

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

AN EXACT OPTIMIZATION OF TWO-LEVEL

ACYCLIC SEQUENTIAL CIRCUITS

by

Ellen M. Sentovich and Robert K. Brayton

Memorandum No. UCB/ERL M94/48

1 July 1994

AN EXACT OPTIMIZATION OF TWO-LEVEL

ACYCLIC SEQUENTIAL CIRCUITS

by

Ellen M. Sentovich andRobert K. Brayton

Memorandum No. UCB/ERL M94/48

1 July 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN EXACT OPTIMIZATION OF TWO-LEVEL

ACYCLIC SEQUENTIAL CIRCUITS

by

Ellen M. Sentovich andRobertK. Brayton

Memorandum No. UCB/ERL M94/48

1 July 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Exact Optimization of Two-Level Acyclic Sequential Circuits

Ellen M. Sentovich and Robert K. Brayton
Department of Electrical Engineering and Computer Science

University of California, Berkeley, CA 94720

1 July 1994

Abstract

Several algorithms for gate-level sequential circuit optimization have been reported in the literature. They
perform operations similar to those in the more mature multilevel combinational domain while taking relation
ships across several time periods into account. These techniques are heuristic and their application ad hoc: there
is no guarantee of optimality by any definition beyond "no further improvement". In this paper, we present
a technique for producing an optimum two-level acyclic sequential circuit. While the circuit restrictions (e.g.,
two-level, acyclic) and cost function are limiting, the guarantee of optimality is novel and illuminating. The
technique presented herein is useful for optimizing sub-circuits of a multilevel sequential circuit just as two-level
combinational techniques have been in the combinational domain. Furthermore, the algorithm can be used to
detect precisely circuits in which logic sharing across latch boundaries is actually possible - a hitherto unsolved
problem.

1 Introduction

Several methods for optimizing gate-level sequential circuits have been reported. [MSBSV91] combines peripheral
retiming, which pushes registers to the boundary of a logic block, with standard combinational optimization
techniques; [DeM91] considers extraction, factorization, and elimination of synchronous factors across register
boundaries; [Lin93] presents a more formal framework for the extraction of synchronous factors. These algorithms
are heuristic and hence do not guarantee an optimum result in terms of number of gates, registers, or connections.
They are simply iterated until no further improvement is achieved. In fact, there are no theoretical optimum results
reported thus far for gate-level sequential circuits.

While only limited results have been reported for exact optimization of multilevel combinational circuits (e.g.,
[Sas89]), solutions to the exact two-level combinational logic optimization problem are well-developed. The input
is a combinational circuit represented by a Boolean function; the output is a minimum-gate, minimal-connection
implementation represented by a prime Boolean function with a minimum number of implicants. Traditional exact
two-level logic optimization algorithms consider only prime covers and therefore are based on the assumption
that an implicant costs no more than any implicant it contains. This is a valid assumption when the target is a
minimum-gate solution with implicantcost equal to the number of literals.1 As a result, a minimum-gate solution
can be found by selecting a minimum number of prime implicants. Exact techniques based on this cost function
[McC65, Rud89] employ the followingalgorithm:

Two-level Exact Algorithm:

1. Compute all primes.

2. Form the covering table.

3. Solve the minimum-column cover problem.

The covering table contains one row for each minterm of the ON-set and one column for each prime. A '1' entry
in the table indicates that the column prime covers the row minterm. The minimum-column cover represents a
minimum-gate implementation.2

1See [Rud89] for a brief on cost functions for PLAs.
2As noted in [Rud89], this does not guarantee a minimum-transistor (minimum-literal) implementation as this cost function does

not satisfy the assumption above. See [Rot80] for a minimum-transistor optimization algorithm.

This algorithm is useful for producing optimum PLA implementations [BHMSV84], for solving subproblems in
multilevel logic optimization [BRSVW87], and for producing good initial implementations for multilevel optimiza
tion.

Exact techniques for two-level acyclic sequential circuits can similarly provide a means of local optimization
for multilevel sequential circuits. A set of nodes and registers in a multilevel circuit can be clustered together and
an optimum implementation found using the algorithm presented herein. The optimum solution considers sharing
logic across multiple time frames. The ability to do such local restructuring of logic and registers is important for
various cost functions, such as minimum area and minimum delay, but also for other criteria such as re-encoding
parts of a state machine. Furthermore, exploration of such techniques provides insight into the logic optimization
problem in the synchronous domain.

The main results are summarized in the next section, with detailed development and analysis following. This
begins with the underlying assumptions that are made for the development of exact two-level acyclic sequential
circuit optimization in section 3. This is followed by the definition of a synchronous Boolean function, which is
used to represent a sequential circuit, and operations on synchronous Boolean functions in section 4. The exact
optimization algorithm is presented in section 5. A description of the implementation, which involves casting the
problem to a multioutput combinational problem, is given in section 6. Conclusions and directions for future work
are given in section 7. An expanded version of this work is available in [SB94].

