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Abstract

Dynamical properties of two-dimensional patterns generated by
spatially extended systems can be described via the characteristics of
attractors in the matrix phase space of the associated translation (or
translational-evolution) dynamical systems. Questions regarding the
possibility of estimating the fractal dimensions of two-dimensional pat
terns from the fractal dimensions of one-dimensional observables scan

ning the patterns along a chosen path are investigated. The presented
proofs state that the generalized dimensions of the scanning observ
ables are lower bounds for estimating the corresponding generalized
dimensions of two-dimensional patterns. Spatial field distributions
defined as superposition of planar waves and different spatiotemporal
patterns produced by cellular neural networks made of Chua's circuits
are studied numerically. The results of computer experiments confirm
the theoretical predictions presented in this paper.



1 Introduction

The dimension of an attractor or invariant set is one of the key notions in the

study of dynamical systems with chaotic behavior [Mandelbrot, 1982; Farmer

et a/., 1983]. It is well known that the dimension of a set invariant under the

action of the shift operator along the trajectories of a system characterizes

the number of effective degrees of freedom involved in the system's dynamics.

Even only a knowledge about the "finiteness" of the dimension is important

in essence because it implies to that the properties of the system are deter

mined by the interaction among only a limited number of eigenmodes, and

not by the influence of random forces. If, in addition, the dimension is not

an integer, i.e. the trajectories are confined on a fractal set, then the process

under consideration represents deterministic chaos. In spatially extended sys

tems possessing typically infinite-dimensional attractors the computation of

dimension-like characteristics, and the extraction of different kinds of scaling,

have also been found to be very useful for an understanding of the under

lying dynamics (see, e.g., Grassberger [1989]; Torcini et al. [1991; Tsimring

[1993]).

To date a number of effective methods for calculating various dimensional

characteristics have been developed. Using as a rule time-delay techniques

they allow us to infer properties of the system directly from an observable,

i.e. from a realization of one (or a few) state vector components of the system

(see, e.g.,Theiler [1989], Grassberger et al. [1991]). The main ideaofall these

methods was clearly formulated by Takens [1980], (see, also, Packard et al.

[1980]). Let us examine, for example, a scalar observable, i.e. a sequence of



scalar measurements u = {u(i)}. For each integer ?n, called the embedding

dimension, we can reconstruct a new dynamical systemwith a phasespaceof

7/i- dimensional vectors, [//m) = (u(i),u(i + 1), ...,u(i +m- 1)), and some
one-parameter shift operator Sk : i//m) -> u£$, acting on this space. As
proven by Takens [1980] and Maiie [1980 ] (see, also, the refined formulation

in Sauer &Yorke [1993]), under certain conditionsmany dynamical invariants

(including the fractal dimension ofinvariant sets)of this reconstructed system

coincide with those of the original system. If the fractal dimension computed

from an observable is a finite one, then the observable and the process of

interest are called finitely-generated.

The ideas of the study of dynamical systems directly from observables

are now very popular and widespread not only in computational, but also in

real experiments. However, remarkable progress has been achieved mainly

for systems with complex temporal dynamics. Recently, a new approach was

proposed that generalizes these ideas to the analysis of disordered spatial field

distributions - snapshots and complex spatio-temporal patterns in spatially

extended systems [Afraimovich et a/., 1992; 1993; Zheleznyak & Chua 1994].

It is natural to consider spatial field distributions and spatio-temporal pat

terns as observables. But they are no longer vectors; for a planar geometry

the observables are matrices u = {utj}i where it,j = u(xi,yj) for spatial, and

Uij = u(t{,Xj) for spatio-temporal distributions, respectively. In general, the

observables u are d— dimensional tensors {ui;i € Zd] ( or {uy/i £ Z x Zd_1}

), but for simplicity we will assume in this paper that the observables are

two-dimensional. In this case we can reconstruct a new dynamical system

with a phase space of (771 x in) - matrices

U-J = {uki;k = z,...,i + 77i- 1;/ = j,...J + m- 1}, (1)



and define a translation (or translational evolution) operator T, which acts

on this space as: T^pup^ : Uij —> (/t+p,j+P2, where Pi,p2 € Z (or pi 6 Z+,
p2 € Z) . Note that the operator T now depends on two parameters and

the trajectory of the reconstructed system is a discrete surface, i.e. a set of

points lying on a two-dimensional surface, but not on a curve.

