then we have

Z.—PZ;Z - QZ; k<i

Zix — Zyk =
Z.' —PZ,'Z]; - QZ.' k>1

Note that (PZ;Z;)V) = PUR,R, + jPU-D(R;Li + RiL;) + &0 PU-IL; 1, and
(QZ)D = QUIR; + jQU-VL; where PU) and QU are defined as 0 when j < 0.
Therefore,

p-1

J
ity = p = 3 S S a1z - 2,009 =
=1

j=0

i n n
Y C(Remf — LimP )+ R Y Gemf' - L 3 Cemi?-

k=1 k=141 k=141
p-l( 1) P-J-l (5) (-1)
- = ZC [PYRR; + jPU-D(R,L; + R:Ly)+
=0 k=1
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+J(J 2- I)P("'z)L;Lk + Q(J')R'. + jQ(i‘l)L‘]

and we have

mf = mf, + RiCLY' — LiCh + Z Cu(Remf™ — Lim ")+
k=1

+R; Y Cmi' -L; ¥ Cmi - Z( 1),ECm i1y
k=i+1 =i+1 j=0 J:

*[PURR; + jPUYR.L; + R Lk+ 3G - 5 1)p(.1-2)L L + QUIR; +JQ(J-1)L]

o

C Second order moment matching model of trans-

mission line

We derive the second order moment matching model of a transmission line in the

section.

C.1 Computation of U! and W!

In order to compute U? and W', we first need to compute the first order moments

mj} for k =1 to n.
Let Cri= Y, Dita) Ci. From Theorem 2, we have
m}=m] + %Cﬂ =m] + %(C + Cny).
m} =m} + £Cr,
=m}, + &(C+Cn)+ &(21C + Cn)
=m} +&((1+21)C +2Cp)
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m}=m}_, + &Crps
=m} +B((1+222 +... + 2=k41)C 4 kCpy)
=m}, + B((k - k(k —1)/2n)C + kCr))
m) =m} + &((n = n(n —1)/2n)C + nCp)
Therefore, %E::l mj

=mj, + & Tl kOn + BE(Thoy k - 2(Tiay B2 — Tio 4))

= m}l + %;—IRCﬂ + R?Q(m:-l) _ 21_1"(n(n+l)6(2n-l-1) _ n(nz-i-l)))

Let n — oo,

U' = m}, + 2RO + 3RC

Now we consider function W. According to the definition,

1 & 1
0 _ 1 .._E e
W _l}l—b%nzk.:lk—z
and
Wt = lim—l-z'l km}
—'l"°°n2k=1 k
where

km} = k(m), + g((k — k(k —1)/2n)C + kCry))

Therefore, we have

wl= im}l

1 5
> + §RCTJ + —RC

24
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C.2 Dissymetric model

We derive a second order moment matching tree model of a transmission line as
follows. According to what stated in Sec.5.1.2, it is known that the number of
constraints is 6 and the number of sections in the model is r = 3. We set 8o = 0

and let a; and S; for i from 1 to 3 be unknown parameters.

From Condition 1, we have

aptart+az=1 (63)
For j=0, from Condition 3, we have

Bi+Ba+Bs=1 (64)

and from Condition 4,

(65)

| -

o151 + aa2fl2 + an3fls =

Now we consider Conditions 3 and 4 for j=1. Let Cr; be expressed by by 3,C and
let B3 = 3.4 Bi, then the first moments of the node voltages m}, for i = 1,2,3

can be expressed as follows:

m:, = m}, + Ra;(Cq + Ca; + Csa + CTI) = m,‘l + alﬂlRC + alﬂlaRC

ng = m:. + R,,(Cs, + Coy + C1)

= my, + a12BRC + (1513 + a2823)RC

and

m,, = my, + a13fiRC + (c1prs + a2P23 + asfs) RC.