2 Summary of Main Results

The key result of this investigation is the development of an exact optimization procedure for sequential circuits.
The input is an acyclic sequential circuit consisting of logic gates and edge-triggered registers controlled by a single
global clock. The output is a minimum-gate two-level implementation with an arbitrary number of registers. The
procedure effectively combines retiming and logic optimization while guaranteeing the optimality of the result.
This was not guaranteed by previously published algorithms which applied the two in an ad hoc fashion.

The optimization problem for a single synchronous output is proven to be equivalent to the multiple output two-
level combinational problem where each of the outputs represents a particular time frame of the single output. The
target implementation (two-level, minimum-gate, arbitrary number of registers) is restrictive yet has application
to sub-problems (e.g., sequential node optimization) and certain architectures (e.g., some plds, where registers are
essentially free). This algorithm is also a useful research tool for determining with certainty when logiccan actually
be shared across register boundaries. This is demonstrated in section 6.3. This logic sharing determination is an
important step since in many cases in [MSBSV91, DeM91, Lin93] no area improvement was obtained. It was not
known if this was due to a lack of common logic across time frames in the circuit structure or due to limitations in
the (heuristic) algorithms.

3 Preliminaries: Assumptions and Problem Definition

The algorithm developed in the sequel applies to acyclic, synchronous circuits with edge-triggered registers con
trolled bya single global clock. Such circuits arehereafter referred to assynchronous circuits.3 Theacyclic property
ensures that the output signals can be expressed as feedback-free functions of the input signals. The synchronous,
edge-triggered, and single-clock properties together ensure that the retiming algorithm can be applied to the circuit
while maintaining the correct input/output behavior [LS83]. The initial synchronous circuit can be two-level or
multilevel. Each output is later expressed as a single function of the synchronous inputs (i.e., the input signals
at different time periods) and represented and optimized using a single synchronous Boolean function (a precise
definition follows in section 4.1). Structurally, the re-expression process is a combination of combinational logic
collapse (which may involve duplication) and retiming. The resulting synchronous Boolean function is equivalent
to a two-level circuit with all the registers stacked at the inputs.

Thegoal is to obtain an optimum two-level representation for the synchronous circuit. The two-level represen
tation targeted is given in the following definition.

Definition 3.1 A two-level synchronous circuit has a level o/AND gates followed by a level ofOR gates, and
an arbitrary number of registers preceding andfollowing each level of logic.

3In fact, this is a narrower definition than the one generally accepted which requires the sequential elements to be clocked but
permits any clockingscheme. We re-use the term here to avoidintroducingadditional terminology.

^=o z —x*x3 + 51x3

(a) A collapsed two-level synchronous circuit

Z= (X°*2)l + (x°x2)l + 3.33.2^1

(b) An equivalent two-level synchronous circuit

Figure 1: Two forms of a Two-level Synchronous Circuit

It is assumed that all the synchronous inputs are available in both their true and inverted forms. A two-level circuit
can be implemented in other ways besides the and/or configuration. For simplicity, the structure will always be
viewed here as an and/or combination.

Example 3.1 Two two-level versions of the same circuit are shown in Figure J.

Exact Optimization Problem: Given an acyclic synchronous circuit, find a two-level synchronous circuit im
plementation with a minimum number of logic gates.

The target implementation is a two-level synchronous circuit as given in Definition 3.1. The solution has a
minimum number of AND gates; the number of OR gates is fixed by the number of outputs. Initially, no constraints
are placed on the number or location of the registers.

4 Functional Representation: Synchronous Boolean Functions

A synchronous Boolean function is similar to a combinational Boolean function (defined precisely in [BHMSV84]),
with an extension to the input space for expression of the sequential nature of the function.

4.1 Definition

Definition 4.1 Let B = {0,1}, R = {0,1,.. .,r} and D = {0,1,2}. An n-input, m-output incompletely specified
synchronous Boolean function T is a mapping

T:(BxR)n-+ Dm

The values i 6 R represent time points, and r is the depth of the function.
A synchronous circuit with n input variablesx\, X2,..., xn is represented by a synchronous function of n(r+ 1)

synchronous input variables x = {x},x§,.. .,x°, x},x£, ...,x*, ..., x\,xr2,.. .,xrn). A synchronous literal xj (xj)
represents the value 1 (0) for the input x,- at time j. The superscript 0 is often omitted: x° = x,-. A synchronous
minterm of n inputs and depth r is a concatenation of n(r+l) literals and represents an assignment of each input to
a value in {0,1} for each time point {0,1,..., r}. A synchronous cube c is a concatenation of synchronous literals.

A literal is contained in a cube, x\ € c (x}{ € c), if the value of input Xj at time j is 1 (0) in c. The following are
equivalent: «J6c and x\ = 1 in c; x\ € c and x\ = 0 in c; x*, x* &c and x\ = 2 in c.

It is sometimes convenient to separate the input part of a synchronous cube from the state part. Let S =
{1,2,..., r}, and x* be a minterm (recall x,- is a variable, x\ is a synchronous variable, x\ and x\ are synchronous
literals), x' € Bn is an input minterm, s* 6(flx S)n is a state minterm, and v* 6(5x R)n is a synchronous
input minterm (a concatenation of x' and s%). x* represents the current values of the inputs xi,X2,. ..,xn, while
v* represents the values of the inputs currently and for r previous time periods. Note that the "state" part of
a synchronous input minterm v* is composed specifically of previous input values; it does not represent symbolic
states that may be encoded differently in different implementations of the same circuit. (In other words, two
equivalent circuits in their collapsed form will have the same encoding since all registers are stacked at the inputs.)