The study of dimensional characterictics of these dynamical systems with

a matrix phase space can reveal new important information about the prop

erties of the underlying processes generating the distribution, t on a curve

Unfortunately, such analysis is usually based on massive numerical computa

tions. It is therefore very tempting to estimate the properties of the distribu

tions by applying efficient techniques and tools which have been developed

in recent years for studying time series. It is apparent, that given a two-

dimensional pattern (snapshot) we can construct various one-dimensional

observables by scanning the picture in different ways. Treating these new,

scanning observables by standard tools we can reconstruct dynamical systems

with, generally speaking, distinctive properties. However, it looks reasonable,

that some characteristics of the two-dimensional observables and associated

one-dimensional scanning observables should be correlated.

In this paper we present some theoretical and numerical results confirm

ing that, at least in particular cases, such relations do exist between the

fractal dimensions of two-dimensional observables and their one-dimensional

scanning observables.

2 Dimensions of two-dimensional patterns

Let us first introduce the dimensions of two-dimensional patterns and their

corresponding scanning observables. Suppose we study the dynamical prop-



erties of a spatially extended system and haveat our disposal a two-dimensional

pattern of a field distribution u defined at the nodes of an integer lattice, i.e.

u = {uij}. Let us fix a pattern of a finite size N (for simplicity we will take

a square picture , i.e. iyj = 1,..., AT), and suppose that N may be taken as

large as desired. Then, for each integer m, and a measurements resolution

e we can introduce the approximate pointwise dimension of the pattern at

each node (i,j) as

>(m-m)i

DW(i,],m,N,e) = j^ . (2)

Here

i N—m

^""'We) =7aTT^2 £ e(« - ||W§" - l/ft'll) (3)^V 111) .,.,_^

denotes thepointwise mass function; U\™' denotes (mX77i) - matrices defined

by (1), so that 77i2 is the dimension of the embedding space, || • || defines a

matrix norm in the space Rw , and 0 denotes the Heaviside function:

If the function B\™ (N^e) exhibits a scaling property when the size of the

pattern tends to infinity and the resolution tends to zero, i.e. the limit

D¥\i,j,m) = limlim"£>J2)(i,i,m,yV,e) (4)

exists and does not depend on the embedding dimension when m > 771*, then

the value Dj^(i,jt m) defines the pointwise dimension of the two-dimensional
pattern u at the node (i,j).



The pointwise dimension is a local characteristic of the observable. Av

eraging in different ways the pointwise mass function over the observable,

we can define global dimensional characteristics. Following the ideas of

Grassberger Sz Procaccia [1983] we can introduce a whole spectrum of two-

dimensional generalized dimensions D^2\ which quantify the multifractal
properties of the underlying dynamics. A one-parameter family of gener

alized dimensions of the pattern can be defined as the limit

D™(m) = linilmT£)J2)(77i, TV,e), -co < q< oo. (5)

The approximate generalized dimensions D^(m,N,e) have the form

logG<2>(m,W,e)
L)M(m,N,e) =

log£ (6)

where the generalized average mass function

(7)

can be written in a form analogous to that proposed by Pawelzik Sz Shuster

[1987]:

GfHm,N,e) =

N-m

£(N - mY fa,

N-i 1/9-1

{N - mf fa,£ [Bl?-m\N,e)r> (8)

n-h1''-1
N-m

(N r^ry .£ e^-H^-i^l
wm*)

Note that q = 2 gives an estimate of the easiest to compute two-dimensional

correlation dimension D[ (m), and that q= 1 gives an approximate value
of the two-dimensional information dimension D\'(m).



Let us now construct a one-dimensional scanning observable v from the

pattern of interest u. Among the infinitely many different ways for scanning

a two-dimensional pattern we will choose a simple path along the rows of the

array u, as shown in Fig.l. Thus, we have the following rule for relating the

components of the two-dimensional observable u = {u{j\i,j = l,...,Af} and

the one-dimensional observable y = {vj; 7 = 1,..., Af2}:

vi = Uij, 7 = (t-l)7V + j; i,i = l,...,7V. (9)

Having defined the scanning observable, we can further introduce in a

standard fashion the one-dimensional pointwise dimension, D^\ and the
generalized dimensions, D^\ Namely, we can define the approximate point-
wise dimension at the node (i,j) for fixed m,7V, and e as

m^H.,)-*^, do,
where the index 7 is related to (i,j) by the expression (9). Here Bj(N,e)

denotes the pointwise mass function

i N2-m

B>m)(N>e) =inhr, £ 0(£- IM1"' - "/""ID. (ii)iV 111 y/_j

Vj denotes an m-dimensional vector

Vj{m) = {vk]I<k<I + m-l},

and || • || denotes a vector norm in the space RTO. If the limit

DM{m,I) =lim^D^m,/, tf,e) (12)



exists and does not depend on m (when 771 > m*), then the quantity D^ is
the pointwise dimension of the scanning observable v at the node (i,j).

