
 

 

 

 

 

 

 

 

 

Copyright © 1994, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



SEQUENTIAL TEST PATTERN GENERATION:

USING IMPLICIT STG TRAVERSAL TECHNIQUES

TO GENERATE TESTS AND IDENTIFY

REDUNDANCIES IN SEQUENTIAL CIRCUITS

by

Carol Wawrukiewicz, Alexander Saldanha, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M94/4

1 February 1994



SEQUENTIAL TEST PATTERN GENERATION:

USING IMPLICIT STG TRAVERSAL TECHNIQUES

TO GENERATE TESTS AND IDENTIFY

REDUNDANCIES IN SEQUENTIAL CIRCUITS

by

Carol Wawrukiewicz, Alexander Saldanha, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M94/4

1 February 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Sequential Test Pattern Generation:
Using Implicit STG Traversal Techniques to Generate

Tests and Identify Redundancies in Sequential Circuits

CarolWawrukiewicz, Alexander Saldanha, RobertK. Brayton,and Alberto L. Sangiovanni-Vincentelli

Department of Electrical Engineeringand Computer Sciences

University of California at Berkeley

Abstract

The implicit STG traversal techniques developed recently in the verification community can alsobe

used to generate tests and identify redundancies in sequentialcircuits. A sequential ATPGsystem which

uses these techniqueshasbeen implemented in SIS. This system uses two different ATPG algorithms. The

first is Ghosh's 3-step test generation procedure, modified to use implicit STG traversal techniques. This

3-step algorithm is fast, but is not guaranteed to produce a test for a fault. The second ATPG algorithm
builds the productof the good and faulty circuit, and then implicitlytraverses this product machine, just
as in implicit circuit verification. If this traversal provesthe good and faulty circuits equivalent, then the

fault is redundant; otherwise the differentiating sequence is a test for a fault. This second algorithm is
guaranteed to produce a test for a fault or else provethe fault redundant, but is moreexpensivethan the
first algorithm. Results of applying the SIS ATPG algorithms to the ISCAS '89 benchmark circuits are

presented, and these results are compared to those of STEED and VERITAS. Algorithms for generating
small test sets and for performing redundancy removal-both based upon the same algorithms used in
general ATPG-are also presented, along with the results of applying them to the ISCAS circuits. Finally,
suggestions for handlinglarger circuits-circuits whichcannot be testedby any existingATPG algorithm-
are presented.

1 Introduction

Testing isanimportant stepin themanufacture of integrated circuits. Although acircuit's design may
havemet all specifications, defects may have been introduced into the circuit during fabrication. Thus,
after fabrication, it is important to test each circuit todetermine whether or notit functions according to
specification. The goal of test generation is simply to generate a set of tests that can be used to detect a

high percentage of faulty circuits. Ofcourse, as integrated circuits grow insize and complexity, itbecomes
more difficult to generate good test sets.



In recent years, very effective automatic test pattern generators for combinational circuits have been

developed [9], [19], [20]. However, the more difficult task of automatic test pattern generation (ATPG) for
sequentialcircuitsremainsan open problem. This is the primary problemaddressed in this research.

ATPG for sequential circuits isdifficult because, ingeneral, asequence of testvectors isrequired to test
for a fault. The first part of the sequence is used to put the circuit into a state such that the fault can be

excited, and the remainder of the sequence is used to propagate the effect of the fault to the primary
outputs, where it can be observed.

The obvious solution to the problem of sequential ATPG, then, would seem to be to design circuits
usingonly scan latches, latches mat are directly controllable and observable. This transforms the problem
of sequential test pattern generation into the simpler problem of combinational test pattern generation.
Unfortunately, there are area and performance penalties associated with using scan latches, and testing
time is usually longer when scanlatches areused. It is because of these disadvantages that a solution to
the problem of sequential ATPG is important.

As previously mentioned, the primary task of a test generator is to generate tests that detect a high
percentage of faulty circuits. However, because the costof testinga fabricated circuit depends on the size
of the test set, small test sets are also desirable, especially if many thousands of circuits are to be tested.

Like the general ATPG problem, the generation of small test sets for combinational circuits has been

addressed extensively, but the same problem for sequential circuits has received little attention, again
because of the difficultyof the problem. Section 3 of this paper addresses this problem of generating test
sets which both detect a high percentage of faultsand arerelatively small.

The final topicaddressed in this paperis thatof redundancy removal, a circuit optimization technique

which uses test generation as a subroutine. Redundancy removal takes advantage of redundant faults,

faults for which no test sequence differentiates between the good and faulty circuit. If a stuck-at fault is

redundant, then the faulty line can be replaced by a constant value without affecting the input-output

behavior of the circuit. This process is called redundancy removal, and it reduces the area of the circuit.

Test generation techniques can be used to identify redundancies; thus, test generation is a subroutine used

during redundancy removal. Redundancy removal is the topic of Section 4.

2 Sequential ATPG

The following subsections address the general problem of sequential test pattern generation. First, in

Section2.1,a few assumptions and definitions arepresented. Then previous work in the fieldof sequential

ATPG is discussed in Section 2.2. In Section 2.3, the algorithms that have been implemented in SIS are

presented, followed by experimentalresultsin Section 2.4. Finally, Section2.5containsconclusions about

the effectiveness of the SIS ATPG algorithms.



2.1 Preliminaries

Before test generation can be performed, two models must be chosen, the circuit model and the fault

model. The circuit model describes the behavior of a fault-free circuit; the fault model models the defects

which can be introduced during fabrication. Given a particular circuit and a fault model, it is possibleto

generate a list of all faults which can occur according to these models; the task of the test generator is to

generate a set of tests which can detect a high percentageof these faults. Many different circuit behavior

and fault models can be used, but in this paper,only one type of circuitmodel and one type of fault model

are considered;circuit behavior is described at the logic level, and faults are modeled as single stuck-at

faults. This choice of models is a compromise between high-level behavioral models and low-level

technology-dependent models. All further discussion of test generation in this paper assumes this

particular model.

We shall also assume throughout this paper that all circuits have a reset state. This is not an

unreasonable assumption, since a circuit which cannot be reset to some known state is not of much use.

For circuits for which no reset state is given, Pixley, et. al. have shown a method to calculate a reset state,

along with the reset sequence required to put the circuitinto the reset state [16].

2.2 Previous Work

Because combinational ATPG is a well-solved problem, many sequential test pattern generators use

the technique of time-frame expansion to convert a sequential ATPG problem into a combinationalATPG

problem [1]. In this approach, the behavior of a sequential circuitover n time frames is simulated by the

operation of a "time-frame expanded" combinational circuit. This time-frame expanded circuit is

composed of n copies of the combinational logic of the sequential circuit,with the next state lines in time

frame i connected to the presentstate lines in tirrie frame i+1. A combinational test generator can then be

used to generate tests for the time-frame expanded circuit, and these combinational tests can be

decomposed to form sequential tests of lengthn for faults in the original sequential circuit. The problem
with this method is two-fold. First, before test generation, it is impossibleto know how long the test for a
particular fault will be, i.e. how large to make n. If n is chosen too small, then no test will be found, and the

process must be repeated with a larger n; if n is too large, then the combinational test generator does
unneeded work. Secondly, the sizeof the time-frame expanded circuit required to find a test for a fault is
directly proportional to thenumberof testvectors required to testthe fault in the sequential circuit. Thus,
the longer the test, the larger the combinational ATPG problemthat must be solved.

In 1988, Ma, et. al. suggested dividing the generation of a sequential test sequence into two phases,
justification and propagation [13]. Justification is the process of finding an input sequence that takes the
circuit from the reset state to some specified state S; propagation is the process of finding an input
sequence that,when applied from state S, excites the fault and then propagates the effectof the fault to a
primary output. This two-phase approach was implemented in the program STALLION. Although
STALLION solved the problems of justification and propagation using time-frame expansion techniques,



it used information about the state transition graph (STG) of the circuit to aid in the process of
combinational test generation on the time-frame expanded circuit. Thus, STALLION was the first
sequential test generation program which used the sequential behavior of the circuit to aid in test
generation.

Ghosh took the ideas of STALLION a few steps further in his program STEED [8]. In STEED, the
problem of sequential test generation is divided into three phases. In the first phase, a combinational test
for the fault is generated, assuming thatpresent state lines are directly controllable andnext state lines are
directly observable. This combinational testcan be divided into two parts, thesetting of the inputlines,
called the excitation vector, and the setting of the present state lines, called the excitation state. The

excitation state is a setting of the present state lines which allows the fault to be excited, and the excitation

vector is a setting of primary inputs that excitesthe fault, when applied fromthe excitation state. The next

step in Ghosh's algorithm is to justify the excitation state. If the justification sequence, followed by the
excitation vector, propagates the effect of the fault to the primary outputs, then the test generation is
accomplished. If, however, the excitation vector propagates the effect of the fault only to the next state
lines, then a propagation sequence must be found. This sequence propagates the effectof the fault to one
of the primary outputs, where the effect can be observed. In STEED, justification and propagation are
performed by traversing the STG of the circuit, rather than through time-frame expansion. The STG
traversal in STEED is semi-implicit; it is accomplished by repeatedly intersecting the cubes which
represent the output functions of thecircuit. STG traversals inSTEED are first attempted using theSTG of
the fault-free machine; thisallows manyjustification and propagation sequences tobe wholly or partially
reused, i.e. used for more than one fault. This greatly increases the efficiency of STEED. Although the
sequences obtained from the fault-free machine arenot guaranteed to work in the faulty machine, Ghosh
showed empirically that they usually do.

WhileGhosh was developing STEED, anew implicit STG traversal technique wasbeingdeveloped in
the verification community[6], [20]. Inthistechnique, the transition relation of a circuit is represented by
the binarydecision diagram (BDD) of its characteristic function, and setsof states are alsorepresented by
BDD's [3]. It is then simple to calculate the set of statesS' reachable in one step fromanotherset of statesS;

this is justan image computation, involving a singleset intersection operation followed by an existential
quantification and variable substitution. All of these operations can be performed efficiently on BDD's.

