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Abstract

We start with a brief review of ATM (Asynchronous Transfer Mode) technology and the
control actions that networks can take. We then present methods to estimate the small loss
probabilities in ATM networks. Small losses are achieved by averaging traffic over time in a
large buffer, or by multiplexing a large number of sources when the buffer is small or negligible.
In the first case (large buffer), we discuss the notions of effective and decoupling bandwidths.
In the second case (many sources), we show that a good estimate of the loss probability can be
obtained using a theorem of Bahadur and Rao.

We propose a call admission strategy in which connections with tight delay constraints, such
as interactive audio/video, are given service priority. The delay constraints limit the acceptable
buffer size. Thus the many sources asymptotic is appropriate in estimating the loss rate of such
service. Effective and decoupling bandwidths are then used for the control of connections that
can tolerate longer delays due to large buffers.

1 Introduction

One objective of ATM (Asynchronous Transfer Mode) networks is to transport a wide range of
information, such as voice, video, and data, with diverse characteristics and quality of service
requirements.

Internet transports messages without guarantee nor control on the delay and the throughput
of transmissions. In fact, Internet transports messages without being aware that these messages
are part of a connection. Consequently, Internet does not use information about the temporal
characteristics of the connections to control the quality of service that it offers to users. Modi
fications of the Internet protocols are being developed to try to fix those limitations. Although
some networking experts believe that Internet can be upgraded to gradually offer the benefits
expected from future networks, many researchers see the advantages of the ATM technology
and understand that these advantages can be gained without making the Internet applications
or most of its infrastructure obsolete. This paper is concerned with ATM networks.

The basic components of ATM networks include transmission links, ATM switches, ATM
interface boards installed in user equipment, and specialized servers. We will review some of
these basic components in section 2. Today, you can buy local ATM switches and ATM interface
boards from a dozen vendors and use them to set up local ATM networks. The cost per connected
workstation is rapidly dropping to a level comparable to that of FDDI even though the ATM
network can have a much larger throughput and smaller delays. A few vendors sell large ATM
switches that are used by public carriers to build metropolitan and wide area networks.
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The services of ATM networks, in addition to the usual Internet applications, will include
interactive TV, video conferencing, high-speed bridging of LANs, video and high-fidelity broad
casts. Many of these services benefit from higher rates (e.g., Mosaic) while others necessitate
them and require low delays (e.g., video conferences).

After reviewing the basic features of ATM networks in section 2, we turn our attention to
control methods in section 3. Our next topic is the analysis of small overflow probabilities.
In section 4, we focus on the case of large buffers. In section 5, we analyze the case of many
sources. In section 6, we propose a admission control strategy based on the results of sections
4 and 5. We conclude the paper in section 6 with a few remarks.

See [13] for a detailed presentation of the technology of high-speed networks and of their
analysis, design, and control. That text is complemented by an interactive CD-ROM that
contains illustrations and animations of the main algorithms, protocols, and devices.

2 ATM Networks

ATM networks transport information in fixed-sized packets of 53 bytes, called cells,along virtual
circuits. Virtual circuit transport means that all the cells of the same connection are identified
as such and follow the same path in the network. Examples of connections include transmissions
of video or audio signals and file transfers. The fixed size of cells simplifies the hardware. The
small size was selected to limit the time needed to assemble cells that transport voice.

Physically, the ATM network consists of switches and user equipment connected by optical
fibers and by high-speed links. An ATM switch has a number of input and output lines. When
a cell arrives, the switch reads its virtual circuit number and sends the cell to the corresponding
output link. The switch is equipped with buffers that can store cells when they occasionally
arrivefaster than they can be transmitted. ATM switchesdiffer in how their buffers and routing
fabric are arranged.

