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ABSTRACT

Most optimal design problems can only be solved through discretization. One solution strategy
is to expand the original problem into an infinite sequence of finite dimensional, approximating non-
linear programming problems, which can be solved using standard algorithms. In this paper, an
expansion strategy based on the concept of consistent approximations is proposed for certain optimal
beam design problems, where the beam is modelled using Euler-Bernoulli beam theory. It is shown
that any accumulation point of the sequence of the stationary points of the family of approximating
problems is a stationary point of the original, infinite-dimensional problem. Numerical results are
presented for problems of optimal design of fixed beams.
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1. INTRODUCTION

In the last 15 years, we have witnessed great activity in the development of computational pro-
cedures for the solution of optimal design problems (see, e.g., [4, 5, 8, 9, 10, 14] and references
therein). In general, the use of such computational procedures involves the replacement of the set of
admissible designs, the laws describing the behavior of the system under study, the cost function, the
constraints, and the optimality conditions by appropriately discretized counterparts. Clearly, to be of
any value, these discretizations must satisfy some consistency conditions. The consistency conditions
for approximating problems that we find in the optimal design literature deal only with convergence
of global minimizers of approximating problems to a global minimizer of the original problem (see,
e.g., [6, 8, 11, 14]). As we will see in Section 2, this is related to the concept of epiconvergence of
the approximating problems to the original problem. However, in the absence of convexity, non-
linear programming algorithms can only be shown to compute stationary points that are, hopefully,
local minimizers of the approximating problems. As we will show by example in Section 2, this fact
can lead to serious pathologies, such as the convergence of stationary points of the approximating
problems to a nonstationary point of the original problem.

In [16] we find a theory of consistent approximations dealing with the expansion of an infinite
dimensional problem into an infinite sequence of finite dimensional approximating problems, each
with a finite number of constraints. In [16], because of the abstract problem formulation, as well as
for algorithmic reasons, optimality conditions are expressed in terms of zeros of optimality functions.
In [16] consistency of approximating problems is characterized in terms of the Kuratowski conver-
gence of the constrained epigraphs of their cost functions and of the hypographs of their optimality
functions to those of the original problem.

In addition, we find in [16] a set of diagonalization strategies designed to make efficient use of
well-polished finite dimensional optimization codes and finite dimensional consistent approximations
in computing approximate solutions to infinite dimensional problems. These diagonalization stra-
tegies take the form of a master algorithm that chooses a level of discretization and calls a finite
minimax or nonlinear programming algorithm to iterate on the current approximating problem until
some discretization refinement test is satisfied. At that point the master algorithm increases the
discretization and uses the last point computed to initialize a finite minimax or nonlinear program-
ming algorithm to iterate on the next approximating problem, until the discretization refinement test

is again satisfied, and so on, until a final termination test is satisfied.

In this paper, we consider the optimal design of Euler-Bernoulli beams, subject to contin-
uum constraints, such as constraints on vertical deflection, shear stress, and normal stress at the
extreme fiber. Although beams with non-uniform cross sections are more difficult to manufac-

ture, in some areas where weight is at a premium, such as in aerospace applications, the construction



of minimum weight beams may be quite realistic. Moreover, the problem of determining the
optimal dimensions of a uniform beam subject to continuum constraints is a particular case of
the problems we will deal with.

First we deal with cantilever beams. We propose an expansion of the original problem into an
infinite family of approximating problems, construct corresponding optimality functions, and show
that the approximating problems are consistent. Second, we extend our results to the problem of
optimal design of a fixed beam. Finally, we make use of a diagonalization strategy presented in [16]
and of a method of centers algorithm [17], to solve these optimal design problems numerically.

For ease of exposition we will restrict ourselves to beams with rectangular cross section, fixed
width, and distributed loads. It is straightforward to generalize our results to beams whose cross sec-
tions are not necessarily rectangular, provided the cross sections have a horizontal and a vertical axis
of symmetry, and the plane containing the vertical axis of symmetry also contains the loads. For
instance, we can extend our results to the design of rectangular beams with varying depth and width,
or the design of a cylindrical beam with varying radius.

The paper is organized as follows. We recall the basic definitions and results related to con-
sistent approximations of optimization problems introduced in [16] in Section 2. In Section 3 we
state the optimal design problem for a cantilever beam and propose an expansion into a sequence of
approximating problems which we show to be consistent under appropriate conditions. The results in
Section 3 are extended to fixed beams in Section 4. In Section 5 we discuss a diagonalization stra-
tegy for numerical solution of the optimal design problems under consideration. In Section 6, we

present the results of a numerical experiment. Finally, in Section 7 we present our conclusions.

2. CONSISTENT APPROXIMATIONS

We begin by presenting a summary of the main definitions and results related to the concept of
consistent approximations introduced in [16].

Let B be a topological vector space and consider the problem

P ,mei’éf (z) (2.1a)

where f : B — R is continuous and Z < B is the constraint set. Let { By } y.; be a family of finite
dimensional subspaces of B such that By = B if Bis finite dimensional (R") and By < B,,,, for
all N, otherwise. Consider the family of approximating problems

P, zneaigN fni@z), NeN, (2.1b)

where fy - By — R is continuous, and Zy < By. To be of any use to us at all, the problems Py
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must, at least, converge epigraphically to P, ie., the epigraphs
Ey8 {(z°.z2)€ RxZy 1z°2f(z) }. of the problems Py, must converge, in the sense of Kura-
towski, to the epigraph E ) {z°,2)eR xZ 12%2 f(z)}, of the problem P. Equivalently:

Definition 2.1. [1, 7] The problems in the family {Py } v converge epigraphically to P,
Py —EPi Py if : (a) for every z € Z, there exists a sequence {zy } yay, With zy € Zy, such that
zy =z and lim fn(zn)Sf(2); and (b) for every sequence {zy, } guy, With zy, € Zy,, such that

Zy, D>z ask —»,z € Z and lim fy,(zy,) 2 f (2). O

Epigraphic convergence, or epiconvergence for short, can be viewed as a ‘‘zeroth order’’ con-
sistency property. In particular, it ensures the following result.

Theorem 2.2.  Suppose that Py —f7 P, and that {2 } 5., is a sequence such that £ € Zy for
al N and?y — 2. (a) If the %y are global minimizers for the Py, then 2 is a global minimizer of
P; (b) IfZ y are strict local minimizers for the Py whose radii of attraction do not converge to zero

as N — oo, then 7 is a local minimizer of P. O

The reader is referred to [1, 7] for the proof of Theorem 2.2 (a), and to [16] for the proof of Theorem
2.2 (b).

Optimization algorithms, applied to the finite dimensional problems Py, are only known to
compute stationary points. As the following example shows, epiconvergence alone does not rule out
the possibility that stationary points of the Py converge to a nonstationary point of P: Let B = R?,
sothatz = (x ,y),andlet f (z) = fy(z) = (x =2)2. N € N. Let

Z3(x,yeRIx2+y2g2}, (2.22)

and, forall N € N, let
Zy B (.)€ R? I (x —yR(x2+y2-2) <0, x2+y232+%}. (2.2b)

Then we see that Py —EP' P, Nevertheless, the point (1,1) is feasible and satisfies the F. John
optimality condition for all Py, but it is not a stationary point for the problem P. The reason for this
is an incompatibility of the constraint sets Zy with the constraint set Z which shows up only at the
level of optimality conditions.

To eliminate the possibility of pathologies such as in the above example, as well as some others.
e.g, failure of derivatives to converge, [16] imposed a second condition on the approximating prob-
lems in terms of optimality conditions, which can be viewed as a ‘‘first order’’ consistency require-
ment. For the purpose of this condition, it is convenient to characterize stationary points as the zeros
of optimality functions: 6:2 — R for P and 6y : Dy - R for Py, N € N, where D < B8 and
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Dy < By, ie., the optimality functions may not be defined on the entire space. We will assume
that Dy © DN By, forallN € N.

Definition 2.3. A function 8:2 — R is an optimality function for P if, (i) Z < D, (ii) 6(’) is
sequentially upper semicontinuous, (iii) 8(z) <O for all z € D, and (iv) 8(Z) = 0 for any £ € Z that
is a local minimizer for P. Similarly, a function 8y : Dy — R is an optimality function for Py, if, (i)
Zy < Dy, (ii) O5(°) is sequentially upper semicontinuous, (iii) Oy(z) <0 for all z € Dy, and (iv)
Oy( y) =0forany %y € Zy that is a local minimizer for Py . O
Definition 2.4.  Let 6(:), Oy()), N € NN, be optimality functions for P, Py, respectively. The pairs
(Py ,Oy). in the sequence { (Py ,0y) } y-; are weakly consistent approximations to the pair (P, ), if
(i) Py — 7' P, and (ii) for any sequence {zy } y ¢ x» K N, with zy € Dy, forall N € K, such
that zy — z, 1im By (zy ) < 8(z). O

As aresult of this definition, we immediately get the following result, which subsumes Theorem 2.2:
Theorem 2.5.  Suppose that the pairs (Py ,6y) in the sequence {(Py ,0y)}y=; are weakly con-
sistent approximations to the pair (P, 0), and that {Z y } y., is a sequence such that 2 5 € Z,, for all
NandZy —-7%.