Analogously, we can define one-parameter families of the approximate

generalized dimensions D^ and the exact generalized dimensions D^ of the
scanning observable. The approximate generalized dimensions are defined by

the expression

ff>(m,*,,)-*G?)(m'"'e>, -oo<9<oo, (13)
Joge

where the generalized average mass function

G?\m,N,e) = [(^(A^))7"1]179"1 (14)

has the form [Pawelzik k Shuster, 1987]:

1 9-I \ 1/9-1

6^(771, AT, £) = 1
7V2-» N2-m

(m) T/(m)in^i E <H'-\wr-v}:N2 - 77i
7=1

N

The exact generalized dimensions are defined as follow:

DM(7n) = lim"IIm~JDj1)(77i,N,e), -00 < q< 00.
r—o N^oo q

(15)

(16)

3 Some relations between dimensions of two-

dimensional field distributions

In this section we present some results which establish the relationships be

tween the dimensions of two-dimensional and the corresponding scanning



observables. In Sec. 2 we introduced definitions of these dimensions. The

definitions admit an arbitrary choice of norms in the reconstructed matrix

and vector phase spaces. Although all norms are equivalent in each finite-

dimensional linear space, and the fractal dimensions are invariant with re

spect to the choice of the norm, the choice of a particular norm can influence

the practical estimate of the dimension when the size V of the observable

and the measurement resolution ue" are finite.

In our proofs we will use the families of Holder's vector norms

m-l

\\vn\ = {'£\v,+L\sr/s, (I?)
L=0

and Holder's matrix norms

m-l

ll^'ll = {£ k+<wl'},/s- (is)
k,l=0

For particular values of the parameter s these families of norms include some

well-known norms: for s = 1 weget the octaedric norms, for s = 2 we get the

Euclidean norms, and for s = oo we get the cubic norms (see Gantmacher

[I960]). The main advantage of the last type of norms, also called maximum

norms, is its ease of calculation, whichenables us to write efficient computing

codes. Note, however, that the question of the proper choice of a matrix norm

which reflects optimally the structure of the patterns needs further study (see

also the discussion in Abarbanel et al. [1993]).

Let us first formulate a theorem, relating the local pointwise dimensions

of two-dimensional patterns.

Theorem 1 For each integer m at any node (i,j) the pointwise dimension

^p (*»i»m) of the two-dimensional pattern u and the pointwise dimension



7)^(7,77i) ofthe corresponding scanning observable v, constructed along the
path (9), are related by the inequality

DM(I,m)<DW(i,j,m). (19)

Proof.

Consider the expression:

N2-m N—m

£ 0(£-||V;<"'»-l//,"''||)= 2 0(£_||VW_VW||) +
/'=! •',,'=!

/'=(t'-l)N+j'

AT N-m

£ £ e(£-||v,(m,-vf)||) + (20)
i'=JV-m+l j'=i

7'=(t'-l)A/+j'

£ £ 0(e-||V/"'»-l/W||).
t'=l j'=N-m+\

/'=(t'-l)N+i'

From the definitions of the vector and matrix norms (17),(18) it follows that

in—1 m—1

IK/^-^'ll ={£ |uJ+*J+/-ii?+*J.+,n,/' >{£ |u,j+,-u,,/+,|5},/a =||i//""-vt"l
k,l=0 1=0

for all sets of indices (i,j), 7, and (i\j'), V connected by the equality (9).

Taking into account that for any a < (3

G(e -a)> 0(e - /?),

and that the last two sums in (20) are always nonnegative we get

10



N2-i N-m

•£ Q(e-\\v}m)-v}r%> £ e(e-ni/g",-($!,i
7'=i •'j-i

Further, after dividing both parts of this inequality by l/(N2 —771), we have

TV2-,

^^ £ e(£-||\/r-\/^||)>

! m(27V-7n-l) 1 "-» _ ( , _ (m)
(W-m)* {N _m)2(yV2 _m)J .2^* "^ <V/IU>

TV-rn1 ;v — m

W=™y> ,£,0(£ ~"^"," (^:)|l)" R{m'N)'
where

R{m, N) =
(27V-m-1)771

TV2 -771

Recalling expressions (3) and (11), we can write

B\m)(N,e) + R(m,N) > BJ}n-m)(N,e).