A local ATM network may consist of a single ATM switch located in some wiring closet
to which a number of workstations are attached via spare telephone twisted pairs. Pairs may
be used in groups of 3 or 4 to achieve a transmission rate of 100 Mbps. Alternatively, optical
fibers may be installed to connect the devices. Each workstation is equipped with an ATM
interface board. The interface board packages the messages or video or audio signals to be
transmitted into ATM cells and reassembles the ATM cells that it receives into messages or
signals. To start a connection, the workstation must exchange some signalling information
with the switch. That information, also transported in cells, specifies the characteristics of
the connections (e.g., average rate and burstiness) and the desired quality of service (e.g.,
maximum delay and acceptable loss rate). The switch, by monitoring the ongoing connections,
decides whether it can accept the new connection and offer the desired quality of service while
maintaining the quality of service it promised to the ongoing connections. We try to understand
how the switch can make such a determination in sections 4-5. In a typical installation, 64
workstations can be connected to the central switch by links at 100 Mbps (or higher rates) each.
Potentially, hundreds of simultaneous connections are in progress. Some of the connections are
video conferences at 1.5 Mbps each, others are real-time transfers of animations produced by
simulations on high-performance workstations, others are transfers of high-resolution medical
images, and other still are connections between bridges attached to FDDIs or other LANs.

A metropolitan area ATM network can consist of a single ATM switch that belongs to some
public carrier (e.g., a local phone company). Users are attached to the switch by 1.5 Mpbs,
45 Mbps, 155 Mbps, or possibly higher-rate lines, either twisted pairs, coaxial cable, or optical
fiber. The local access between the users and the public carrier can be provided by a cable TV
operator, by the phone company, or by a third party. The metropolitan network connects local
ATM networks, other LANs, specialized machines (e.g., video-servers to set-top boxes).

A wide area ATM network consists of a mesh-like network of ATM switches. The backbone

consists of optical fibers at 155 Mbps, 622 Mbps, or multiples. This backbone connects the
metropolitan networks we discussed earlier.

A few scenarios are plausible for the implementation of ATM networks. Some installations
upgrade their LANs from Ethernets to local ATM networks to provide video conferencing or



high-speed access to specialized file- and compute-servers or for implementing parallel processing
across their networks. Other users subscribe to high-speed services such as the switched multi-
megabit data service (SMDS) of a public carrier for connecting LANs. Residential customers
subscribe to interactive TV and to videophone services from the cable TV or phone company.
Eventually, these services are transported by an ATM wide area network that piggybacks im
proved Internet applications. We can barely imagine the impact of a truly multimedia version
of Internet.

There is not yet a universal agreement on quality of service parameters. Values that are often
cited are a maximum delay of about 300 ms for interactive voice/video and of a few seconds
for interactive database services. The acceptable loss rate ranges from 10-8 for data to a few
percent for video and audio. To be specific, let us choose a delay of about 200 ms for interactive
audio/video with a loss rate of 10~s. Let us call this application "video." For remote access to
databases, let us choose a delay of 1 second and a loss rate of 10~7. We call this application
"database." Keep in mind that these sets of requirements are our working hypotheses and that
they are not standardized values.

To place the delay values in some perspective, note that a 53-byte cell takes about 3 mi
croseconds to be transmitted by a 155 Mbps link so that a delay of 30 ms corresponds to 104
cell transmission times. If the connection goes through 10 links at 155 Mbps each, then the
cell can be queued behind 1,000 other cells at each node and still face a queueing delay of less
than 30 ms through the network. This should guarantee a maximum total end-to-end delay less
than our target 200 ms. In addition, the cell faces a propagation delay (about 5 /is per km)
and processing delays (a few 100 /is per node). The delay jitter (i.e., fluctuations) is caused by
variations in the queueing delays. Another important cause of delay is the packetization delay:
the time it takes to assemble a cell. If the source produces bits at the rate of R bps, then it takes
48 x &/R seconds to assemble the 48 bytes that are in a 53-byte cell. (The remaining 5 bytes of
the cell are occupied by the header.) For a standard (64-kbps) voice stream, this packetization
delay is 6 ms. For higher bit rate streams, the packetization delay is essentially negligible.

