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Abstract

Rigorous Three-dimensional Time-Domain Finite-Difference Electromagnetic Simulation

by

Alfred Kwok-Kit Wong

Doctor of Philosophy in Electrical Engineering andComputerSciences

University ofCalifornia at Berkeley

Professor Andrew R. Neureuther, Chair

This thesis describes the latest embodiment of a three-dimensional electromagnetic

simulation program called TEMPEST which is implemented on the connection machines CM-2

and CM-5, andis used to predict and study technology trade-offs of interest in photolithography.

Highlights of the new algorithm include generalization to three-dimensional calculation, analysis

of dispersive materials, an efficient absorbing boundary condition, oblique incidence, and image

synthesis based on Hopkins' formulation.

The finite propagation speed of electromagnetic waves makes the time-domain finite-

difference approach a natural choice for implementation on parallel computer architectures. This

thesis addresses algorithmic issues including the accuracy and stability of the numerical scheme,

and numerical boundary conditions. The conventional time-domain finite-difference scheme is

second order accurate and requires 15 simulation nodes per wavelength to achieve a 2% accuracy.

Stability of the scheme depends on the ratio between the spatial and temporal discretizations.

Analogous to previous work in plasma physics, instability of the algorithm due to highly dispersive

materials has been alleviated by calculating explicitly the time-domain convolution relation

between the electric field and the electric displacement A novel boundary condition derived from

the harmonic nature of electromagnetic waves is used to bound the simulation domain with

minimal artificial reflection.

Implementationof a softwarepackagewhich catersto user convenience in dataprocessing

and remote use of the connection machine is also included. A link between TEMPEST and the

optical image simulation program SPLAT allows the study of the interaction among mask

topography effects, partialcoherence effects, and lens aberrations.



Validation of TEMPEST viaexperimental comparison and theusefulness oftheprogram in

predicting and assessing complex technological issues in photolithography are presented. In

particular, TEMPEST is used to predict important effects such as glass edge scattering in phase-

shifting masks and resonance in dielectric ridges. These predictions have been subsequently

confirmed experimentally. Transmission loss and polarization effects in small contact holes are

characterized as a function of the feature size. TEMPEST is also shown to be well-suited for

analyzing three-dimensional effects of reflection from underlying topography during photoresist

exposure whichcancause variations in the critical dimensions of the features being formed.

^SAlJtej/f*
Professor A. R. Neureuther

Committee Chairman
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Chapter 1

Introduction

Computer aided design (CAD) tools have come to play an important role in integrated

circuit design, device design, and process design. Circuit simulation programs such as SPICE62

were among the first to be developed and gain popular acceptance. Device simulation programs

such as MINIMOS79 and PISCES74 are helpful in understanding device performance. Process

simulation tools such as DEPICT86, SAMPLE70, SOLID27, and SUPREM40 are becoming more

popular as the cost of performing experiments rises continually with time and the cost of

computation decreases dramatically from year to year. However, with the introduction of new

technologies and the scaling of optical lithography to smaller feature sizes, greater demands are

placed on the scope ofthe physical models and the accuracyoftheir implementation in algorithms.

At the same time, these numerical models must be efficient in order to provide a rapid solution.

These needs together have placed stringent requirements on the completeness, accuracy and

efficiency of process simulation tools.

Modeling ofthe optical lithography and electromagnetic scattering processes has proven to

be one of the greatest challenges. For example, standing wave patterns within the photoresist

caused by substrate reflection must be accurately modeled. Image defocus effects within the

photoresist layer may cause unwanted variationin the photoresistlinewidth. Photoresistbleaching

requires the modeling of an inhomogeneous layerofmaterialwhose optical propertiesdynamically

change during exposure. Simulation of the dissolution of photoresists requires the tracking of

moving surfaces which can collide with one another and produce loops. Removal of these loops

poses achallenge forthe computerprogrammer. Non-planar topographies in photomaskscancause

lateral scattering ofelectromagnetic fields which often adverselyaffect the opticalimages. Further,

topography onthesilicon wafer canredirect waves inundesired directions and cause problems such

as reflective notching. Alignment signals may also vary tremendously with a tiny change in the

underlying layers or the alignment mark shape.

Electromagnetic problems are particularly computation intensivebecause typical feature

sizes of interest are on the order of a wavelength. In mis regime, neither geometric optics nor



Rayleigh's method suffices. Even with the most advanced numerical techniques, some of these

problems are not tractable. For example, solving the problem with rigorous frequency-domain

methods requires the solution to a system of millions of simultaneous equations. Direct solution of

the matrix is not feasible with the current numerical techniques. Iterative solutions such as the

conjugate gradient method36 orGMRES78 are not attractive as the matrix is notpositive definite

and the condition number is large.With time-domain methods, typically 15 simulation nodes per

wavelength arerequired to achieve the desired accuracy. For modeling of deep-UV lithography at

a wavelength of0.248 urn, a typical volume ofinterestis 4 urn by 4 urn by 2 um, correspondingto

2048X3 or8 million simulation nodes. The size of theproblem makes it difficult to solve even on

the most advanced workstations.

With the advent of supercomputers such as the Cray and the connection machine, some of

these difficult problems can be tackled through the massive amount ofcomputer power.The key is

to shorten the computation time by parallel evaluation of the problem. In the modeling of

photolithography, such a parallelization is possible for the simulation of electromagnetic (light)

wave propagation using the time-domain finite-difference (TDFD) method. Unlike most

frequency-domain approachesin which each simulation node is coupled to all the other nodes in the

simulation domain, information is only exchanged with the nearest neighboring nodes in the TDFD

method because of the finite propagation speed of light The solution for a problem is achieved by

time iteration until steady-state is reached. Hence, it is not necessary, in the TDFD approach, to

invert a large matrix which is often the limiting factor for frequency-domain approaches.

Furthermore, since Maxwell's equations aresatisfied everywhere in space, the updating equations

for all simulationnodes (except forthe boundary nodes)areidentical, andthis makes programming

simple. This approach is both accurate and efficient It is accurate because no approximation

concerning the propagation of the electromagnetic wave is made (as Maxwell's equations are

solved);it is efficientbecauseeachprocessor onthe parallel computeris solvingidentical equations

in parallel.

This thesis presents the formulation and implementation aspects of electromagnetic

simulation using the TDFD method. Tlie computer program is called TEMPEST and it is

implemented on the parallel computer architectures connection machine 2 (CM-2)29 and



connection machine 5 (CM-5)88. The simulation program solves Maxwell's equations using the

TDFD method. The algorithm is built on that proposed by Yee104 and the initial formulation and

implementation by Guerrieri25 and Gamelin23. Electromagnetic wave propagation and scattering

are simulated by solving iteratively the discretized Maxwell's equations until the electromagnetic

field inside the simulation domain reaches steady-state. In this thesis, generalization to three-

dimensional analysis is discussed. Discretized equations are shown for this first three-dimensional

formulation on the connection machine, together with the accuracy and stability of the numerical

scheme. Accuracy of the leap-frog numerical scheme is shown to be second order accurate except

for materials withthe property that e.» er. Stability of the algorithm depends bothontheratio of

the spatial discretization Ax to the temporal discretization At being greater than the speed of light

multiplied by a constant as well as the real part of the refractive index being larger than the

imaginary part Simulation of highly dispersive materials in which n. >n, is feasible when the

convolution between the electric field E and the electric displacement D is explicitly calculated.

Two susceptibility models relating E and D are used: the Debye model which models ionic-like

materials and the Lorentz model which models metallic-like materials. Another difficulty with

accurate and efficient three-dimensional electromagnetic simulation is the need for a robust

numerical absorbing boundary condition. A novel numerical boundary condition derived from the

harmonic nature of electromagnetic waves is used to bound the simulation domain with minimal

artificial reflection.

Another theme of the thesis is the assembly of a software package. In addition to the

electromagnetic solver TEMPEST, the software package contains auxiliary routines including

utilities to display the calculated electromagnetic fields and a program which checks for the

correctness of the* input files. The optical image profile of the simulated structure can also be

calculated viaalinkto thesimulation program SPLAT89. Thislinkage allows theresults of rigorous

electromagnetic simulation from TEMPEST (the electromagnetic fields transmitted through or

reflected from two-dimensional and three-dimensional objects) to be interpreted in the context of

optical system effects (such as lens aberrations).

Application studies of problems of interest in photolithography are the driving forces

behind thealgorithm. The first version of TEMPEST formulated by Guerrieri25 and implemented



by Gamelin23 has been useful in the initial studies of many areas of photolithography such as

reflective notching81, optical metrology82, signal integrity in mask transmission14, and alignment

mark signal quality". To better facilitate these application studies, the original two-dimensional

TEMPEST was generalized by the author in his M. S. thesis102. This extended two-dimensional

TEMPEST which includes the capabilities to analyze the transverse magnetic polarization and

oblique incidence has been applied in the studies ofphase-shifting mask (PSM) techniques such as

alternating and rim73, attenuated20, and chromeless101, as well as issues in extreme ultraviolet

lithography (EUV) such as defects in multi-layer masks66. One application study of particular

interest is considered in detail in this thesis: examining the trade-offs in four different PSM

techniques including alternating, rim, attenuated, and chromeless. With the added three-

dimensional and image synthesis capabilities, TEMPEST is expected to make an even greater

impact on the integrated circuit fabricationindustry because it can examine truly three-dimensional

technological issues in photolithography accurately and efficiently. Initial results of three-

dimensional studies of transmission in contact holes and reflective notching arealso presented.

A historical account of the different techniques proposed to solve electromagnetic

problems in photolithography is first discussed in Chapter 2. These different techniques fall

primarily into two categories: time-domain methods and frequency-domain methods. The TDFD

approach used by TEMPEST is then discussed in Chapter 3. Stability of the numerical scheme

depends on the ratio of the temporal discretization(At) to the spatial discretization (Ax) not being

greater than some numberrelatedto the speedoflight In orderto confine the computationvolume,

numerical absorbing boundary conditions are necessary. These boundary conditions must be

efficient yet robust enough to minimize the amount of artificial reflection. In Chapter 4, several

absorbing boundaryconditions arepresentedincludinganovel boundaryoperator derivedbasedon

the harmonic nature ofthe electromagnetic radiation. Extension ofthe conventional TDFD method

to analyze highly dispersive materials is shown in Chapter 5. This extension is necessary for

lithographic applications because many of the commonly used materials in the fabrication of

integrated circuits have the property that the imaginarypartof the refractive index is greater than

the realpart This results in a negativepermittivity andthe conventionalTDFD algorithmbecomes

unstable.



Chapter 6 discusses some aspects of the software package TEMPEST and its

implementation on the connection machine. Convergence of the program is observed to be

dominated by physical scattering phenomena rather than the numerics. Tlie need for careful

excitation of the simulation domain and correction factors for the computation of diffraction

harmonics due to the staggering of the FDTD grid are also discussed. Since TEMPEST only

calculates the electromagnetic response of a structure whereas the optical image is the quantity

whichis the mostoften desired, conversion from thesteady-state fields calculated by TEMPEST

intoanintensityprofile is necessary. TTiis taskis accomplished by aninterface to another simulation

program called SPLAT89.

Applications of the program and validation of TEMPESTby experimental verification are

presented in Chapter 7 and Chapter 8. These applications show theapplicability of theprogram in

assessing the state-of-the-art technologies. InChapter 7, TEMPEST is applied in the studyof two-

dimensional PSMs. Four different techniques including alternating, rim, attenuated, and

chromeless are examined. Simulation results show that glass edge scattering is important in

degrading the images ofallthese types ofPSMs. This finding is confirmed by experimentalstudies.

In Chapter 8, three-dimensional effects suchascontact hole printing, phase defect printability, and

reflective notching are examined. It is shown that transmission loss and polarization effects are

important for small openings on chromium binarymasks. Furthermore, 360° phase bump defects

do not affect the optical image as adversely as 360° phase trench and protrusion effects. An initial

study of latent image formation in photoresist over underlying topography shows mat the critical

dimension of the polysilicon gate varies over a stepped substrate.

Chapter 9 concludes the thesis and presents some possible extensions to the current

simulation program. These include expanding the applicability of TEMPEST to a wider scope of

problems such as the modeling oflaser cavities. Furthermore, with the advent ofmultiple-program

multiple data (MPMD) supercomputers, it is possible to improve the efficiency of the current

simulation program, which is coded in the single-instruction multiple-data (SIMD) or the

massively-parallel programming mode.



2.1 Introduction

Chapter 2

Numerical Methods in

Electromagnetic Simulation

The electromagnetic problems of interest in photolithography present some difficulties for

numerical modeling because typical feature sizes are on the order of a wavelength. In this regime,

neither geometric optics (assuming that the radii of curvature of the surfaces are much larger than

the wavelength) nor Rayleigh's method (assumingthat the wavelength is much larger than the radii

ofcurvature) suffices. The general problem ofelectromagnetic scattering from topography has been

addressed in various ways. In this chapter, an overview of these different methods are described.

These techniques can be classified as either frequency-domain or time-domain methods. (This is

not theonly classification. Yeung107 classified the different techniques asmodal expansion, Green's

function based, volume based, and fast multipole methods.) For frequency-domain methods, the

electromagnetic fields are usually expressed as a superposition ofsome basis functions. Trie steady-

state electromagnetic solution is found by solving (directly or iteratively) a matrix. For time-

domain methods, a time parameter is introduced and the steady-state electromagnetic fields are

found by time-marching, i.e., electromagnetic interaction with matter is solved in time until the

fields become time-harmonic. In general, frequency-domain methods have the advantage of

simplicity as the solution is found once the system ofequations is solved. However, the system of

equations may be so large that the resulting matrix becomes impractical to solve. Time-domain

methods do not have the problem of solving large matrices, but time-marching may be so

computation intensive that a solution cannot be found within a reasonable amount of time.

22 Frequency-Domain Methods

2.2.1 Rayleigh's Method

Rayleigh made one of the first attempts to analyze the problem of electromagnetic

scattering from a periodic grating rigorously. He made the assumption that the fields can be



expressed as alinear superposition ofpropagating and evanescent waves75,76. Based onRayleigh's

hypothesis, Meecham52 used a variational method to calculate the diffraction efficiencies when a

planewave is incident upona periodic reflecting surface. Rayleigh's assumption wasunquestioned

until Deriugin13 and Lippmann45 raised objections toit. In1966, Petit and Cadihac72 demonstrated

thattheRayleigh hypothesis is tenable only if theproduct ofthewave number and thegrating depth

is less than 0.448. Nevertheless, Gallatin et al.22 as well as Bobroff and Rosenbluth4 applied this

methodto model the imagesof alignment marks underphotoresist But their methods arelimitedto

long, shallow features withhomogeneous layers. Another drawback of Rayleigh's method is that

the computation time increases with the grating depth and the refractive index of the grating

material asdemonstrated by Zaki111.