Therefore, from Condition 3,

prm} + Byml, + fzm],
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=my + (a1f) + 1282 + a13f:)RCH

+(@181813 + Ba(a1 P13 + a2P23) + B3(1 P13 + a2fas + asfa)) RC

Compared the above expression with Eq.(37) with the reference to Eq.(65), it can
be seen that the coefficient of m}, is 1 and the coefficient of Cy = BiC is 3R

Therefore, we have one more constraint:

W=

a181B13 + P2(a1 13 + a2823) + Ba(a1 Pz + 2Bz + a3fs) = (66)

which is equivalent to

1

Bl + aafly + asfl = 3

Now we consider Condition 4 for j = 1. We have
a1/ymy, + anz2faml, + ansfaml,
= (181 + 1282 + en3fis)m),
+(adbr + af;,8: + a}383) RC B + (ol P frs + 122
(1613 + a2f23) + enafsz(@1 i3 + azfz3 + a3fs))RC.
Compared with Eq.(39) and taking Eqs.(63), (64) and (65) into consideration, we

have two more constraints:

a}fr+alyfy + B = % (67)
and
o261 + cuafa(n + cabio) + /2 = o (68)

Now we have a set of nonlinear equations. We use the function "fsolve” in

MATLABI[22] to solve these equations and get the parameters a; = 0.20718,
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a; = 0.61908, a3 = 0.17375, B = 0.54051, B, = 0.45919 and B = 3.9019¢ — 09 =~
0.

Remarks.

(a) From the above derivations, it can be seen that the coefficients of #;RC in U?
is the same as the coefficient of m] in W?! and the equations set by matching
the corresponding coefficients of the model with these two coefficients are the
same, as they can be both expressed by Yi_, a1xfk. In fact, If we denote
Bi = YkeD(ts) Cim}/C, then the coefficient of BiRC in U’ and the coefficient

of mj, in W/ are both ¥%_, anifs.

(b) In this example, for the model circuit, U! and W! can be expressed as U?! =
aymy, + b RCBi+ ¢, RC and W! = Aym} + ByRCS+ C,RC, where a,, by, ¢,
A1, B, and C are functions of the a’s and f’s. Compared with Eqs. (37) and
(39), if we let the coefficients of the corresponding terms be equal, we have
six equations with the one related to A; the same as that related to b, and
it can be shown that these equations are just the same as those from Eq.(64)
to Eq.(68). Therefore, another way to set up the constraints for a p-th order
moment matching model is to get the expressions of UP~! and W*-! in terms
of the a’s and B’s and the expressions in terms of the parameters of the line
and let the coeflicients of the correspoding terms be equal. The equations
formed in this way in addition to the constraint 37_, @; = 1 form the whole

set of constraints.

C.3 Open-ended model

When a transmission line is open-loaded, then Eq.(67) is missing and we have
only 5 constraints. We may use a simplified model with only 2 sections as shown

in Fig.5b. The parameters are determined by the following 5 equations:

C\'|+0'2=1
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Po+hBi+h=1

1

a1+ By = 2

1

1
o py + Eﬂz =3

and

1 5
oify + 5[”2 =5
Solving these equations, we have a; = 1/4, a; = 3/4, B, = 0, f; = 2/3 and

B =1/3.

C.4 Symmetric model

This is the model used in R-T-C meshes. We have seen that there are 6 constrints
for a second order model, but we have also found that when the model is sym-
metric, when Condition 1 and Condition 2 for J = 0 are satisfied, Condition 3 for
J = 0is automatically satisfied. Therefore, we may used the model shown in Fig.5¢
with 5 unknown parameters. Let a12 = &y + a2, @13 = 2 + a3, a14 = a3 + a4,
B34 = Pr + Po, B2a = B2 + Bss and P14 = By + P4, then the equations for the a’s

and f’s are as follows:

o+ a3 =0.5

2(Bo+B)+B=1

1
(B2, + B3) + az(B2, + B2) = 3
1
a?fy + ol + ok By + a2, fo = 3
5
a1 P + araf2(c1Pra + a2B24) + cr3fi(1Pra + azfas + azfss) + fo/2 = %

Solve these equations, we have a; = 0.24283, a; = 0.25623, f, = 0.10275, 5, =
0.26222 and £, = 0.26862.
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D Third order moment matching model of trans-

mission line

We derive the third order moment matching model of a transmission line in this

section.

D.1 Computation of U? and W?
D.1.1 Computation of U?