(a) IftheZ 5 are global minimizers for the Py, then % is a global minimizer of P.

(b) 1If 2 are strict local minimizers whose radii of attraction do not converge to zero, as N — oo,

then Z is a local minimizer of P.
(c) IfLimOy(Zy) =0, then 8(2) = 0. 0

If we define a point Z to be stationary for P if 8(£ ) = 0, then we see that Definition 2.3 permits
nonfeasible points to be stationary (e.g., they can be stationary points for a problem with relaxed or
modified constraints). This phenomenon can be removed by imposing an additional condition, as is

done below:

Definition 2.6.  Let 6("), 6y (), N € N, be optimality functions for P, Py, respectively. The pairs
(Py ,6y), in the sequence {(Py,Oy)}ya; are consistent approximations to (P,0), if they are
weakly consistent approximations, and in addition 6(z) <0 for all z €Z and 6y(z) <O forall z £€Z,
N € N. O

-4.



3. OPTIMAL DESIGN OF A CANTILEVER BEAM

Consider a cantilever beam of length L >0 and rectangular cross-section, with constant width
b >0 and variable depth defined by a function A :[0,L] = R. The material of the beam has
modulus of elasticity E >0. Let 0 < o< <o and y20 be given constants, and let C [0, L ] denote
the space continuous real-valued functions defined on [0,L]. We assume that the set of admissible
depth funlltions h () is given by

adé {he€e C[0,L]110<ash(x)<B, Idh(x)dx| <y, fora.e.x € [0,L]). (3.1a)

We model the beam using Euler-Bernoulli beam theory, and assume that it is subjected to a
vertical load with density ! : H,; x[0,L]— R of the form

Ith,x)=m(x)-Kh(x), x€[0,L], (3.1b)

where K 20 is a given constant and m € L.[0,L] is the density of an external load applied to the
beam.

We will consider optimal cantilever beam design problems that can be stated in the form

P. ,,“éi?;‘f‘ (h), (3.1¢)

where C. © H,, is the set of all admissible depth functions & (-) such that

z"mh x)==1(h x), x€[0,L], V.(h,L)=0, (3.1d)
%M,(h x)==V,(h,x), x€[0,L], M.(h,L)=0, (3.1¢)
B hoay= MR 0Ly, vy 4 (h.0)=0 3.1f)
—_— WX) s —mM—, X , s , = , =0, .
A j )
‘I’c(h)—-}nea); xén[%)'(”d)c(h ,X)=ri(x)<0, (3.1g)

where (3.1d-f) are the Euler-Bernoulli beam equations for a cantilever beam whose depth is deter-
mined by the function 4 ('), and relate the deflection y. (% , -), the bending moment M..(k , -), the shear
force V. (h ,-), and the load density /(h,-). We use the subscript ¢ to differentiate the quantities
associated with the cantilever beam from those of the fixed beam, to be considered in Section 4.

For any integer g >0, let q a {1,2,...,q9 }. The functions ¢(-,*), j € q, are used to express
continuum constraints. We assume that the functions f.(-) and ¢ (-,"), j € q. are of the form

L
feth)= [ 62 x)dx (3.1h)



lh \x) =/ (h(x), M (h %),V (h ,x),y.(h ,x),x), j €7, (3.1i)
where, forj € G2 {0,1,...,9 },¢/ :[a,BIx Rx Rx R x[0,L] - R.
Assumption 3.1. We will assume that

(a) The function m () is piecewise Lipschitz continuous, with finitely many points of discontinuity
in[O,L].

(b) The functions r/ ("), j € q, are Lipschitz continuously differentiable on [0, L ], and satisfy

min min r/(x)=%>0. (3.1j)
j€q x€[0,L]
(c) The functions 5" (-,*.*,*,*), j € qare Lipschitz continuously differentiable.

(d) The feasible set C. for P, is not empty, that is, there exists an h € H,,; satisfying (3.1g). O

A variety of design problems can be expressed in the form (3.1a-j). For example, suppose that
we wish to minimize the weight or volume of a cantilever beam of constant width, subject to con-
straints on the maximum normal stress at the extreme fiber o, ,max (I , ), constraints on the maximum

shear stress T, ,,,, (4 ,*), and constraints on the deflection y. (h ,-). Then we set

L
fe®) 8 [ h(vdx, (3.22)
6 M.(h ,x)
Ol (h X)) 2 O pax (B %) = ;—;(;)2—, o2h ,x) 8 -0)h ,x), (3.2b)
3 é _ivc(h :x) 4 é_ 3
O (h ,x) 2 T g (b, x) = 2 ohe) d(h ,x)8=92(h ,x), (3.2¢c)
03h ,x)8y.(h ,x), 68h ,x)B =03 ,x), (3.2d)

In the simplest case, the r/ are positive constants, with r! = r2, r3 = r4 and r5 = 9,

The *‘natural’’ norm on C [0, L] for establishing continuity and differentiability of solutions of
(3.1d-f) with respect to depth functions is the sup-norm, [l.. However, when we define optimality
functions for our design problems, by extension of optimality functions for problems defined on R”,
which is a Hilbert space, it is much more natural to use the L,[0,L] norm, Il,. Since there is no
inconvenience in also using the L,[0,L] norm for establishing continuity and differentiability of
solutions of (3.1d-f) with respect to depth functions (see [3]), we adopt this norm for C [0, L] in our
analysis. Hence, we will work in the inner-product space (C[0,L], 1, {-, ")), where {-,-), denotes

the usual inner-product on L,[0,L].

Existence of a solution to P, follows from the Ascoli-Arzela theorem, which implies that the set

H .4 is compact in (C [0, L ],i-l,). Proofs of existence of solutions to similar problems can be found in
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(6, 8, 13].

We will obtain a sequence of consistent approximations in three steps. First, we will choose a
dense family of finite dimensional subsets of H,;, second, we will discretize the boundary value
problem (3.1d-f), the cost function (3.1h), and the constraints (3.1g), and define approximating prob-
lems P, . Third, we will define appropriate optimality functions 6, (‘) and 6, y(-) for the original
problem P, and for the approximating problems P, y respectively.

For every positive integer N, we let AW)AL/N, and define the mesh
Ty & {0,A(N),2AN),...,L }, with nodes xy 5 = (k = 1)ANN), k € N+1.

Let Hy denote the subset of C [0, L] whose elements are piecewise affine on the mesh 7). Let

Hagn a HynH,;. Any h € H,; y can be expressed as a unique linear combination of the functions

rm,forallxe[xN,kl,xN*], ke {2,:-- ,N+1},
AN) -
AN k41X (3.3a)
PN’k(X)éﬂ A—:M—,forallxelxN*,xN,k“], k€eN,
0, otherwise.

.
That is, for each h € H,y v, there exists a unique (M, My, ..., Ny41)” € RV*! such that

N+l
h(x)= anPN,k(x)’ xe[O'L] . (3.3'3)

k=1

The boundary value problem (3.1d-f) can be solved numerically by several different methods.
The two most frequently used are finite difference and finite element methods. Although finite ele-
ment methods have advantages for more complicated geometries in 2 or 3 dimensions and can be
used with a variety of boundary conditions, their convergence analysis is somewhat more complex
than that of finite difference methods. Hence, to keep the exposition as simple as possible, we discre-
tize (3.1d-f) using finite differences. However, our results remain valid if one uses other discretiza-
tion methods, provided Lemma 3.2, Lemma 3.9 and Theorem 3.10 below remain valid for the result-
ing approximations.

Before we integrate the second order differential equation (3.1f) numerically, we transform it to

the first order form:

d c(h ,X) ,c(h ,X) ,
Z[;’c(h ,x)] = !12Mcfh ,x)/Ebh(x)3] X €LYy 0 =y h . 0)=0. G4
where y’. (h x)Bdidx Yo (h ,x).

Using Euler’s forward method to discretize the ordinary differential equations (3.1d.e) and
(3.4), we define the family P, y of approximating problems as follows:

.7,



., ,min  fenth), (3.58)

where C. y < H,y y is the set of all depth functions 4 () in H,4 y such that fork € N,

VC,N(h ,xN’k) = VC,N(h ,xN’,‘,,,l)-i-A(N)l(h ,xN,“l), VC,N(h ,wa+l) = 0, (3.5b)

Mc,N(h ,XN*) = MCJV(h 'xN,k-H) +A(N)Vc’N(h 'xN,lt+l)’ Mc,N(h ,xNJV+]) = O, (3.50)

Yen(h Xy g 41) Yen(h Xy )+ ANy e (B Xy x) Yen(h Xy ) [0}

' n(h,x - 12M. v (h ,x |y’ h,x - o]~ (3.5d)
Yen(h Xy g41) Vet 3 ) +AN) e ( 1;/,1:) Yenth,xy )
Ebh(xN’k)
wcw(h)é;ng:ék?%lnbgﬂ(h ng) = (1+ AN (xy ) €0, (3.5¢)
AS o
fen()2 Y, don(h ,xy)AN) . (3.5)
k=l

O

We define the functions ¢/ N Hagn x[0,L]1 > R, j € q, as the piecewise linear interpolation
of the values aj(h(xN*),Mc'N(h XN i) Ve n(h Xy g ) Ye n (B Xy g) Xy i), on the mesh Ty, and
hence

ol n(h ,xN*)=$j(h(xN*),Mc,N(h XNg ) Ven(h o xy g ) yen(h o Xn 1) X0 ), j € q. (3.6)

The term A(N )* in the constraint (3.5¢) is added to guarantee that for N large enough, the feasi-
ble set for P, y is not empty. This relaxation of the constraints will be needed in the proof of
Theorem 3.3 (a) below.