Image computations can thus be used to perform an implicit breadth-first-search traversal of a circuit's

state transition graph, starting from the circuit reset state. In turn, this STG traversal technique can be

used to verify the equivalence of circuits. Given two circuits, the product machine of the two circuits is

built,and the STG of the productmachine is then traversed. If, from every reachable stateof the product
machine, the two circuits have exactly the same output, the circuits are equivalent; otherwise there exists a

sequence of input vectors which leads to one output in one machine and a different output in the other

machine, and thus the two machines arenot equivalent.

Although this implicit traversal technique was developed originally for use in sequential circuit

verification, it can also be used to improve upon Ghosh's test generation algorithm. This was done by

researchers at the University of Coloradoat Boulder, in their VERITAS ATPGsystem [5].



VERITAS uses the same basic structure as does STEED, but the implementation varies significantly.

First, in VERITAS, STG traversal of the good machine is performed implicitly, using the implicit STG

Traversa/ technique described above. Use of this technique speeds the identification of redundant faults

and the derivation of justification sequences. In addition, in cases where a fault is not tested or proven

redundant during the 3-step algorithm, the product of the good and faulty machine is built and traversed

using implicit STG traversal. This good/faulty product machine traversal, if completed, either proves the

fault redundant, or generates a test sequence. Thus, on any circuit for which product machine traversal

can be performed, VERITAS obtains 100% test fault coverage.

Another difference between VERITAS and STEED is that VERITAS makes more extensive use of

random test generation. During the preliminary random test generation phase, VERITAS records not only

tested faults, but also faults that have been excited. Next, it uses reachability information and random

combinational test generation to generate random reachable combinational tests for unexcited faults.

Finally, it uses random propagation sequence generation to generate propagation sequences for the

randomly excited faults. In addition, during the 3-step test generation algorithm, VERITAS uses only

random propagation, rather than the deterministic fault-free propagation used in STEED.

Because of its implicit STG traversal techniques and sophisticated random test generation, VERITAS

runs more than 15 times faster than STEED on the ISCAS '89 benchmark circuits, and also obtains better

fault coverage.

Although VERITAS outperforms STEED, it cannot handle circuits any larger than those that can be

handled by STEED, which is a serious limitation. Neither program can generate tests for the larger

circuits—the circuits with more than 50 latches-in the ISCAS '89 benchmark set. This limitation is shared

by all sequential test generators that exist today.

2.3 Test Generation Algorithm

The sequential test generation algorithm described in this section is much like the VERITAS system.
Like VERITAS, it is based on the three-step algorithm of STEED, it uses implicit BDD imagecomputation

techniques to perform STG traversal, and it performs good/faulty product machine traversal as a last

resort. However, unlike VERITAS, our algorithm can also use BDD image computation techniques to
deterministically generate propagation sequences. Further, combinational test generation is not

performed by a topology-based algorithm like PODEM[9],as it is in both STEED and VERITAS, but rather

by thealgebraically-based program TEGUS [19]. Ourentire testgeneration algorithm is outlined ifFigure
2.1; this algorithm will be described in more detail in the remainder of this section.



Figure 2.1: Test Generation Algorithm

Sequential-ATPG

{
build-bdds;

traverse-STG;

random-test-generation;

for each fault {

Fault = UNTESTED;

get-reachable-combinational-test;

if (no reachable combinational test exists) {
Fault = REDUNDANT

continue;

}
fault-free-justify-excitation-state;

fault-simulate-to-get-min-just-sequence;
if (MinJustSequence is a test) {

TestSequence = MinJustSequence;
Fault = TESTED;

continue;

}
random-propagate;

if (propagated) {

TestSequence = MinJustSequence + PropagationSequence;
Fault = TESTED;

continue;

}
deterministic-fault-free-propagate;

if (propagated) {

TestSequence = MinJustSequence + PropagationSequence;
fault-simulate(TestSequence);

if (TestSequence is a test) {

Fault = TESTED;

}

}
if (number of unsimulated test sequences = NumberToFaultSimulateAtOneTime) {

faultsimulate to find untested faults that are tested by test sequences;

}

}
for each untested fault (

good-faulty-product-machine-traversal;

if (good and faulty machines are equivalent) {

fault = REDUNDANT

} else {

TestSequence = DifferentiatingSequence;

fault = TESTED;

}
if (number of unsimulated test sequences = NumberToFaultSimulateAtOneTime) {

fault simulate to find other faults that are tested by test sequences;

}

}

}



Figure 2.2: STG Traversal Algorithm

traverse-STG

{
TotalSet = 0;

for (i = 0 to oo) {

rf (i = 0) ReachedStatesp] = ResetState;

else ReachedStatesp] = implicit-compute-next-states(ReachedStates[i-1]);
if (ReachedStatesp] c TotalSet) then return;
TotalSet =TotalSet u ReachedStates[i];

}

}

Figure 2.3: Fault-Free Justification Algorithm

fautt-free-justrfy-excitation-state;

{
if (ExcitationState has already been justified) {

reuse-justification-sequence;
return;

}
for(i = 0toSTGdepth-1)

ReachedExcitationState = ExcitationState n ReachedStatesp];
if (ReachedExcitationState * 0) {

break;

}

}
CurrentState = ReachedExcitationState;

forfl = ito1){ /

Preimage = implicrt-compute-reverse-image(CurrentState);
ReachablePreimage = Preimage n ReachedStatesp-1];
(InputVector, CurrentState) = get-one-minterm(ReachablePreimage);

}
return;

}



Preprocessing and Random Test Generation

Before entering the 3-step deterministic test generation loop, several preliminary operations are
performed. First, the BDD's of the external output and nextstate functions are constructed, using the Long
BDD package from Carnegie Mellon University [12]. These functions are built for two circuits: the fault-

free circuit and the product of the fault-free circuit with itself. The BDD's for the fault-free circuit are used

during STG traversal; the BDD's of the product machineare used during fault-free propagation.

Next, the STG of the circuit is traversed to generate the set of reachablestates of the system, as outlined
in Figure 2.2. This traversal is performed implicitly, in breadth-first-search order, using the implicit STG

traversal algorithm described in Section 2.2. The states reached during each step of the traversal are stored

as BDD's in an array ReachedStates for useduring justification; in addition, the BDD representing the total
reachable set is computed for use during combinational test generation.

Finally, ifdesired, random test generation is performed. The random sequences generated in this step
have a default length equal to the STG depth of the circuit. The random test generation procedure uses a
singlefault/parallel pattern faultsimulatortodetermine which faultsare tested by the randomsequences.

Three-Step Deterministic Test Generation

After these preliminary steps, the main loop of the program is entered. Foreach fault not tested during

RTG, the first step is to obtain an excitation state and excitation vector using a combinational test

generator. Because unreachable excitationstates cannot be justified, the combinational test generator has
been modified so that it returns only "reachable" combinational tests, i.e. combinational tests that define

excitation states that are reachable in the fault-free machine. Hence, this combinational test generation

step can also be used to identify some sequential redundancies. In particular, if there is no "reachable"

combinational test for a fault, then the fault is sequentially redundant [13]. Using the notation of Cho, et.

al. [5], we shall refer to such faults as sequentially non-excitable faults (SNE faults). Empirical results

show that most redundant faults in the ISCAS circuits are SNE faults (see Table 2.2 of Section 2.4).

The combinational test generator used in our test generator [19] is based on Larrabee's system of test

generation using boolean satisfiability [11]. In this system, the circuit and fault are represented as a

boolean formula such that a satisfying assignment for the formula defines a test for the fault. The

advantage to using this system is that it is very easy to place restrictions on the combinational tests that are

returned; the restrictions are applied by adding additional clauses to the boolean formula. Thus, to add

the condition that all combinational tests must be reachable, we simply add clauses which enforce this

condition. Thus, only "reachable" tests will satisfy the boolean formula. If the combinational test pattern

generator reports that no reachable combinational test exists, then the fault is redundant, and the

algorithm goes on to the next fault. If, on the other hand, a reachable combinational test does exist, then

one such test is returned by the combinational test generator, and the algorithm goes on to the second step.

The second step is to justify—in the fault-free circuit-the excitation state defined by the combinational

test. A fault-free justification sequence is guaranteed to exist, since only reachable excitation states are

8



generated by the combinational test generator. The fault-free justificationprocess uses the results of the
circuit STG traversal, as outlined in Figure 2.3.

Thefault-free justification procedure first checks whether or not the current excitation state has been

previously justified. If it has been, then the fault-free justification sequence is simply looked up in a table
of previously-generated results. If the excitation state has not been previously justified, then the

justification process begins. This process uses the ReachedStates array calculated during the circuitSTG

traversal. The first step is to find the smallest i such that ReachedStatesfi] contains the excitation state.

This ensures that the procedure calculates the shortest possible fault-free justification sequence for this

excitation state. After the excitation state is located in ReachedStates, reverse image computation

techniques are used to compute the actual sequence of input vectors which lead to the excitationstate.

After the justificationsequence has been computed, it is fault simulated to assure that the fault-free

justificationsequence actually leads to the excitation state in the faulty machine. If it does not, then some

corrupted transition must have been encountered during application of the fault-free justification

sequence. The state from which the first corrupted transition is encountered is taken as the new excitation

state, and the part of the justification sequence which leads to this state is the new justification sequence
(called MinJustSequence in Figure 2.1).

If the justification sequence, followed by the excitation vector, propagates the effect of the fault to a

primary output, then the fault has been tested. Otherwise, the next step is to find a fault-free propagation

sequence that does propagate the effect to the primary outputs. Note that if the excitation vector does not

propagate the fault effectdirectly to the primary outputs, then it must propagate it the next state lines, i.e.

the excitation vector produces one state in the good machine, and a different state in the faulty machine.

Hence, the propagation sequence is simply a sequence which differentiates between these two states.

Random propagation is tried first, since it is much lessexpensive than deterministic propagation. This

procedure utilizes the same single fault/parallel pattern fault simulator that is used during random test
generation.

