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Abstract

Several applications of cellular neural networks (CNN) operating in oscillatory mode are

presented. In particular, we will use oscillation to indicate the presence of a vertical or horizontal

edge in the image, and to perform a spatial-temporal halftoning operation.

1 Introduction

Cellular neural networks (CNN) are analog parallel processing arrays capable of high-speed compu

tation while amenable to VLSI implementation [1, 2]. Many applications of CNN's has been found

[3, 4]. Most applications to date use the steady state behavior of the CNN's. We present here sev

eral applications that uses the transitory behavior of the network. In particular, we will present in

section 2 a CNN which detects edges through oscillations and in section 3 we propose CNNs which

perform spatial-temporal halftoning via error diffusion. In section 4 several applications using these

spatial-temporal halftoning CNNs are discussed and future research directions are indicated.

2 Oscillating Edge Detector

In this section wepresent a CNN that detects edges by making the cells which corresponds to edges

in the image oscillate.

'Also with the Analogical and Neural Computing Systems Laboratory, Computer and Automation Institute,
Hungarian Academy of Sciences, Kende-u 13, Budapest, H-llll, Hungary.
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2.1 Nonlinear Oscillator

The basic component of the oscillating CNN template is a two-state oscillator which is derived from

a Connected Component Detector [5]. The oscillator has the following state equations:

X! = -*i+2/(a:i) + 1.5f(x2)

x2 = -x2 + 2/(x2) - 1.5/(3i)

where /(«) = §[|a:+1| - |* - 1|].
We will primarily use the following results:

Theorem 1 Consider the equation

x = -x +pf(x) + *i/(sfi(0) " *2ffa(t)) + c (2)

where p > 1, «i > 0, and s2 > 0 and gi andg2 are two arbitrary functions which depends on time t.

Ifc > si+s2+p-l then3t{it > h(x(t) > 1). Ifc < -(s1+s2-rp-l) thenBttft > ti(x{t) < -1).

Thus if \c\ > $i + «2 + p —1 then x(t) will reach the saturation region (\x(t)\ > I) after some time.

Proof: Suppose that c> si + s2 + p— 1. Consider the differential equation,

z=-z + pf(z) + d(p-l) (3)

for d > 1. Looking at the graph of z versus z (Fig. 1), it is clear that z(t) > 1 after some time.

Then since for sufficiently small d > 1, si/(<7i(<)) - s2f(g2(t)) + c > d(p - 1), it follows from a

comparison theorem [6] that x(t) > 1 after some time. Similarly when d < —1, z(t) < —1 and thus

x(t) < —1 after some time. •

Theorem 2 Consider the equations

ii = -zi+Pif(xi) + s12f(x2) + C!
(4)

x2 = -x2 + p2f(x2) - s21 f(xi) + c2

where si2 + 1 > p\ > 1 and s2i + 1 > p2 > 1. // \c\\ < si2 + 1 - p\ and \c2\ < $2i + 1 - p2 then

for almost all initial conditions, the solutions of (4) will oscillate (i.e. the solutions will approach

a periodic solution).

Proof: First we show that there are no equilibrium points in the regions \xj\ > 1 or \x2\ > 1. A

fixed point (x^x2) of system (4) must satisfy:

-*i+Pi/(ai) + «i2/(*5) + ci = ° (5)

-*2+J*/(*2)-W(a:i) + C2 = 0 (6)



Suppose x\ > 1. Then -x\ + p2f(x$) = 52i - c2 > s21 - \c2\ > p2 - 1. If x^ > -1, then
-x2+p2f(x2) ^ P2-I, therefore x2 < -1 andwe have from (5)x\ = P1-512+C1 < \ci\+pi-s\2 < 1
which is a contradiction.

Suppose x\ < -1. Then -x\ + p2/(x$) = -531 - c2 < -s2i + |c2| < 1 - p2. If a^ < 1,
then -x2 + ^2/(^2) = 1 - P2, therefore arj > 1 and we have from (5) x\ = -p1 + s12 + ci >
~lci| ~ Pi + 5i2 > —1 which is a contradiction.

