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ABSTRACT

Most optimal design problems can only be solved through discretization. One solution strategy
is to expand the original problem into an infinite sequence of finite dimensional, approximating non
linear programming problems, which can be solved using standard algorithms. In this paper, an
expansion strategy based on the concept of consistent approximations is proposed for certain optimal
beam design problems, where the beam is modelled using Euler-Bernoulli beam theory. It is shown
that any accumulation point of the sequence of the stationary points of the family of approximating
problems is a stationary point of the original, infinite-dimensional problem. Numerical results are
presented for problems of optimal design of fixed beams.
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1. INTRODUCTION

In the last 15 years, we have witnessed great activity in the development of computational pro

cedures for the solution of optimal design problems (see, e.g., [4, 5, 8, 9, 10, 14] and references

therein). In general, the use of such computational procedures involves the replacement of the set of

admissible designs, the laws describing the behavior of the system under study, the cost function, the

constraints, and the optimality conditions by appropriately discretized counterparts. Clearly, to be of

any value, these discretizations must satisfy some consistency conditions. The consistency conditions

for approximating problems that we find in the optimal design literature deal only with convergence

of global minimizers of approximating problems to a global minimizer of the original problem (see,

e.g., [6, 8, 11, 14]). As we will see in Section 2, this is related to the concept of epiconvergence of

the approximating problems to the original problem. However, in the absence of convexity, non

linear programming algorithms can only be shown to compute stationary points that are, hopefully,

local minimizers of the approximating problems. As we will show by example in Section 2, this fact

can lead to serious pathologies, such as the convergence of stationary points of the approximating

problems to a nonstationary point of the original problem.

In [16] we find a theory of consistent approximations dealing with the expansion of an infinite

dimensional problem into an infinite sequence of finite dimensional approximating problems, each

with a finite number of constraints. In [16], because of the abstract problem formulation, as well as

for algorithmic reasons, optimality conditions are expressed in terms of zeros of optimality functions.

In [16] consistency of approximating problems is characterized in terms of the Kuratowski conver

gence of the constrained epigraphs of their cost functions and of the hypographs of their optimality

functions to those of the original problem.

In addition, we find in [16] a set of diagonalization strategies designed to make efficient use of

well-polished finite dimensional optimizationcodes and finite dimensional consistent approximations

in computing approximate solutions to infinite dimensional problems. These diagonalization stra

tegies take the form of a master algorithm that chooses a level of discretization and calls a finite

minimax or nonlinear programming algorithm to iterate on the current approximating problem until

some discretization refinement test is satisfied. At that point the master algorithm increases the

discretization and uses the last point computed to initialize a finite minimax or nonlinear program

ming algorithm to iterate on the next approximating problem, until the discretization refinement test

is again satisfied, and so on, until a final termination test is satisfied.

In this paper, we consider the optimal design of Euler-Bernoulli beams, subject to contin

uum constraints, such as constraints on vertical deflection, shear stress, and normal stress at the

extreme fiber. Although beams with non-uniform cross sections are more difficult to manufac

ture, in some areas where weight is at a premium, such as in aerospaceapplications, the construction



of minimum weight beams may be quite realistic. Moreover, the problem of determining the

optimal dimensions of a uniform beam subject to continuum constraints is a particular case of

the problems we will deal with.

First we deal with cantilever beams. Wepropose an expansion of the original problem into an

infinite family of approximating problems, construct corresponding optimality functions, and show

that the approximating problems are consistent. Second, we extend our results to the problem of

optimal design of a fixed beam. Finally, wemake use of a diagonalization strategy presented in [16]

andofa method of centers algorithm [17], to solve these optimal design problems numerically.

For ease of exposition we will restrict ourselves to beams with rectangular cross section, fixed

width, and distributed loads. It is straightforward to generalize our results to beams whose cross sec

tions are not necessarily rectangular, provided the cross sections have a horizontal and a vertical axis

of symmetry, and the plane containing the vertical axis of symmetry also contains the loads. For

instance, we can extend our results to the design of rectangular beams with varying depth and width,

or the design of a cylindrical beam with varying radius.

The paper is organized as follows. We recall the basic definitions and results related to con

sistent approximations of optimization problems introduced in [16] in Section 2. In Section 3 we

state the optimal design problem for a cantilever beam and propose an expansion into a sequence of

approximatingproblems which we show to be consistent underappropriate conditions. The results in

Section 3 are extended to fixed beams in Section 4. In Section 5 we discuss a diagonalization stra

tegy for numerical solution of the optimal design problems under consideration. In Section 6, we

present the results of a numerical experiment. Finally, in Section 7 we present our conclusions.

2. CONSISTENT APPROXIMATIONS

We begin by presenting a summary of the main definitions and results related to theconcept of

consistent approximations introduced in [16].

Let 2* be a topological vector space and consider the problem

P mjn/fc) (2-la)

where/ : *B -»IR is continuous andZ c S is theconstraint set. Let {<BN }fiml bea family of finite

dimensional subspaces of <B such that &N = (8 if <B is finite dimensional (Rn )and$N <= <BN+1, for

all N, otherwise. Consider the family of approximating problems

P„ JflfN(zh NelN' (2.1b)

where fN :$N -»R is continuous, and ZN c <BN. To be of any use to us at all, the problems P^
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must, at least, converge epigraphically to P, i.e., the epigraphs

En = 1(*°.z) ^ IR xZN Iz°Zf(z)}, of the problems P#, must converge, in the sense of Kura-
towski, to the epigraph E £ {(z° ,z)€ R xZ Iz° £/ (z)}, of the problem P. Equivalently:

Definition 2.1. [1, 7] The problems in the family {VN }^ml converge epigraphically to P,

(P;v ->£p' P) if '• (a) for every z eZ, there exists a sequence {z^ }£.lt with zN eZN, such that
zN-*z and lim/yv(zN)^/(z); and (6) for every sequence {zN| }~ol, with zNk € ZNt, such that

zNt ->z as* ->oo,z e z andlim/A,t(z/Vl)^/(z). D

Epigraphic convergence, or epiconvergencefor short, can be viewed as a "zeroth order" con

sistency property. In particular, it ensures the following result.

Theorem 2.2. Suppose that P^ ->£/"' P, and that {z N}£=1 is a sequence such that zNe ZN for

all N and zN->z.(a) If the z N are global minimizers for the PN, then z is a global minimizer of

P; (b) lfzN are strict local minimizers for the"PN whose radii of attraction do not converge to zero

as N -» °°, then z is a local minimizer of P. •

The reader is referred to [1, 7] for the proofof Theorem 2.2 (a), and to [16] for the proofof Theorem

2.2 (b).

Optimization algorithms, applied to the finite dimensional problems PN, are only known to

compute stationary points. As the following example shows, epiconvergence alone does not rule out

the possibility that stationary points of the PN converge to a nonstationary point of P: Let (8 = IR2,

so that z =(* ,y),andlet/(z)=/A,(z) = (A:-2)2,Ne N. Let

Zk {(*,y)eR2l*2 +y2<;2} , (2.2a)

and, for all N € N, let

ZNA {(*,y)eR2l(*-y)V+y2-2)£0( x2 +y2£2+jj}. (2.2b)
Then we see that P^ -»£/" P. Nevertheless, the point (1,1) is feasible and satisfies the F. John

optimality condition for all VN, but it is not a stationary point for the problem P. The reason for this

is an incompatibility of the constraint sets ZN with the constraint set Z which shows up only at the

level of optimality conditions.

To eliminate the possibility of pathologies such as in the above example,as well as someothers,

e.g, failure of derivatives to converge, [16] imposed a second condition on the approximating prob

lems in terms of optimality conditions, which can be viewed as a "first order" consistency require

ment. For the purpose of this condition, it is convenient to characterize stationary points as the zeros

of optimality functions: 0: T> -> R for P and 6^ : <DN -> R for PN, N e IN, where Z> c £ and



(DN c $N, i.e., the optimality functions may not be defined on the entire space. We will assume

that T>N <= £> n <BN, for all N € N.

Definition 2.3. A function 0:2) -» R is an optimality function for P if, CO Z <=• <D, (ii) 0() is

sequentially upper semicontinuous, (Hi) 0(z) £ 0 for all z e 2>, and (z'v) 0(z) = 0 for any z e Z that

is a local minimizer forP. Similarly, a function QN : <DN -» R is an optimality function for PN if, (7;

zn c ^jv. ("V 0/vO is sequentially upper semicontinuous, (Hi) 0N(z)£O for all z e 2?w, and (/v)

fyv (* n ) = 0 for any zNeZN that is a localminimizer for P#. •

Definition 2.4. Let 0(-), 0^(•), N € N, be optimality functions for P, P^, respectively. The pairs

(PN ,QN), in the sequence { (PN ,QN)} #ol are weakly consistent approximations to the pair (P, 0), if

(i) PN -+Epi P, and (ii) for any sequence {zN]NeK,K <= N, with zN € Z>N for all AT € tf, such
that zN ->z, lim 0^ (zN) £ 0(z). •

As a result of this definition, we immediately get the following result, which subsumes Theorem2.2:

Theorem 2.5. Suppose that the pairs (PN ,QN) in the sequence {(PN ,QN)} „al are weakly con

sistent approximations to the pair (P, 0), and that {zN}^=1 is a sequence such that zN e ZN for all

N andzN —>z .

(a) If the z N are global minimizers for the PN, then z is a global minimizer of P.

