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Abstract

Rhombic arrays were obtained by sidewall forcing during Turing pattern
formation. Locking between the frequency of forcing and the wave length
between blobs in accordance with the Farey sequence was obtained. This
locking being represented by a perfect rhombic array oriented in the
direction of the imposed forcing. For a constant forcing in duration and
amplitude, the following scheme of bifurcation was observed: parallel
stripes i—> rhombic array i—> domains of hexagons and rhombi separated by
"penta-hepta" defects. Symmetry considerations based on a non-uniform
stretching along the x-axis was used to describe these transitions.
Unstable "varicose-vein" stripes were observed to evolve during the
temporal evolution of rhombic arrays.
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1. Introduction

The effect of imposed spatial or temporal modulations on pattern-forming

systems has been analyzed recently in various experimental and theoretical situations

[1,21. For example, periodic spatial forcing imposed on a system which undergoes a

pattern-forming instability may induce transitions between structures with

incommensurate wavelengths [3,41 or lead to continuous variations of the wavelength

of the pattern [5]. On the other hand, purely temporal modulations of the bifurcation

parameter have also been studied [6,7], as in the case of Rayleigh-Benard

instabilities where a temporal modulation of the temperature gradient may trigger the

formation of hexagonal planforms [8,9]. Temporal modulation of an external field

applied on the Belousov-Zhabotinsky reaction is able to disorganize spiral waves

leading to spatial disorder [10] or to induce the drift of the spiral waves [11-14].

Thus, in two-dimensional systems, pattern selection and stability [9,15] may be

strongly affected by externally imposed modulations as discussed by Pismen [16].

Hexagonal patterns constitute an important subject of research in the theory

of Turing and convection structures. They are easily observed in Rayleigh-Benard

convection, in non-Boussinesq fluids [17,18], in Benard-Marangoni convection [19-21],

within starch-gels in reaction-diffusion systems [22-24], etc. However, perfect

hexagonal patterns are rather difficult to observe in large-aspect ratio systems.

Typically, different line or point defects appear in the background of a hexagonal

pattern. Among point defects, the most typical are the so called "penta-hepta"

defects, or pair of cells with five and seven ridges. These defects, once having been

created, are very stable [18] and separate multiple domains of hexagons with

different orientations [25-27].

On the other hand, although the effect of global spatial or temporal



modulation have been widely studied, little has been done on the effect of local

forcing on Turing structures [28-30]. Periodic sidewall forcing on Turing patterns

mimics the behavior of the boundary between two domains; one, where periodic wave

trains propagate through the medium and the other, where Turing structures are

developing.

The purpose of this paper is to study in numerical experiments the conditions

under which defects disappear when sidewall forcing occurs in a reaction-diffusion

systems undergoing a Turing bifurcation. This kind of forcing is shown to perfectly

re-organize the systems in form of a rhombic array. The influence of the frequency of

forcing in the bifurcation between the different patterns; stripes, rhombi and

hexagons is presented in this paper.

2. Numerical Model and Theory

Turing structures can be numerically described by many systems of reaction-

diffusion partial differential equations such that its homogeneous steady state can

become unstable due to random disturbances. In particular, the ratio between

diffusion coefficients plays an important role in Turing pattern formation. Since

Turing's classical paper in 1952 [28], multitude of numerical models have been

suggested in order to describe these structures. In this paper, we use a set of

discretely-coupled dynamical systems, each cell/unit being described by a Chua's

circuit [31], in order to describe the regular appearance of rhombi when sidewall

forcing is applied into the medium. Our motivation for choosing this system is that

arrays of Chua's circuits can be fabricated into a VLSI chip which allows real-time

experiments where all the parameters can be controlled easily and with higher

accuracy than in chemical media. The most important difference of this system from

those studied previously is its discrete (in space) nature which gives rise to



slightly different set of conditions for Turing pattern formation.

The set of discretely-coupled system of ordinary differential equations is

UU =a{vi.J " h(uU)} +Du {uwj +ui-i.J +ui.M +ui.J-i " 4ui.j}
*u =UU " VU +WU +Dv {vu +Vij +vLJ*i +vUJ-i " 4vu}
^ij = ~& vi.J " r wi»J *i,J = L"n) (1)

where h(u) describes a continuous three-segment piece-wise-linear curve of the

nonlinear characteristic described by h(u) = mxu + O.Sdno-niiKlu+ll-lu-ll) + e (e is

a constant related to the excitability of the system [32]). Here m0 and ml denote the

slopes of the three segments.