Suppose x\ > 1. Then -reJ +pi/(a:J) = -su - ci < -s12 + |ci| < 1 - pl. If x\ < 1, then

-sl+Pi/fai) > 1-Pi, therefore Xj > 1and we have from (6)aj = P2-«2i+c2 < |c2|+P2 —^21 < 1
which is a contradiction.

Suppose x\ < -1. Then -x\ + pif{x\) = s12 - ci > si2 - |ci| > px - 1. If a:* > -1,

then -x\ + p\f(x\) < pi - 1, therefore »} < -1 and we have from (6) x2 = -p2 + s2i + c2 >
~\c2\ - Pi + «2i > —1 which is a contradiction.

Thus an equilibrium point must satisfy \x\\ < 1, \x2\ < 1 and:

(P\ ~ 1>I + 512*2 + ci = 0 (7)

(p2-l)x2f-snxl + c2 = 0 (8)

Since (pi —l)(/>2 - 1) + $12^21 > 0> there is a unique solution to the equations above, which is

*i = <Pi-i)(P2-i>+*i2*2i (5l2C2 " 0* - ^ (g)
*2 = (P1-1)(P2-1)+512S21 ("52ici - (pi - l)c2)

If for x\ and a£ as defined by (9) satisfy \x\\ < 1 and \x2\ < 1, then that is the unique equilibrium

point of the system, otherwise the system has no equilibrium point. The trajectories are bounded

[1], so if there are no equilibrium points, then by the Poincare-Bendixon theorem [7], there exists a
closed orbit, and by index theory [8], the closed orbit must enclose at least one equilibrium point,

which is a contradiction.

Thus the system has a unique equilibrium point, given by equation (9). The Jacobian at

Pi — 1 ^12
the equilibrium point is . Since the trace of the Jacobian is positive, it has

[ _52i P2 - 1 J
eigenvalues on the right half plane1, so the equilibrium point is unstable, and by the Poincare-

Bendixon Theorem [7], this system contains closed orbits and almost all initial conditions generate

a closed orbit or approach a limit cycle. In other words, the system will oscillate. By calculating

the index [8], we can show that all periodic solutions of this system must enclose the equilibrium
point. •

*In fact, by using index theory, one can show that both eigenvalues are in the right half plane.



2.2 Oscillating Edge Detector

Now consider the CNN with the following cloning templates:

i4=[-1.5 2 1.5],B=[3 0 3],/=-1.5 (10)

The input image is placed as input to the CNN and takes on values 1 for black pixels and -1 for

white pixels. We assume that the relevant images has enough resolution such that the features are

at least 3 pixels wide (i.e. white lines and black lines are at least 3 pixels thick). Then over each

3-cell window in each row of the input, we have the following 4 cases:

Casel: The input : ^^^^^H or
If we denote the three cells in the window as a?j_i, xt- and a;t+i respectively, then the differential

equation governing X{ will be

dx ~-£ = -x{ +2/(1,0 - 1.5/(z,-i) +1.5/(s,+]) - 1.5 ±6 (")

By theorem 1 f(x{) —• 1 as t —> 00 for the case and f(xi) —*• —1 as t —* 00 for the case

Case 2: The input is :

Let's denote the three cells in the window as a;t_i, X{ and X{+i respectively. By case 1 and the fact

that all lines are at least 3 pixels wide, /(ast-_i) -*• 1, so after some time the differential equation

governing X{ wiU be

dx{

It = -*,- + 2/(aJi) + 1.5/(a:t-+i)-3.0

So by theorem 1 /(«,•) —*• —1 as t —*• 00.

Case 3: The input is :

Let's denote the three cells in the window as aj,-_i, X{ and a:t+i respectively. By case 1, /(iCt+i) —• -1

and by case 2, /(»,•_!) —*• —1. So after some time the differential equation governing a:, will be

dx{

~dX
= -aw + 2/(a;t-)-1.5

So by theorem 1 f(x{) —> —1 as t —> 00.