(21)

(22)

(23)

Taking the logarithms of both parts of this inequality, dividing by log£, and

taking into account that loge < 0 for smalle, we get the following inequality:

log[BJ"°(Af,e) +R(m,N)] ^log[B%'m)(N,e)]
loge "~ loge (24)

Finally, passing to the limits TV —>• 00 and then e —> 0, and taking into

consideration that R(N) —> 0 as N —> 00, we obtain:

B?Hl,m)<Di%J,m). (25)

11



Theorem 1 establishes the connection between the local dimensional charac

teristics of the two-dimensional observables and the associated one-dimensional

scanning observables at each node of the given pattern. This relationship can

be expanded to the whole spectrum of the generalized dimensions. Indeed,

it follows from expressions (7) and (14) that the generalized dimensions may

be introduced through different averages of the pointwise mass function over

all points of the corresponding observable.

Let us consider the following expression

l/9-l

= A, (26)
1 N—m

(N - 77l)2
/=(,-! )N+j

where #(771, N) is defined by (22), and —00 < q < 00.

It is easy to show that the function

/(a„a2, ...,«„) ={fyf1}179"1, aj >0
7=1

is always a monotonically increasing function of its arguments for all —00 < q < 00,

because

^{E«?-,},/'-,=«?-2{I>?-,}£?>o.
uai 1=1 1=1

Therefore, since Bj, R > 0, and the inequality (23) holds for all (i,j) and

/, we can write

r 1 N-m V/9-1

A*\w^¥ £[Blr m)(7V'£)rl} (27)
12



N2-i N-i

•£ 6(e - ||V/TO) - Vf'll) > £ Q(s - ||4"> - (/W|
/'=1 t',i'=l

Further, after dividing both parts of this inequality by 1/(7V2 —771), we have

N2-i1 /v-—in

m{2N - 771-1)
(JV - 771)2 (JV - m)2(yV2 - m),

7V->

E e(« - ||«g"> - ($:>||) >
«',j'=l

N-i

(N - my „£,£ e(e-||(/<|-'-(/<S>||)-«(m)JV),

where

R{m,N) =
m(2N -m- 1)

VV2-77l

Recalling expressions (3) and (11), we can write

B\m)(N,e) +y?(7n,N) > BJ]im)(N,e).

(21)

(22)

(23)

Taking the logarithms of both parts of this inequality, dividing by loge, and

taking into account that loge < 0 for small e, we get the following inequality:

log [B{""(yV, e) +R(m, N)\ ^log [B£~\n, e)]
loge ~ loge (24)

Finally, passing to the limits N -> oo and then s -» 0, and taking into
consideration that R(N) —• 0 as N —» oo, we obtain:

Dl<Kl,m)<DV(i,j,m).

11

(25)



Theorem 1 establishes the connection between the local dimensional charac

teristics of the two-dimensional observables and the associated one-dimensional

scanning observables at each node of the given pattern. This relationship can

be expanded to the whole spectrum of the generalized dimensions. Indeed,

it follows from expressions (7) and (14) that the generalized dimensions may

be introduced through different averages of the pointwise mass function over

all points of the corresponding observable.

Let us consider the following expression

l/9-l

£ [B\m)(N,e) +R(m, /V)]9"1 = A, (26)
1 N—m

(N - m)2
7=(t-l)N+j

where R(m, N) is defined by (22), and —oo < q < oo.

It is easy to show that the function

/(a,,a2,...,ajv) ={Jt,aqr1}l'<-\ <*7 >0
7=1

is always a monotonically increasing function of its arguments for all —oo < q < oo,

because

d(ll 7=1 7=1

Therefore, since £?/,R > 0, and the inequality (23) holds for all (z,j) and

/, we can write

12



for any yV, 771, and q.