(b) lfzN are strict local minimizers whose radii of attraction do not converge to zero, as N —> °°,

then z is a local minimizer of P.

(c) IfllmOtf (z N) = 0, then 0(z ) = 0. •

If we define a point z to be stationary forP if 0(Jc) = 0, then wesee that Definition 2.3 permits

nonfeasible points to be stationary (e.g., they can be stationary points for a problem with relaxed or

modified constraints). This phenomenon can be removed by imposing an additional condition, as is

done below:

Definition 2.6. Let 0(-), 0^(•), AT GN, be optimality functions for P, PN, respectively. The pairs

(PN ,QN), in the sequence {(PN ,0^)}JJHi are consistent approximations to (P,0), if they are

weakly consistent approximations, and in addition 0(z) <0 for all z £Z and dN(z)<0 for all z £ZN,
N elN. •
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3. OPTIMAL DESIGN OF A CANTILEVER BEAM

Consider a cantilever beam of length L > 0 and rectangular cross-section, with constant width

b >0 and variable depth defined by a function h :[0,L] -»R. The material of the beam has

modulus of elasticity E > 0. Let 0 < a < p < «> and y £ 0 be given constants, and let C [0, L ] denote

the space continuous real-valued functions defined on [0,L]. We assume that the set of admissible

depth functions h (•) is given by

Had£ [h € C[0,L]IO<a^/i(jc)^p, \dh{x)ldx\ <,y, fora. e. x € [0,L]}. (3.1a)

We model the beam using Euler-Bernoulli beam theory, and assume that it is subjected to a

vertical load with density /: Had x [0, L ] -»R of the form

l{h ,x) = m(x)-Kh(x), xe[0,L], (3.1b)

where K £ 0 is a given constant and m e Loo[0,L] is the density of an external load applied to the

beam.

We will consider optimal cantilever beam design problems that can be stated in the form

(3.1c)Pc min/<.(/»),
AeCc

where Cr c Had is the set of all admissible depth functions h (•) such that

-£vc(h,x) =-l(h,x), xe[0,L], Vc(h,L) =0, (3.1d)

-£Mc(h,x) =-Vc(h,x), xe[0,L], Mc(h,L) =0, (3.1e)

d2 \2Mc(h ,x) d
^Mh>X) =-Ibl^r> ^tO,L],yc(,(0)=-yf(/,,0) =0, (3.1f)

\|/c(/*)£max max <J>/(/i ,x)-rJ(x)£0, /3 le>>

where (3.1d-f) are the Euler-Bernoulli beam equations for a cantilever beam whose depth is deter

mined by the function h (•), andrelate the deflection yc (h , •), the bending moment Mc (/? , •), the shear

force Vc (h , •), and the load density / (h ,•). We use the subscript c to differentiate the quantities

associated with the cantilever beam from those of the fixed beam, to be considered in Section 4.

For any integer q >0, let q^ {1,2,..., q }. The functions $/(•, •), j € q, are used to express
continuum constraints. We assume that the functions fc (•) and (J>/(-, •), j € q, are of the form

fc(h) =h*?(h,x)dx. (3.1h)
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4>/(A ,x) = 4>J(h(.x),Mc(h ,x),Vc(h ,x),yc{h ,x) ,x), j € q, (3.1i)

where, for; € q S {0,1,... ,<? },ip : [a, P] x R x R x R x [0 ,L] -» R.

Assumption 3.1. We will assume that

(a) The function m(•) is piecewise Lipschitz continuous, with finitely many points of discontinuity
in[0,L].

(b) The functions rJ (•), j e q, are Lipschitz continuously differentiable on [0, L], and satisfy

min min rj(x) = r >0. (3 in
;€q jc€ [0,L] v J;

(<?; The functions <j>; (•,•,•,•,•),./ e q are Lipschitz continuously differentiable.

(d) Thefeasible set Cc forPc is notempty, thatis, there exists an h e Had satisfying (3.1g). D

A variety of design problems can be expressed in the form (3.1a-j). For example, suppose that

we wish to minimize the weight or volume of a cantilever beam of constant width, subject to con

straints on the maximum normal stress at the extreme fiber ocmax(h , •), constraints on the maximum

shearstress ic^max (h , •), and constraints on the deflection yc (h , •). Thenwe set

fc{h)±£h(T)dx, (3.2a)
i a 6 Mc(h ,x) . a ,

4>c\h,x)±oCtmax(h,x) = - , tf{h>x)£-+}ih,x), (3.2b)
b h(x)£

tf(h ,x)±iCimax(h ,x) =| V'^*)) , tiih,x)&-ti(h,x), (3.2c)
(j)c5(/i ,x)&ye(h ,x), tf(h ,x)£-tf(h .*). (3.2d)

In thesimplest case, therj arepositive constants, with r1 = r2,r3 = r4, and r5 = r6.

The "natural" norm on C [0 ,L] for establishing continuity and differentiability of solutions of

(3.1d-f) with respect to depth functions is the sup-norm, D-D*,. However, when we define optimality

functions for our design problems, by extension of optimality functions for problems defined on Rn,

which is a Hilbert space, it is much more natural to use the L2[0,L] norm, H2. Since there is no

inconvenience in also using the L2[0,L] norm for establishing continuity and differentiability of

solutions of (3.1d-f) with respect to depth functions (see [3]), we adopt this norm for C[0,L] in our

analysis. Hence, wewill work in theinner-product space (C[0,L], H2, (•, •)2), where (•, •)2 denotes

the usual inner-product on L2[0 ,L].

Existenceof a solution to Pc follows from the Ascoli-Arzela theorem, whichimplies that the set

Had is compact in (C [0, L ],H-B2). Proofs of existence of solutionsto similar problems can be found in
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[6,8,13].

We will obtain a sequence of consistent approximations in three steps. First, we will choose a

dense family of finite dimensional subsets of H^, second, we will discretize the boundary value

problem (3.1d-f), the cost function (3.In), and the constraints (3.1g), and define approximating prob

lems PCt^. Third, we will define appropriate optimality functions 0C() and 0C(W() for the original

problem Pc, and for the approximating problems Pc>/V respectively.

For every positive integer N, we let A(N)^L/N, and define the mesh
TN& {0,A(N),2A(AO....,L }.with nodes xNJc =(k -l)A(N),k € N+l.

Let HN denote the subset of C [0 ,L] whose elements are piecewise affine on the mesh TN. Let

Had jv - HN ^ad• Any h e Had a can De expressed asa unique linear combination of the functions

X -*#*_!

/W*)=i

A(AO

xNJc+l~x

A(N)

0,

, for allx e [xNJ(^i ,xNJc ], k € {2, • - • ,N + 1 }

, for all x € [xNJl ,xNJc+1], k € N,

otherwise.

That is, for each h € HadiN, there exists aunique (tlj ,tj2 %+i) € R"+1 such that

jv+i

*°1

(3.3a)

(3.3b)

The boundary value problem (3.1d-f) can be solved numerically by several different methods.

The two most frequently used are finite difference and finite element methods. Although finite ele

ment methods have advantages for more complicated geometries in 2 or 3 dimensions and can be

used with a variety of boundary conditions, their convergence analysis is somewhat more complex

than that of finite difference methods. Hence, to keep the exposition as simple as possible,we discre

tize (3.1d-f) using finite differences. However, our results remain valid if one uses other discretiza

tion methods, provided Lemma 3.2, Lemma 3.9 and Theorem 3.10 below remain valid for the result

ing approximations.

Before we integrate the second orderdifferential equation (3.If) numerically, we transform it to

the first order form:

_d_
dx

yc(h ,x)
y'dh ,x)

y'Ah ,x)
\2Mc(h ,x)/Ebh(x)3 ,xe [0,L] ,ye{ht0)=y'c(h ,0) = 0, (3.4)

wherey'c(/i ,x) = d/dxyc(h ,x).

Using Euler's forward method to discretize the ordinary differential equations (3.1d.e) and

(3.4), we define the family PCtN of approximating problems as follows:
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Pc A
mm fC)N(h),

where Cc>/V c //^A is the set ofall depth functions /i (•) inH^# such that for k e N,

Vc/vC* .Jfjvjt) = VCjA,(/i ,xNJc+1) +A(N)l(h ,xNJc+1)f Vc^(h ,%^+1) = 0,

MfA(/i >xN*) = Mc^(h ,xNJc+l) + A(N)Vc>N(h ,xNJc+1), Mc^(h ,xNyN+1) = 0,

ycjv(h >xnjc+i)

y'cjjih ,xNtk+1)

yctr(" >xNjc)+A(N)y'CyN(h ,xN,k)

\2MCtN(h ,xNtk)
y'cMh >xnjc)+MN)-

Ebh(xNJcf

yc^(n >xn,i)

y'c^ih ,xN%1)

\\rCtN(h)£max max ^(A >xNJt)-(l +A(A0V(***)£<>.
j € q * € N+l

*«1

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

D

We define the functions <j>/^ :HadtN x [0 ,L ]-> R, y e q, as the piecewise linear interpolation
of the values ^J(h(xNJc)tMc^(h ,xNyk),VCtN(h ,xNJc),yCiN(h ,xNJ,),xNJc), on the mesh TN, and
hence

WMh 'xNjc) =lj(h(xNJ(),Mc^(h ,xNJc),VCjN(h ,xNJ(),yc^(h ^^^j), j e q. (3.6)

The term A(N )l/l in the constraint (3.5e) is added to guarantee that for N large enough, the feasi
ble set for PCtN is not empty. This relaxation of the constraints will be needed in the proof of

Theorem 3.3 (a) below.