These elementary considerations show that the delay requirement for our video application
is satisfied if the queueing does not exceed 1,000 cells per node. For our database application,
the queueing should not exceed 20,000 cells per node.

Cells are lost because of transmission errors and when buffers overflow. The cell loss rate

due to transmission errors is roughly equal to the bit error rate multiplied by 424 (= 53 bytes).
Thus, if the BER is 10~12, then the cell error rate is about 4 x 10~10. The probability that a
buffer overflows can be made negligible by using a very large buffer. However, this defeats the
objective of keeping the delays small.

Remembering our previous analysis, we see that a reasonable objective for video is to control
the network so that buffers that can hold about 1,000 cells overflow with a probability less
than 10~6 (assuming 10 nodes). For database the objective is for buffers that can hold 20,000
cells to overflow with a probability less than 10-e. We will refer to these values to check the
conclusions of our analysis. In this preliminary discussion, we ignore the interactions of video
and database services. Presumably, we give priority to video when both services share a buffer.
Another possibility is to segregate buffers and serve them in parallel with different fractions of
the bandwidth. We discuss that point later.

3 Control Actions

What can the network do to control its operations? The basic control actions axe admission
control, routing, flow control, traffic shaping, bandwidth and buffer allocation.

Admission control: When a connection is requested with its traffic descriptors and quality
of service requirements, the network decides whether to accept or reject the connection. The
network determines if it has the necessary resources available to meet the requirements of the
new connection while maintaining those of the ongoing connections.

Routing: The connections are transported as virtual circuits. The network selects a path for
the new connection. Note that the admission control and routing are coupled problems since
the network accepts a call only if it can find a suitable path.



Flow control: While transporting a connection, a network node may decide to postpone the
transmission of cells. The objective of the node is to regulate its output to avoid swamping a
neighbor.

Traffic shaping: The source may smooth out its cell stream before sending them to the
network. This traffic shaping makes the stream easier to transmit because it reduces the amount
of storage the stream requires in the network.

Bandwidth allocation: A switch can decide which cell it transmits next on a given fiber. For
instance, the switch may give priority to video traffic over database traffic.

Buffer allocation: When a buffer shared by video and database cells is full and a new database
cell arrives, the switch may discard a video cell to make room for a database cell.

A key question when designing control mechanismsis the information availableto the agent
choosing the control actions. A related question is the potential obsolescence of the avail
able information: dated information may not be useful. To appreciate this question, consider
two possible strategies for traffic shaping: open-loop and link-feedback. One open-loop traffic
shaping technique for video signal uses a multi-resolution coding that separates coarse resolu
tion information and finer resolution information in different cells. The mechanism marks the

fine resolution cells so that the network switch can discard them when it becomes congested.
The possibility of discarding a significant fraction of cells when the switch becomes congested
substantially reduces the likelihood of loosing coarse resolution cells because of overflows. A
link-feedback strategy uses two different types of video compression: one that produces a coarse
output with a small bit rate and a high-quality compression with a large bit rate. The network
switch indicates to the user when it becomes congested and the algorithm switches to the low
resolution mode. This feedback method is potentially more responsive to the network conges
tion and avoids sending cells that have to be flushed anyway. However, if the propagation time
between the switch and the user is very long, then the feedback mechanism may be too sluggish
to be effective.