2.2.2 The Waveguide Method

Burckhardt8 tackled the problem ofdiffraction atasinusoidally stratified dielectric grating

by solving Maxwell's equations. The method of separation of variables was employed, and the

transverse electric solution was found by truncatingthe infinite series representationof the electric

field within each layer of the stratification. The resulting matrix was solved on an IBM 7094 in

1966. Kasper33 extended Burckhardt's method to include complex dielectric constants and non-

sinusoidal stratifications. Following theapproach ofBurckhardt andKasper, Nyyssonen andKirk69

developedthe waveguidemethodandapplied it in theexaminationofphotolithographic issuessuch

as edge detection68 and alignment mark signals37. Yuan etal.108 extended the waveguide method to

the transverse magnetic polarization and applied it in the smdy of wafer alignment and linewidth

measurement109. Lucas et al.46 also applied the same technique in the study of two-dimensional

phase-shifting mask structures.

223 Differential and Integral Methods

Neviere et al.65 used thedifferential method to study the resonances of holographic thin

film couplers. In this technique, the electromagnetic field as well as the square ofthe wave number

are expanded as Fourier series. Trie Helmholtz equation thus becomes a set of coupled ordinary

differential equations. However, this method has problems in modeling highly conducting gratings



(because of the difficulty in Fourier expansion of a large or infinite permittivity) and the transverse

magnetic polarization (becauseof the boundarycondition at material interfaces). Neureutherand

Zaki63 proposed an integral method which alleviated the problems of the differential technique.

Their formulation involved integral equationswith kernels containing the periodic Green's function

andits derivative. Botten6 extended the integral method by reducing the integral equations to the

solution of a Fredholm integral equation ofthe first kind. Maystre51 further improved the method

for an arbitrary number of layers. The methodrequires (p -1) successive matrix inversions for a

p-layer structure.

22.4 Finite-Element Methods

Morgan et al.60 solved electromagnetic boundary value problems using thefinite-element

method combined with the surface integral equation. In this technique, the internal region finite-

element field solution is coupled to equivalent currents on the boundary surface through a surface

integral solution. Using asimilar procedure, Moaveni etal.59 studied electromagnetic scattering of

periodic cylinders of arbitrary cross-section embedded in an inhomogeneous and lossy dielectric.

Matsuzawa etal.50 solved theHelmholtz equation using thefinite-element method together with the

boundary-element method and applied it in the smdy of photoresist bleaching on a stepped

perfectly conducting substrate. The approach was improved by Urbach and Bernard93 with the

extension to more general domains and partial coherence. Using the spectral element method in

which the electromagnetic field is expanded with the Legendre polynomials as the basis functions,

Barouch et al.1 is able to smdy three-dimensional reflective notching on non-planar substrates. The

method consists ofsolving the Helmholtz equation by performing static condensation on the matrix

system.

2.2.5 Other Techniques

There are many other frequency-domain techniques besides those mentioned previously.

Mei53 proposed the unimoment method which enables the separation ofthe exterior boundary value

problem from an interior one. Such a formulation has the advantagethat inhomogeneousmedia can

be easily modeled, but has the disadvantage ofrequiring a direct matrix solution because ofstability



oftheresulting system ofequations. Bischoffetal.2 formulated amethod based onthe principles of

Keller's geometrical theory of diffraction and their uniform extension (the locality principle) in

order to smdy latent images in photoresists. Yeung et al.106 investigated an approximate method

combining physical optics with the integral equation method. This technique is well-suited for

general geometries and has compared well with rigorous solutions.

23 Time-Domain Approaches

The previous section discusses the solution of electromagnetic problems via frequency-

domain methods. In such techniques, a large system of equations must be solved. Thus, the

difficulty of frequency-domain approaches is the solving of a large matrix. Time-domain

approaches, on the other hand, require no matrix inversion. The electromagnetic solution is found

by time-marching. The difficulty in solving a large matrix is replaced by the need to perform

billions and even trillions of additions and multiplications.

Yee104 was one of the first to replace Maxwell's equations by a set of finite difference

equations and solve the electromagnetic problem via a staggered grid. Merewether58 applied the

technique together with the use of the radiation condition (numerical absorbing boundary

condition) to smdy transient currents induced on a metallic body of revolution by an

electromagnetic pulse. Taflove and Brodwin83 examined the steady-state electromagnetic field

resulting from the scattering of a two-dimensional uniform and circular dielectric cylinder.

Improvements of the conventional TDFD method to allow for more flexible geometries

and more efficient memory usage were also suggested. Mei et al.54 demonstrated the feasibility of

die conformal TDFD method which enables die finite-difference mesh to conform to die object

surfaces. Zivanovic et al.112 proposed asubgridding TDFD method which employs avariable step

size. Tlie entire computation volume is divided into a coarse grid with a large step size, and a fine

grid is introduced only around materialinterfaces.TTiis subgridding method decreases die memory

usage and does not introduce additional numerical error.

There has also been efforts aiming to combine frequency-domain and time-domain

techniques. Taflove and Umashankar84 investigated a hybrid TDFD and method of moment

approach and applied it in the smdy of electromagnetic coupling and aperture penetration into



complex geometries. Fornberg21 studied thepseudospectral method inwhich thespatial derivatives

are computed in the frequency-domain whereas the steady-state solution is found by time-

marching. This technique has been applied by Carcione et al.9 in the computation of synthetic

seismograms.

Because of its computation intensive nature, time-domain solutions of electromagnetic

problems in photolithography was impractical until the advent of powerful supercomputers in the

late 1980s. Wojcik etal. studied the time-domain finite-element (TDFE) method98 and applied it in

the smdy of light scattering from silicon surfaces95, alignment mark signals96, and linewidth

metrology97. Concurrently, Guerrieri et al.25 formulated and Gamelin23 implemented the TDFD

approach on the connection machine CM-2 and applied it in the smdy of reflective notching81,

metrology of polysilicon gate structures82, mask material and coating effects onimage quality14,

and alignment mark signal integrity99.

2.4 Summary

Electromagnetic simulation in photolithography is difficult becauseof the problem size and

the requirements ofaccurate and efficient numerical models. Trie advances in numerical techniques

as well as the tremendous increase in computation power in recent years allow the tackling of

complex problems in integrated circuit processing. The inherent parallel nature of wave

propagation together with the advent of parallel computers make the TDFD approach a natural

choice for simulation of electromagnetic problems in photolithography. In the following chapters,

previous works relevant to the TDFD approachareextended to allow the modeling of problems in

photolithography. These include a three-dimensional formulation which results in six discretized

equations, generalization of the conventional TDFD numerical scheme to model highly dispersive

materials, and the implementation of a novel numerical boundary condition which is efficient and

minimizes artificial reflection.
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3.1 Introduction

Chapter 3

The TDFD Algorithm

Coherent Source of Arbitrary
Amplitude Profile

i—±

Field Values=0 Initially

k

Si wafer

Figure 3.1 A typical simulation domain in TEMPEST. The structure can represent arbitrary
three-dimensional non-planar and inhomogeneous topography. The domain is
excited at the top by a monochromatic plane wave.

This chapter presents the time-domain finite-difference (TDFD) scheme used for three-

dimensional electromagnetic field calculation on the connection machine. Two-dimensional

formulations in the transverse electric (TE) and transverse magnetic (TM) polarizations can be

found respectively in previous works by Gamelin23 and Wong102. This three-dimensional

formulation is an extension ofthe concepts byYee104 and Guerrieri25. Tlie complete set ofupdating

equations is first derived. The accuracy ofthe numerical scheme is then estimated by consideration

ofthe eigenvalues and eigenfunctions aswell asthe local truncation error. Stability ofthe numerical

scheme is also studied using the Fourier method, resulting in a relationship between the spatial

discretization Ax and the temporal discretization At

11



3.2 Formulation

A typical simulation domain for electromagnetic fields calculation is shown in Figure 3.1.

The structure can represent arbitrary three-dimensional non-planar and inhomogeneous

topography. Forlithographic applications,the interest is almost always the response ofthe structure

at a particular frequency or at a narrow band of frequencies. The simulation domain is thus excited

with monochromatic radiation atthetop.(Notethatmonochromatic excitation is notanassumption

in the TDFD scheme,andthus the techniques discussed in this thesis are applicable to the general

problem in which the incident radiation consists ofwaves ofdifferent frequencies.)Trie problem is

to find the steady-state solution for Maxwell's equations*:

VxH =jjP+J (3.1)

Vx E=-j (3.2)

supplemented with the constitutive relations:

B = \lH

D = eE

J = oE

where e, u, and a are respectively the permittivity, permeability, and conductivity of the material.

In general, the parameters\i, e, and a are functions of the frequency of the electromagnetic wave.

For the application in hand, however, they are assumed to be constant because of monochromatic

excitation. Using Stokes' theorem, equations (3.1) and (3.2) can be re-written in the weak form:

(fiUdl =f{j*? +j}.dS (3.3)
l i dt

f-* * rdB •»
E#dl B-ix #ds <3-4)

*. Id the MKS system.

12



where <fF• dl and JF • dS represent respectively the line integral and surface integral ofavariable
» •

F.

z Incident Radiation

Vxh4?+J
at

./-v v \/
Periodic Boundary Ax=Ay=Az

Conditions

Absorbing Boundary
Conditions

Figure 3.2 Trie TEMPEST simulation domain. Maxwell's equations are solved over a cubic
grid using the TDFD method. The field components are staggered over the grid.

Following the TDFD method proposed by Yee104, equations (3.3) and (3.4) are solved

using a cubic grid in which the field components are staggered and occupy distinct locations in

space as shown in Figure 3.2. The surface integral and line integral are thus evaluated on square

surfaces. With this discretization scheme, equations (3.3) and (3.4) become six scalarequations for

the field components Ex, Ey, Ez, Hx, Hy, and Hz. For example, Figure 3.3 shows that theelectric

field in the z-direction is calculated by summing up (with the sign properly taken into

consideration) the magnetic field values of the four neighboring points. This scheme assumes that

the electric field is constant over the square surface and the magnetic field is constant along each

line segment which makes up the square. This results in the following spatially discretized

equation:

2_(efj+a) E2(i,j,k)Ax* =

[Hx(i,j-i,k)-Hx(i,j +i,k)+Hy(i+i,j,k)-Hy(i-i,j,k)]Ax (3.5)
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Ax/2i

-^ Hy(i-l/2j,k)

Hx(ij+l/2,k) «-

Ezdj.k) -

* Hx(i,j-l/2,k)

Ax/2

Hy(i+l/2jOc)

©-•:

Figure 3.3 Trie electric field component E^ij,k) is calculated by summing upthe magnetic
field values of the four neighboring nodes. The magnetic field components are
assumed to be constant along the line segments 1-2, 2-3, 3-4, and 4-1, and the
electric field component 1^ is assumed to be constant over the square surface
bounded by 1-2-3-4.

where (i, j, k) stands for the spatial location (iAx, jAx, kAx), andthe medium is assumed to be

homogeneous, lb obtain a suitable time discretization of equation (3.5), it is possible to use the

leap-frog scheme. Trie electric field components are assumed to beconstant within thetimeperiod

[nAt, (n+l)At) , and the magnetic field components are constant within the time period

[(n -1/2) At, (n +1/2) At) .Theuseof this scheme leads to the following TDFD equation:

E;+1(i,j,k)=aE°(i,j,k) +
- n+i i i i -j

where

a =
2e-aAt

2e + aAt

>-£.Ax 2e+aAt

Following thesame procedure, theupdating equations for theother field components are:

14
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E;+1(i,j +i,k+i) =oE;(i,j+I,k+l) +
I n+5» 111 n+o 111P Hz 2(i-i,j +i,k+i)-H2 2(i +i,j +i,k+i) +

l l

Hx 2(i,j +i,k+l)-Hx 2(i,j+~,k) J (3.9)

?n+1^J-5,j,k+i)=aE;(i +i,J,„.2
l l

y 2(i+i,j,k)-Hy+\. .2
l l

E;+1(i+ij,k+4)=aE;(i +^,j,k +^) +

P Hv 2(i +i j,k)-Hv 2(i +i j,k+l) +

Hr5(i+5J+̂ +i)-H°+2(i+I,j-i,k+i)] (3.10)
l l

2

2»j • o'** ' o7 "z
n+5 111 n~i 111Hz 2<i +±J +±,k+±)=IL 2(i +i,j +i,k+i)-

At 1

Ax
•I[E;(i+I,j,k+i)-E;a+i,j+i,k+i) +

E;(i+l,j+i,k+i)-Ey(i,j+i,k+i)] (3.11)
l l

D+r 1 .,, „D"2,. . 1 . ,x At 1Hy z(i+^,j,k> =Hy ^(i+ij,k)- —•^[E;(i,j,k)-E;a+i,j,k) +

Ej(i+i j,k+i)-E;(i+ij,k-i)] (3.12)
1 1

n+r i n-- i At 1H° 2(iJ+I,k)=Hr5(iJ+J,k)-^*i[E;(iJ+i,k-i)-Ej(i,j+I,k+
+ E;(i,j + l,k)-E;(i,j,k)] (3.13)

33 Distortion of the Structure

Trie updating equations derived in the previous section are valid for homogeneous

materials. For inhomogeneous materials, the values of u, e, and c have spatial variations as the

simulated structure can represent different materials. In such cases, not only are the coefficients a

and P spatially dependent, modification of the updating equations may be necessary at material

interfaces because of the boundary conditions imposed by Maxwell's equations (such as continuity

of the normal component of the electric displacement).With the discretization scheme as shown in
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Figure 3.2, it turns out that no modification of the updating equations are necessary to account for

changes ofmaterial properties. The only modification is that the multiplicative coefficients become

spatially dependent, i.e., a becomes a(i,j, k) and p becomes p(i,j, k), with a(i,j, k) and

p (i, j, k) being constantwithin eachnode (i, j, k). Trie permeability\l is assumedto be constant

throughout the simulation domain and is equal to \Iq since only non-magnetic materials are of

interest. Magnetic materials can easily be represented by replacing u with u.(i, j, k).

Although no modification is needed for the updating equations, the discretization scheme

in Figure 3.2 nevertheless distorts the real structure through its representation of the structureby

cubes. An arbitrary volume is represented by cubes with edges parallel to the x-, y- and z-

directions. Any material interface is thus approximated by line segments with only three

orientations: along the x-direction, the y-direction, and the z-direction. Curved interfaces and

slanted interfaces are approximated by stair-cases.

To determine how a structureis distortedby the staggered grid representationis equivalent

to finding the exactvolumeoccupied by anode (i, j, k) containing the field variables Ez (i, j, k),

Ex (i +1/2, j, k+1/2), Ey (i, j+1/2, k+1/2), Hz(i+1/2, j+1/2, k+ 1/2),

Hx (i, j +1/2, k), and Hy (i +1/2, j, k). In order toachieve this, the boundary conditions impose

by Maxwell's equations must be considered. For example, consider a two-dimensional slice along

the xy-plane of the three-dimensional grid as shown in Figure 3.3. Suppose that the node (i, j, k)

containing the field variables Hz(i + l/2,j + l/2,k+l/2), Ez(i + l/2,j,k+l/2), and

Ey (i, j+1/2, k+1/2) has different material properties from theneighboring nodes containing

thefield variables Ez(i +1/2, j +1,k +1/2), and Ey (i +1,j +1/2, k+1/2), the problem isto

find the location ofthe material interface. From Maxwell's equations, the normal component ofthe

electric displacement D is continuous acrossany interface (assuming that this is no free charge). If

an interface exists somewhere within the interval x = (iAx, (i+l)Ax), then Maxwell's

equations require that theelectric displacement attheinterface atone side (Dj =£jEj ) beequal

to that at the other side (D2 = e2E2 ). However, the updating equation for Hz in the TDFD

scheme requires that the electric field components Eg and Ey beconstant along each line segment

1-2, 2-3, 3-4, and 4-1, i.e., E, = E2 . Both conditions together imply that e, = zv or there

cannot be aninterface in the interval x = (iAx, (i +1) Ay) or y = (jAy, (j +1) Ax). Hence,
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Interlace?

