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Abstract

In this paper, we give a framework for synchronization of dynamical systems which unifies
many results in synchronization and control of dynamical systems, in particular chaotic systems.
We define concepts such as asymptotical synchronization, partial synchronization and synchro
nization error bounds. We show how asymptotical synchronization is related to asymptotical
stability. The main tool we use to prove asymptotical stability and synchronization is Lyapunov
stability theory. We illustrate how many previous results on synchronization and control of
chaotic systems can be derived from this framework. We will also give a characterization of ro
bustness of synchronization and show that master-slave asymptotical synchronization in Chua's
oscillator is robust.

1 Introduction

Recently, there has been much interest in the dynamics of coupled chaotic circuits and systems.
Research has been carried out in areas such as controlling unstable periodic orbits [Chen and Dong,
1993b; Chen, 1993; Chen and Dong, 1993a; Kocarev et a/., 1993], stabilizing aperiodic orbits in
chaotic systems [Pyragas, 1993], mutual coupling between two chaotic circuits [Chua et a/., 1993b;
Rul'kov et a/., 1992], master-slave synchronization of chaotic systems [Pecora and Carroll, 1990;
Pecora and Carroll, 1991; Carroll and Pecora, 1991; He and Vaidya, 1992], and implementations of
novel communication systems [Oppenheim et a/., 1992; Kocarev et a/., 1992; Parlitz et a/., 1992;
Cuomo and Oppenheim, 1993b; Cuomo and Oppenheim, 1993a; Halle et a/., 1993; Wu and Chua,
1993; Dedieu et a/., 1993]. In this paper we give a unified framework of synchronization which
puts these results under one umbrella. We show how asymptotical synchronization is related to
asymptotical stability. We show how asymptotical stable systems can be cascaded and connected
while preserving asymptotical stability. We define concepts such as synchronization error and
partial synchronization. The main tool we use to prove asymptotical stability and synchronization
is Lyapunov stability theory. This is in contrast to other methods of proving synchronization which
require the computation of numerical quantities such as conditional Lyapunov exponents. We will
use Chua's oscillator as our prototypical chaotic system in several examples to illustrate ideas.
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Finally we give conditions under which asymptotically synchronization is robust. We show that
master-slave asymptotical synchronization in Chua's oscillator is robust.

The outline of this paper is as follows. In Sec. 2 asymptotical stability of systems is defined and
Lyapunov's direct method is used to prove asymptotical stability. In Sec. 3 we show two ways in
which asymptotically stable systems can be connected while preserving asymptotical stability. In
Sec. 4 concepts about synchronization are defined and their relations to stability are given, along
with several examples illustrating ideas. In Sec. 5 the question of robustness of synchronization is
addressed. In Sec. 6 two more examples are discussed in detail to illustrate several ideas.

2 Asymptotic Stability of Dynamical Systems

In this paper we assume that the right hand side of our systems of ordinary differential equations
(ODE) is continuous. Furthermore, we assume that all systems of ODE's under consideration have
existence and uniqueness of solutions for all time (thus we can speak of a flow of a dynamical
system). We use the Euclidean norm on vectors in lRn, although most of the results can be stated
for other norms in Rn as well. The norm onnxn matrices will be the one induced by the norm in
R".

We show that asymptotic synchronization of systems can be achieved if some related systems
are asymptotically stable. We use the following definitions of asymptotically stability of a system
[Yoshizawa, 1966]:

Consider the system
x = f(x,<) (1)

We denote by x(t,x0,<o) the (unique) solution of x = f(x,<) satisfying x(t0) = x0. Let SQ be the
set of x such that ||x|| < a. In the following, H* will be a positive real number. We denote C(K, D)
as the set of continuous functions f :M—> D with values in D.

Definition 1 The system (1) is uniform-stable with respect to H* if for all c > 0 there exists
6(e) > 0 such that for all t > to

whenever

andxo 6 5//», xi 6 5//».

||x(<,x0,io)-x(*,xi,t0)|| < €

ll*i " *o|| < S(e)

Definition 2 The system (1) is quasi-uniform-asymptotically stable with respect to H*, if there
exists 6 > 0 such that such that for every c > 0, there exists T(e) > 0 such that

||x(t,x0,to)-x(t,Xi,*o)|| <*

for all t > to -f T(t) whenever
||xi - x0|| < 6

andxo € 5//«, xi 6 £//•.

Definition 3 The system (1) is uniform-asymptotically stable with respect to Hm, if it is uniform-
stable and quasi-uniform-asymptotically stable with respect to H*.



Definition 4 Let V C C(R,Kn) be a set of continuous functions from 1R into Mn. The system
x = f(x,n(t),i) is uniform-asymptotically stable with respect to H", i-uniformly with respect to all
n(t) €V if it is uniform-asymptotically stable with respect to H* for all r)(t) € V and the constants
6 and T(e) in definitions J and 2 can be chosen to be independent of n(i).

Note that these definitions do not specify whether x(i,xo,<o) is bounded or not. We say the
system (1) is uniform-(asymptotically) stable if it is uniform-(asymptotically) stable with respect
to all H* > 0. We will next consider how to show that a system is asymptotically stable.

Definition 5 ([Vidyasagar, 1978]) A function a : R —• K is said to belong to class K if

1. a(-) is continuous and nondecreasing,

2. a(0) = 0,

3. a(p) > 0 wheneverp > 0.

A basic technique for proving asymptotical stability is by Lyapunov's direct method. We assume
that all Lyapunov functions we consider are continuous. For a Lyapunov function V(t,x,y), the
generalized derivative along the trajectories of system (2) is defined as:

l/(<,x,y) =lim sup i[v(* +M+M(x,0,y+W(y,<))-y(<»x,y)l

Theorem 1 Consider the system

X = f(x,<), y = f(y,t) (2)

Suppose that D\ and D2 are open sets such that if xq € 5//*, yo € 5//* then x(/,Xo,2o) € D^,
y(*»yo»*o) € D2 for allt > to- Suppose that a Lyapunov function V(i,x,y), locally Lipschitzian in
x and y, exists on R x D\ x D2 such that for all t > to, x € D\, y 6 D2,

a(||x-y||)<V(i,x,y)<6(||x-y||)

where a(-) and &(•) are functions in class K. Suppose that there exists \i > 0 such that for all t > t0
and \\x - y|| > n,

V(t,x,y)<-c

for some constant c > 0 where F(t,x,y) is the generalized derivative ofV along the trajectories of
(2).

If there exists 6 > 0 such that a(6) > 6(/i), then for each x0 € Sh* and y0 € Sh* there exists
ti > to such that for all t > ti,

||x(i,xo,t0)-y(t,yo,fo)|| ^ s

Furthermore, if ||x0 - yo|| < \i then

||x(i,x0,<o)-y(<,yo,<o)ll < *

for all t > t0.



Proof If V(*,x(*),y(0) > 6(A*) for all * > <0 then 6(||x(t)-y(0ll) > 6W and thus ||x(t)-y(t)|| > \i
for all t > t0. This implies that V(t,x,y) < -c < 0 for all t > t0 which contradicts the fact that
V(/,x(t),y(/)) > 0. Thus there exists h > t0 such that V(ti,x(*i),y($i)) < 6(/z). Now we sl|ow
that V(t,x(t),y(t)) < b(fi) for all t > tlm By way of contradiction, suppose that there exists t2 > h
such that V(t2,x(t2),y(t2)) > b(fi). Then thereexists e > 0 such that V(t2,x(t2),y(t2)) > &(/*) + €.
Bycontinuity of V(t,x(t),y(t)) with respect to t, there exists t e [h,t2) such that V(t,x(t),y(t)) =
b(fi) + €. Let

t3 = sup{* e [h,t2): V(t,x(i),y(i)) = 6(/*) + €>

Then V(t3,x(t3),y(*3)) = *(/*) + « < *(IW*3) - y(*3)||). Therefore ||x(t3) - y(t3)|| > ju and
V < —c < 0 at i3. So there exists tj such that <3 < <4 < <2 and

Vr(t4,x(t4),y(t4))<6M + €

Therefore there exists t5 6 (*4><2) such that Vr(t5,x(t5),y(t5)) = b(ft) + € contradicting the fact
that Z3 is the largest such t.