Similar considerations apply to flow control. Say that the source throttles its output to
avoid congesting the network. Two extreme methods can be used: window flow control and rate
control. When using window flow control,

the destination signals back to the source when it receives cells. This information enables
the source to limit the number of its cells inside the network to a specified value. The rate
control is open-loop and limits the burstiness of the stream. A simple mechanism for doing this
is the so-called leaky bucket. (A variation is the generic cell rate algorithm GCRA recommended
by the ATM forum. See [2].) Essentially, the algorithm grants permits at a fixed rate but only
a specified number of permits can be accumulated. To transmit a cell, the stream must use
up one of its permits. The algorithm limits the average rate of cells to the rate at which it
provides permits and it also limits the size of a burst of cells to the number of permits that
can be accumulated. Intuition suggests that window flow control becomes ineffective when the
buffer-delay product of the stream is large. For instance, consider a source that produces cells
at 1 Gbps. Assume that the connection goes coast-to-coast with a total delay of about 25 ms.
The bandwidth-delay product is then about 25 Mbits. If it limits the number of cells to fewer
than the equivalent of 25 Mbits, the window flow control slows down the connection. If it limits
that number to 25 Mbits, then there is no guarantee that the cells will not pile up in a few
nodes, so that the control is not effective. For such sources, a leaky bucket control may prove
more effective. In practice, a 45-Mbps source (HDTV) is already quite fast and it is not sure
that window flow control cannot be made effective for such rates. However, common wisdom
seems to currently favor open-loop rate control.

There is a compromise between quality of service and number of connections that can be
accommodated. One method for reaching a satisfactory compromise is through pricing mecha
nisms. Various pricing mechanisms are being explored. We do not discuss this important issue
here for lack of space.

With this general overview behind us, we can begin our exploration of analytical methods.
Before turning to this exploration, let us make a few general observations. Our objective will
be to develop methods that network engineers can use to improve networks. Specifically, we
focus on methods that estimate cell loss rates. In the paper, we explain how to estimate the



loss rate if one has a good model of the traffic. In practice, such good models may be obtained
by running an estimation algorithm as the network operates. One can also design control
algorithms that learn desirable control actions without attempting to estimate parameters of
traffic models. We believe that the analysis that we present can guide the development of
such adaptive control algorithms. Finally, keep in mind that the performance evaluation of
ATM networks is a relatively new subject and although some useful results are available much
remains to be done.

Most sources produce bursty cell streams. That is, the peak instantaneous rate of such
streams is much larger than their long-term average rate. Allocating bandwidth according to
the peak rate results in low resource utilization. For connections that can tolerate some amount
of loss, a significant saving in bandwidth can be achieved via time-averaging of fluctuations of
such streams and by statistical multiplexing of many traffic streams. Such averaging smoothes
out the fluctuations of the streams. Time averaging occurs in large buffers and is the subject of
section 4. Statistical multiplexing is discussed in section 5.

4 Large Buffers

In this section, we consider a situation where the loss rate is kept small by using a large buffer.
The buffer stores bursts of cells that arrive faster that they can be transmitted. It is unlikely
that the bursts are frequent enough to make the buffer overflow.

Except for very simple source models (e.g., Poisson or a Markov modulate process with few
states), it is difficult to analyze exactly the small loss rate at a large buffer. The cause of the
difficulty is that the state space of a Markov model of the source and buffer system is large
and this fact makes the numerical analysis complex. Because of that complexity, and with the
objective of deriving tractable results, we turn to an asymptotic analysis of the loss rate as the
buffer becomes large. Not surprisingly, the loss rate becomes smaller as the buffer increases.
When the buffer is large, the loss rate is well approximated by an exponential function of the
buffer size. Roughly, the loss rate is approximately exp{—BI(C)} where B is the buffer size (in
cells, say) and 7(C) is some increasing function of the transmitter rate C and, obviously, of the
statistics of the traffic. We argue that we should choose C large enough so that exp{—BI(C)}
is small enough. For our video source, we want exp{—BI(C)} « 10~6 when B = 1,000. (See
section 2.) Thus, we want 7(C) « 1%. For our database source, we want exp{—BI(C)} « 10~8
for B = 20,000, so that 7(C) « 0.1%. We designate this target value of 7(C) by 6. Thus, 6=1%
for video and 6 = 0.1% for database. (Once again, recall that these are working hypotheses and
not standards.)