1

((i+l)Ax,jAx)

Node (i,j,k)

Different Nodes

Requirements from the TDFD scheme together with Maxwell's equations
determine the exact extent of each simulation node (i, j, k).

the interface must be located at x = (i +1) Ax, and y = (j +1) Ax. Similar considerations for

the other two components of the magnetic field Hx and Hy lead to the conclusion that the volume

represented by the node (i, j,k) is acube of volume Ax3 defined by x = [iAx, (i+1) Ax ) ,

y = [jAx, (j + l)Ax) , and z = [(k-1/2)Ax, (k+l/2)Ax) . Consideration of the

updating equations for the electric field components does not yield additionalconstraints because

all materials are assumed to have the same permeability ]Iq. Both the normal and tangential

components of the magnetic field arethus continuous across any material interface.

3.4 Accuracy

As a rough estimation of the accuracy of the TDFD scheme, consider the wave equation

resulting from Maxwell's equations in non-conductive materials:

dt2
V*E =<? (3.14)

For time-harmonic electromagnetic waves, without loss of generality, the electric field can be

assumed to be travelling in the z-direction and polarized in the x-direction with a magnitude Eo, an

angular frequency co and a wave number k related to co by ic=co/c, i.e.,
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E (r, t) = Ex (z, t) = E0sin (cot - kz) . In continuous space, this sinusoidally varying electric

field is an eigenvector of the operator V2 with an eigenvalue of -k2, i.e.,

V2EX (z, t) =-^Ex (z, t) =-ic^ (z, t) (3.15)
oz

For finite-difference schemes, the V2 operator can be approximated by the discrete operator Dr2

V2->D2 =D2 =-iI(K1-2K0+K_1) (3.16)
Ax

where I^E (kAx) = E((k+m) Ax).Operation ofDr2 on the sinusoidally varying electric field

Ex (z, t) results in the following discreteequation:

D2Ex(z,t) =-^[E((k+l)Ax,t)-2E(kAx,t)+E((k-l)Ax,t)]
Ax

Eo
= —5[sin(cot-KAx(k+l)) -2sin(cot-KAxk) +sin(cot-KAx(k-l))]

Ax

= -2 (1 - cos (kAx) ) sin (cot - kz)

Taylor seriesexpansion of cos (kAx) for small kAx gives the following result:

k2Ax2Dr2Ex (z, t) =-K2 (1 - -^-) sin (cot - kz) (3.17)

The discrete operator Dr2 thus preserves the eigenvector but gives an error inthe eigenvalue. The

fractional error inthe eigenvalue is (k2Ax2) /12. In terms ofthe number ofsimulation nodes per

wavelength d = (A,/Ax), the relative error, which is defined as the total errorin the value of the

fielddivided by the magnitude ofthe incidentfield, is given by

n2 1
errorrel =y ' JjJ (318>

Tb achieve a 2% accuracy thus requires a node density of about 13 simulation nodes per

wavelength. The d'2 dependence ofthe relative error shows that the operator Dr2 is second order

accurate in space. Following the sameprocedure, the discrete time derivative operator
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^-*D? =̂ (Z^Zo+Z.,) (3.19)
where ZmE (nAt) = E ((n + m) At) is secondorder accurate in time as well. The TDFD scheme

is thus expected to be second order accurate in both the spatial discretization Ax and the temporal

discretization At

The above analysis gives estimations ofthe error ofthe discrete operators Dr2 and Dt2. A

better estimate of the accuracy of the TDFD scheme described in equations (3.6) to (3.13) can be

ascertained from the local truncation error x. x is defined as the amount by which the exact solution

fails to satisfy the numerical scheme. Let us take equation (3.6) as an example. The updating

equation for K^ is repeated here:

E°+1(i,j,k)=<xE;(i,j,k) +

P

l l l l

H[+5(U-i,k)-H'+5<iJ +g,^
The exact solution can be found by Taylor series expansion of each individual term in the above

equation around the spatial point (iAx,jAy,kAz) and at time (n +1/2) At. Forinstance,

i l -> l
^i n+i Ata n+o At a2 n+oE£+1(i,j,k) =E2 2(i,j,k)+y|Ez 2(i,j,k)+T-^.Ez 2(i,j,k) +
At3 a* n+o At4 a4 n+- At5 a5 n+5

where 0 ^ 6, <J>, r| < 1. Expanding all the terms in equation (3.6) results in the following expression

for the local truncation error:

At aEz At2 o\ At3 o\ At4 o%x=(aM)E2-T(a+l)^%x(a-l)^-^(a+l)^+^(a-l)^
J 8Hy 8HX Ax393Hy Ax3d3Hxl < 5+*h* ~AXTy +1A^''lAtfJ +0(At^+Ax^) (3.21)

where all the derivatives are evaluated at the spatial location (iAxJAy, kAz) and at time

(n +1/2) At. This expression of x can be simplified by considering the z-component of the

Faraday's law:

dHv 9HX 9E_
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All the first order terms involving Ax and At are cancelled and the local truncation error becomes

_ At T At^z_ At^zl [Ax^y _Ax2^]
"e+£^ L°8at2 E48 dt3 J+L24 dx3 24 ay3 J} (3.23)

Tb estimate the magnitude ofthe local truncation error,approximations ofthe derivatives as well as

the values of e and a arenecessary. The magnimdes of the derivatives can be estimated by

dRJ
z SCOIEJ

at
1 Z|

3HV 3H.. E_ co E_
y SI y -K

& — _ i,

ax dx T| c Tl

where k is the wave number, co is the angular frequency of the incident radiation, c is the phase

velocity of the medium, and r| is the intrinsic impedance of the material, and

co = ck =
2rcc
X- (3.24)

From stability considerations (which are discussed in §3.5), the relation between At and Ax

is

At<
Ax

cV3

The relative error of the scheme is thus estimated to be

47t2(e/24 +7er/72) x
errorrel =

er+(1.77e/d) tf

where d is the density of simulation nodes per wavelength, and £,. and q arerespectively the real

and imaginary parts of the relative permittivity of the material. Notice in equation (3.26) that the

relative error is no longer second order accurate in the spatial discretization Ax when the material

is lossy. In the limit when ei» er, the relative error varies as d'1 instead of d"2 and the TDFD

scheme is only first order accurate. Such cases arisewhen the magnimdes ofthe real and imaginary

parts of the refractive index are comparable because er =nj-n2 and ei =2^^. Only for

lossless materials does the TDFD scheme retain the second order accurate behavior. For slightly

lossy materials in which er2: e.. the TDFD scheme still possesses a nearly second order behavior
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so long as d > 2 because the first term in the denominator (e^ dominates over the second term

(1.77e/d). As anexample, consider silicon atawavelength of 0.365 um. The refractive indexis

(6.522.-J2.705)71. In the MKS system of units, this gives apermittivity of 35.2^ (£^35.2) and a

conductivity of 35.3co£q (^=35.3). The estimatedrelativeerror is 2% with a node density of 15 per

wavelength, agreeing with the estimation from the Dr2 and Dt2 operators.

Tb determine how well the theoretical prediction of accuracy corresponds with the

numerical results, simulation runs with different node densities (values of d) are carried out on a

planar dielectric stack consisting of three lossless layers ofrefractive indexes of 1 (semi-infinite), 2

(of thickness 1.0 um), and 4 (semi-infinite), respectively. The free space wavelength ofthe incident

radiation is 0.5 um. The simulated steady-state electric field amplimdes in the middle layer are

compared with theexact solution calculated from the Fresnel equation31 as shown in Figure 3.5.

With a node density of 4 nodes per wavelength in the optically densest material, the relative error

is approximately 25%. Trie relative error for 8 nodes per wavelength is about 5%. For 16 nodes per

wavelength, the relative error is less than 2%. This is consistent with the theoretical calculation that

the relative error varies as 1/d2 and isabout 2% with 15 nodes per wavelength.

An interesting point to note in Figure 3.5 is the apparentincrease in the wave number asthe

node density is lowered. This is due to the increased difference between the actual dispersion

relation k = co/c and the numerical dispersion relation as the node density decreases. The

numerical dispersion relation is given by18:

2 yi

(-^sin (iicxAx) +^sin (IKyAy) +^sin (^k2Az)J =sin(icoAt) (3.27)

3.5 Stability

Engquist et al.18 have shown that the TDFD scheme described inequations (3.6) to (3.13)

is unstable unless the temporal discretization At and the spatial discretization Ax satisfy the

following relation:

1 -1/2
[2 2 \J-jSin (I^Ax) -h^Lsta (l^Ay) -H-L-sin (^Az) J (3.28)
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z(um)

Figure 3.5 TEMPEST calculated electric field amplitude of a 3-layer planar dielectric stack
with different node densities. A relative error ofless than 2% can be achieved with

15 nodes per wavelength in the region with the highest refractive index.

for arbitrary kx, iCy, and ic^. Since 0< sin2 (kxAx/2) <1, and Ax =Ay =Az, equation (3.28)
reduces to

At<
Ax

cVdim

The factor dim in equation(3.29)represents the numberofdimensions ofthe structure. Fora planar

structure, dim = 1. For a structure which is uniform across one of the dimensions such as a

photoresist line, dim = 2. For a general structure, dim = 3.

However, equation (3.29) provides only a necessary condition for the TDFD scheme to be

stable.Tb guarantee stability, it turnsout that the magnitudeof the realpartof the refractive index

n,must be greater than the imaginary part n*. In other words, er = (nj - n2) >0. Tb demonstrate

this, considera two-dimensional structure in the TE polarization. The TE polarization is defined in

such a way that the electric field is parallel to all surfaces, i.e., the electric field is polarized such

that it oscillates perpendicular to the planeof the structure. Under this special case, only three out

of me six equations of the TDFD scheme remain:
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E;+1(i,j) = aE?(i,j) +

P

1 1 1 In

Hx 2(i,j~)-Hx 2(i,j+±)+Hy 2(i+i,j)-Hy 20-^J)J (3.30)
l l

K »-5.. . . 12/5{xix_u 2Hx '(i,j +^)=Hx ^(i,j+^)-T[E;(i,j+l)-E;(i,j)l (3.31)

l l

.y 2(i+±,j)=Hy~2(i+̂ " -«*./. .*_»»/.H°+5(i +ij) =H°"2(i +i j) -7[E;aj)-E?(i+l,j)] (3.32)

where a and p aregiven in equations (3.7) and(3.8), and y = It (At/Ax). Tb determine stability

for this scheme, the Fourieranalysis is used. Consider the discrete Fouriertransform of E^:

^(e,.e2) =S2Aaj)e7:ra,'*w 0.33)
» j

Tlietwo-norms of Ez(i,j) andEz(6j,62) are related by ParsevaTs theorem:

2rc2re

SI|EzaJ)|2 =Tlj J|fi.(01.e2)|2d91d02 (3.34)
i j 47C 0 0

The "energy" in the time-domain variable Ej is therefore equivalent to the integrated spectral

energy.

Fourier transformation ofequations (3.6) to (3.32) results in the following equations in the

frequency space of0j and G2:

&l+l(Qv02) =E°[a+4PY(sin2(e/2)+sin2(e2/2))] +

ft* [i2Psin (02/2) ]+ftj [-i2Psin (0/2) 1 (3.35)

ftr'ce^) =ft°+^[i2Ysin(92/2)] (3.36)

ftj+1 (6j, 02) =ftj +£l [-i2ysin (9/2) 1 (3.37)
The above equations can be written in terms ofasystem ofequations as P* =A(6P 62) £°

where

*• =(£,a;,ft;)TaiKi
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A(01}e2) =
oc +4PY(sin2(01/2)+sin2(02/2)) i2Psin(02/2) -i2Psin(0/2)

i2Ysin(02/2) 1 0
-i2Ysin(0/2) 0 1

Parseval's theorem then gives

2n2rz

[3.38)

l|F"+1«2 =4^/ J|A*1 dft.de.slA'̂ IIJp0!, (3.39)
0 0

Assuming that A can bediagonalized, i.e., A = XDX"1, equation (3.39) becomes

2n2n

llFB+,|l2 =4** j j|AFfde2deiS||XDn+'X-1||J|F0||2 (3.40)
0 0

TrieTDFD scheme is thus two-norm stableif || DH.,, £ 1 andifX is bounded. Trie formercondition

means that the magnitude of the eigenvalues of the matrix A must be bounded by 1; the latter

condition implies that the eigenvectors of A must not blow up when the spatial and temporal

discretizations Ax and Atapproach zero. Tb verify theformer condition, thecharacteristic equation

for the matrix is

(X-l)[A,2 +A.(4PY{sin2(01/2)+sin2(02/2)}-a-l)+a] =0 (3.41)

Denoting sin2(0/2) +sin2 (02/2) by A, the eigenvalues are Xl =l.and

*2.3 =\ I<a+ l-*frtA) ±Vl6pVA2-8pYA(a+l) +(a-1)2] (3.42)
The magnimdes of X^z in equation (3.42) is less than or equal to 1 if and only if e >0 and

cAt/Ax <\/ji. (The factor under the square root sign corresponds to the number ofdimensions

and is 2 in this case.) Trie latter requirement corresponds to mat derived by Engquist18, but the

former is also necessary for theTDFD scheme to be stable. Tliecondition e >0 puts a constraint

on the allowable material properties. Since e = nj- n2, this condition means that only materials

with n, >nt can be smdied. This is a severe restriction as the refractive indexes of a lot of

commonly used materials in the fabrication of integrated circuits shownin Table 3.1 possess the

quality that n, > nr. Tlie problem of simulation of highly dispersive materials, i.e., materials in

which nj > nr, is tackled in Chapter5.
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Material 0.365 um 0.248 um 0.213 um 0.193 um

Silicon 6.522, -J2.705 1.68, -J3.58 1.119,-J3.025 0.883, -J2.778

Chromium 1.40, -J3.26 0.85, -J2.01 0.967,-jl.737 0.84, -jl.65

Photoresist ~(1.58*,-j0.02) ~(1.65*,-j0.02) ~(1.68,-j0.02) -(1.68, -jO.02)

Oxide (glass) 1.47453, -jO 1.50841, -jO 1.53429, -jO 1.563, -jO

a-silicon 3.90, -J2.66 1.69, -J2.76 U9.-j2.36 0.974, -J2.10

Nitride 2.093, -jO 2.278, -jO.005 2.468 -jO.07 2.66, -jO.243

Tungsten 3.39,-j2.66 3.40, -J2.85 2.0.-J3.61 1.30, -J3.02

Gold 1.716, -jl.862 1.484, -jl.636 1.432,-jl.364 1.425,-jl.156

GaAs 3.596, -J2.076 2.273, -J4.084 1.311,-J2.625 1.358,-J2.013

Table 3.1 Refractive indexes of commonly used materials in the fabrication of integrated circuits71.
*Kcdak KTFR photoresist94.

