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A Comparative Approach to Processor Verification
Using Symbolic Model Checking

Nagisa Ishiura and Robert K. Brayton
Department of EECS, University of California at Berkeley, CA 94720

We present a method for verifying the correctness of processor designs using symbolic model
checking. The correctness of register transfer level implementations of pipelined processors is
verified by comparing their output signal sequences with those of corresponding unpipelined
reference processors. For this purpose, several specification-implementation relations that for-
malize equivalences between signal sequences are defined taking time lags and irrelevant data
into account. The algorithms to check the equivalence relations are given in the form of finite
state machines called matching modules. A model is constructed consisting of the processor
under verification, a reference processor, and the checker consisting of several matching mod-
ules. Verification is achieved by proving the output "ok” of the checker is always 1 for every
possible program and data.

It is infeasible to handle the model consisting of processors including entire data paths.
In order to solve this problem, several methods for simplifying (abstracting) data paths and
memories are proposed and analyzed for accuracy. Preliminary experiments were conducted on
a subset of the DLX processor using the CTL model checker SMV. Design errors associated with
‘an update conflict of the program counter, cancellation of prefetched instructions on branch
and jump, and pipeline control to avoid data hazard were detected using from 2 to 15 hours of
CPU time with up to 40 MB of memory on a DECstation 5000/260 with 480MB.



1 Introduction

In order to develop competitive high-performance microprocessors, a variety of sophisticated
architectures and implementation techniques [HP90] have been contrived. This, on the other
hand, makes it more difficult to check design errors simply by logic simulation, which can cover
only a very small portion of the entire space of possible instruction sequences and memory
configurations. In this paper, we address a method for automatically verifying the behavior of
processors with pipelined architectures.

There are basically two categories of processor verification; those using theorem provers
[Cyr93] and those based on Boolean function manipulation and FSM (finite state machine)
traversal [Ael92, Bea94, Bha94]. The utilization of abundant data types and human intuition
in the theorem prover approach is attractive but much expert labor is required. On the other
hand, the latter approach allows almost automatic verification. With recent progress in Boolean
function manipulation [Bry86, Rud93] and implicit state traversal techniques [Tou90, Mcm93|
using BDDs (binary decision diagrams), this approach has become powerful enough to be
applied to processor verification.

A symbolic model checker is one verification tool based on FSM traversal. Given a CTL
formula which serves as a specification and an FSM model which represents an implementation,
it decides if the CTL formula holds on the FSM. Several designs, such as a pipelined data-
path and a DMA controller, have been verified by model checking [Lon93, Mcm93]. However,
. for processor verification, it is not known how to describe the entire specification of a -given
processor in CTL. Thus, in this particular target, comparison against a reference processor, an
unpipelined implementation of a given instruction set, becomes an alternative method. Some
research activities [Ael92, Bha94, Bur94] using this approach seem promising.

Even with the latest BDD technologies, it is still difficult to achieve comparison of very
large FSMs. Recent advances present two approaches to counter this problem. One is the
simplification of the model under verification. This includes abstraction [Lon93], simplification
of models under given CTL formulas [Azi94], and uninterpreted evaluation of processor data
paths using equation logic [Bur94]. The other approach is to contrive a more efficient verification
method dedicated to processors taking certain design information or properties of processors
into account. [Bha94] and [Bur94] reduce the costly FSM traversal to several cycles of symbolic
simulation using auxiliary information.

In this paper, we propose one method of verifying pipelined processors. The basic verifica-
tion technology we used is symbolic model checking. The computation cost may be larger than
that of [Bha94] and [Bur94] but it requires less auxiliary information. We present a method
of achieving comparative verification in the framework of symbolic model checking. Another
contribution is a powerful method for simplifying FSMs. We propose a method of achieving
uninterpreted evaluation of complex functional units utilizing that only the equivalence of the
two processors is of interest.

We experimented with a DLX processor subset and succeeded in exposing several bugs,
regarding update conflicts of the program counter, cancellation of prefetched instructions on
branch/jump, and pipeline control to avoid data hazard. The verification took from 2 to 15
hours and 40MB of memory on a DECstation 5000/260 with 480MB.

In Section 2, we formulate the verification of processors based on comparison. We present
the new FSM abstraction method in Section 3, and show experimental results in Section 4.
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Figure 1: Verification based on comparison.

