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Chapter 1

Introduction

The Verilog [TM91] Hardware Description Language (Verilog HDL) is one of the most popular
and widely used languages for digital design. Verilog allows mixed-level descriptions of hard

ware in terms of their static structures as well as dynamic behaviors. To facilitate description

of dynamic behavior, Verilog has high level constructs like conditional, loop-control, process

fork/join, such that designers can describe the behavior much the way they write programs

in general programming languages. Verilog also has decorators facilitating the quantitative

description of time. This makes it easy to specify delays associated with statements, gates, or

modules.

BLIF-MV [BCH+91], a multi-valued extension of blif, is the input format used by HSIS

[ABB+94], an integrated interactive hierarchical verification/synthesis system. Basic con

structs in BLIF-MV consist of module declaration/instantiation, tables which allow descriptions

of nondeterminism, and symbolic latches. At each "clock" cycle, each table updates its out

puts according to the inputs it sees until a fix-point is reached. In the very beginning of the

next cycle, all latches simultaneously update their present states according to their next state

inputs. Then again, tables update their outputs accordingly.

The relationship between a behavioral description language like Verilog and a machine

description languagelike BLIF-MV is similar to that between a high level programminglanguage

and an assembly language. In a high level language one can easily describe desired behavior

in an abstract way while omitting irrelevant details, e.g. given a statement o=a-b, it does not

matter how a subtraction is implemented if only o gets the difference between a and b. A low

level language gives a detailed, well denned execution model where every aggregate operation
is decomposed into a series of well denned primitives on elemental data units.

vl2mv is built to bridge between various existing designs in Verilog and powerful syn

thesis/verification algorithms in HSIS/SIS (Figure 1.1). vl2mv extracts a set of finite state
machines (FSMs) which preserve the behavior of the source Verilog programs which is defined
in terms of simulated results. Allocation of hardware gates to operators in Verilog (i.e., re
source binding) is based on the assumption of unlimited resources. The resource pool consists
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Figure 1.1: An Automatic Verification/Synthesis Path from Specification/Design to IC Fabri

cation.

of all possible gates expressible in one table in blif-mv. No scheduling is performed and no

optimization is applied on the Verilog source. The extracted FSMs are not guaranteed to

be "optimal" in any sense (area, speed, or a combination of the two). If it is desired to get

an optimal implementation (e.g., a real circuit), then an advanced synthesis system like SIS

[Sea92] can be applied to the generated FSMs to get a more compact design. Target BLIF-

MV code can also be used for verification against desired properties. We also extend Verilog

to make it possible to describe nondeterministic transitions. This allows us to specify both

system and task processes using the same HDL (however, at this point, we still need the help

of PIF files, Property Interchange Format [Ver], to exclude undesired behavior introduced by

abstraction and to specify desired "sink" states and transitions). If it can be shown formally

that a design satisfies the specifications (which can be expressed in CTL formulae [Eme90],
or a set of automata using Verilog + pif), then it can be used as input to a synthesis system

to minimize it. Not only can vl2mv handle un-timed Verilog models, but it can also extract

quantitative timing information from a timed Verilog program. The generated timed automata
is in BLIF-MVT [BBC+], an extension of blif-mv with timing constructs.

The organization of the report is as follows. Section 2.1 gives terminology used throughout
this report. Section 2.2 describes the synthesizable subset of Verilog that can be handled by
vl2mv. Sections 3.1 and 3.2 describe basic constructs (unrelated with timing) and how they are

compiled. In chapter 4, we extend the scope of the un-timed synthesizable subset of Verilog



for vl2mv to include timing constructs. In this chapter, we first look at a very important

issue in modeling transition systems and/or real circuits. The notions of explicit and implicit
clocking are introduced. Section 4.2 details the algorithms used to extract timed/un-timed

machines from a subset of Verilog with timing constructs. Chapter 5 presents various compiler

functionality provided by vl2mv. These special functions include compiler directives (macros,

file inclusion, section 5.1), compatibility checking (section 5.2.1), operator abstraction (section

5.2.2), table decomposition for non-blocking assignments (section 5.2.3), and source debugger
support (section 5.3). Chapter 6 gives conclusions as well as future work of this project. The

complete synthesizable subset of Verilog for vl2mv is given in appendix A.



Chapter 2

Basics

2.1 Definitions

In this section definitions that will be used later are introduced.

Definition 2.1.1 (Delays, Event controls) A delay is a Verilog delay operator ($) which
specifies the duration a program execution should be halted. An event control causes an execu

tion pause until either a rising edge f<8(posedge x)), a falling edge (®(negedge x)J, or any

one of both (®(x)) occurs. An event control is also referred to as an edge event control.

Definition 2.1.2 (Simple statements, Composite statements) A simple statement is a
statement that contains no sub-statement other than itself, i.e., if/else, case, for, begin/end

statements are not simple statements (which are called composite statements^. Note also that
simple statements contain no delay or edge event control. Basically, a simple statement is a

statement that can be executed in "zero hardware time".

In the subset of timed Verilog that can be synthesized, assignment statements are the only

simple statements. For example, y <= a - b; is a simple statement.

Definition 2.1.3 (Basic blocks) A basic block is a linear sequence of simple statements that
passes through no branches such as if/else, case, or for. Thus they do not contain any

delays and/or event controls. Basic blocks may cross statement boundary, and may overlap.

Definition 2.1.4 (Conditional statement, Conditional expression, Conditional branch)

A conditional statement is an if/else statement, a case statement, or a for statement. A

conditional (logical) expression of a conditional statement is the Boolean expression which
determines which conditional branch is taken on executing the conditional statement.

An example of the above definition is shown in Figure 2.1.
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Figure 2.1: Definition of conditional statement, conditional expression, and conditional branch

Definition 2.1.5 (Conditional blocks, Significant and Insignificant) A conditional block

is a conditional statement (if /else statement, case statement, or for statement). It involves
all branches of the conditional statement. A significant conditional block is a conditional block

where at least one of its branch statements contains one or more delays or event controls;

otherwise, it is insignificant.

Definition 2.1.6 (Control Flow Graph (CFG)) A Control flow graph is a directed multi-
graph G = (Vp + VC,E). There is a distinct p € Vp for each delay (it) or edge event control
(<9(posedge x) / Q(negedge x) / Q(x),) in a Verilog program, a distinct c 6 Ve for each
conditional statement (if/else, case, or for/ A node p € Vp, which has a corresponding
delay/event control in the HDL program is called a pause. There is an edge e = (t>i,i>2) iff
there is a basic block between the expressions which v\ and V2 (v\, vi € Vp + Ve) stand for. Any
edge e = (va,Vd) where vs 6 Vc is called a context edge and is labelled with the conditional
expression of the branch which e stands for. The label is denoted by L(e). A legal CFG is a
controlflow graph where there is at least one pause on every cycle.

A control flow graph example for a timed Verilog program is shown in Figure 2.1.1.
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Figure 2.1.1: An example Verilog program and its control

flow graph.

Note that since an always statement execution is wrapped-around, a basic block might cross

the always boundary. There are three basic blocks in the above example. One contains

statement 2, 5. One contains statement 3, 5. The last contains statement 1, 4. A control flow

graph can be extracted in a depth first traversal along always loops. In the following discussion,

CFGs are assumed to be legal. In addition, we use pauses and delay-operators/event-controls

interchangeably whenever it does not cause any confusion.