Now suppose that there are J types of traffic, and nj sources of type j are multiplexed onto
an output link. We want

lim ^logP(W>B)<-6,
B-»oo D

where W is the stationary buffer occupancy. It is shown [12, 7, 9, 11] that under appropriate
assumptions, this constraint can be satisfied when

£>;«;(*)<<?, (1)
jeJ

where C is the total output link rate, and otj(6) is the effective bandwidth{ot the type j source
corresponding to 6. The most general result is in [12, 7] where the above conclusion is shown
to hold for a very large class of traffic sources.

Equation (1) allows a simple policy for call acceptance that is analogous to that of the
traditional circuit-switch networks, since the effective bandwidth for each call can be determined
independently of the other types of calls. Furthermore, since ctj(S) lies between the mean and
peak rates of the source, the difference between the peak rate and otj(6) is the bandwidth saving
through multiplexing.

The effective bandwidth a(6) of a source that produces a random number A(t) of cells in t
seconds can be calculated as



a(Q =tp (2)
where

A(6)= Um \lozE{e6A^}. (3)
When 6 is small enough, one may be able to justify the following approximation:

logE{e6A^} «log[l +6E{A(t)} +̂ E{A(t)2}] «6E{A(t)} +̂ E{A(t?},
which results in

a(6)x\ +±6D7 (4)
where

A:= Um ^E{A(t)} and D2 := Um \e{A(1)2}.
t~oo t t-»oo I

In the above definitions and in (4), A is the average rate of the stream and D2 is called its
dispersion. This simple approximation for 6 <C 1 shows that the effective bandwidth increases
with the burstiness of the stream and indicates that an approximate measure of burstiness (for
large buffers and small 6) is the dispersion. Note that 6<1 means that we are willing to lose
quite a few cells so that the second moments of the stream are good predictors of the loss rate,
as one might guess from a functional central limit theorem. When 6 is larger, then the losses are
determined by the tail behavior and the higher moments cannot be neglected in the calculation
of the effective bandwidth.

Formulas or algorithms are available for calculating the effective bandwidth of a large class of
models. See e.g. [12]. Methods for on-Une estimation of the effective bandwidth are the subject
of current research and so are adaptive techniques for selecting a suitable value of C.

The above result deals with a single buffer and may be usable for a local ATM network.
When traffic goes through multiple buffers, the situation becomes more complex. When streams
share a buffer, they interact and modify each other's statistics and effective bandwidth. At first
the problem appears intractable: the statistics of a stream depend on those of all the streams
it interacted with and the same is true for the latter streams. Fortunately, a simplification
occurs. One can show that if the transmitter rate C of a buffer is large enough, then a stream
preserves its effective bandwidth as it goes through the buffer. Specifically, stream j preserves
its effective bandwidth if C is larger than the sum of atj(8) and the average rate of all the other
streams that share the buffer. Here, Qj(6) is the decoupling bandwidth of stream j. Formulas
for calculating that decoupUng bandwidth are given in [7] where the appUcations of that result
to call admissions are discussed.

The above approach works weU only if the buffer is large. Numerical and simulation experi
ments show that admission control based on the notions of effective and decoupUng bandwidth
may be too conservative. What is happening is that the method is based on the estimate of the
exponential rate of decay of the loss probability and it ignores the pre-exponential factor which
may be very small.

In the next section, we analyze the case of many sources.

5 Many Sources

Many real-time appUcations, such as voice and video, are subject to tight delay constraints
and cannot allow large buffers. Over the small buffer region, the effective bandwidths are
significantly overestimated, leading to inefficient bandwidth utilization. Thus it is necessary to
consider the small buffer case separately.