The proof of the following lemma is given in Appendix I.

Lemma 3.2. (a) For every h e H^,and positive integer N, there exists an hN e Had^ such that

max \h(x)-hN(x)\ ZyA(N) ;
x e [0,L]

(b) There exists a constant C <°° such that for any h € Had, N £ 1, and hN € HadiN

max \Vc{h ,xNJi)-Ve/i(hN ,xNJt)\ £C[A(N) + M -hN\2],
k € N+l

max \Mc(h ,xN>k)-MCtN(hN ,xNJc)\ &C[A(N) + M -^B2],

max \yc(h ,xNJ()-yCiN(hN ,xNJc)\ £C[A(N) + B/i -hNty;
k € N+l
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(c) There exists a constant C < °° such that for all;' € q,N Z1, h e Had, and hN GHadyN,

max l(j>/(/z ,*)-4>/,aK/iam*)I £C[A(N) + D/i -A^y. (37e)
jc € [0,L] ww

IVc(*)-Vr^(^)l £C[A(N)* + B/i -M2L (3.7f)

lfc(")-fcfl(hN)\ <.C[A(N) + M -hN[2]. (3.7g)
D

In view of the definitions of vj/c (/z) and\|/c ^ (/z), it is clear thatthe following holds:

Cc= {heHad lyc(/O<:0} , Cfilv={/ie//^li|;f(/,(/i)^0}. (3.8)

Theorem 3.3. (Epiconvergence) (a) For every AeCf) there exists a sequence {hN }^oN(i, with

hN e CcA, such that /jv(fyv) ->/(/i) as Af -»». ^ Let {^ }^o be a sequence such that

hN e CCtN andfyv ->h asN -»<»then? € Cc,andfN(hN)->f(h).

Proof Suppose AeCf is given. Then, by Lemma 3.2, for each integer N, there exists an

hN € HadjN such that (3.7a) holds. Clearly, hN -»h as N -> <». It now follows from (3.7g) that

/<-,# (fyv) -»/c (^) as N -> °°. To complete the proofof part (aj, it remains to show that thereexists

an N0 such that hN e CCiN, for all N £N0. Indeed, since h e Cc by assumption, (3.8) and (3.7a,e)

imply

Vc^(^/v)^Vc^(^)-Vc(^)

= max max [^(^ ,*)-/•'(*)(1 +A(N ),/6)] - max max [c|>/(A ,*)-/•'(*)]
/€ q x£ [O.L] > e q .r € [0,L]

£max max [\^i»(hN ,x)-^(h ,x)\ -rJ(x)A(N)iA]
jeqxe[0,L]

<LC[A{N) + M-hNH2\-rA(N)1/l£C[A(N) + M-hNU-rA(N)1A

<.C(l+y)A(N)-?A(N)1/i, (3>9)

where r > 0 is as in (3.1j). It follows from (3.9) that there exist an N0 such that for all N £N0,

Wc fl(nN)^ 0. which proves (a).

Let {hN }h„No be a sequence as in (b). The Ascoli-Arzela Theorem implies that H^ is com

pact in (C[0,L] J-fl2), and hence that it is closed. Since CCiN ^H^^ ^Had for all N e N, it fol

lows that h € Hrf. The facts that h € Cc, that is, that \yc (h) £0, and that fcJv(hN )->fc(h) follow
directly from (3.7f) and (3.7g) respectively.
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•

Next we will develop optimality functions 0C(-), and 0C^(-), for the problems Pc, and Pc>yv,
respectively.

The mappings h ^>Mc(h ,•), h i-> Vc(h ,•), and ht->yc(h ,•), from H^ into (C[0,L) ,H2),

and defined by (3.1d-f), have Lipschitz continuous Gateaux differentials on h e Had. This is a direct

consequence of thedifferentiability properties of solutions ofordinary differential equations (see [3]).

Let D YVC (•, •; •), D jMc (•, •; •), and D}yc (•, •; •) denote the Gateaux differentials of the map

pings h t-*Vc(h ,-\h *-* Mc{h , •), andh •-»yc(h , •) respectively. It can be shown (see [3]) that for

any h , W € Had, the following relations hold:

—D1Vc(h,x;h'-h)= K(h/(x)-h(x)), xe [0,L], D,VC(A ,L ;/z' -/z) = 0,(3.10a)

—DxMc{h tx;h' -h) = -D{Vc{h ,x ;h' -h), xe [0.L], D,Afc(A ,L ;/z' -/z) =0, (3.10b)

-jjDfrih ,x ;h' -h) =—£—(DlMc(h ,x ;W -h)-3Me{h |X)*^zM), *€[0,L],
ax Ebh{x) h\x)

DYyc(h ,0;/z' -/z) =~^Diyc(h ,0;h' -h)=0. (3.10c)

Consider the functions defined in (3.1g) and (3.1h,i). It follows from the Lipschitz continuous

differentiability of ^ (•,-,•,•, •), j € q, with respect to all their arguments, and of Mc (h ,•), Vc (h ,•),
and yc (h , •) with respect to h, that <}>/(•, •), j € q, and/c (•), areLipschitz continuously differentiable

functions of h onH^. Wewill denote byD ${(•, •; •), j e q, and Dfc(•; •) the Gateaux differentials

ofthe functions h i-» <|>/(/z , •) and h t-^fc(h) respectively.

Lemma 3.4. There exists aconstant C <«> such that for any h ,h e Had, h' ,h" e Had,

\Dfc(h ;h' -h)-Dfc(h ;h" -£)| <;C[D/z -/Th2 +H/z' -h'%], (3.11a)

and for ally € q,

W^J(h ,-;h' -h)-D$i(h ,-;/z" -h)l„zC[\h -£d2+Q/z' -/z"D2]. (3.11b)

Proof Both inequalities are a direct consequence of the Lipschitz continuity of the Gateaux dif

ferentials ofMc (h , •), Vc (Jh , •) and yc (h , •), and the Lipschitz continuous differentiability of the func

tions $'(•,•, •,-.•)../ e q, in(3.1h,i). •

Next, we define the function Fc :Had x Had -» R by
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Fc(h ,/z/)= max{/c(/z,)-/c(/i)-co\|/c(/z)+,max max (J>/(/z' ,x)-ri(x)-yAh)+} , (3.12a)
,€qjr€[0.1]

where \\fc (h)+ ^ max {\j/f (/z), 0}, and co >0 is a parameter to be used in method of centers type

algorithms. Note that (i) for all h € Had, Fc(h ,h) = 0, and (ii) ifheH^isa local minimizer for

Pc then, since \\rc(h) >0 when h is infeasible, and since fc(h)zfc(fi) for all feasible h in a ball

about /z, h must also be a local minimizer for the problem

min Fc(h ,/z). (3.12b)

This fact is used in [2] to obtain the following first orderoptimality condition for Pc:

Proposition 3.5. If h is a local minimizer forPc, then

h e Ho, and d2Fc(h ,h ;h' -h)Z0, for all h' € H^ , (3.13)

where d2Fc(h ,h ;h' -h) denotes the (one-sided) directional derivative of Fc(- ,•) at (h ,h), with

respect to the second argument, in the direction h' -h. •

Referring to [15], we see that for the purpose of constructing algorithms, it is useful to replace

the first order linear approximation d2Fc (h ,h ;h' - h) of Fc (h ,W) in a neighborhood of h by the

the following convex first order approximation:

Fc(h ,/z') = max{D/c(/z ;h' -h)-co\|/c(h)+,max max <j>/(/z ,x) + DMh ,x ;h' -/z)
;€ q xe [0.L]

-Vc(>0+}+VW-All22- (3.14)

In view of (3.1b-i) and Assumption 3.1 (c), it should be clear that, for all j € q and x € [0.L], the

mappings h •-» (j>/(/z ,x) and h h-» vj/c(/z) are continuous on H^. Hence, as a consequence of the
definition of F c(•, •)and of (3.1la-b), we obtain the following result:

Lemma 3.6. F c iH^ x Had -» R is continuous.

We now define the optimality function 0C iH^ -> R as follows:

0c(/z)i min Fc{h,h'). m5v

From Lemma 3.6 and the fact that Had c (C[0,L] ,B-D2) is compact (by the Ascoli-Arzela

Theorem) it follows that 0C (•) is well-defined.

Theorem 3.7. (a) The function 0C(-) takes values in (-°°,0]; (b) 0c;//ad-»R is upper
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semicontinuous: (c) For any h € Had, 0C (h) = 0 if and only if either \\rc (h) £ 0 and (3.13) holds or

\\fc(h) >0 and 0€ d\\tc(h), where \j/c(/z) denotes the Clarke generalized gradient [2] of yc(-) at h

(i.e., /z satisfies the first order optimality condition for the problem min/, €Haj\\ic (h)).

Proof Pans (a) and fcj can be deduced from Proposition 5.4 and Proposition 5.5 in [15]. We will

prove part (b).