Thus we have a(\\x(t) - y(i)||) < V(t,x{t),y(t)) < b(fi) < a(6) for all t > t^. Therefore
||x(<) - y(t)\\ < 6 for all t > U. Furthermore, if ||x0 - y0|| < Mthen V(t0,x(t0),y(io)) < &(/0 and
thus for all t > t0,V(t,x(t),y(t)) < 6(/i) which implies that ||x(t) - y(t)|| < 6 for all t > t0. •

Theorem 2 Suppose that D\ and D2 are open sets such that if xo € Sh>, yo € 5//* </tc«
x(t,xo,<o) € /?i, y(t,yo, <o) € A2 /or a// < > <o- Suppose that a Lyapunov function V(t,x,y),
locally Lipschitzian in x and y, exists on IK x D\ x D2 such that for all t > to, x € Di, y £ D2,

a(||x-y||)<V(t,x,y)<6(||x-y||)

where a(-) and &(•) are in class K, andfor all t>to,

V(t,x,y)<-c(||x-y||)

for some function c(-) in class K where V"(i,x,y) is the generalized derivative of V along the
trajectories of

x = f(x,0, y = f(y,0

Then the system (J) is uniform-asymptotically stable with respect to H*.

Proof Note that for each H* > 6 > 0, 0 < a(6) < 6(5), so there exists \i > 0 such that a(6) > b(fi).
Therefore V(<,x,y) < -c(n) < 0 for all ||x - y||_> ^, so given x0 € Sh* and y0 € S#«, for each
6 > 0 there exists by theorem 1 (for the case f = f) a time t\ > to such that

||x(i,x0,*o) - y(*,yo,*o)ll < s

for all t > <i. Furthermore, if ||x0 - yo|| < A4 then

||x(<,x0,t0)-y(*,yo,<o)ll < <*

for all t > t0. •
Example: In [Cuomo and Oppenheim, 1993b; Cuomo and Oppenheim, 1993a] a similar Lyapunov
function is used to show that a system derived from the Lorenz system is uniform-asymptotically
stable.



Theorem 3 For positive (3 and a, —3 < \i < 1 thefollowing system derivedfrom the Lorenz system
is uniform-asymptotically stable i-uniformly with respect to all continuous u(t) and rji(t).

x = <r(y- x) + m(t)
y = \ix - y + u(t)(p - n - z) + rj2{t)
z = -0z + u(t)y + n3(t)

Proof Define the Lyapunov function V = ^ (x—x')2 + ^(y —y')2 + ^(z —z')2, where theprimed
variables are from an identical system. Then the derivative of V along the trajectories of the Lorenz
systems is

V = (x-x')((y-x)-(y'-x')) + (y-y')[-(y-y') + »(x-x')-u(t)(z-z')}
+{z-z')[-(S(z-z') + u{t){y-y')]

= -C-¥(x - x') -(y- y'))2 - (l - ^f-) (x - x1)2 - (3{z - z1)2

Since (l —̂1+^' j > 0, the conditions of theorem 2 are satisfied. As Vand Vdo not depend on
u(t) and i)i(t), the asymptotical stability is i-uniform with respect to them. •

It is well known that for the linear case x = Ax + n(t), uniform-asymptotical stability, which
is equivalent to all the eigenvalues of A being in the open left half plane, imphes the existence of a
symmetric positive definite matrix D such that the Lyapunov function V(x,y) = (x-y)TD(x-y)
satisfies the conditions of theorem 2. As we will see later, existence of Lyapunov functions of the
form (x —y)TD(x —y) allow us to show some results concerning the coupling of systems and
robustness of synchronization.

Next we consider for what kind of systems a Lyapunov function can be found which allow us
to prove asymptotical stability.

Definition 6 A function f : D —• Mn is increasing in some convex set DCK™ if for all x,x; £ D,

(x-x'f(f(x)-f(x'))>0 (3)

A function f : D —* Rn is strictly increasing in some convex set Z)CK" if for all x,x' 6 D, x ^ x7

(x-x')T(f(x)-f(x'))>0 (4)

A function f : D —• Rn is uniformly increasing in some convex set D C IK" if there exists 7 > 0
such that for all x,x' € D

(x-x'^xJ-^xOJ^Tllx-x'll2 (5)

The following theorem characterizes these definitions for C1 functions, where Df(x) denotes
the Jacobian of f at x.

Theorem 4 ([Chua and Green, 1976]) A C1 function f : Un -*• Mn is

(i) increasing in Rn if and only if Df(x) is positive semi-definite for all x € Kn.

(ii) strictly increasing in Rn if and only t/Df(x) is positive definite for all x e Kn.

(Hi) uniformly increasing in Rn if and only if for some A> 0 (Df(x) - AI) is positive
definitefor all x € Kn, where I is the n x n identity matrix.



In [Chua and Green, 1976] a general class ofsystems were given for which an explicit Lyapunov
function V can be found which satisfies the conditions of theorem 2. The system has the following
general form:

z = -g(h(z),u(0) (6)

where z G Kn, h(z) € Mn, u(t) € Rk. The function u(<) can be considered as the input to the
otherwise autonomous system.

Theorem 5 Consider the system (6). Let B be some set inRk. #g(z, u) is a uniformly increasing
functionfrom Rn —>• Rnfor all fixed u € B such that the constant 7 in definition 6 does not depend
on u and h is given by:

h(z) = rz (7)

where T is a symmetric and positive definite matrix, then the system is uniform-asymptotically
stable i-uniformly with respect to all continuous input u(t) with values in B.

Proof Construct the Lyapunov function

V(x,y) = (x-yfr(x-y)

Note that p1-1!!-1^ - y||2 < V(x,y) < ||r|| ||x - y||2. Its derivative along the trajectories of
the system

x = -g(h(x),u(i))
y = -g(h(y),u(<)) W

is

l/(x,y) = 2(x-y)Tr(x-y)
= -2(x - y)Tr(g(rx, U(0) - g(ry, u(t)))
< -27||rx-ry||2 = -27||r(x-y)||2 (9)

So the conditions of theorem 2 are satisfied. As V and V do not depend on u(<), the asymptotical
stability is i-uniform with respect to all u(<). •

Theorem 6 Consider the system (6). If h is a uniformly increasing function from Rn -* Rn and
g is given by:

g(z,u) = Gzz + Gu(u) (10)

where G- is a symmetric and positive definite matrix, and Gu(') is continuous, then the system is
uniform-asymptotically stable i-uniformly with respect to all continuous input u(t).

Proof Construct the Lyapunov function

V(x,y)=(x-y)TGj1(x-y)

Its derivative along the trajectories of system (8) is

V(x,y) = 2(x-y)TGj1(x-y)
= -2(x - y)TGJ1 (G,h(x) - Gzh(y))
= -2(x-y)T(h(x)-h(y))
< -27||x-y||2 (11)



and the conditions of theorem 2 are satisfied. As V and V do not depend on u(i), i-uniformity
follows. •

Chua's oscillator [Chua et a/., 1993a] is a simple electronic circuit which for certain values of
the parameters becomes chaotic. The circuit has the following state equations:

where G= ^ and

* = i[G(t*-t*)-/(*i)]
T? = £[<?(*! -t*) + X3]
3? = -i(t* + *0*3)

/(oi) = G?6t* + -(G«-G6){|t>i+£|-|t*-£7|}

(12)

(13)

There exists a set of parameter values where the linear components are strictly passive (R, Ro,
C'i, C2, L > 0) and the nonlinear element is active (Ga < Gb < 0) such that the circuit becomes
chaotic.