The proof of the following lemma is given in Appendix I.

Lemma 3.2. (a) Forevery h € H,,, and positive integer N, there exists an hy € H,, ~ such that

xén[%x lh(x)=hy(x)] <YANN) ; (3.7a)

(b) There exists a constant C < o such that forany h € H,y,N 21,and hy € H,y y

kIél%X IV (h -xNk) V,N(hN XNJ‘)I SC[AN)+1h - th12] (3.7b)
[max IMcCh Xy ) =M y(By xy )| SCIAN) + 1k = hyl], (3.7¢)
e yeCh Xy g ) =Ye n(hy Xy )| SCIAWN) +Bh — hyly); (3.7d)



(c) There exists a constant C <o such that forall j € q,N 21,h € H,;,and hy € Hun,s

,ax 164(h ,x) = & N(hy ,x)] SCIAN) +1h = hyl,), (3.7¢)
lye (h) =y, y(hy) | SCIANY% + 1k = hyl,), (3.7
1fe(h)=fcn(hy)l SCIAWN) +1h = hyl,). (3.7g)
O
In view of the definitions of y, (k) and y, y (h), it is clear that the following holds:
C.={h€Hyly (h)s0}, C.y=1{he€ Hoyn |y n(h)<0). (3.8)

Theorem 3.3. (Epiconvergence) (a) For every h € C,, there exists a sequence { iy } yay,, With
hy € C. n, such that fy(hy) = f(h) as N - . (b) Let {hy } .y, be a sequence such that
hy € C.nyandhy — h asN — oo, thenh € C,,and fy(hy) = f (B).

Proof. Suppose h € C, is given. Then, by Lemma 3.2, for each integer N, there exists an
hy € Hgq n such that (3.7a) holds. Clearly, hy — h as N — . It now follows from (3.7g) that
fen(hy) = f.(h)as N — oo, To complete the proof of part (a), it remains to show that there exists

an N such that hy € C, y, for all N 2 N. Indeed, since » € C, by assumption, (3.8) and (3.7a,e)
imply

\Vcﬂ(hN)S\Vc,N(hN)_Wc(h)

=max max [¢¢,N(hN.x)-r’(x)(1+A(N)%)]-—max max [¢g(h X)) =1 ()]
j€Eqxe[0,L je€qxe0,L

Smax max [I¢C,N(h~ X) = 0l(h ,x) 1 = F (x)AN)*)
jeEqxe[0,L

SCIAWN) +1k = hyl] = FAN)A S C AN ) +1h = hyl] - AN)%

SCU+YAWN)-FAN)*, (3.9)

where 7 >0 is as in (3.1j). It follows from (3.9) that there exist an N such that for all N 2 N,
Y. n(hy) <0, which proves (a).

Let { hy } y=n, be a sequence as in (b). The Ascoli-Arzela Theorem implies that H,,; is com-
pact in (C[0,L],1l;), and hence that it is closed. Since C, y SH,y y ©H 4 for all N € N, it fol-

lows that & € H,,. The facts that he C., that is, that y, (h) <0, and that fen(hy) > f. (R follow
directly from (3.7f) and (3.7g) respectively.



O

Next we will develop optimality functions 8, (-), and 6, y(*), for the problems P, and P, N>
respectively.

The mappings h — M. (h ,*), h > V.(h,*), and h — y.(h ,"), from Hgy4 into (C[O,L1],1:0,),
and defined by (3.1d-f), have Lipschitz continuous Gateaux differentials on # € H,;. This is a direct
consequence of the differentiability properties of solutions of ordinary differential equations (see [3]).

Let D\V.(-,";), DM (-, ;), and D,y.(-,- ;") denote the Gateaux differentials of the map-
pingsh — V. (h,"),h = M.(h ,-),and h — y.(h ,-) respectively. It can be shown (see [3]) that for
any h ,h’ € H,,, the following relations hold:

d

EDIV'(h X W —h)y= KW x)-h(x)), x€[0,L], D\V.(h,L ;K -h)=0,(3.10a)

-EleMc(h X ;hl _h)=-D]Vc(h ' X ;h’ _h)' X € [O'L]! DlMc(h rL ;h, -h)=0t (3-10b)

2
il (DM x ;1 =) =3M,(h ) ELZBD)Y e 01

Dlyc(h X ;hI-h)" h( )

Ebh( >
d
Dyeth 0, =h)=—-Dyye(h ,0;h —h)=0. (3.10c)

Consider the functions defined in (3 1g) and (3.1h,i). It follows from the Lipschitz continuous

and y,. (h ,) with respect to h, that {(-,*), j € §, and fc (), are Lipschitz contmuously dlfferentlable
functions of h on H,;. We will denote by D 1¢4(:, - ;*), J € q,and Df (- ; ) the Gateaux differentials
of the functions k > ¢J(h ,-) and h — f . (h) respectively.

Lemma 34. There exists a constant C < o such that forany b , 4 € Hy W b € Hy,
\Df (h ;1 —h)=Df(h ; k" =k )V SClIk =K ly+ W —h"1y), (3.11a)
and forall j € q,
D10k ;1 =h)=D bl ;1" =S Cllh =K ly+ W =71 (3.11b)
Proof.  Both inequalities are a direct consequence of the Lipschitz continuity of the Gateaux dif-
ferentials of M. (h ,*), V.(h ,*) and y.(h , ), and the Lipschitz continuous differentiability of the func-
uonsd)j(',','.-,'),j€q,1n(3lh1) 0
Next, we define the function F, : H,y xH,; = R by

-10 -



Fe(h 1) & max { fe(W)~f.(h)=ay, (h), , max max A x)=r ()= (), ) . (120
JEqx ’

where vy, (h )+é max {y.(h),0}, and @>0 is a parameter to be used in method of centers type
algorithms. Note that (i) forall h € H,4, F.(h ,h) =0, and (ii) if he H,; is a local minimizer for
P, then, since y.(h) >0 when A is infeasible, and since f,.(h) 2 f, (R for all feasible 4 in a ball

about &, A must also be a local minimizer for the problem

in F.(h ,h). )
JeFed @120

This fact is used in [2] to obtain the following first order optimality condition for P, :

Proposition 3.5. If & is a local minimizer for P, then
h € Hy anddF.(h h ;0 =h)20, forallh’€e H,y, (3.13)

where d,F, (ﬁ ,i; ch - ﬁ) denotes the (one-sided) directional derivative of F..(-,") at (ﬁ ,3), with
respect to the second argument, in the direction b’ - h. ]

Referring to [15], we see that for the purpose of constructing algorithms, it is useful to replace
the first order linear approximation d,F.(h ,h ;h’ —h) of F.(h ,h’) in a neighborhood of & by the

the following convex first order approximation:

Fo(h k)8 max {Df.(h ;} —h)- oy, (h),, max max ¢i(h .x)+D0i(h .x ;K —h)
j€Eq x€[0.L)
-y, (h),) + %k —hi2. (3.14)

In view of (3.1b-i) and Assumption 3.1 (c), it should be clear that, for all j € q and x € [0.L]. the
mappings h — ¢J(h ,x) and h — (k) are continuous on H,;. Hence, as a consequence of the

definition of f «(-,°) and of (3.11a-b), we obtain the following result:

Lemma3.6. F . :H,; xH,; — R is continuous.

0
We now define the optimality function 6, : H,; — R as follows:
A : =3 ’
e‘.(h)=hln'€llll}d F‘.(h Jh ) (315)

From Lemma 3.6 and the fact that H,; < (C[0,L],k0,) is compact (by the Ascoli-Arzela
Theorem) it follows that 6, (-) is well-defined.

Theorem 3.7. (a) The function 6.(‘) takes values in (=0,0]; (b) 6, :Hzy — R is upper
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semicontinuous: (c) For any he Hgy, 6, (l'; ) = 0if and only if either . (ﬁ ) <0 and (3.13) holds or
Y, (3) >0 and 0 € dy, (3 ), where . (ﬁ) denotes the Clarke generalized gradient [2] of . (") at )
(i.e., h satisfies the first order optimality condition for the problem min,, ¢ _ . (h)).

Proof.  Parts (a) and (c) can be deduced from Proposition 5.4 and Proposition 5.5 in [15]. We will
prove part (b).