Tb verify the latter condition for stability, i.e., the boundedness of the eigenvectors of A,

notice that the eigenvectors

^ = ((1 - A,j), -7=12Ysin (0/2), V^YSin(0/2)) where i = 1,2,3 (3.43)

are bounded when Ax and At approach zero.

3.6 Conclusions

A three-dimensional TDFD numerical scheme for solving Maxwell's equations is

formulated for implementation on the connection machine. This scheme is shown to be second

order accurate (except for materials withtheproperty that e4» er), witharelative error of 2%when

the simulation node density is 15 per wavelength. It is also stable provided that both the ratio ofthe

spatial discretization Ax to the temporal discretization At is greater than the speed of light

multiplied by J5 and the real part of the refractive index is larger than the imaginary part. Trie

problem of modeling of highly dispersive materials is presented in Chapter 5. In the next chapter,

numerical boundary conditions used to terminate the simulation domain are discussed.
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4.1 Introduction

Chapter 4

Numerical Boundary Conditions

In simulation of electromagnetic scattering, there is a need to confine the area of

computation due to computer memory and CPU limitations. This leads to the introduction of

artificial boundaries surrounding the simulation domain. Ideally, these artificial boundaries should

not affect the propagation of electromagnetic waves, i.e., they should annihilate the outward-going

waves. These absorbing boundary conditions require special attention because boundary conditions

with poor absorbing properties can cause a significant amount of artificial reflection which in turn

can lead to inaccurate simulation results. At the same time, these numerical boundary conditions

should not require too much computation resource because they decrease the overall computation

efficiency as they lead to equations at the boundaries which are distinct from those in the interior

simulation domain described in Chapter 3. This decrease in efiiciency is especially significant for

massively-parallel computer architectures such as the connection machine CM-2 because the

interior simulation nodes are idled during calculations at the boundary nodes.

Taylor et al.85, Taflove and Brodwin83, Merewether58, and Kunz and Lee39 had proposed

different time-domain finite-difference boundary conditions in the early 1970s. These boundary

conditions were further refined by Mur61, and Engquist and Majda17,18 around 1980. In recent

years, Higdon28 proposed a stable boundary condition with a one-dimensional spatial stencil; and

Mei56 also proposed thesuperabsorption method which is based onerror cancellation between the

artificially reflected electric and magnetic fields. Furthermore, from a mathematical point of view,

Trefethen91,92 discussed the stability and well-posedness of absorbing boundary conditions. A

review and comparison of these boundary conditions can be found in Blaschak3 and Renaut77.

These different numerical absorbing boundary conditions proposed in the literature are all based on

the discretization of spatially and temporally continuous boundary operators. In this chapter, these

continuous boundary operators and their absorption properties are first described. A novel
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numerical boundary condition based not on boundary operators but on the harmonic nature of the

wave is then derived and compared with the boundary conditions proposed byMur61 and Higdon28.

42 Continuous Boundary Conditions

Consider the three-dimensional wave equation:

||.V«-||h?(«+« +«)-0 (4,)
8t2 dt2 \dx2 dy2 dz2)

A solution to the equation is:

E = E0exp (7^1 (cot +Kx+kv +n)) (4.2)
a y z

Thewave numbers kx, Ky, andkzarerelated through:

k^ +kJ +k^k2 (4.3)
where

271 CO
k = t = - (4.4)

For waves travelling in the -z-direction, the following relation is satisfied:

= 0 (4.5)(f-^E)
z - boundary

In general, k^ can take on any value between 0 and k. In numerical implementation, however, the

value of Kz must be fixed at some value k^. Thus, equation (4.5) becomes

B[E1 = (d/ITK20)| E=0 (4.6)
OZ z =boundary

where B is the (continuous) boundary operator. This boundary operator is perfectly absorbing

providedthat the wave approachesthe boundarywith a wavenumberin the z-directionequalto %).

In most applications, however, waves generally approach the boundary from different directions. In

these cases, the boundary condition in equation (4.6) is no longer perfectly absorbing. It produces

artificial reflections. Tb determine the reflection coefficient, assume that at the boundary, the

electric field is given by:

E=a•exp (,^1 (cot +kxx +Kyy-Kzz)) +b•exp (,/^T (cot +kxx +Kyy +kzz) ) (4.7)
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where |a| is the outward-going wave amplitude and |b| is the artificially reflected wave amplitude.

Substituting this expression of the electric field into the boundary equation (4.6) gives a reflection

coefficient of

IRI =
cos0 - cosG,

cos0 + cos0,
(4.8)

where 0 is the angle between the wave propagation direction and the normal of the boundary

(which will be called the exiting angle from now on), and kz0 = kcos00, i.e., the boundary

condition is perfectly absorbing for waves propagating with an exiting angle of0O. Trie reflection

coefficient as a functionof the exiting anglewith differentvaluesofthe perfectabsorption angle60

is shownin Figure 4.1.The figure showsthatas0O is increased fromzero,reflection atsmallexiting

angles becomes larger; but reflection for exiting anglesaround 0O is small. From this observation,

one might expect that the larger the perfect absorption angle is, the smaller the reflection coefficient

for exiting angles close to 90°. Figure 4.1 shows, however, that for any perfect absorption angle

0O = [0°t90° ) , thereflection coefficient always approaches 1.0as theexiting angle approaches

90°.

30 40 SO 60

Incident Angle (degrees)

Figure 4.1 The reflection coefficient as a function of exiting angle for different values of
perfect absorption angle0O. The reflectioncoefficient is 1 at 90° regardless of the
value of 0O.

Trie boundary operator in equation (4.6) with the reflection coefficient calculated above is

first order only. For a perfect absorption angle of 0°, the reflection coefficient at 45° is 0.17. This
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means that application of the boundary operator would result in a 17% error in the electric field

value for waves exiting at an angle of 45°. Tb improve the absorbing property of the boundary

operator, two approaches can be taken. In the first method, k^ in equation (4.5) is expanded as a

Taylor series. Keeping the higher order terms result in a higher order boundary conditions. This is

theapproach adopted byMur61. Inthesecond method, boundary operators with different values of

i^o are multiplied together, resulting in a higher order boundary operator. This is the approach

adopted byHigdon28. These two methods are described indetail below.

4.2.1 Mur's Method

Toillustrate Mur's method, assume without lossof generality that kz0 « k. Thenequation

(4.5) can be written as

<j|f-,A/<K»-K*-K»)B)
^Z

Assuming that kx and Ky are small and utilizing equation (4.4), Taylor series expansion ofequation

(4.9) results in the following equation:

GM^-iO^-ML^-
Keeping only the first two terms ofthe series and identifying */-Fco with d/dt, the second order

boundary operator is:

B^m-[aSrl#+i(^+#)]B-0 (411)

= 0 (4.9)
z = boundary

The reflection coefficient of this boundary operator is given by

lR*J =
cos0 - cos©0 2
cos0+ cos0o

(4.12)

With0O equalto 0°,diereflection coefficient forwaves exiting at45°isonly3%,reduced from17%

of the first order boundary condition. Higher order boundary operators can be derived by keeping

more terms in the Taylor series expansion in equation (4.10).
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4.2.2 Higdon's Method

Another way to obtain higher order boundary operators is to multiply together first order

boundary operators with different values of k^q. This is Higdon's approach. In this method, the

boundary operator in equation (4.6) is modified to read

Then an n*order boundary operator can bewritten as

B,UBaJE] =n(£-^£lE =0 (4.14)-f)E =0

For example, a second order boundary condition is

2***0,,[E1 " (at col0^azj[at cos0O2dzJE"° (415)B

and the reflection coefficient is

R2. I"higdonl

cos0-cos0o

COS0 + COS0O

cos0-cos0n
u2

COS0 + COS0n
u2

43 Discretization of the Boundary Operators

(4.16)

From the expression for the two second order boundary operators in equations (4.11) and

(4.15), one can see that Higdon's approach would result in a more efficient discretization scheme in

three-dimensional electromagnetic simulation as it requires a three-level one-dimensional spatial

(in the z-direction) and a three-level temporal stencil. For the Mur method, a three-level three-

dimensional spatial and a three-level temporal stencil is required. Higdon's method is thus

preferred over Mur's approach because of a smaller stencil. For two-dimensional applications,

however, since the number of field components is three instead of six, the Mur boundary operator

of equation (4.11) can be simplified. Assuming die TE polarization with only one electric field

component in the x-direction and two magnetic field components in the y- and z-directions.

Ampere's law then gives
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dE. 3BV 3E. 3B.

S-S^'R <417)
and the second order boundary operator becomes

..Dm „, 3E IdE cudH
BLfIE'H1=57+c3t+T5i =° (418)

This two-dimensional boundary operator involves only first order derivatives. The discretized

equation for a wave travelling in the -z-direction becomes

En+i=En cAt-nAx , ux2At [" n+i _Hn+5 .
Ei,j,o i,j,i vCAt +nAx; i'J'°2n(cAt+nAx) 1^+1/2.1 ^.j-i^i

„n+^ „n+« 1 , cAt—nAx v„n+i
Hz 2 ~Hz, 2 + ( a,^ a )En (4.19)zu+1/2,0 ^.j- j/2.0 J cAt + nAx *'3'1

where iAx and jAx are respectively the abscissa and ordinate (the index i is constant in this case as

the structure is only two-dimensional), and the third index represents the z-position. A value of 0

represents the boundary node, and a value of 1 represents the first node inside the simulation

domain. For waves travelling in other directions, the boundary equations are easily derived by

coordinate transformation.

For three-dimensional applications, however, the relation among the derivatives of the

electric and magnetic field components in equation (4.17) no longer holds, and the stencil becomes

three-dimensional in space. In this case, Higdon's boundary operator is more advantageous. In

order to discretize the continuous boundary operator of equation (4.13), Higdon proposed the

following discrete boundary operator

IWK'Z~,> =(^[(l-^+aKl-^^Ha-b^+bZ-'] (4.20)
where K and Z denote the forward shift operators with respect to space and time respectively, i.e.,

Ku?j k =u°j k+1 and Zu°j k=u?££; I is the identity. Trie coefficients a and b represent
respectively the weighted spaceandtime averages ofthe temporal and spatialdifferences. Equation

(4.20) gives the following discretized boundary equation:

D, [El = (I+ocK-pZ^-YKZ-^E = 0 (4.21)
higdon

with the coefficients a, p, and y given by
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aKcos0oAx - (1 - b) coAt (1 - a) kcosOqAx - bcoAt
a = (l-a)Kcos0oAx+(l-b)coAt' *= (1 - a) kcos0oAx +(1 - b) coAt *and

aKcos0oAx + bcoAt
y= (1 - a) kcos0oAx +(1 -b)©At (422)

With values of a = 0.5 and b = 0.5 (center differencing), a first order discretized boundary

equation becomes

coAt-K,nAx

!WE] -=& =E'°i.'+SAtTl5n[E°t!-E?.J.«] («3)
A second order equation can be derived by twice applying the discretized boundary operator

D, on the electric field, resulting in the following relation:
1higdon

D2higdon[E] =>EU0 = t-<ai +a2>K "«1«2K2+ (P1 +P2)Z-! +

(Y1 +Y2 +a,p2 +a2p1)KZ-1+ (c^+a^,)^"1-p,P2Z"2- (P^ +p^KZ"2

- yiy2K2Z'2 }Elll0 (4.24)

The parameters oc^o^, etc.,canbe adjusted bysetting0O and0o suchthat theboundary condition
I 2

is perfectly absorbing for exiting angles of 0O and 0O . For practical applications, 0O and 0O are
12 12

chosen to be the directions in which the most wave energy propagate.

4.4 A Novel Boundary Condition

Trie discretized boundary relation of equation (4.21) indicates that the field value of the

boundary node EftJ is a linear combination of the three field values E?t J, Ef; ft, and E? *..

However, since the electromagneticfieldcomponents vary in a harmonic fashion, the value of any

field component at any point and instant should be determined by its amplitude and phase only.

Thus, theoretically speaking, only two parameters are necessary to specify the value of any

boundary point at any instant of time. In other words, EjtJ can be given by alinear combination
of two field values instead of three as in equation (4.21).

Tb derive such a relationship, assume that the field varies harmonically with an angular

frequency coas follows:
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E(x, y,z,t) = Asin (cot +kx0x +Ky0y +Kz0z +fl) (4.25)

where A is the amplimde and £1 is an arbitrary phase. With this form, the field value of an arbitrary

node at any time step can be written as

«n+ 1 -m _Ei,Ik = Asin((J>-comAt+Kz0kAx) (4.26)

n+l _where <j> = co(n+l)At+Kx0iAx +K JAx+Q. Thus, in terms of $, EftJ = sin(J)
n+lEjjJ} = sin(<|) +K20Ax), and Ey 0= sin (<J>-coAt). Expanding the arguments for EjJ£{ and

Efj 0results inthe following set ofsimultaneous equations:

coskz0Ax sinKz0Ax
cos coAt -sincoAt

sin<j>

COS(|>
bi,j,l

LEUQ]

The solution for this system of simultaneous equations is

sin<J)

cos<|>
-1

sin (k_Ax + coAt)

-sincoAt -sinKz0Ax

-coscoAt coskz0Ax
Ei.j,l

LEiJ.Q]

Since E* t J = sin<t>, aboundary condition can be written as

D, [El = (I-aK-pZ"1)E = 0
'hul

or

jD+l _ sincoAt ?n+l
sinKz0Ax

EW sin(Kz0Ax+coAt)Ei'J-1+ sin(Kz0Ax+coAt)Ei'J»°

(4.27)

(4.28)

(4.29)

(4.30)

where the boundary node value is written as a linear combination of only two field values.

However, a problem ariseswith this boundaryequationas the coefficients do not sum up exactly to

1. Tb alleviate this problem, die small angle approximation for sine is used. Keeping only the first

order term, the following boundary condition results:

n fFl =*T?n+1 _ __J^L_Fn+1 4- K*°AX p»DihW.lllJ =^.0 - kz0Ax +coAt '̂i- >+ Kz0Ax +coAt^i'°

and die coefficients sum up exactly to 1.
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?n+lUsing this concept, the boundary node value E" JJ is not restricted to be a linear

combination ofany two specified field values. For instance, instead ofE? J j and E? j0, Ej t [and
E? j j can beused, and adifferent boundary condition can be derived:

K„nAx-coAt , K,nAx
D, [E] =>B?fJ =—*-^ E?tJ +-i2r:_E?