2.2 Synthesizable Subset of Verilog for vl2mv

Conceptually, a design in a synthesizable subset of Verilog consists of a set of modules (either

hardware or software). The first module encountered is regarded as the root module. All

modules run in parallel and communicate with each other through a set of channels (which

are essentially sets of wire variables declared in the modules that these channels belong to). It

is assumed that communication through channels takes no time. Within each module, values

on channels can be accessed through a set of ports. Ports can be either wires or registers.

Through wire (register) ports a module can input/output from/to channels instantaneously

(at a lag of one time unit). A wire (register) port has no (one) storage element associated with

it.

A module consists of a set of declarations, module instantiations, continuous assignments

(assignments begin with the key word assign which are always "active"; they can be thought

of as combinational blocks), and procedural blocks (sequential blocks, sometimes referred to as

always statements. Statements within a procedural block are executed sequentially); refer to

Figure 2.2. Module instances, continuous assignments, and procedural blocks within a module
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run concurrently. Execution of each continuous assignment, basic block in a procedural block,

and module instance is assumed to be atomic within each instant. Caution should be taken

when there is more than one procedural block in the same module. A Verilog simulator

treats each statement as atomic instead of each basic block (which may consist of several sub-

statements). If there is more than one procedural block in a module, the simulated result may

depend on how expressions from different blocks are interleaved by the simulator. For more

details, refer to section 3.1.4.

Continuous assignments are treated as combinational circuits with their left hand side

variables as primary outputs. A procedural block is an always statement. Delays/event-

controls synchronize the transition of a system. The synthesizable subset of Verilog for vl2mv

allows delays/event-controls to appear anywhere inside an always statement. It requires that

no execution can "sneak through" any delay/event-control, i.e. no non-blocking delay/event-

control is allowed. For more details about how synchronizing signals are synthesized and

what compiler options should be used, refer to section 4.1. Variable updates are arbitrated

by an arbiter (Figure 2.2). An arbiter is further controlled by a timing automaton if the

source Verilog program is timed. In case there exists variable contention, the arbiter selects

nondeterministically one of the values assigned to that variable as its new value. If there

is no contention, the arbiter is simply a bus which connects the definition of a variable to

destinations where it is consumed. Arbiters also regulate among non-blocking and blocking
procedural assignments. Consider for example,

always

begin

if (x == 1);

y <» 0;

y = l;

end

In casex is 1, the value of y in the next time slot is 0 since the non-blocking assignment (y<=l)
overwrites the blocking assignment (y=l) as time advances. When an arbiter is choosing the
next state value for a register variable, it gives higher priority to non-blocking assignments

than to blocking assignments.



Figure 2.2: Module structure



Chapter 3

Translation of Untimed

Components

3.1 Basic Constructs and Some Extensions

This section gives a detailed description of the untimed synthesizable subset of Verilog for
vl2mv, some extensions to existing Verilog, and the way constructs are compiled. For the
syntax and more details of Verilog, refer to [TM91]. The syntax of the complete synthesizable
subset of Verilog for vl2mv can be found in appendix A.

3.1.1 Variable Declaration and Usage

Net Variables

Net variables are declared through wire declarations. For example, wire[0:2] a; declares

a 3-bit wire variable a, which is composed of 3 1-bit elements, a<0>, a<l>, and a<2>. Any
variable not decorated by reg is by default regarded as a net variable. Only net variables can

appear at the left hand side of continuous assignments. Nets can be referred to from within

continuous assignments, procedural blocks, or module instances. Nets do not store values,

nor can they be initialized. They only transmit values from driver(s) (places where they are
assigned) to destination(s) (where they are referred). The value of a net is determined by the
output of its driver(s). If there is more than one driver for the same wire variable, the value of
the net will be chosen nondeterministically. For example, the left hand side Verilog program
below is compiled into the right hand side blif-mv table:

.names x y a
assign a = x;

=$• - - =x
assign a = y;

- - =y



In Verilog [TM91], nets cannot be used at the left hand side of procedural assignments
(assignments in procedural blocks). However, vl2mv extends Verilog to allow non-blocking
procedural assignments with wires as their left hand side variables. This extension is made

for two purposes. First, in describing a transition system, it might be desirable to describe

deadlocks. In original Verilog, if a variable is not assigned any value in the current simulation

cycle then it retains the same content in the next simulation cycle, i.e. the transitions of a

system in original Verilog are always complete (at any reachable state of a system, its next
state is denned given any input). To describe deadlock, designers may either introduce an

extra deadlock state (trap state) or use a system task (system tasks are simulator directives
which can do file I/O, dump module status, monitor variable content, and suspend simulation)

to explicitly assert that certain transitions should never happen. Second, sometimes it makes

the description of transition system easier if it is allowed to combine assignments to registers

and assignments to wires in the same statement. For example, if it is desired to say that if

the current state of a machine is green then a combinational output tum_on_green_light

should be asserted and the next state of the machine is yellow. Using original Verilog, we

need two tests on the current state of the machine, one for continuous assignment to the wire

variable and the other for procedural assignment to the register (state) variable, as shown in

the following example:

assign turn_on.green_light = (state == green) ? 1 : 0;

always

if (state == green) state <= yellow;

On the other, it would be easier if it is allowed to test the current state then make assignments

to both register variable and wire variable, as shown in this example:

always

if (state==green) then

begin

turn_on_green_light <= 1;

state <= yellow;

end

else turn_on„green_light <= 0;

The caveat is that programs using non-blocking assignemtns to wires do not simulate. Besides,

since a wire variable induces no delay, careless use of non-blocking assignments may result in

non-intuitive program behavior. For example, suppose that varible wis a wire,

10



1 always 9(posedge elk)

2 begin

3 if (w == 0)

4 state = 1;

5 w <= 1;

6 end

The statement in line 5 can actually affect the decision made in line 3 since no symbolic latch

is allocated for wand there is no delay between the statement that assigns it and the statement
that uses it.

The semantics for non-blocking assignments made to wires are as follows. Consider the

example, always Q(posedge elk) if (state==0) w <= 0; where w is a wire variable. It

does not specify what value w should take when state is not 0. Note that no storage is
allocated for w since it is a wire, it can not "remember" what its value was in the previous

instant, i.e. w can not self-loop in the same "state". Two possible semantics, deadlock and

nondeterminism, are proposed. With deadlock semantics, if the value of a wire variable is

not specified in any instant, there is a deadlock. In the above example, there is a deadlock

when state is not 0. Nondeterminism semantics simply means that the value of a wire will

be nondeterministically chosen from its domain if its new value is not specified in a certain

instant.

Register Variables

Register variables are declared through reg declarations. They can only be assigned through

procedural assignments (=) and non-blocking assignments (<=). Register variables can be

initialized with initial. If there is no initial statement associated with a reg variable, a reset

circuit is generated which nondeterministically initializes the variable to be any of its domain

values. There is one BLIF-MV symbolic latch allocated for each register variable component.

If there is more than one process running in parallel assigning to the same reg variable, its

value in the next clock cycle will be chosen nondeterministically from those values assigned.

For instance, given the following Verilog program with two always statements within the same

module

11



Statement A\ : always <&(posedge elk) if (ci) a = ei;

Statement A2 : always <9(posedge elk) if (C2) a = e2j

.names d ©1 c2 e2 a_ps a_ns
1 =o1

-1 =02
00 =a_ps

a_ps

Figure 3.1.1:Conflict arbiter,
a circuit like the one in Figure 3.1.1 is generated, where a_ps denotes variable a's present state

and a_ns its next state.