4.2 Relationship to Synchronous Circuits

Any acyclic synchronous circuit can be represented by a set of synchronous Boolean functions, one for each
output.

An acyclic synchronous circuit can be collapsed so that each output is expressed as a synchronous Boolean
function of the synchronous inputs. The collapse operation is possible because the circuit is acyclic; collapse with
retiming does not change the logical behavior of the circuit because it is synchronous. The collection of synchronous
Boolean functions for the outputs is therefore a valid representation for the synchronous circuit.

Each synchronous variable x\ in the function represents a signal in the circuit, and each synchronous literal, x\
or X; represents the value of the signal x\. The values j GR represent the values of a global clock, and the depth
r of a circuit is the maximum number of registers from a single input to a single output.

4.3 Equivalence of Synchronous Functions

Definition 4.2 Two completely specified synchronous Boolean functions, F\ : (B x Ri)n —> Bm, R\ =
{0,1,...,ri}, and F2 : (B x R2)n -• Bm, R2 = {0,1,.. .,r2}, are equivalent (denoted Fx = F2) if, for each
minterm of the smaller synchronous input space v\ they produce the same output minterm: if r*i < r2, then
FX = F2& Vv* €(Bx Rtf, F^if) = F2(vi).

The intuition behind this definition of equivalence and the following corollary is that two synchronous circuits are
equivalent if and only if they produce the same output minterm given the same sequence of rx + 1 input minterms.
That is, they will behave identically after the first r\ input minterms have been applied. This is independent of
initial state. Note if n < r2, F\ = F2 implies F2 does not functionally depend on xri+1,xri+2, ••-xra.

Corollary 4.1 Given two synchronous circuits C\ and C2 with depths ri and r2, where ri < r2 (r2 < r\), and
represented by synchronous Boolean functions F\ andF2, if F\ = F2 then C\ and C2 are guaranteed to produce the
same output sequence given the same input sequence after the first ri +1 (r2 +1) input minterms have been applied.

While it appears that definition 4.2 requires Fi and F2 to produce the same output given the same input values
and state values, in fact, equivalence is based on input values only since the state values in synchronous Boolean
functions (representing collapsed synchronous circuits) are precisely the input values at previous time periods. As
a result of corollary 4.1, two two-level circuits with equivalent synchronous Boolean functions are guaranteed to
have equivalent steady-state behavior. The algorithm in section 5 produces an optimum equivalent synchronous
function.

4.4 Synchronous Cubes and Synchronous Implicants

A number of definitions and some explanation is needed as a foundation for proving the exact result given in
section 5. The details of these definitions are in Appendix A. The key results are the definitions of a synchronous
implicant, synchronous implicant containment, and a synchronous implementation set (unlike the combinational
case, there can be several implementations of a synchronous implicant).

A synchronous implicant c(Ic), where c is a synchronous cube and Ie is a set of integers, represents several
synchronous cubes that are implicants ofthe given function. Example: xiX2(0,2) ={• x\x\ and xfx^ are implicants.

s

A synchronous implicant c(Ie) contains d(Id), c(Ie) D d(U), if each synchronous cube in d(Id) is contained in the
set of synchronous cubes represented by c(Ie). The cost of a synchronous cube c is number of literals in c. A
synchronous implementation set represents all implementations (retimings) of a synchronous implicant.

5 Optimizing Synchronous Functions

In Appendix A section A.l, an example is given which illustrates the need for exact two-level techniques, i.e., it
illustrates that combining retiming and resynthesis techniques is not enough to guarantee optimality.

Exact two-level combinational logic optimizationtechniques generate a solution containing a minimumnumber
of prime implicantsusing the algorithm given in section 1. This guarantees a minimum-gate solution. Exact two-
level synchronous logic optimization techniques will likewise generate a solution with a minimum number of gates,
and with an unconstrained number and placementof registers around the gates. The solution will take the form of
a minimumnumber of prime implicants, with the notion of a prime implicant extended for synchronous circuits.

5.1 Exact Two-level Synchronous Logic Optimization

Definition 5.1 A synchronous prime is a synchronous implicant that is synchronously contained by no other
implicant than itself: c(Ie) C d(Id) and c is prime =» c(/c) = d(U).

Proposition 5.1 All implementations of a synchronous cube have the same cost with respect to a minimum-gate
implementation.

Proof. See Appendix B. D

Proposition 5.2 A synchronous implicant costs no more than any synchronous implicant it contains with respect
to a minimum-gate implementation.

Proof. See Appendix B. •

Corollary 5.1 There exists a minimum-gate two-level synchronous circuit that is represented by a set of syn
chronous primes.

The key result of Corollary 5.1 is that an exact solution can be found by considering only synchronous primes.
This is analogous to the combinational case, so the two-level exact algorithm given in section 1 can be used for
synchronous circuits.