However, if the nonhnear element is strictly increasing, then the circuit is uniform-asymptotically
stable:

Theorem 7 The system

fy = £[G(vl-V2) + i3] + m(t)
*a = -i(v2 + Roi3) + m(t)

(14)

is uniform-asymptotically stable i-uniformly with respect to all continuous ni{t)'s when R, Ro, C\,
C-2, L, Ga, Gb > 0.

Proof We intend to use theorem 6. Equation (14) can be written as

Thus we have

and

l

0

0
_i_
c2
0

1 1

" R R
1 1

R ~R

0 -1 -Ro )

U * ?
0 *
0 0

Gu(u) =

Mz) = -i

-7i (0

-m(t)

+

/ i?i(0

V %(0
(15)



Now we show that h is uniformly increasing. First note that the number A= \(xi,x\) = -^x')-/(*{)
which depends on a?i and x\ satisfies1 mm(Ga,Gb) < A< max(G0,Gf6).

(x - x')T(h(x) - h(x')) = (x-x')T
~ " o N f(fM-f(*l))V
-i * -1 I (*-*') +

0 1 Ro
Ji((X2-x'2) - (*, - Xi))2 + A(», - Xj)2 + #0(*3 ~ X3)2

Since Ga,Gb > 0, A > 0. Thus the conditions of theorem 6 are satisfied and we have uniform-
asymptotical stability2. •

3 Connecting Asymptotically Stable Systems

In this section, we consider how two asymptotically stable systems can be connected into a bigger
system without losing the property of asymptotical stability.

The first case we consider is a cascade of two systems, i.e. the coupling is in one direction.
A converse theorem to theorem 2 exists:

Theorem 8 (Converse Theorem) Consider the system (1). 7/f(x,<) is Lipschitz continuous in
x uniformly in t, i.e.,

||f(x,i)-f(y,<)ll<i||x-y||

for some L > 0 and system (J) is uniform-asymptotically stable with respect to H*, there exists a
Lyapunov function V(i,x,y) such that

a(||x-y||)<V(t,x,y)<6(||x-y||)

where a(-) and &(•) are in class K,

|V(i,xliyi) - V(<,x2ly2)| < M(Hxi - x2|| + ||y, - y2||)

for some constant M > 0 and
V(t,x,y)<-V(tfx,y)

where V"(f,x,y) is the generalized derivative ofV along the trajectories of

x = f(x,t), y = f(y,t)

ProofSee [Yoshizawa, 1966,page 109]. •
Consider two systems

xi = fi(xi,t), x2 = f2(x2,u(t),t)

where u(-) is considered the input to the second system. Suppose that the first system is uniform-
asymptoticaly stable and the second system is uniform-asymptotically stable i-uniformly with re
spect to all continuous inputs u. When we cascade the two systems by feeding the state of the first
system as the input to the second system, i.e. by setting u = xi, then the resulting system is still
uniform-asymptotically stable.

0

'If ii = x\ then we set A= Ga-
2A circuit-theoretic approach can be used to provide a simpler proof of the above theorem. It only uses the facts

that the elements are strictly increasing, the capacitors and the inductor are linear and the circuit topology satisfies
a fundamental topological hypothesis [Chua and Green, 19761.
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Theorem 9 Suppose that the system
xi = f2(xi,<)

is uniform-asymptotically stable with respect to H* and the system

x2 = f2(x2,u(<),*)

is uniform-asymptotically stable with respect to H* i-unformly for all continuous u(t). Suppose that

||f2(x2, u, 0 - f2(y2, ii, t)|| < L(||x2 - y2|| + ||u - u||)

for some L > 0. We denote

x =
Xl

x2

Then the system

\ x2 J \ f2(x2,xi,0 J

is uniform-asymptotically stable with respect to H*.

Proof Let x(to),y{to) G5//». Then the conditions on uniform-asymptotical stabilityare satisfied
for xi and yi. So it only remains to show them for x2 and y2. Let \x{t) - x\{t) and \x{t) - y\{t).
By the converse theorem, there exists a Lyapunov function

o(||x2 - y2||) < V(t,x2,y2) < 6(||x2 - y2||)

such that

|V(*,x2,y2) - V(t,x2,y2)| < M(||x2 - x2|| + ||y2 - y2||)

for some constant M > 0 and a and 6 functions in class K and

V(t,x2,y2)<-V(*,x2,y2)

where V"(t,x2,y2) is the generalized derivative of V along the trajectories of

x2 = f2(x2, u(t), 0» y2 = f2(y2, u(<), t)

Then when we take the generalized derivative of V along the trajectories of

x = f2(x, u(<),t), y = f2(y, u(t), t)

we obtain

V(<,x2,y2) < -a(||x2 - y2||) + ML\\u(t) - u(t)\\

So by theorem 1 ||x2(t) - y2(<)l| can he arbitrarily small as t -» oo if we make ||xi(<) - y\(t)\\ =
||u(f) - u(/)|| arbitrarily small. As the second system is uniform-asymptotically stable i-uniformly
with respect to all inputs, the bounds on the Lyapunov function constructed in the converse theorem
and its generalized derivative do not depend on u and so the proof is complete. •

In the second case we consider linear coupling. For asymptotically systems which are either
linear or satisfy the conditions of theorems 3, 5 and 6, an appropriate Lyapunov function exists of
the form V(x,y) = (x - y)TD(x - y), where D is symmetric positive definite. Two such systems
can be coupled via linear coupling with the resulting system still being asymptotically stable.



Theorem 10 Consider the systems x = f(x,<) and x = f(x,*) where x,5c e Rn. Suppose that B^
and D2 are two symmetric positive definite matrices such that Vi(x,y) = (x - y)TDi(x - y) and
^2(x,y) = (x-y)TD2(x-y) satisfy the conditions of theorem 2for uniform-asymptotical stability,
for the two systems respectively. Let D be a positive semi-definite matrix. Define

D3 = D,-1D, D^D^D

then the system

is uniform-asymptotically stable.

x = f(x,t) + D3(x-x)
x = f(x,«) + D4(x-x) U'J

Proof Consider the Lyapunov function V(x,x,y,y) = Vi(x,y) + V2(x,y). The derivative of V
along the trajectories of

x = f(x,0 + D3(x-x)
x = f(5U) + D4(x-x)
y = f(y,0 +D3(y-y) (18)
£ = ?(5M) +D4(y-y)

V = 2(x-y)7,D1(f(x,0-f(y,0) +2(x-y)TD2(f(x,0-f(y,0) no,
-2(x- y)TD1D3(x - y- (x - y)) - 2(5c - y)TD2D4(x - y - (x - y)) ^

The first two terms add up to a function that is the negative of a function in class A', while the
last two terms add up to

- 2(x - y - (x- y))TD(x - y - (x - y)) (20)

which is nonpositive. So the result follows from theorem 2. •
For the special case where the two systems are identical, (f = f), we can choose D3 = D4 = qI

for a > 0, which corresponds to linear diffusive mutual coupling. Here a serves as a measure of the
coupling strengh between the two systems.

4 Asymptotical Synchronization of Two Identical Dynamical Sys
tems

In this section we show the relationship between asymptotical stability and asymptotical synchro
nization. First we introduce some notations. For x € IRn, we denote x; = (xi,•••,£,) € K' and

x«\j = v3'"""'' xj) ^ R
Next we need definitions of synchronization of dynamical systems defined by ordinary differential

equations which are analogous to the definitions of stability and asymptotical stability.

Definition 7 Consider the system
x = f(x,y,*)
y = g(x,y,<) {n)

Letx € Rn andy £ Rm. System (21) is uniform-synchronized viaX{j andykj, where l-k = j-i, if
for each ( > 0 there exists £(c) > 0 such that if\\xij(to)-ykti(to)\\ < 6(c), then \\xij(t)-ykj(t)\\ < €
for all t>to for x(to) and y(t0) in some neighborhoods ofRn and Rm respectively.