Suppose { h; } jug © Hgy is such that hi >h € Hy as j — ., Let i’ € H,y be such that
0.(h)=F .(h k). Then

B (h))<F .(hj ,l), Vj€EN. (3.16a)

Hence, taking lim on both sides, and using Lemma 3.6, we get

jl.i_l)n“ec (hj) Sjli_l)nNF c(hj HW)=F  (h,h)=0.(h). (3.16b)
Corollary 3.8. 6, () is an optimality function for P, . a

It follows from the Implicit Function Theorem (see, e.g., [12]) that the functions
h—>M .y, ), h >V, nh,) and h =y, y(h ,-), mapping H,4 n into Hy, defined by (3.5b-d),
are Lipschitz continuously differentiable. In fact, given k ,h" € H,; v, one can show, by differentiat-
ing (3.5b-d), that D \M, n(h ,xy 4 ;' =h)and D \Vy(h ,xy, ; B’ — h) are given by

D\V.n(h ,xyy B =h)y=D V. y(h VXN a1 B ‘h)-KA(N)(h'(XN‘k.H)“h(XN,k+1)).k €N,
D\Venh Xypyuyih —h)=0; (3.17a)
DM n(h Xy gy W —h)=D M, yCh ,xy g H —h)+AWN)D V. y(h ,xy 4 ;0 —h), k€N,

D\Mcn(h Xy ny B =h)=0; (3.17b)

and Dy, n(h Xy ;B =) =8y, n(h ,xyy), k € N+, where 8y, y (h ,xy z), is the solution of

BYi 41 By + AN By 'y
S 12A(N) M. n(h Xy )
Wy +——————=\D M. yh ,xy, ;W =h)=————"" (W (xn.)—h
Y 'k Ebh(xN,k)3( My (b xy g ) h G 2) (" Xy &) (J\:,,,J()))_I
k€N, dy,=08"=0. (3.17¢)

Hence, because all the functions on the right hand side of (3.10a-c) are Lipschitz continuous on
[0,L], and the equations (3.17a-c) correspond to the integration of (3.10a-c) by Euler’s method, we
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have the following result.

Lemma 3.9. There exists a constant C < o such that for all positive integers N, h ,h’ € H,y No

(ax 1D \WVelh gy W =h)=D\Ven(h xyg i =) SCI ~hLAN),  (3.18)
4+

X 1D M (h 2y B =) =DM p(h Zw g i1 = k)1 SCI —hAN),  (3.18b)
s

krgaN’illDlyc(h ,XN* ,'h/ -h)—D]ycw(h ,xN’k ,'h’ —h)l <Cln -hle(N). (3‘180)
O

It follows from (3.6) and Assumption 3.1(c), that the functions ¢/ ~(.9), j € q, are Lipschitz
continuously differentiable on H,s 5. The differentials with respect to & of ¢/ ~N(C.) j€Q, and
£ (), which we denote by D ,¢/ ~C, ;) and Df . v (-, ) respectively, are easily obtained from (3.5f),
(3.6), and (3.17a-c), by applying the Chain Rule.

As a consequence of (3.1h,i), (3.5f), (3.6), Assumption 3.1(c), Lemma 3.9, and Lemma 3.2 we
get the following result:

Theorem 3.10. (a) There exists a constant C <o such that for any positive integer N,
h.h" € Hyy,

IDf . (h ;B =) =Df e n(h ;K =)l SCAN)IK =k, (3.19a)

(max 1D 0/ xyy i h ~h) =D b 3wy W =) SCANK =Rl (3.19p)
€ N+
O

We now define the finite-dimensional counterparts of F.(-,"), F ¢(*,*) and 6, (), which we will

denote by F. y(-,), F. N~ (), and 8, y () respectively, as follows. Forh ,h’ € Hyy .

Fen(h i) 8 max {fcw(h’)-fuv(h)-m%,zv(h)w;nglkrg%{l%’w(h’ vk =Wen(h)i ) (3.20a)
Fon(h ,h')émax { Df.n(h ;W "’)""“’fﬂ(”)*'ﬁ"ea’;k'é'%’il ¢cj,~(h IN g =W n (),
+D 0y (h xy g B =) } + Vel — 12 (3.20b)

A . ~ ’

Lemma 3.11. There exists a constant C <o such that for all positive integers N. and
h.h € Hy .,
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|F o(h W) =F . n(h )l SCANY . (3.21)
0

Lemma 3.11 followsfrom the boundedness of H,; y, (3.7f,g), the definitions of F c(-,*) and
F . n(,°) in (3.14) and (3.20b) respectively, and Theorem 3.10. Results analogous to Theorem 3.7
and Corollary 3.8 hold for 8, y (°).
Theorem 3.12.  Suppose that { hy } yuy, With Ay € H,y y, is such that hy — h as N — oo, Then
h € H,y,and limy _, .. 8, y(hy) <O, (h).
Proof. Leth” € H,; be such that 6.(h) =F c(h ,h'). Let { Ky ) yon, be such that, b’y € Hyy v,

and h’y = h" as N — oo, Then we have
O () SF By BN SF ((hy B y)+CAN)%, (3.22a)

where we made use of Lemma 3.11 to obtain the last inequality. Hence, taking lim on both sides and
using Lemma 3.6, we obtain

N@«. e“W(hN)SNuE.,,Fc(hN Wn)=F (h,K)=8.(h). (3.22b)

Corollary 3.13.  The sequence { (P, y ,6. 5) } a1 is a family of weakly consistent approximations
to the pair (P.,6.). Furthermore, if for all h € H,y such that y.(h)>0, 0€dy,(h) , then
{ (P n ,0. n) } y=1 is a family of consistent approximations to (P, , 6,). ]

4. OPTIMAL DESIGN OF A FIXED BEAM

Consider the problem of designing an optimal fixed beam subject to a load of the form (3.1b),
with cost and constraints as in (3.1c-i). Let M.(h, ) be determined by (3.le) and define
s4é {M()€E L,0,L)IM(x)=M.(h .x)+ax+b, a,b € R). It follows from the dual formu-
lation of the variational problem associated with the bending of the beam (see [11, 18]), that the
bending moment, M, (h ,-), for a fixed beam of depth h € H,,, is the minimizer of the functional
V(h,):S = R, defined by

M(x)

vin myd 12
( )= I’h(x)s

(4.1a)

Hence Mg (h ,°) differs from M, (h ,-) by a linear term only. This linear term accounts for the differ-

ence in the bending moment due to the change in the reactions at the supports. Suppose that
Mg(h ,x)=M.(h ,x)+g (h)x +g,(h), x €[0,L], (4.1b)

where g () and g,(°) are real valued functions on H,,.
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It follows from (4.1b) and the first-order necessary condition of optimality for (4.1a) that, given
h€Hygygh?dlg 1(h) go(h)Y satisfies the equation

L 42 L & LM .(h,x)x
dx [ ——adx - ————
L h(x)? IO h(x) gi(h) hx)
. L = . (4.1¢)
L X 3dx ,‘.o 1 3dx ga(h) _ LM.(h,x)
h(x) hx) hx)?

If we denote by A (k) the matrix on the left hand side of (4.1c), and by b (k) the vector on the right,
then we can write equation (4.1c) as A (h)g(h) = b(h). It follows from the Euler-Bernoulli beam
equations and (4.1b) that the shear force at x, Ve(h ,x), is given by

Vs (h ,x)=—%Mf(h x)=V.(h,x)-g,h), x€[0,L], (4.1d)

where V. (h ,x) is determined by (3.1d). The deflection Y¢(h ,*) of the beam is the solution of the
differential equation

d (h,x) ‘#(h ,x) ,
E[yy{f(h .x)} - [12M,{hf,x)/Ebh(x)3] X €LY, yp (.00 =y's(h.0) =0, (A1)

wherey ‘s (h ,x) 8 d/dx Yr(h ,x).

Hence, with Mf h,), Vf (h,*), and ¥r (h ,-) determined by (4.1b), (4.1d) and (4.1e) respec-
tively, we consider the following optimal design problem:

P, i Sk, (4.22)
where
C; 8 {h€Hy ly(h)sO}, (4.2b)
with
A i
Wy (h) 2 max xg‘[g’f,_]"’f(" x) = rl(x). (4.2¢)

where the r/(), j € q, satisfy Assumption 3.1(b). The functions f 7 (), and ¢}(-,'), J €4q, are
defined by

Actao
frmE [ beh ,x)dx, (4.2d)
Of(h . x) 8¢/ (h(x) My (h ,x),Vs(h ,x),y;(h %) ,X), j €, (4.2¢)
where the $(-,*,*,-,"), j € §, satisfy Assumption 3.1(c). O
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Given h € H,; 5, we compute approximations to the integrals in (4.1c) using the rectangle rule
on the mesh Ty, with M, (h ,) replaced by M, y(h ,-), determined by (3.5c). Hence, we obtain an
approximation gy (h) a [g1n(h) gan (I to g (h), which satisfies the equation

[ X G —1PAN? G- DANY | [ ¥ G -nanwy ‘
z - h(x) ~()3 ) Lz Uh(x) -()3) h " Uh ) .(3) M nChxy )
j=1 N Jj j=1 N Jj gin(h) j=1 (v ,j)
N 2 N h) = N - (420
(U =DAN) ANN) 82N AN) M
- ¢ (h » X, )
| ng h(xN.j)3 j% h(xNJ)S ] | j=l h(xN‘,-)3 N Ny

We will write equation (4.2f) as Ay (h)gy (k) = by (h).