Suppose {hj }JLq c Had is such that hi ->h € H^ as j ->«>. Let /z' G//a</ be such that
0c(/z) = Fc(/z ,/z'). Then

0c(/zy)<;Fc(/z;,/z'), VyeN. (3.16a)

Hence, taking lim on both sides, and using Lemma 3.6, we get

jjm^Cfy)* jmiF^ (fy ,/z') =Fc(/z ,/z') =0c(/z). (3 16b)

Corollary 3.8. 0C (•) is an optimality function for Pc. •

It follows from the Implicit Function Theorem (see, e.g., [12]) that the functions

h r->MCiN(h ,), h ^>VCtN(h ,•), and h ^>yCiN(h ,•), mapping Had>N \n\oHNt defined by (3.5b-d),

are Lipschitz continuously differentiable. In fact, given h ,h' e Had>N, one can show, by differentiat

ing (3.5b-d), that DxMc^(h txN^ ;/z' - h) andD}VN(h ,xNJc ;h' - h) are given by

DxVc^(h ^j.ih' -h) =D1Vc^(h,xNMl;h/ -h)-KA(N)(h/(xNM1)^h(xNfk+])),keN,

DiVCiN(h ,%fW+,;/i/ -/z) = 0; (3.17a)

DiM^ih ,xN^;hf -h) =DxMc^(h ,xNfk ;/z' -h)+A(N)D1VCyN(h ,xNj! ;h' -/z), k € N,

DiMCiN(h ,%^+i;/z/-/z) = 0; (3.17b)

zndDtfcjj(h ,xNfk ;h' -h) = byCiN(h ,xNJc),k € N+l, wherebyc/J(h ,%^),is the solution of

&y*+i

fy'k+i

Syk+A(N)by'k

keN, Sy^oy'^O. (3.17c)

Hence, because all the functions on the right handside of (3.10a-c) are Lipschitz continuous on

[0,L], and the equations (3.17a-c) correspond to the integration of (3.10a-c) by Euler's method, we
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have the following result.

Lemma3.9. There exists a constant C <°° such that for all positive integers N,h ,h' e HadtN,

*mN+i'DlVc(/l '*"•* lW -h)-DiVcMh >xn* '>"' ~h)\ <.CW -hl2A(N), (3.18a)

*mN+i'DlMc(/l tXNJt ]K -h>>-D\McAh >%,* >'h' -*)• ^CB/z' -/zl2A(N), (3>18b)

™KH*Diyc(h '*NJc ;h' "h)"D^Ah >xn* ;K -h)\ ZCW -hl2A(N). (3#18c)
D

It follows from (3.6) and Assumption 3.1(c), that the functions (t>/^(,), j Gq, are Lipschitz
continuously differentiable on HadyN. The differentials with respect to h of <j>/^(-,), j € q, and
/f (•), which we denote by D](J)/A(-, •; •) and DfCtN(-; •) respectively, are easily obtained from (3.5f),
(3.6), and (3.17a-c), by applying the Chain Rule.

As a consequence of (3.1h,i), (3.5f), (3.6), Assumption 3.1(cj, Lemma 3.9, and Lemma 3.2 we

get the following result:

Theorem 3.10. (a) There exists a constant C <°° such that for any positive integer N,
h ,/z' € Hadfl,

\Dfc(h ;W -h)-DfcJi(h ;h' -h)\ <>CA(N)\h' -/zD2, (3.19a)

^max^ ID,(t)/(/z ,xNJc ;W -h)-D1&iN(h ,xNJc ;h' -/z)l ZCA(N)W -/zfl2. (3<19b)
D

We now define the finite-dimensional counterparts of Fc(•,•). F c(-, •) and 0C(-), which we will

denote byFCyN(-,-),F c^(-, •), and 0C A(•) respectively, as follows. For h ,h' € HadA,

Fc^(/z,/z,)^max{/C)/v(/z/)-/CtA,(/i)-co\j/c^(/z)+,max max <|>/A(/z' ,xNJc)-\^CtN(h)+} ,n20a)
j e q k € N+l w .*.««/

^c,n(>* ,^) =max { Dfcjt(h;h' -/z)-©\|/cJV(/z)+,max max &ji(h ,xNJc)-\vc„(h)+
j € q * € N+l

♦D^tf ,jc^ ;/z' -/z) } +fcIA' -/zB22 , (3.20b)

Qc^(h)±^min^FCiN(h ,h'). (3 2Qc)

Lemma 3.11. There exists a constant C < <» such that for all positive integers N. and

h ,/z' € HadfN,
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\Fc(h thf)-Fc#{h ,/z')l <.CA(N)V\ (3.21)
D

Lemma 3.11 followsfrom the boundedness of HadtN, (3.7f,g), the definitions of Fe(-,-) and

F CtN(-, -) in (3.14) and (3.20b) respectively, and Theorem 3.10. Results analogous to Theorem 3.7

and Corollary 3.8 holdfor dCyN(-).

Theorem 3.12. Suppose that {hN }^o, with hN e Had#, is such that hN -> h asN -» «>. Then

h e Had,andhmN_^oaQCtN(hN)^Qc(h).

Proof Leth' e H^ be such that 0c(/z) = F c(h ,h'). Let {h'N }„aNo besuch that, h'N e //^,

and h'N -»h' as N -» °°. Then we have

%^(hN)ZFcp(hN ,h'N)<LFc(hN ,h'N) + CA(NJ*, (3.22a)

where we made use of Lemma 3.11 to obtain the last inequality. Hence, taking lim on both sides and

using Lemma 3.6, we obtain

jSS QeJt(hN)Z vim Fe(hN tKN) =Fc(h ,K) =Se{h). (3 22b)

Corollary 3.13. The sequence {(Pc # ,0C ^)} JJol is a family ofweakly consistent approximations

to the pair (Pc ,0C). Furthermore, if for all h e Had such that \|/c(/z)>0, 0£3\j/c(/z) , then

{(Pc ^ ,0C jv)} fiol is a family ofconsistent approximations to (Pc , 0C). •

4. OPTIMAL DESIGN OF A FIXED BEAM

Consider the problem of designing an optimal fixed beam subject to a load of the form (3.1b),

with cost and constraints as in (3.1c-i). Let Mc(h ,-) be determined by (3.1e) and define

S^ [M(-)e L2[0,L] \M(x) =Mc(h ,x)+ax+b , a.beJR). It follows from the dual formu
lation of the variational problem associated with the bending of the beam (see [11, 18]), that the

bending moment, Mf(h , •), for a fixed beam of depth h e Had, is the minimizer of the functional

V(h,):S -> IR, defined by

HenceMf(h , •) differs from Mc (h , •) by a linear term only. This linear term accounts for the differ

ence in the bending moment due to the change in the reactions at the supports. Suppose that

Mf(h ,x) = Mc(h,x)+g1(h)x+g2(h), x € [0,L], (4.1b)

where g j(-) and g2(-) are real valued functions on Had.
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It follows from (4.1b) and the first-order necessary condition of optimality for (4.1a) that, given

h e Had*g(h)£[gl(h)g2(h)]T satisfies the equation

Jo
L X2

h(xf
dx Jb h(x?

h(x)2
dx Jo n(x?

dx

dx

81(h)

82(h)

LMc(h ,x)x

"Jo n(xf
dx

LMc{h,x) j
-\ ^—dx

* h(xf

(4.1c)

If we denote by A(h) the matrix on the left hand sideof (4.1c), and by b(h) the vector on the right,

then we can write equation (4.1c) as A(h)g(h) = b(h). It follows from the Euler-Bernoulli beam

equations and (4. lb) that the shear force atx, Vf (h ,x), isgiven by

Vf(h .*) =-—Mf(h,x) = Vc(h,x)-gl(h), xe [0,L],
dx

(4. Id)

where Vc(h ,x) is determined by (3.Id). The deflection yf(h ,) of the beam is the solution of the
differential equation

_d_
dx

y/(h ,x)
y'f(h ,x)

y'f(h,x)
\2Mf(h ,x)/Ebh(x)3 ,xe [0,L] ,yf(h,0) = y'f(h,0) = 0, (4.1e)

wherey7(/z ,x)kdldxyf(h ,x).

Hence, with Mf(h ,), Vf(h ,•), and yf(h ,-) determined by (4.1b), (4.1d) and (4.1e) respec

tively, we consider the following optimal design problem:

where

with

min ff(h),
heCf J

Cf^ {heHod lV/(A)£0} ,

\j/f (h) = max max (j)/(/z ,x)-rJ(x).
jeq x€ [0,L] J

(4.2a)

(4.2b)

(4.2c)

where the rJ(-), j e q, satisfy Assumption 3.1(6). The functions ff(-)t and <!>/(•,•), j € q, are
defined by

ff(h)±£$(h,x)dx,
<t>/(/z ,x)±&(h(x),Mf(h ,x),Vf(h ,x),yf(h ,x),x),j € q,

where the <j>-' (•,-,•,•, •). j e q, satisfy Assumption 3.1(c).
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Given h e Had^, we compute approximations to the integrals in (4.1c) using the rectangle rule

on the mesh TN, with Mc(h , •) replaced by MCfN(h , •), determined by (3.5c). Hence, we obtain an

approximation gN(h)£[gliN(h) g2tN(h)]T togQi), which satisfies the equation

2. a - d2a(N)3 1 a - da(N)2 1 r l f " o-i)A(N)2 _, ,.
;-l h(XNJ)

" (/-1)2A(N)3 " (/ - l)A(N)2

" C/-1)A(AQ2 £_A(AO_
;=i ^(%j)3 j-}h(xNJ)3

We will write equation (4.2f) as A#(h )gN(h) = bN(h).