The precise boundary that separates the large buffer case from the small buffer case is not
easy to determine. Our experiments suggest the foUowing rule of thumb for ON-OFF Markov
sources. The buffer is large if it can store at least a few bursts from a source. Here, a burst is
understood as the average number of ceUs that a source produces when it is ON. For instance,
if we model a variable bit rate video source (say MPEG 2) as being ON-OFF, then the average



duration of the ON period corresponds to the average duration of a scene of the movie where
the data compression is not very effective. The average duration of a typical movie scene is
a few seconds, say 6 seconds. During that time, the source will produce thousands of ceUs.
Indeed, the active period produces bits at a rate that is a few times the average rate, say 4
Mbps. During these 6 active seconds one source produces about 24 Mbits, i.e., about 6 x 104
cells. In section 2, we argued that a reasonable buffer for video was about 1,000 ceUs, shared by
a number of video sources. Thus, we are led to conclude that the video buffer is a small buffer.
Intuitively, the fluctuations of the video signal are slow and we cannot smooth them out with a
buffer of an acceptable size. To avoid having to design the network for the peak rate of traffic,
we can multiplex many sources.

In this section we analyze the case of small buffers. If the number of virtual circuits routed
through a Unk is large, the combined input rate from all the virtual circuits rarely exceeds a
value larger than the mean. Indeed, as we wiU see, the buffer overflow probability is roughly
inversely exponential in the number of virtual circuits N. We refer to this multiplexing approach
as the many sources asymptotic, as opposed to the large buffer asymptotic.

Consider then a large number N of sources that share a buffer served by a transmitter with
rate Nc. Thus, c is the service rate per source. The buffer can store Nb cells, i.e., b cells per
source. We want to analyze the buffer overflow probabiUty for large N.

We decompose our analysis into two parts. In the first part, we consider the case 6 = 0 (zero
buffer). In the second part, we examine the effect of 6 > 0 (small buffer).

5.1 Zero Buffer

The idea of not using a buffer may seem absurd, specially in view of the relatively low cost
of memories. However, we wiU see that this case is most interesting and leads to somewhat
counter-intuitive results.

We denote by Yj the stationary rate of source j, for j = 1,..., N. We assume that the sources
are independent and identically distributed, so that the random variables {Yj,j = 1,...,N) are
i.i.d. Note that we are ignoring the dynamics of the rates and are focusing instead on their
instantaneous distribution. The transmitter is unable to keep up with the traffic produced by
the N sources as soon as Y\ -\ \-Yn > Nc. We can estimate the fraction of time that this
situation occurs by using Cramer's theorem [4],

P(Yi + •••+ YN > Nc) » e-"J<c\ (5)

where 7(c) = supe[0c- <p(0)}, and <p(0) = log£[exp(0Yi)].
For ON-OFF Markov sources with birth rate A, death rate ft, and ON-rate o, we note that

Yj takes values in {0, o} with P(Yj = o) = 1 - P(Yj = 0) = A/(A + /i) = p. Consequently,

The value of 0 that maximizes 7(c) is 0C = ^log(A(^c)), at which 7(c) = flog(^) +(1 -
f)log(^).

We will use a refinement of Cramer's theorem due to Bahadur and Rao [3] (see also [6],
section 3.7). Numerical experiments show that the increase in complexity of the algebra results
in much improved estimates. Using the Bahadur and Rao theorem, we find (see Appendix)

P(Yi +•••+YN >Nc) « -—J—-e-NI^\ (6)
In the above expression,

2_M"(0C) 2
" M(0C)

where

M(0):=E[exp(0Y1)]



and 0C achieves the maximum in

7(c) = sup[0c - <p(0)].
o

As a numerical example, we use the following values for two-state sources, each with states 1
and 0: 1/A = 45 sec, l//i = 5 sec, a\ = 3 Mbits/sec, ao = 1 Mbits/sec, and c = 1.55 Mbits/sec.
This two-state source is a constant source with rate ao plus the ON-OFF source define earUer
with a — ai — ao.