If random propagation does not find a propagation sequence, then deterministic propagation is

performed, as outlined in Figure 2.4. Like justification, deterministic propagation is performed using the

fault-free machine. The propagation procedure first checks whether or not the current good and faulty

states have been previouslydifferentiated. It they have, then the fault-free propagation sequenceis looked

up in a table of previously-generated results. If they have not been previously differentiated, men the

deterministic propagation process begins. Like justification, this process is based on STG traversal, this

time in the fault-free product machine. The initial state in the traversal is the product state composed of

the good and faulty states. Implicit STG traversal is used to explore every product state reachable from

this initial state, as outlined in Figure 2.5. After each image computation, the output of the product

machine is checked. If the output of the good and faulty machinesdiffer for any reached state, the good

and faulty states have been differentiated, and reverse image computations are performed to obtain the

distinguishing sequence. If, at some point, the states reached after an image computation are contained in

the total set of reached states, i.e. if a fixed point is reached, then the entire product machine has been

traversed. If the good and faulty machine outputs have been equal during the entire traversal, then the

good and faulty states cannot be differentiated in the fault-free machine.



Figure 2.4: Deterministic Fault-Free Propagation Algorithm

deterministic-fault-free-propagate

{
if (GoodState and FaultyState have already been differentiated) {

reuse-propagation-sequence;
return;

}
InitialState = build-product-machine-init-state(GoodState, FaultyState);
product-machine-traversal(lnitialState);
return;

}

Figure 2.5: Product Machine Traversal Algorithm

product-machine-traversal(StartState)

{
TotalSet = 0;

ProductReachedStates[0] = StartState;

for (i = 0 to oo) {

if (good-and-faulty-outputs-not-equal(ProductReachedStates)) {
ReachablePropagationCube = get-cube-with-different-outputs;
break;

} else {

if (ProductReachedStatesp] e TotalSet) {
/* no differentiation sequence exists 7

return;

}
TotalSet = TotalSet u ProductReacheplSetsp];

ProductReachedSetsp+1 ]= implicit-compute-next-states(ProductReachedSets[i]);

}

}
forG = ito1){

(InputVector, CurrentState) = get-one-minterm(ReachablePropagationCube);
PropagationCube = implicit-compute-reverse-image(CurrentState);

ReachablePropagationCube = PropagationCube n ProductReachedStates[i-1];

}
(InputVector, CurrentState) = get-one-minterm(ReachablePropagationCube);
return;

}

10



If a propagation sequence is found during deterministic propagation, it must be fault simulated to

determinewhether or not it works when the fault is present. If it does work in the presence of the fault,
then thefault has been tested. Otherwise,the3-stepalgorithmhas failed to find a test for the fault,and yet
has not proved the fault redundant, since propagation was not attempted using the faulty machine.
Therefore, the fault is abandoned for the present time; it will be tested or proven redundant later during
good/faulty product machine traversal.

Good-Faulty Product Machine Traversal

If the fault has not been tested or provenredundant during the 3-stepalgorithm,the algorithm resorts
to good-faulty product machine traversal, as outlined in Figure 2.6. The first step is to insert the fault into

the product machine, thus creating the good-faulty product machine out of the good/good product
machine. Next, this good-faulty product machine is traversed. If a differentiating sequence is found

during this traversal, then this sequence is a test for the fault. Otherwise, the good and faulty circuit are

equivalent,and thus the fault is redundant. We shall call faults that are proven redundant during good/
faulty product machine traversal non-distinguishable faults (ND faults) [5]. Such faults can be excited (if

they couldnot be excited,they would havebeen provenredundant during combinational test generation),
but the effectof this excitation cannot be propagated to the primary outputs.

Fault Simulation

Throughout the test generation algorithm, the deterministically-generated test sequences are fault

simulated on all untested faults in the hopes of testing some of the untested faults. Rather than fault

simulating each time a new test sequence is generated, the algorithm waits until several test sequences

have been generated, so that these sequences can be simulated in parallel, using a single fault/parallel

pattern simulator. The number of sequences simulated at one time is user-defined. For circuits in which

simulation is very fast compared to deterministic test generation, this number should be chosen small; for

circuits in which simulation is relatively slow compared to deterministic test generation, this parameter

should be large.

Figure 2.6: Good/Faulty Product Machine Traversal Algorithm

good-faulty-product-machine-traversal;

{
insert-fault-into-product-machine;
recompute-bdds;
product-machine-traversal(ProductResetState);
remove-fault-from-product-machine;

}

11



2.4 Results

The test generation algorithm described in the previous section has been implemented in SIS, the UC
Berkeley sequential synthesis tool [18], using the LongBDD package [12]. This sectionpresentsthe results
of this algorithmto generate tests for circuits in the ISCAS '89sequential benchmark set [2].

Table 2.1 gives statistics about each circuit tested, including the number of primary inputs and
outputs, the number of latches and gates, the number of faults (after faultcollapsing), the STG depth, and

the number of reachable states. Because the ISCAS circuits do not have specifiedreset states, a resetstate
of all zeros was assumed for each circuit.

Table 2.1: Circuit Statistics

Circuit Inputs Outputs Latches Gates Faults Depth States

s208 11 2 8 96 177 17 17

s298 3 6 14 119 275 19 218

s344 9 11 15 160 267 7 2625

s349 9 11 15 161 272 7 2625

s382 3 6 21 158 346 151 8865

s386 7 7 6 159 321 8 17

s400 3 6 21 162 367 151 8865

s420 19 2 16 196 356 17 17

s444 3 6 21 181 407 151 8865

s510 19 7 6 211 466 47 47

S526 3 6 21 193 492 151 8868

s526n 3 6 21 194 491 151 8868

s641 35 24 19 379 406 7 1544

S713 35 23 19 393 508 7 1544

s820 18 19 5 289 773 11 25

S832 18 19 5 287 789 11 25

s838 35 2 32 390 711 17 17

s953 16 23 29 395 893 11 504

S1196 14 14 18 529 1044 3 2616

S1238 14 14 18 508 1118 3 2616

S1488 8 19 6 653 1202 22 48

S1494 8 19 6 647 1218 22 48

12



Table 2.2 shows the results of test generation. The first three columns list the total number of faults,

the number of faults for which a test was generated (Tested), and the number of faults that were proven
redundant (Redund). In the next two columns, the redundant faults are broken up into the two types of

redundant faults, sequentially non-excitable faults (SNE Red) and non-distinguishable faults (ND Red).

The next column shows the number of good/faulty product machine traversals performed (PMT) during
test generation. Test fault coverage (TFC) and test generation time are shown in the last two columns. All

times in this paper were obtained on a DEC5000/125. Because of the equivalence verificationphase of the
algorithm, fault coverage is 100% in all circuits for which tests could be generated.

Table 2.2: SIS ATPG Results

Circuit Faults Tested Redund SNE Red NDRed PMT TFC (%) Time (s)

s208 177 116 61 56 5 6 100 7

s298 275 240 35 35 0 0 100 13

s344 267 261 6 6 0 0 100 13

s349 272 264 8 8 0 0 100 14

s382 346 326 20 20 0 0 100 519

s386 321 253 68 68 0 0 100 7

s400 367 340 27 27 0 0 100 544

s420 356 144 212 207 5 6 100 20

S444 407 372 35 35 0 17 100 540

s510 466 466 0 0 0 0 100 6

s526 492 402 90 7 90 0 0 100 688

s526n 491 403 88 88 0 0 100 681

S641 406 346 60 60 0 0 100 30

S713 508 407 101 101 0 0 100 38

s820 773 739 34 34 0 0 100 38

s832 789 739 50 50 0 0 100 40

S838 711 195 516 511 5 6 100 73

S953 893 883 10 10 0 0 100 42

S1196 1044 1041 3 0 3 18 100 151

S1238 1118 1049 69 66 3 23 100 246

S1488 1202 1162 40 40 0 0 100 112

S1494 1218 1167 51 51 0 0 100 130

13



Table2.3compares the speed of SIStest generation with that of STEED [8]and VERITAS [5]. Runtimes

that appear in brackets signify that the test algorithm did not achieve 100% test fault coverage on the

circuit; in this case, the test fault coverage follows the runtime. For instance, on circuit s208, STEED

runtime was 4 seconds, and 97.0% of the faults were covered by this set or proven redundant. If the
runtime is unbracketed,then the algorithmachieved 100% test fault coverage.

Table 2.3: Comparison with STEED and VERITAS

Circuit STEED* (s) VERITAS* (s) SIS (s) SIS
VERITAS

s208 {4/97.0%} 6 7 1.2

s298 (6/99.0%} 5 13 2.6

s344 5 5 13 2.6

s349 6 5 14 2.8

S382 {1320/95.2%} 244 519 2.1

S386 4 4 7 1.8

s400 {1200/95.8%} 244 544 2.2

s420 {440/91.2%} 56 20 0.4

S444 {1992/95.6%} 190 540 2.8

s510 {7/99.8%} 9 6 0.7

S526 {1060/91.0%} 338 688 2.0

s526n {1040/91.0%} 428 681 1.6

s641 {10200/93.1%} 19 30 1.6

s713 {10440/93.1%} / 26 38 1.5

s820 120 50 38 0.8

s832 {120/99.7%} 61 40 0.7

s838 {1500/80.5%} 425 73 0.2

S953 29 50 42 0.8

S1196 {4080/98.7%} 51 151 3.0

S1238 {3600/99.0%} 65 246 3.8

S1488 133 105 112 1.1

S1494 147 129 130 1.0

TOTAL 624 min. 42 min. 66 min.

(£>

*STEED timeswere divided by 3, and VERITAS timeswere multiplied by 1.25, to account for computer
speed differences. (VERITAS test generation was performed on a DEC5000/200;STEED was run on a
VAX-11/8800.)

14



Because both SIS and VERITAS can perform good/faulty productmachine traversal, both algorithms
obtain 100% fault coverage on all circuits for which they can generate tests. In contrast, STEED, which

cannotperformproduct machine traversal, does not obtain 100% fault coverage on all circuits. Further,
becauseSIS and VERITAS use implicittraversal techniques, theyare muchfaster than STEED. Overall, SIS
is 1.6times slower than VERITAS, but SIS does outperform VERITAS on some circuits. The remainder of

this section discusses why SIS and VERITAS perform differently on different circuits and makes
suggestionsfor improvingthe running timeofSIS. Thefollowing table,which shows the relativeamounts
of timespent in eachpart of theSIS testgeneration algorithm, willbe useful during thisdiscussion.