Vector Declaration

Vector declaration is facilitated by annotating the type of the variable (input, output, reg,

wire, etc) with the width ([vector.lower.bound: vector.upper.bound]) of the vector. For
example,

input [0:7] a;

wire [0:7] a;

declares a 8-bit input wire vector a from bit 0 (l.s.b.) to bit 7 (m.s.b.). Note that if a variable

is declared by more than one statement, their vector decorations have to be consistent, as

shown in the above example.

Array Declaration

Arrays are declared by annotating variables with the [1ower.bound:upper.bound] decorator.

For example, to declare a 3-element array a where each element is a 1-bit scalar, one can

write reg a [0:2] ;. For each array element access, a multiple-fanin multiplexor, controlled by

the indexing variable, is generated in order to select the correct variable to be accessed. For

example,

.names i<0> i<l> a[0] a[l] a[2] b

0 0 =a[0]

• 0 1 =a[l]

10 =a[2]

11

assign b = a[i];

If an array variable is used as a left hand side variable, then a set of MUXes controlling

each element of the array is generated. For example, given the following Verilog code fragment,

12



the circuit in Figure 3.1.1 is generated.

always Q(posedge clock)

a[i] = b;

Figure 3.1.1: Circuit for array assignment.

Enumerated Type and Symbolic Variable Declaration

In certain phases of system design when the encoding of variables are not known yet, it might

be desirable to specify and examine the value of some variables symbolically instead of hard-

code them in the first place. vl2mv extends Verilog to allow users to declare symbolic variables

using an enumerated type mechanism similar to the enumerated type in the C programming

language [KR78]. The syntax of an enumerated type declaration is as follows (words enclosed
by angle brackets represent nonterminals, +indicates one or more repetitions of the preceding

terminal/nonterminal):

enum <enum_name> { <enumerator_name>+ }

It declares an enumeration name <enum_name>. It can be regarded as declaring a named set

(with <enum.name> its name) consisting of the elements that follow. To declare a new type,

one says:

typedef <type_specifier> <type_name> ;

which declares new type <type.name> to be of type <type_specifier>. As an example,

assume that the state of a man could be studying, working, playing, eating, or sleeping.

Then we can declare a type status.t which ranges over the possible states a man is in:

typedef enum status {studying, working, playing, eating, sleeping} status.t;

Enumeration name status can be omitted. If that is the case, status.t is a new type rang

ing over an anonymous set consisting of studying, working, playing, eating, and sleeping.
To declare a wire variable of type status.t, one says:

status.t wire state.of.boss;

To declare a register of type status.t, on says:

status.t reg state.of.boss;

13



3.1.2 Concatenation

Concatenation in Verilog allows bits/vectors to be glued together to form an aggregate variable.

v!2mvsimply creates a vector of intermediate BLIF-MV variables with its components connected

to constituents of the concatenation. For example,

.names -> t<0> t<l>

0 1

.names b -> t<2>

wire b;

wire [0:1] c, d;

wire [0:4] a;

assign a = {2'blO, b, c ft d};

is compiled into:

.names c<0> d<0> -> t<3>

.def 0

111

.names c<l> d<l> -> t<4>

.def 0

ill

.names t<0> t<l> t<2> t<3> t<4> ->

a<0> a<l> a<2> a<3> a<4>

=t<0> =t<l> =t<2> =t<3> =t<4>

where 2'blO means a 2 bit binary constant 10.

Symbolic variables can not be concatenated.

3.1.3 Continuous Assignments

Continuous assignments have the form: assign <var> = <expr>;. Continuous assignments

are always "active", i.e., whenever any one of their inputs changes, their output is updated

instantaneously. Only wire variables can be used as the left hand side of continuous assign
ments. Continuous assignments provide an abstract means of describing combinational logic of

a circuit. Continuous assignments are intended to describe combinational behavior of circuits

instead of their implementation. Since resource bindingis not implemented in vl2mv, for these

continuous assignments vl2mv chooses arbitrarily blif-mv implementations consistent with the

expressions. For example, given statement o = a+b;, it is not specified whether the addition

should be implemented by a carry-ripple adder, look-ahead adder, or carry-skip adder. vl2mv

chooses any circuit as long it is consistent with the definition of addition.

14



3.1.4 Procedural Assignments

Procedural statements (= within a procedural block), also referred to as blocking assignments,
act like normal software programming language assignments in that they execute sequentially

within a procedural block, changing the content of state variables, until the execution is blocked

by a pause. vl2mv compiles procedural blocks based on the assumption that each basic block

will be executed atomicaUy given the delay/event-control of the block is satisfied. It is also

assumed that execution of procedural assignments takes zero hardware time. All procedural

blocks with active event controls get executed concurrently.

However, a Verilog simulator does not treat simple blocks as atomic. Instead, it executes

basic statements atomicaUy (a simple block may consist of several basic statements). This
may introduce disagreement between automata traces and simulation results. For example,

given the following two concurrent processes of the same module,

Process 1

always O(posedge elk)

begin

x=l; x=x+l;

end

Process 2

always (Kposedge elk)

x=4;

due to process interleaving in a Verilog simulator, the possible traces of x that could be

generated are < 1,2,4,... >, < 1,4,5,... >, < 4,1,2,... >. The corresponding possible new

value for x in the next clock cycle will be 4, 5, 2, depending on how a simulator schedules

the processes. On the other hand, if the two procedural blocks are treated atomicaUy, only

< 1,2,4,... > or < 4,1,2,... > will be the possible execution sequence and the only possible

values of x in the next clock cycle are 4 and 2. For the above example, vl2mv generates a circuit

in Figure 3.1 where x.ps and x.ns denote the current and next state variable of register x,

respectively, xl and x2 are intermediate varaibles for x.

Hence, if there is more than one procedural blocks sharing the same reg variables, caution

should be taken to make sure the desired behavior does not depend on specific interleaving

among processes.

3.1.5 Non-blocking Assignments

Procedural assignments update variables instantly, hence in some cases race conditions might

arise among multiple procedural assignments. Non-blocking procedural assignments provide a

mechanism that defers the assignment without blocking the execution of statements in a block.

On encountering a non-blocking assignment, the right hand side of the assignment is evaluated

according to the most recent values of variables referred. Without changing the variable on

the left hand side, program execution continues. Variables are updated simultaneously at the

15



Process 1 Process 2

Figure 3.1: Concurrent Processes Accessing the Same Register Variable.

very beginning of the next time slot.

Non-blocking assignments also provide a way to introduce nondeterminism [BY93] on reg

variables. If there is more than one non-blocking assignment in the current time slot assigning

to the same register variable, then the value of that register variable in the next clock cycle

will be nondeterministically chosen from those values assigned.

3.1.6 Interaction Between Blocking and Non-blocking Assignments

Blocking assignments "block" the execution of a program in the sense that they do not let

the program execution continue until variables appear on the left hand sides are changed as

indicated by the right hand sides. That is, blocking assignments have immediate effect on

variables they touch.

On the other hand, on executing non-blocking assignments, right hand sides are evaluated

and, without modifying the content of the left hand side variable, it is "remembered" that there

is a variable alteration suspended and the alteration should be realized at the very beginning

of the next time slot.

Given that there are no pending alteration, the next state value of a register variable is

derived from the last blocking assignment made to that variable. However, if there is one or

more pending alteration due to the execution of non-blocking assignments, no matter what

value of the last blocking assignment is, the next state value of a register is derived from the

set of non-blocking assignments executed in the current time slot.