,M e (0,~) such that for all integers N, /z e Had,

;MDwll2 ; (4.3a)

8w(h)

82ji(h)

y-i M%j)3

^ AW)

Theorem 4.1. (a) There are constants m,Me(0,«>) such that for all

hN e HadtN, and w e R2, we have

m$w\P&wTA(h)w <£Mlhv02 , and mlwf<ZwTAN(hN)w £A

(b) There exists a constant C 6 (0 ~) such that for all integers N, h e Had, and hN e HadfN,

(4.3b)

(b) There exists a constant ^ >. w, --, .Uu. u.ai iV. an un^wo m,« ^

i-A^(/zN)ll^C[ll/z -/zA,ll2 + A(N)],

B6(/z)-^(/zA?)li^C[B/z-/zNll2 + A(yV)](

tC € (O.oo)suchi

U(h)-AN{

h(h)-8N(hN)^C[\h-hNU2 + A(N)].

(4.2f)

(4.3c)

(4.3d)

/Yoo/. We begin with part (a). To show that for any h e Had,A (h) is positive definite, we only

need to show that the determinants of its two principal minors are positive. Clearly,

f x2lh (xfdx'z L3/3p3 >0. Hence, we only need to show that detA(h) >0. Because all he Had
take values in [a, p], we have that for allp x,p2, e € (0, <»),

ei(PiX-p2)2 ei(Pix-p2)2 J P\ Pi P1P2 Pi Pi ep? Pi
L 5—dx ^ L 5 dx = —- + — — ^ —- +
^ h{xf Jo p3

If we set e = 1/4, and choose

we get from (4.4a) that

detA(/z)=f1-^T
Jo h(xf

3P3 p3 p3 3p3 p3 p3 4ep3

2 f1 1 J A 1 r1 Jtpj = f r-dx and p2 = — f -
h(x) Pi30 h(xY

dx

dx[ -dx -
J° h(xf

L—*-rdx
Jo h(xf

~\ 2 i(p^-p2)2 p,2 j
= I ^—dx ^ ^ -

Jo /z(*)3 12 i2p6

2x1which implies that A(h) e W" z is positivedefinite.
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Next we observe that all entries of A(/z) are bounded by (L3 + l)/cc3. Hence there exists an
M e (0, oo) such that for all w e R2,

wTA(h)w £MHwI2 . (4.4d)

Since the strictly positive lower bounds on theprincipal determinants are independent of h e Had, it

follows that the smallest eigenvalue ofA(h) is bounded away from 0 forall h e Had •

The proof of the inequalities (4.3a) for AN (hN) is similarand henceomitted.

Next, weprove part (b). Inequalities (4.3b) and (4.3c) follow from thefact that h(x) andhN (x)

take values in [a,p], Holder's inequality, the fact that the rectangle rule is 0(A(N)), and from the

definitions of A(h) and b(h), andAN(hN) and bN(hN) (see (4.1c) and (4.2f)). To prove (4.3d), we

firstnote that A(h)g(h) = b(h) and AN (hN )gN (hN) = bN (hN) imply

8(h)-gN(hN)=A(hT1 [(AN(hN)-A(h))gN(hN) +(b(h)-bN(hN))] , (4.4e)

which, in view of part (a) and (4.3b,c), implies (4.3d). D

For N = 1,2,..., we define the approximating problems:

ffi
min ff^(h),

where CftN c Had<N is thesetofalldepth functions h € Hadji such that

Mfj<(h ,xNtk) = Mc>N(h ,xNik)+gliN(h)xNJc +g2>N(h) , k e N+l,

VfjiQi ,xNJc) = VCyN(h ,xNjc)-g1>N(h),k e N+l,

yff/(h,xNJ()

y'fjj(h ,xNJ()

for k e N+l, and

y/Mh >xNjc-i)+MN)y'ftN(h ,%,*_,)

\2MftN(h ,%^_j)
^/^^.%^i)+A(7V)-

Ebh{xNJ(_{f

y/j*(h ,xN,i)

y'f^(h ,xNl)

\|//>/v(/z)^max max ^h(h ,xNJC)-(l+A(N)1/2)rJ(xNJc)£0.
j € q it 6 N+l

In (4.5a) ff ^ (•) is defined by

ffJ,(h)%A(N)Z^^(h,xNJc),
*-l

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

(4.50

We define the functions <j>y^ -'HadtN x [0,L] -» IR, j € q, as the piecewise linear interpolations of

the values ^J(h(xNJc),Mf^(h ,xNJ(),VftN(h ,xNJ(),yfiN(h ,xNtk) ,xNJ(), k€ N+l, on the mesh
TN. Hence
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fyMh >xNjc) = bJ(h(xNJc),MfiN(h ,xNyk),VftN(h ,xNJc),yfiN(h ,xNJc),xNJc), j e q. (4.5g)

Using (4.1b), (4.Id), (4.1e), and (4.3d) we can provea result similar to Lemma 3.2, relating the

functions defining Ff and Py^. In particular, wecan show that estimates similar to those in (3.7e-g)

hold for (j>/(/z , •), <J>/^(/z ,•), V/O. Vfj*('Xff(h), and ffJN(h). Hence, exactly as in Theorem 3.3, it
follows that P/A -&* Pf.

It should be clear that each entry of A(h) and b(h) in (4.1c) is a Lipschitz continuously dif

ferentiable function of h e Had. Given h € Z/^, and /z* e C [0 ,L], we denote by DA (h ;h+), and

Db(h ;h*) the differentials of A(•), andb(•) at h, in thedirection /z*. They aregivenby

Lx2h*(x)
Jo dx

Lxh*(x)

h(x)4Jo dx

DA(h ;/z*) = -3
hixf

Lxh*(x) Lh*(x)

JO hfr\4 JO 7

Db(h ;h*) =

h(xf hixf

L3Mc(h ,x)h*(x)-DMc(h ,x ;h*)h(x)
L 7 x dx
Jo h(xf

L3Mc(h ,x)h*(x)-DMc(h ,x ;h*)h(x)
f ; dx
30 h(xf

(4.6a)

(4.6b)

From (4.1c) and Theorem 4.1(0; it follows that g :Had -»R2 has Lipschitz continuous Gateaux
differentials. In fact, for any h € H^, h* € C [0,L], the Gateaux differential of g at h in the direc

tion h*, Dg (h ; h*), is the solution of

A(h)Dg(h ;h*)=Db(h ;h*)-DA(h ;h*)g(h). (4.6c)

Therefore, from (4.1b-d) we obtain the following result:

Lemma 42. (a) The functions h t-+ Vf (h , •), h t-+ Mf {h , •), and h -»yf (h , •), from Had into
(C[0,L],H2), have Lipschitz continuous Gateaux differentials at all h e Had, in all directions

/z* € C[0,L], which we denote by D^Vfiji ,-;/z*) , DYMf(h ,-;/z*), and D$f(h ,-;/z*) respec
tively. Moreover,

D{Vf(h ,x ;h+)=D{Vc{h ,x ;h*)-Dgx(h ;h*\ xe [O.L], (4.7a)

DxMf(h ,x ;h*) = DiMc(h ,x .h^ + Dg^h ;h*)x +Dg2(h ;/z*), x € [O.L], (4.7b)

andD fy (h , •; /z*) is the solution of the differential equation
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•TT^OyCA.x ;**)=—±^(DlMf(h ,x ;h*)-3Mf(h ,x)-£±), xe [O.L],
or Ebh(xy J J h(x) '

L>iy/(^,0;/z*) =̂ -£>iy/(/i,0;/zO =0. (4.7c)
•

In view of theorem Lemma 4.2 and of (4.2e), theChain Rule andAssumption 3.1(c; imply that

h >-»//(/0, and h \->ty(h ,•), j e q, have Lipschitz continuous Gateaux differentials. We denote

these differentials at h e //arf, in the direction /z* e C[0,L], by Dff(h ;h*\ and D$j(h ,-;h*\
j e q, respectively.

It follows directly from (4.2e), Lemma 4.2, and Assumption 3.1(c; that the following result
holds:

Lemma4.3. There exists a constant C <°° such that for any h ,h € Had, h' ,h" e Had,

\Dff(h ;h' -h)-Dff(h ;h" -h)\ <. C[B/z - hB2 +\h' - h"H2]. (4.8a)

and for all j e q,

W^f(h ,;/z' -h)-D$}(h ,-;h" -h)l2<>CW -hli +W -ft"|2]. (4.8b)
D

Proceedingas in Section 3, we define, for h ,hf e Had,

Ff(h ,/z/) =max{//(/z/)-//(/j)-co\|//(/z)+,max max (j>/(/z' ,x)-rJ(x)-\]tf(h)+ } ,(49a)

Ff(h ,h')£max{Dff(h ;h' - h) - wyf(h)+. max max <W(/r ,x) +Dl$Uh ,x ;h' -h)
j € q x e [0,L] J

-V/(*)+}+'/4IIA'-A0?, (4.9b)

9^(A) =̂ ^(/,,A')- (4.9c)
One can show that results similar to Lemma 3.4, Proposition 3.5, and Lemma 3.6, and Theorem 3.7

also hold for F f(-, •), and 0/(0. Hence, by arguments similar to those used in Section 3, we obtain

the following counterpart of Corollary 3.8:

Theorem 4.4. df :Had -»IRisan optimality function for P/. •

The proof of Theorem 4.4 is identical to that of Theorem 3.8, and hence is omitted.