In order to describe the limits of validity of our equations for Turing

pattern formation we can reduce the set of equations (1) to,

UU =a{VU " h(ui.J)} +Du {ui+i,J +Ui-U +uU*i +ui.M "4ui.j}
Ki =ui,J "vVU +Dv {vmj +Vi-U +vi.M +vU-i "4vu} (2)

Since the parameters a, 0 and 7 in our study are chosen such that w changes on

the fastest time scale, we have assumed that w(r,t) is always determined by the

instantaneous values of u and v according to

0
w = v

7

and v in equation (2) is a new parameter equal to (tf+/3)//3. Here u, v and w denote

vectors whose components are ulJf vltj and w10, respectively. We also define r = xi

+ yj-



Since we are concerned with Turing pattern formation or diffusion driven

instability, we are interested in the linear (local) stability of the steady state of

Eq.(2). Following Murray [29], we look for solutions in the form exp^i(kj-Xt)j- where
k and X are considered to be independent of the position2 j (j = l...n), which

differs from continuous dynamical systems where the coupling in Eq.(2) is represented

by the Laplacian operator for the u and v variables and we seek for solutions of the

form expJm^-xt)h
Straightforward calculations give the following conditions for the generation

of spatial patterns by a two-species reaction-diffusion mechanism of the form of

Eq.(2)

fu + Sv < 0

fu gv " fv 8u > °

fu Dv +gv Du >0 (3)

-ffu Dv +gv Du|2 -4Du Dv «{fu gv - fv gu| >0

where fu, fv, gu and gv are the partial derivatives of f and g (right side part of

equations (2) without coupling) evaluated at the steady state. The critical

wavenumber is given by

fu Dv + gv Du
cos(kc) = 1 (4)

4 Du Dv

Equation (4) restricts the limit of Turing pattern formation such that

2For simplicity in the calculations, we consider here only the one-dimensional
problem.



fu Dv + gv Du

8 Du Dv
s 1 (5)

The set of fixed parameters, satisfying conditions (3) to (5), used throughout

this paper is {oc.v.mo.mpe} = {-10,2,-1,0.1,2}. Figure 1 shows the allowable values

of Du and Dv as a function of the critical wavenumber kc satisfying equations (3) to

(5). Note that for a given value of Du, kc remains approximately constant for any Dv.

The periodic sidewall forcing to the system was modeled by periodically

forcing the u-variable in Eq.(l) as follows

ui.J =a{vi.J " h(ui.J)} +
Du l«wj +ui-i.J +ui,M +uU-i "4ui.j} +Ap cos(w t} 5(i"1)

(6)

where A and w are the amplitude and frequency of forcing respectively and S{*) is

the Dirac's delta equal to one when i=l at any j e [l,n] and zero otherwise. Ap was

kept constant and set equal to one for all calculations shown in this paper.

The nonlinear boundary value problem described by Eqs.(6) was completed by

imposing zero-flux boundary conditions. A uniform time step of 0.001 was used

throughout as the differential equations were integrated using an explicit Euler

method. Even though most of our simulations were carried out on a 50 x 50 grid, the

effect of the grid size on Turing pattern formation was studied on grids as small as

30 x 30 and as large as 100 x 100. A random initial condition was chosen for all the

variables in Eqs.(6) so that the average values were equal to their respective

homogeneous fixed point values. Without forcing (Ap = 0) the system evolves naturally

from this random initial state to an hexagonal array with multiple defects.



hepta" defects and perfectly organized rhombic arrays within the resonant peaks.

Parallel stripes were not observed.

For values of the frequency of forcing within the resonant peaks, rhombic

arrays develop in time from an unstable striped pattern. As an intermediate pattern,

"beans'* or "varicose-vein" parallel stripes (Figure 5) evolve from the regular

stripes and finally they split into blobs organized in a perfect rhombic array.

Any stable pattern obtained by sidewall forcing is stable after switching off

the forcing (A_ = 0), as well as to slight perturbations on the forcing parameters, w

and Ap.

4. Discussion

Rhombic arrays can be obtained by stretching the natural selected pattern,

hexagons, along one of its symmetry axes. This phenomenon was recently explained by

the Austin group [33] by applying the transformation

S: (x,y) >(U+Jif Xx,y) (7)

to a hexagonal pattern (3 small and positive). This transformation stretches the x-

axis, which is one of the symmetry axes of the hexagonal array. It is possible to

show that this transformation leads to the formation of rhombic arrays.