5.2 Prime Generation

The consensusoperation can be expanded to generate synchronousprimes. Intuitively, the combinational consensus
of two implicants, if not empty, generates

• an implicant that contains both implicants (a larger implicant), or

• an implicant that contains parts of both implicants(an implicant that "bridges the gap" between two impli
cants), or

• an implicant that is contained by both implicants and is an implicant for a larger set of output functions.

Synchronous consensus will generate in addition

• an implicant that contains parts of both implicants in several time frames.

All implementations of a synchronous implicant must be considered for prime generation. Detailed definitions
of an implementation set associated with a synchronous implicant, and the consensus of two such sets, denoted ©,
is given in Appendix A. The key theorem is the following:

Theorem 5.1 Iterated synchronous implementation set consensus generates all synchronous primes.

Proof. See Appendix A. D

5.3 Prime Covering and Implementation

The covering table is built with a row per synchronous minterm of the ON-set and a column per synchronous
prime. The ON-setminterms are combinational cubes in the synchronous space (B x R)n and are generated from
f-DC(f). A prime c(Ic) covers a minterm m if 3ic G Ie s.t. m C'c [c]. (Note that the time shift by k of c, denoted
*[c], is obtained by adding k to all superscripts in c.) The synchronous primes are initially expanded into a set of
combinational primes in the synchronous space:

combinational primes ofprime c(Ie) —{d \d=,c [c], ie € Ic}

Each column therefore represents a set of cubes, and minterm m is covered by c(Ic) if m C combinational primes
of c(Ie). The complete table is formed and the covering problem solved. See [Rud89] for efficient minimum
column-covering algorithms.

Once the minimum set of synchronous primes has been selected, an implementation is generated directly by
implementingeach prime c(Ie) by its implicit structure (c),e"»«« (see Appendix A).

Example 5.1

Simple Synchronous Implicants
xix3(0)
X2X3(1)

xix2x3(0)
£1X2X3(1)

/ = xix3 + x\x\

DC{f) - Zl«2«3+ *l^2X3

Implementations
xix3(0)
x2x3(l) x*x3(0)

XiX2X3(0)
xix2x3(l) xjx^xj(0)
S3 55

Remove contained cubes: xiX2X3(0) C xix3(0), £1X2X3(1) C X2X3(1). Synchronous consensus: xix3(0) 0
#2^3(1) = xiX2X3(0,1). No cubes can be removed by containment, and subsequent iterations of consensus produce
no new cubes.

Primes: Xix3(0), x2x3(l), xiX2X3(0,1). ON(f) = xix2x3(0)-|-xiX2X3(l).

X1X3 1*1
XnX2-'3

1JJX1X2X3 -f-XjXjX^
Covering table: x\x2X3

^i*2x3

(The rows above actually contain cubes rather than minterms. This creates a more compact but not complete
covering table. The result is the same for the complete table.)
Solution: f = xiX2X3(0,1).

6 Implementation using Combinational Prime Generation

The theory presented in the last few sections treats synchronous functions in a slightly different way than combina
tional functions. As shown in the following section, asynchronous function can be partitioned into a combinational
multioutput function, where each output represents a different time frame. This formulation provides the basis for
a simple implementation using existing, efficient espresso code.

6.1 Synchronous Functions as Multioutput Functions

Solving the two-level exact synchronous circuit optimization problem as a multioutput two-level combinational
optimization problem involves three steps:

1. Partition the synchronous Boolean function into a set of combinational Boolean functions that together
represent the synchronous function.

2. Compute the primes for the multioutput combinational function and translate them to synchronous primes.

3. Form the covering table and find an optimum solution.

In the following, / is a synchronous Boolean function, x*' = {x{,x2,..., xj,} is the set of input variables in the z*'h
time frame, and 0tf is the time-shift ofall literals in all cubes of / by i (e.g., $i(x\x\ + xi) = x\x\ + xj). CXif is
the consensus of / with respect to all the variables in x*.

A synchronous Boolean function / with depth r can be partitioned into r + 1 functions, fQ, f\,..., fr, where

/o = /

/i = *-i(<W)

h — 0-2(Cx°x»/)

fr — 0-r{CXoxi...Xr-if)

Proposition 6.1 f = fQ+1 [/i] +2 [f2] + •••+r [/r].

Proof, /o = / by definition.' [/,-] = ' [0-iCxoxi...Xi-if] = Cxoxi...Xi-if C /. D

Clearly, the functions /,• are computed efficiently by noting that fi+i = 0_i(Cx°/i) for i = 0,1,.. .,r - 1.

/o = /

/i = 0-i(£x°/o)
/2 = 0-i(CXofi)

fr = 0-l(Cxofr-i)

Example 6.1 Let f = x\x\ + xxx\ + x\. Then f0 = xxx\ + x^§ + x\, f1=x2 + xj, f2 = x3. The partitioned
function is f = x\x\ + x\x\ -f x\ -f- (x2 + xj)1 + (x3)2.