2 Verification of Processors Based on Comparison

2.1 Reference Processor and Comparison

The problem of processor verification is, given a specification and an implementation of a
processor and auxiliary information, decide if the implementation meets the specification. There
is ambiguity in this definition. We first clarify this point.

Figure 1 shows the rough picture of our verification approach, which is based on comparison.
IP is an implementation of a processor and RP is a reference processor which serves as the
specification. The reference processor can be any implementation of the instruction set as
long as it satisfies a certain assumption to be given later. The simplest implementation of an
instruction set, which executes one instruction per cycle without sophisticated implementation
techniques, can serve as the reference processor. Conceptually, we handle a whole processor
including an instruction memory IMEM and a data memory DMEM (though the memory will
be abstracted later).

We compare the signal sequences on pairs of certain signal lines for a kind of equivalence.
The signal lines to be probed are the read address to the IMEM and the read/write address/data
to the DMEM. We could optionally compare the signal sequences on the write address/data to
RF (register file) and those on other signal lines, which might expose design errors earlier. The
implementation meets the specification if all the pairs of signal sequences are equivalent for
arbitrary initial configurations of the IMEMs and the DMEMs. In other words, we investigate
if the signal value on line ok in Figure 1 is always 1 for every program and every data.

We will model the whole circuit in Figure 1, including the IP, the RP, the IMEMs, the
DMEMs, and the comparator, as a finite state machine (FSM). Then we run a CTL model
checker [Lon93, Mcm93] to verify if CTL formula AG ok (always globally ok = 1) holds.

There remains two technical difficulties in this verification scheme. One is that equivalence
of the signal sequences in the usual sense is not applicable in the above comparison, because
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(a) Model of signal sequences. (b) Equivalence.
Figure 2: Signal sequence.

the IP and the RP can put data on signal lines at different clock cycles. The other difficulty is
handling the huge state space of the memories.
We solve the first problem by defining relations between signal sequences that formalize the

equivalence in the above sense. We cope with the second problem by replacing each memory
by a simpler yet more general model.

2.2 Specification-Implementation Relations of Signal Sequences

2.2.1 Model of Signal Sequences

Figure 2 (a) illustrates an example of signal sequences which a processor outputs to read the
IMEM. We are only interested in the values of adrs (address) sent out when the processor
is actually in the action of reading the IMEM. Such clock cycles are indicated by the read
signal. We will depict these clock cycles by the large dots labeled by the values as in Figure 2.
Our goal is to establish that certain relations hold between two signal sequences as shown in
Figure 2(b). In order to define the relations formally, we first define some notation for signal
sequences.

A flagged signal sequence over a domain D is a tuple s = (a,v) where a € B*, v € D*, with
la| = |[v|. A filtering function ¢ is a mapping of flagged signal sequences to D* defined as

#(e,€) = €
dla-bv-z) = ¢(a,v) ifb=0
#a,v)-z ifb=1,

where ¢ is the empty sequence, and - denotes concatenation of sequences. Thus ¢ simply
executes a masking operation given the flag sequence a.

Assumption: We assume that RP emits the effective signal values in an earlier or the same
clock cycle as IP. Let s; = (a;,v;) and s, = (a,,v,) be output sequences of IP and RP, respec-
tively. Let o[k] be the k-th element of a string o and let o[k : ] = o[k] - o[k + 1] --- o[l] (e if
k> 1). Let #4(c) be the number of 4’s in . Then this assumption is formally written as

Vk : #1(aill : k]) < #1(ar(1 - E]).

The formulation above is similar to that of [Ael92], but here the sequence a of s = (a,v) is
not derived from the design but originally emitted by the processor. This will cause a difference
in how prefetched instructions are cancelled.



2.2.2 Specification-Implementation Relations

We define two relations, called specification-implementation (SI) relations of type-ii and type-ir,
which are designed for verification of pipelined processors.

Definition 1 Let s, and s; be flagged sequences. Then, the SI relation of signal sequences of
type-ii, denoted SI;;(s;,, s;), is defined as:

SIii(sr,8:) & ¢(s,) = 6(s:).

O

Figure 3 (a) illustrates the SI relation of type-ii. The relation holds if the same effective
data are sent out in the same order, even if they do not agree in the clock cycles.