©At ^'J-1 coAt i'J-1

Moreover, this concept is not only limited to two field values. More node values can be

used, although only two free parameters are allowed. For example, using the field values of the

nodes E? t J, e? j {, and E?j 0, the following system ofequations can be obtained

cos(kz0Ax- ©At) sin(kz0Ax- ©At)

coskz0Ax - coscoAt sinKz0Ax + sin©At

and the corresponding boundary condition is

jn+ 1 _ pn

sin<j>

cos<j>
EUi

xyn+1 cn
l5%j,i ci»j,q

©At —K nAx
D. [El =»E??A = E?j ,+—- ^—[EPtJ-E?, 01

(4.32)

(4.33)

(4.34)

The above boundary condition is identical with Higdon's firstorderboundary condition with center

differencing shown in equation (4.23).

The boundary conditions given in equations (4.31) and (4.32) are only first order.Tb obtain

higher order boundary conditions, different discrete boundary operators can be multiplied together

similar to Higdon's approach. For example, twice multiplying the discrete boundary operator in

equation (4.31) results in the following second order boundary condition:

D2b„n[E] =*E°+i = Kai +a2>K -a,02K2+ (P^p^Z"1- (ajpj +a^KZ-1
-2 -|T?n+l

VAz~^EZ!,o (4.35)

where at = ©At/ (kz0 Ax+©At) and p. = kz0 Ax/ (kz0 Ax+©At). The same procedure can

be applied to the discrete boundary operatorof equation (4.32) to obtain higher order boundary

conditions, or alternatively, the operators of equations (4.31) and (4.32) can be cross-multiplied.

For instance, D, [E] is
Abw22
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D2h„22[E] ^EHl = f-(ai +CX2)K -aia2K +(P,+P2)KZ +

(cc^+a^K^-1 - p,p2K2Z-2 !E?tJ (4.36)

where a. = (k nAx-©At)/©At and p. = k nAx/©At. Cross-multiplying D, and D.

results in

D2b«ri2[E] =>E°+1 = t(a1-cx2)K +ajO^K2 +PjZ"1 +(PjO^ +p^KZ-1 -

a^tfZ"1 - PiP.KZ"2 ]BJ+J (4.37)

where ctj = ©At/ (kz0 Ax+©At), P, = kz0 Ax/ (kz0 Ax+©At),

a2 = (kz0 Ax-©At)/©At, and p2 = kz0 Ax/©At.

The advantage of representing the boundary value as a linear combination of two field

values is the decreased amount of computation resource needed. For a first order boundary

condition, only two multiplications and one addition are needed for Dl [El whereas three
*nir

multiplications and two additions are needed for the operator Dj [E]. Trie difference in

computation operations increases as the order of the boundary condition increases. For a second

order boundary condition, D, [E] requires eight multiplications and seven additions,
^higdon

D, [El requires six multiplications and five additions, whereas D2 [E] and Do [E]

require only five multiplications and four additions.

Trie harmonic boundary operator discussed above is derived based on the assumption that

the electromagnetic field varies in a harmonic fashion. However, its use is not limited to time-

harmonic problems with monochromatic excitation. Indeed, the harmonic boundary operators (just

as Mur's and Higdon's boundary operators) are applicable to problems in which the speed ofwave

propagationis constant with respect to the wave number,i.e., the medium is non-dispersive. This is

because the boundary operators in equations (4.31), (4.32) and (4.34) depend not on the individual

values ofthe angular frequency © andthe wave number k, but on the ratio between them. Since any

propagating waveform in an isotropic medium can be decomposed into a superposition of waves

with different wave numbers travelling at the same speed c, the harmonic boundary operators

actually apply to electromagnetic wave propagation in non-dispersive media in general. Thus, the
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harmonic operators can be used in steady-state as well as transient field calculations under

monochromatic or polychromatic excitation.

43 Boundary Conditions Comparison

In this section, the different boundary conditions described in the previous sections are

compared for accuracy: Mur's method, Higdon's method, and the harmonic method. Because

Mur's simplification applies only for two-dimensional structures, the comparisonis performedfor

two-dimensional structures only. For three-dimensional applications, Higdon's method and the

harmonic method are superior to Mur's method in terms of efiiciency because of the one-

dimensional spatial stencil utilized. Assuming that the wave travels in the -z-direction, the

discretized equations for the different boundary conditions are listed as follows:

For Mur's method, D2 [E, HI gives
mar

n+l n cAt-nAx , ^ Th"** -Hd+5 4.
iJ.o i,j,i vcAt +nAx' UO 2n(cAt +nAx) L ^j+i/m *u-i/2.i

„n+o „n+^ 1 . cAt-nAx % -+i
H^.-H*u-%oJ +<3AtTiA5>Eu! (4-38)

For Higdon's method, D, [E] gives

EU0 = [-(a, +a2)K -a,a2K2+ (Pj +p^Z-^ (Y1+Y2 +a,p2 +a2p1)KZ-1 +

(a^+cVr*,)^-1 - p!p2Z-2- (pjYj +P^^KZ"2 -^Y^Z^lEjtJ (4.39)

where

aiKcos0o Ax - (1 - bj) ©At (1 - a£) kcos0o Ax - bj©At
cc: = ' " (1 -a^KCOsB.Ax+H-h.^ffiAt'and1 (l-ai)Kcos0oAx+(l-bi)©At'Ki (l-ai)KcoseoAx+(l-bj)©At

aiKcosOQAx+bjaAt

Yi (1 - aj) kcos0o Ax+(1 - bj) ©At (4,40)

For the harmonic method, Dr [E] gives

EU0= [(a, +a2)K - cc^K2 + (p^p^Z"1- (a^+a^KZ'1-

P^^lEPtJ (4.41)
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where a = coAt/( k n Ax + coAt) and B. = k,nAx/(K nAx + coAt). With D? [E], the

boundary condition becomes

-l -2^-1BJJJ = [-(a, +a2)K - a^K' + (p1 +p2)KZ-!+ (a,p2 +a2p1) KZZ

P^K'Z-'lEgJJ (4.42)

where a. = (kz0Ax-coAt)/coAt and Pi = kz0Ax/coAt. Cross-multiplication of the two first

order boundary conditions gives

EjtJ = [(aj-a2)K +a2a2K2 +P,Z_1 + (p,a2 +P2)KZ"1 - ajP2K2Z_1 -

p^KZ-MEjtJ (4.43)

where the coefficients oq and pA are given in the previous section.

These five different boundary conditions are applied to four different structures and their

properties such as accuracy and convergence are compared. The four different structures are shown

in Figure 4.2. The first structure is a 1 urn by 1 um empty (vacuum) simulationdomain at ^=0.5

Empty Domain

• Vacuum (1,-jO)

Planar Structure

• Air(l.-jO)
| Dielectric (3, -jO)

Dielectric Grating

DAird.-jO)
| Dielectric (3, -jO)

Chromium Mask

| Glass (1.5, -jO)
jChrome (4.02, -j2.il)

Figure 4.2 Four different structures used to assess the properties of the different absorbing
boundary conditions. The first structure is an empty domain (left), the second
structure consists of two semi-infinite materials with a planar interface (middle
left), the third structure is a dielectric grating which can be highly resonant (middle
right), and the fourth is a chromium mask (right), a structure typical in
photolithographic applications.
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um. Tiros, the boundary conditions are expectedto givenoreflection (0%)andallthe energy should

be transmitted (100%). The second structure contains two semi-infinite lossless materials. Trie

simulation domain is again lum by lum withtheincident wavelength at0.5 um. Electromagnetic

energy is incident from air (vacuum) with a retractive index of 1. A dielectric material with a

refractive index of 3 hasa planar interface with air. The (electric field) reflection coefficientis -0.5;

and thus the reflected energy should be 25% whereas the transmitted energy should be 75%. The

third structure is anon-planar dielectric grating. The grating has a 1.0 pm period and adutycycle

of 1.0. Theheight of thegrating is 0.2um and theedges are vertical. The perfect absorption angles

used are 0° and 30° for Higdon's boundary condition and the harmonic boundary conditions

(corresponding to the directions ofthe 0th and 1st diffracted orders). With an incident wavelength

of0.5 um, suchastructure mayreflect alarge portion of theincident lightwaveenergy in the non-

specular directions and may pose accuracy problems for the numerical boundary conditions. The

fourth structure is a chromium mask opening. This is a typical geometry encountered in

photolithography. The incident wavelength is 0.248 um. The mask opening space has a width of

0.25 um (~1 A,) withaperiod of 2.0um.Theopaque chromium layer hasarefractive indexof (4.02,

-j2.11) and athickness of 80nm.The incident layer is glass with a refractive indexof (1.5, -j0.0).

The perfect absorption angles used are 0° and 7.12° for Higdon's boundary condition and the

harmonic boundary conditions (corresponding again to the directions of the 0th and the 1st

diffracted orders), and 0° for Mur's boundarycondition.

Table4.1 compares the different boundary conditions. All the results are given for two-

dimensional simulation in the transverse electric (IE) polarization. In terms of accuracy, the five

different boundary conditions are comparable andadequate forthe empty andthe planar structure,

except for the planar structure with D, wherethe error in die total energycalculated is 2.57%.

Forthe dielectricgrating andthe chromium mask structure, however, Higdon's boundarycondition

gives slightly different results forboth the reflected andthe transmittedenergy. Investigation ofthe

electric field amplimde confirmsthe differenceamongthe different boundaryconditions.Figure4.3

shows the electric field amplimde(for the chromemask structure) both alongaverticalline through

the middle of the opening and a horizontal line just underneath the chromium layer. There is

virtually no difference in the electric field amplimde along the horizontal line underneath the

38



Empty Structure

Boundary Condition

Mur

Higdon
Harmonic! i eq. (4.41)
HarmoniC22 eq- (4.42)
Harmonic12 eq. (4.43)

Planar Structure

Boundary Condition

Mur

Higdon
Harmonicn eq. (4.41)
Harmonic22 eq. (4.42)
Hannonic12eq. (4.43)

Dielectric Grating

Boundary Condition

Mur

Higdon
Harmonicu eq. (4.41)
HarmoniC22 eq. (4.42)
Harmonic12 eq. (4.43)

Chrome Mask

Boundary Condition

Mur

Higdon
Harmonic! x eq. (4.41)
HarmoniC22 eq. (4.42)
Harmonic12 eq. (4.43)

Reflected Transmitted Total Convergence CPU Time
Energy (%) Energy (%) Energy (%) (cycles) (s)

0.00

0.00

0.00

0.00

0.00

100.22

100.52

100.27

100.94

100.31

100.22

100.52

100.27

100.94

100.31

56.39

76.74

61.30

69.29

69.47

Reflected Transmitted Total Convergence CPU Time
Energy (%) Energy (%) Energy (%) (cycles) (s)

24.92

25.11

24.75

25.20

25.73

76.24

101.04

77.82

75.43

74.32

101.16

100.52

102.57

100.63

100.05

11

11

12

11

11

77.55

106.88

90.21

96.06

96.34

Reflected Transmitted Total Convergence CPU Time
Energy (%) Energy (%) Energy (%) (cycles) (s)

22.07

19.82

22.27

22.28

22.59

77.80

74.63

77.61

76.59

76.38

99.87

94.45

99.88

98.87

98.97

17 108.27

35 283.41

37 231.13

13 108.65

17 135.72

Reflected Transmitted Total Convergence CPU Time
Energy (%) Energy (%) Energy (%) (cycles) (s)

28.64

28.63

29.16

28.69

28.83

9.29

8.69

9.36

9.27

9.26

37.93

37.32

38.52

37.96

38.09

13 309.48

20 578.59

16 389.64

13 362.63

13 372.31

Table 4.1 Comparison ofthe different boundary conditions for two-dimensional simulations.
All the boundary conditions give similar energy calculations. For the empty and
planar structures, there is virmally no difference in convergence. For the chromium
mask structure, however, Higdon's method shows the worst convergenceproperty.

chromium layer, except that Higdon's boundary condition gives a slightly higher amplimde at the
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center of the opening. For the vertical line along the opening, a larger discrepancy is seen. Mur's

boundary condition and all of the harmonicconditions in equations (4.41), (4.42) and (4.43) agree

well. However, the difference in electric field amplimde between Higdon's method and the other

methods canbe as large as5% at particular spatial locations, although the locationsof the standing

wave peaks and valleys are the same for all the boundary conditions.

Figure 4.3

i (am) y(um)

Electric field amplimde of the chromium mask structurecalculatedby the different
boundary conditions. Trie field amplimde shows virtually no difference at a
horizontal line just underneath the chromium layer (left). For a vertical line along
the opening (right), however, Higdon's boundary condition shows slight
discrepancy when compared with the other boundary conditions. Nevertheless, the
location of the standing wave peaks and valleys are the same for all the different
boundary conditions

The efficiency of the boundary conditions are also evaluated in Table 4.1. Triere are two

criteria: the amount of computer time used and the number of wave cycles for convergence. The

criterion for convergence is that the electric field varies by less than 1% for three consecutive

periods at the same instant of the wave cycle. While the amount of computer time is the most

important quality for an efficient boundary condition, the number of wave cycles for convergence

is a good indicator of whether the boundary condition absorbs the waves well. In general, a large

number ofwave cycles for convergence means that either the structure under examination is highly

resonant or the waves are artificially reflecting off the simulation domain boundaries. Therefore,
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comparing the number of wave cycles for convergence required for the different boundary

conditions for the same structure gives an indication of the absorbing quality of the boundary

conditions. Table 4.1 indicates that for two-dimensional simulations, Mur's boundary condition is

the most efficient, both in terms of the computation time and the number of wave cycles for

convergence. The harmonic boundary conditions in equations (4.42) and (4.43) arecomparable to

Mur's boundary condition in terms of number of cycles for convergence, but the computation time

ofthe two harmonic boundary conditions areslightly highly than that ofMur's boundary condition.

Higdon's boundary condition seems to be the worst among all the boundary conditions as it

requires the most amount of computer time as well as wave cycles for convergence.

The above accuracy comparison demonstrated that the boundary conditions are suitable for

implementation. Choice of the boundary condition to use thus depends on the efiiciency. The

previous efficiency discussion suggests that Mur's boundary condition is the best for two-

dimensional calculations as it requires the lowest amount of computer time. For three-dimensional

calculations, however, Mur's boundary condition no longer has the advantage over the other

boundary conditions as its stencil becomes large. To estimate the efficiency of the boundary

conditions for three-dimensional structures, first note that the computer time consumes by the

boundary conditions is about 75% of the total simulation time25. Table 4.1 thus implies that the

harmonic boundary conditions are slower than Mur's boundary condition by about 20%. Counting

the number of additions and multiplications, Mur's boundary condition needs three multiplications

and six additions (a total of 9 floating point operations)whereas the harmonic boundary condition

D, requires six multiplications and five additions (a total of 11 floating point operations). The

ratio ofthe number of floatingpoint operations is 1.22,agreeingwith the 20% increasein computer

time for the harmonic boundary condition. For three-dimensional calculations, the number of

floating point operationsis 75 (41 additions and 34 multiplications) for Mur's boundarycondition

and 11 (6 multiplications and5 additions) fortheharmonic boundary conditionH12. The advantage

in the efiiciency of the harmonic boundary condition is thus estimated to be almost 600%.
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4.6 Conclusions

In this chapter, different boundary conditions resulting from the discretization of

continuous differential operators are presented. In particular, the methods proposed by Mur and

Higdon are compared with novel boundary conditions derived based on the space- and time-

harmonic variation of the field. All these boundary conditions are shown to produce reasonable

results; they also agree well with one anotherexcept for Higdon's boundary condition. In terms of

efficiency, Higdon's method and the harmonic method are more efficient than Mur's method for

three-dimensional applications. This is because Mur's method requires a three-dimensional spatial

stencil whereas Higdon's method as well as the harmonic method require only a one-dimensional

spatialstencil. The harmonicmethod is slightly more efficient than Higdon's method as it requires

fewer number ofmultiplications and additions. In terms ofaccuracy, Mur's boundary condition and

the harmonic boundary condition are superior to Higdon's method. Based on these considerations,

the harmonic boundary condition D? in equation (4.43) is chosen for three-dimensional

implementation as it is expected to converge (in terms of the number of wave cycles) as fast as

Mur's boundary condition and requires about one seventh of the computer time ofMur's boundary

condition.
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5.1 Introduction

Chapter 5

Modeling Dispersive Materials

Electromagnetic simulation using the TDFD approach has received increasing attention in

recent year because of its applicability for execution on massively parallel computer architectures.