Case 4: The input is :

Because we assume all features are three pixels wide, the two inputs occurs together, i.e. the

cells form the pattern |

(12)

(13)

. If we label these four cells as x,_i, a;,-, a;t+i and a:,+2

respectively, then from case 1, we know that /(xt_i) converges to —1 and /(a:t+2) converges to 1.

Thus after some time the differential equations governing X{ and a:t+i looks like:



dx'-£ = -Xi +2f(xi) + l.5f(xi+1) (14)

^±1 = -xt+1+2/(xt+1)-1.5/(a:t) (15)
This has the form of equation (4) and by theorem 2 it will oscillate. Thus we see that the cells

immediate to the left and right of a left sided edge will oscillate while the other cells will move to

the saturation regions (output = ±1).

Scolium: We can of course also construct templates for detecting horizontal edges and right

side edges by rotating the templates.

By adding external periodic forcing or by making each cell a second order cell, we can drive the

system into chaos [9].

3 Error Diffusion for Spatial-temporal Halftoning

Halftoning is the operation where a grayscale image is transformed into a binary image such that

when viewed from a distance the two images appear the same. Error diffusion is a popular method

of performing halftoning of grayscale images [10]. Consider the following scheme of performing

error diffusion:

xij(n) = Efc^mfc(fc-^/-i»TO-n)Mm)-Eumw(fe-*»/-i»m-n)to(a;«(wi))) ,16)
yij(n) = sgn(a^(n))

where g(x) = sgn(a;) —x and h and w are two spatio-temporal filters which are recursive with

respect to a particular ordering. We will think of h and w as three-dimensional filters where the

first two dimensions correspond to a two-dimensional imagespace and the third dimension to time2.

We then have the following interpretation of the error diffusion scheme:

Theorem 3 The output yij in equation (16) are equal to the y^ in the following minimization

procedure :

yij(n) = Arg mm \A*y-B* u\ijn (17)

where A= Z~l{\ +^} and B= Z~l{-^}.

Proof: the proof is essentially Proposition 1 in [10]. Taking the 3-dimensional Z-transform,

x = hu —wy + wx (18)

2As the third coordinate is time, we will sometimes use the notation ft(t,j)[n] to denote h(i,j,n).



After some manipulation we get

Xij(n) = (B*u-A* y)ijn + yij(n) (19)

yij(n) = sgn(B *u - A*y)ijn + y{j(n) (20)

Since -4(0,0,0) = 1, the conclusion follows from Lemma 1 in [10]. •

In other words, the output will minimize the difference between a filtered version of the output

and a filtered version of the input. A halftoned image can be considered as a spatial oscillation.

In spatial-temporal error diffusion, time is added as another dimension, and thus we will also have

temporal oscillations. We will now propose several architectures which approximate this error

diffusion scheme.

3.1 Recursive Nonlinear Difference Equations

This scheme merely implements equation (16) by truncating the filters h and w to a finite length.

The network consists of a three-dimensional array of cells Cij%k whosestate corresponds to Xi%j(n—k)

and whoseoutput corresponds to yij(n—k) for a finite number of Ar's, where the top layer corresponds

to k = 0, i.e. the most recent states. The states are calculated in each time step in the topmost

layer according to equation (16) and the current states are shifted to the next layer. The network

can be thought of as a layered network with each layer consisting of the cells C,j,fc for a fixed k.

To make this realizable, there must exist an ordering which make the filter h and w causal and

recursive.

3.2 Parallel Processors

One drawback of the first scheme is that in the computation layer, each cell must wait until the cell

before it in the ordering of h and w has generated an output. By making h(i,j>n) = w(i,j,n) = 0

for i ^ j, which removes the spatial dependency, all the ceUs in the computation layer can process

the data in parallel.