The other relation is related to the cancellation of prefetched instructions in pipelined
_processors. If the pipelined processor is implemented based on the “predict-not-taken” scheme
[HP90], the processor may fetch more instructions than it actually executes. As long as we
observe adrs and read lines, the output sequence of the pipelined processor may contain
more effective read addresses than for RP. The specification-implementation relation of type-

ir is defined so that the output sequences will be judged to be equivalent in the presence of
irrelevant instructions.

Definition 2 Let s, and s; be flagged signal sequences, and P, C B* be the set of all Boolean
strings that contain no more than &£ consecutive 0s. Then, the SI relation of signal sequences
of type-ir and degree k, denoted ST;.(k)(s:, s;), is defined as:

SLir(k)(sry8:) & Ad € P 2 ¢(s;) = ¢(d, ¢(s:)).
(]

Figure 3 (b) shows an instance of this type of SI relation, where b1 is the irrelevant data
and the two sequences satisfies the SI relation by ignoring b1.

The two SI relations deal with the case where IP generates the effective values in the same
order as RP (in-order). We could define similar SI relations for the case where the order is not

the same (out-of-order) as illustrated in Figure 3 (c) and (d), though we do not handle these
in this paper.

2.2.3 Equivalence Checking

As shown in Figure 1, the SI relation of each pair of signal sequences is checked by a module
which outputs 1 if and only if the sequences given so far satisfies the SI relation. We show in this
section that the modules that check the SI relation of type-ii and type-ir can be implemented
as FSMs.

Basically, the type-ii relation is checked by using a queue; every time the faster processor
(the RP) outputs an effective data, it is enqueued, and every time the slower processor (the
IP) produces an effective data, it is compared with the dequeued data.

However, this simple scheme fails due to possible explosion of the queue size; the queue
length is not necessarily bounded. Suppose RP gives a result every clock cycle while IP takes
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Figure 3: Specification-Implementation (SI) relations.

two clock cycles to output each result due to data hazards. Then the length of the queue
increases every other clock cycle and infinite capacity is required.

This problem can be solved by freezing RP when necessary. We use a checking module with
a queue of a finite size. When the queue becomes full, the checking module emits a freeze
signal to the RP. The freeze signal stops the operation of RP temporarily by disabling the
clock to RP. Since IP keeps running, a dequeue operation eventually takes place; then the
freeze signal is turned off. Thus checking can be achieved with finite state.

Another problem is that we may overlook that IP stuck in a idle loop. Since the checker only
examines prefixes of the two sequences, it yields 1 even if the IP does not produce any effective
data. This is also easily solved by providing a counter. Each time IP emits an ineffective data,
the counter is incremented. If the value of the counter exceeds a predetermined limit, then
“ok” is set to 0.

Figure 4 shows the algorithm to check the SI relation of type-ii. Initially the queue Q is
empty and the counter idle is 0. At every clock cycle, the output value of ok and freeze is
computed. If the value of a, at the clock cycle (expressed as a_r) is 1, the corresponding value
(vr) is enqueued. In case the value of a; at the clock cycle (a-i) is also 1, the value of v;
(v-i) is compared with the head element of the queue to evaluate ok. If a_i is 0, the counter is
incremented and, if it exeeds a limit (idle.LIMIT), ok is set to 0. The freeze signal (freeze)
is set to 0 if the queue is full.

The type-ir checker is obtained by simply revising line 12 of the algorithm of type-ii. Dis-
agreement of the effective values is allowed for at most k& times in succession. We only have to
provide a counter to count the disagreement. The algorithm is shown in Figure 5.

This algorithm for type-ir is not complete because the algorithm investigates only one

possible match when there are multiple choices. For example, suppose the following data is
given for k = 2.

a =11 a; = 11111
v, = 3 4 v, = 3 3 7 8 4

There are two candidates v;[1] = 3 and v;[2] = 3 that match with the first signal v,[1] = 3.
If we choose v;[1] to match with v,[1], then it is impossible to match v,[2] = 4 with vi[5] = 4
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1: initial {

2: Q = new queus;

3: idle = 0;

4: }

B: always clock {

6: if (a_r) Q.enq(v_r)

7: if (a_i) {

8: idle = 0;

9: if (1Q.empty()) {

10: v = Q.deq();

11: if (v_i==v) {ok = 1}
12: else {ok = 0}
13: }

14: else {ok = 0}

i5:  }

16: else {ok = (++idle<=idle_LIMIT)}
17: freeze = Q.full();
18: }

Figure 4: Algorithm of the checking module of type-ii.