However, difficulty arises when the TDFD approach is applied in problems involving dispersive

materials. The original TDFD formulation by Yee104 requires that the electric permittivity,

magnetic permeability, and conductivity of all the materials in the structure to be frequency

independent. Nevertheless, this assumption offrequency independent material constants alone does

not place a constraint on applications where the only interest is the response of a structure at a

particular frequency, since theuniqueness theorem80 states that any converged solution is thetrue

solution. The problem of the TDFD approach arises when a material has the property that the

magnitude of the imaginary part of the refractive index is larger than the real part This causes the

real part ofthe permittivity ofthe material to be less than zero, and the TDFD formulation becomes

unstable as shown in Chapter 3.

Different schemes have been proposed to solve this instability problem. A possible scheme

is the complex field method in which the field variables as well as the material constants are

expressed as complex numbers.This approachcan be viewedas solvingfor two separateproblems,

witha 90°phase difference between them. Another approach is proposed by Luebbers et al.48 in

which the convolution relation betweenthe electricfieldand the electric displacementis calculated

at each time step by a recursionrelation. This approach is called the frequency-dependent finite-

difference time-domain ((FD)2TD) method influ's chapter. Lee etal.41 proposed aschemeinwhich

the electric displacement(magnetic induction) is first found from Ampere's law (Faraday's law),

and then the electric field (magnetic field) is derived from the electric displacement (magnetic

induction). This method, whichis calledthe four-step method in this chapter, requires no explicit

calculation ofthe convolution integral. In this chapter, these different schemes are assessed for their
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applicability and efficiency. While only electric dispersive materials are considered, extension to

modeling magnetic dispersive materials is straightforward.

52 The Complex Field Method

In the conventional TDFD approach, the following pairof equations is solved:

VxH =e^+oE (5.1)

VxE =-u|? (5.2)
This pairofequations assumesthatthereis no magneticloss, andthat the electricloss is represented

by the conductivity a. In the complex field method(CFM), each field variable is represented by a

complex number instead ofa real number in conventional time-domain schemes. The motivation of

this formulation comes from frequency-domain approaches in which each field component is

represented by an amplimde and a phase (a phasor). The difference in the CFM is that instead ofan

amplimde and a phase,each field componentis represented by a realpartandanimaginary part In

this scheme, electric loss is not represented by the conductivity, but by a complex dielectric

constant Hence, the set of equations which the CFM solves is as follows:

- dEVxB =£^ (5.3)

VxE =-Hg? (5.4)

where the underscoreindicates acomplex quantity. Equations(5.3) and (5.4) areactually four finite

difference equations, corresponding to the real and imaginary parts of the electric and magnetic

fields, i. e.,

— -* oEr dE;

_ rt 3Ei 3E,VxH,-^'+e^ (5.6)
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VxEr =-^r (5.7)

VxEi =-ix^1 (5.8)

where the subscripts r and i represent the real and imaginary parts respectively.

Tb justify the use ofcomplex dielectric constants in a time-domain scheme, notice that the

conductivity a can be associated with an imaginary relative permittivity with the imaginary part

given by -J^\(<5/(a) for time-harmonic fields. Indeed, the difference between the use of

conductivity and the use of a complex permittivity is primarily philosophical26. Therefore, at

steady-state, Maxwell's curl equations can be expressed by equations (5.3) and (5.4), with the

dielectric constant given by

e=er-Virei =e-</=T^ (5.9)

The advantages of the CFM is its simplicity. There is no major modification of the finite-

difference equations. However, this scheme requires more field variables (more memory) and more

computation per iteration (more CPU time). Moreover, the CFM does not model dispersive

behavior of materials since it assumes that the complex dielectric constant £ is independent of

frequency. However, this latter limitation does not place severe restrictions on applications in

photolithography since most sources can be assumed to be monochromatic.

The CFM, although simple andstraightforward in implementation, is unstable except for

lossless materials. In order to examine the stability of the CFM, consider the two-dimensional

finite-difference equations in the TE polarization:

.« At I n+o 1 n+n 1 n+s i n+« i "IK <i'J>=iAx'lH* ftJ-J>-H« 2ttJ+5>+By 2<i+ij)-By 2(i-5J)J
+ E£(iJ) (5.10)

l

By *<i+j,J> =By 5(i +̂ J)+j^[E;(i+lJ)-E;aj)l (5.11),n+2- . 1 .. ~n~5.. . 1 .. . At

n + r

bx 2aj-5) =bx 2<u-§>+j^[B!<i.j-i)-e;<i,j>] (5.12)

UAj

, U °-L , 1, At
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In order to use Fourier analysis as was done in Chapter 3, equation (5.10) must firstbe modified by

substituting equations (5.11) and (5.12) for HJ+1/2 and HJ+1/2. Trie scheme thus becomes

b;+i<u) =«
1111

Bx z(i,j-§)-Bx '(iJ +^+H, *(i +j,j)-Hy '(i-j.j)

ap[B;(i+i,j)-2B;(iij)+B;(i-ifj)+^aj+i)-2^(iij)+B;(ifj-i)] +

BJdJ) (5.13)

where a = At/(gAx) and p = At/(uAx). Trie Fourier transform of the finite-difference

equations (equations (5.10) to (5.12)) can thus be expressed as

i.n+1 =A(61,02)^n

^n ,j\n -A.n -A_n. T
where F = (Ez,(BZ» BX> By) and

A(e,,e2) =
1-4aP((sin201/2) +(sin202/2)) i2asin62/2 -i2asin0/2

i2Psin62/2 1 0
-i2Psine/2 0 1

The characteristic equation for the matrix A is

(X-l) [X2 +2A,(2ap(sin2ei/2+sin202/2) -1) +1] =0

The eigenvalues are Xt = 1 and

(5.14)

(5.15)

(5.16)

X2 3=1-2ap {Oxk\/2 +sin202/2) [l t Jl - (1/ap (sin^/2 +sin202/2))] (5.17)

Trie magnimdes of %i and X3 are greater than or equal to 1, with equality holding only when

e = 0. Therefore, the TDFD numerical scheme using the CFM is stable only if the materials are

lossless, and is thus not practical.

53 The Four-step Method

In the conventional TDFD approach, the following pair of equations is solved:
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w-. s± dE c*VxH =e^-+aE (5.18)

VxE =-ji^ (5.19)

where the permittivity e, permeability u, and conductivity a are assumed to be constants. This

leap-frog algorithm consists of two major steps. In the first step, the magnetic field values in the

previous time step are used to update the electric field. In the second step, these newly updated

electric field values are used to update the magnetic field. In the four-step approachdeveloped by

Leeet al.41, twoextra steps are added inwhich the following set of equations is solved:

VxH=^ (5.20)

D(co) = e(co)E(co) (5.21)

VxE =-|? (5.22)

B(co) = n.(co)H(co) (5.23)

Equations (5.20) and (5.22) are essentially the conventional equations except that the electric

displacement D replaces eE and the magnetic induction B replaces |xH.Equations (5.21) and (5.23)

are additional equations which model the dispersive nature of the material. Note that equations

(5.21) and (5.23) are frequency-domain equations. Tb obtain their time-domain counterparts, one

must model the frequency dependence of the permittivity and permeability as well as make the

appropriate connections from the frequency-domain expressions to the time-domain expressions.

Forexample, considerthe electricdispersion relation of equation(5.21), the tasks become finding

a suitablemathematical model forthe electric permittivity andtransforming the frequency-domain

relation of equation (5.21) into a corresponding time-domain equation.

The dispersive behavior of a material may be characterized by many complex physical

phenomena. For the application in hand in which the interest is only in a narrow band of

frequencies, the mathematical model of the permittivity should satisfy two constraints only.

Besides matching the characteristics of the material within the interested frequency range, the
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causality condition mustbeobeyed. Two possible mathematical models are theDebye model12 and

theLorentz model11, shown inthe following equations respectively:

£s-e

Debye(C°>~S~V^(C0/C0o) (5'24)
CO2

p

lorentz <«) = l +— 2 FT/ / v (5'25)co2-co2-V-l(co/co0)

In equation (5.24), esis the permittivity of the material at zero frequency, e^ is the permittivity

when co -»«, and co0 is the resonance frequency. The parameter co in the Lorentz model of

equation (5.25) is the"plasma" frequency, cos and l/co0 are respectively theresonance frequency

and the damping constant. Equations (5.24) and (5.25) are frequency-domain equations which can

be transformed into time-domain equations by making the substitution

^ =-7=Tco (5.26)

Hence, for the Debye model, the frequency domain relation in equation (5.21) is transformed via

equation (5.26) into the following time-domain equation

Similarly, the time-domain equation for the Lorentz model is

^+W+-kli)D(t) =e°(<Dp+w*+$+5$)E(t) (528)
With equations (5.27) and (5.28), the discretized time-domain counterpartofequation (5.21) for the

Debye and Lorentz models are as follows, respectively:

En+, =̂ ((i+i>^+4-i>H^>D) ("9)
co0At 2

D»+i cojAt2-2 /Dn n co2At2 l-At/2co0/Dn-i
En+1=- +

e0 l+At/2co0
/Dn A CO'At" l-At/2C0ft/D«>-l A

(|-ED}rfii^;ED+TTAf72^(V-EB Ym
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where the superscript n stands for the n* time step. With equation (5.29) or (5.30) relating the

electric field E to the electric displacement D, the four-step algorithm is complete. Firstiy, the

electric displacement is found from values ofthe magnetic field at the previous time step. Secondly,

the electric field is found from the electric displacement with either equation (5.29) or (5.30),

depending on the mathematical model used. The third and fourth steps update the magnetic

induction and the magnetic field similar to the first and second steps. For two-dimensional

simulations of electric dispersive problems in the TE polarization with the Lorentz model, the set

ofupdating equations (corresponding to equations (5.20), (5.21), (5.22), and (5.23)) becomes

Dj+1(i,j) =Dj(i,j) +
. / i i i i \
At f n+? 1 n+5 1 n+5 1 n+5 1 ]—(Hx 2(i,j-i)-Hx 2(i,j +̂ )+Hy 2(i+i,j)-Hy 2(i-^j)j (5.31)

Dj+1(i,j) C02At2-2 fDjUj) ^Er.(1>j) =̂ _^+_i__^_E;(i>j)).
co2At2 l-At/^cOofD^aj) , A

T^f72^E°<i'J)+rPAt72^l^irL-E°-,(1-J>J <«2>
1 1

H°+2(i,j-i) =H°"2(iJ-i)+jI^(E;(i,j-l)-E;(i,j)) (5.33)
1 l

2 . 1 • _ D_2
-y (i +2'J> - Hy v- ' 2'J/ •|tAxx"2V* ' "J/ ~*

This method has been applied in the smdy of several topographies. In the problem of half

space filled withwater48, this method was found to give numerical results which are in excellent

agreement with theoretically calculated results41. For the problem of atwo-dimensional cylindrical

dispersive scatterer41, it was found to give good agreement with the results calculated using the

eigenfunction expansion approach10. These numerical results have demonstrated and confirmed the

validity and accuracy ofthe four-step approach.

Hpa +ii) =H°"2(i+I,j)+-^-(E;(i+l,j)-E?(i,j)) (5.34)
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5.4 The Frequency-dependent Finite-difference Time-domain Method

The frequency-dependent finite-difference time-domain (FD)2TD method was proposed by

Luebbers et al.48 tosolve problems involving transient propagation inaplasma, but their method is

equally applicable in solving photolithography problems involving highly dispersive materials.

Their method consists primarily ofexpressing the electric displacement D as a convolution between

the electric field E and the frequency dependent electric susceptibility %. This approach replaces

the need to find the electricdisplacement D first andthen updatethe electric fieldusing the electric

displacement values (inthe four-step method) by thecalculation of atimeintegral. Inthe(FD)2TD

method, the electric displacement D is related to the electric field as:

t

D(0 =^EqE (t) +ejE (t- t) x (x) dx (5.35)
o

where e0 is the permittivity of free space, £„, is the relative permittivity of the material when

©-»«>, and % is die electric susceptibility of the material. Theoretically, e^ equals 1.0 for all

materials32, butis leftin the equation for the purpose of comparison withtheconventional TDFD

approach. Assuming that all the field values areconstant during each time step and are all zero for

t < 0, discretization of equation (5.35) results in the following equation:

Dn+1-Dn =eoee0(En+1-En)+e0En+1/Jtx(x)dx +

*o 2 En-m (J£;2J JJx (x) dr - J^t+1}AtX (x) dx) (5.36)
m = 0

Denoting %m =J^t+ ° A*X (x) & and Axm =Xm - Xm+1»me updating equation for the electric
field becomes

E°+1(iJ) =̂mJ+Xo) (H;*1/2<i+1/2»-» -B;+1/2(i-l/2,j) +
h;+1/2(i,j-i/2) -H;+1/2(ij+i/2)) +_^-E;aj) +

Xo
1 -1e +Y X Erm(iJ)AXm (5.37)

for a two-dimensional structurein the TE polarization. Equation (5.37) is obtained by discretization

of the curl equation of Ampere's Law and substimting equation (5.36) for the temporal electric
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displacement difference (Dn+1 -Dn). Note that for non-dispersive materials, e(co) = e = ew

aad Xo = Xm = 0, and equation (5.37) reduces to theconventional TDFD equation.

