Copyright © 1994, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ANALOGIC CNN ALGORITHMS FOR SOME
IMAGE COMPRESSION AND RESTORATION
TASKS

by

Péter L. Venetianer, Frank Werblin, Tamds Roska,
and Leon O. Chua

Memorandum No. UCB/ERL M94/30

28 February 1994

ANALOGIC CNN ALGORITHMS FOR SOME
IMAGE COMPRESSION AND RESTORATION
TASKS

by

Péter L. Venetianer, Frank Werblin, Tamds Roska,
and Leon O. Chua

Memorandum No. UCB/ERL M94/30

28 February 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ANALOGIC CNN ALGORITHMS FOR SOME
IMAGE COMPRESSION AND RESTORATION
TASKS

by

Péter L. Venetianer, Frank Werblin, Tam4ds Roska,
and Leon O. Chua

Memorandum No. UCB/ERL M94/30

28 February 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ANALOGIC CNN ALGORITHMS FOR SOME
IMAGE COMPRESSION AND RESTORATION
TASKS

Péter L. VenetianerT, Frank Werblini, Tamés Roska! and Leon O. Chua,

Electronic Research Laboratory, U.C. Berkeley

i Computer and Automation Institute, Hungarian Academy of Sciences
¥ Molecular Cell Biology, U.C. Berkeley

February 28, 1994

1 INTRODUCTION

In this report we present analogic cellular neural network (CNN) algorithms for real-time solu-
tions of several important image processing tasks; namely, skeletonization, scratch removal and
image compression. Our main concern was to present solutions which can be easily realized on
the CNN Universal Machines (CNNUM) [1, 2] manufactured with todays technologies, so we
restricted ourselves to single-layer 3x3 templates.

Many image processing and pattern recognition applications are based on the skeletonization
of the image. Several CNN skeletonizatio solutions have already been published, but all of
them use complex multi-layer, sometimes even non-uniform architectures. In contrast, our
solution uses only linear single-layer 3x3 templates. Our algorithm can be further generalized
to skeletonize grey-scale images as well.

In copying machines the glass panel often gets scratched after extensive usage. This scratch
is of course copied as well, resulting in a visually annoying copy. Thus it is very important to
remove the scratches from the copied material, i.e. to fill them with values of the neighboring
pixels so as to make them invisible. Our solution works both for grey-scale and color images.

1

The main idea of our scratch removal algorithm can also in other appllications. Here we
will show how it can be applied to enlarge images without a significant loss of quality. This is
equivalent to compressing and decompressing images.

In the next Section we describe the skeletonization algorithm in details. In Section 3 we
present scratch removal algorithm and use it in Section 4 to enlarge images.

2 SKELETONIZATION OF BLACK-AND-WHITE AND
GREY-SCALE IMAGES

The problem of skeletonization is a very important task. For example it is used with the solution
of several image processing and pattern recognition problems, such as character recognition.
The problem of skeletonization using CNN has already been attacked in several papers 3, 4, 5],
but all of the solutions presented so far use complex multi-layer, sometimes even non-uniform
CNN architectures. Using current VLSI technologies it is difficult to implement a CNNUM chip
on which these solutions could be realized. For this reason it is very important to find a solution
which is not just theoretically correct, but can be realized on a chip, too. Here we present two
analogic CNN algorithms, based on the idea of [6], which meet this requirement. Finding the
skeleton of black-and-white objects is solved using single-layer, linear, 3x3 templates, making
it ideally suited for today’s CNNUM architectures. The algorithm can be further generalized
[6] to extract the skeleton of grey scale objects using single-layer, 3x3 templates with simple
nonlinearities.

2.1 Defining the Skeleton of Objects

Defining the skeleton of objects is ambiguous, because there are several possible solutions for a
given input image. Here we define the skeleton of an object as "a stick figure, with each picture
cell connected to two neighbors, except for the ones at the end of the stick and the branch
points where sticks are connected together” (7], thereby preserving the connectivity and the
shape of the objects. In our algorithm 8-connectivity is used.

2.2 The Black-and-White Skeletonization Algorithm
2.2.1 How does the Algorithm Work?

The idea behind the solution of the skeletonization problem is as follows: in each step we peel off
black pixels having three white and two black neighbors in appropriate position. This means,

that the white neighbors are 4-connected with each other, thus being in a line or an L shape,
while the 2 black neighbors are not connected to the white ones, but 8-connected to each other.
To picture this refer to the template definitions of the next subsection, where +0.25-s and
-0.25-s in the control templates correspond to the white and black neighbors, respectively. As
the algorithm peels off pixels from the object cyclically from all directions, but no more peeling
is done if the pattern is just one pixel wide, it is clear, that it preserves the general shape of the
object. The connectivity preserving property can also be proved easily: the 3 white neighbors
guarantee, that the pixel is on the edge of the object, so removing it doesn’t change the shape
of the object, e.g. by creating a hole; the 2 black pixels are connected with all three unchecked
neighbors (0-s in the control template) and with each other, so they preserve the connectivity
of the remaining parts even if the actual cell is deleted.