10



Definition 8 Let x € Rn and y € Rm. The system (21) is uniform-asymptotically synchronized
via X{j and y^j if it is uniform-synchronized via X{j and yjt,/ and there exists 6 > 0 such that for
all ( > 0 there exists T(t) > 0 such that if

||xij(t0) - y*,/(*o)ll < 6

and t > to + T(€), then
K;W-yfc,i(*)ll<<

for x(to) and y(to) in some neighborhoods ofRn andRm respectively.

In the above definitions, the difference in the states between the two systems goes to zero as
t —*• oo. In the next definition, we allow for some synchronization error which can occur, for
example, when the two systems are not exactly identical.

Definition 9 Let x € Rn and y € Rm. The system (21) is uniform-synchronized with error bound
( via Xij and ykj if there exists 6 > 0 and T > 0 such that if

||xt>i(i0)-y*,K<o)ll<*

then ||x,-j(t) —yjt,/(OII < * for all t > to + T, for x(to) and y(to) in some neighborhoods ofRn and
Rm respectively.

We will say that the system (21) for the case n = m is uniform-(asymptotically) synchronized
(with error bound *) if it is uniform-(asymptotically) synchronized (with error bound t) via x and
y. When system (21) is synchronized via xt]j and y^j but it is not synchronized via x and y, then
we say that the system is partially synchronized.

Clearly these narrow definitions are quite restrictive and do not include other types of syn
chronization such as phase locking and frequency entrainment [Blekhman, 1988]. However, these
definitions can be applied to systems exhibiting aperiodic and chaotic behavior. Furthermore, they
are easy to verify and their relation to asymptotical stability can be exploited. To achieve synchro
nization of system (21), somehow x and y must be related. This can be achieved through external
forcing, coupling, etc.

We are now in a position to state the main theorem of this paper, which concerns the case of
two systems with the same "functional" form:

Theorem 11 (Main Theorem) Consider the system

x = f(x,x,y,<) (22)
y = f(y,x,y,i) (23)

where x,y6l" and f is defined onlnxlnxlnxl. Suppose that for x0 € Sh*,yo € Sh*, the
states x(t, x0, yo,to) € £>i, y(t,x0,yo,<o) € D2 for some sets D^ and D2. Suppose that for each
7?i(i) € C(R,Di) and Tj2{t) € C(R,D2) the system

z = g(z,t) = f(z,ife(t),»fe(t),t) (24)

is uniform-asymptotically stable at t0 with respect to H*. Then \\y(t) - x(t)\\ —> 0 as t —* oo
when the initial states at t0 satisfy x0 € Sh*, yo € S/y.. If in addition system (24) is uniform-
asymptotically stable i-uniformly with respect to all rji(t) € C(R,Di) and i]2(t) 6 C(R,D2) then
system (22-23) is uniform-asymptotically synchronized.
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Proof Follows directly from the definitions of uniform-asymptotical stability, where we set
?7i(<) = x(t) and n2(t) = y(t). •

The two systems as defined in Eqs.(22)-(23) are said to be in the same functional form which
is a generalization of the definition given in [Wu and Chua, 1993]. At first glance the two systems
(22) and (23) appear to be different. The argument of f(•,-,-,•) consists of4 components. The first
component is due to the state variables of the system, i.e. x in system (22) and y in system (23).
The second component is due to the state variables in system (22). The third component is due to
the state variables in system (23). The fourth component is due to the dependence of f on time t.
If we regard the second and third components as time varying dependences and write them as rji
and r)2 respectively, we obtain,

X = f(x,1fc(t),1fe(t),t) ,0-x
y = f(y,i&(t), %(<),*) [ }

Regarding the system in this way, the two systems are identical, so in essence we are really talking
about synchronization of two identical systems.

Next we will consider applications of the above theorem. In the following the corollaries are
given without proofs as they follow directly from the above theorem.

4.1 External synchronizing excitation

We consider two systems which are excited by the same excitation n(t).

X = f(x,7/(*)) , .
y = f(y,i?(0) (26)

Corollary 1 Consider system (26). Suppose that y = f(y, n(t)) is uniform-asymptotically stable
with respect to B*. Then \\y(t) —x(t)\\ -* 0 as t —> oo and the system is uniform-asymptotically
synchronized when the initial states at to satisfy xq £ Sn*,yo € Sh*-

The state vector x(t) can be aperiodic if n(t) is aperiodic. For example, in the homogeneous
driving of Pecora and Carroll, x is a stable subsystem of a chaotic system and n(t) is the state vector
of the rest of the chaotic system [Pecora and Carroll, 1990; Pecora and Carroll, 1991; Carroll and
Pecora, 1991; He and Vaidya, 1992]:

Corollary 2 (Homogeneous Driving) Consider the system

v = f(v u) 1u = g(v'u) (drivin9 system (27)

w = g(v,w) J driven system (28)

where v G Rm, u,w 6 Rk- Suppose that for Vo,uo € Sh*, v(i,vo, uo,<o) € D for some set D.
If u = g(?7(t),u) is uniform-asymptotically stable with respect to H* for all n(t) € C(R,D), then
||w(/) —u(i)|| —> 0 as t —* oo when vo,Uo,wo € Sh*- If in addition the asymptotical stability of
u = g(n(t),u) is i-uniform with respect to all n(t) € C(R,D), then the driving system and the
driven system are asymptotically synchronized at to via u andw.

Thus in corollary 2 the driven system w = g is an asymptotically stable subsystem of the driving
system.
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4.2 Asymmetric coupling

Corollary 3 Consider the system

x = f(x,g(x,y,<))
y = f(y,g(x,y,t)) ^

where x,y G Rn and f is defined on Rn x Rm. Suppose that for x0 G Sh*,yo G Sh*, and t > t0>
g(x(t,x0,yo,<o),y(^xo,yo^o),0 € I> /or some set D. Suppose that for each n(t) GC(R,D)

i = f(z,r)(t)) (30)

is uniform-asymptotically stable with respect to B*. Then \\y(t) - x(t)\\ -» 0 as t -> oo when
Xo £ Sn*,yo G 5//» ort <o- If in addition the asymptotical stability of (30) is i-uniform with respect
to all i)(t) GC(R,D), then the system is uniform-asymptotically synchronized.

Here g(x,y,<) can be thought of as the coupling between the two systems, where each system
receives the exact same coupling.

Several special cases of this type of coupling follow:

4.2.1 Master-slave synchronization

When g(x,y,<) = (x, t), we have the following corollary:

Corollary 4 Consider the system
x = f(x,x,<)
y = f(y,x,<) (31)

where x,y G Rn and f is defined on Rn x Rn x R. Suppose that for x0 G Sh*, and t > t0.
x(t,Xo,to) G D for some set D. Suppose that for each n(t) GC(R,D)

z = f(z,7?(0,t) (32)

is uniform-asymptotically stable with respect to B*. Then \\y(t) —x(t)\\ —* 0 as t —* oo when
xo € Sn*,yo £ Sh* at to. If in addition the asymptotical stability of (32) is i-uniform with respect
to all i)(t) G C(R,D), then the system is uniform-asymptotically synchronized.

In particular, we have synchronization of chaotic systems when x = f(x, x, t) is chaotic. In [Wu
and Chua, 1993], two examples, namely the Lorenz system and Chua's circuit, are given where
master-slave synchronization is achieved between chaotic systems. For the case of Chua's circuit,
f is chosen such that f(x,n(t),t) = Ax + n(t) for A a matrix with all eigenvalues in the open left
half plane and thus the conditions of corollary 4 are satisfied.

4.2.2 Control via linear feedback

The master-slave configuration was used by Chen and Dong [Chen and Dong, 1993a] in a linear
feedback control scheme to control a chaotic system to an unstable periodic orbit. They consider
the system (31) where f(y,x,t) = g(y,t) + K(x-y).