The following example illustrates these concepts more fully.
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a_ns

Non-blocking assignments

if (condl)

a = a + 1;

else

a <= a + 2;

if (cond2)

a <= a - 1;

else

a = a - 2;

a a a + 3;

Arbiter

<tJ^a_l

a_2

+• .names condl cond2 a_1 a_2-> a_nbl
I—tl -def- I

a_ps

<T
Scffl^

<r
Blocking assignments

condl

©

cond2

4|0 =a_nb
2J-1 =ajnb

a_ns

>v
context

arbitrate between
blocking and nonblocking
assignments

where a.ps and a_ns are the present and next state variable of register variable a, respectively.

3.1.7 Nondeterminism on Wire Variables

With non-blocking assignments on register variables it is possible to make the next state

function nondeterministic. However, it is still desirable to specify nondeterminism on wire

variables. We extend the system tasks in Verilog to describe nondeterministic wires. For

example, given that out is a wire variable whose domain is swallow, eat, and drink, to say

that out can be eat or drink nondeterministically, one can write:

assign out = $NDset(eat, drink);

Value of $NDset is nondeterministically chosen from its argument expressions whenever hard

ware time progresses. Hence, in the above example, the value of out is nondeterministically

eat or drink. A blif-mv table similar to the following one is generated for the above example,
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.names -> out

eat

drink

3.1.8 Statement Sequence

A sequence of statements is compiled as if there are unlimited resources of hardware. For each

assignment, a new signal (blif-mv variable) is introduced to represent the new value of the

left hand side variable. The next state signal associated with a register variable comes from

the last assignment to that variable. For example, the following program is compiled into a

circuit like the one in Figure 3.1.8.
/ (a)

(l)x = y+z;

(2)z = x-1;

(3)y = z;

Figure 3.1.8: Circuit generated from sequence of statements,

(a) Before any statement is encountered, (b) After x=y+z;

is encountered, (c) After z=x-i; is encountered, (d) After

y=z; is encountered.

3.1.9 If/Else, Case, and Conditional Statements

The first arguments to if/else statements are boolean expressions. Currently supported

relational operators are == (equality), != (inequality), < (less than), > (greater than), =< (less
than or equal to), and >= (greater than or equal to). Forsymbolic variables, the only supported
relational operators are == and !=. Conditional statements like if /else, case are compiled

into a series of MUXes. For example, the following Verilog program is compiled into the circuit

in Figure 3.1.9.
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always ©(posedge elk) begin

case (st)

0: a = e0;

1: a = ex;

2: a = e2;

default:;

endcase

end

3.2 Translation of Primitive Gates

c2

el

rS

T^
a_ps

eO — tS F

fJ
F

81

Ct*>*Q J (S5 Ctb=4. )

Figure 3.1.9: Circuit for case statement

The Verilog primitive gates (and, nand,or,nor,...) are compiled into sis_<gate_name>_<num.of_inputs>,
e.g., a 3-input and gate is compiled into a library gate sis_and_3. i.e., a Verilog program
fragment

and(o, x, y, z);

is compiled into the BLIF-MV fragment

.subckt sis_and3 o=o a=x b=y c=z

where the definition of sis„and„3 is

.model sis_and3

# I/O ports

.inputs c

.outputs o

.inputs a

.inputs b

# assign o = a & b

# a & b

.names a b _n3

.def 0

111

# a & b ft c

.names _n3 c _n4

.def 0

111

##1 11##

##v o##

ft c
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.names _n4 o:raw_n2

0 0

1 1

# conflict arbitrators

.names o:raw_n2 o

0 0

1 1

# non-blocking assignments

# latches

.end

The library of gates supported is in vl2mv/common/gen_lib/library.mv.

3.3 Example: Dining Philosophers

The system models three philosophers sitting around a dining table. There is one chopstick

between neighboring philosophers. Each philosopher can THINK, EAT, or READ. If anyone feels

hungry, s/he must get a chopstick at each side in order to eat.

1 typedef enum { THINKING, EATING, READING, HUNGRY } status;

2

3 module diners(elk);

4 input elk;

5

6 status wire sO, si, s2;

7

8 philosopher phO (elk, sO, si, s2, READING);

9 philosopher phi (elk, si, s2, sO, THINKING);

10 philosopher ph2 (elk, s2, sO, si, THINKING);

11

12 endmodule

13

14 module philosopher(elk, out, left, right, init);

15 input elk;

16 input left, right, init;

17 output out;

18 status wire init;

19 status wire out, left, right;

20 status reg state;

20



21

22 assign out = (state==THINKING) ? $NDset(THINKING, HUNGRY) :

23 (state==EATING) ? $NDset(EATING, THINKING) :

24 (state==READING) ? $NDset(THINKING, READING) :

25 $NDset(THINKING, EATING, READING, HUNGRY);

26

27 initial state = init; // initialize state variable

28

29 always <B(posedge elk) begin

30 case(state)

31 THINKING:

32 begin

33 if ((out == HUNGRY) ftft '((left == EATING) I

34 (right == HUNGRY) |

35 (right == EATING)))

36 state = EATING;

37 else if ((out == THINKING) ftft (right == READING))

38 state = READING;

39 end

40

41 EATING:

42 begin

43 if ((out == THINKING) ftft '(right == READING))

44 state = THINKING;

45 else if (out == THINKING)

46 state = READING;

47 end

48

49 READING:

50 begin

51 if ((out == READING) ft (left == THINKING))

52 state = THINKING;

53 end

54

55 default:; //do nothing

56

57 endcase

58 end
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Figure 3.2: Circuit Structure for Dining Philosophers

59 endmodule

Part of the generated circuit is shown in Figure 3.2.

By using non-blocking assignments to wires, the above example can be rewritten as the fol

lowing example. Note that continuous assignment to out is moved into the always-statement

and out is assigned through non-blocking assignments (line 28, 29, 40, 41, and 50, 51). Al

though not compatible with the Verilog simulation, vl2mv would produce correct hardware if

nondeterminism semantics are chosen.

1

2

3

4

5

6

7

8

9

10

11

typedef enum { THINKING, EATING, READING, HUNGRY } status;

module diners(elk);

input elk;

status wire sO, si, s2;

philosopher phO (elk, sO, si, s2, READING);

philosopher phi (elk, si, s2, sO, THINKING);

philosopher ph2 (elk, s2, sO, si, THINKING);
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12 endmodule

13

14 module philosopher(elk, out, left, right, init);

15 input elk;

16 input left, right, init;

17 output out;

18 status wire init;

19 status wire out, left, right;

20 status reg state;

21

22 initial state = init; // initialize state variable

23

24 always <3(posedge elk) begin

25 case(state)

26 THINKING:

27 begin

28 out <= THINKING;

29 out <= HUNGRY;

30 if ((out == HUNGRY) ftft '((left == EATING) I

31 (right == HUNGRY) I

32 (right == EATING)))

33 state = EATING;

34 else if ((out == THINKING) ftft (right == READING))

35 state = READING;

36 end

37

38 EATING:

39 begin

40 out <= EATING;

41 out <= THINKING;

42 if ((out == THINKING) ftft !(right == READING))

43 state = THINKING;

44 else if (out == THINKING)

45 state = READING;

46 end

47

48 READING:

49 begin
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50 out <= THINKING;

51 out <= READING;

52 if ((out == READING) ft (left == THINKING))

53 state = THINKING;

54 end

55

56 default:; //do nothing

57

58 endcase

59 end

60 endmodule
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Chapter 4

Timing

4.1 Implicit Clocking vs. Explicit Clocking

In blif-mv, symbolic latches are implicitly controlled by a global clock which in some sense

denotes the notion of "progression of time". Note that this "clock" need not to be a real

wire as in the hardware sense. All symbolic latches transit to the next state indicated by the

relevant transition tables at the same time.