2.2.2 The Algorithm

The skeletonization algorithm uses 8 steps, peeling off pixels circularly from the object, i.e. the
first step peels off north-western corners, the second step peels off northern pixels, etc. Such a
step is a logic decision, deleting black pixels having 3 white and 2 black neighbors corresponding
to the locations of +0.25-s and -0.25-s in the templates, respectively. Executing all 8 steps peel
off one layer of pixels from the object, which means that this procedure should be executed
several times to reach our goal, the 1 pixel wide lines. An example is shown in Fig. 1. The 8
templates of the algorithm are as follows:

025 0.25 0

A = [3] By =025 —0.25 —0.25 I = —0.75 (1)
0 -0.25 0
025 0.25 0.25
-0.25 -0.25 0
0 0.25 0.25

As = [3) By=| =025 —0.25 0.25 Iy = —0.75 (3)
0 -0.25 0

Ay =[3]
As =13]
As = [3]
A7 = 3]
As = [3]

B4=

Bs=

Bs =

B7=

Bs =

[—0.25 0 0.25]
-0.25 -0.25 0.25

I 0 0 0.25 |

[0 —0.25 0]
-0.25 —0.25 0.25

0 025 025

[0 —0.25 —0.25]
0 -0.25 0

| 025 025 0.25 |

0 —025 0
0.25 —0.25 —0.25
025 025 0

[0.25 0 0
0.25 -0.25 -0.25

025 0 -0.25 |

I, =-0.75
Is = —0.75
Is = —0.75
I; = -0.75
Is = -0.75

(4)

()

(6)

(8)

Looking at the templates it is obvious that we could have used their mirrored counterparts,
moreover, we could have combined these templates with their mirrored pairs, resulting in better
quality output, but also in slower execution, because then one layer is peeled off in 16 steps

instead of 8.

It is also important to be able to decide, when to terminate the process. This can most
easily be done by storing the actual image before the cycle, and comparing it to the result of
the cycle. If the two images are equal, then the process should terminate. This condition can
be tested by applying the logic XOR function to the two images, and then checking whether
there are any black pixels left on the screen. The capability of checking the existence of a black
pixel is part of the definition of the universal machine. Note, that all 8 steps should be executed
before the comparison, because the fact that 1 of the 8 steps couldn’t peel off anything doesn’t
mean, that there are no pixels left to be peeled.

4

I (% & N &2

Exdrne EX pyno
fosy x dw ey x
EXIUR CXY YR

HQXBW HQXBW

(a) (b)

Figure 1: Skeletonizing a black-and-white image: (2) input, (b) output

2.2.3 Some remarks on the algorithm

The templates presented in the previous subsection were made supposing a continuous-time
CNN architecture, but slightly modifying the template values, the algorithm can be imple-
mented on a discrete-time (DTCNN) [8], as well.

As the algorithm peels off pixels layer by layer, the running time is proportional to the size
(width) of the objects, but it is independent from the image size and the number of objects on
the screen. We give estimates for the time requirements in 7 time constants, the exact value of
which falls into the 10-300ns range, depending on the CNNUM chip being used.

One cycle contains 8 peeling steps, each of them requiring 17 on the DTCNN and 1 — 27
on the continuous time CNN (it is faster if the control template and current values can be
increased).

This means, that one cycle takes 8 — 167, depending on the underlying architecture. In our
example (see Fig. 1) 3 such cycles were needed.

2.3 Grey-scale Skeletonization Algorithm
2.3.1 The Algorithm

Some objects have a fine structure, which would be obscured by converting it to a black-and-
white image. If we want to skeletonize such an object, preserving the fine structure, we should
do grey-scale skeletonization. Fortunately, our black-and-white algorithm can easily be adapted

to grev-scale [6]. In the former case the condition of changing the value of a pixel was to have
3 white and 2 black pixels in an appropriate position; now we will be looking for 3 smaller
and 2 greater neighbors. There changing the value of a pixel meant turning it into white: here
it means taking the value of the greatest of its 3 smaller neighbors. Similarly to the black-
and-white casc. this algorithm also uses 8 steps to peel off a layer of pixels, but now one step
contains more elementary operations. We will show only the templates of 1 of the 8 steps, the
other seven can be easily determined.

The first elementary operation is selecting the cells to be modified using template (9) and its
variants. which can be generated using the black-and-white algorithm as a reference, replacing
the elements of the control template and the current value of templates (1)-(8) as when switching
from template (1) to template (9):

. a a 0
A= B=1]a 0 b I=-45 (9)
0 b0
ja A b
1 1
Uij' Uy Uy Uy

In this template. function @ and b are sensitive to pixels smaller and larger than the actual
one, respectively.