Once the synchronous Boolean function has been partitioned into its corresponding multioutput function, all
the synchronous primes can be generated by generating the combinational primes of the multioutput function. A
combinational primep that is an implicant for outputs /,-, /t+i,...,//, for example, is equivalent to a synchronous
prime p(i,i+l,.. .,j).

Proposition 6.2 Given a synchronous function f, iterated combinational consensus of the corresponding parti
tioned multioutput function F produces all synchronous primes.

Proof. See Appendix B. D

This method of generating synchronous primes also generates some non-primes and duplicates of some primes
in different time frames. A final time-shift operation is performed on each cube to generate simple cubes and syn
chronous containment can be used to remove any non-primes. In practice, a judicious ordering of the combinational
prime generation and containment operations, interspersed with simple synchronous operations (e.^., creating sim
pleimplicants, removing implicants with support outside of/ + DC(f)) obviates the need for performing the more
expensive synchronous containment check.

Despite the overhead of partitioning the function, converting it to and from a synchronous representation, and
generating extra cubes when generating primes, this method for prime generation has a distinct advantage since
efficient combinational prime generation techniques alreadyexist [Rud89].

6.2 Don't Care Conditions

External don't care conditions may be present if, for example, the acyclic synchronous circuit is part of a larger
sequential design. In this case, there may be several types of flexibility that can be exploited in determining an

synch-exact(C)

{
/* Break cycles (if necessary) with a minimum feedback arc set */
make-acyclic(C);

/* Create the partitioned function and generate the primes */
F = 0N(C); D = DC(C);

FDC = F + D;

F_part = partition(FDC);
D_part = partition(D);
generate_combinat ional_primes (F_part);

/* Remove duplicates, remove non-primes */
trim-primes(F-part);

/* Split each synchronous prime into a set of combinational cubes */
/* and form the covering table */
split-primes (F-part);
T = generate.covering-table(F_part, D.part);

/* Merge back to synchronous primes and find a minimum cover */
merge.columns(T);
f ind-minimum-cover(T);
C = generate_implementat ion(T, F.part);

}

Figure 2: Algorithm

optimal implementation, e.g., don't care conditions, Boolean relations, and flexibility based on the cyclic sequential
nature of the machine. Some of these can be expressed as don't care conditions at the logic level and expressed as
a synchronous Boolean function.

This don't care function can easily be incorporated into the optimization algorithm presented herein: given /
and DC(f), the primes are generated from the function / •+• DC(f). If the partitioned-function method is being
used, / + DC(f) is partitioned before primegeneration (i.e., f and DC(f) are not partitioned separately).

6.3 Experimentation

The final algorithm as implemented is outlined in figure 2. Some examples have been run and the initial results
are illuminating. We have compared the results of the exact sequential algorithm with the exact combinational
one. The reason for this is that one open question in the area of gate-level sequential circuit optimization has
been the utility of algorithms that exploit sharing of logic across several time frames. Results reported thus far
[MSBSV91, DeM91] have suggested that logic functions of this form are uncommon in real circuits. After testing
our algorithm on 10 of the smaller MCNC benchmark finite state machines, we have found the presence of this
logical structure in 3 of them, as evidenced by a better combined result for the synchronous algorithm (total of 73
cubes) than the combinational one (total of 79 cubes). The logicsharing exists in these circuits but is not common.
We expect this logical feature to appear more in data path-type circuits. This suggests that gate-level sequential
techniques do in fact have their utility. Our experiments are ongoing, including applications to local re-encoding of
finite state machines (applying the algorithm after state assignment, with various choices for breaking the cycles)
and to various types of acyclic sequential circuits.

7 Conclusions and Ongoing Work

We have presented an algorithm for obtaining an exact minimum-gate implementation of an acyclic circuit. The
oretically, this provides insight into sharing logic across several time frames. Initial experiments are encouraging
are we are continuing to apply the algorithm at a variety of levels in the sequential synthesis process.

Minimizing the number of registers is an important related problem. Ignoring register cost, as done in the
initial algorithm, is unrealistic for some circuit design styles since the cost of a register is usually several times the
cost of a simple gate. (However, for some design styles, notably plds, the registers are built-in and hence incur no
additional cost.) We are currently exploring techniques for minimizing the number of registers. There is a partial
analogy between minimizing literals in a combinational circuit and minimizing registers in a sequential circuit. This
means that a technique similar to the make_sparse procedure in ESPRESSO can be used to heuristically reduce the
number of registers. In addition, we are investigating expanding the covering procedure to take register cost into
account. We are also exploring extensions to cyclic circuits by unrolling cycles and applying these techniques to the
unrolled circuit. This may lead to a re-encoding technique that produces smaller FSM implementations. Finally, we
are investigating extensions of this technique to produce limited forms of multilevel circuits with some guarantee
of optimal sharing across time frames.

8 Acknowledgements

Many useful discussions with Richard Rudell about two-level exact combinational techniques are gratefully ac
knowledged. This research was supported by NSF under grant number EMC-8419744.

References

[BHMSV84] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli. LogicMinimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[BRSVW87] R.K. Brayton, R. Rudell, A.L. Sangiovanni-Vincentelli, and A.R. Wang. MIS: A Multiple-Level Logic Opti
mization System. IEEE Transactions on Computer-Aided Design, CAD-6(6):1062-1081, November 1987.