1: initial {

2 Q = new queue;
3: idle = 0;

4: disagree = 0;

5

: }

6: always clock {
7: if (a_r) Q.enq(v_r)
8-

i if (a_i) {
9: if (1Q.empty()) {
10: idle = 0;
11: v = Q.deq();
12: if (v_i==v) {ok = 1; disagree = 0}
13: else {ok = (++disagree<=k)}
14: }
15: else {ok = 0;}
16: }

17: else {ok = (++idle<=idle_LIMIT)}
18: freeze = Q.full();
19: }

Figure 5: Algorithm of the checking module of type-ir.



because there are more than k¥ = 2 irrelevant data between v;[1] and v;[5]. This would be the
result of the algorithm in Figure 5, the checking module would conclude erroneously that the
two sequences don’t satisfy the SI relation, even though the matching of (v,[1] = 3, v;[2] = 3)
and (v, [2] = 4, v;[5] = 4) satisfies the relation.

A sufficient condition for the algorithm to work correctly is as follows.

Proposition 1 The algorithm of Figure 5 judges the SI relation of type-ir and degree k cor-
rectly if there is no repeated data value in any substring of length k + 1 in ¢(s;).

[Proof] If the assumption holds, there is only one candidate element in s; that matchs with
each effective datum in s, even if the consecutive effective data in s, have the same values. O

Later, in Section 4.4, we show by example how this assumption can be forced to hold.

3 Reduction of Model Size Based on Uninterpreted
Evaluation

Since IP, RP, the IMEMs, the DMEMs and the checking modules are all modeled as finite state
machines, it is theoretically possible to decide the correctness of the implementation by CTL
model checking. However, the model is too big for state traversal. If the address is 32 bits
wide, for example, even a single word has 232 states. Register files can contain 256 words, and
processors can contain multipliers and floating-point units.

To deal with larger and more complex FSM models, several methods of 51mp11fy1ng the FSMs
are proposed. One is to reduce the size of the FSMs, taking the given temporal formula into
account, so that the result of the verification will be exactly the same [Chi92, Azi94]. Another
approach is to simplify the FSMs (and also the CTL formula) allowing false negatives, where the
implementation is correct but the verification reports it is not. There are variety of simplification
methods of this type [Lon93]. They are referred to as conservative abstractions. We propose
a new conservative simplification method which uses the fact that our two processors have
similar behavior. It uses uninterpreted evaluation; namely, it attempts to prove the correctness
of the implementation without evaluating the details of memory modules or functional units.
It consists of a series of two simplification steps. First we replace the output sequence of each
module targeted for simplification by a nondeterministic sequence. Then we reduce the number

of bits to represent the data. We refer to the first step as an NI abstraction and the second as
an N2 abstraction.

3.1 Abstraction of Memories
3.1.1 Basic Concept

Figure 6 (a) shows the fundamental idea of the N1 abstraction. It is based on replace-
ment of the output sequence of a module by a nondeterministic sequence. IMEM outputs
Mla]M[a;)M[a3)M[a,4] in response to an input sequence a,asasas, where M|[a] represents the
contents of IMEM at location a. For the abstraction, we replace the output sequence by a
nondeterministic sequence m;mymasm,, where each m; can take any value from its domain.
This replacement drastically reduces the number of the state variables of IMEM since there is
no need to maintain the values for the address space.
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(b) Abstraction of pairs of IMEM
Figure 6: Replacement of a memory module by a nondeterministic sequence.

The drawback of this simplification is conservative; the verifier may report a false negative
but never report a false positive. This is because we investigate superfluous cases in addition
to the original ones. Since the given specification is AG ok, the addition of superfluous cases
disallows false positives.

Suppose an input sequence to IMEM consists of addresses that are different from each other,
ajazazas = 32 36 40 44, for example. Since we must achieve verification for every possible
initial configuration of IMEM, the output sequence corresponding to the input sequence can
be any sequence, Ma;)Maz)M[as)M[ay] = 100 176 287 153 or 273 273 222 103 etc. The
nondeterministic sequence m;msmam, can be also any sequence. Therefore, in this case of
unique addresses, there exists a one to one correspondence between the original output sequence
and the nondeterministic sequence. Hence there is no loss of accuracy (no false negatives) in
the verification results. .