Verilog is also used to specify such synchronous systems:

always Q(posedge time)

begin

a = exprl;

b = expr2;

end

In this example, time represents only the notion of progression of time agreed on by all FSMs.

time should not be interpreted literally as a true variable. It should be disregarded since BLIF-

mv has already an implicit notion of time common to all tables and symbolic latches. The time

signal is there only for two purposes. First, it explicitly says that all FSMs progress at the same

pace set by time. The amount of time between consecutive time points is irrelevant. Second,

the signal time is there for the correctness of Verilog simulation. Note that a Verilog simulator

is an event-driven "passive scheduler". A simulator schedules events generated from Verilog

modules and then sends them to modules which are sensitive to these events. Those statements

whose sensitizing events appear (active statements) are executed which in turn generates more

events which are scheduled by the simulator. A simulator itself does not generate any event.

Instead, it coordinates between the producers and consumers of events. Hence, in general,

when a designer writes such a synchronous system, s/he also needs to write a small clock

generator (an event generator, which creates events along the time axis. The produced events

invoke a chain of reactions among modules. The system runs into a stable state when there are
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no more events other than the clocking event. The next clocking event is then chosen by the

simulator and simulation time is advanced accordng to the time stamp of the newly scheduled

clocking event. A clock generator may be as simple as: always time = #1 "time;, where ~

means bitwise logical inverse. This clock generator generates a clocking signal time with a

cycle of two time units) in order to drive the whole system and make it simulatable. In this

case, we call the system implicitly clocked since all transitions are implicitly synchronized by

an invisible "time". For an implicitly clocked system, hardware resources (table, wires and/or

latches) will not be allocated for a synchronizing variable (time in the previous example).

On the other hand, for certain designs/circuits, the operation of a system depends explicitly

on several phases (rising edge, falling edge, 1-level, 0-level) of one or more synchronizing signals

(which we generally refer to as clocks). Equivalently, designers may write a mixed gate/high-
level description of a design in Verilog using gate primitives. In these cases, the clock signals

should be interpreted literally and hardware resources should be allocated. We call a design

explicitly clocked when synchronizing signals are to be compiled literally into hardware.

For implicitly clocked designs, one symbolic latch (or state variable) is allocated for each
reg variable. Synchronization variables are dropped. For explicitly clocked systems, each reg

variable is modeled by a symbolic latch along with some extra logic to emulate the clocking

mechanism. For example, assume o is a register variable,

always Q(clk)

if (elk)

o - a + b;
is compiled into

hidden latch tor elk

I

s

bidirectional
edge detector

I

s
elk clk_prev

^

.names elkprev elk edge

.def 0
10 1
Oil

edge

«-*i

If (elk)
o q a + b;

according to explicit semantics. o_ps and ens are the current and next state variables for

register o, respectively. Refer to section 4.2 for more details of various kinds of edge detectors.

By default, implicit clocking semantics are assumed. Option -c or the presence of tim

ing information (delay operators, #, etc.) in Verilog makes vl2mv switch to explicit clocking

semantics.

26



4.2 Timed Program = Timing Machines + Untimed Ma

chines

A timed Verilog module can be logically separated into two sets of machines; timing machines

and untimed machines. Timing machines determine how long the program (or the resulting

product machine) can stay in a certain state. It controls the timing for updating register
and wire variables. Timing machines use the control information (value of logical expressions

in conditional statements) from untimed machines along with values of timers in BLIF-MVT

to determine their next states. Untimed machines use control information and transitions of

timing machines to determine whether "hardware" registers/latches self-loop or go to the next

state.

4.2.1 System Modeling

Execution of a Verilog program consists of a sequence of two alternating phases, computation

phase and idling phase, as shown in Figure 4.1. Execution of any statement other than pause

takes "zero hardware time".

The purpose of the computation phase is to compute the new hardware state while halting

the progression of time. In the computation phase, timing machines reset the timers for

the next pause where it is going to stay and untimed machines compute next states for reg

variables. In this phase, untimed machines emulate the execution of "active statements" - the

segments of program that will be executed between the current pause and the next one. This is

done in the following way. First, continuous assignments calculate their outputs according to

their operands until a stable value is reached. Then procedural blocks compute the next states

for reg variables that are touched by the active statements during the execution. Basically,

untimed machines are still timed machines, but there are no timing constraints on the state

transitions of those machines. Hardware time does not progress during the computation phase.

The purpose of the idling phase, as opposed to that of the computation phase, is to let

time elapse while fixing the hardware state. In the idling phase, hardware time can pass while

latches in untimed machines keep self-looping. The purpose of this phase is to let the system

stay in a state for some period of time indicated in the corresponding pause. Loosely speaking,

hardware status progression and time progression are alternated and not overlapped.

4.2.2 Timing Machines

In this section algorithms for extracting timing machines from Verilog programs are presented.

All assume the existence of a control flow graph for each always statement. Note that the

first time a simulator executes an always statement, it must start from the first statement

in the procedural block guarded by always. It is possible that this statement is not the
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Computation Phato Idling Phate Computation Phase Idling Phn

Figure 4.1: System Modeling

first statement that will be executed in the executions following the initial one. Consider for

example,

always

statement1;

« 1

statement2;

A possible execution of the program consists of the sequence statementl, delay, statement2,

statementl, delay, statement2, statementl, — When a simulator executes the program

for the first time, only statementl is executed. Afterwards, statement2, statementl are

always executed in order, without any interrupt. In order to emulate this irregularity, we have

to create special circuit/transition tables. In the following two subsections, we first show how

to extract timing machines from control flow graphs without considering the initial execution

problem. Then we supplement the timing machines with auxiliary states and untimed machines

with muxes to emulate initial execution.

always Loops

In the following algorithms, pt- denotes a pause node in the control flow graph, and s, the

state corresponding to p,- in the timing machine being generated. In the following sections and

figures, pps and pns denote the current and next state of a timing machine, respectively.
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for each p8,Pd € Vp do

for each simple path p : pa ^ pd,pn (Vp - {p8,pd}) = <f> do /* i.e. no pauses in between */
Let C = {/1 / = L((c,v)),ceVc,ce p)
if ps's corresponding delay is of the form t6,

then put a transition s8 -*• Sd labelled with C, Ta == ^(p5)1,and Td = 0
and a self-loop sa —• sj labelled with Ta < 6(pa)2

if Pa's corresponding delay is of the form #(£mtn : 6max),
then put a transition sa -> Sd labelled with C, 6min(Ps) < Ts < ^mor(Pa)1) and Tj = 0

and a self-loop sa —>• 5j labelled with T5 < ^mox(Ps)2
if ps's corresponds to an edge event control (<3(posedge x)/@(negedge x)/9(x)),

then put a transition sa —*• Sd sensitized by the corresponding edge detector

and a self-loop sa -*• Sd when edge detector gives false

od

od

This naive algorithm investigates all the paths from source pause ps to destination pause

Pd. However, values of insignificant conditional expressions can be regarded as don't cares

for the transitions of a timing machine. For example, consider the following two program

segments,

# 10 icon = DOG; (pausel)
if (showPicture==True)

image = CAT;

else

image = PEOPLE;

# 20 icon = FOOD; (pause2)

# 10 icon = DOG; (pausel)
if (showPicture==True)

#4.5 image = CAT; (pauseS)
else

image = PEOPLE;