Table 2.4: SIS Runtime Profile

Build

BDDs&

Setup
RTG

STG

Traversal

SAT

Formula

Setup

SAT

Solve
Just.

Random

Prop.
Det.

Prop.

Good/

Faulty
PMT

Fault

Sim.

11% 14% 9% 12% 4% 15% 1% 13% 10% 11%

The circuits s208, s420, and s838 shed somelight on one of the advantagesof the SIS system. These
three circuits are very similar; each is a digital fractional multiplier, and they each have the same STG

depth and number of reachable states. Further, in each circuit, only 5 of the redundant faults are ND

faults, that is, almost all the redundant faults canbe detected by the combinational test generator. The
majordifferencebetween the circuitsfroma testingperspectiveis in the number of SNEfaults;s208 has 56

SNE faults, s420 has 207 SNE faults, and s838 has 511SNE faults. As shown in Table 2.3, SISand VERITAS

take about the same amount of time to test s208, but SIS runs 3 times faster on s420, and is 6 times faster on

s838. This leads us to conclude that the satisfiability-based combinational test generator in SIS more
efficiently identifiesSNEredundancies than the topology-based generator of VERITAS.

This conclusion also explains the successof SIS in testing s820and s832. These circuitshave 34and 50

SNE faults, respectively, and by our hypothesis, SIS identifies them much more quickly than does
VERITAS.

However, contrary to our hypothesis, there are many circuits with many SNE faults for which

VERITAS matches or outperforms SIS. In each of these cases, there is at least one other part of the test
generation process which we believe overwhelms the SNEredundancy identification time.

First, in sl488 and sl494, fault simulation accounts for almost 50% of test generation time. VERITAS

has a more sophisticated faultsimulator than doesSIS; it uses compiled simulation to simulate the good
circuit,and single fault/parallel pattern simulationto simulate faulty circuits. This explains the fact that
SIS and VERITAS perform about equallyon thesecircuits; although SIS more quickly identifies the SNE
faults, VERITAS fault simulates morequickly. Presumably, then, if the SIS fault simulatorwere improved
to match that of VERITAS, SISwould outperform VERITAS on these two circuits.

15



Secondly, there is another large group of circuits with SNE faults-s382, s400, s444, s526,s526n, sll96,

and sl238~for which product machinetraversals take45-70% of test generation time. This is another area

in which VERITAS has a moresophisticated implementation. VERITAS uses constrained product machine

traversal, which takes advantage of the fact that the good and faulty machines are usually very similar.
Rather than building the entire product machine, it builds a constrained product machine,which does not

include the parts of the faulty machine that cannot be affected by the fault. This speeds the product
machine traversal in many cases.

Another reason that VERITAS spends less time than SIS on product machine traversal is that VERITAS

has a more sophisticated RTG procedure than SIS. (TheVERITAS RTG procedure is described in Section

22.) This allows VERITAS to randomly test many more faults than does SIS; VERITAS tests 84% of the

ISCAS circuit faults using RTG, while SIStests just 55%of faults using RTG. This means that VERITAS

performs fewer deterministic test generations than does SIS, i.e. it does not need to perform as many
combinational test generations, justifications, propagations, and good/faulty product machine traversals
as does SIS.

One more possible SIS modification should be mentioned. The SAT formula setup time is very large
right now-12% of test generation time on the ISCASbenchmarks. This time includes the time to build the

part of the boolean formula that restricts the combinational solutions to be reachable. In the current

implementation, this part of the formula is rebuilt for each fault. However, since the set of reachable states

is constant throughout the algorithm, this part of the formula should be built just once, and then reused for

each fault. This would reduce the SATformula setup time.

2.5 Conclusions

The SIS sequential test generator has been described and shown to be competitive with the current

state-of-the-art sequential test generator VERITAS). Although SISis 1.6 times slower than VERITAS overall

on the ISCAS '89 benchmark circuits, it does outperform VERITAS on many circuits. Bycombining the
best of both algorithms, it should be possibleto createa test generator that slightly outperforms both SIS

and VERITAS. This hybrid test generator would include the random test generator, fault simulator, and

constrained product machine traversal of VERITAS, and the combinational satisfiability-based test

generator of SIS. Based on the percentage of its runtime that VERITAS spends on combinational test

generation, we estimate that a VERITAS/SIS hybrid test generator would run 15-25% faster than

VERITAS.

The realproblem, though, is that this hybrid algorithmwould only outperform both algorithmson the

problems that both can already solve; the hybrid would be no more able to solve larger problems than

either SIS or VERITAS or STEED. Thus, rather than concentrating time and effort on the problem of

incrementally improving SIS or VERITAS, future work should examine the problem of how to generate
tests for larger circuits, circuits on which SIS and VERITAS cannot perform test generation at all. This

topic is addressed further in Section5.

16



3 Generating Small Test Sets

fn this section, the problem of generating small test sets for sequential circuits is addressed. Section3.1

is an introduction and discussion of previous work in this area. Section 3.2 discusses the exact formulation

of the problem, and Section 3.3 describes the heuristics which have been implemented. In Section3.4, the

results of implementing these heuristics are presented, and finally, in Section 3.5, conclusions are drawn.

3.1 Introduction and Previous Work

The problem of generating small test sets for combinational circuits has been well-addressed.

However, the more difficult task of reducing test set size for sequential circuits has not been examined as
extensively. This is a difficult problem to formulate exactly, and nothing has been published on the exact

formulation or solution of this problem. Instead, existing research on the test set size problem has

concentrated on the use of heuristics to reduce test set size as much as possible. These heuristics,

described in the following paragraphs, essentially attempt to maximize the overlap between test
sequences so that many tests can be applied simultaneously.

Fault simulation is one obvious, easily implemented, and frequently used method of reducing both

test set size and test generation time. After each test is generated, it is simulated on all the untested faults,

in the hope that it will also test other faults. If the test sequence does test other faults, then not only does

the test generator not have to spend time generating a test for these other faults, but also the test set

contains a single sequence that covers each of these faults, rather than one test sequence for each fault.

"Testsequence appending" is another way to increase the overlap of sequential tests. Most sequential

ATPG systems generate every test from either the reset state or an unknown state. However, it is also

possible to generatea test fora fault by appending test vectors onto an already generated test sequence. If
the number of appended vectors is much smaller than the number of vectors required to generate a test

from the reset state or an unknown state, the size of the test set may be reduced. Ono et. al. have shown

that this technique can be used to reduce test set size, especially for circuits with no reset state [15].

The previous two techniques are used during test generation to reduce the size of the test set as it is

being generated; there are also several heuristics that can be used after test generation to reduce the size of

the test set.

Compaction is one such technique. Compaction methods take advantage of the fact that ATPG often

specifies only a subset of the input values in a test sequence; the remaining unspecified inputs can be
assigned arbitrarily. Given a set of incompletelyspecified test sequences, compaction algorithms attempt

to set the unspecified input values such that many tests can be applied simultaneously, i.e.overlapped. If

two or more tests can be overlapped, then the resulting test set is smaller than the original, in which each

test sequence was applied separately. Compaction techniques are commonly used on combinational

circuits; Niermann, et. al. [14] have extended these techniques for use on sequential test sets. Of course,

the problem of sequential compaction is much more difficult than that of combinational compaction, since

sequences can overlap in many different ways.

17



Reverse fault simulation is another post-processing test set reduction technique. In this technique,
after all tests have been generated, the tests are simply fault simulated in the reverse order from that in

which they were generated, in hopes of identifyingsome redundant tests. These redundant tests can then

be eliminated from the test set. Cho, et. al have shown this to be very effective on the ISCAS '89
benchmark circuits [5].

3.2 The Exact Problem

The previous work described abovedemonstrates that heuristics are effective in reducingthe size of
sequential test sets. However, because the problem has not beensolved exactly, it is impossible to know
how close the resulting solutions are to the exact solution. We haveexamined theexactproblem, and have
formulated it as a modified shortest common superstring problem. However, the problemas formulated
is NP-complete, and has no known efficient approximation algorithms, and thus we could not use this

formulation to developan efficient solutionor approximation for the exactproblem.
Our formulation is based upon the shortest common superstring problem [7], an NP-complete

problem:

Shortest common superstring problem:

INSTANCE: A finitealphabetA and a finite set Rof strings fromA*

QUESTION: Whatis theshortest stringwin A* suchthat each stringx inRis a substring
ofw, i.e. w=WqXWi where each Wj isinA*?

Thefollowing modified problemcanbe used to solvethe smallesttest set problem:

Modified shortest common superstring problem:

INSTANCE: A finite alphabet A and a finiteset T of finitesets of strings from A*.

QUESTION: What is the shortest string win A* such that at least one string fromeach set
T,- in T is a substring of w?

Theaboveproblem canbe used to solvethesmallest testset problem fora circuit by defining A and T
as follows: Let Vbe the set of all possible input vectors to the circuit and S be the set of all reachable states

of thecircuit. Define Atobe the finite alphabetwithelements a,- =Vft. LetFbe the setofall possible faults
in the circuit. Let 7yj be the set of tests for the Ith faulty. Note that elements of 7e are strings from A*.
Finally, define TtobethesetofallTp over all/j- inF.

18



3.3 Heuristics and Small Set Algorithm

Although we could not solve the problem of generating the minimum-sized test set for a circuit, we

were still interested in evaluating the effectiveness of different combinations of heuristics. To do this, we

added five test set size reducing heuristics to the SIS testgeneration algorithm, and evaluated the efficacy
of various combinations of these heuristics. Three of the heuristics-fault simulation, test sequence
appending, and reverse fault simulation-have already been described in Section 3.1. In addition to these,

we considered two other heuristics.

The first is a "short individual test sequence" heuristic. The three aforementioned heuristics all

attempt to overlap test sequences, but they cannot do anything about individual test sequences that are

unnecessarily long. Hence, we thought that it might be effective to simply try to generate very short test
sequences for individual faults, in the hope that the union of these short test sequences would be a small

test set. Thisgoal can be accomplished by using good/faulty product machine traversal to generate tests,
since this method is guaranteed to generate minimum-length test sequences. To decrease the run time

when this heuristic is used, SNEfaults are identified during a preprocessingstep, using the combinational
test generator.