The penalty of abandoning the memory cells occurs when there are repeated addresses
in the input sequences. Suppose a;a,a3a, = 32 32 34 38. The first and the second values in
M{a,| M [a;] M[a3]M[a,] are then the same. This does not hold in the nondeterministic sequence,
and hence this replacement is not exactly accurate. However, note that it does not lead to the
incompleteness of verification, because the first and the second values in the nondeterministic
output sequence can be the same and all the possible original output sequences are completely
covered.

In our verification application, we deal with two processors which access two IMEMs of
identical contents. Figure 6 (b) illustrates the simplification for this situation. The two proces-
sors are supposed to access the IMEMs by the same address sequences in the sense of type-ii

9



1: initial {

2: Q = new queue;

3: idle = 0;

4: }

5: always clock {

6: if (a_r) {y_r = new; Q.enq((v_r,new))}
7: if (a_i) {

8: idle = 0;

9: if (1Q.empty()) {

10: (v,y) = Q.deq();

11: if (v_i==v){ok = 1; y_i = y}
12: else {ok = 0}

13: }

14: else {ok = 0}

15: )

16: else {ok = (++idle<=idle_LIMIT)}
17: freeze = Q.full();
18: }

Figure 7: Algorithm of the matching module of type-ii.

or type-ir relations. If the two addresses matches, then the same nondeterministic value is
assigned to both of the corresponding data. Otherwise, nondeterministic values are generated
for each separately.

The same discussion concerning conservativeness as in the single IMEM case holds also in
this case. This simplification does not reflect the fact that the same addresses may be given
to the IMEMs more than once but it is still conservative since the set of the behaviors of the
simplified model includes those of the original.

3.1.2 Matching Module

The module that replaces the two IMEMs in Figure 6 (b) is also implemented as an FSM.
Actually it is an extension of the checking module.

Figure 7 shows an algorithm for the matching module of type-ii. The only differences
from the simple checking module are in lines 6, 10, 11, and 12. When a_r = 1 (line 6), a
nondeterministic value is assigned to y_r and inserted into the queue along with the input data
v.r. When a_i = 1 and the queue is not empty (lines 10, 11, and 12), the output value stored
in the queue is emitted to y_i. ,

Similarly, the algorithm of the matching module of type-ir is derived from that of the
checking module, as shown in Figure 8 .

3.1.3 Handling of Data Memory

We have discussed IMEM which is read only, while both read and write operations are provided
with the DMEM. Figure 9 illustrates a way of handling a read/write memory. It is split into
the read part and the write part. The read part is the same as the IMEM. The write part is

10



1: initial {~

2: Q = empty_queue;

3: idle = 0;

4: disagree = 0;

5: }

6: always clock {

7: if (a_r) {y_r = new; Q.enq((v_r,new))

8: if (a.i) {

9: if (1Q.empty()) {
10 idle = 0;
11: (v,y) = Q.deq();
12: if (v_i==v) {ok = 1; disagree = 0; y.i=y 1}
13: else {ok = (++disagree<=k); y.i = new2}
14: ¥
15: else {ok = 0}
16: }

17:  else {ok = (++idle_i<=idle LIMIT)}
18: freeze = Q.full();
19: }

Figure 8: Algorithm of the matching module of type-ir.

only a checking module that checks the SI relation between the sequences of write addresses
and write data.

This separated model introduces a conservative inaccuracy where the effects of write oper-
ations are not reflected in the read operations. However, the verification results are accurate
as long as IP and RP access DMEM in the same order. As for conservativeness, the same
discussion as in the IMEM case holds also in this case.

3.2 Abstraction of Data Path

We can also apply the N1 abstraction to data paths. Figure 10 illustrates an example of
the abstraction on a multiplier where y; and z; are nondeterministic sequences. The same

— T wr TrTw
M[al] ? M[a3] 1‘/[[(14] 7 — DMEM «— @1 a9 a3 Q4 A5
— - dy - - ds

¢

DMEM |— a; - }
Mla1} ? Mlas) Mlag) ? — &)M a - a3 a4

DMEM | - a2 - - G5
(W) — -dy - - ds

Figure 9: Handling of an R/W memory.
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nondeterministic output values are generated, if and only if the operands are the same. The
output sequence of the multiplier of RP is replaced by a nonderterministic sequence vy, ¥, ¥a,
Ya, -+ The first output value of the IP multiplier (a; X b;) is equal to the first output value of
the RP multiplier, so it is replaced by the same nondeterministic value y,. Similarly the third
output of the IP multiplier is replaced by y;. On the other hand, the second and the fourth
outputs of the IP multiplier do not have corresponding values in the output sequence of the
RP multiplier, so they are replaced by other nondeterministic values z, and z,.