# 20 icon = FOOD; (pauseS)

In the left hand side, regardless of the outcome of showPicture==True, pause 1 transits

to pause 2 when pausel's timer counts to 10. However, in the right hand side, the result

of showPicture—True is not a don't care anymore. A naive approach considering all the

paths from ps to pd spends time exponential in the number of non-overlapping insignificant

conditional blocks between them on computing paths corresponding to don't cares. In addition,

generated blif-mv tables will also be extremely large. This can be optimized in the following

way. A preprocess can be imposed on the control flow graph to eliminate all insignificant

conditional blocks. Insignificant conditional blocks can be eliminated by a bottom-up graph

reduction, which takes time proportional to the size of the control flow graph.

graph-reduce (s, a statement)

JThis kind of timing constraints are called Time-out-constraints.
2This kind of timing constraints are called Idling-constraints.
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if (s is a delayed statement) return true; fi

if (a is a if /else, case, or begin/end)
contain-pause = false;

for each branch-statement/sub-statement st- in s do

contain-pause = contain-pause or graph-reduce(5t)
od

if (contain-pause==false)

add edge from s's immediate predecessor to s's immediate successor

remove s and all edges incident to it

fi

fi

No vertex/edge is examined more than once by the above algorithm. The time complexity of
the algorithm is 0(| G |), where G is the control flow graph.

Initialization of an always Loop

The first time a program gets executed, it is started from the first statement in the always

statement. However, this may not hold for executions that follows. Hence, some effort to take

care of the initial execution of an always statement is required.

A naive implementation may duplicate the logic for statements just for the initial execution.

However, we can create a set of muxes which select the present states of reg variables or values

assigned by "trailing statements" that are executed before the first statement in a procedural

block if there is no pause separating them. The outputs of these muxes are used for program
variable references from leading statements inside always statements. The set of muxes is

controlled by the starting state of the timing machine. The following example shows both

alternatives for a Verilog program segment.
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Verilog program

always

statementl;

# 7

statement2;

Duplicate circuit for

initial execution

'tlaO I \ Tuning Machine

tl«7&&t1°0

Use Mux to emulate

initial execution

Timtag Machine

t1=7Mtl=0

In a control flow graph, for each always statement, a distinct dummy node po is introduced

which corresponds to the initial execution of a procedural block. The new edge set for the new
CFG is the union of edge set E in the original CFG and E' = {(po> v) | there is a basic block
between always and the expression v stands for }. The set of newly introduced dummy nodes

are called initial pauses. In the timing machine, we put an initial state so which represents the

initial run over the always loop. The algorithm in the previous section can be easily adapted

to find the initial transition in the timing machine from so.

for each pd € Vp do

for each simple path p :po ***• Pdi PH (Vp —{pd}) = <f> do
Let C = {/1 / = L((c,v)),ceVc,ce p}

put a transition so —• &d labelled with C, Td = 0.

od

od

The techniques in the previous section, used to improve the performance of extracting

transition structures of timing machines, can also be applied.

Delay Operators/Edge Event Controls

A delay operator is translated into a pause state s. A distinct BLIF-MVT timer Tp is allocated

for each pause except the initial pause. State s keeps self looping until the specified delay time

elapses. On exit, the outgoing transition resets the next timer to be used for the next delay

operator/edge event control that will be encountered. The delay time in the delay operator
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Tp<D

# (Dnln:Dmax)

v Tp<Dmax v

Tp=D
reset next tinier

(a)

Dmin<=Tp<-Dmax
reset next timer

(b)

x_prev

.names x_prev x rise_ed<je

.def 0

Oil

(c) rising-edge detector

x_prev

.names x_prev x fall edge

.def 0

10 1

(d) falling-edge detector

x_prev

.names xprev x edge

.def 0
10 1

Oil

(e) bidirectional-edge detector

Figure 4.2: (a), (b) Converting delays into timing constraints, (c), (d) Rising/falling edge
detectors, (e) Bidirectional edge detector.

determines the timing constraints associated with transitions out of that pause, as shown

in Figure 4.2. Figure 4.2.a shows a translation for a simple delay (# D, which means that

program has to stay in s for D time units), Figure 4.2.b shows a translation for a complex

delay (# (DmimDmax), which means that the program has to stay in s for t units, Dmin <
t < Dmax).

On the other hand, an edge event control (9(posedge x), (negedge x), or <8(x)) is trans

lated into an edge detector (Figure 4.2, c, d, and e). An edge detector is basically a hidden

symbolic latch along with a small table. The hidden symbolic latch stores the value of a sig

nal in the previous instant while the table checks if the desired transition (rising, falling, or
bidirectional) happens.

However, a simulator might generate behaviors that are not reproducible by the targeted

hardware which use edge detectors to emulate edge event controls. Further, if two concurrent

processes are to access the each other's state variables, a simulator can generate behaviors

such that one of them can read the updated state variable at the very instant. For timed

machines, concurrent processes can not access next state values of the other processes in the

same instant. Consider the following two examples,
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example\ 1 example 2

always

if (first)

begin

x » 1;

first = 0;

always

begin tjl f£~H ...
always always

#3 x = y; #3 y = x;

end

else

begin

<3(posedge y)

0(posedge x) * l|w 4 Simulated result:

y - 1; j

«(negedge x) /J\ S^\
when time>3, either

x overwrites y or

y overwrites x,
x = 0;

Q(negedge y)

x = 1;

end but not both (x and y

swapped)

end

In the first example, a simulator can show a sequence where x oscillates between 0 and 1,

while hardware time is halted. On the other hand, for circuits extracted from the subset of

timed Verilog, if edge detectors are used to emulate edge event controls, similar behaviors

can be reproduced except that hardware time advances (in timed machines, time progresses
strictly and monotonically). In the second example, two processes try to assign each other's

state value to their local state variable at the same time. If the execution is interleaved, one

of x and y gets overwritten, but not both. However, x and y are swapped in the concurrent

machines generated from direct compilation.

Hence, some restrictions are added to prune away these programs that can lead to dis

agreement between simulator and generated hardware.

• Any state (reg) variable should not change its value more than once in any hardware
instant.

• Two or more concurrent processes accessing each other's state variable should not modify

the local state variable that is accessed by the other process at the same time. If so,

at least one of the modifications to the state variables should be made through a non-

blocking assignment.

4.2.3 Untimed Machines

The untimed machine for a module is basically similar to the one obtained by removing all

delay operators. However, some control points are added in order to make it controllable by

the timing machine.
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Continuous Assignment

In the synthesizable subset of timed Verilog, it is forbidden to apply any delay operator on

continuous assignments. Hence, a continuous assignment is still essentially a combinational

logic (with no delay) which can be modeled by pure blif-mvt tables without supplementary
symbolic latches or timers.

Sequence of Statements

Within a begin/end block, a sequence of statements is executed in order. However, due

to the pauses inside these statements, they might not be executed in the same hardware

time. We refer to the segments of code executed in a particular point of time as active.

Next state values of timing machines arc used to determine which segment of the code is

active and should affect the next states of reg variables. Segments of combinational circuits

for different statements are fed into a segment selector which selects the active segments of

statements. Due to the hierarchical structures of statements (a statement may be composed of

sub-statements), segment selectors also have similar hierarchical structures (Figure 4.3). The

following algorithm incrementally builds segment selectors for simple/composite statements.