Corollary 5 Consider the system

x = g(x,*)
y = g(y,0 +K(x-y) <33>
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where x,y G Rn arid g is definedon Rn x R. Suppose thatfor x0 G Sh*, and t > to, x(t,xo, to) € D
for some set D. Suppose that for each n(t) G C(R,D)

z = [g(z,t)-Kz] + K7/(«) (34)

is uniform-asymptotically stable with respect to B*. Then \\y(t) —x(t)\\ —• 0 as t —• oo when
Xo G Sh*,yo € Sh* at to- If in addition the asymptotical stability of (34) is i-uniform with respect
to all n(t) G C(R,D), then the system is uniform-asymptotically synchronized.

Thus —Kz serves as a stabilizing linear feedback. x(t) can be from another identical dynamical
system which y synchronizes to or in the case of Chen and Dong [Chen and Dong, 1993b; Chen,
1993] x(t) is an unstable trajectory of the system which we want y(t) to approach. In [Chen and
Dong, 1993b; Chen, 1993], K was chosen such that the Chua's circuit which is initially chaotic,
becomes asymptotically stable after adding linear feedback by satisfying the conditions of theorem
7. This linear feedback scheme was also used by Pyragas to stabilize the Rossler, Lorenz and
Duffing Systems [Pyragas, 1993].

4.2.3 Communication systems

In master-slave synchronization, the coupling is unidirectional; the master system is not influenced
by the slave system. Exploiting this, many authors have since utilized this property of master-slave
synchronization to construct communication systems where the transmission is also unidirectional
[Oppenheim et a/., 1992; Kocarev et a/., 1992; Parlitz et a/., 1992; Cuomo and Oppenheim, 1993b;
Cuomo and Oppenheim, 1993a; Halle et a/., 1993; Dedieu et a/., 1993; Wu and Chua, 1993]. When
g(x,y,t) = c(x,$(t)), we have

Corollary 6 Consider the system

x = f(x,c(x,s(t)),<) (35)

y = f(y,c(x, *(<)),*) (36)

where x,y G Rn and f is defined on Rn x Rm x R. Suppose that for xo G Sh*, and t > to,
c(x(<,xo, to)i*(0) € D for some set D in Rm. Suppose that for each n(t) G C(R,D)

z = f(z, 7/(t),0 (37)

is uniform-asymptotically stable with respect to B*. Then \\y(t) —x(t)\\ —> 0 as t —* oo when
xo G Sn*,yo € Sh* at to- If in addition the asymptotical stability of (37) is i-uniform with respect
to all 7/(0 G C(R,D), then the system is uniform-asymptotically synchronized.

The transmitter corresponds to the system (35) and the receiver corresponds to the system (36).
Here 5(0 is an information-bearing signal. The continuous function c(-, •)is a coding function which
codifies the information signal s(t) with the chaotic signal x(t). We assume that there is a decoding
function d(-,*) such that d(x,c(x, *(£))) = s(t) which is continuous in x. The signal c(x(t),s(1))
is then transmitted to the receiver. When the transmitter and the receiver are asymptotically
synchronized, y(t) —• x(t) and thus d(y,c(x,s(0)) -*• s(t) as t —• oo by continuity of d. For
communication systems, a design criterion might be that c(x, s(t)) G Rm is a short vector, i.e., in
should be small.
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Example: Consider the following communication system based on Chua's oscillator:

dt
dv>
dt

din

2
dt

dvi
dt

♦

= ^-[G(v2-vJ)-f(v1+r{t))]
= Z%[G(v1-v2) + i3]
= ~l(v2 + Roh)
= ^[G(v2-vi)-f(vi+r(t))}
= jfclGlvi -v2) + h]

(38)

where r(t) = d(a + V\(t))(b + v2(t))(c + ?3(0)s(0 and a,6,care chosen such that (a + Vi(i))(6 +
?;2(0)(c + i-3(0) >s positive for all time £. The signal »i(t) + r(<) is transmitted. For C\, C2, G,
L > 0 and /?.q > 0, the two systems synchronize [Wu and Chua, 1993] and so

5(0 =
>,(*) +r(0)-«i

d(a + vi(t))(b+ V2(t))(c+i3(t))

will converge to s(t).

Recovered information signal

W)

0.015 0.02

Figure 1: Information signal 5(0 recovered from vi(t) + r(t). The parameters are C\ = b.oQnF.
C2 = 50»F, R = 1428ft, R0 = 0, L = 7.14???.//, £ = 1, Ga = -0.8???S, 6'6 = -O.bmS and a = 2.5,
6 = 0.51, c = 0.0025, d= 1.

In Fig. 1 we show 3?(t) when 5(0 is a square wave of amplitude 1 and frequency ^i™Hz and
the parameters are chosen as C\ = 5.56??F, C2 = 50??F, # = 1428ft, R0 = 0, L = 7.14???//, £ = 1.
Ga = -0.8m5, 6*t = -0.5mS and a = 2.5, b = 0.51, c = 0.0025, d= \.

4.2.4 Inverse filtering

Consider the system

x = f(x,/,s(0)
u = h(x,s(0)

We can think of this system as a nonlinear filter. The original signal 5(0 is being "filtered" by the
system generating the output u(/), which is a filtered version of s(t). The goal is now to perform an
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inverse filtering operation to recover the signal 5(0 from u(0- Unlike in linear systems, there is no
straightforward way to perform the inverse filtering, even if the operation of the filter system (39)
is completely specified. In general, there could be natural dynamics of the system which modjfies
the signal 5(0- The transmitter in the communication systems discussed above is a nonhnear filter
which garbles the input information signal and the goal at the receiver is to recover the input signal
given the output of the transmitter filter. What coroDary 6 tells us is that if the filter is of the form
(35) with c(-,-) invertible (i.e., the function rf(-, •) exists) and u = c(x,5(0), then we can recover
5(0 using a synchronized system.

However, in general the system is not given in such a form. In some cases, it is still possible
to recover the signal 5(0 from u(0- Recall our notation that for x G Rn, xp = {xu.. .,xp} is a
sub vector of x. Consider the system

x = Ax + f(x„0 + bc(x, 5(0,0 (40)
u = w(x) (41)

where A has all its eigenvalues in the open left half plane. Any system with input 5(0 can be put
in the form (40) since

x = g(x, 5(0,0 = -x + 0 + (g(x, 5(0,0 + x)

Thus we havexp = x, A = -I, f = 0 and c(x,5(0,0 = g(x,5(0,0 + xand b = I. If c(-,-,-),/9 and
w(-) satisfy certain conditions, then we can reconstruct 5(0- First werequire that c(x, 5(0,0 maps
into Rp. Next we require that there is a decoding function d() such that d(x,c(x,5(0,0>0 = SW
and continuous in x. Third we require that xp can be recovered from u. In other words, there
exists a function w such that for all x G Kn,

xp = w(u) = w(w(x))

The algorithm for recovering 5(0 from u is as follows. First we construct the system

y = Ay + f(w(u),0 (42)

Subtracting this equation from (40) we obtain

d(x-y)
dt

= A(x - y) + bc(x, 5(0,0 (43)

Thus Xp —yp at steady state is the output when c(x, 5(0,0 *s fed through a linear time-invariant
filter. The transfer function is given by

/ 1 0 0 0 ••• \

h(5) = (Xp" y>)W = 0 1 0 0 ••• (sl-A)-^
°^ \ 0 0 '-. 0 ••• /

where c(s) is the Laplace transform of c(x(t),s(t),t). ^ M5) *s "ivertible for all 5 on the imaginary
axis, then we can perform a linear inverse filtering operation to recover c(x, 5(0,0 fr°m xp —yp.
Then we use Eq. (43) to obtain the steady state of x - y. Adding that to y gives us x from which
we can recover 5(0 (asymptotically) from c(x(t),s(t),t) by using d().
Example: Consider the state equations of Chua's oscillator with external forcing term s(t):

%• = ^(v2-vi-rr(t))-f(Vl)]
% = ^[G(vi-V2) + i3] (44)
<& = -ftvi + Roh)

16



where r(0 = d(a + v-i(t))(b + v2(t))(c + i3(t))s(t) and a,6,c are chosen such that (a + vi(t))(b +
V2(t))(c + i*3(t)) 1S positive for all t. The goal is to recover 5(0 from v^(t). Equations (44) are in
the form (40) where

0

A = x =

/>=i,f(Vl,0=(-^ o o)T,b=(
i3(0)5(0 and u = v\.