Let Ci, = LkeDit) Cimj. From the definition,

2 1 2
=1l n—oco "
U im - E mj

k=1
where

R L 1 k?
mi = m,l-l— LCT,-—LCT,——C[A(1+——)-—-]+ (m1+2 mi+.. +k(mi+..
Let (J2 = almfl + GQRC}I - asLCTl - a4LC + asRC. Then

1
a) = h'm,,_.oo— Z 1=1
n k=1

11Xk 1
= =N n—-oo"E —_—— -
as as m n n D)

k=1
121 1 k?
=lim,. = -
d4=0am ”nkz_:lnz 2n) 2n
n k2
._Izm,._.m:l > 1[ -5
N N
_l_lxl_l
T2 273 3

} 131
a5=lzm,._.°°;z;2-(m} +2m§+...+k(mi+...+m},))

k=1

= a5y — as2
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where
n

. 1
as; = hrn,._.oo; ) %(m} +2mi+...+nml)=
=1

=W!= %m,x + = RCTI + —-RC

as; = lzm.._.oo— E(mkn +2mi,+...+ (n—k)m})

Let the expression in the sum of above equation be b, i.e.,

n
be =mpyy +2mi 4.+ (n—k)mh = Y (- k)m).
y=k+1

Note that
R, RC. 1, f
1 = 1 - -_— a.l"
mj =my, +3i-Cri+ —1[j(1 + )~ 5n)

Let b; be expressed by ciym}, + cx2RCri + cxsRC, then

=3 (i-k)= -(n k) — k(n — k) = >(n — k)2,
j=k+1 2

" -y ] k
=% ~ ~[5(n° - K%)= o(n? = )]

W =

and

-2
as= Y S(-Blil+5)-L]=

J=k+1

J-k+1

Let as; be expressed by dym} + d2RCri + d3RC, then

1 & 1 1 1
—SZ_ 5 §=€’
1 1
helin o= ta- bt b1
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and

1 11

ds = Jirm, 32“"3=‘(1—‘)--(1—g)-§(§--)+ (-—--)——.
Therefore,
as = asy — as2 = 2m}, + ~= ROy + = RC
PR TR =g T T
and
2 2 1 1 1 1 S 2 2
Ul=m; + ERCTV{' §RCm,l +§R CCri+ —(RC) - —LC— -LC'TI

D.1.2 Computation of W2

Let W? = limp—co 25 L7, km} be expressed by

w2 = elmfx <+ ezRC}, - e3LCri — esLC + C.’.RC,

then
) 1 & 1
=fm k=3
1 &k
e P Tt
k3 1 1 5
— 2 —--—=——.-=_.
=, E[k(H 2 T =37 8 o
and
s—hm—Zk(m1+2mz+ A E(mi+...+ml)) =es —es
k=1
where

es1 = lim —zk(m1+2m2+ .+ nmy) = (lim -n—Zlc)W1
k—-

1 1 5
Wl=m! 4= —RC.
4m,l + 6RCn+ 48RC

N =
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.1 &
es2 = nlglgo—d Z k(mi,, + 2mi,,+ (n—k)ml) =

= n_.oo n4 z k(ctim}, + cx2RCri + cx3RC) = flmt. + f2RCri1 + fsRC,

then
1@ 11 1. 1 1, 1
hi=lm oY kn=3G--G-P=g
1@ 1, 11 1. 1
= bm S kg =l _Ly_11_1,_ 1
fo= Jimg, 4;::, w=3G-35-3G-5 =3
and
n 1, 01,1 1, 1,1 1, 1.1 1. 7
= lim — ks = (= = =) = == = =) e (= — 2V b o we — = ——
fs = lim 452 w=3G-5-3G"8-2G-5+sG 5 =30
Then,
es = (mml. + = RCry + —- RC)RC,
ST T TR T g
and

1
W2 m,x + RCT‘ +

2 m,lRC + —chc'_r; + —

S reyr - %LC - %LCT,.

24 720

Remarks.