Theorem 4.1. (a) There are constants m ,M € (0,%) such that for all integers N, h € H,,;.
hy € Hyyn.and w € R?, we have

miwl2<wTA(h)w <MIwl? , and miwiP<wT Ay (hy)w S MIwl? ; (4.3a)

(b) There exists a constant C € (0, ) such that for all integers N, h € H,;,and hy € H,4 5.

1A (k) — Ay (By I S C [Ih = hyll, + AN)], (4.3b)
16 (k) — by (AN < C [Ih = Byl + AN)], ‘ (4.3¢c)
Ig (h) — gy (IS C 1A = hyly + AN)] . (4.3d)

Proof.  We begin with part (a). To show that for any h € H,;, A (h) is positive definite, we only
need to show that the determinants of its two principal minors are positive. Clearly.
LLxZ/h (x)*dx 2L%3p°>0. Hence, we only need to show that detA (h) > 0. Because all h € H,,
take values in [a, B], we have that forall p,,p,,€ € (0,%),

1(p1x = po)? 1(px —p,y)° pt p? pwo_ P} P} e} P2
L_—s—dxzk 3 dx=33+7-—5—2—?+—3-—3——3. (4.42)
h(x) B B B B 3p° B B 4ef
If we set € = 1/4, and choose
LS 1 .1 x
pi Lh(x)s P2 plfo Y (4.4b)

we get from (4.4a) that

X1 1 12 ex-p)  pE
dem(h)'ff’h(x)3de°h(x)3dx_[I°h(x)3dx] “h TGy g e

which implies that A (h) € IR?>*2 s positive definite.

-16 -



Next we observe that all entries of A (k) are bounded by (L3 + 1)/a3. Hence there exists an
M € (0,%0) such that for all w € R?,

wlA(hw sMIwi?. (4.44)

Since the strictly positive lower bounds on the principal determinants are independent of # € H,,, it
follows that the smallest eigenvalue of A (k) is bounded away from O forall k1 € H .

The proof of the inequalities (4.3a) for Ay (hy) is similar and hence omitted.

Next, we prove part (b). Inequalities (4.3b) and (4.3¢c) follow from the fact that 4 (x) and hy(x)
take values in [o, B], Holder’s inequality, the fact that the rectangle rule is O(A(WV)), and from the
definitions of A (k) and b(h), and Ay (hy) and by (hy) (see (4.1¢) and (4.2)). To prove (4.3d), we
first note that A (h)g (h) = b(h) and Ay (hy gy (hy) = by (hy) imply

g(h)—gn(hy) = AhY Ay (hy) = A (h)gn(hy) + (b (h) = by (hy )] (4.4¢)
which, in view of part (a) and (4.3b,c), implies (4.3d). O

ForN =1,2,..., we define the approximating problems:

. i frah), (4.52)

where C; vy © H,, y is the set of all depth functions # € H,y 5 such that

Mf,N(h ,xN‘k)=Mc‘N(h ,xN,k)+g”v(h)xN‘k +82,N(h) , k € N+l, (4.5b)
Vva(h ,XN*)=V0’N('I ,XN*)—gl’N(h),kEN*‘l, (4.5C)

Yrnh Xy i) Yenh Xy g ) +AWN)Y s N (B Xy xy) Yranlh xy ) [O}
y’f.N(h 'xN,k) leva(h ,xNJ(_,) ' ylf,N(h ,IN,]) 0 (’4 3d)

‘e N(R XN ) +HAWN)
Yrnth xy ) +AN) Ebh Gy 41

for k € N+1, and

Wy (h) 2 max max ¢f n(h 2y )= (1+AN)")r! Gy ) <0. (4.5¢)

In (4.52) f; n(*) is defined by
N
FrnmBANY 0 nh 2y y), .50
k=]

We define the functions ¢f N Hagnx[0,L]1> R, j € q, as the piecewise linear interpolations of
the values Ej(h(xN*),Mf,N(h v k), Ve n(h XNg ) Y (R XN ) Xy k), k € N+1, on the mesh
Ty. Hence

«17 -



¢fw(h VXN &) =‘d;j(h(xN’k),Mf’N(h XN ) Ve xy ) yp n(h o xn i) xn ), j€EQ. (4.5g)

Using (4.1b), (4.1d), (4.1¢), and (4.3d) we can prove a result similar to Lemma 3.2, relating the
functions defining P, and P, y. In particular, we can show that estimates similar to those in (3.7e-g)
hold for ¢f th,"), ¢f N We (), Wp N (), fr(h), and fr 5 (h). Hence, exactly as in Theorem 3.3, it
follows that P; y —EP P,

It should be clear that each entry of A (k) and b(h) in (4.1c) is a Lipschitz continuously dif-
ferentiable function of h € H,;. Given h € H,;, and h« € C[0,L], we denote by DA (k ; h«), and
Db (h ; hs) the differentials of A (), and b (") at h, in the direction h.. They are given by

[ L x%h(x) L xhe (x)
fo h(x)? hx)?
DA(h ;h)==3 , (4.6a)
Lxh.(x)dx Lh*(x)dx
fo hx)? JO h(x)? J

[ L3M.(h x)he(x)=DM.(h ,x ;h)h(x) )
x dx

h(x)?
Db(h ;he) = . (4.6b)
L3M (h ,x)hs(x) =DM, (h ,x ; hs) h(x) "

hx)?

-

From (4.1c) and Theorem 4.1(a) it follows that g : H,; — R? has Lipschitz continuous Gateaux
differentials. In fact, forany h € H,;, h« € C[0,L], the Gateaux differential of g at h in the direc-
tion h«, Dg (h ; h+ ), is the solution of

A(h)Dg(h ;h)=Db(h ;he)=DA(h ; he)g(h). (4.6¢)
Therefore, from (4.1b-d) we obtain the following result:

Lemma 4.2.  (a) The functions h —> Vg(h ,-), h = Ms(h ,-), and h — Yr(h ), from H,; into
(C[0,L],I'ly), have Lipschitz continuous Gateaux differentials at all # € H,,, in all directions
h. € C[0,L], which we denote by D\Ve(h, ;h), D\Mg(h .-, hs), and D,ys(h ,-; hs) Tespec-

tively. Moreover,

D]Vf(h » X ,'hr) =D1Vc(h X ,'h-u)-Dgl(h ,'hn-). X € [O.L], (4.7a)

D]Mf(h X s he) =DlMc(h »X ,'h#)'i'Dg](h N +Dgz(h she), x€[0,L], 4.7b)

and D 1yg (h ,-; h«) is the solution of the differential equation
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d2

-5 )y xem.Ll,

h()

Dy (h ,x ; h*)-——(D,Mf(h X ;he) = 3M, (h o

D]yf(h ,O;ht)-——%Dlyf(h ,0,'h-t)=0. 4.7¢c)

O

In view of theorem Lemma 4.2 and of (4.2¢), the Chain Rule and Assumption 3.1(c) imply that

hv fr(h), and h — ¢j (h,), j € q, have Lipschitz continuous Gateaux differentials. We denote

these differentials at h € H,,4, in the direction A« € C[0,L], by Dfg(h ;hs), and D,q;}(h o),
J € q, respectively.

It follows directly from (4.2e), Lemma 4.2, and Assumption 3.1(c) that the following result

holds:

Lemma4.3. There exists a constant C < oo such that for any h € Hy W W’ € Hy,

\Dfp(h ;W —h)=Df;(h ;k k) SClh =k b+ = h"l), (4.82)

and forall j € q,
D 0f(h ;B —h)=Dofh ;b =k )y SCIWh =i I+ = h”1,). (4.8b)
O

Proceeding as in Section 3, we define, forh ,h* € H,

Fe(h, ny4 max { f7 (W )=f(h)~ mwf(h)+,max len%x1 ¢)4(h/ ,x)—rf(x)—\yf(h)+] /(4.92)

E (h )4 Df;(h ;i =h)=wyy(h),, [(h [(h x ;i -
F ¢(h i) € max { Df( )= wyy(h), max ,é“[%’f“‘bf(h x)+Dof(h ,x h)
=y (h), ) +%ln —hi}, (4.9b)

R4 min F.(h.n).
O (k)E min Frlh.h) (4.9¢)

One can show that results similar to Lemma 3.4, Proposition 3.5, and Lemma 3.6, and Theorem 3.7
also hold for F 7., and 8, (). Hence, by arguments similar to those used in Section 3, we obtain
the following counterpart of Corollary 3.8:

Theorem4.4. 6, :H,; — R is an optimality function for P;. O
The proof of Theorem 4.4 is identical to that of Theorem 3.8, and hence is omitted.