The mappings h e //^A t-+AN(hN)e R2*2 and h € HadyN *->bN(hN)e R2 are Lipschitz
continuous differentiable. In fact, one can show that, for any hN e HadfN and h+ e HN, their dif

ferentials, DAN(hN;h*) and DbN(hN ;h*), are the discrete counterparts of DA(hN;h*) and
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Db (hN ; /z*), obtainedby discretizing (4.6a-b) usingthe rectangle rule, that is,

£ (/' - D2A(N)3h*(xNj± n (j-\)A(N)2h*(xNJ)
2ml
;=i hN(xNj)

"Wt)h.(xNJ)
DAN(hN ;/z*) = -3

hN(xNj)

»(j-l)A(N)2h*(xNJ)
y-i hN(xNj) jml hN(xNj)

N

DbN(hN;h*) =
jmi hN(xNj) hN(xNj)

£A,„,rDMcMhN>xNj;h*) 3MCtN(hN,xNJ)
- l^A(N)[ — - - h+ (xNJ)]

j"i hN (xN j) hN (xN j)

(4.10a)

. (4.10b)

Making use of Theorem 4.1 (a) and the Implicit Function Theorem, one can show that DgN(hN ,/z*)
satisfies the equation

An (hN )E>8n (hN ; h*) = DbN (hN ; /z*) - DAN (hN ; h+ )gN (hN). (4.10c)

Moreover, from Theorem 4.1 and the fact that the rectangle rule is 0(A(N)) we obtain the following:

Lemma 4S. There exists aconstant C € (0,«>) such that for all hN ,h'N e HadfN,

WA(hN ;h'N-hN)-DAN(hN ;h'N -hN)l <;CA(N)\h'N -hNK2, (4.11a)

Wb(hN ;h'N -hN)-DbN(hN ;h'N -hN)\<.CA(N)\h'N -hN\\2,

M)g(hN ;h'N -hN)-DgN(hN ;h'N -hN)l<LCA(N)WN-hNl2 .

(4.11b)

(4.11c)

D

Next, we define the discrete counterparts of Ff(-, •), Ff(-, •) and 0/(0, denoted by FftN(-t •),
F/i/v(-, •) and 0/^(0, respectively. Given h ,h/ e H^^,

FfyN(h ,h')±max{fftN(h')-fc>N(h)-<i>\vffN(h)+,max max 4>/^(^ ^iv^t)~M>>jv(^)+} (4.12a)

Ffj/(h ,h')£max{DfffN(h ;h' -h)-coyfiN(h)+,max max ^(/z ,xNJc)-\\/f>N(h)+
j € q* € N+l

+D1tytN(h,xNJc;h'-h)} +»/2l/z/-/ziI22.

Qfj,(h)& min FftN(h,h').
h € Hdn

(4.12b)

(4.12c)

Using (4.1b-d), Theorem 4.1, Lemmas 4.2, 4.3 and 4.5, we can prove results similar to Lemma 3.4,

Lemma 3.9, Theorem 3.10, and Lemma 3.11. Hence, with arguments identical to those used in
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Section 3, we conclude that the following is true:

Theorem 4.6. Suppose that {hN }^„No, with hN € H^^, is such that hN -» h e Had asN -> °°.

Thenh e Had, andlim^_>„Qf^,(hN)£6/(A).

Corollary 4.7. The sequence {(P/^v ,0/^r)}Jv=i is a family of weakly consistent approximations
to the pair (Pf ,df). Furthermore, if for all h e Had such that \j//(/z)>0, 0 £d\vf (h), then
{(Pf j? ,Qf ^)} #ml is a family ofconsistent approximations to the pair (Py ,0y).

5. A DIAGONALIZED OPTIMIZATION ALGORITHM

In this section we will describe a diagonalized implementable algorithm that uses consistent

approximations and standard nonlinear programming software in computing an approximate solution

to either problem Pc orproblem Py. For this purpose, we will obtain R^*1 equivalents ofthe prob
lems Pcjv and Py jy, which were originally defined on the function spaces HN.

Given any h e HN, there exists a unique vector rj = (rjj,... fr\N+i)T e JR.N+1 satisfying (3.3b).
In fact, in view of (3.3a), we have that r\k =h(xNJc), k e N+l. We define the mapping

WN:HN^JRN+1by

WN(h)±(r\1,r\2,...,T]N+1)T. (5.1a)

Clearly, WN is a bijection and the components of rj € R^*1 are the coordinates of h e HN with
respect to the basis set {PNJc (x)} ff$. For any h e HN and x\ = WN (h),

LN+l N+l N+l l

^i =jQ ZVjPNjMLViPNjixWx = L n'r\j(PN,i(x)PNJ(x)dx=nTQ^, (5.2a)
j"l i-l ij = 1

where QN € m.(N+i)x(N+i) is ^WQn by

n a Ml
UN = 7

2 1 0 • •
14 10-
0 14 1-

• 0
• 0

1 4 1

• 1 2

An-ViN+lSince {PNJc (x)} £j! isnot orthonormal, we let TN £ gjv . and consider the mapping

^ = T^WN(h).

(5.2b)

(5.3a)

Then the components of £e TR.N+1 are the coordinates of h € HN with respect to basis set
{BNrk(x))FJi\ given by
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N+l
-U/-1BNJc(x) = WN-\TNek)^ Z(TN)ijPNj(x)> k e N+l. (5.3b)

;-i

where ek denotes the *-th canonical basis vector in RN+1, and (7^^ denotes the j,k-th entry of
the matrix TN. It follows from (5.2a) and(5.3a,b) that forany i J e N+l,

(BNJ ,BNJ )2 =(TNetfQN(TNej) » efej , (5.3c)

which implies that the basis set {BNJc(x)} ^."J1 isorthonormal.

With a, f3, and y as in (3.1a), we let

Had/t = (? e R*+1 Ia<;(fy©* <;P. k e N+l. and I(TNQk+l-(TNQk I£yA(tf).k e N } .(5.4a)

where (7^©* denotes the *-th entry of the vector 7^. For any £ € Had^ and k e N+l, let

T(%,xNjc) =m(xN,k)-K(TN$)k. (5.4b)

with /n (•) and tf £ 0 as in (3.1b). We define the problems Pc A as follows:

where CCtN c //arf jv is the set of all £ in HadyN such that for k € N,

V7r^(^.^^) =VrcA^^A/^+i) +A(N)/(5^Njt+i). VrcA^^A/JV+i) =0, (5.4d)

A?c^(?.%jt) =^cA(^%^+i) +A(^)V'c^(?.%^+iX K^(?.%^v+i) =0. (5.4e)

vf^(^»%jt+i)

y'cjt(%>xNjc+i)

and

ycfl($>xNjc)+MN)y'CtN(%,xNJ:)

\2MCtN(%,xNJc)
y'cMS>xNj;)+MN)-

Eb(TN^)3

ycjt(%>xN,i)

y'cjt(%>xN,i)

VfA(§)imax max>V^,%,*)-(1+A(AOV(%,*)*0,
j € q it € N+l *

/cA©=S*c%(^%Jt)A(N).
*-l

(5.4f)

(5.4g)

(5.4h)

♦cA(?.%^)=$y((^©*.^c^(5.*^).Vrc^(§,%jt),ycA(?,^Jt),^tt), ; e q. (5.4i)
D

For any given N, the only fundamental difference between problems Pc A and PC(/V is that Pc>#
is defined in a "coordinate-free" manner on the functional space HN, while VCfN is defined on RN+1,

in terms of the coordinates ? corresponding to the basis set {BNJc(x)} kJ{]. Hence, they are two
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equivalent statements of the same problem. Therefore, it should be clear that, given h e HadyN and
£, = T^WN(h), we have for all k e N+l and all j € q,

*iMh >xNjc) =tij*(S*xNjc)< Vc,w(ft) =Vcjv©. fc/tW =?€*(§• (5-5a>
Furthermore, from (5.2a) and(5.3a), if we let%= T^WN(h), wehave

Ihll =WN(h)TQNWN(h) = (T^WNihrfiT^WNih)) =IgO2, (5.5b)

where D-D denotes the Euclidean norm on TR.N+1. Hence h t-> T^WN(h) is an isometry (it preserves
norms) from HadA <= (C [0 ,L], DB2) onto H^^ <= (R"+1, D-D).

In view of (5.5a,b),(5.4a-i) and (3.5a-f), the following proposition shouldbe obvious.

Proposition 5.1. Problems PCiN and fCtN are equivalent in the following sense: (a) h e HN is
feasible for PCiN ifand only if£=T{JlWN(h) is feasible for Pc A, and (6; /z € CcAis aglobal/local
minimizer for Pc ^ ifand only if^=7^'WN (/z) is aglobal/local minimizer for PCyN . •

Next, we compute the derivatives of the functions defining Pc^ and define an optimality func

tion for Pf jv-

Let the matrices G% ,GJtf € R*+1 xN+1 be defined by

G%£-KA(N)

Oil-
0 0 11
0 0 0 1

0 0 0 0

The fact that the mappings %*->VCtN(%,xNJc) and Zt^Me/tfitxNJ[\ k e N+l, are Lipschitz con

tinuously differentiable differentiable on Hadji follows from the Implicit Function Theorem and

(5.4d-e). Inview of(5.4b) and (5.6a), ifwe differentiate (5.4d,e) we obtain, for all £, ©e HadtN,

(5.6b)

rM A 1 rvrv

DiVcMS>*n* /?-© = <#<* . .-)^(f-?) . * € N+l.

DiMe/l0>,xNJt ;$'- © =Gjfik , :)TN(g - ©. KN+1,

where for any matrix G,G(k ,:) denotes its k-th row.

We define the mapping Gf .-//^ -> R<"+1)*("+i> by

C (k '\Gj}(©<* ':>= £ q -3McA(g,%t,)g/ ,*eN+l.