At first glance, calculation of the electric field at the n* time step via equation (5.37)

requires storage of a large number of electric field values from previous time steps because of the

summation term. However, this is not necessarily the case for a suitable choice ofthe mathematical

model ofthe permittivity. Forinstance, forthe Debye model ofequation (5.24), and for the Lorentz

model of equation (5.25) with co0 = 0, thesummation term in equation (5.37) can be calculated

recursively. Therefore, the (FD)2TD method requires only one additional storage element. Tb

illustrate, consider the Debye model of the permittivity in equation (5.24). The electric

susceptibility is given by

W} - ,.^/co.) (538)
Fourier transformation of equation (5.38) leads to the time-domain susceptibility function (for

x£0)

XDebye<x) = <V-Oco0exp(-co0x) (5.39)

With this time-domain susceptibility function, the summation term in equation (5.37) can be

written as

n-l

^(i,j) = I E£-m(i,j)AXm = exp(-co0At)4';-1 (i,j) +Ax0E;(i,j) (5.40)
m«=0

Thus, calculation of the summation term in equation (5.37) can be performed via the recursion

expression for Tz in equation (5.40). This requires onlyoneadditional storage element (4*z) and

canbe updated easily. For theLorentz model of thepermittivity in equation (5.25) with cos = 0,

the time-domain susceptibility function is

co2
XLorentz<*> = ~ <* "eXP("™0>> <*«>

w0

In this case, the recursion relation in equation (5.40) still applies, butthe expressions for x0 and

Ax0 are different Thus, regardless ofthe mathematical model used, the updating equations in the

(FD)2TD method are formally identical. For instance, for two-dimensional simulations in the TE
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polarization with only electric dispersive materials, thesetof updating equations for the (FD)2TD

method is

n-l

*IttJ> = Z Erm(i.J)AXm =exp(-co0At)Yzn-1(i,j) +Ax0Ez(i,j) (5.42)
m = 0

BT'ttJ) =£to(t*+x) (H;tl/2(i-t-l/2,J) -H;+1/2(i-l/2,j) +
H;+l/2(i,j-l/2)-H;+,/2(i,j+l/2) )+_^_Ej(l,j) +

1 ^(iJ) (5.43)
e„ + X0

1 1

OttJ-j) =Hp(i,j-±)+^(E^i,j-l)-E;(i,j)) (5.44)
1 _1

Hy+2(i+±,j) =H°"2(i+Ij)+^(E;(i+l,j)-E;(i,j)) (5.45)
The only differencebetween the Debye and the Lorentz model is in the multiplicativecoefficients.

The (FD)2TD method has been applied inthe computation ofthe reflection coefficient for

an air-waterinterface over a wide frequency band. The result was in excellent agreementwith the

exact results48. In the calculation of the complex reflection and transmission coefficients for a

pulsed plane wave incident on aplasma slab, the (FD)2TD method has shown excellent agreement

with the exactfrequency domain calculations49. These numerical results have demonstrated and

confirmed thevalidity andaccuracy of the(FD)2TD method.

5.5 Comparison of theFour-step Method and the (FD)2TD Approach

As both the four-step method and the (FD)2TD method had been shown to give accurate

numerical results, the choice between them depends on the efficiency (computation time per

iteration), ease ofconvergence,memorystoragerequirementand ease ofimplementation.Consider

two-dimensional electromagnetic scattering simulations in the TE polarization with electric

dispersive materials alone, the set ofupdating equations in the four-step method (equations (5.31),

(5.32), (5.33), and (5.34)) and inthe (FD)^ method (equations (5.42), (5.43), (5.44), and (5.45))

are compared. In terms of die efficiency of the algorithm, the four-step method requires thirteen
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(13) additions and seven (7) multiplications per iteration. Tfie (FD)2TD method requires ten (10)

additions and seven (7) multiplications per iteration. Although die four-stepmethod requires three

more additions, the actual increase in computation time is minimal when all other computations are

taken into account (for instance, the boundary conditions and initialization of the variables). In

terms ofconvergence, both algorithms should take approximately the same number of wave cycles

to converge. This is because in the four-step method, both the electric displacement D and the

electric field E must converge. For the (FD)2TD approach, both the electric field E and the

summation variable Y must converge before steady-stateis reached. Moreover, convergence ofthe

TDFD approach mainly depends on the simulated structure25 and should not differ between the two

methods. Therefore, in terms ofefficiency and ease ofconvergence, both approaches are similar.

In terms ofease ofimplementation, however, the (FD)2TD approachissuperior to me four-

step method. The form of the updating equations in the (FD)2TD method is identical for all

mathematical models of electric susceptibility. Hence, it is not necessary to modify the updating

equations with different mathematical models. Only the multiplicative coefficients (terms

involving x0 and Ax0) are affected, and this only requires achange in theinitialization routine. In

the four-step approach, the updating equations are model dependent. Since the time-domain

relationship between the electric field and the electric displacement is converted directly from the

frequency-domain counterpart via the substimtion of equation (5.26), the number of variables and

hence the number of additions and multiplications depend on the mathematical model of the

electric susceptibility. Trie Lorentz model requires more variables than the Debye model because

the latter model involves only first order time derivatives (and hence requires two levels of time

information) whereas the former model involves second order time derivatives (and therefore

requires three levels of time information). Model dependent updating equations of the four-step

approach means that this approach is not flexible in adapting to materials of different

characteristics. Furthermore, the four-step method generally requires more memory storage than

the (FD)2TD approach. Memory requirement for the conventional, four-step, and (FD)2TD

approaches are compared in Table 5.1 where the Lorentz model of permittivity is assumed for the

four-step method. In the conventional method, a total of five variables are needed in the updating

equations for two-dimensional simulations. The (FD)2TD method requires three (3) more variables
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whereas the four-step method requires nine (9) more. Asaresult, the (FD)2TD approach ischosen

for implementation over the four-step method based on all these considerations.

Approach Polarization # ofField Variables # of Coefficients Total Variables

Conventional TE 3 2 5
TM 3 2 5
3-D 6 2 8

Four-step TE 7 3 10
TM 11 3 14

3-D 18 3 21

(FD)^ TE 4 3 7
TM 5 3 8
3-D 9 3 12

Table 5.1 Memory storage requirement of the conventional, four-step, and (FD)2TD
approaches. Fortwo-dimensional simulations in the TE andTM polarizations. Trie
TM polarizationrequiresmore variablesthan the TE polarization for both the four-
step and the (FDrTD methods because there are two electric field variables (^
and Ey) in the TM polarization whereas there is only one (Ej) in the TE
polarization. For three-dimensional simulations, memory requirement of the four-
step method is excessive.

5.6 Implementation of the(FD)2TD Approach

In the implementation ofthe (FD)2TD method, aquestion arises as to which susceptibility

model to use forthe materials in the simulation domain. Tb answerthis question, one must keep in

mind that the interestof the user is the responseofthe structure to anelectromagnetic excitation at

a specific and fixed frequency. Therefore, die mathematical model must give the true material

property at the interested frequency. At all other frequencies, the model of the susceptibility

function may differ from the real material property and will not affect the simulation results. Based

on this consideration, the Debye model is well-suited for materials in which die real part of its

relative permittivity is greater than or equal to 1.0, and the Lorentz model is suitable for materials

in which the real part of its relative permittivity less than 1.0 (even less than zero). The physical

reason for this choice of model is that materials in which er = nj- n? £ 1 is more ionic than

metallic in nature and hence the Debye model of ionic polarizability is more suitable. Trie Lorentz

modelwith co0 = 0 indicates thatthe material has aresonance at D.C., meaning thatthe material

is more metallic than ionic in nature.
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Having determined the applicability of each of the susceptibility models, the next step is to

determine the parameters associatedwith each model. Taking e^ = 1.0 in the Debye model, the

parameters co0, es as wellas Xq and Ax0 are determined as follows

(er-1.0)0^
co0 = —— <5-46)

ei

es =(er-i.o)[i+g)2; +1.0 (5.47)

-<o„At
X0= (es-1.0)(l-e ° ) (5.48)

-oo0At. 2
Ax0= (es-1.0)(l-e ° ) (5.49)

For the Lorentz model, the parameters are

C0.£.

co0 = j±L (5.50)

(o2= (l-er)(co2+co2) (5.51)

Xo =%At"4(1"e > (552)

CO2

where er and e{ are respectively thereal and imaginary parts of therelative permittivity and CO; is

the angularfrequency of the incident radiation. Note that for lossless materials,the Debye model is

used. Trie parameters for such materials become

®o = °° (5.54)

h = er (5.55)

X0 = er-1 (5.56)

AXo"88*-1 (5.57)

These formulas apply for all components of theelectric field and electric displacement.
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5.7 Performance Evaluation

5.7.1 Accuracy

The accuracy of the (FD)2TD algorithm was discussed for an air-water interface over a

wide frequency band48 as well as for pulsed plane wave incident on aplasma slab49. In this section,

calculations from the (FD)2TD algorithm for two simple planar structures is compared with the

Fresnel formulas for reflection31. The first structure contains two semi-infinite materials.

Electromagnetic energy ofwavelength 248 nm is incident from air (vacuum) with a refractive index

of 1. A dielectricmaterial with arefractiveindex of (n=0.85, k=2.0)has a planar interfacewith air.

The second structure is a three-layer structure with 100nm of a hypothetical material (n=l, k=2)

sandwiched between two semi-infinite layersof air. The incident wavelength in this case is 500 nm.

Trie simulation results tabulated in Table 5.2 shows excellent agreement with theoretically

calculated values.

Structure x (Simulation) p (Simulation) Fresnel Theory

Two-layer 0.532 0.542
Three-layer 0.093 0.091

Table 5.2 Simulation results of reflection coefficients using the (FD)2TD algorithm and the
theoretically calculated valuesfornormal incidenceon dielectric stacks.The slight
discrepancy between the simulations results and the theoretical calculations are
due to discretization and floating point errors.

5.7.2 Efficiency

Tb compare the efficiency ofthe (FD)2TD approach with the conventional approach, three

geometries shown in Figure 5.1 were simulated with both the (FD)2TD and the conventional

approaches. The three structuressimulatedwere:a)A 5X chromeless phase-shift mask oflinespace

patterns at anincident wavelength of0.248 um in which allmaterialsarelossless. The period ofthe

simulation domain is 5.0 urn, corresponding to a feature size of 0.25 um. b) A planar structure of

air (n=1.0, k=0.0) on 400 nm of a hypothetical photoresist material (n=1.5, k=1.0) on silicon

(n=4.0, k=2.0) with an incident wavelength of 0.248 um. c) Photoresist (n=1.68, k=0.0273)
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Chromeless PSM Planar Structure Chromium Mask

• Vacuum (1, -jO) H Resist tt-5. -jl.O) H Resist0-68, -jO.0273)
H Glass(1.5, -jO) • Silicon (4.0, -j2.0) • Silicon (10.0, -j6.0)

Figure 5.1 Three different structures used to assess the efiiciency ofthe (FD)2!!) algorithm.
The first structure is a 5X chromeless phase-shifting mask (left), the second
structure consists of three planar layers (middle), and the third is a silicon step
covered with photoresist.

bleaching over an underlying silicon step (n=10.0, k=6.0). The structure is periodic with a period

of 4.0 tim and the silicon step is 2.0 um wide and 0.5 um high with an edge slope of 1.0. The

photoresist (with a=0.74, b=0.20, and c=0.012) isexposed with adose of50.0 mJ/cm2 at0.365 urn.

This exposure dose is divided into five dose steps in the simulations. All these simulations are done

with materials which have the real parts of their refractive indexes larger than the imaginary parts

because the conventional approach is not applicable for materials with larger imaginary parts than

real parts. Simulation results in Tkble 5.3 show that for lossless materials, the efiiciency of the

(FD)2TD approach is the same as the conventional approach, both interms ofefficiency per wave

cycle and number of cycles for convergence.For the lossy planar structure, iteration time per wave

cycle ofthe (FD)2TD method increases by less than ten per cent over the conventional approach.

This increase is not significant because the number of wave cycles for convergence is small for

planar structures. For the photoresist bleaching example, the iteration time per wave cycle of the

(FDrTD method increasesonly by aboutthree per cent over the conventionalapproach. However,

the actual computation time is doubled due to the larger number of wave cycles required for

convergence.

The reason for thelarger number ofwave cycles for convergence in the (FD)2TD isdueto

the small magnitude of the lossy part of the photoresist material. Referring to equation (5.40),
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Structure Method Polarization CMTi

Chromeless Mask Con TE 243

TM 265

(FDJ^TD TE 243

TM 278

Lossy Planar Con TE 85

TM 68
(FDJ^TD TE 94

TM 99

Resist Bleaching Con TE 390

TM 364

(FDJtTD TE 800

TM 684

Table 5.3 Comparison of ithe nerfonilances <

Cycles Time/Cycle

95 2.56

104 2.55

95 2.56
104 2.67

11 7.73

8 8.50
11 8.55

11 9.00

89 4.38

81 4.49
178 4.49

147 4.65

approach. Trie (FDrTD method takes about 10% morecomputation timeper wave
cycle of iteration.

convergence ofthe variable *FJ (i, j) depends on the value of A%0. A small value of Ax0 means

fast convergence because the first factor in (5.40) is exponentially decreasing with time. For

materials which have small but non-zero imaginary refractive index, convergence of *Fn (i, j) is

slow because of a relatively large A%0 value. Therefore, for structures containing slightly lossy

materials, the conventional TDFD scheme should be used for better efficiency.

5.8 Conclusions

Different techniques which may be applied to model dispersive materials with the TDFD

method have been assessed. The complex field approach is not applicable as the algorithm is

unstable for lossy materials. The (FD)2TD approach and the four-step approach are both suitable in

modeling dispersive materials. Trie (FD)2TD method ischosen for implementation because ofits

advantages in memory storage requirement and the ease of implementation over die four-step

method. The speed (per iteration) of the (FD)2TD method is only slighdy slower (less than 10%)

than that of the conventional TDFD approach, but the total computation time of the (FD)2TD

approachmay double that ofthe conventionalmethod if a slighdy lossy materialis presentbecause

of the greaternumber of wave cycles for convergence. Therefore, the conventional TDFD method

is preferred in the modeling ofmaterials with small imaginary refractive indexes.
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In TEMPEST, two permittivity models are implemented in the (FD)2TD method: the

Debyemodelwhichmodelsionic-like materials and the Lorentz modelwhichmodels metallic-like

materials. Furthermore, with accurate mathematical models for the electric permittivity and

magnetic permeability, the (FD)^ approach has the potential of analyzing the frequency

response of a structure by examining the frequency spectrum of its impulse or square wave

response. Moreover, anisotropic materials can be modeled with additional terms in the updating

equations.

59



6.1 Introduction

Chapter 6

TEMPEST Software Package

Thenumerical techniques presented inthe previous three chapters are implemented in the

program TEMPEST on the connection machines CM-2 and CM-5. This chapter discusses some

additional numerical aspects ofthe program as well as supporting routines ofthe software package

including alink to the simulation program SPLAT89 for aerial image analysis. While parallel

computers are expected to give future leverage inthe modeling of photolithography, currentiy the

supercomputer architectures are still evolving. The CM-2 andthe CM-5 were chosendue to their

availability as massively-parallel computers. The particular implementation will probably evolve

with time along with the computer architectures. One of the areas of the current implementation

which will likely evolve further is theefficiency of thenumerical boundary conditions as affected

by the increasing generality ofcomputer architectures.

Trie connection machine CM-229 announced in 1985 operates in the single-instruction

multiple-data (SIMD) modewhere each processor has relatively low intelligence and executes the

same instruction on the data. The next generation of the connection machine CM-588 availablein

1992operates in both the SIMD andthe single-program multiple-data (SPMD) modes. In SPMD

machines, the processors (which have higherintelligence than those in the CM-2) execute the same

program but not necessarily the same instruction. This feature of the CM-5 makes it more flexible

in the modeling of a wide variety of problems ranging from cosmology to molecular biology34.