On the other hand,

N2-m

A =
1

^yV2 - m

N2-m

-£[B\m\N,e) + R(m,N)r'-
7=1

£ [B\'"\N,e) + R(m,N)Y->
y=(AT-m)2 + l

m{2N-7ii-\) ^ fD(m)N-m

+

(N -„,)»(*»-m) J, [*r'(^e) +A(m,Ar)r
7=(i-1)/V+j

(28)

l/9-l

Suppose that the average mass function is uniformly bounded by yV, when

TV » 1: 0< 61 < B<jm)(N,£) < b2 ( where ^ and b2 denote some constants).
Then, using Taylor's expansions in powers of 1/iV, we can obtain following
estimates

[fiJ-'We) +R(m, *)]«"' =[B}m)(AT,£)]'"• +(, - l)[BJm>(Ar,e)]«-* •1 +..

>("0i 1[firwc)rl+o^),/v>i, (29)

and

f 1 /v2"m l ) 1/9-1

/v2-» 1/9-1

N2- 771
£[BrWe)]'-' +0(J.)>Ar>l
7=1 N

(30)

Combining expressions (27) and (30) we obtain the asymptotic relation (yV >

13



1)

or (see (9),(15))

£ [B<m)(7V,«)]•-'I +0(^)>
i /v--m i • - i

7=1

»f \ 1/9-1

(yv _m)2 £ l$m)(N,e) +R(m,N)r* J , (31)

Gj^m, iV,£) +0(1) >6f(7», yV,e), yV > 1, -oo <q<oo. (32)
Further, taking logarithms and dividing both parts of the last inequality by

loge , we have

logGW(ro,JV,e) + Q(fl) log G^(m, N, e)
log e log e

Finally, letting TV —> oo and £-»0we obtain the formulation of the following

general result:

Theorem 2 For each integer in and any value of the parameter q G (—oo, oo)

the generalized dimensions D^(m) ofthe two-dimensional pattern u and the
generalized dimensions D^\m) of the corresponding scanning observable v
constructed along the path (9) are related by the inequality

Dj"(m) < Df\m). (34)

A trivial, but important consequence of this Theorem is

Corollary 1 // the two-dimensional pattern u is finitely-generated, then

the corresponding one-dimensional observable v scanning u along the path

(9) is also finitely- generated. Conversely, if the scanning observable v is

infinitely- generated, then the pattern u is also infinitely- generated.

14



4 Computer experiments

The theorems presented in the previous section state that the fractal dimen

sions of the scanning observable give a lower bound for the corresponding

dimensions of the two-dimensional patterns. To confirm these theoretical

results we carried out calculations of the fractal dimension for several two-

dimensional field distributions. We chose the correlation dimensions D^
and D2 because they give the most reliable and efficiently calculated di

mensional characteristics. To reduce the computing time, which is rather

high when calculating two-dimensional characteristics, we fixed a set of ref

erence elements. In this case the average mass functions Gf\m, N,e) and
G^(m,N,e), which for q = 2 are called correlation integrals, take on the
forms (compare with (9), (15))

VreJ Sr«f N-Vl

Gf>(m, N,e) = l— - £ £ £ 0(£ - ||(/M _ i/W|

(35)
and

t(l)
F'rcj N2-m

CV(m,N,e)=Prtj .(jV2_m)£ £ 0(e-||Vr- '̂"||). (36)

Here {Uipjf;p = l,...,pre/,.s = l,...,.sre/} denotes the set of reference matri
ces, and {VIp; P = 1,..., Pref] denotes the set of reference vectors. We chose

an equidistant distribution of the reference elements along the observables,
i.e. we put

(hJs) =
'N- m

Pref
(P-1),

'N- 771

*re/
(5-1)1 ; p= l,...,pre/lS = l,...,5rr/,

15



and

Ip =
N2-m

ref
(P-l); P = l,...,Fre/,

where the function [ •] denotes the integer part of its argument. To preserve

the quantitative relations obtained in the previous sections we put Prej =

PreJ ' $ref'

First of all, as test examples, we computed the correlation dimensions D2

and D2 of several artificially syntesized two-dimensional field distributions,

which can be defined by linear superpositions of Pn planar waves:

Uij = Re
Pu 0) , i,j = l,...,N. (37)

Here i = y/— 1, kn denotes the wave vectors, and I . J denotes the indices

of spatial position.

To each spatial distribution we can relate an invariant set in the ma

trix phase space of the translation dynamical system (see Afraimovich et al.