(5.6a)

(5.6c)

(5.6d)

It can be shown, using (5.4f) and the Implicit Function Theorem, that the mappings £i-»y (£ ,%^-X
fc € N+l, are Lipschitz continuously differentiable. For any ^,?'€ Had^>
D i7c jv (?. xnjc >%- © = &y (?. xn jc)» wnich is the solution of
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&y*+i

&y'*+i

=

' 1 A(N)

.0 i

fyk

ty'k

\2A(N)

Eb(TN^

0T

<?#(©(*.:)
(£'-©, fc€N,

Syj

by'!
(5.6e)

for fc e N, where 0denotes the zero vector in RN+1. Equation (5.6e) isalinear difference equation of
the form v(fc+1) =Av (fc) +B(fc )u, v(1) =0, whose solution is given by v(fc) =J^JjU k~l~JB (J )u.
Therefore, if we define

k-l
^AG#(©(fc ,:)iA(N)£(fc - 1-y)G#(©(fc ,:) ,

;=1

it follows from (5.6d-f) that for all fc € N+l,

^i>rN(?.%jt;?,-© =oyc^(?,^^) =G^(©(fc,:)rA,(^-©.

(5.6f)

(5.6g)

To obtain derivatives of the mappings ? t-> ^(5 ,%,*), / e q, fc € N+l, we apply the Chain
Rule to (5.4i). First, for£ € HadfN, y € q, fc G N+l, we define

<Vy(sX* .:) = ^ e*

•A/,G^(fc.:)

d<J>;((7V©* .^cA(g>%^).^^(^.%,^)>yc^(^,%^),^,^)^v
dv GS(kt:)

9^((r/v©^.Mc^(g>A:jV^)>V<.A(g>^^)>ycA(g>.yA,^),^^)^v
+ d~y °1'G^(n)(fc.O. (5.7a)

Then it follows from the Chain Rule applied to (5.4i), (5.6b,c), and (5.6g) that for all j e q and all

fc e N+l,

D&cj4(S>xNjc ;?-© =Gcty'(©(fc ,:)7^'-© =(7$ [Gcty(©(* ,:)f .5-f), (5.7b)

where (•, •) denotes the Euclidean inner-product onR^*1. Hence, if we define

GC>A,(©AA(N)£GCV(©(^:) .
*»i

we obtain from (5.4h) and (5.7b) that

^/cA(^/^-© =A(N)2^i*c%(^.%^;^-© =A(A')£Gc^0(©(fc.:)(^-©
k-\ *=1
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= GfA(©7^'-© = (rJjGc^(©r,^-.^). (5.7d)

It is clear from (5.7b,d) that, forany £ e H^^, j e q, and fc € N+l,

*,&,*«>*",*) =Tj, [Gcty'(©(fc .Of . V/cA(© =7# GcA(©r.

Finally, we define the mappings Fc^ :Had^ xHadji -»R, FcA :/7arf>A, x#fldA -> R, and
0 •Had A->IRby

FCtA/(^.^)Amax{/c>yv(^)-/cA(©-coYc^(©+,max max <j^(^%,*)-Vc,tf(©+1 .(5 8a)
j € q * € N+l \ • /

FcA(?,^max { (V/CtN,^-©-cD^cA(©+,max max ♦£w(5,x*)-Vc,/v(©+
j € q k e N+l

+(VAVS.W.?'-?) } +'/2»r-?»2 . (5.8b)

6^©£ mi? F^WS.f). (5.8c)
£ € Hadji

Proposition 5.2. (a) QCjN :Hadji ->R is an optimality function for PfJV, (6) For any
h,h' eHadj,,$ = T„lWN (h), and $' =T^1^ (K) we have

FcA(/z./zO = Ff)A/(§.^), ecA(/») = 6C)/v(©. (5.9a)
D

A proof of Proposition 5.2 (a) can be found in [15]. Part (b) is a direct consequence of (5.5),

(3.20b,c), (5.8a-c), and of the fact that for any h ,We Had, ? = T^WN (h), and %= T^WN (h '), we
have

DMj,(htxNJi;hf -h)=D$e#{$,xNt;Z-§t DfcJ,(h ;/z' -/z) =Dfc^;^-© . (5.9b)

Fcji(hM)^Fc^^), (5.9c)

which should be obvious, since D^l^h ,xNJC ;h' -/z) and Dfcj,(h;h'-h) are just the
"coordinate-free" counterparts ofDi^/A(^, Jty^ ;£' - ©and DfCtN(%; $' - ©.

Thetranscription of theapproximating problems PftN is similar. If weconsider (4.5a-g), where

the Pf ^ are defined on the finite dimensional function space HN, weconclude that to obtain thetran

scriptions Py ^ we need to define, inaddition to the mappings defined in transcribing Pc^, the map

ping |)v(© =[|"i^(© 82j/(%)]T' fr°m Hadji into R2, which is the coordinate dependent counterpart
ofg// () (see (4.2f)). To do that, consider the system of equations
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£0-l)2A(N)3 " (/-1)A(AQ2

N(j-1)A(N)2 £_A(AO_
;»1 (7a? ©y jmi(TNt;)j

8iji($)

8iji($)

" C/-1)A(AQ2- .

j.i VnQj

Z A(N) -
-S7=-]S3Wcjv(5^j)

y-i u^ ©,-

(5.10a)

which we write as /lA,(©gA,(© = ^(©. It should be obvious from (4.2f), (5.10a) and Theorem 4.1

that for any /z € //ad)A, and ^ = T^WN(h), (5.10a) uniquely defines fA,(©, and

AN(k)=AN{Q, bN{h) = bN(Q, gN(h) = gN(Q.

Wedefine theproblems Py ^ as follows

•fji
min //^(©,

§6 C/jv

where C/>N <= //arf)N is thesetofall£ € Hadji such that

^/^(?.%^) =^c^(^.%.ifc) +5i^(©%jt+52^(© . * e N+l,

^/^(^.%jt) =Vcji($>xNjc)-8iji(Z),k e N+l.

and, for fc G N,

y/Jl(Z>xNJ:+l)

y'fJ*(5>xNJi+i)

yfj*($>xNjc)+&(N)y'fji($,xNjc) yfji(h^Nfi)

J'fMh'XNtl)

(5.10b)

(5.11a)

(5.11b)

(5.11c)

(5.1 Id)

^(©dmax ^maxi<j)/t/v(^%Jt)-(l+A(N),V'(^^)^0. (5>lle)

//^(©^ACWE^tf,^),
*-l

(5.11f)

<t>/^(?^A'̂ ) =V((7,A'©it .M/,*^ >xN,k)>Vfji(h >xNjc)>y/ji(h ,xNJt),xNJt), j e q(5.1 lg)
D

It follows from (5.5a,b), (5.10b), and (5.1 la-g) that a result analogous to Proposition 5.1 holds,

establishing theequivalence ofPfjf and P/ji.

It should be clear from (5.11b,c) that to obtain expressions for the gradients of the functions

defining Vf A we need, inaddition to the expressions computed in transcribing Pc>/V, expressions for
the differentials ofJliA,(© and g2jN(©. First, given any £€ /7orf^, define
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>-l

G^<5)i 3

y-1 UAf9)

GA?6(©^

-i^^omu,)
y-l MA'S);

G#*(© A^(©^[Gj^C© +G^(©].

(5.12a)

(5.12b)

(5.12c)

Then it can be shown, using the Implicit Function Theorem and differentiating (5.10a) with respect to

£ € Hadji, that for any ^ ,© € Hadt

Df(?;^-© = [D^(?,^-© Dg2^^-^)]T = G#g(©7'A,(©-©. (5.13a)

Hence, it follows directly from (5.1 lb,c) that

DiVfjitf, ,xNtk ;©- © = [G^fc .:)- G#»(©(1. :)]TN(? - © . (5.13b)

DxMf^,xNJc ;S'-© = [G#(fc ,:)+G#*(©(l ,:)xNJc +G#*(©(2,:)]7'/V(^-©. (5.13c)

We proceed exactly as we did above in the case of PCtN to obtain expressions for

Diy/ji(Z>xNjc .'?'-©. fc € N+l, and consequently (using the Chain Rule) for the gradients
corresponding toDl^}tN(^,xNtk r)J e q, fc e N+l, D/y^ (£;•), which are denoted Vtyji(%.xNfk)
and V/y^(© respectively.

Using these gradients wedefine for any ^, £' € Hadji,

F/A(?,?0^max{//A(?0-//^(©-co^/)/v(©+.max max $/,v(^%,*)"¥/,*(©+} , (5 14a)
y e q * e N+l w •*-«•«/

F/^^^O^max { (V//>/v,^-^)-co\|//A(©+,max max Vfji(^>xk)-^fji(K)+
j € q k € N+l '

+<V,d>/^,%,*).S'-© } +1/^-^B2 . (5.14b)

Qfji(®= ,mln F/)A,(^^). (5.14c)

Clearly, a result analogous toProposition 5.2 holds, and hence QftN (•) is an optimality func'tion
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forP/iA,,andforany/z ,h' e //^.S =TfilWN(h)t and £' =TfflWN(/»'). we have

Ff#<h.9t) = Ff#<&.%), Ffji{hth') = Ffji{%£), e/tA,(/z) =9/iA,(© (5.15)

We will apply the algorithm described in [17] to solve problems Pc and Pf using the frame

work of consistent approximations, as suggested in [16]. When the algorithm is applied to solve Pc,

the functions FN(-,-)* Fw(*,-). and 6/yO), in the statements below, arc set equal to FCtA,(•,•),

F ca/C , ), and 9CfA/() respectively. When the algorithm is applied to solve Pf, FN(-,•) =Ff^(-,•),

FN(-, ) sF/i/tf(v), and 0N(-) a9//f(•).