3.3 Continuous Time Neural Networks with Buffers

By using an architecture such as the CNN Universal Machine [11], continuous time neural networks

can perform a computation, the result can be stored, and used as the input to another continuous-

time neural network. The minimization in each layer can be done by a CNN similar to that used

in [10], while the computation between layers is done in a discrete-time fashion. We start with the



following CNN for each time iterate n:

% = -^ +T/(A(k-i^l-3Mm +B(k-i,l-j)lO]uki[n])
ai kj

+ YL (B(k-iJ- j)[m]uki[n - m] - A(k - i,l - j)[m]yij[n-m]) (21)
m>0,k,l

tiij = /(*«) (22)

At each iteration n, after a steady state solution of equation (21) is reached, we set yij[n] =

f(xij). The output of the system will be yij[n]. In the case when X{j (almost) always converges to

the saturation regions (such as in halftoning [10]), the buffer yij[n] needed to store the result can

be logical bits.

When A and B are properly chosen, from proposition 2 in [10], the output yij[n] will be "close"

to the value yt^-[n]:
y&M = ATgm\u\A*ym-B* u\ijn (23)

4 Applications and Areas of Future Research

We now suggest three applications of spatial-temporal halftoning where the input data (1) varies

in time and space, (2) varies only in space (3) varies only in time and give a brief discussion of

future research problems.

4.1 Compression of Moving Images

The output of the error-diffusion algorithm can be thought of as compressing the input data. At

the receiving channel, an appropriate filter can be used to recover the time-varying data.

When architecture 3 is used in this application, we get a setup similar to that in [12].

4.2 Halftoning of Subsampled Images

One of the exciting application of CNN halftoning is that a VLSI chip can be fabricated where each

cell is directly connected to an input sensor. As was noted in [10], it may not be possible to build

a CNN of the size required. Halftoning is used by for example FAX machines to transmit images.

When a grayscale image is halftoned to a binary image of the same size, some information is lost.

Therefore a halftone larger than then original is desirable. In other words, the resolution of the

scanner in the FAX machine should be lower than the resolution of the printer in the FAX machine.

In these cases it is desirable to generate a halftoned image larger than the inputsize/cellarraysize.

Furthermore, in halftoning, we want to oversample the image spatially to move the quantization

noise to higher frequencies which can be filtered out without degrading the output image too much.

Therefore it is desirable to generate a halftoned image of a larger size than the input image. One



manner in which this can be done is to use interpolation to obtain a larger input images and

perform halftoning on this image. But this requires either a larger array of cells or partitioning of

the image. An alternative way of achieving this is to use spatial-temporal halftoning, and merge

the output in different time steps to obtain a larger output image. For example, we can merge four

images into an image four times as big by taking one pixel from each of the four images and put

them into 2x2 blocks.

4.3 Oversampled Sigma-Delta Modulation

Oversampled sigma-delta modulation is a technique which halftones a scalar input in time to

obtain a binary representation of an analog value. To obtain an accurate representation of the

analog input value, the input data needs to be oversampled, i.e. the system needs to operating at

high speed. To lower the oversampling rate, a finer quantizer can be used, or more stages in the

sigma-delta modulator. We propose to use spatial-temporal halftoning to lower the oversampling

rate, by constructing the decimation filter to decimate not only in time, but also in space as well.

The input to the system is spatially constant (each cell receive the same input) and varies only

in time. This will reduce the oversampling rate that is needed. How this technique performs

in comparison to other methods of increasing the performance of the basic single-loop, single-bit

quantizer sigma-delta modulator that have been proposed such as adding multiple stages and/or

using finer quantizers requires further research.

It has been shown that by driving sigma-delta modulators into chaos, one can eliminate the

problem of tones that occurs in the output [13]. Such techniques should also be applicable in

performing spatio-temporal halftoning.

5 Conclusions

We have shown how CNN's operating in oscillatory modes can be useful in performing certain tasks

such as edge detection and spatio-temporal halftoning. Such CNN's can also be driven into chaos

which is desirable in certain applications.
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Figure captions

Figure 1 Grapb of z versus 2, where z = —z + pf(z) -f- d(p —1).
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