G_ 0 0) ,c(x,5(0,0 =d(a-rvl(t)){b +v2(0)(c +

W)

Recovered signal

0.02 0.025 0.03 0.035 0.04 0.045 0.05
t

Figure 2: Signal s(t) recovered from vi(t). The parameters are C\ = 5.56nF, C2 = 50nF, R =
14280, #o = 0, L = 7.14m//, E=\,Ga = -0.8roS, Gb = -0.5mS and a - 3, 6 = 0.7, c = 0.003,
d= 1.

In Fig. 2 weshow 5(0 which was extracted from v\{t) by the abovealgorithm. The signal 5(0 is
a square wave ofamplitude 1and frequency ^Bz and the parameters are chosen as C\ = 5.56??F,
C2 = 50nF, R = 1428H, R0 = 0, L = T.UmB, E=lJGa = -0.8m5, G6 = -0.5m5 and a = 3,
6 = 0.7, c = 0.003, d= 1.

4.3 Symmetric or mutual coupling

Consider the system

x = f(x,g(x,y),0
y = f(y,g(y,x),o

where x,y GRn and f is defined on Kn x Km x R. Again g(x,y) can be thought ofas the couphng
between the twosystems, but in this case each system received a couphng which is the same relative
to each other. In other words, we have mutual couphng. Suppose that the couphng has the following
form:

g(x,y) = h(x,i(x,y))
g(y,x) = h(y,i(x,y)) (46)

The following corollary then follows from theorem 11:

(45)
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Corollary 7 Consider the system (45). Suppose that forx0,yo GSh*, andt > t0, x(t,x0,yo,<o) G
D\ and y(<,x0,yo,<o) € D2 for some sets Di and D2. Suppose that for each 771 (0 GC(R,Di) and
ife(t)€C(R,Z>2)

Z = f(«,h(z,i(l&(t), %(*)))) (47)

15 uniform-asymptotically stable with respect to B*. Then \\y{t) —x(0|| -+ 0 05 t ^ 00 when
xo G Sn*,yo G £#• flUo- •// w* addition, the asymptotical stability of (47) is i-uniform with
respect to allrji(t) GC(R>Di) and772(0 £ C(IR,I>2) ^»cn i/ie system (45) is uniform-asymptotically
synchronized.

Condition (46) is satisfied if g(x,y) = h(x, i(x,y)) and i(x,y) = i(y,x). For example, consider
the case g(x,y) = K(y - x). Since g(x,y) = -2Kx + K(x + y), we have the following:

Corollary 8 Consider the system

x = f(x,0 + K(y-x)
y = f(y,0+K(x-y) V*>

Suppose that for x0,yo € Sh*, and t > t0, x(J,xo,yo,<o) € D\ and y(<,x0,yo,*o) € T>2 for some
sets D\ and Z>2- Suppose that for each rji(t) GC(R, jDi) and 772(0 € C'fR,/^)

z = f (z, 0 - 2Kz + K [77, (0 + !&(*)] (49)

is uniform-asymptotically stable with respect to B*. Then ||y(0 —x(0|| -> 0 as t —• 00 when
xo G Sn*,yo € 57/• a< <o- //" *n addition, the asymptotical stability of (49) is i-uniform with
respect to all rfi(t) G C(K,D]) and 772(0 € CO^-^2) ^en system (48) is uniform-asymptotically
synchronized.

In [Chua et a/., 1993b], a diagonal matrix K was chosen such that the linear feedback —2Kx
causes the Chua's oscillator to become asymptotically stable. One such choice corresponds to
resistive couphng between the two circuits.

4.4 Linear coupling

Notice the similarity of Eq. (49) with the case of linear feedback control (Sec. 4.2.2, Eq. (34)),
where -2K can be considered a stabihzing feedback matrix. Thus we can conclude that mutual
coupling in the form of (48) synchronizes the system better than unidirectional couphng in the
form (33) in the sense that a smaller feedback matrix K is needed in mutual couphng than in
unidirectional couphng. Also note that when the systems are synchronized; i.e. x = y, the two
systems are decoupled, and we have:

x = f(x,0 y = f(y,0

These two cases can be generalized as follows:

Corollary 9 Consider the system

x = f(x,0 + K!(y-x)
y = f(y,0 +K2(x-y) ^

Suppose that for x0,yo € Sh*, and t > t0, x(i,x0,yo,<o) € D\ and y(*,x0,yo,*o) € D2 for some
sets D-i and D2- Suppose that for each n\(t) GC(R,Di) and n2(t) GC(R,D2)

z = [f(z,0 - (K, + K2)z] + K277i(0 + K,772(0 (51)
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is uniform-asymptotically stable with respect to B*. Then \\y(t) —x(t)\\ —*• 0 as t —* oo when
xo G Sn*,yo G Sh* at to. If in addition, the asymptotical stability of (51) is i-uniform with
respect to all rfi(t) G C(R,Di) and 772(0 € C(R,D2) then the system (50) is uniform-asymptotically
synchronized.

In this case Ki + K2 is the stabihzing hnear feedback matrix.
For example, using theorem 7, we can give conditions for which two hnearly coupled Chua's

oscillators will synchronize:

Corollary 10 Consider the system:

dJ3

t ~i(V2 + R0^) + *13(«3 - »3)
f = i[G(v«i)-/(«i)]+wi-«
^f = ct^^1 ~^2) +*31 +*22(V2 - ^2)

(52)

Suppose d,C2,G,L > 0. //fcn + fc2i > max(~(j?a,~Gb), &i2 + fc22 > 0 one/ &i3 + fc23 > -^, */*en
the two Chua '5 oscillators will asymptotically synchronize.

For the general case x = f(x,0, under mild conditions it is possible to find a matrix K such
that x = f(x, 0 —Kx is asymptotically stable.

Theorem 12 If the Jacobian Dxf(x,t) is uniformly bounded, i.e. ||Dxf(x, t)|| < M for allx and
t, then there exists K such that x = f (x, 0 —Kx + 77(0 is uniform-asymptotically stable i-uniformly
with respect to all continuous n(t).

Proof Because the Jacobian of f is uniformly bounded, there exists a matrix K such that
Dxf(x, 0 —K + AI is negative definite for all x and t and some A > 0. For example, let K be
a diagonal matrix with large entries. Then by theorem 4 the function —f(x, t) + Kx is uniformly
increasing, and thus x = f(x, t) —Kx + 77(0 is uniform-asymptotically stable i-uniformly with
respect to all continuous 77(0 by theorem 5. •

This theorem says that two identical systems with bounded Jacobian can by synchronized by
appropriate hnear couphng. In particular, in general two identical systems can be synchronized by
large enough hnear diffusive couphng between the corresponding state variables. Another way to
synchronize any two identical systems can be found in [Wu and Chua, 1993]. In all these cases, the
couphng is such that the two systems are decoupled when they are synchronized.