By the same discussion as for IMEM, the application of N1 abstraction to the functional
units without memory elements is conservative.

Although the information of the input values themselves is totally destroyed, there is equiv-
alence between the values in the output sequences of RP and IP. Thus there will be no false
negatives as long as the SI relation between the two processors does not depend on a property
of the operation achieved by the unit. For example, suppose RP and IP both compute a x b. We
can judge if both processors compute the equivalent result without evaluating the multiplier.
On the other hand, 2 X z is the same as z + z or a shift, but these data will be judged different,
possibly causing a false negative depending on the property being checked. Another example
possibly causing a false negative is when RP computes @ x b X ¢ by computing @ x b first and
then multiplying by ¢ while IP computes b x c first and then multiplies by a.

In general, as long as both processors produce the new data in exactly the same way, there
are no false negatives. All this is equivalent to the assumption that the functional units are
correctly implemented, something that can be verified separately.

3.3 Reduction of the Number of Bits

Once functional units are simplified by the N1 abstraction, we can reduce the number of bits
(N2 abstraction) to represent the data without further losing verification accuracy. We first
present the theorems and then prove them in the rest of this section.

Theorem 2 If all the functional units associated with a data type D are replaced by their N1
abstractions and all the matching and checking modules are of type-ii, then exactly the same

12



Figure 11: N2 abstraction.

verification result is obtained even if the number of bits to represent D is reduced into one bit.
]

Theorem 3 If all the functional units associated with a data type D are replaced by their
N1 abstractions and the whole model contains matching or checking modules of type-ir of at
most k& and the assumption of proposition 1 holds, then exactly the same verification result is
obtained even if the number of bits to represent D is reduced to [log(k + 2)] bits. m|

[Proof of Theorem 2] Figure 11 shows the block diagram of the FSM on which the N2 abstraction
is to be applied. The signal lines of data type D are depicted by bold lines, each of which is
implemented as d bit binary signal lines. The condition where we can apply the N2 abstraction
is that all the modules connected to the signal lines of data type D should be checking/matching
modules of type-ii. Then the claim is that the verification result is the same even if we replace
all the bold lines of d bits by signal lines of 1 bit.

Denote the original model and the simplified model as M and M’, respectively. N = ¢
expresses that a CTL formula 7 is true for a model N. Let ok,, be the ok signal of the m-th
checking/matching module associated with data type D. The “verification result is the same”
is stated as, for all m,

M |= AG ok, iff M' |= AG oky,. (1)

We investigate how AG ok,, is represented. For simplicity, consider a matching module
which has only one pair of inputs (from RP and IP) of type D. The same discussion holds for the
general case. Let s, and s; be the signal sequences over D fed into the m-th checking/matching
module. Then AG ok,, is true iff the SI relation holds between s; and s, of arbitrary length for

any assignment determined by the preceding matching module. Let |s;| = n and |¢(s;)| = [;;(n).
Then,

Ls; ()
M = AG ok, iff Vn: k/_\ ¢(s,)[k] = #(s:)[k] (2)

for any assignment by the preceding matching module.
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The preceding matching module assigns all possible values in D to ¢(s,)[k] and é(s;)[k]
under the constraint that the values are the same if the corresponding input matches and
the value should be the same. We can express this constraint using variables y;,---,y, and
21, +, 2y, as was shown in Figure 10. For notational convenience, let us use yn41, -+, Y2, in the
place of z;,-- -, 2,. The constraint is expressed as

¢(ST)[k] =Yy and ¢(3=)[k] = Yix- (3)
where, 1 <7 < 2n, 1 < 4 < 2n. Then (2) is written as

ls;(n)
M = AG ok, iff Vn,¥(y1,--+,Y2m) € D : /\ é(s,)[k] = ¢(s:)[%]
'a,(") (4)
iff Vnav(yh : :y2n) € Dzn : /\ Yrp = ytk

A similar transformation applies for the M’ = AG ok,,, except that M’ handles domain B =
{0,1} instead of D. Then we get the following result.

ls;(n)
M’ '= AG Okm iff Vn,V(yl,' M ,y2n) € B2n : /\ Yr = Yi- (5)
k=1

Now, we only have to show the right hand sides of (4) and (5) are identical in order to prove
M E AG ok, iff M' |= AG ok,,. This is easily proved by the following lemma.