[1992]; Zheleznyak & Chua [1994]). If the distribution is a. superposition of n

linearly independent planar waves (i.e. waves with linearly independent wave

vectors), then the invariant set is an n-dimensional torus, i.e it has an integer

dimension equal to n. In Fig.2, the spatial field distribution is shown which

represents the superposition of twoplanar waves with wave vectors ki = (1,0)

and k2 = (0,-s/3/2). This distribution is periodic in both i and j directions,

and the invariant set is a 2-dimensional torus in the associated matrix phase

space. In Fig.3(a) the correlation integrals G2 (solid lines) and G2 (dotted

lines) are presented, which are calculated directly from the two-dimensional

pattern and from the scanning observable according to the formulas (35) and

16



(36), respectively. We put N = 250, rre/ = sref = 16, Rref = 256. The odd

values of the parameter 771 defining the dimension of the embedding space

are taken from 1 (upper lines) to 9 (lowest lines). In Fig.3(b) the slopes

of the coresponding correlation integrals are plotted, which give estimates

for the correlation dimensions D2^ and I)\2\ We can see that over a rather
wide interval of the resolution e the approximate correlation dimension of the

two-dimensional pattern, d£\ (solid lines) is, indeed, equal to 2 '; and the
approximate correlation dimension of the scanning observable, D2\ (dotted

lines) does not exceed D$\ thereby confirming the statement of Theorem 2.

In addition, we have calculated the correlation dimensions of the spa-

tiotemoral patterns generated by a one-dimensional cellular neural network

(CNN) made of Chua's circuits ([Madan, 1993],[Shil'nikov, 1994]), which
mimics a spatially extended reaction-diffusion medium. The dynamics of

the CNN is described by the. following system of 3tV ordinary differential

equations:

' *j = <x{Vj - * - Hxj)) -r D{xj+l - 2x5 + *,-_,)
< yj = xj-yj + zj (38)
> *> = -fa*

with periodic boundary conditions:

xj{t) = xN+j(i), yj(t) = yN+j(t), Zj(t) = zN+j{t), j = 1,...,N.

Here, h(x) = 7n1:r-|-0.5(mo-m1)[|a:+l|-|a:-l|] is a three-segment piecewise-
linear function; D is a dissipative coupling coefficient; a,/?,77i0, and m^ are
parameters of the uncoupled Chua's circuit ([Madan,1993]).

'The curves over the other regions ofe oscillate erratically due to the effects ofdis
cretization, the inevitable numerical noise, etc. This phenomena are typical in such com
putations (see [Theiler, 1989])

17



The behavior of the above system was studied by Zheleznyak h Chua

[1994] for the set of parameters (a, /?, mo^) = (9,19,-8/7,-5/7). In this

case two stable limit cycles, symmetrical with respect to the origin, exist in

the phase space of the uncoupled Chua's circuit. It was demonstrated that

the dynamics of the system (38) is very rich: from very simple spatially ho

mogeneous and periodic in time to a complex fully developed spatiotemporal

chaos. Also it was found that the chaotic patterns can have different, low or

high, correlation dimensions depending on the initial conditions. To put it

in other words, different strange attractors coexist in the associated matrix

phase space of the system (38).

We have calculated the correlation dimensions for the spatiotemporal

patterns generated by the system (38) with two distinct types of initial con

ditions:

Xj(0) = sin(27r(j - 1)/7V), Vj(0) = zj(0) = 0.0, (39)

and

Xj(0) = 1.1+ sin(27r(j - 1)/7V), w(0) = ^(0) = 0.0. (40)

These initial conditions were chosen to be different from those presented in

[Zheleznyak Sz Chua,1994] to provide some diversity for comparison purposes.

The spatiotemporal pattern for the initial conditions (39) with a dissipative

coupling coefficient D = 0.4 is shown in Fig. 4. The length of the CNN was

chosen to be N = 256, and we took Nt = 500 time units with a time step

At = 1. Observe that for these initial conditions the spatiotemporal pat

tern splits into two sub-patterns due to the bistability of the cell's dynamics.

This pattern has a low correlation dimension, because sub-patterns represent

"small" systems (according to the terminologyof Cross Si Hohenberg [1993]),

and the interaction between sub-patterns is weak (see Zheleznyak Sz Chua
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[1994]). In Fig.5,a several plots of the correlation integrals log 62 (solid

lines) and logG^ (dotted lines) vs loge are presented. The corresponding
plots of the slopes of the correlation integrals which give an approximation

for the correlation dimensions D.22 (solid lines) and D2 (dotted lines) are
shown in Fig.5(b). Indeed, the correlation dimension D2 calculated accord

ing to the expression (35) belongs to the range [3.4,3.9], and the correlation

dimension D2 of the corresponding scanning observable also falls within the

same range. Thus, our numerical results agree well with the theory, inspite

of the errors expected due to the finite sizeof the pattern and to nonoptimal

choice of space and time lags, etc.