4.5 Discussion

From the above, we can draw the following conclusions. To synchronize two chaotic systems, we
can follow the following algorithm: Two systems are needed; the original system x = gi(x, 0 =
f(x, x, x,0 which is chaotic, and x = g2(x, 0 = f(x, 771(0, *72(0> 0 which is asymptotically stable for
all 7/!(0 and 772(0- The main idea is that the gi(x,0 depends on the state variable x in several ways
and we want to find the dependencies on x such that when x in these dependencies is regarded
as external time-varying input, the resulting system x = g2(x,0 is asymptotically stable. The
difference between the two functions gi(x,0 and g2(x,t) will be used as the couphng between the
two chaotic systems. The function g2(x,0 can be obtained from gi(x,0 through hnear feedback
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[Chen and Dong, 1993a], by identifying a stable subsystem [Pecora and Carroll, 1990; Pecora and
Carroll, 1991; Carroll and Pecora, 1991; He and Vaidya, 1992] or in case of electronic circuits, by
identifying the circuit elements which are active [Wu and Chua, 1993]. It would be preferable,
for example in communication systems, if the difference between gi(x,0 and g2(x,0 Is "small" in
some sense, since that is what is being transmitted. For example, in Chua's oscillator g2(x,0 can
be found such that gi(x,0 and g2(x,0 differs only in one scalar variable. A possible source of such
"small" change can be found in bifurcation diagrams. As a parameter is varied a chaotic system
can become stable and vice versa. Thus the parameter change can be the source of the difference
between gi(x,0 and g2(x,t). For example, in the a;-coupled configuration of Chua's oscillators
considered in [Chua et a/., 1993b] the systems gi(x,t) and g2(x,0 correspond to different values
of the hnear resistor that is placed in parallel with the nonlinear resistor.

5 Synchronization of Nearly Identical Systems and Robustness
of Synchronization

So far, we have only considered systems which have the same functional form. Now we consider
the question of robustness. This is related to the question of what happens when the two systems
are "nearly" identical. When the two coupled systems are nearly identical, we expect (or at least
hope) that the difference between their states is also small as t —> oo. In other words, the system
is synchronized with a small error bound (definition 9).

We say that the asymptotical synchronization of two systems is robust if for arbitrarily small
( > 0, if we make the two systems close enough, then they will be synchronized with error bound
(. For this definition to make sense, we need to define what it means for two systems (or vector
fields) to be "close" to each other. In practice, the system will depends on parameters.3 So it seems
reasonable to define closeness of systems as closeness of "natural" parameters.

Theorem 13 Consider the system

x = f(x,x,y,0 ,„*
y = f(y,x,y,0 (53)

where x,y G Rn- Let f defined on Rn x Rn x Rn x R be fixed. Suppose thai there exists bounded
sets D\, D2 with the following property: There exists fi > 0 such that if

sup ||f(y,x,y,0-f(y,x,y,OH<M
xe£>i ,y€D2,t>to

andxo GSh*, yo € Sh*, then x(i,x0,yo,<o) € D\, y(*,x0,yo,<o) € D2- Suppose thatfor 771 G D\,
m € D2,

||f(x,771,772,0-f(x,,»7i^2,OII < ^llx-x'H
Suppose that

x = f(x,n1(t),n2(t),t)

is uniform-asymptotically stable i-uniformly with respect to all 7}i(t) G C(R,Di) and 772(0 G
C(M,D2). Then system (53) is robustly synchronized in the sense that if for each € > 0 there
exists a 6(e) > 0 and T(e) > 0 such that if

sup ||f(y,x,y,0-f(y,x,y,0||<<$ (54)
x€l>i,ye£>2,t>to

3For example, the natural parameters of an electronic circuit are the component values of resistors, capacitors,
etc.
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and xo and y0 is in some neighborhood ofRn, then ||x(t,xo,yo,<o) - y(*,Xo,yo,<o)|| ^ ( for a^
t>t0 + T.

Proof Let B* > 0 and x0,yo € Sh* be fixed. We denote u(0 = x(*,x0,yo,*o) and u'(0 =
y(<,xo,yo,*o)- By the converse theorem, there exists a Lyapunov function

a(||x-y||)<V(t,x,y)<6(||x-y||)

with a(-) and &(•) in class K such that

|V(t,x, y) - V(t,x',y')| < M(||x - x'|| + ||y - y'||)

for some constant M > 0 and

V(*,x,y)<-V(t,x,y)

where V"(<,x,y) is the generalized derivative of V along the trajectories of

x = f(x,u,u',0> y = f(y,u,u',0

Taking the generalized derivative of V along the trajectories of the system

x = f(x,u,u',0, y = ?(y,u,u',0

we obtain

V<-V(t,x,y)+M6

for 8 < p. satisfying Eq. (54). So by theorem 1, the result follows. •
The above theorem says that if small perturbations of the second system cause the trajectories

of both systems to remain within a fixed bounded set which is independent of the perturbations,
then the synchronization is robust. The reason why we choose D\ and £>2 to be bounded is that
in many systems, arbitrarily small changes in the parameters still imply that

sup ||f(x,0-f(x,0ll = oo
x€En,t>*o

so to have a correspondence between small changes in parameters and small changes in the vector
fields, we restrict the vector field to a bounded set.

The existence of the bounded sets D\ and D2 can be difficult to verify and obtain. Because of
the form of the Lyapunov function of systems such as Chua's oscillators and Lorenz systems, for a
master-slave configuration we can prove a stricter result on the robustness of synchronization.

Theorem 14 Consider the system
x = f(x,x,0 ....
y = f(y,x,o (55)

where x,y G Rn and f, f are defined on Rn x Rn x R. Suppose that there exists a bounded set
D such that for all xq G Sh*, x(t,xo,<o) € D.

Let V(x,y) = (x - y)TD(x —y) where D is a positive definite symmetric matrix.
Let € > 0 be given. Suppose 6 > 0 is such that for all f which satisfy

sup ||f(x,x,0- f(x,x,0H < 8
XGD,t>£0
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the following inequality holds
V(x,y)<-c\\x-y\\2

for some constant c>Ofort>t0 andfor all 771(0 GC(K, D) where V(x,y) is now the generalized
derivative of V along the trajectories of

x = f(x, 77i(0,0
y = f(y,»?i(0,0

If 6 < r15 r, then the system (55) is uniform-synchronized with error bound e.
2||D||5||D-M|2

Proof We use the same Lyapunov function V(x,y) = (x —y)TD(x —y), but now applied to the
system (55). The derivative of V along the trajectories of system (55) is

K(x,y) = 2(x-yfD(f(x,x,0-f(y,x,0)
= 2(x - y)TD(f(x,x, 0 - f(y, x, 0) + 2(x - y)TD(f(x,x, 0 - f(x,x, 0)
< -c||x-y||a + 2*||D||||x-y||

So if we choose 6 < *& r, then the conditions of theorem 1 are satisfied which gives the
2||D||*||D->||*

correct bound for the synchronization error. •
This theorem says that if small pertubations of the receiver system do not affect the constant c

in V", then if the perturbation of the receiver system is small, the synchronization error will also be
small. Notice that a bounded D exists if the state vector x(0 in the master system x = f(x,x,0 is
bounded for some initial conditions xo in Sh* since the couphng does not affect the master system.
The theorem then imphes that y(0 will also be bounded.

For example, consider master-slave synchronization of two identical Chua's oscillators through
hnear feedback or as in [Wu and Chua, 1993]. Let us consider the component values Ci, C2, L,
R, Ga, (j6, Ro as the only parameters of the system. Suppose the parameters are chosen such
that the system is asymptotically synchronized and that the trajectory of the master system is
bounded, with V(x,y,t) < —c\\x - y\\2. For arbitrary small fi > 0 there exists 6 > 0 such that for
all perturbations of the parameters smaller than £, we have V(x,y,0 < —(c —/0llx - y||2. Thus
the constant (c —p) is independent of the perturbations of parameters provided they are small
enough. By applying theorem 14, it follows that the synchronization error can be made arbitrarily
small if the perturbation of the parameters is small enough. In other words, the asymptotical
synchronization is robust. The same can be said for the master-slave configuration of the Lorenz
system if we regard /?, <r, and p as the only parameters of the system.