Finally, we examined the effect of using no random test generation and propagation. The reason for

trying this approach is similar to the reason for trying the short individual test sequence heuristic.
Random tests in general can be much longer than deterministically-generated tests,and thus it is possible
that the use of random tests could cause test sets to be unnecessarily large.

Figure 3.1 shows the effect of using each of the five heuristics on a small example. Figure 3.1(a) lists
the three faults of the example, along with the three test sequences that exist for each fault. Test sequences

are represented as strings of vectors; for instance, test sequence V4Vj is a test of length two, consisting of

input vector V4 followed by input vector Vj. Each test sequence must be applied from the reset state of the

machine. Assume that the first test sequence listed for each fault is the test obtained by the 3-step
algorithm, the second test listed is another test for the fault that was not obtained by the ATPG algorithm,
and the third test listed is the one obtained by the good/faulty product machine traversal algorithm.
Assume that there are no other tests for these faults.

Figure 3.1(b)shows the two test sequences generated by the random test generator.

Figure 3.1(c) shows the test sets obtained with and without each test-set reducing heuristics,assuming

that random test generation occurs before deterministic test generation, and that the faults are considered

in the order Faultl, Fault2, Fault3. For example, when no heuristics are used, the test set contains the three

sequences V1V4V5V1V2, V4V1V2, and V2V3V4VJV2- The first test sequence, generated during random test
generation, is a test for Faultl. The second and third sequences are generated for Fault2 and Fault3

respectively using the 3-step test generation algorithm. Also shown in Figure 3.1(c) is the best solution

obtainable through using a combination of the five heuristics, and the exact solution.

19



Figure 3.1: Effect of Heuristics on an Example

Figure 3.1(a): Faults and corresponding test sequences

Tests for Faultl Tests for Fault2 Tests for Fault3

Test generated by 3-step algorithm V1V4V5 V4V1V2 V2V3V4V1V2

Another test for the fault V4V1V3 V1V4V5V1V2V2 V5V5

Test generated by good/faulty PMT v2 v2v3v3 V4Vt

Figure 3.1(b): Sequences generated by random test generator

Random Sequence 1 V1V4V5V1V2

Random Sequence 2 VeVaV^Vg

Figure 3.1(c): Test Sets Generated

Heuristic(s) Used Test Set Obtained Number of vectors in Test Set

None V1V4V5V1V2

V4V1V2

V2V3V4V1V2

13

Fault simulation V1V4V5V1V2

V4V!V2

8

Test-sequence appending V1V4V5V1V2V2

V2V3V4V1V2

11

Reverse fault simulation v*2V3V4V1V2

V4V!V2

8

Short individual test sequences V1V4V5V1V2

V2V3V3

V4V1

10

No RTG V1V4V5

V4V!V2

V2V3V4V1V2

11

Reverse fault simulation,
Short individual test sequences,

No RTG

V4V1
V2V3V3

5

EXACT SOLUTION
V4V1V2

v2
4

20



3.4 Results

The five heuristics described in Section 3.3 have been implemented in SIS. After implementation,
experiments were run to determine which combinations of heuristics led to the smallest test sets for the

ISCAS '89 circuits. These experiments were performed in twostages. Inthefirst stage, every combination
of the five heuristics was run on a small but representative set of the ISCAS circuits, with the goal of
eliminating those combinations thatgave very large test sets. The 8 combinations thatgave the smallest
test sets were then tested on the complete set of circuits.

Figure 3.2 showstheabbreviation usedforeach heuristic in tables throughout thissection.
The results of the first stageof testing are shown in Table 3.1. In thisstage, only8 of the ISCAS '89

circuits were tested: s208, s298, s344, s386, s510, s641, s820, and sl488. The first five columns show the

combination of heuristics used; an Xin a heuristiccolumnsignifies that the heuristic was used. The next
three columns show the total number of test sequences, total number of test vectors, and total test

generation time for all 8 circuits. The final column (Best) shows the number of circuits for which the

combination of heuristics produced the best solution, i.e. that with the smallest test set, among all
combinations. (For twocircuits, more thanoneheuristic combination gavethebestsolution, which iswhy
this column totals to more than eight.) The rows of heuristic combinations are sorted according to the
number of test vectors produced.

Figure 3.2: Abbreviations for Heuristics

Heuristic Abbreviation

Fault simulation FS

Test sequence appending TSA
/

Reverse fault simulation RFS

Short individual test sequences SITS

No RTG NRTG

21



Table 3.1: Results of applying combinations of heuristics to 8 circuits in the ISCAS '89 benchmark set

FS TSA RFS SITS NRTG
Overall number

of sequences
Overall number

of test vectors

Overall time

(s)
Best

X X X X 131 2,348 1,232 5

X X X 212 2,895 1,130

X X X 169 3,009 724 1

X X X X X 225 3,028 1,957 2

X X X 365 3,559 902 1

X X X X 196 3,601 1,398

X X 295 3,754 511 1

X X X X 375 3,815 1,759

X X X X 495 4,045 3,252

X X X 332 4,067 1,614 1

X X 405 4,813 4,116

X X X 571 4,824 8,308

X 390 4,826 822

X X 524 4,853 1,695

X X 318 4,981 597

X X 575 5,388 733

X X 278 5,561 1,506

X X X 327 5,622 1,215

X X X 258 6,351 3,529

X X X / 323 6,577 4,258

X 514 6,674 331

X X X 894 6,808 3,019

X X 546 6,851 1,353

X X X X 306 6,910 5,180

X 731 11,197 954

X X 771 13,888 2,988

X X 1,289 14,121 3,211

X X X 1,766 16,602 4,556

X 1,456 17,246 3,567

1,456 18,254 356

X X 3,583 25,116 7,718

X 3,583 29,863 1,267

22



Table 3.1 shows that noone combination ofheuristics works best onevery circuit. However, the goal
in this first stage of testing was simply to identify a subset of heuristic combinations to use in the second

stage of testing. We chose the first 10 combinations from Table 3.1, since all combinations after these 10

give overall test sets more than twiceas largeas the smallest overall test set. In addition, the best heuristic
combination for every circuit tested in this stage is included among these 10 combinations. After choosing
these10combinations, we eliminated the 2 combinations whichdid not use reverse faultsimulation, since
reverse fault simulation can only reduce test set size. (Reverse fault simulation is a post-processing step
which removes redundant test sequences from the test set, and thus a combination which includes reverse

fault simulation cannot do worse than the same combination without reverse fault simulation.) The
remaining eight combinations were then used to generate tests for a larger setofcircuits. Table 3.2 shows
the results of applying these 8 heuristic combinations to the complete ISCAS benchmark set. For each
circuit, each column shows the result of using one of the 8 heuristic combinations. Each table entry
contains first the test set size, followed by the test generation time. Foreach circuit, the best result, i.e. the
smallest test set size obtained, is shown in bold type.

23



Table 3.2: Small Test Set Results (Test Set Size/ Test Generation Time) for Eight Best Combinations of
Heuristics (Best result for each circuit is shown in bold type.)

Circuit

FS

TSA

RFS

NRTG

FS

TSA

RFS

FS

TSA

RFS

SITS

NRTG

FS

RFS

NRTG

FS

TSA

RFS

SITS

FS

RFS

FS

RFS

SITS

NRTG

FS

RFS

SITS

s208 187/15 203/13 155/15 208/10 160/13 213/9 168/16 194/14

s298 220/41 204 /19 273/68 167/22 225/45 193/15 176/69 202/44

s344 98/290 91/16 93/271 104/295 97/70 91/15 127/792 91/74

s349 99/293 91/17 102/323 104/301 97/70 91/16 131/825 91/77

s382 918/524 1146/552 924/1879 1212/604 925/1430 1214/596 1247/1980 1247 /1944

s386 156/12 167/10 161/17 198/10 193/14 219/9 213/21 233/17

S400 923/556 1041/549 973/1943 1211/641 939/1567 1213/583 1248/2034 1248/1931

s420 186/40 238/34 173/52 188/30 228/44 240/28 199/59 245/49

s444 887/392 875/406 910/1074 1505/687 732/973 1510/709 1205/1335 1205/1211

s510 237/27 522/20 237/91 682/30 527/53 682/20 900/482 758/163

S526 2125/792 1976/752 2131/1713 2003/739 1968/1550 1941 /752 1757/1675 1757/2114

s526n 2125/753 1976/736 2131/1682 2003/688 1968/1503 1941/745 1757/1640 1757/1623

s641 202/174 209/64 260/344 269/78 259 /178 231/40 363/491 274/180

s713 174/171 209/77 258/315 258/91 240 /165 231/50 321/438 276/173

s820 496/166 653/110 539/289 743/96 683/318 797/90 788/477 858/428

S832 498/172 638/109 580/314 727/98 718/312 811/90 768/484 840/445

s838 203/138 214/126 204/218 223/118
i

228 /163 268/109 223/246 249/184

S953 367/412 339/276 438/1732 714/393 415/1435 675/249 812/2561 745/2331

S1196 407/767 418/413 355/960 437/604 395/494 445/328 393 /1049 434/516

S1238 422/930 443/537 356/1060 459/734 413/626 462/441 411 /1095 456/610

S1488 752/495 960/474 1310/807 1188/354 1457/684 1328/320 1310/789 1457/665

S1494 780/445 1044/427 1279/762 1174/349 1426/638 1250/311 1279/740 1426/625

Total
12462/

7605

13657/

5737

13672/

15859

15777/

6972

14293/

12345

16046/

5525

15796/

19298

16043/

15418

The results of Table 3.2 again show that no one combination of heuristics is best for every circuit.
Thus, given unlimited test generation time, it would bebest to generate tests 8different times, using each
of theheuristic combinations shown inTable 3.2, and then to pick thesmallest test setof the8 produced.
Given a time constraint, the first combination of heuristics-fault simulation, test set appending, reverse
fault simulation, and no random test generation-should be used, sinceit gives thebest solution for half of
the circuits, and is within 10-30% of the best solution on all other circuits. In future discussion, we shall

24



call the version ofour ATPG algorithm which uses this first combination ofheuristics "test set reducing
SIS" (TSR-SIS).