The mappings & € Hyyn > Ay(hy) € R¥® and h € H,yy — by(hy) € R? are Lipschitz
continuous differentiable. In fact, one can show that, for any hy € H,; 5 and h. € Hy, their dif-
ferentials, DAy(hy ;he) and Dby(hy ; h«), are the discrete counterparts of DA (hy s he) and
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Db (hy ; hs), obtained by discretizing (4.6a-b) using the rectangle rule, that is,

i G =1DANYh Gy ) N (G = DAN Pha (ty ;)
j=l hy (xy ;) j=l By (xy ;)
DAN(hN ,'hn- ==3 R (4.108)
N (j = DAWN?hs (xy ;) N AN )he (xy ;)
j=1 hy (xy ;) jo by )
[ W DM, n(hy v xy i she)  3M. y(hy xn ) )
=Y - DA S NN N ()
j=1 hy (xy ;) hy (xy ;)
DbN(hN ,'h*)= . (4.10b)
N DM, n(hy ,xn i he)  3M. n(hy Xy )
- T AW)— B s e R M ()]
ju=l hy (e ;) hy Gey ;) ]

Making use of Theorem 4.1(a) and the Implicit Function Theorem, one can show that Dgy(hy ; hs)

satisfies the equation
AN (hN )DgN (hN N ha ) = DbN (hN N hs ) - DAN (hN y ha )gN (hN) . (4.10C)
Moreover, from Theorem 4.1 and the fact that the rectangle rule is O(A(N )) we obtain the following:

Lemma4.5. There exists a constant C € (0, ) such that for all hy , 'y € H,y n.

iDA (hN ,'h/N _hN)-DAN(hN ;hIN —hN)l SCA(N)"I’N —hN"2' (4.118)
“Db(hN ’.h’N _hN)_DbN(hN ,'h,N -hN)l SCA(N)lh/N -hNHZ' (4.11b)
IDg (hy ; Ky —hy) = Dgn(hy ; Wy = hy L < C ANy, — hyl, . @.11c)

O

Next, we define the discrete counterparts of Fy (-, ), F £ () and 8, (), denoted by Fy y(:,),
I::f,N(' .+)and O (), respectively. Givenh ,h’ € Hyy v,

Fyp(h ,h')émax{f,w(h')—fcw(h)-mwfw(h)+.;nea:;krg%l OF hH xn ) =Wr w(h), ) (4.122)

ff»N(h ,h’)émax{foW(h ,'h’ -h)—(o\yf‘N(h),,,,max max ¢f,N(h ,xN’k)'—'\]If’N(h).'_

J € qk € N+1
+D10f n(h Xy B =h) ) + VAl —h1Z, (4.12b)
n)4 min F K.
ef’N() h‘glg:d” f,N(h ) 4.12¢)

Using (4.1b-d), Theorem 4.1, Lemmas 4.2, 4.3 and 4.5, we can prove results similar to Lemma 3.4,
Lemma 3.9, Theorem 3.10, and Lemma 3.11. Hence, with arguments identical to those used in
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Section 3, we conclude that the following is true:

Theorem 4.6.  Suppose that { hy )} yuy, With by € Hyy y, is such that by — h € H,; as N — o,
Thenh € H,y, and limy _, o 0, 5 (hy) < 0 (h).

Corollary 4.7.  The sequence { (P; y +0f &) } N=1 is a family of weakly consistent approximations
to the pair (P;,6;). Furthermore, if for all h € H,; such that y,(h)>0, 0¢&dys(h), then
{(Ps 5,67 n) } Nu is a family of consistent approximations to the pair Py .6p).

5. ADIAGONALIZED OPTIMIZATION ALGORITHM

In this section we will describe a diagonalized implementable algorithm that uses consistent
approximations and standard nonlinear programming software in computing an approximate solution
to either problem P, or problem P;. For this purpose, we will obtain RY*! equivalents of the prob-
lems P, y and P, , which were originally defined on the function spaces Hy,.

Given any h € Hy, there exists a unique vectornj = (1), ..., My4y)" € RV*! satisfying (3.3b).
In fact, in view of (3.3a), we have that M, =h(xy,), k € N+1. We define the mapping
Wy :Hy - R¥*! by

WA M g ivay) (5.1a)

Clearly, Wy is a bijection and the components of 1 € R¥*! are the coordinates of # € Hy with
respect to the basis set { Py (x) ) ¥3). Forany h € Hy andn = Wy (h),

LN+1 N+1 N+1
I]h“2 -.[0 Z,ﬂ,PNJ(X)Zﬂ,PN,.(x)dX 2 n n;LPNn(x)PNJ(x)dx n QNn (5.2a)
Jj=1 i=] ij=1

where Qy € RWV+Dx(V+D i5 oiven by

210 -0
1410 -0
0141 - - -
QNQ_A_(QI_) ....... _ (5.2b)
0 - 141
K -1 2]

Since { Py ,(x) } ¥4 is not orthonormal, we let Ty 4 Qy ", and consider the mapping
£ =Ty Wy(h). (5.3a)

Then the components of &€ RY*! are the coordinates of h € Hy with respect to basis set
{ By £ ()} {3, given by
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N+1
By x(x)=Wy'(Tyer) = ¥ (Tn )i jPu j(x), k € N+1, (5.3b)
j=1
where e, denotes the k—th canonical basis vector in R¥*!, and (Ty); x denotes the j .k—th entry of
the matrix Ty . It follows from (5.2a) and (5.3a,b) that for any i ,j € N+1,

(BN,I' !BNJ )2 = (TNe,-)TQN(TNej) = e,-Tej , (5.30)

which implies that the basis set { By ,(x) } 3! is orthonormal.

With «, B, and yas in (3.1a), we let
Hun B {E€ R 1 a<(TyE)y <B, k € N+1, and |(TyE)yyy~TyE; | SYAN). k € N} (5.42)
where (Ty ), denotes the k—th entry of the vector Ty €. For any & € H,, ~ and k € N+1, let
IE,xy ) Bmey ) - KTy B (5.4b)
with m(-) and K 20 as in (3.1b). We define the problems l_’c w~ as follows:

B, gglé‘:r,’y fen®, (5.4¢)

where Ec N © ﬁad  is the set of all Ein ﬁad ~ suchthat fork € N,

Ven €.ty y) = Ven &2y x01) +ANIE Xy g41) Ven@E. Xy n4p) =0, (5.44d)

My xng) = Moy Xy 1) # AN,y E Xy gat), Moy Eoxyna) =0, (5.4e)

Ye N (€. XN g41) Yen & xn ) +AN)Y N (. xy i) Yen (€. xy ) [0}
)Tlc,N(gan,k-o-l) _ IZMC’N(E_,,XN*) , ylc,N(grxN 1) 0 ' (5.4f)
’ , AN y
Y'en (€. xy ) +AN) Eb(Ty B
and
_ A _. e
Ven(§) S max max ¢z n(E.xy,) - (1 +AN)Hr (xy ) <0, (5.4g)
- A N -0
fc,zv(é)=k):‘, b N(E, Xy )ANN) | (5.4h)
=l

$gﬂ(€'xN,k)é$j((TN§)k’ﬁc,N(E-xN,k)er,N(E»xN,k).}Tch(goxN,k)'xN‘k), jE€q. (5.4i)
O

For any given N, the only fundamental difference between problems P,  and I—’c N~ isthat P,y
is defined in a *‘coordinate-free’’ manner on the functional space Hy,, while l—’c w is defined on RV+!,

in terms of the coordinates & corresponding to the basis set { By (x)} /4!, Hence, they are two
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equivalent statements of the same problem. Therefore, it should be clear that, given h € H,, ~ and
E=Ty'Wy(h), we have forall k € N+l andall j € g,

Onh iy ) =0l nE xng) Went) =Y n®), fext)=fon®. (55
Furthermore, from (5.2a) and (5.3a), if we let & = Ty Wy (h), we have
1hB3 = Wy (h)T Qu Wi (h) = (T Wy ()Y (T ' Wy (1)) = 162, (5.5b)
where Il denotes the Euclidean norm on RV*!, Hence h — Tyy'Wy (h) is an isometry (it preserves
norms) from H,g n <(C [0,L], 1) onto Hyy y (RN, 1-D).
In view of (5.5a,b),(5.4a-i) and (3.5a-f), the following proposition should be obvious.

Proposition 5.1.  Problems P, 5 and P. N~ are equivalent in the following sense: (a) h € Hy is
feasible for P, y if and only if & = Ty'Wy (k) is feasible for l_’c ~-and (b) h € C, y is a global/local
minimizer for P, y if and only if & = Ty'Wy () is a global/local minimizer for l—’c N - O
Next, we compute the derivatives of the functions defining ﬁ ~ and define an optimality func-
tion for l_’c N-
Let the matrices G , G € RV*'*N*! e defined by

o1t1---1
0011--1
0001--

[ary

GYA-KAWN)

. . . . ’

GHA_ %G,},’G},’. (5.62)

(e 3N

0000 - -
The fact that the mappings & — V, N(E&,xyy) and E Mc ~(E.xy 1), k € N+1, are Lipschitz con-
tinuously differentiable differentiable on H,, «~ follows from the Implicit Function Theorem and
(5.4d-e). In view of (5.4b) and (5.6a), if we differentiate (5.4d,e) we obtain, forall £, & € 17,,,, N

Dlvcw(g;ch JE-E =Gl , )Ty(E -E), k € N+, (5.6b)

DMy E xyg & =8 =GHk, ) Ty(E-8), k € N+, (5.6¢)
where for any matrix G, G (k , :) denotes its k -th row.
We define the mapping G ) : H, N = RO+

Gk )

- N4 OV
G @)k, E T,

=3M, nE xyi)el | k € N+L. (5.6d)

It can be shown, using (5.4f) and the Implicit Function Theorem, that the mappings & — y (€, xy &)
k € N+1, are Lipschitz continuously differentiable. For any E,&€Hy, N
Dy n(E . xn g ;& = &) =8y (&, xy ), which is the solution of
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O¥k+1 1 A(N)