Lemma 4 For any two domains D, and D, and for any given series ay, a3, - - - ,ax and by, by, -+ -, bg
where 1 <apy < Nand1<b <N (for k=1,2,---,N),

K K
V(xla"’axN)eDlN: /\xak=xbk iff V(xlv""xN)eD2N: /\xak:wbk' (6)

by =
[Proof] Both are true iff a; = by, ap = by, -, ax = by. o

[Proof of Theorem 3] Since the assumption of Proposition 1 holds (no repeated data values),
then M |= AG ok, and M' |= AG ok, are also reduced to (4) and (5), respectively, because
only one matching between s, and s; is possible.

In order to find a match for an element in s,, we must test at most k& + 1 elements in s;.
When a match to this element in s, is not found in these elements, the values of all of those
k + 2 elements are different. Thus we must be able to distinguish k£ + 2 elements to correctly
decide if a match is possible. [log(k + 2)] bits satisfy this requirement. o

Note that [log(k + 2)] bits only guarantee a sufficient amount of information to achieve
exact verification under this assumption of proposition 1. In order to make the assumption

hold, we need to contrive some means for this. We will show how to do this by an example in
Section 4.4.
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Figure 12: Block diagram of the IP.

4 Experimental Results

We applied the verification method to an implementation of a subset of the DLX processor
[HP90]. The processor is named the FDDP and the design was written in a hardware design
language SFL [Nak91].

The implementation is based on a standard 5-stage pipeline (IF: instruction fetch, ID:
instruction decode, EX: ALU execution, MEM: memory access, and WB: register write back).
It does not provide floating-point operations. Neither exception nor interrupt is implemented,
but a bypass circuit to avoid pipeline stall is provided.

4.1 Simplification of the Model

Figure 12 is the block diagram of the IP. We applied the N1 and N2 abstractions to the IMEM,
the DMEM, the ALU and the adder of the program counter. As a result, the bit-width of the
signal lines are reduced to 1 bit except for the ones depicted by bold lines in the figure.

The abstraction also reduces the size of the instruction set, because the instructions which

15



Table 1: Reduced instruction set of the processor.

op code function

ALU 0p,T1,T2,Tw | pc<-pc+4, RIr,J1<-RIr1]oplr2],

ALUI op,r,imm,r, | pc<-pc+4, R[r,J<-R[rJop imm,

LOAD r,adr pc<-pc+4, RIr]1<-M[adr],

STORE r,adr pc<-pc+4, Mladrl<-R[r],

BEQZ r,dspl if (R[r]l==0) pc<-pc+4+dspl
else pc<-pc+4,

BNEZ r,dspl if (R[7]'=0) pc<-pc+4+dspl
else pc<-pct4,

J adrs pc<-adrs,

JAL adrs pc<-adrs, R[1]1<-pc+4,

JR adrs pc<-R[r],

JALR adrs pc<-R[r], R[1]<-pc+4,

Table 2: Size of the model.

N1 (Memory) N1(OU) & N2 | Aprx-1 Aprx-2
1P 1317 85 39 39
RP 1220 32 4 4
MM 59 76 50 13
Total 2572 193 93 56

gives the same result under the abstraction are grouped into one. For example, all the ALU
instructions with register operands become a single ALU instruction. Table 1 shows the reduced
instruction set of the processor.

Table 2 shows the size of the whole FSM model for verification in terms of the number
of state variables (bits). The column “N1 (Memory)” is the model after applying the N1
abstraction to the IMEMs and the DMEMs and the column “N1(OU) & N2” is the result of

~ additionally applying the N1 abstraction to the functional units and then the N2 abstraction
to all appropriate signal lines.

The size 193 of the model, even after all the abstraction, is still too large for model checking.
So we applied other simplifications. The first is the reduction of the register file size. The
original design, with 32 registers, was reduced to 4 registers. The second is the simplification
of the functional units. Since even the matching modules require large computation cost, some
functional units are replaced by simpler models instead of the matching modules as shown in
Figure 13. Here the circled plus signs stand for exclusive-or. Note that these simplifications
are not guaranteed to be conservative anymore and may cause false positives.
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Figure 13: Simplification of operational units.