Table 3.3 compares the generalSIS ATPG algorithm of Section 2 (SIS) with TSR-SIS. For each circuit
tested, the table shows thenumber ofvectors produced by thegeneral SIS ATPG algorithm (SIS Vectors),
the number of vectors produced by TSR-SIS (TSR-SIS Vectors), and the ratio of these two values. In the

final three columns, thetable shows the time taken bythetwoalgorithms, and the ratio of thetwotimes.
Overall, TSR-SIS produces test sets that are 3.1 times smaller than those produced bySIS, andit takes

1.9 times asmuch time asSIS. This isnota large time penalty, considering the amount ofchip testing time
that will be saved because of the much-reduced test set size.

Table3.3: Comparison to general SIS ATPG algorithm

Circuit
SIS

Vectors

TSR-SIS

Vectors
SIS Vectors

TSR-SIS Vectors
SIS

Runtime

TSR-SIS

Runtime

TSR-SIS Time

SIS Time

s208 328 187 1.8 7 15 2.1

s298 398 220 1.8 13 41 3.2

s344 147 98 1.5 13 290 22.3

s349 140 99 1.4 14 293 20.9

s382 2072 918 2.3 519 524 1.0

s386 336 156 2.2 7 12 1.7

s400 2100 923 2.3 544 556 1.0

s420 235 186 1.3 20 40 2.0

S444 1961 887 2.2 540 392 0.7

s510 1190 237 5.0 6 27 4.5

s526 3607 2125 1.7 688 792 1.2

s526n 3607 2125 ' 1.7 681 753 1.1

s641 827 202 4.1 30 174 5.8

s713 847 174 4.9 38 171 4.5

S820 1896 496 3.8 38 166 4.4

s832 1873 498 3.8 40 172 4.3

s838 271 203 1.3 73 138 1.9

S953 1832 367 5.0 42 412 9.8

S1196 5253 407 12.9 151 767 5.1

S1238 5179 422 12.3 246 930 3.8

S1488 2517 752 3.3 112 495 4.4

S1494 2619 780 3.4 130 445 3.4

Total/

Average
39235 12462 3.1 66 min 127 min. 1.9

25



Table 3.4compares thebest testsetsizes obtained byTSR-SIS with the testset sizesobtainedby STEED
and VERITAS. The first three columns show the number of vectors produced by each algorithm for each

circuit. Again, a value in brackets indicates that thealgorithm did not achieve 100% fault coverage,and in

such cases, the fault coverage is listed.

Table 3.4: Test Set Size Comparison with STEED and VERITAS

Circuit STEED VERITAS TSR-SIS
STEED

TSR-SIS

VERITAS

TSR-SIS

s208 {195/97.0%} 192 187 1.0 1.0

s298 {280/99.0%} 119 220 1.3 0.5

s344 125 48 98 1.3 0.5

s349 120 56 99 1.2 0.6

s382 {1633/95.2%} 1028 918 1.8 1.1

s386 238 168 156 1.5 1.1

S400 {409/95.8%} 1091 923 0.4 1.2

S420 {808/91.2%} 187 186 4.3 1.0

s444 {994/95.6%} 1026 887 1.1 1.2

s510 {733/99.8%} 584 237 3.1 2.5

s526 {2037/91.0%} 1457 2125 1.0 0.7

s526n {2287/91.0%} 1528 2125 1.1 0.7

s641 {327/93.1%} 134 202 1.6 0.7

S713 {315/93.1%} 139 174 1.8 0.8

S820 1304 ' 785 496 2.6 1.6

s832 {1344/99.7%} 763 498 2.7 1.5

S838 {290/80.5%} 193 203 1.4 1.0

s953 1050 578 367 2.9 1.6

S1196 {545/98.7%} 376 407 1.3 0.9

S1238 {576/99.0%} 389 422 1.4 0.9

S1488 1310 1031 752 1.7 1.4

S1494 1374 1040 780 1.8 1.3

TOTAL 18294 12912 12462 1.5 1.0

26



Overall, TSR-SIS produces test sets that are1.5 times smaller thanthose produced bySTEED, despite
the fact that STEED's test set does not obtain 100% fault coverage. This is because the only test set
reducing heuristic used bySTEED is fault simulation. Ontheother hand, TSR-SIS and VERITAS produce
roughly the same overall test set size. This makes sense sinceVERITAS uses fault simulation, reverse fault
simulation, and a heuristic that is similar to test set appending; this is almost the same combination of
heuristics used by TSR-SIS. The test set appending in VERITAS takes place during random test
generation. Asdescribed in Section 2.2, VERITAS hasa sophisticated random testgenerator which is used
togenerate tests for 84% of thefaults in the ISCAS circuits. This random test generator records notonly
faults covered by RTG, but also faults that were excited by the random test vectors. The random test
generator then tried to extend the random tests in ways that test the excited faults. In other words, the
random testgenerator attempts tobuildupa testfor theexcited faults from theendofalready determined
tests, which is similar to test set appending.

3.5 Conclusions

Five test-set size reducing heuristics have been added to the SIS test generation algorithm. On the
basis of empirical evidence,we found 8 combinations of heuristics which seem to give the smallest test
sizes, and identified one combination of heuristics which works best overall. This combination is the one

which includes fault simulation, test set appending, reverse fault simulation, and no random test

generation. Through use of these heuristics, the test set sizes of the ISCAS circuits were reduced by a
factor of 3.1, with a factor of 1.9 increase in test generation time.

4 Sequential Redundancy Removal

The test generation algorithm described in Section 2 does more than generate tests for faults; it can

also identify redundant faults. A redundant fault corresponds to a redundancy in the circuit itself; if there

is no test for a line stuck-at 0, then that line can be set to a constant 0 without changing the input/output

behavior of the circuit. The process of setting redundant lines to constant values is called redundancy

removal. Often redundancy removal leads to gate reduction, and thus area reduction, as illustrated in

Figure 4.1.

Figure4.1(a) shows a part of a circuitcontaininga redundant line as shown. This redundant line can

be replaced by a constant 1. Note that this causes the OR gate A to output a constant 1 as well, and thus

this gate can be removed, its output replaced by a constant 1. After this replacement, one input of the

ANDgate Bis a constant 1, and thus mis gate always outputs the value of its second input. Therefore, gate

Bcan be removed, its output replaced by the non-constant input line. Figure 4.1(b)shows the circuit after

all of these replacements are performed.

In the remainder of this section, the redundancy removal algorithm is described in detail, and results

of applying redundancy removal to the ISCAS benchmarks are shown.

27



Figure 4.1: Results of Redundancy Removal

Figure 4.1(a) Figure 4.1(b)

Redundant Stuck-at 1

e>

4.1 Redundancy Removal Algorithm

The redundancy removal algorithm, outlined in Figure 4.1 and 4.2, identifies and removes one

redundant fault at a time. First, as in the ATPG algorithm, the output function BDD's are calculated, the

circuit STG is traversed, and random test generation is performed. Next, the algorithm enters its main

loop. Each time through the loop, one redundancy is identified and removed, until the circuit is

irredundant.

The actual redundancy identification procedure, described in Figure 4.2, uses several methods to

minimize the time spent making the circuit irredundant. First, each time the redundancy identification
procedure is called, the algorithm looks first at unseen faults, since an unseen fault is more likely to be
redundant than a fault that was testable during a previous loop. In addition, the redundancy
identification procedure first identifies all SNE redundant faults, for two reasons. First, SNE faults can be

identified morequickly than ND faults, sinceSNE faults can be identified using the combinational test
generator, while ND faults can only beidentified using product machine traversal. Secondly, removing an
SNEredundant fault cannot change the output functions and reachablestates of the circuit,and thus these

do not have to be recalculated after an SNE fault is removed. Onlyafter no moreSNEfaultsexistdoes the
algorithm usegood/faultyproduct machine traversal to identify anyremaining NDfaults.

Going into a bit more detail, during the first stage of redundancy identification, the algorithm uses
only the three-step test generationalgorithmto find tests for previouslyunseen faults. Next, if all unseen
faults are testable, the algorithm considers the remaining faults, those which have been tested during
previous loops, but may now be redundant. First, all previouslygenerated tests are fault simulated on

these remaining faults. This step tests most of the faults. Next, the second stage of test-generation is
entered. In this stage, the algorithm again uses the three-step test generation algorithm to test any
untested faults and to identify SNE redundant faults. Ifno redundancies arefound in this stage, then the

28



final stageis entered. In this stage,good/faulty product machine traversal is used to test the remaining
faults or to identify them as ND redundant faults.

Whenever an ND redundancy is removed, the circuit output functions and reachable states may
change, and thus the output functions and reachable states are recalculated.

Figure 4.1: Redundancy Removal Algorithm

remove-redundancies

{
build-bdds;

traverse-STG;

random-test-generation;
do{

RedundancyRemoved = detect-and-remove-redundancy;

if (RedundancyRemoved and OutputFunctionsChanged) {
build-bdds;

traverse-STG;

}
} while (RedundancyRemoved)

}

29



Figure 4.2: Redundancy Detection Algorithm

detect-and-remove-redundancy

{
for each never seen fault {

three-step-atpg;

if (Fault == REDUNDANT) {
remove-redundancy;

return TRUE;

}
}
fault-simulate(AIITests, RemainingFaults);
for each remaining untested fault {

three-step-atpg;

if (Fault == REDUNDANT) {
remove-redundancy;
return TRUE;

}

}
for each remaining untested fault {

good-faulty-product-machine-traversal;

if (Fault == REDUNDANT) {
remove-redundancy;
OutputFunctionsChanged = TRUE;
return TRUE;

}

}

}

30



4.2 Results

The redundancy removal algorithm described above has been implemented in SIS, using the UC
Berkeley BDD package [18]. Tables 4.1 and 4.2 show the results of applying this algorithmto the ISCAS

benchmarks. Table 4.1 shows the numberof literals and gates in each circuit beforeand afterredundancy
removal and the time taken to make the circuit irredundant. Table 4.2 shows the number of latches before

and after redundancy removal for those circuits in which the number of latches changed as a result of
redundancy removal.