- &-8,k€eN,
55| EbTWER| G p®k. ) 8",

OYi 07 oy, 0
L _12A0) Ol [ ](5.66)

0y k41 0 1

for k € N, where 0 denotes the zero vector in R¥*+!, Equation (5.6e) is a linear difference equation of
the form v (k+1) = Av (k) + B (k)u, v(1) = 0, whose solution is given by v (k) = ¥ *JA* VB (j)u.
Therefore, if we define
k-1 -
GREK ,HBAN)Y (k =1-)G J(BXK ,2) (5.6f)
j=1
it follows from (5.6d-f) that for all k¥ € N+1,
D\ynE . xny ;& —=8) =By . n(E,xny) = GRENK , )Ty (E - ). (5.6g)

To obtain derivatives of the mappings & — 5;.' NE&.xy 1), j € q, k € N+1, we apply the Chain
Rule to (5.4i). First, for & € Huq y, j € q, k € N+1, we define

: i« 7
GOk o & BT Men @ ) Ven®in) Fenins) fwa) g

oh
a¢’((TN§)k MenE oty i) Ve n € xn i) Fen XN k) XN x) GH
oM Ok )
a¢’((TN§)k My E.xn 1) Ve nE o xng) Fe nE Xy i) En i) v
GN(k ,I)

av

¢J((TN5)k M. N, v i) VenE, i) Yen o xn g ) Xn i)
dy

Then it follows from the Chain Rule applied to (5.4i), (5.6b,c), and (5.6g) that for all j € q and all
k € N+1,

D0inE . xny i & =8 =GOk , )Ty E -8 = (TT [GE/EK , )T ,E-F), (5.7b)

where (-, -) denotes the Euclidean inner-product on R¥*!, Hence, if we define

GYmk ,»). (5.7a)

N
G n®BAN)T.GHOAEK L) (5.7¢)

k=1

we obtain from (5.4h) and (5.7b) that

- N N
Dfe nE:E =8)=AN) T D10 nE g ;& = 8) = AN) T GO ,)E - §)

k=1 k=1
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=G NETNE -8 =TT G, yE & -E). (5.7d)

It is clear from (5.7b,d) that, for any & € H N+J € q,and k € N+1,
Vbl NG xn ) = TR G K DT . Vi n(® =Tf Gy &Y.
Finally, we define the mappings fc N .'I?ad N xﬁad ~N =R, F cN .'ﬁad N xﬁad ~ =R, and
8:H,yny — Rby

Fen(E,€)8 max {fm@')—fc,,v(&)—m\?cm&),\.;nglkrgeggﬁzw(&'.xN,k)-Gcwaz),,1 (5.82)
F o nE.&) 8max { (VF. y ,E’-‘ﬁ)-mﬁcw(&)w;nea’;krg%{l 0 NE . x) =y N (B,
+ VOl E xy ) E-E) } + v - &R, (5.8b)

B.n (B4 ¢ min f N (&, 8). (5.8¢)

Proposition 5.2. (a) 50 N 17‘,,, ~ =R is an optimality function for P, ~» (b) For any
h .0 € Haygy,&E=Ty'Wy(h),and & = Ty'Wy (') we have
Fen(h ) =F. N(E,E), 0, 5(h) =8, 5@ (5.9a)
O
A proof of Proposition 5.2 (a) can be found in [15]. Part () is a direct consequence of (5.5),
(3.20b,c), (5.8a-c), and of the fact that forany h ,h' € H,y, & = Ty'Wy(h), and & = T5'Wy (h"), we
have

D&l nth xyg i W =h)=D 0l NE xy s ;E~E), Dfen(h i —h)=Df yE;E-8), (59b)

icJV(h ’h,)=F~cN(§1&I)» (59C)

which should be obvious, since D1¢c" N Xy, B —h) and Df,. ny(h;h -h) are just the
“‘coordinate-free’’ counterparts of D ;¢ NE.xy, & -8 and Df. NEE=8).

The transcription of the approximating problems Py  is similar. If we consider (4.5a-g), where
the Py » are defined on the finite dimensional function space Hy , we conclude that to obtain the tran-
scriptions f’f ~ we need to define, in addition to the mappings defined in transcribing P, y, the map-
ping gn (&) a BN (&) Zan©T, from Hy N into IR?, which is the coordinate dependent counterpart
of gy () (see (4.2f)). To do that, consider the system of equations
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N

[ N i 1y2 3 N ; 2] [ N (; 2

(j =1)P*ANN) (j =DANN) —DANY

- - ¢ (va f )
Jg v} Jg T 87 g1n @) E‘l (Tn &)} e
- (5.10a)
N /: 2 N b~ N

( —=HAWN) ANN) 824 (8) -y AN i Exy )

| J% (TN &)13 jElll (TN &)13 ] L .’% (TN &)13 o " J

which we write as Ay (E)gy (E) = by(E). It should be obvious from (4.2f), (5.10a) and Theorem 4.1
that for any h € H,y  and & = Tyy'Wy (h), (5.10a) uniquely defines gy (), and

An(h) =Ay(E), by(h)=by(®), gy(h) =gy (&) (5.10b)
We define the problems l_’f ~ as follows
5 min f; n(@),
Py (I Sy (5.11a)

where C; y < H,y v is the set of all E€ H,,  such that
f N N ad N

ﬁf,N(ﬁ.xM)éﬁcw(é,xN,ng'm(&)xN,k +g_2,N(€) , k € N+1, (5.11b)
VenE.xng) = Vo nExy ) = 21n (B)  k € N+, (5.11c)
and, fork € N,
)7f,N(€,xN*+1) )—’fﬂ(&:-xN,k)"'A(N))TIf,N(gva,k) )Tf,N(h XN 1) [O}
Ven@ xvpad| | 120 v Eoang) | | Ty nthay | LO) (511d)
YrnE xy ) +AN)
fN N k Eb(TNﬁ),?
W@ Emax max f (&0 =1 +ANA (y ) 0. 5.110)
_ A N _o
Frn@EAN)Y, oF Nv(E xn ), (5.119)
k=]

O N(E xy )BT (TyE), My (h ) Ve n(h ) Ve v (B Xy ) xng), jE Q5.11g)
0O

It follows from (5.5a,b), (5.10b), and (5.11a-g) that a result analogous to Proposition 5.1 holds,
establishing the equivalence of Py y and I_’f N-

It should be clear from (5.11b,c) that to obtain expressions for the gradients of the functions
defining I_’f N We need, in addition to the expressions computed in transcribing P, N » €xpressions for
the differentials of g y (E) and g, 5 (€). First, givenany € € H,, N define
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] .
Ei’(—Tl’gﬂ(o = DANIZ () + Eon ENe]
GRAE) 43 S ' (5.12a)

N
> 2N~ YANE )+ Eap ENeT

j=1 (TN &)J

G =DANY N
Gy,
ng (TNﬁ), GA®G

GPb&) 4 , (5.12b)

AN) .
(316D
El (TwE)? GAEU

GREE) 2 Ay (E) ' [GRE(E) + GRAE)) . (5.12¢)

Then it can be shown, using the Implicit Function Theorem and differentiating (5.10a) with respect to
Ee 1-70“,, that for any & ,&' € H,,,

Dg(&;& -&)=[Dg\n& .8 -8 Dgon(€.& -8 =GR@Ty(E -8 .  (5.13a)
Hence, it follows directly from (5.11b,c) that

Dl‘7fw(§»X~,k & -8 =[Gy(k ) - GREE(1, )ITY(E -8) , (5.13b)
DMy E.xyy s =8 =[GHKk )+ GREEL,)xy 4 + GREEN2, NT(E - E). (5.13¢)

We proceed exactly as we did above in the case of P., to obtain expressions for
Dy n(E,xny ;& =), k € N+1, and consequently (using the Chain Rule) for the gradients
corresponding to D ,5} NE Xy i) ] € q k € N+, Df-f ~ (&), which are denoted VE;’ NE.xyp)
and V f-f ~ (€) respectively.

Using these gradients we define for any &,& € H,, No

f,w(a,g')émax{f,»m&')—ﬁﬂa)-m@m(&u,;nglk%ﬁ},,v@',xw)-am(&u}. (5.142)

Fyp@&.&) 8max { (V,p.&- 5)-<ow,,~(&>+,max max ¢;’,~(&.xk)-x‘u,,,¢<e)+

€ qk € N+l
+ (V0 N € xy ) E-8) } + vl &2, (5.14b)
B B8 min F,yE.8)
ya@= min Fru&.8) (5.14¢)

Clearly, a result analogous to Proposition 5.2 holds, and hence éf () 1s an optimality func'tion
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for P, 5, and forany b i’ € Hyyp,& = Ty'Wy(h), and & = Ty7'Wy (1), we have

FynGh K)=Frn@. &), Fpyth B)=F;nE.E), 0 n(h)=08;5E)

(5.15)

We will apply the algorithm described in [17] to solve problems P, and P using the frame-
work of consistent approximations, as suggested in [16]. When the algorithm is applied to solve P,,
the functions Fy(-,-), F y(-,-), and By("), in the statements below, are set equal to F, N,
F . n(,*), and B, 5 () respectively. When the algorithm is applied to solve P; Fy(.)=FpnC,),

FnC.) EF’f,N(’ ., and By () =08, 5 ().