[DeM91] G. DeMicheli. Synchronous Logic Synthesis: Algorithms for Cycle-Time Minimization. IEEE Transactions on
Computer-Aided Design, CAD-10(l):63-73, January 1991.

[Lin93] B. Lin. Restructuring of Synchronous Logic Circuits. In Proceedings of the European Conference on Design
Automation, pages 205-209, Paris, France, February 1993.

[LS83] C.E. Leiserson and J.B. Saxe. Optimizing Synchronous Systems. Journal of VLSI and Computer Systems,
l(l):41-67, Spring 1983.

[McC65] E.J. McCluskey. Introduction to the Theoryof Switching Circuits. McGraw-Hill Book Company, 1965.

[MSBSV91] S. Malik, E.M. Sentovich, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Retiming and Resynthesis: Opti
mizing Sequential Networks with Combinational Techniques. IEEE Transactions on Computer-Aided Design,
CAD-10(l):74-84, January 1991.

[Rot80] J.P. Roth. Computer Logic, Testingand Verification. Digital System Design. Computer Science Press, 1980.

[Rud89] Richard L. Rudell. Logic Synthesis for VLSIDesign. PhD thesis, University of California Berkeley, Electron
ics Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720, April 1989.
Memorandum No. UCB/ERL M89/49.

[Sas89] T. Sasao. On the Complexity of Three-Level Logic Circuits. In Proceedings of the International Workshop on
Logic Synthesis, North Carolina, May 1989.

[SB94] E.M. Sentovich and R.K. Brayton. An Exact Optimization of Two-Level Acyclic Sequential Circuits. Technical
Report Memorandum No. UCB/ERL, University of California Berkeley, Electronics Research Laboratory,
College of Engineering, University of California, Berkeley, CA 94720, July 1994.

A Operations on Synchronous Cubes

All combinational operations (e.g., intersection, union, containment, consensus) can be applied to synchronous cubes. The
synchronous variables are treated independently (i.e., the synchronous relationship between variables is not considered).
Precise definitions for these operations are given in [BHMSV84]. Synchronous operations take into account the time-delay
relationship between synchronous variables. The definitions in this section are given for single-output cubes for ease of
exposition; the extension to multiple-output cubes is straight forward.

(a) Original circuit

*i*2 * X2X3
x\x\(xl + xl)+
x2xl(xi + x2)

(b) Minimum-gate implementation

Figure 3: Optimizing a Two-level Synchronous Circuit

A.l Synchronous Cube Implementation

There is an important difference between combinational and synchronous cubes with respect to the minimum AND-gate opti
mization goal. While a combinational cube has exactly one implementation, a synchronous cube has several implementations
depending on the placement of the registers.

Example A.l The synchronous cube x\x\ has two implementations:

Xi

x2

-D-Df
-o-

(a) x\x\

>
Xi

X2

Hh yo-
XjX2

*\X\

(b) (x\x2y

All implementations have the same cost (a single and gate with the same number of inputs), but the maximally forward-
retimed structure (e.g., (b) in example A.l) implements a maximum number of synchronous cubes.

One might consider retiming all gates forward as much as possible before translating the circuit into Boolean functions
and beginning the process of generating primes and finding an optimum cover. However, such an algorithm would require
multiple forward retimings interspersed with prime generation techniques. In general, it is tempting to combine existing
techniques, namely structural retiming and algebraic combinational logic optimization, to optimize a sequential circuit.
In practice, this approach is not robust as it is difficult to determine the correct sequence of operations. A more direct
optimization algorithm, which will be described in section 5, dispenses with retiming (a structural operation) and instead
considers all implementations of a synchronous cube algebraically to find an optimum solution.

Example A.2 In the circuit shown in Figure 3, ON(f) = 11X2X2*3 + X1X2X2X3 and the minimum-gate implementation
contains a single AND gate. Obtaining this through a combination of retiming and combinational logic optimization would
entail a complex combination of partial forward retiming, retiming the don't care set, and combinational optimization.

While the best implementation for an individual cube is the maximally forward-retimed structure, all implementations
must be considered when implementing several cubes of a function. In example A.2, the final cube X1X2X2X3 is obtained by
using the DC-set and considering the implicant x\x\ in its forward-retimed structure (X1X2)1 while considering X2X3 in its
original structure. Synchronous "primes" are generated by considering all possible implementations.

In the following definitions, literal superscripts imply registers at the AND-gate inputs, and cube superscripts imply
registers at the AND-gate output. This structural notation is illustrated in example A.l. A synchronous cube c is assumed
to have only input registers and is the generic representation for cubes in the synchronous Boolean space. A structural
synchronous cube (c)r has input registers and r registers at the output.

10

Xl jj *v retime by-I Xi \ pi

** —g-LJ " *2 —L^U-
x\x\ (xix2y

Figure 4: Retiming

A.2 Basic Definitions

Cube Cost: The cost of a synchronous cube (c)r is \c\, which is the number of literals in c. The number of registers needed
to implement the cube is not included in the cost.