Algorithm 53.

Parameters: a , b , s e (0,1),w ,e > 0 and Af0 € K.

Data. h0eHadji0.

Step 0. Set / = 0.

Step 1.

Inner-Step0. SetW =Nh © =TjjlWN(hi).

Inner-Step I. Compute

6w&)= min FKQu&. (5.]6a)
S'ettadji

di=*rg mig Fn&.Z;), (5.16b)

Inner-Step 2. If 6^ (©) =0, set© =© and goto Step 3. Else,compute the step size

Margmax {** IFN<© +fc*4 .©)£**fleN<©)}. (5.16c)

Inner-Step 3. Set

© =©+M,-. (5.16d)

Step 2. If

FA,(©.©)<:-eA(A05. (5.16e)

go to Step 3. Else, replace TV,- by 2N,- and go to Inner-Step 0.

Step 3. Set hi+l =W^1^.©, Ni+l =fy, replace i by i +1, and go to Step 1. q

The following theorem on the convergence properties of Algorithm 5.1 can be deduced from

Theorem 5.15 in [16].
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Theorem 5.4. Suppose that Algorithm 5.1 has constructed an infinite sequence {hf }JIq that has

an accumulation point h . Then 0(/z) = 0. •

6. NUMERICAL RESULTS

We will illustrate the use of consistentapproximations and Algorithm 5.3 in solvinga particular

problem of the kind Py, that is, a fixed beam design. In our example, we assumed that E - 107 psi,
L = 50 in, b = 5 in, K = 0 (we neglected the weight of the beam), a = 1.0 in, (3 = 5.0 in, and

y = 0.15. We imposed continuum constraints on the maximum normal stress, on the maximum shear,

and on the deflection, as follows

l°f*,ax(h ,*)l £30,000 psi . V* e [0.L] , (6.1a)

l*f,max(h ,*)l £ 15,000psi , Vjc e [O.L] , (6.1b)

\yf(h ,x)\ £0.1 in , Vjt€[0,L]. (6.1c)

The cost function was proportional to the total mass of the beam,

L

ff(h)=joh(x)dx . (6.id)

The load applied to the beam was

f -1500 psi, if jr e [20.30],
/(*)={ 0, otherwise. (<Ue)

which clearly satisfies Assumption 3.1 (a,). The initial discretization was set to N = 8 points, and the

initial /z(-) was constant, with value 2.85 in (see Figure 6.1(a)). This initial design, whose cost is

142.5, corresponds to the uniform beam of least mass which satisfies the constraints (for this h (•) the

constraint on the displacement is active and the other two are slack).

In Figure 6.1(b), we find the beam obtained after 16 inner-steps of Algorithm 5.1. The discreti

zation level at the end of the 16-th inner-step was N = 128. The corresponding cost was 124.05,

about 87% of the initial cost. For the final design, the constraint on the deflection of the beam was

active, and the constraints on the maximum normal stress and on the maximum shear stress were

slack.

In Figure 6.2 we present the computed cost at each iteration as a percentage of the initial cost,

142.5, and the computed value of the optimality function QN, at each iteration. The number of

discretization points used at each iteration is also shown in Figure 6.2. As our analysis indicates, for

each given discretization the optimality function is driven to zero, but when the discretization is

refined (at iterations 4, 8, 12and 14),the value of theoptimality function may decrease. However, as
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the algorithm progresses, the optimality function is eventually driven to zero, and therefore the com

puted depth functions /z,(-) approach a stationary point.

7 - CONCLUSION

We have shown that one can obtain consistent approximations, satisfying the axioms formu

lated in [16], for two classes of optimal beam design problems, involving Euler-Bernoulli cantilever

and fixed beams, subject to continuum constraints, which include displacement, maximum shear

stress, and maximum normal stress constraints. We havealso demonstrated numerically how an algo

rithm first described in [17] and proposed for use with consistent approximations in [16], can be used

to obtain an arbitrarily good approximation to a stationary point of these design problems.

We feel confident that consistent approximations can also be used to solve optimal design prob

lems involving beams with one unilateral support, but the analysis involved is too extensive to

include in the present paper. Finally, extensions to some design problems involving two dimensional

beam models appear to be possible.

Al - APPENDIX 1: PROOF OF LEMMA 3.2

We begin with part (a). Given heHad> let hN be the linear interpolate of h on the mesh TN.

Clearly, hN e Hadji. From (3.1a), we have that h is Lipschitz continuous with Lipschitz constant y,

and hence D/z - hN IL £ yA(N), which proves (3.7a).

Next we prove (3.7b). Let h e Had, and hN e Hadf, be given. First, from (3.Id) it follows that

-^(Vc(h ,x)-Vc(hN ,x)) =-K(h(x)-hN(x)) at €[O.L], Vc(h,L)-Vc(hN,L) =0. (Al.la)
Hence, integrating both sides of (Al.la) and using Holder's inequality, we get that for all .r 6 [0, L ],

\Vc(h ,x)-Vc(hN ,x)\ £K<Em -hNl2. (Al.lb)

We will show that there exists aCe [K^L ,°°) such that for all Ne ISf, and hN e Hadji,

m™+lWcji(hN >xNjc)-Vc(hN >xN*)l *CA(N) , (Al.lc)

where VCtN(hN ,xNJ() is determined by (3.5b). Indeed, by Assumption 3.1(a), m() is piecewise

Lipschitz continuous. From (3.1a) and (3.1b), it follows that for any hN e Hadji <zHad, l(hN , •) is

also piecewise Lipschitz continuous, and has finitely many points of discontinuity in [0 ,L]. Hence,

thereexistsa constant C, independent of N e N andof hN € Had^, such thatC is a Lipschitz con

stant for / (hN , •) on any subinterval of [0, L ] in which / (hN , •)is continuous.
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Consider the mesh TN. In each mesh interval [xNJt ,xNik+1],k € N, l(hN ,•) is either Lipschitz

continuous or it has at least one point of discontinuity. There are at most finitely many mesh inter

vals, sayp £ 0, in which / (JhN , •) is discontinuous. Clearly, p is no larger than the number of discon

tinuities of m(•), and hence is independent of N e N. If we apply Euler's method to integrate (3. Id),

obtaining (3.5b), the local truncation error, on each mesh interval where / (hN , •) has at least one

discontinuity, is bounded by 2A(N)maxxe[0tL]\l(hN ,x)\. In the intervals where l(hN .•) is

Lipschitz continuous, and there are at most N -p of these, the local truncation error of Euler's

Method is bounded by C'A(N)2. Therefore, there exists aconstant C € [KL ,<») such that for any
fc € N+l,

Wcji(hN >xNjc)~Vc(hN >xN*)l £C'A(A02(N-p) +2p max \l(hN ,x)\A(N) £CA(N) ,fA1 ld^
x € [0,L] \i-»i.iw/

which proves (Al.lc). Inequality (3.7b) is a direct consequence of the triangle inequality, and

(Al. lb,c). The proofs of inequalities (3.7c-d) are similar and hence omitted.

In view of Assumption 3.1(c), (3.7e) is a direct consequence of part (b), and the definitions of

<!>/(•, •) and 4>/>A,(-, •) in (3.1i) and (3.6b) respectively. Inequality (3.7f) follows from (3.7e), (3.1g),
and (3.5e). Indeed, ifwe let R£maxy €qmaxx e [0tL]rJ(x) and make use of (3.7e), it follows from
(3.1g) and (3.5e) that

Wc(h)-Wcji(hN)^max max {(J>/(/z ,x)-rJ(x)-^ji(hN ,x)+(\ -A(A0'V(a:) }
j € qjr € [0,L]

<;C[A(A0 +D/z -hNl2]+RA(N)iAZC[A(N)l/l +lih -hNl2] , (A1 2a)

where ${ji(hN ,•): [0 ,L] -> R is the linear interpolate of {${ji(hN ,xNJc)} ^ on the mesh TN.

Ina similar way,an upper bound for \\rcji(hN) - \|/c (h) can beobtained, namely

Vcjj(hN)-Vc(h)ZC[AlA + M-AtflJ. (A1.2b)

which together with (A 1.2a) implies (3.7f).

Finally, we prove (3.7g). First we note that because of Assumption 3.1 (a), and because all

h e Had take values between [a, p], the solutions of the differential equations (3.1d-f) are Lipschitz

continuous functions on [0.L]. In fact, we can find a common Lipschitz constant for Vc(h ,•),

Mc (h , •) and yc (h , •), for all h e Had. In view of Assumption 3.1(cj we get that there exists a con

stant C such that for all x ,x' e [0, L ]

l(|)c0(/z,x)-(J)c0(/z.^)I^CU-^l . (Al.3a)

Hence,
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\fc(h)-fcji(hN)l * LJ^ <̂ c(h ,x)-tf(h ,xNJ)\ +l<j>c°(/z .x^)-**^ ,xNJ)\ }dx ,

(A1.3b)

which, in view of (A 1.3a) and (3.7e), implies that there exists a constant C such that

l/c(A)-7c*v<A*)l £C[A(AO+ !l/z -M21- (A1.3c)
D
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Fig. 6.1. (a) Initial Design; (b)FinalDesign.
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