The result of this step is used as a fixed state mask in the second elementary step. where
the selected pixels are replaced by the greatest of their 3 smaller neighbors. Here we again
show only 1 of the 8 templates, the other 7 can be achieved by modifving template (10). ha:'inz
function a at the same position as in template (9). i

A=|aea 10 (10)
000
ja
T 0.33
— -
-1 Yij-Ykl

An example demonstrating the behavior of the algorithm is given in Fig. 2.

The condition of termination, just like in the black-and-white case. is the equivalence of
the input and the output of a cycle, but as both are grey-scale, the logic functions cannot be
applied to them. Instead, at the beginning of the cycle, a logic memory should be driven to
white, and the result of each elementary selection step (template (9)) should be added to it
with the logic OR function. This image accumulates the pixels where changes occured, so if it
contains no black pixels at the end of a cycle, the process should terminate.

2.3.2 Some remarks on the algorithm

It follows from the way how the black-and-white algorithm was transformed to grey-scale, that
the algorithm assumes that the objects are darker than the background. Also note, that not
just the input, but the output is grey-scale, too. For this reason, it cannot be implemented on
a DTCNN, which always results in a binary output.

As to the time demands of the algorithm: a step means first selecting the cells to be changed,
then generating a fixed state mask from the selected cells and finally replacing these cells by the
greatest of their smallest neighbors. There is an additional logic step to keep track of changes,
that is to now if there is anything left to do. Altogether a step requires approximately 77,
which means that a whole cycle is ~ 567

b s

Figure 2: Skeletonizing a grev-scale image: (a) input, (b) output.

3 RESTORATION OF IMAGES WITH SCRATCHES

In copying machines the glass panel often gets scratched after extensive usage. This scratch is
copied together with the material. resulting in the decrease of the quality of copying. Thus it is
very important to remove the scratch from the copied material. To be able to do this we have
to know where the scratches are. because otherwise we would modify the whole image. not just
the corrupted part, what is not what we want. Fortunately, it is easy to locate the scratches.
e.g. by copying a blank sheet and testing where we have something on the copy. So now we
are ready to state the problem precisely:

Given two images. one containing only the scratches, the other being the corrupted
copied image, create a third image which is identical to the corrupted one where
there are no scratches. and the scratches are filled with values close to the original
ones.

3.1 The Algorithm

The algorithm described in this section can remove scratches of known locations from hotl,
grey-scale and color images. The same procedure applies to both cases. but with color images

the algorithm should be run on all three color channels independently.

3.1.1 The concept of the algorithm

The basic idea is that in each step we deal only with those pixels which have the most known
neighbors (pixels not being part of the scratch) and we fill in these pixels by the average of
their known neighbors. According to our experiments, first dealing with pixels having 4 known
neighbors for a few steps, and then switching to the ones with 3 known neigbors, filling in the
whole scratched arca this way, gives good results. Using the CNNUM one such step, e.g. filling
pixels with 3 known neighbors, is done in several steps: we have to deal separately with the
different combinations of known neighbors. This means 8 phases, in each phase knowing only
the 3 Northern. North-Eastern, Eastern, etc. neighbors, respectively, thus filling the outermost
layver of the scratch circularly.

3.1.2 The details of the algorithm

Each of the 8 phases contain 3 elementary steps:
e Sclect pixels of the scratch to be filled
e Fill the selected pixels

e Remove the selected and filled pixels from the scratch

The first two elementary steps both contain 8 different templates for the 8 phases, but here
we will give only one of them, the others can easily be generated by rotating the non-center
values.

Equations (11) and (12) show the template of selecting pixels having 3 and 4 neighbors.
respectively. in the appropriate (north-western) direction:

0.5 —0.5 0

A=[1] B=|-05 050 I=-15 (11)
0 0 0
0.5 —0.5 0

A=1] B=|-05 05 0 I=-2 (12)
~05 0 0

Equations (13) and (14) show the template of filling in pixels with the average of 3 and 4
neighbors, respectively. The output of the selection operation should be used as a fixed state
mask to ensure that only the selected pixels will be modified.

[0.34 0.33 0]

A=[0] B=1033 0 0 I=0 (13)
| 0 0 0]
[0.25 0.25 0]

A=(0] B=1025 0 0 I=0 (14)
1025 0 0|

The third elementary step, deleting the selected pixels from the scratch, can be executed
with the logic XOR function. If after this step the scratch totally dissapears, the process can
terminate as the whole scratch is filled.

3.2 Limitations and capabilities

This algorithm doesn’t rely on a database, from which we could reconstruct ob jects which are
almost totally scratched out from the screen, but it does a kind of extrapolation based on the
pixels surrounding the scratch. This means that we cannot expect to restore more information
than what is coded in the non-scrathced cells, e.g. if a scratch totally covers the pupil of the
eye, even the restored image won’t contain the pupil.