4.2 Verification Tool

As for the verification tool, we used SMV developed at CMU [Mcm93, Lon93]. It is a CTL
model checker based on the implicit state traversal method using BDDs. We used the version
with dynamic variable ordering of the BDDs [Che94]. We also used the partitioned image
computation (-cp option) and incremental image computation (-inc). Without these options,
the verification could not finish. All experiments are conducted on DECstation 5000/260 with
480MB of memory.

4.3 Bugs Found by Verification

Several bugs in the implemented processor were discovered during the experiments. The fol-
lowing is a summary of the experiments.

1. Mutual exclusion of PC update

A bug was found in the first version of the implementation related to the mutual exclusion
of PC update. PC is updated in the IF stage on ALU and load/store instructions and
in the ID stage on branch/jump instructions. If an operation in the second category
is followed by one in the first category (BEQZ followed by ALU, for example), the PC
update of the branch/jump operation should have the higher priority. However in the first
version, the priority was reversed. This was a trivial bug caused during the translation
of the original description into the FSM model of SMV. '

Only type-ii matching modules are required for this verification. It took about 2 hours
using 12MB of memory.

We fixed the bug and continued the verification.

2. Disagreement of specification of branch

It was found that cancellation of prefetched instruction on a jump/branch instruction was
not implemented in the IP. It took about 4 hours and 12MB of memory using type-ii
checking/matching modules.
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We continued with two streams of experiments. One was to correct the specification (the
_ RP) to realize delayed branches. The other was to redesign the IP so that it cancels prefetched
instructions on branch and jump instructions.

3. Data hazard

On the delayed branch version, another disagreement of the two behaviors was detected.
When a LOAD instruction loads data to a register and the next ALU instruction refers
to the same register, the second instruction fetches invalid data. Even though the bypass
logic is correct and the data hazard between two consecutive ALU instructions is detected,
the ALU instruction right after the LOAD instruction should be stalled at least one clock
cycle. It took about 4 hours and 12MB of memory using type-ii checking/matching
modules to find such an error trace.

This can be a correct implementation, if it is assumed that the compiler always inserts
an NOP right after LOAD instructions.

Nevertheless, we redesigned the IP to stall for one clock cycle if this situation is detected

and ran verification again. This time, it passed verification. It took about 2.5 hours and
18MB of memory.

4. Bugs in pipeline control logic

On the prefetch-cancel version, another bug was found. There was an error in a stage
control logic where the IP stalls forever on LOAD followed by BEQZ. In order to handle
the prefetch-cancel implementation, a matching module of type-ir is required. It took
about 15.5 hours and 40MB of memory for verification to find this bug.

After this bug was fixed the implementation passed the verification, taking about 4.6
hours and 27MB of memory. It seems that the previous verification consumes much
more computation resource because an error trace (a sequence of states that leads to the
violation of the given CTL formula) had to be computed after deciding NG (no good).

4.4 Problem of False Matching

In the experiments on the prefetch-cancel version, we had to add auxiliary logic to avoid false
matching of the type-ir matching module. (See proposition 1).

Figure 4.4 (a) shows an example of the situation. The branch/jump destination happened
to be the same as when branch/jump was not taken. In this case, the address 32 is once fetched
and cancelled in the IP. Thus the address 32 of the RP should be matched with the next 32.
However, in the algorithm described in Section 2, the match is established between the first
elements available. Then, the data ms for address 32 is thrown away in the IP and the false
data z, is fed into the IP to cause a disagreement in the behaviors.

This problem is solved by putting a tag on the address data as shown in Figure 4.4 (b). The
tag p indicates that the address is generated by the branch/jump instructions. In this case,
the correct matching takes place, since the prefetched data does not. have the tag. Instead, two
bits (one for the address data and one for the tag) are required.
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Figure 14: Problem of false matching.

5 Conclusion

We presented a method of processor verification based on comparison of an implemented pro-
cessor with a reference processor. We succeeded in reducing the computation cost by using
the strong abstraction method based on uninterpreted evaluation of memories and complex
modules. Experimental results on a subset of the DLX processor were given.

In order to deal with practical processor designs, there are still many difficulties to be
resolved. We must be able to handle more sophisticated architectures that allow multiple
instruction issues and out of order execution. We must also deal with exceptions and interrupts.

The huge computation cost is the biggest challenge. It seems to be difficult with FSM based
approaches to handle larger models than a subset of the DLX. One possibility is to combine
uninterpreted evaluation using BDDs with symbolic simulation [Bur94, Bha94].
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