In our case, since the stretching due to sidewal forcing is not uniform along

the x-axis, the transformation given by Eq.(7) is not valid here. For w = 0, the

stretching is constant in time but it depends on the distance from the forcing (x=0)

namely, those points near the left boundary are stretched more than far from it. This

stretching factor depends on the amplitude of forcing and on the ratio Dv/Du. Any

transformation to a hexagonal pattern of the form



S: (x.y) > (xp/q/u,y) (8)

represents the dependence of the stretching on the x position. In Eq.(8), p and q are

integers, p > q and u is the stretching factor. Although, we have used xp q in

Eq.(8). any function #(x) € C^O.n], with #'(x) > 0 in (0,n) could be used instead.

Then, following [33], we deduce that the rhombic pattern UR(r,t) (r = xi + yj)
->

can be described in the original hexagonal basis, kit by

and

UR(r,t)

3

= £ ai exp L^ . (s-£)i
i=i

,-i
(S r) = k0 y

k, • (S V) = k0 ^

,-r

-II y
— tf(x) - -
2 2

\[3k3 • (S V) = k0 -j a(x) _ i!
2 2|

(9)

(10)

where tf(x) = {u x)q p and a! (i=l,2,3) are the complex envelope functions of the

hexagonal pattern, here spatially modulated by #(x). Perfectly organized rhombic

patterns, such as those shown in Figure 3b, are obtained for all array sizes of the

array if tf(x) £ 1, Vx € ll.nl (note that only two wave vectors are modified by this

transformation). In the other case, competition between domains of hexagons and

rhombi can be obtained (for tf(x) = 1, for some x > 1 and some u, the hexagonal basis

is recovered).

10



For w > 0, Eq.(8) should be modified to account for the periodic modulation in

time of the stretching factor.

On the other hand, the differences observed in the Turing scale between the

value predicted by Eq.(4) and that calculated numerically for the rhombic array

(Figure 4b) are not resolved by Eqs.(8-10). This distortion between the observed

results and those expected for hexagons should be described by a more appropriate

transformation. Calculations based on symmetry arguments to describe these phenomena

will be published elsewhere.

Main resonant peaks occur for Du = 3/n, n=l,2... at a critical wavenumber, kc,

given by

6|kc ±e(w)| on n = 1,2,... (11)

where e(o>) accounts for the near resonant case; it is a decreasing function of o>,

such that e(o>) = 0 for the maximum allowable frequency of forcing. Substitution of kc

into Eq.(4) provides the allowable Dv for resonance.

Secondary resonant peaks (in amplitude) obeying the Farey sequence correspond

to

12 IK i e(w)r = 2 n + 1 n = 1,2,... (12)|kc ±e(o>)| =2n +1 n=1,2,...

Although, the values of Du are proportional to the Farey elements, we did not

find a correlation between the amplitude of the resonant peaks and the level of the

Farey tree.

The height of the resonant peaks in Figure 3 increases with Du as a

consequence of the increase in the wavelength, i.e. less number of blobs for the same

constant size of the array; 50 x 50. Renormalizing the size of the array with respect

11



to the observed wavelength leads to similar heights for the main resonant peaks but

at a considerably higher computation costs.

In the temporal evolution to the rhombic array formation, "varicose-vein"

stripes have been observed. Each one of the two interfaces of the stripes loses its

stability to sinusoidal perturbations which are n out of phase, producing a set of

"varicose-vein" parallel stripes [34] as a consequence of the periodic forcing.

The transition to the rhombic state near the resonant case when Dv is

increased follows the following scheme: stripes i—> rhombi i—> multiple domains

(usually characterized by a competition between hexagons and rhombi domains). For

large values of Dv, the constant amplitude of the forcing (for the case of « = 0)

decays quicker to zero than when Dv is lower, since the range of the inhibitor

increases too. Thus, the stretching factor u increases when Dv diminishes (for a

constant value of Du). In this case, for high values of u, the system can no longer

support blobs, thereby giving rise to the appearance of stripes. Small values of u

(i.e. high values of Dv) provide enough space between the blobs so that rhombi and

defects can appear everywhere, thereby lead to a situation with multiple domains.