Table 4.1: Results of Redundancy Removal

Circuit
Literals

Before

Literals

After

After

Before

Gates

Before

Gates

After

After

Before
Time (s)

s208 166 79 0.48 96 41 0.43 9

s298 244 148 0.61 119 61 0.51 30

s344 269 205 0.76 160 108 0.68 103

s349 273 205 0.75 161 108 0.67 107

S382 306 225 0.74 158 97 0.61 1370

s386 347 196 0.56 159 86 0.54 38

S400 322 228 0.71 165 98 0.59 1557

S420 336 79 0.24 196 41 0.21 17

s444 352 244 0.69 181 106 0.59 2124

S510 424 392 0.92 211 179 0.85 28

s526 445 265 0.60 193 105 0.54 3461

s526n 445 265 0.60 194 105 0.54 3414

s641 539 229 0.42 379 111 0.29 79

S713 591 229 0.39 393 111 0.28 88

S820 757 669 0.88 289 241 0.83 70

S832 769 669 0.87 287 241 0.84 81

s838 670 76 0.11 390 38 0.10 52

s953 743 646 0.87 395 310 0.78 492

S1196 1009 864 0.86 529 387 0.73 747

S1238 1041 869 0.83 508 390 0.77 1187

S1488 1387 1218 0.88 653 528 0.81 189

S1494 1393 1218 0.87 647 528 0.82 233

Average 0.67 0.59

31



Table 4.2: Results of Redundancy Removal

Circuit
Latches

Before

Latches

After

s208 8 5

S420 16 5

s641 19 15

s713 19 15

s838 32 5

Table 4.3comparessequential redundancy removal with other area optimization techniques,including

a modified sequential redundancy removal procedure, combinational redundancy removal, and
sequential don't care minimization techniques [17]. The first column shows the number of literals and

gates in the original circuit. The next four columns show the number of literals and gates in the circuits

after four different optimization procedures, along with the time taken by each procedure. The first

procedure is combinational redundancy removal (Comb. RR). The second procedure is the regular

sequential redundancy removal procedure described in Section 4.1 (Seq. RR). The third procedure is

"quick" sequential redundancy removal (QuickSeq. RR), a modified sequential redundancy removal in
which only SNE redundancies are identified and removed. This quick procedure is generally faster than

full sequential redundancy removal, since no justifications, propagations, or product machine traversals

are performed,but it is not guaranteed to leavea circuitfully testable. The finaloptimization procedure is
external don't care minimization (Exdc Min.). In this procedure, the unreachable states of the machine are

used as external don't cares, and the circuit is then optimized using the full-simplify and script.rugged

procedures of SIS [18].

The results of Table4.3 show that combinational redundancy removal achieves the least reduction, but

takesby far the least amount of time. Sequential redundancy removal reducesthe literalcount by almost
twiceas much as does combinational redundancy removal, but takes 10-1000 times more time. The quick
sequential redundancy removal procedure achieves almost exactly the same reduction as does the full

sequential redundancy removal procedure, which is to be expected, since most of the redundant faults in

these circuits are SNE faults (see Table 2.2). Further, the quick procedure is much faster than the full

sequential redundancy removal procedure; on average, the quick procedure uses ten times less time than

the full procedure. The external don't care minimization procedure achieves twice as much reduction as

does sequentialredundancy removal, but on mostcircuits this proceduretakes more time than does quick
sequential redundancy removal. In particular, on the largest circuits, redundancy removal is much faster

than don't care minimization.

32



Table 4.3: Comparison with Other Area Optimization Techniques

Circuit
Before

(lit/gate)
Comb. RR

(lit/gate/time)
Seq. RR

(lit/gate/time)
Quick Seq. RR
(lit/gate/time)

Exdc Min.

(lit/gate/time)

s208 166/96 138/68/1 79/41/9 79/41/5 57/8/7

s298 244/119 200/75/1 148/61/30 148/61/9 108/24/20

s344 269/160 223/114/1 205/108/103 213/111/41 164/49/113

s349 273/161 223/114/1 205/108/107 217/111/38 164/49/109

S382 306/158 249/101/1 225/97/1370 225/97/152 147/32/77

S386 347/159 306/118/1 196/86/38 202/88/13 115/21/36

S400 322/165 252/102/2 228/98/1557 228/98/156 144/33/78

S420 336/196 275/135/2 79/41/17 79/41/12 57/8/12

S444 352/181 268/110/2 244/106/2124 244/106/54 141/34/66

s510 424/211 392/179/2 392/179/28 392/179/4 273/27/73

s526 445/193 391/140/2 265/105/3461 267/105/67 156/35/65

s526n 445/194 391/140/2 265/105/3414 267/105/70 155/33/66

S641 539/379 288/128/3 229/111/79 229/111/58 175/51/88

s713 591/393 288/128/7 229/111/88 229/111/65 175/51/93

s820 757/289 724/256/5 669/241/70 669/241/22 415/64/287

S832 769/287 724/256/9 669/241/81 669/241/28 406/62/244

s838 670/390 545/265/8 76/38/52 76/38/33 57/8/28

s953 743/395 667/319/6 646/310/492 650/312/380 440/88/284

S1196 1009/529 869/389/12 864/387/747 869/389/221 681/104/10899

S1238 1041/508 874/392/38 869/390/1187 876/393/377 735/111/1015

S1488 1387/653 1284/550/6 1218/528/189 1231/532/40 716/93/1462

S1494 1393/647 1284/550/12 1218/528/233 1233/533/48 722/94/1584

TOTAL

(lit/gate)
12828/

6463

10855/

4364

9218/

4020

9292/

4044

6203/

1079

Reduction

(lit/gate)
••

15%/32% 28%/38% 28%/37% 52%/83%

33



We also examined the results of applying various combinations of quick sequential redundancy
removal and don't care minimization. Table 4.4 shows the results achieved by don't care minimization

alone, quick sequential redundancy removal followed by don't care minimization, and don't care

minimization followed by quick sequential redundancy removal. As in Table4.3,each column shows the

number of literals and gates in the circuits after each procedure, along with the time taken by the
procedure.

Table 4.4: Results of Applying Both Redundancy Removal and External Don't Care Minimization

Circuit
Before

(lit/gate)
Exdc Min

(lit/gate/time)

Quick Seq RR
Exdc Min

(lit/gate/time)

Exdc Min

Quick Seq RR
(lit/gate/time)

s208 166/96 57/8/7 56/8/10 57/8/7

S298 244/119 108/24/20 106/23/24 108/24/22

S344 269/160 164/49/113 164/49/140 164/49/144

s349 273/161 164/49/109 164/49/139 164/49/143

s382 306/158 147/32/77 140/32/224 147/32/142

S386 347/159 115/21/36 119/19/34 115/21/38

s400 322/165 144/33/78 136/32/227 144/33/136

s420 336/196 57/8/12 56/8/17 57/8/13

S444 352 /181 141/34/66 141/31/103 141/34/136

s510 424/211 273/27/73 273/27/80 273/27/81

S526 445/193 156/35/65 135/31/137 154/34/117

s526n 445 /194 155/33/66 135/31/142 155/33/101

s641 539/379 175/5/1/88 175/51/94 175/51/103

s713 591/393 175/51/93 175/51/101 175/51/116

S820 757/289 415/64/287 354/50/220 405/62/302

s832 769/287 406/62/244 371/55/231 390/60/265

S838 670/390 57/8/28 56/8/39 57/8/31

S953 743/395 440/88/284 447/89/686 440/88/3527

S1196 1009/529 681/104/10899 670/105/1442 681/104/11184

S1238 1041/508 735/111/1015 690/99/1090 732/110/1338

S1488 1387/653 716/93/1462 706/97/1638 716/93/1499

S1494 1393/647 722/94/1584 695/90/1685 717/92/1610

TOTAL

(lit/gate)
12828/

6463

6203/

1079

5964/

1035

6167/

1071

Reduction

(lit/gate)
52%/83% 54%/84% 52%/83%

34



Table 4.4 shows that foralmost every circuit, thecombination ofquick sequential redundancy removal
followed by don't care minimization achieves only slightly more area reduction than don't care

minimization alone, but takes about40% more time, onaverage. Note, though, that formostof thelargest
circuits, this combination of procedures takes about the same or less time than don't care minimization

alone. Further, forcircuit sll96, thiscombination ofprocedures takes an orderofmagnitude less timethan
does don't care minimization. This suggests that sequential redundancy removal may aid in area
optimization for largecircuits-circuits that cannot be optimized efficiently usingdon't careminimization
procedures. Forsuchcircuits, it is possible thatsequential redundancy removal mayreduce thesizeofthe
circuit enough so thatexternal don't care minimization canbeperformed much more quickly.

Finally, Table 4.4 shows that the combination of external don't care minimization followed by quick
sequential redundancy removal does not achieve significantly more reduction than does don't care

minimization alone, showing that don't care minimization removes most or all of the redundancies in
these circuits.

4.3 Conclusions

Sequential redundancy removal, a straightforward application of testgeneration procedures, hasbeen
shownto reduce the numberof literals in the ISCAS sequential benchmark circuits by an average of30%
and to reduce thenumber ofgatesbyan average of40%. Further, a modified "quick" version ofsequential
redundancy removal, in which only SNEredundancies are removed, has been shown to achieve almost the

same reduction, about ten times more quickly. Although the reduction achieved by sequential
redundancy removal is greater than that achieved by combinational redundancy removal, it is muchless
than the reduction achieved by don't care minimization techniques when the unreachable states of the
circuit are used as external don't cares. However, sequential redundancy removal can be useful in
optimizing some circuits that are too large to be 6ptimized efficiently using don't care minimization. For

these circuits, the quick sequential redundancy removal reduces the circuit enough that don't care
mirumization can proceedmorequickly. In thesecases, the combination of quick sequential redundancy
removal followed by don't careminimization achieves morereduction, in less time,than eitherprocedure
alone.