Spatiotemporal patterns generated by the system (38) with initial condi

tions (40) exhibit a different structure, as shown in Fig.6 for the dissipative

coupling parameter D = 0.4. Such a choice of initial conditions does not

cause the splitting of the pattern into sub-patterns, because all cells belong

to the basin of attraction of the same limit cycle. That is why the system

(38), (40) for D=0.4 can be considered as a "large" system, and generates a

fully developed spatiotemporal pattern with a high fractal dimension of the

associated attractor. Plots of the correlation integrals log G2^ (solid lines)
and logGf* (dotted lines), and their slopes D22) (solid lines) and D^2) (dot
ted lines) vs logs are presented in Fig.7(a) and 7(b) respectively. We can see

that the inequality D^ < D^ holds over a wide interval of the resolution e
and each m as predicted by Theorem 2.

The plots shown in Fig.7(b) have no intervals of e where the correla

tion dimensions have a constant value. This phenomenon is typical for sys

tems demonstrating a fully developed spatiotemporal chaos (with a high-

dimensional attractors). However, both D^ and D^ reveal another type of
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scaling: a linear growth of the dimensions with the increase of the resolution

e. This scaling is manifested in the constant slopes of the graphs D2 ' and

D2 vs loge (see Fig.7(b)). The growth rate is proportional to the density of

dimension [Tsimring, 1993], and, as we can see from the Fig.7(b), this rate is

approximately the same for the correlation dimension of the two-dimensional

pattern, D2 , and for the correlation dimension of the scanning observable,

D2 . Thus, by analyzing the scanning observables we can, probably, estimate

not only the dimensions of two-dimensional patterns, but also the densities

of its dimensions.

5 Conclusion

In this paper we have demonstrated the possibility of estimating the di

mensional characteristics of two-dimensional patterns generated by spatially

extended systems, via its corresponding one-dimensional scanning observ

ables. The relations found in this paper are sometimes not manifested so

distinctively, because of the errors due to the imprecision in the numerical

implementation (finite size of pattern, improper choice of the space and time

lags, etc.), the inhomogeneous structure of attractors (lacunarity, multifrac-

tality), etc. But in all of the computations we have carried out, the behavior

of dimensional characteristics of both two-dimensional patterns and scanning

observables was qualitatively the same.

It looks reasonable that one can also estimate the entropy characteristics

of two-dimensional patterns by analyzing the corresponding scanning observ

ables in a similar way. And it is very important in general to find out what

kinds of dynamical characteristics can be extracted and how these charac-
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teristics depend on the path of the scanning of the two-dimensional patterns

by one-dimensional observables.
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Figure Captions

Figure 1. The path of scanning the two-dimensional pattern u = {w,j; i,j

\,...,N} by the one-dimensional observable v = {vj;I = 1,...,N2}.

Figure 2. Spatial pattern u defined as the linear superposition of two

planar waves with wave vectors ki = (1,0) and k2 = (0, \/3/2).

Figure 3. a) Plots of the correlation integrals of the two dimensional

pattern shown in Fig.2, G2, (solid lines) and for the sweepin observable,

G2 , (dotted lines) vs e in log —log scale. Odd values of the parameter rn

are taken; upper lines correspond to m = 1, lowest lines correspond to m = 9.

b) Plots of the correlation dimensions D22^ (solid lines) and D^(dotted lines)
calculated as the slopes of the corresponding correlation integrals presented

in Fig.3(a).

Figure 4. Spatiotemporal pattern generated by a CNN made of dissi

patively coupled Chua's circuits, described by the system (38) with initial

conditions (39); dissipative coupling parameter D = 0.4.

Figure 5. The same as in Fig.3 for the spatiotemporal pattern shown in

Fig.4.

Figure 6. Spatiotemporal pattern generated by a CNN made of dissi

patively coupled Chua's circuits, described by the system (38) with initial

conditions (40); dissipative coupling parameter D = 0.4 .

Figure 7. The same as in Fig.3 for the spatiotemporal pattern shown in

Fig.6.
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