6 Two More Examples

In this section we wiD give two more examples of synchronized systems to illustrate some of the
ideas above.

In the first example, we will illustrate partial synchronization and synchronization with error by
means of two linearly coupled Chua's oscillators. The couphng will be weaker than what corollary
10 dictates, so that we will not have asymptotical synchronization.
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The system we consider is:

where

d^
dt

din
dt

fdv\
dt

dv?

~¥
dt*
dt

= MGfa-vi)-fM + kn(vi-vi)]
•£r[G{v-i - V2) + h + ^12(^2 - V2)]
-x[v2 + R0i3 - ^13(«3 - *3)]
^[G(v2 - «i) - f(vi) + M*i - «i)l
^ [G(Vl - V2) + «3 + ^22(^2 - V2)]
-r[v2 + Roh - hz(h - h)\

Kh) = Ghv1 +\(Ga-Gb){\vl +E\-\vl-E\}

(56)

(57)

In the widely studied double scroll Chua's attractor, the parameters are such that there exist
three equilibrium points in the system. In particular, C\,C2,L > 0 and Ga < —r < Gb < 0.
This is the case we will consider. We also assume that Gb = Gb- The couphng is chosen such that
Ga < -^ - (A:ii + k2\) < Gb < 0 and fci3 + fc23 > -Ro- We will choose fci2 + ^22 to be Positive-
One such choice of couphng coefficients with R0 > 0 is ku = &21 = &13 = &23 = 0; i.e. there is only
couphng between the state variables V2 and V2- We denote

x = y =

Consider the Lyapunov function V(x,y) = \{x-y\

the trajectories of system (56) is

V = -R-({x2-y2)-(xi-yl))2-(\ + {ku + k21)){x1-yiy
-(Ro + (*13 + *23))(*3 - 2/s)2 - (*i2 + *22)(*2 - 02 )2

(x —y). Its derivative along

(58)

where the number A= A(zi,yi) = %_! depends on x\ and y\. We set A= Gb if x\ = y\.
Now we are in a position to show that if £12 + £22 is large enough, then x —y will be eventually

uniformly bounded; i.e. for all initial conditions, x —y will eventually he in a bounded set. For
^ + (&ii + &2i) + Gb > fi > 0, Eq. (58) can be written as

where

-V = (-Gb + fi + X^-y,)2
+(r +°b -1* +(*„ +*2i)) M*2 - 2/2) - (*i - yi))2
+(i +(*« +M - %) (x2 - y2)2 +(-Ro +(*i3 +k23))(x3 - ysf

a =
1

l + fl(Gfc-M + (*ll+*2l))
>0

If we choose
q-1

R
&12 + &22 >

then

(£ +(*„ +**)-«) >0
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It is not hard to show, by looking at the graphs of /(•) and /(•) that for each p > 0, there exists M
such that if |3, - y, | >M, then A= ^I^1*>Gb-p. Thus if \Xl - yi\ > M, then Vbecomes
negative. If \xi - j/i| < M, but \x2 - y2\ or \x3 - y3\ is large enough, then V is again negative. So
V is negative if ||x - y|| is large enough, and thus by theorem 1 ||x - y|| is eventually uniformly
bounded. This bound on ||x - y|| still holds if k\2 + k22 is made larger. Note that this analysis
cannot give us any indications whether x is bounded or not. In fact it is easy to find an example
where x is unbounded.

Next weshow that by making £12+^22 large enough, \x2-y2\ can be arbitrary small (as t —• 00),
using the fact that x —y is eventually bounded. Subtracting equations, we get

d(v2 - v2) G+k12 + k22, _ 1 r . . .-ijt = ^ ("2 - 02) +^r [G(vi - «i) +»3 - i3\ (61)

Thus

V2(t)-v2(t) = eM-G+%+k2?t)(v2(to)-v2(to))
+ ct fto exp(-°+*&+*™(t " r)) [GMr) - v,(r)) +t3(r) - i3(r)] dr (62)

So as x - y is eventually bounded, v2 - v2 is eventually smaller than c, where e can be chosen to
be arbitrarily small, as k^2 + ^22 is chosen to be arbitrarily large.

Thus we have partial synchronization via V2 and V2 with error bound e, where € can be made
arbitrarily small by making &12 + ^22 arbitrarily large.

In Fig. 3 weshow vi(t) —vi(t) and V2(t)-h(t) when the parameters are chosen as C\ = 5.567?F,
C2 = 50nF, R = 1428ft, R0 = 1, L = l.XAmB, E = 1, Ga = -0.8mS, Ga = -0.8087/i5,
Gb = Gb = -0.5m5, kn = k2\ - k\2 = &13 = ^23 = 0 and fc22 = 0.007. Note that only v2 and v2
are coupled. For these parameters, Zjjr « 1.75e~3 for small /z, so condition (60) is satisfied. As
can be seen, the state variables v^(t) and v^(t) are not synchronized, while V2(t) - V2(t) is relatively
small.

In the computer simulations we have noticed that when Ga = <ja, the system appears to
be asymptotically synchronized for large enough £22- However, we were not able to prove this
conjecture rigorously.

In the second example we will cascade a Chua's oscillator with a Lorenz system. The resulting
system will be synchronized with an identical copy. In particular we consider the system:

$• = iPh-»i)-/W]
* = i-2[G(v1-v2) + i3]
f = -i(v2 +R0i3) (63)

v(-y + x(p - z) + k2v2)
v(-fiz + xy + k3i3)

in _
& :

The constant u serves to equalize the time scales of the two systems. A phase portrait in the
x-y-z plane is shown in Fig. 4 for the parameter set C\ — 5.56nF, C2 - 50nF, R = 1428ft,
#0 = 0, L = 7.14ra#, E = 1, Ga = -0.8mS, Gb = -0.5mS and a = 16, p = 45.6, (3 = 4,
v = 1500, k\ = k2 = k3 = 100. From theorems 3, 9, and [Wu and Chua, 1993], it follows that
the following system is uniform-asymptotically synchronized to system (63) when x(t) is bounded,
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Figure 3: Linear couphng of two Chua's oscillators. Only the state variables v2 and v2 are coupled.
Plot of (a) v\(t) —v\(t) and (b) v2(t) —v2(t) versus time. The parameters are C\ = 5.56?iF,
C2 = 50nF, R = 1428ft, R0 = 1, L = 7.14m#, E = 1, Ga = -0.8m5", Ga = -0.8087?i5,
Gb = Gb = -0.5m5, ku = ^21 = &12 = ^13 = k23 = Qand k22 = 0.007.
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Figure 4: Cascading Chua's oscillator and Lorenz system. Phase portrait of the cascaded system in
the x-y-z plane. The parameters are C\ = 5.56tiF, C2 = 50nF, R = 1428ft, R0 = 0, L = 7.14m//,
E = 1, Ga = -0.8?n5, 6'6 = -0.5mS and r = 16, p = 45.6, 0 = 4,1/= 1500, fci = fc2 = &3 = 100.
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R,Ro,C,,C2,L,P,(T > 0 and -3 < p < 1.

ax

(T = -HV2T/10»3; (64)

a£

i/(/z5 - y + x(p -JL - z) + k2v2)
v(-(3z + xy + k3i3)

This method can be used to cascade several chaotic systems which can be synchronized to identical
copies. Similarly, theorem 10 can be used to connect several chaotic systems such as Chua's
oscillator and Lorenz system which can be synchronized to identical copies.

7 Conclusions

In this paper, we give a unified framework to analyze synchronization and control between two
dynamical systems. We show how asymptotical synchronization is related to asymptotical stability
and give conditions which ensure synchronization. We illustrate how synchronizing systems can
be cascaded and connected and give conditions for robust synchronization. The main tool used to
prove asymptotical stability and asymptotical synchronization is Lyapunov's direct method.
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