Algorithm 5.3.

Parameters: a,b,s e (0,1),w,e>0and Nge N.

Data. hye Hyyy,

Step 0. Seti =0.

Step 1.
Inner-Step 0. SetN =N;, &; = Ty 'Wy (k).
Inner-Step 1. Compute

b €:) =§'m}i?n Fne .8y,

€ Haan

d; =arg€lmi_n Fne ),

€ Haa N
Inner-Step 2. 1f8y(E;) =0,set & = &; and go to Step 3. Else, compute the step size

A4 arg max { b* | Fy(E; +b*d; E)<sb*aby(E)).

Inner-Step 3. Set
& =& +0d; .
Step2. If
Fy@: . E)S—eANY,

go to Step 3. Else, replace N; by 2N; and go to Inner-Step 0.
Step 3. Seth;yy = Wy'TyEs, Niyy = N;, replace i by i +1,and go to Step 1.

(5.16a)

(5.16b)

(5.16¢)

(5.16d)

(5.16e)

O

The following theorem on the convergence properties of Algorithm 5.1 can be deduced from

Theorem 5.15 in [16].



Theorem 5.4.  Suppose that Algorithm 5.1 has constructed an infinite sequence { k; } /oo that has

an accumulation point h. Then 8h) = 0. O

6. NUMERICAL RESULTS

We will illustrate the use of consistent approximations and Algorithm 5.3 in solving a particular
problem of the kind P, that is, a fixed beam design. In our example, we assumed that E = 107 psi,
L =501in, b =5 in, K =0 (we neglected the weight of the beam), o = 1.0 in, B = 5.0 in, and
Y= 0.15. We imposed continuum constraints on the maximum normal stress, on the maximum shear,
and on the deflection, as follows

10f max(h ,x)1 30,000 psi , Vx€[0,L], (6.1a)
1T max (R ,x)1 <15000psi , Vx€[O,L], (6.1b)
lys(h ,x)l <0.1in , Vxe€[0,L]. (6.1¢c)

The cost function was proportional to the total mass of the beam,

L
Fr(h) = [ hx)dx . (6.1d)

The load applied to the beam was

(6.1e)

-1500 psi, if x € [20,30],
lx) = 0, otherwise ,

which clearly satisfies Assumption 3.1(a). The initial discretization was set to N = 8 points, and the
initial k() was constant, with value 2.85 in (see Figure 6.1(a)). This initial design, whose cost is
142.5, corresponds to the uniform beam of least mass which satisfies the constraints (for this / (-) the
constraint on the displacement is active and the other two are slack).

In Figure 6.1(b), we find the beam obtained after 16 inner-steps of Algorithm 5.1. The discreti-
zation level at the end of the 16-th inner-step was N = 128. The corresponding cost was 124.05,
about 87% of the initial cost. For the final design, the constraint on the deflection of the beam was
active, and the constraints on the maximum normal stress and on the maximum shear stress were
slack.

In Figure 6.2 we present the computed cost at each iteration as a percentage of the initial cost,
142.5, and the computed value of the optimality function Oy, at each iteration. The number of
discretization points used at each iteration is also shown in Figure 6.2. As our analysis indicates. for
each given discretization the optimality function is driven to zero, but when the discretization is

refined (at iterations 4, 8, 12 and 14), the value of the optimality function may decrease. However, as
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the algorithm progresses, the optimality function is eventually driven to zero, and therefore the com-
puted depth functions A; () approach a stationary point.

7 - CONCLUSION

We have shown that one can obtain consistent approximations, satisfying the axioms formu-
lated in [16], for two classes of optimal beam design problems, involving Euler-Bernoulli cantilever
and fixed beams, subject to continuum constraints, which include displacement, maximum shear
stress, and maximum normal stress constraints. We have also demonstrated numerically how an algo-
rithm first described in [17] and proposed for use with consistent approximations in [16], can be used

to obtain an arbitrarily good approximation to a stationary point of these design problems.

We feel confident that consistent approximations can also be used to solve optimal design prob-
lems involving beams with one unilateral support, but the analysis involved is too extensive to
include in the present paper. Finally, extensions to some design problems involving two dimensional
beam models appear to be possible.

Al - APPENDIX 1: PROOF OF LEMMA 3.2

We begin with part (a). Given h € H,y, let hy be the linear interpolate of 4 on the mesh Ty, .
Clearly, hy € H,; 5. From (3.1a), we have that h is Lipschitz continuous with Lipschitz constant ¥,
and hence lh - hyl. < YA(N ), which proves (3.7a).

Next we prove (3.7b). Leth € H,;, and hy € H,, 5 be given. First, from (3.1d) it follows that
d
Z(Vc(h :x) - Vc(hN "x)) = -K(h(x) - hN(x)) X € [0 vL], Vc(h ,L) _Vc(hN -L) = O- (A].la)
Hence, integrating both sides of (A1.1a) and using Holder’s inequality, we get that forall x € [0,L],
|V (h ,x)=V.(hy ,x)| SKVL Ik = hyl, . (Al.1b)
We will show that there exists a C € [KVL »°0) such that forall N € IN, and hy € H,y v,
k’l’%’il'v""(h” Xvg) = Velhy . xy ) SCAN) , (Al.lc)

where V. y(hy ,xy ;) is determined by (3.5b). Indeed, by Assumption 3.1(a), m(-) is piecewise
Lipschitz continuous. From (3.1a) and (3.1b), it follows that for any hy € H,y v SH,4, l(hy ,") is
also piecewise Lipschitz continuous, and has finitely many points of discontinuity in [0,L]. Hence,
there exists a constant C’, independent of N € N and of hy € H,, », such that C’ is a Lipschitz con-
stant for / (Ay ,*) on any subinterval of [0, L] in which /(hy , ) is continuous.
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Consider the mesh Ty. In each mesh interval [xy ; , Xy 4411, kK € N, I(hy ,) is either Lipschitz
continuous or it has at least one point of discontinuity. There are at most finitely many mesh inter-
vals, say p 20, in which I (hy , ) is discontinuous. Clearly, p is no larger than the number of discon-
tinuities of m ("), and hence is independent of N € N. If we apply Euler’s method to integrate (3.1d),
obtaining (3.5b), the local truncation error, on each mesh interval where I(hy ,°) has at least one
discontinuity, is bounded by 2A(N)max, e o,.)!!(hy.x)|. In the intervals where I(hy ,*) is
Lipschitz continuous, and there are at most N —p of these, the local truncation error of Euler’s
Method is bounded by C’ AN )2. Therefore, there exists a constant C € [KL , ) such that for any
k € N+1,

IVC,N(hN ,xN’k)- Vc(hN ,xN’k)l SC,A(N)Z(N —p)+2p gl[%xl-]ll(h,v ,X)lA(N) < CA(N) ,(A].ld)
X ,

which proves (Al.lc). Inequality (3.7b) is a direct consequence of the triangle inequality, and

(Al.1b,c). The proofs of inequalities (3.7c-d) are similar and hence omitted.

In view of Assumption 3.1(c) , (3.7e) is a direct consequence of part (b), and the definitions of
&J(-,*) and ¢/ ~ () in (3.1i) and (3.6b) respectively. Inequality (3.7f) follows from (3.7e), (3.1g),
and (3.5e). Indeed, if we let R 2 max j € qMaX; ¢ [0, ,_]rf (x) and make use of (3.7e), it follows from
(3.1g) and (3.5¢) that

We(h) =y, y(hy)Smax max {6(h ,x)=ri(x)=¢y(hy ,x)+ (1= AN)A)ri(x))
Jj€qx€[0,L]

SCIAWN) +1h = byl + RAN )2 < CIAWN)” +1h = hyly] (Al.22)

where ¢/ (hy ,*) : [0,L]1— R is the linear interpolate of { &/ x(hy ,Xyx) } .o on the mesh Ty .
In a similar way, an upper bound for v, y (hy) — W, (1) can be obtained, namely
We v () =W (h) S CA% + Bk — hyly). (A1.2b)
which together with (A1.2a) implies (3.7f).

Finally, we prove (3.7g). First we note that because of Assumption 3.1 (a), and because all
h € H,, take values between [a, B], the solutions of the differential equations (3.1d-f) are Lipschitz
continuous functions on [0,L]. In fact, we can find a common Lipschitz constant for Vo(h ),
M.(h,)and y.(h,"),forall h € H,y. In view of Assumption 3.1(c) we get that there exists a con-
stant C such that forall x ,x” € [0,L]

169 ,x)=62%n X)) <Clx -X1. (Al.3a)

Hence,
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N xwvya
e =FentIS L (1020 1) =43ty )1 + 102k 20 )= 00phy 3w )1 T

=1
(A1.3b)
which, in view of (A1.3a) and (3.7e), implies that there exists a constant C such that
Ifeth)=fen(hy)l SCIAWN) +1h = hyl,]. (Al.3c)
0
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Fig. 6.1. (a) Initial Design; (b) Final Design.
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