We say that a transition is taken due to time-out if that taken transition is labelled with a

time-out timing constraint (section 4.2.2) and the constraint is satisfied.

segment-selector (composite-statement)

for each sub-statement s in composite-statement do

Let pns be next state of the timing machine.

if (s is composite)

pi = segment-selector(s)

d\ = set of pauses in s

add one branch in segment-selector which says

If there is an inter-pause transition due to time-out and if pns G di

then value of pi is taken.

continue;

fi

if (s is delayed simple)

let d be the pause controlling s

let p be the set of value terminals available for all reg variables immediately before d

add one branch in segment-selector which says

If there is an inter-pause transition due to time-out and ifpns == d

then value of p is taken.

continue;

fi
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if (s is simple)

continue;

fi

od

XZJ

State of TimingAutomata
(i.e., the pause the machine is spending time on)

Figure 4.3: Hierarchy of segment selector

if/else and case Conditional Statements

Given that there is no pause in all branches of an if/else statement or a case statement,

extracting a circuit from the conditional statement is straightforward. One mux (which is
referred to as a conditional mux) is created for each variable and is controlled by the logical
expression of the conditional statement. Inputs to the mux correspond to the new values

assigned within each branch. The output of a mux is used in further reference to the variable.

When the program enters one branch of a conditional statement and stays in a pause of

the branch, it must "remember" which branch it was in and preempts the conditional mux

appropriately when control is going to be transferred to the statement following the conditional

statement. For example,

1 if (state==Eating)

2 begin

3 month = Feb;

4 state = Playing;

5 # 3 ;

5 end
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6 else

7 month = Mar;

8 x = ... month ...

Assume that the program starts at time unit 0 and state is initially Eating. At the time

line 8 refers to the content of variable month, the truth value of the conditional expression

state==Eating is changed. So choosing the value of month based on the value of state at

time unit 3 (which is Playing) is incorrect. In general, it is predetermined which branch

should be taken on executing a statement immediate following an if/else or case statement,

hence a conditional mux should interrogate both the current state of a timing machine as well

as the outputs of logic expressions of the conditional statements to make its decision, as shown

in Figure 4.2.3.(a).

for Loops

A f or-loop statement consists of four parts, initialization, loop condition test, increment, and

loop body. vl2mv does not support general forms of f or-loop due to its dynamic nature, though

symbolic simulation and fix-point computation might help to find transition relations for it.

vl2mv supports two restricted forms of f or-loop. First, if the lower-bound, upper-bound, and

increment of the loop can be determined at compile-time, then loop unrolling can expand the

for loop into a straight-line of codes. Second, if on every simple cycle along the CFG for

the loop there is a delay/event-control (i.e., the CFG for the loop is legal), then it is also

synthesizable.

for Loop Unrolling

vl2mv can unroll a very simple form of for loop. To use the capability, it is necessary to ensure

that all expressions appearing in initialization, loop condition, and increment of the for state

ment are able to be evaluated during compile-time. What vl2mv does when encountering an

expression like for (i=<init>; <cond>; i=<inc>) <loop-body>; is that, it first evaluates

<init>, assigns the result to i, then repeatedly evaluates <cond> and <inc>, assigning new

value to i according to <inc> until <cond> becomes false. For each value i can have, vl2mv

duplicates <loop-body> and substitutes i with its associated value.

Legal for Loops

Figure 4.2.3.(b), (c) gives an abstract translation from a legal for loop into a circuit. Similar

to if/else or case statements, conditional muxes for for loops query the current states of

timing machines to designate one of their branches as a legal source for variable references

from statements in the main-loop or for-loop.
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The initialization and increment part of the for loop are directly compiled into combina

tional circuits. Then a test is made to see if the specified condition is satisfied. The test result

is used in the timing machine to determine pause transitions.

RJ»

Crijtaof
Co&Oticaa]
Mux

Figure 4.2.3:(a) Conditional mux.

pp8 is the present state of the tim

ing machine. 7rf(7r/) denotes the

set of pauses in the true (false)

branch of a conditional statement

which the mux stands for.

4.3 Example

Figure 4.4 shows an abstracted example Verilog program and its corresponding timed/untimed

machine. Note that there are two transitions P2 —• -P2; F2 -—• P2 (an idling transition) stands

for the transition that lets time pass and "2 ~ ~ —• P2 (a time-out transition) stands

for the transition that updates hardware states. Only the latter can sensitize the P2 —• P2

entry in the segment selector.

CiicaBfor
Mmia-Loop

Figure 4.2.3:(b), (c) Circuit for for loop

37



always

Tuning Anlonate

Untimed Automata

Figure 4.4: Example circuit
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Chapter 5

Other Aspects of vl2mv

In this chapter miscellaneous vl2mv functionalities are introduced. In section 5.1 compiler

directives that can be handled by vl2mv are detailed. Section 5.2 describes alternative ways

in which vl2mv generates blif-mv. All features presented in this section can be controlled by

compiler options.

5.1 Compiler Directives

5.1.1 Macros

A macro definition is started with the compiler directive 'define followed by the name of the

macro and then the body of the macro. Invocation of a macro is started with left-quote (')

followed by the name of the macro. For example,

'define WIRE wire

'define VAR out

'define BIT_RNG [0:2]

'define ASSIGN assign

'define EQUAL =

'define WANDERING 2

'WIRE 'VAR 'BITJING ;

'ASSIGN 'VAR 'EQUAL 'WANDERING ;

is in effect the same as

wire out[0:2] ;

assign out = 2;
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5.1.2 File Inclusion

To include another file, use the ' include directive. For example,

'include /usr/lib/vl2mv/vlr.h

includes file /usr/lib/vl2mv/vlr.hin place where the directive occurs.

5.2 Other vl2mv Features

5.2.1 Compatibility Checking

Option -C makes vl2mv accept only those programs using the syntax defined in [TM91]. It re
jects Verilog extensions defined in section 3.1.1 (e.g. enumerated type declaration for symbolic
variable).

5.2.2 Abstraction of Operators

By default, high level operators like addition (+), subtraction (-), greater than (>), etc. are
compiled into a flattened circuit in place, in the modules where they are used. It might be
desirable to abstract these operators as sub-circuits/macros to make the resulting file more
readable and compact, -a serves the purpose of abstracting high level operators. The existing
design hierarchy of the source program is not influenced by operator abstraction. For example,

assume that a, b, and o are all 1-bit scalars. o=a+b is compiled into circuit shown in Figure
5.La without the -a option (abstraction flag). The adder becomes a .subckt call when the
abstraction flag is turned on, refer to Figure 5.1.b. In addition, users can choose to use either

.subckt or .macro to instantiate an abstracted operator by using compiler option -m which

places .macro calls in places where an operator is abstracted, .macro expands the sub-circuit

in place. The . subckt introduces another level of hierarchy.

5.2.3 Table Decomposition for Non-Blocking Assignments

By default, all non-blocking assignments to a variable, along with those guards determining

effectiveness of those assignments, are collected into a single large table in the module being

processed. Sometimes this results in huge tables if there are many non-blocking assignments

to the same wire/register variable, and consequently, degrades the performance of HSIS in

processing the blif-mv file. In this case, the option -T <table-width> may alleviate the

problem by decomposing those huge tables for non-blocking assignments into several smaller

tables. <table-width> denotes the threshold number of nonblocking expressions that can be

put into a single final table for non-blocking assignment. For example, consider the following

program fragment:
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ooa + b

Figure 5.1: Circuit Abstraction

always ®(posedge elk)

begin

if (c==0) begin a <= yellow; a <= green; end;

if (c==l) begin a <= red; a <= white; end;

endcase

end

Without the -T option, the preceding program is compiled into the circuit as shown in

Figure 5.2. With the -T 2 option, the resulting circuit looks like Figure 5.3 where a_ps and

a_ns represent present and next state variables of register a, respectively. The tradeoff is that

when a large table is decomposed, many more intermediate variables (e.g., setO, setl, tO, tl,
etc.) are introduced temporarily. However, huge number of intermediate variables may also
decrease the performance of HSIS when reading in blif-mv.