(a) It can be seen from the expressions of U? and W?, the coefficients of RC}, and
R*CCry; in U? are the same as the coefficients of m? and m} RC in W2. The
coefficient of RC}; in U? and m} in W2 area; = ¢; = limpoo 5y Shey kb =
The coefficient of R?CCr; in U? can be expressed by Izm,,_.w;,-Il and the

coefficient of mj, RC in W? can be expressed by limn_,eo- I, where

SIS )=

k=1 j=1 j=k+1 k=1 j=1
where
2 i<k
pi={ " "
ik 7>k
and

n k
=S KX i+ kn— k).

k=1 j=1
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I, can be rewritten into the following form:
n n n J n n_ J ) )
L= Y =2 ik+ 2 =2 i k+iln-3)
J=1k=1 J=1 k=1 k=j+1 =1 k=1
Exchanging the symbols j and k, it can be seen that I; = I;. Also, it can be
seen in the next section that the constraints set by each corresponding pair
of coefficients are the same. This observation is useful to prove that the total

constraints for a p-th order moment matching model is 3p.

(b) It can be seen that the coefficients of the term —LCy; and —LC in U? are
correspondingly the same as those of RC}; and RCmj}, and the constraints set
by these coefficients are correspodingly the same. Similar situations happen
in W2, where the coefficients of —LC7y and RC}, and coefficients of — LC and
m} RC are correspondingly the same. Therefore, there is no need to consider
the constraints set by the terms with L. This coincides with what mentioned

in Sec.5.1.2.

D.2 Dissymmetric model

The dissymmetric 3-rd order moment matching model is used for R-T-C trees and
is shown in Fig.7a. There are 9 constraints to determine the a’s and f’s. The

number of sections in the model is now r = 4. We have the following equations:

a =1
Bor=1
r 1
g:lakﬂkr = 5
kz=:1 B, = %
gafkﬁk = %
Let pr = ey, B, and pr = pry1 + B (k=r—1,r - 2,...,1), we have
kz;:lakpkﬂkr = %
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Let g1 = 161, and g = gx—1 + ok fBir (k=2,...,r), we have

.
2
D Bugi=—
k=1 15

Let a, = 34, oy Bk and ax = @ry1 — (1041 ~ a1&)Bi41 (k=1 —1,...,1), then

we have the last two constraints

2

r
arfrar = —
)y 5

and

L 61
Brargr = —.
P> 70

Solving these equations, we have a; = 0.13412, a; = 0.35234, a3 = 0.31730,
a4 = 0.19624, fp = 7.9144e — 04, §; = 0.33288, B, = 0.29853, B3 = 0.34972 and
B4 = 0.018081.

D.3 Open-ended model

When the transmission line is open ended, the model is simplified as shown in
Fig.7b with 3 sections. In the above equations, the 5-th and the 8-th are missing
and now r = 3. Solving the equations, we have a; = 0.33197, a; = 0.11001,
a3 = 0.55823, By = 0.12293, f; = 0.24794, B, = 0.37937 and S5 = 0.24973.

D.4 Symmetric model

This is the model used in R-T-C meshes. As in the case of the 2nd order model,
the 3rd constraint is automatically satisfied by the 1st and 2nd constraints and the
symmetric structure so that we have 8 constraints. The model is shown in Fig.7c
with the number of sections r = 7. In order to use the equations given in Sec.D.2,
for k > 4,let ax = ag_i and B = Br_x. Then wehave a; = 0.15071, ap = 0.11338,
a3 = 0.15370, a; = 0.15157, fo = 0.069663, B = 0.13903, 8, = 0.13980 and
B3 = 0.15802.
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E Number of constraints to p-th order moment

matching model

In this section, we prove that the number of constraints to-a p-th order moment

matching model is 3p as stated in Sec.5.1.2.

This conclusion is based on the following observations. Please refer to the remarks

given in Appedices C and D to help understanding the reasoning.

(a) As has been illustrated in Remark (b) of Appendix C, the constraints set by
Condition 3(See Eq.(46) in Sec.5.1.2) for j = 0,1,...,p — 1 is equivalent to
the constraints set by matching the coefficients of the terms mfl(RC)"“’j
for j = p—1,p—2,...,1, the coefficients of the terms RC%,(RC)P-2-7 for
J=p=2,p—1,...,0 and the coefficient of the term (RC)?~!. The number

of these constraints is 2p — 1 in total.