Note that the number of sources that are in state 1 has a binomial distribution. Thus the

probabiUty that the aggregate input rate exceeds the output rate can be represented exactly as

N

\N-k

k>N(c—a0)/(ai—a0)

For large Nt we approximate Nl by Stirling's formula: N\ ~ NNe~Ny/2vN.
This is compared with the approximation using Cramer's theorem given in Eqn. 5 and the

refined approximation in Eqn. 6. The result is plotted over a range of values for N in Figure 1.
Note that Eqn. 6 not only is much closer to the exact value than Eqn. 5, but also approximates
the exact value well even for very small N.

The Bahadur-Rao theorem enables us to analyze the case of multi-rate sources. That theorem
can also be used to analyze the overflows of mixtures of different types of sources. To do this, say
that we have 50% of sources of type Y and 50% of sources of type Z. We can then construct an
hybrid source W that is of type Y + Z. The analysis of such a situation reveals that the value of
c required to achieve a small loss probabiUty cannot be written as the sum of the necessary rates
for the V-sources and the ^-sources. Thus, unfortunately, for small buffers there is no additive
result similar to the effective bandwidth. Our preUminary work indicates that the boundary of
the acceptable region is convex. It appears that the "closer" Y and Z are in terms of the peak
and average rates, the closer this boundary is to a hyperplane.

5.2 Small Buffer

In this section we explore the effect of the small buffer b per source on the loss probabiUty. We
combine the analysis of Weiss [14] with our application of the Bahadur-Rao theorem.

Recall the model. There are N i.i.d. sources that share a buffer with capacity 7V6 and served
at rate Nc.

FoUowing Weiss, we argue that the buffer overflows because of the conjunction of two events.
First, the sources become active at the same time, so that their total rate reaches Nc. Second,
their total rate continues to exceed Nc long enough so that the buffer accumulates Nb ceUs and
starts overflowing. We calculated the probabiUty of the first event in the previous section, using
the Bahadur-Rao theorem. In [14], Weiss calculates that, for ON-OFF sources, the UkeUhood
of the second event is approximately given by

exp(-NC2Vb)

when N is large. The value of C2 depends on the parameters of the sources. For the ON-OFF

sources defined earUer, d =^i(A(l -*)+#•£ log(jj£zj) - 2(fif - A(l - f))).
Combining this calculation with the result of the previous section, we conclude that the loss

probabiUty is approximately given by

V2TT<T0cy/N
exp{-iSr[7(c) + C2\/6]}.

We compare the approximation with Anick's exact derivation [1]. For the same two-state
sources as above, we fix N = 100, and plot the results over a range of values for b in Figure 2.
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Note that in this case the overflow probabUity does not improve very much by the presence of
a small buffer.

For comparison, Figure 3 shows the buffer overflow probabiUty when the transition rates of
the Markov sources are ten times faster (1/A = 4.5 sec, l//t = 0.5 sec). Note two observations:

(1) The benefit of placing a buffer at the output Une is much greater in this case. This
is because when the source alternates between the two states at a faster rate, the expected
duration over which the aggregate input rate exceeds the output rate is much shorter. Indeed,
define K = \N(c - a0)/(ai - a0)l and A = {K,K -f 1,..., N}. Then by solving the first-step
equations, the expected sojourn time in A can be expressed as

N-K

75[sojourn time in A] = 2_\

y/2ira0cy/N~

Of course, we need a satisfactory model of the video sources to calculate these values of N and
c. Once this calculation is performed, we know how many video sources can be transmitted
through each one of our switches.

The admission and routing of video calls is then reduced to the corresponding problems for
circuit-switched networks. Indeed, we know the capacity N of each Unk. A call is blocked if a
path cannot be found that has spare capacity. In fact, we can benefit from the lessons learned
for the telephone network and implement an alternate routing strategy with trunk reservations.

We then propose to analyze the database traffic as follows. If N video sources can go through
the switch, the averageavailable rate for the non-video traffic is C := N(c —m), where m is the
average rate per video connection (m < c). In a first approximation, we consider this rate as
fixed. We propose to solve the admission and routing problem for the database traffic by using
the effective bandwidth and decoupUng bandwidth heuristic. The justification for this approach
is that the acceptable delays are much larger and therefore, so are the queue lengths.