Cube Time-Shift: The time shift by k of a synchronous cube c is the synchronous cube d, d =k [c], which is obtained by
adding k to the superscripts of all the literals in c. It is used here to facilitate the remaining definitions. It is assumed
that a time-shift operation always results in a cube with positive superscripts.

Let jmin(c) be the minimum superscript in c.

Synchronous Simple Cube: A simple cubec has a minimum superscript of 0: jmin(c) = 0.

Retiming: The retiming byk of a synchronous cube (c)r, denoted [(c)r]ret,me *" fc, is the synchronous cube d, where

d=t[c)Y-k

Retiming by A; is equivalent to the movement of k registers from the output of c to its inputs. An example of retiming
is shown in figure 4.

Note that a structural synchronous cube (c)r implements several synchronous cubes:

(c)p implements c,1 [c] ,2 [c],... ,r[c]

A synchronous cube c that is maximally forward retimed implements

->m..(c) r_c] -Om.nCc)-!) [c] f. . . 0[«.] = c

A.3 Definitions for Synchronous Prime Generation

A structural synchronous cube (c)r implements several synchronous cubes, only some of which may be imphcants of the
given function. The notation (c)r is sufficient for indicating the implementation structure, but not for indicating which
cubes are implicants. A synchronous cube is annotated to create a synchronous implicant.

Synchronous Implicant: A synchronous implicant is an annotated cube c(Ic), where

c is a cube

Ie = {»c |'e [c] is an implicant}

The maximum integer in Ic is denoted tCmor:
»<=„„ = max »'c

'c

Example: xii2({0,2}) => x\x\ and x\x% are imphcants.
Each synchronous implicant represents several implicants of the function and is sometimes called a synchronous
implicant set. A synchronous implicant is not a canonical form: x\x\ can be represented by either xjx^O) or xiX2(l).
One implementation of c(Ic), the implicit structureiox the implicant, is the structural synchronous cube (c)m*x,«€/e,c.
A synchronous implicant c(Ic) that represents only one implicant, |/c| = 1 with tc € h, will be denoted c(ie). The
imphcants <f>(Ic) and c(<f>) represent the null cube.

Simple Synchronous Implicant: A simple synchronous implicant is an annotated simple cube c(Ic), where

c is a simple cube

Ie = {tc |'e [c] is an implicant]

It is a canonical form for an implicant. The implicit structure for a simple synchronous implicant is a maximally
forward-retimed cube.

The remaining definitions operate on simple synchronous implicants since they are canonical. However, they implicitly
represent only one implementation of an implicant. For prime generation, which is described in section 5.2, each
implicant is expanded to its set of implementations.

11

Synchronous Intersection: The synchronous intersection of synchronous imphcants c(ic) and d(id) is e(t'e) = c(ic) n
d(id), where

e = c n,,J"'c [d\, te = tc if ic < id
e = ,C~,<J [c] Dd, t'e = id if *c > id
e = c n d, te = t'c if »c = *<*

Synchronous intersection of simple imphcants produces a simple imphcant. Example: xi(l) n X2(2) = ui^l).
Synchronous Set Intersection: The synchronous set intersection of synchronous imphcants c(Ic) and d(Id) is the set of

synchronous imphcants obtained by pairwise intersection of each element in c(Ic) with each element in d(Id):

c(Ie) nd(Id) ={e(te) |e(t«) =c(tc) nd(id); ic €h,id €Id}
Example: x\x\(0,1) n xiX2(l)= {xix}x2(0),xiX2X2(l)}.

Synchronous Containment: A synchronous imphcant c(t'c) synchronously contains another imphcant d(id), c(ie) D d(id),
5

if and only if,c [c] D1* [d]. A synchronous imphcant set c(7c) contains another d(Id), c(Ic) 2 d(Id), if and only if

Vtd €Wd [d\ C (J c(tc)
ie€Ie

The following two results ensure that a minimum-implicant solution has minimum cost.
5

Proposition A.l c(ic) 2 d(id) => |c| < \d\.

Proof.*e [c] Did [d\ => fc [c]\ < f«» [d\\. The time-shift operator preserves cost (\c\ = f [c)\), so \c\ < \d\. D

Proposition A.2 c(Ic) 2 d(Id) => \c\ < \d\.

Proof. Assuming Id # 4,%d [d] C U,eg/C,c [c] and Proposition A.l together imply that \c\ < \d\. D

» a

Functional Equality of Synchronous Implicants: c(Ic) = d(U) if and only if c(Ic) D d(U) and d(Id) 2 c(/c). If c(Ic)
and d(/d) are simple, then c(Ie) = d(Id) •«=$• c = d and /c = Id.
Note that this is functional equality in the synchronous Boolean space. That is, if c(Ic) and d(Id) are equal, they
contain precisely the same minterms in the space (B x /?)n.