5 Future Work

The results presented in this paper show that the sequential ATPG and redundancy removal

algorithms that have been implemented in SIS are effective for small circuits—the ISCAS benchmark

circuitswith fewer than 50latches; however, thesealgorithms fail on larger circuits, as does everyexisting
test generation algorithm. For the next set of larger circuits, the limiting operation is STG traversal; the

BDD's produced during the implicit STG traversal of the circuit become too large to be operated upon

35



efficiently. Since the ATPG algorithms described in this paper are based upon reachability calculations,

this is a serious problem,and new techniqueswill be needed if we are to test larger circuits.

Thereareseveralpossibleapproaches to the problem of testingand identifying redundancies in larger

circuits, some exactand some approximate. One approach is to break up a large circuit into a system of

smaller, interacting finite state machines. Of course, the small finite state machines cannot be examined in

isolation, since the behavior of each small machine is controlled by its environment, i.e. the other finite

state machines. However, for each small finite state machine, the environment of the machine can be

reduced with respect to the machine, i.e. behavior that does not affect the machine can be added to or

subtracted fromits environment. After the reduction of the environment,the productof the machineand

the reduced environment can be constructed. This reduced product machine is not equivalent to the
original large circuit; however, the behaviorof the small machine in this product machine is exactly the

same as its behavior in the original circuit. Thus, if the STG of the reduced product machine can be

traversed using existing techniques, it will be possibleto test faults and identify redundancieswithin the

small machine. In order to test the entire original circuit, the environment reduction process can be
repeated for each small machine.

This method will not work in cases where even the reduced machine cannot be traversed. In this case,

a similarbut approximate approachcan be used. In this approach,the environment reduction is not exact,

i.e. during the reduction, behavior which does affect the small machine is added to or subtracted from the

environment. Because the reduction is approximate, the behavior of the small circuit within the reduced

productmachineis not exactlythe sameasitsbehaviorwithin the original circuit. Thus, in general it is not

possible to test faults or prove redundancies within the small machine. However, if the approximate

reduction follows some rules, it is possible to test some faults and provesome redundancies. In particular,
if the reduced environment is formed by only adding behaviorto the environment, then any fault of the

small machine which is redundant in the reduced product machine is also redundant in the original

machine. If the reduced environment is formed by only subtractingbehavior from the environment, then

any sequencewhich tests a fault in the reducedmachinewill test that fault in the original machine.

Another similarapproximate approach to the problem of testing large circuits is to simplify the BDD

representation of either the circuit outputs, the circuit STG, or the reachable state set by adding and
subtracting behavior. As with the approximate reduction of the environment described above, this

approach is not exact, but if rules are applied to the approximation process, some testing and redundancy
identification can be performed. Cho, et. al. at the University of Colorado at Boulder have used this

approach to perform redundancy removal on the circuits in the ISCAS benchmark set that cannot be tested

by existing methods [4]. They approximate the reachable set of the circuit as follows:

First, they partition the latchesof the largecircuitinto disjoint subsets, and construct a submachine for

each subset. Each submachine contains all the combinational logic of the original circuit, but only those

latches that appear in its corresponding subset;the next and present state lines for all other latchesbecome

primaryinputs and outputs. Each submachineis traversed, using the resultsof previoustraversals to limit

the inputs that can be applied during traversal. Because the results of each traversal can affect other

traversals, the traversals are performed iteratively until a fixed point is reached-until the reachable states

of the submachines do not change. At this point, an approximation to the reachable states of the entire

36



circuit is formed by merging the results of the submachine traversals, i.e.by intersecting the BDD's of all
the submachine reachable states.

Note that this approximation always contains the actual reachable state set, and thus it can be used to

prove faults redundant—if a fault cannot be excited from any state in the overestimation of the reachable

state set, then it certainlycannotbe excited fromany statein the reachable stateset,and thus is redundant.

We have extended this method to obtainbetter approximations to the reachable state set [10]. In the

Boulder approach, only disjoint partitions of latchesareconsidered;in our extension, we consider subsets

of latches which are not disjoint. In essence, we aregenerating several approximations to the reachable
state set, and then intersecting them to obtain the final approximation. Although each individual
approximation may be large, the hope is that they will be very different from each other, and thus their

intersection will be small, i.e. close to the actual reachable state set. The results obtained by using this
extension are shown in Table 5.1. For four different circuits, this table shows the exact number of reachable

states, the number of states in the UC Boulder approximation, thenumber of states we obtained using the
UC Boulder approximation method, and finally, the number of states we obtained by intersecting two
approximations, i.e. by using non-disjoint latch subsets. Our extension gives reachable state

approximations about 2 times smaller than those obtainedby the Boulderapproach for three of the four
circuits.

Table 5.1: Approximate Reachability Results

s526 s713 S953 S1238

Exact Number of States 8,868 1,544 504 2,616

UCBoulder Approximation-
disjoint latch subsets

15,200 5,300 — 18,447

Berkeley Approximation-
disjoint latch subsets

16,800 5,300 4,087 25,092

Berkeley Approximation-
non-disjoint latch subsets

15,500 2,362 2,040 13,801

We would like to extend our method even further by adding dynamic latch subset selection to our

reachability approximation algorithm. At each step of the approximation process, the next submachine to
be traversed would be chosen based upon the current approximation; we would like to choose a
submachine whose traversal is likely to give an approximation very different from the current
approximation, so that their intersection will be as small as possible. In this way, we hope to generate
approximations that are even closer the actual reachable state set.

37



6 Conclusions

A sequential test generation and redundancy removal system, based on implicit STG traversal
techniques, has been implemented in SIS. The test generator achieves 100% test fault coverage on the
ISCAS '89 benchmark circuits that have fewer than 50 latches, but runs 1.6 times slower than the test

generator VERITAS. The SIS test generator is slower than VERITAS because VERITAS uses more

sophisticated fault simulation, random test generation, and product machine traversal techniques than
SIS. However,the satisfiability-based combinational testgenerator ofSIS identifies redundant faults much

faster than thestructurally-based combinational testgenerator of VERITAS. In addition, testset reducing
heuristicshave been added to the basicSIS ATPG algorithm,and the best combinationof these heuristics
hasbeenidentified. Useof these heuristics reduces testset sizebya factor of3.1 overtestssetsproduced
by the basic SIS algorithm. TheSIS redundancy removal algorithm reduces the number of gates in the
ISCAS '89 benchmarks by 40%, but achieves less reduction than external don't care optimization
procedures. However, for somelargecircuits, a combination ofsequential redundancyremoval and don't
careoptimization achieves more reduction, in less time, than eitherprocedure alone. Finally, methods for
testing and identifying redundancies in larger circuits-circuits on which existing sequential ATPG
algorithms fail-have been suggested.

References

[1] M. Breuer and A. Friedman. Diagnosis and Reliable Design ofDigital Systems. Computer Science
Press, 1976.

[2] F. Brglez, D. Bryan,and K. Kozmiski. Combinational Profiles of Sequential Benchmark Circuits.

In Proceedings ofthe IEEE International Symposium on Circuits and Systems, Portland, Oregon, May
1989.

[3] R. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE Transactions on
Computers, vol. C-35, August 1986,pp. 677-691.

[4] H. Cho, G. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for Approximate FSM

Traversal. In Proceedings ofthe 30th Design Automation Conference, June 1993, pp. 25-30.

[5] H. Cho, G. Hachtel, and F.Somenzi. Redundancy Identification/Removal and Test Generation for

Sequential Circuits Using Implicit State Enumeration. In IEEE Transactions on Computer-Aided-
Design, July 1993,pp. 935-945.

[6] O. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of Sequential

Circuits. In Proceedings of the International Conference on Computer-Aided Design, November 1990,

pp. 126-129.

38



[7] M. Garey and D.Johnson. Computers and Intractability: A Guide to the Theory ofNP-completeness. W.
H. Freeman and Company, 1979.

[8] A. Ghosh. Techniques for Test Generation and Verification of VLSI Sequential Circuits. Ph.D. thesis,
University of California,Berkeley, September 1991.

[9] P. Goel. An Implicit Enumeration Algorithm toGenerate Tests for Combinational Logic Circuits.
In IEEE Transactions onComputers, vol. C-30, March1981, pp. 215-222.

[10] M. Khalaf. Approximating theSetofReachable States for Finite State Machines. EE 290LS report,
1992.

[11] T. Larrabee. Efficient Generation ofTest Patterns Using Boolean Satisfiability. Ph.D. thesis, Stanford
University, 1990.

[12] D. Long. Personal communication, November 1993.

[13] H-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. Test Generation for
Sequential Circuits. In IEEE Transactions on Computer-Aided-Design, October 1988, pp. 1081-1093.

[14] T. Niermann, R. K. Roy, J. H. Patel, and J.A. Abraham. Test Compaction forSequential Circuits.
In 7EEE Transactions onComputer-Aided-Design, February 1992, pp. 260-267.

[15] T. Ono and M. Yoshida. A Test Generation Method for Sequential Circuits Based on Maximum
Utilizationof Internal States. In Proceedings ofthe International Test Conference, 1991.

[16] C. Pixley, S. Jeong, and G. Hachtel. Exact Calculation of Synchronization Sequences Based on
Binary Decision Diagrams. In Proceedings ofthe 29th Design Automation Conference, 1992, pp. 620-
623.

[17] H. Savoj, H. Touati, and R. Brayton. Extracting Local Don'tCares for Network Optimization. In
Proceedings of the International Conference op Computer-Aided Design, November 1991.

[18] E. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-Vincentelli.
Sequential Circuit Design Using Synthesis and Optimization. In Proceedings of the International
Conference on Computer Design, October 1992.

[19] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. Combinational Test Generation Using
Satisfiability. Memorandum No.UCB/ERL M92/112, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley,CA, October 1992.

[20] H. Touati, H. Savoj, B. Lin,R. Brayton, and A.Sangiovanni-Vincentelli. Implicit StateEnumeration
of Finite State Machines Using BDDs. In Proceedings of the International Conference on Computer-
Aided Design, November 1990, pp. 130-133.

39


	Copyright notice 1994
	ERL-94-4