Finally, the best effort traffic is carried with the left-over capacity, at the lowest priority.

n-k

n jA
i=o L j=«+i

which is inversely proportional to ft.
(2) The approximation exp(—Ny/bC2) diverges more quickly from the exact values in this

case.

These two observations point out that one must normalize the time scale in order to deter
mine if the buffer can be considered "smaU." Take the time unit to be the average time that
a source spends in the ON state (= l//i), and the data unit the number of bits generated in
one time unit in the ON state (=a/p). Then the normalized buffer size is 6/t/o. Therefore the
system in Figure 3 has ten times the normaUzed buffer than that in Figure 2.

6 Admission Control

In this section, we propose guideUnes for admission control in an ATM network. We are aware
that these guideUnes need to be refined and we propose them mainly as a way of summarizing
the results of the paper.

Consider the problem of designing and controUing a wide area ATM network that supports
video and database services in addition to best-effort traffic (e.g., email). Recall our definitions
of video and database services in section 2.

We simplify the design by assigning priority to video traffic. We design the video traffic
assuming zero buffers. The motivation for this assumption is that buffers would only reduce the
loss rate by a small amount, as we saw in section 5.2. Say that we use Unks at 155 Mbps. We
calculate values of N and c so that Nc = 155Mbps and so that

,-NI(c)
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7 Conclusion

In this paper we reviewed methods that estimate the smaU loss probabilities in ATM networks.
We explained that these small losses are achieved by averaging traffic over time in a large

buffer or by multiplexing a large number of sources.
In the first case (large buffer), we discussed the notions of effective and decoupUng band-

widths.

In the second case (many sources), we analyzed the zero buffer and the small buffer cases
separately. We explained that the loss rate can be estimated by assuming zero buffers and that
a good estimate can be derived using a theorem of Bahadur and Rao.

Finally, we proposed a strategy for call admission control based on the previous results.
The network is first designed for video traffic by using the zero-buffer estimates. That traffic is
admitted and routed using alternate routing with trunk reservations. The next priority is for
database traffic and the network is designed and controUed using the effective and decoupUng
bandwidth ideas. This control amounts to a second level of alternate routing and trunk reser
vation. FinaUy, the best effort traffic is aUocated the left over capacity.

8 Appendix: Bahadur-Rao Theorem

Let i/(-)be the distribution of the i.i.d. random variables Y\, Y2, Define M(0) = E[exp(0Yi)],
and the "tilted" probability distribution

/. x _ exp(yx)u(dx) exp(yx)i>(dx)
7V '~ Jexp(yx)u(dx) M{y)

Thus the moment generating function of this distribution is

j^Hyw-MUfifl.
Taking the inverse transform of [MHffi]N>

v^N (dx) = convolution of Ncopies of v^(dx) = — M( \N—-•
M(fY

Thus

P{j?{Yi +- +Ys)>c) = r»mN(dz)
= M(y)N f e~^x+Nc^;N(dx +Nc).

Jo

Substitute 7 = 0C,

P(jfW +—+**r) >c) =c"NJ(c) / e-6eSi>o?(dz +Nc).

Note that the mean of voc(-) is ^lel] ~ c' an<* *ts v31**1106 is ff2 = M(e°$ ~ c*- Therefore
UgN(-+Nc) has zero mean andvariance No*. Approximate it byJV(0, No2)andlet y = x/y/Ncr,

[,-*-*h*+n.) - jJ^j; ,—0c*-— """e~ajvir3 dx

_ _L-e$(ecy/N*)' f°° c-i(y+ecN/w<r)3dy
y/2* Jo

y/2^ Jec
e-^'2dy.

y/Na
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Since /u°° exp(-y2/2)dy ~ iexp(-ti2/2) as it —oo ([8], Theorem 1.3), we further obtain the
following approximation:

^(yi+...+yN)>c)ra_L_^e-^.. (T)
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