5. Conclusions

Perfect organization into a rhombic array has been obtained for the resonant

case when laterally forcing a two-dimensional medium undergoing a Turing bifurcation.

The nature of the observed phenomena is independent of the selected numerical model.

Periodic sidewall forcing has been found to strongly influence the selection

of stationary pattern formation, namely; stripes, rhombic arrays and hexagonal

lattices with "penta-hepta" defects have been obtained depending on the frequency of

forcing. The familiar Farey sequence, usually observed in the temporal modulation of

dynamical systems without spatial-terms, has been translated to a reaction-diffusion

12



system. This resonance is shown to re-organize the system into a perfectly ordered

rhombic array. Symmetry considerations based on a non-uniform stretching along the x-

axis have been used to describe this bifurcation.

Rhombic arrays have been observed experimentally [33] and numerically [35] in

reaction-diffusion systems under spontaneous conditions for values of the control

parameters close to those for hexagonal pattern formation (usually found with "penta-

hepta" defects). Although the kind of bifurcation and symmetry reported here is

different from those considered in the literature, we hope this paper will stimulate

others to find new alternative ways for rhombic pattern formation and control of

perfect formation of structures experimentally.
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Figure Captions

Figure 1: Allowable values of Dv for Turing pattern formation as a function of the

critical wavenumber, kc in Eq.(4), for different values of Du. Note that for a

constant value of Du, kc does not change quantitatively when increasing Dv.

Figure 2: Spontaneous formation of hexagonal arrays. Note the different orientations

of the hexagon domains separated by "penta-hepta" defects. Some of the blobs are not

completely split from their neighbors. Size of the array: 100 x 100 and time of

calculation 20000 t.u.

Figure 3: Resonant peaks for three different values of Du. For any value of the

frequency of forcing, w, and Dv within the peaks, locking between the forcing and the

Turing pattern was observed in the form of a perfectly organized rhombic array (no

defects). The Farey sequence was observed for values of Du = 1.2 and 2.0. For u> = 0,

the bifurcations between patterns is shown in Figure 4. For any o> > 0, and values of

o) and Dv outside the resonant peaks, a disordered situation consisting of rhombi and

hexagons was always observed.

The peaks amplitude has been normalized in all cases by omax/Du (Du = 1.0,

G>max = 0.05; Du = 1.5, wmax = 0.70; Du = 3.0, wmax = 40.0) in order to present the

peaks with the same order of magnitude.

Figure 4: Parallel stripes (a), Dv = 36.4, rhombic array (b), Dv = 40.0, and domain

of hexagons and rhombi (c), Dv = 43.0, for a continuous forcing in time and amplitude

(w = 0, Ap = 1). The underneath figures (d)-(f) are their respective spatial Fourier

transforms. For the stripes pattern (a), only one frequency is relevant, a pair of

peaks in (d), while the Fourier transform of the rhombic state contains three pairs

17



of peaks, (e), and the magnitude of one pair is higher than the other two. The

disordered situation shown in (c), corresponds in the Fourier space to a multitude of

frequencies, (f). Note the perfect organization of the rhombic array where one of the

wave vectors is perpendicular to the direction of forcing.

In all figures, blue color corresponds to the minimum value of the x-variable

in Equation 6, while the red color corresponds to the maximum x-value. Size of the

array: 50 x 50 and time of calculation: 50000 t.u. Left lateral sidewall forcing was

used in all the cases.

Figure 5: Varicose-vein parallel stripes. This unstable behavior was observed for w =

0 when the system evolves in time to a perfectly organized of rhombic array. Usually

it was found for values of Dv close enough to the boundaries of the resonant peaks.

Colors and size of the array like in Figure 4. Time of calculation 16000 t.u.

for the same parameters leading to Figure 4b.

Table I: Comparison of wavelengths obtained numerically, X, with those predicted by

Eq.(4), Xdls., and the continuous theory, Xcont. [27]. Average values of the

wavelengths were calculated for those patterns shown in Figure 4. In all cases, the

prediction agrees with the observed results except for the rhombic array where a

difference higher than 207. was found. Note also the differences (2%) between the

wavelengths predicted by the continuous [27] and discrete theory (Eq.(4)).
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^cont

Linear Stability

X

Simulation

Parallel

Stripes

36.4 8.95 9.14 9

Rhombic

Array

40.0 8.93 9.12 10.8

Hexagons and

Rhombi

43.0 8.91 9.10 8.8

Table I
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