Implementation Set: A simple synchronous imphcant c(Ic) has tCmox +1 implementations to be considered. The imple
mentations are denoted Imp[c(Ic)]. Let Ic —i denote the set Ic of integers obtained by subtracting t" from each and
removing negative integers:

Ic - i = {j | »*c € Ic, j = »'c -1, j > 0}
Example: {0,2} -1 = {1}.
All implementations can be generated as follows:

Imp[c(Ic)] = {d(Id)\d(Id)=i[c](Ic-i),i = 0,l,...,iCmox)

Example: 11X2(1,2) represents two synchronous imphcants, x\xl and xfil. The implementations of these imphcants
are(xlxl)0, (uij)1, (x?x2)°, (x\x\f, (xix|)2. These are represented by the imphcants xix2(l,2), xlxl(O.l), x?x|(0)
which are generated by the formula above.

Synchronous Distance: The synchronous distance between two imphcants c(Ic) and d(Id) is 6(c(Ic),d(Id)), where

6(c(Ic), d(Id)) = 6(c,d) + 6(IC, Id), and

w-7')-^ * oti:;:t=*
, v / 1 if/cD/,

:'idJ~\ 0 otherwis
6(ic,id) is the same as the combinational case.

Synchronous Implementation Consensus: The synchronous implementation consensus of implementations c(Ic) and
d(Id), e(Ie) = c(Ic) © d(U), is given by

e(h) = t U6(c(Ic),d(Id))>2
e(Ie) = {(c © d)(Ien h)} if 6(c(Ic), d(Id)) = 1 and 6(c,d) = 1
e(/e) = {(c n d)(IcU Id)} if 6(c(Ic),d(Id)) = 0 or

6(c(Ic),d(Id)) = 1 and 6(Ic,Id) = 1

Examples: xi(l) © x2(2) = xix2(l,2); xi(0,1) ©i2(l) = Xix2(0,1); xixl(0) © xix|(0,1) = x!(0) = x2(2).

12

Synchronous Implementation Set Consensus: The synchronous implementation set consensus of c(Ic) and d(Id),
c(Jc) © d(Id) is the synchronous imphcant consensus of each implementation in /mp[c(/c)] with each implementation
in Imp[d(Id)]'

c(Ic)Od(Id)={g(Ig) | *(/,) = e(7.) ©/(//)

e(h) € Imp[c(Ic)], /(//) € Imp[d(Id))}

Theorem 5.1 Iterated synchronous implementation set consensus generates all synchronous primes.
Proof. Suppose

/ = C1(/Cl)+C2(/c3) + ... + C„(/cB)

Imp[f] = Imp[ci(ICl)] + /mp[c2(/ej)] + ... + Imp[cn(Ien)]

Suppose c(Ie) is a prime and Ic = {iei,iC2,...,ick}. Then Vt'Ci € h, c(iCj) ='e> [c] C /. Consider all the implementations
in time frame tc>, that is, all imphcants d(iCj) such that d(iCj) € d(Id) € Imp[f\.

Since synchronous consensus is identical to combinational consensus when all imphcants are in a single, common time
frame, the iterated consensus of all d(iej) above must generate some cube Cj(tCj) that contains c(tc,-) since c(tc) C /.
ei(*cj) 2 c(tcj) and e 2 c This is true for all iCj € Ic, and theconsensus of all of these ej(iCj) cubes is cj ne2n-ncfc(ic, U
tCj U... Ut'Cfc) = g(h), where g is a cube and g Dc. Since c(Ic) isa prime, g= c and consensus produces the prime c(Ic). D

In practice,not all pairsof implementations of two imphcants need to be considered. In fact, there area number of waysof
improving the efficiency of synchronous prime generation using synchronous containment and synchronous consensus. These
are not given here as the actual implementation was done using combinational prime generation, which is well-developed
and very efficient. The implementation details are in section 6.

B Proposition Proofs

Proposition 5.1: All implementations of a synchronous cube have the same cost with respect to a minimum-gate imple
mentation.

Proof. A synchronous cube c can be implemented in 1 +jmin(c) ways:

Each requires implementation of cube c with cost |c|. D

Proposition 5.2: A synchronous implicant costs no more than any synchronous imphcant it contains with respect to a
minimum-gate implementation.

a

Proof. Suppose c(Ic) 2 d(Id) and Id # <f>. All implementations of c(Ic) cost \c\ and all implementations of d(Id) cost Idl.
By Proposition A.2, |c| < \d\. D

Proposition 6.2: All implementations of a synchronous cube have the same cost with respect to a minimum-gate imple
mentation.

Proof. Suppose c(/c) is a prime and c is simple. Then Vtc € h,%e [c] is an imphcant of / and is independent of variables x',
t = 0,1,..., t'c —1. Furthermore, c is an imphcant of fie since /<c is the largest function contained by / and independent of
variables x', i = 0,1,..., tc — 1. Iterated consensus of the cubes in fie must produce either c or some cube d D c.

Now consider all implicants in c(Ic). Let Ic = {11,12, •. •,*m} and let dj, be a prime of /<, that contains c. Iterated con
sensus produces dt, € /tj, di2 € /i2,..., dim 6 f%m. Since dii 2 c, j = 1,2,..., m, the consensus of these cubes is contained
by the synchronous cube c(t'i, t'2 »'m) = c(Ic). In fact, it is precisely equal to since c(Ic) since c(Ic) was assumed prime
a priori. O

13

	Copyright notice 1994
	ERL-94-48