The quality of the restored image depends on two factors: the width of the scratch and the
image itself, because even a large portion of a homogeneous area can be restored reliably, while
a highly textured area cannot.

The time demand of the algorithm depends on the size of the scratch. One step, i.e. filling
from the 8 different directions, requires 247s. As such a cycle fills in a layer of pixels on both
sides of the edge, the algorithm requires ﬂgﬁ * 2475, ‘

In Figure 3 an example containing the original, the scratched, and the restored image is
shown, while in Figure 4 the steps of filling a blown up part of the image are presented,

demonstrating the circular nature of the algorithm.

10

Figure 3: Removing scratches from Lena image: original, scratched and restored image

11

Figure 4: The steps of restoring images on a blown up part of the Lena image. The original.
the scratched and the restored image in the first row, followed by the steps of restoring.

4 SMOOTHING ENLARGED IMAGES ‘

The same basic idea, that is, filling in some locations by the average of their known neighbors
can be used in some other places: we can increase the image size or the resolution of images
using our algorithm. What we do is put the pixels of an image on every second pixel of a four
times bigger one (doubling the number of both rows and columns) and fill in the remaining
pixels by the average of the known ones. See Figure 5a, where the black squares represent the
known pixels (every second pixel both horizontally and vertically), and the white ones have to
be filled. First the squares with the I are filled by their 4 known neighbors (Figure 5b) using
the template

025 0 0.25
A= [0] B= 0 0 0 I=0
025 0 0.25
then the remaining pixels (with the 2 in them) are filled, also from the 4 known neighbors

(Figure 5c) using the template

0 025 0
A = [0] B=|025 0 025 I=0
0 025 0

This method can be used e.g. to enhance the quality when displaying images, for example in
case of a TV set, not changing the number of transmitted pixels, we can increase the resolution of
the displayed frames; the procedure can also be used for coding images: only %th of the pixels are
transmitted or stored and finally the image can be restored with hardly worse quality. Figure 6a
shows an original input image, enlarged with (Figure 6b) and without (Figure 6¢c) using our
algorithm, then a part of these images are again enlarged two more times with (Figure 6d and
f) and without (Figure 6e and g) using our algorithm. The difference is striking on the last
pair (Figure 6f and g) but it is already big on the first pair (Figure 6b and c) especially at the
shoulder of Lena.

5 CONCLUSIONS

In this paper we presented analogic CNN universal machine algorithms solving some important
image processing tasks using only 3x3 single-layer templates and logic. These extremely fast

procedures can serve as the core of complex image processing systems in a wide variety of
applications.

13

(a) (b) (c)

Figure 5: The steps of enlarging images. (a) Image with pixels at every second location.
(b) Filling in the 1 pixels with their 4 known neighbors. (c) Filling in the 2 pixels with their 4
known neighbors.

(a)

Figure 6: Enlarging images. (a) Original input image. (b,c) Enlarging (a) with and without
using our algorithm. (d.e) Enlarging a part of (b,c) with and without using our algorithm.
(f.g) Enlarging a part of (d,e) with and without using our algorithm.

14

T

6

1

References

(1] Leon O. Chua and Lin Yang. “Cellular Neural Networks: Theory and Applications”. IEEE
Trans. on Circuits end Systems, 35:1257-1290, 1988.

[2] Tamés Roska and Leon O. Chua. “The CNN Universal Machine: Analogic Array Com-
puter”. IEEE Trans. on Circuits and Systems-I, 40:163-173, 1993.

[3] T. Matsumoto and al. “Several Image Processing Examples by CNN”. Proc. of IEEE Intl,
Workshop on Cellular Neural Networks and Their Applications, pages 100-111, 1990.

[4] Hubert Harrer and Joseph A. Nossek. “Skeletonization: a new application for discrete-time
cellular neural networks using time-variant templates”. Proc. of IEEE Intl. Symposium on
Circuits and Systems, pages 2897-2900, 1992.

[5] D. Yu, C. Ho, X. Yu, and S Mori. “On the application of cellular automata to image

thinning with cellular neural network”. Proc. of IEEE Intl. Workshop on Cellular Neural
Networks and Their Applications, pages 210-215, 1992.

(6] Kendall Preston, Jr. and Michael J.B. Duff. “Modern cellular automata : theory and appli-
cations”. New York : Plenum Press, 1984.

[7] Berthold K. P. Horn. “Robot vision”. New York : McGraw-Hill, 1986.

(8] Hubert Harrer and Joseph A. Nossek. “Discrete-time cellular neural networks”. Interna-
tional Journal of Circuit Theory and Applications, 20(5):453-467, 1992.

18

	Copyright notice 1994
	ERL-94-30