5.2.4 HSIS System Calls

For some functions like and,or, add,etc., it iswell-known how to build BDDs [Bry86], [BRB90]
for them efficiently. Users can call supported MDD [KB90] functions directly to speedup the
BDD building process. vl2mv can compile and, nand, or, nor, xor, xnor, add, and minus
into MDD calls of the form _hsis_<function_name> by giving the compiler option -h. HSIS
system calls can also be viewed as operator abstraction except that vl2mv does not write down

the definitions for these operators. HSIS knows the definition of these abstracted operators and
has MDD constructor routines to build MDDs for them efficiently. For example, assume that
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a_ps

Figure 5.2: Single Table Non-blocking Assignment

Figure 5.3: Multiple Table Non-blocking Assignment
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x, y and o are single bit register variables. For various vl2mv options, the following BLIF-MV

tables (table 5.1) are generate.
However, this blif-mv file is only useful to the HSIS users because only HSIS has these MDD

constructor programs available.

5.3 Source Debugging Support

Generated blif-mv tables can be annotated with debugging information, such as the line

number in the source at which the assignment is made, the variable being touched by the

assignment, and the context in which the assignment is made. By providing the compiler
option -g, vl2mv puts debugging information in the generated file. We intend to use this in
the future to provides an enhanced debugging environment and a complete linkage between

the front-end HDL and the powerful back-end verification/synthesis engine.
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Compiler option given blif-mv generated

without -h, -a

.cJLn

0

.names x y cin o

.def 0

0 0 11

0 10 1

10 0 1

1111

with -h option .subckt _hsis_add_l_l adder o=o il=x i2=y

with -a option

.subckt __plus«l$l» adder o=o a=x b=y

.model __plus«l$l»

.inputs a, b

.outputs 0

.names cin

0

.names a b cin o

.def 0

0 0 11

0 10 1

10 0 1

1111

.end

Table 5.1: BLIF-MV generated from code fragment o=a+b;
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Chapter 6

Conclusions

vl2mv addresses the problem of compiling a subset of a HDL into a set of automata. With it, en

gineers can design in high levelVerilog HDL and still have state of the art verification/synthesis
algorithms to help verify and optimize designs. With this unified power,hopefully design errors

can be detected and eliminated before fabrication and circuits can be optimized automatically

so that manufacturers can reduce the turn-around time and increase productivity as well as

the reliability of their products.

6.1 Future Work

This project has addressed, among other things, the problem of expressing a subset of the Ver

ilog timing constructs to HSIS. So far, we can handle blocking timing constructs. Algorithms

presented in this report has been incorporated into vl2mv, which bridges the gap between

a Verilog design (of course, in the synthesizable subset) and HSIS. A delayed non-blocking

statement, like #7 x <= y;, (which says that 7 time units later, x <= y will be executed; x

will get y's content at time 7+) is allowed in the synthesizable subset for vl2mv. However, for
non-blocking delayed statement Uke x <= #7 y; (which says x is going to be assigned to the

value of current y after 7 time units, without blocking program execution), it is still an open

question how to express this in timed automata. One timer per pause scheme is not valid in

the context of non-blocking delayed statements. Actually, the number of timers that should

be allocated might depend on the program context. For example,

always

begin

x <= #17 y;

#7 y = y + 1;

end
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Since there might be 3 active copies of x <= #17 y; running concurrently, at least 3

timers are needed for the same statement. In addition, how and when to activate each timer

for that particular statement raises another problem. Further research is required to address

the feasibility of compiling such constructs.

RQ timed automata [LB93], [LB94] is a subclass of timed automata which imply the simple
path property that makes it efficient to rule out paths which can not meet timing constraints.

A lot of practical examples are known to have the simple path property. It is desirable to

know if the timed synthesizable subset of Verilog for vl2mv can be compiled into set of timed

machines having the simple path property.
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Appendix A

Syntax

In the synthesizable subset of timed Verilog, a delay operator can not be applied to continuous

assignments and primitive gates. No non-blocking delayed statement is allowed. Delay oper

ators can be applied to either procedural statements or non-blocking assignments. All delays

should be positive. Only one always statement per module is allowed if the program is timed.

The following grammar is defined in Extended Backus-Normal Form (BNF). Capitalized

words represent terminal tokens. Words in angle brackets represent non-terminals. ::= is

read as "is defined as". I is read as "or". * represents Kleene closure of the preceding

terminal/non-terminal. + represents one or more repetitions of the preceding terminal/non

terminal. ? represents zero or one copy of the preceding terminal/non-terminal. Other symbols

(e.g., "(", ")", "@", ",", ";", etc.) represent tokens literally as they are in the input stream.

<program> ::= <module_or_type>*

<module_or_type> ::= <module> I <type>

<module> ::= MODULE <id> ( <port>* ) ; <module_items> ENDMODULE

<type> ::= TYPEDEF <type_spec> <type_name> ;

<type_spec> ::= ENUM <id>? { <enumerator_list> }

<type_name> ::= <id>

<enumerator_list> ::= <enumerator> I <enumerator_list> , <enumerator>

<enumerator> ::= <id> I <id> = <expression>
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<port> ::= <id>

<module_items> ::= <module_item>* <always_statement>

<module_item> ::= <continuous_assignment>

I <reg_declaration

I <net_declaration>

I <gate_instantiation

I <module_instantiation>

<module_instantiation> ::= <id> ( <port>* )

<gate_instantiation> ::= AND ( <port>+ )

I NAND ( <port>+ )

I OR ( <port>+ )

I NOR ( <port>+ )

I XOR ( <port>+ )

I XNOR ( <port>+ )

I XNOT ( <port> )

<always_statement> ::= ALWAYS <statement>

<continuous_assignment> ::= ASSIGN <assignment> ;

<reg.declaration> ::= <range>? <list_of_vars> ;

<net_declaration> ::= <range>? <list_of_vars> ;

<assignment> ::= <lhs> = <expression>

I <lhs> <= <expression>

<statement> ::= BEGIN <list_of_statements> END

I <assignment

I <delayed_statement>

I <event_control_statement>

I IF ( <expression> ) <statement>

I IF ( <expression> ) <statement> ELSE <statement>

I CASE ( <expression ) <case_item>+ ENDCASE
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<event_control_statement> ::= 0 ( event.expression )

<event_expression> ::= POSEDGE IDENTIFIER

I NEGEDGE IDENTIFIER

I IDENTIFIER

I <event.expression OR <event.expression

<delayed_statement> ::= <delay_control> <statement>

<delay_control> ::= # NUMBER

I # ( NUMBER : NUMBER )

<expression> ::= IDENTIFIER

NUMBER

UNARY.OPERATOR <expression>

<expression> BINARY.OPERATOR <expression>

<expression> '?' <expression> : <expression>

SYSTEM.NDSET ( <set.components> )

<case.item> ::= <expressions> : <statement>

I DEFAULT : <statement>

<list.of.vars> ::= IDENTIFIER

I <list_of_vars> , IDENTIFIER

<list_of_statements> ::= <statement>

I <statement> ; <list_of_statement>

<set.components> ::= <set.component>

I <set.components> , <set.component>

<set_component> ::= <expression>
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