(b) Similarly, the number of constraints set by Condition 4 is 2p — 1, too. As has
been illustrated in Appendix D, the 4p—2 constraints set by Conditions 3 and
4 are not totally independent. We have seen that in the 3-nd order model, the
coefficients of RC}, and R*CCryy in U? are correspondingly the same as those
of m} and m} RC in W2, In the general case, it can be shown that for a p-th
order model, the coefficient of the term RC%,(RC)?P~2-% in UP-! is the same
as the coefficient of the term mi}'(RC)P=2~% in W*-! for i = 0,1,...,p— 2.
Therefore, there are p — 1 constraints set by UP~! and WP-! in common, and
the number of independent constraints set by both Conditions 3 and 4 are
reduced to 2(2p — 1) — (p — 1) = 3p — 1. In addition to Condition 1, the

number of constraints is 3p. O
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F Moment computation of R-L-C tree with leak-

age resistors

In this section, we consider the moment computaion of an R-L-C tree with leakage
resistors. Such a network consists of a floating RL tree N, grounded capacitors
and grounded resistors (leakage resistors) connected between the nodes of the RL
tree and the ground. Let Z; = R + sLi be total impedance of the path Py as
defined before. By the Substitution Theorem, each capacitor C} is replaced by a
current source sCyVi(s). By the superposition theorem, each node voltage V;(s)
is composed of two components: V,(s) caused by the source voltage V,(s) when
all the capacitors are disconnected and V;(s) caused by the capacitance currents;
ie.,

Vi(s) = Vi (s) = 3 Za(s)sCaVi(s) (69)
k

Let V;;(s)/V:(s) be denoted by Ti(s) and Vi(s)/V.(s) by Hi(s), then we have
H.'(s) = T.(S) - Z Z.-k(s)kaHk(s) (70)
k

Note that Tj(s) is different from H;(s) in that Ti(s) is the transfer function
Vir(s)/V:(s) when all the capacitances are disconnected to the floating RL network
and only the leakage resistors are connected. If there are no leakage resistors, then

Ti(s) = 1 and Eq.(70) becomes Eq.(13).

Let the j —th moment of Ti(s) and H;(s) be expressed by m{, and m] respectively.
From Eq.( 70), we have

ml = mf't + E(R.-kckm{"‘ - L;kamz'z) (71)
k
Note that when p = 1, the term L;xCim%~? is missing, and
my = Hi(0) = lim vi(t) = ve(o0) (72)

In the case there exist leakage resistors, vx(o0) < 1, and the Elmore delay of node

voltage v; can be expressed as

Tpi= m}', + z R;;.Crvr(o0) (73)
k
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In order to use Eq.(71) to compute moments, we need to compute the moments

of function T;(s), which can be done as follows.

Let N be the network consisting of the floating RL network N, the voltage source
and the leakage resistors, NR be the node set where the leakage resistors are
connected, and g; be the conductance of the leakage resistor connected to node

k, then we have

V() = Vi(8) = X ZigiVir(s) (74)
kENR

Ti(s)=1= Y ZugTi(s) (75)

keNR
m,=1— ) Ragm), (76)

kENR

and
m;i,, =- > Rskgkm{,‘+ Y Likgkm{}’ (77)
keENR keNR

Let NR = {1,2,...,nr} for simplicity. Let matrix A = [ait)nrxnr be such
that a; = Rigi for i # k and a;; = Rigi + 1, vector Bi = [bl],, be such
that when j = 0, 5 = 1 Vi and when j > 0, b} = ZkeNRL;kgkmi;l and let
M= [mi,, mz‘,, ...ymi, ]!, From Eqs.(76) and (77), we have the following set of

equations to solve m;?;, from j = 0 to j = p recursively.

AM/ = B (78)

From Egs.(71) it can be shown that the moment matching models derived so far
are valid for the use of R-T-C network with leakage resistors. The reasoning is
as follows. As the total resistance and inductance of each model reamin the same
as those of the original transmission line, all the elements of the open circuit
impedance matrix Z = [z;] and all the functions T;(s) remain unchanged. For
each moment mf, the capacitance of a transmission line has no contribution to its
first part mf, and the contribution to its second part is the same as its model as

proved in Sec.5.
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