There is still anotheroperating mode calledthe multiple-instruction multiple-data(MIMD) mode

in which different processors within the supercomputer can execute different programs

simultaneously. This programming mode is supported on architectures such as the Intel Paragon

iPSC30 and theKendall Square Research KSR135.

This chapter begins with a discussion of the reduced computation efficiency due to the

numerical boundary condition. The importance of proper excitation of the simulation domain is

then shown. Convergence ofthe electromagnetic fields is found to depend primarily on the physics
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of the problem. The software package TEMPEST is also briefly described. Besides the

electromagnetic fields solver TEMPEST, the packagecontains other supporting routines such as

inputfile checking. Postprocessing options include dataprocessing anddisplay utilities, as well as

image synthesis via a link to SPLAT89. This linkage which combines electromagnetic scattering

and optical system effects is also discussed.

62 Reduction of Computation Efficiencydue to the Boundary Condition

Termination of the simulation domain leads to a different set of updating equations for the

boundary nodes. This is discussed in Chapter 4. Sincethe boundary nodeshave a different stencil

from the interior nodes, they need to be solved separatelyfrom the interiors nodes. For massively-

parallel computer architectures such as the CM-229, the second order boundary condition consumes

about 75% ofthe computation time whereas only 25% isused by the interior nodes25. Trie reason

is that while updating the boundary nodes, the interior nodes must be idled. This is an unworthy

price to pay because the number of boundary nodes usually constitutes less than 1% of the total

number of simulation nodes.

Increased efficiency can be achieved by implementing more efficient boundary conditions

which reduce the number of additions and multiplications in the boundary equations. A better

solution to the problem is to make use of the computer resource more effectively, i.e., all the

processors on the parallel machineshould be kept busy as much as possible.This is possible with

the more recent version of the connection machine CM-588 as it can operate in the SPMD

programming mode. In the SPMD programming mode, each processor is running the same program

(and hence single-program) on different sets ofdata (and hence multiple-data). The single program

is not limited to parallel programs. It can also be a serial program. Thus, more efficient computer

usage can be achieved by decomposing the simulation domain in such a way that each processor

contains the same number of boundary and interior nodes. A serial program with an if-then-else

loop can then be written in such a way that all the processors on the parallel machine are solving

the same equation at the same time, i.e., all the processors are simultaneously solving either the

interior equation or the boundary equation. This avoids idling ofcomputation resource as is the case

in the SIMD programming mode. As an initial implementation on the CM-5, however, TEMPEST
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is programmed in the SIMD mode, which can bemade more efficient inthe future byrewriting in

the SPMD mode or even the MPMD mode on other parallel machines.

63 Domain Excitation

z(um)

Figure 6.1 The effect of incorrect domain excitation on the steady-state electric field.
Although the normalized peak-to-peak amplimde is 2, the normalized electric field
oscillates between 0.84 and -1.16.

Care mustbe exercised in exciting the simulation domain because animproper methodof

excitation canleadto inaccurate simulation results. Tb illustrate, take the simplecaseof anempty

simulationdomainundernormal incidence. Initially (t=0), allthe field valuesareset to zeroexcept

for the top layer of simulation nodes, which have a non-zero value of sin<t>. For $ = 0, the

simulation result is correct For <j> = rc/2, however, the simulated steady-state field as shown in

Figure 6.1 indicates that the steady-state electric field has a non-zero D.C. offset While the

normalized peak-to-peak amplimde is still 2, the normalized electric field oscillates between +0.84

and -1.16. The reflected electric field at the top boundary should be zero at all time. However, as

shown in Figure6.2, die diffracted field shows a non-zerooffset which is constantwith respect to

time (iteration cycle). In fact, this D.C. offset is dependenton the initial excitation value sin<t>. If

sin$ = 0, then no D.C. offset is introduced and the simulation results are correct

This anomalous behavior can be explained by considering the numerical boundary

conditions. Since the sum ofthe multiplying coefficientsin the numerical boundary condition such
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wave cycles

Figure 6.2 The diffracted field shows a non-zero offset which is constant with respect to time.
This shows incorrect coupling of the excitation field into the numerical boundary
condition.

as equation (4.43) is 1, the numerical boundary condition does not act on D.C. signals, i.e., the

numerical boundary condition cannot distinguish between a sinusoidal wave and the same

sinusoidal wave plus a D.C. offset. Therefore, for this particular method of excitation, an initial

value (sin<t>) dependent D.C. signal is coupled into the diffracted electric field via the boundary

condition and results in incorrect simulation results. Tb elaborate, consider the boundary condition

inequation (4.43), the electric field value at the top boundary (Z* node) for the (n+l)* time step

(E|+1) depends on the variables E£, Ejt \, and Ej_1. It is the dependence on E£t\ and E|. x

which causes the D.C. offset. Since the boundary equation applies only to the diffracted electric

field, the incident electric field must be subtractedfrom the total electric field before the boundary

equation can beapplied at the top boundary. Att=0, the wave has not propagated tothe (Z-l)^ node

yet, and the total electric field is zero. The incident electric field should also be zero. However, in

order to facilitate computation intheactual computer code, theincident electric field atthe(Z-l)*

node has already assumed its value at the second time step when the boundary field value for the

first time step is calculated. As a result, subtraction of the incident electric field from the total field

at t=0 gives a value which is equal to the negative of the initial incident field value when it should
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be zero. It is this value which causes the D.C. offset observed, and this is why no error is observed

when the domain is excited by sin<j> = 0.

One way to solve this problemis to add aconditional statement in the computer code which

gives a zero diffracted field during the first time step. However, addition of this conditional

statement will make the simulation program less efficient. A simpler way to solve the problem is to

start the simulation assuming that the electromagnetic wave has already propagated several node

layers into the simulation domain, i.e., the top few simulation layers have non-zero electric and

magnetic field values at t=0. As a result, the previous discontinuity at the top boundary is now

moved inside the simulation domain. Subtraction of theincident electric field atthe (Z-l)* node

during the first iteration step would then give the correct result The discontinuity inside the

simulationdomain does not affectthe steady-state solutionsince thereis no sourceto supportit. It

is eventually absorbed by the numerical absorbing boundary condition.

With this technique, the empty box is again simulated. The steady-state electric field shows

the expected sinusoidal shapewith no D.C.offset. The diffracted electric field at the top boundary

as a function of iteration cycles shown in Figure 6.3 indicates that the field value converges to 0.0

as expected. The diffracted field also shows a transient behavior starting at about 0.3 wave cycle.

This transient behavior is caused by the back propagation of the discontinuity inside the simulation

domain when the fields areintroduced at t=0.This excitation method also works well for obliquely

incident waves.

6.4 Convergence

In order to smdy the convergence properties of TEMPEST, the two structures shown in

Figure 6.4 areused. Both structures areplanardielectric stacks consisting ofthree lossless layers of

materials. In the first structure, the incident layer is air with a refractive index of (1.0, -jO.O). The

second layer has a thickness of0.5 um and a refractive index of (2.0, -jO.O), and the third layer has

a refractive index of (4.0, -jO.O). The free space wavelength ofthe incident radiation is 0.5 um. The

second structure is the same as the first, except that the middle layer is 1.0 um thick.

Convergence of the fields is monitored by the reflected electric field at the top of the

simulation domain. When the incident wave interacts with the structure, a change in the reflected
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Figure 6.3

Figure 6.4

Wave Cycks

Diffracted electric field at the top boundary as a function of wave cycles. The
transient behavior which starts around 0.3 wave cycle is caused by the back
propagation of the discontinuity associated with the excitation method.

First Structure

• dielectric 1 (1.0, -jO.O)
H dielectric 2 (2.0, -jO.O) 0.5 um
1 dielectric 3 (4.0, -jO.O)

Second Structure

• dielectric 1 (1.0, -jO.O)
£ dielectric2 (2.0, -jO.O) 1.0 um
| dielectric 3 (4.0, -jO.O)

Two structures used to study the convergence of the program. Both structures
consist of the same materials. The only difference between them is the thickness of
the middle layer.

field amplimde occurs whenever a reflection from an interface reaches the top boundary. For the

structures under consideration, two changes in the reflected electric field amplitude is expected,

once from each of the material interface. Increasingthe thickness of the second layer would lead to

an earlier occurrence of the first change in reflected field amplimde while the second change in
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amplimde is delayed because the second layer is an optically slower material than air (vacuum).

The first structure is thus expected to converge faster than the second structure.

Figure 6.5

Wave Cycle Wave Cycle

Reflected electric field for the two structures. Tfiefield of the first structure(left)
converges faster than that of the second structure (right). This shows that
convergenceof the programis dominatedby physical scattering phenomena.

These qualitative considerations are confirmed by the results of simulation as shown in

Figure 6.5. The reflected field ofthe first structure shown on die left indicates that the electric field

convergesin 11 wave cycles whereasthe reflected fieldof the second structure shown on the right

converges after 13 wave cycles. This analysis indicates that convergence of the program is

dominated by physical scattering phenomena.

63 Program Operation

The basic steps ofrunning TEMPESTare shownin Figure 6.6. For a typical simulation, the

input file is edited and checked for correctness in the local computing environment Trie file is then

transferred to the supercomputing environment under which the electromagnetic fields are

calculated. Steady-state is normally reached after 5 minutes (30-50 wave cycles) at which point the

diffraction harmonics are calculated. These diffiraction harmonics are written to an output file which

also contains a recapitulation of the input parameters as well as additional information including
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Edit Input Fde

I
Correctness Check (CHECK)

Revise

Accept

Telnet and Run (TEMPEST)

Converges 1Steady-state not reached

Output Data Output File

f
i

1
Image Synthesis (SPLAT) Field/PAC plots (PLOTMTV)

Figure 6.6 The basic steps of running TEMPEST.The software package TEMPEST contains
the electromagnetic solver together with other supporting routines.

numerical parameters such as the spatial and temporal discretizations (Ax and At), run time and

convergence information. The diffraction harmonics can then be used to synthesis the optical image

profile of the simulated structure as discussed in the next section. A detail description of program

operation as well as other auxiliary routines associated with the software package can be found in

theTEMPEST users' guide103.

6.6 Image Synthesis

6.6.1 Motivation

TEMPEST calculates the steady-state electromagnetic fields throughout the volume of a

structure under the excitation of a monochromatic harmonic field. In many instances in

photolithography, however, the interest of the user is not in the electromagnetic fields themselves

buttheimage ofthestructure asviewed through anoptical imaging system. Furthermore, typically
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only the intensity distribution resulting from the fields can be observed to validate the simulation

results.There thus exists a need to convert the steady-state fields calculatedby TEMPEST into an

intensity profile. The basic idea is to Fourier transform the electric and magnetic fields across a

horizontal plane into the diffraction harmonics from which imaging information can be found.

Tfiere are two physical phenomena to consider in extending TEMPEST for usein image

formation. First, the imaging systemsusedin photolithography are(spatially) partially coherent to

reduce ringing at the dark-bright transitions whereas illumination is assumed to be coherent in

TEMPEST. One way to model partial coherenteffects is to superposesimulationresults for a lot of

different angles of illumination. Thisapproach, although accurate and feasible, generally requires a

lot of simulation runs and is inefficient Hopkins' approximation5 can be used to simplify the

problem. The key assumption is that themagnimdes of thediffraction efficiencies are independent

of the incident angle. This approximation is adequate even for IX projection systems with a

numerical aperture (NA) of less than 0.5. Tfie results which support this conclusion is briefly

considered in §6.6.4102.

The secondphysical phenomenon to consider is aberration ofthe imagingsystem. For non-

aberrated systems, the calculation of the opticalimage is a straightforward integral. For aberrated

systems, however, the calculation becomes complicated. This calculationcan againbe simplified

by using Hopkins' approximation to separate mask and imaging system parameters. With this

assumption, the calculation becomes primarily that of computation of the transmission cross

coefficients5 (TCCs). Routines for the calculation of these TCCs are available, for example, in a

simulation program called SPLAT89. However, SPLAT, which is based on the scalar diffraction

theory and assumes infinitesimally thin masks, must be modified to link in the vector diffracted

field information from TEMPEST.

6.6.2 TEMEPST-SPLAT Interface

SPLAT simulates aerial images of photomasks with the assumption that the masks are

infinitesimally thin and have ideal transitions. The optical image profile of any mask at any spatial

point is thus given by5
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I(X,y) =JJJjTCC(K'x,K'y;K\,K"y)M(K'3l,K,y)M*(K"x,K"y) •

e-^[(K'x-K"x)x+(K'y-K"y)yldK ^ (61)
a y a y

where M (k , k ) represents the Fourier coefficients of the mask and the asterisk represents

complex conjugation. In SPLAT simulations, the values of M(kx, Ky) are calculated by Fourier

transformation of the ideal mask. Thus, in order to link SPLAT and TEMPEST, the values of

M(k, k ) must be modified.
* y

The quantity MM* forthe scalar fields canbe thought ofas the energy transmitted through

the ideal mask. Tfius, it is analogous to the Poynting vector S = E x H* for the vector fields.

Assuming that the mask lies in the xy-plane, the quantity of interest is then the energy travelling in

thez-direction. Thus, only the z-component ofthe Poynting vector Sz = (ExHy* - EyHx*) isof

interest. The spatial intensity distribution can thus be expressed by modifying equation (6.1) as

I(X,y) =JJJ|TCC(K'x,K'y;K"x,K"y)[Ex(K'x,K,y)Hy*(K"c,K"y) -

Ey(K'c,K'y)Hx* (K"x,K"y) 1•e"/ZTl(K'x"K"x)X+<K,y"KMy)yldK'xdK'ydK"xdK"y(6.2)
With this connection, rigorous electromagnetic simulation is combined with arbitrary lens

aberrations, allowing the smdy of mask topography effects, partial coherent effects as well as the

influence of lens aberrations simultaneously. Different illumination schemes such as annular and

quadruple illumination as well asresolution enhancement techniques such as spatial filtering can be

modeled. Application is not limited to mask transmission studies, however, because SPLAT can be

perceived as imitating the functions of a microscope. Therefore, many problems such as a dark-

field or bright-field alignment system can be smdied.

6.63 Implementation

An interface to SPLAT requires information on the diffraction harmonics ofthe electric and

the magnetic fields in both the x- and y-directions as discussed above. Tb calculate the diffraction

harmonics, Fourier transforms of the instantaneous fields are taken on either the top (for the

reflected diffraction harmonics) orthebottom (for thetransmitted diffraction harmonics) xy-plane.
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Since the quantity (ExH*y -EyH*x) is needed, Fourier transformation must be performed on

each ofthe four field variables E^ Ey, Hx and Hy. However, since these variables are displaced from

one another in the FDTD grid, care must be exercised in obtaining the phase of the diffraction

harmonics or the resulting image would be inerror. A correction factor must be multiplied tothe

Fourier transformed variables totake into account the staggering of thenumerical grid.

Tbillustrate, thetwo-dimensional discrete Fourier transform of anyvariable Fis found via

» j

Since the node (i, j, k) inthe simulation domain contains the variables Ex (i+1/2, j, k+1/2),

Ey (i, j+1/2,k+1/2), Hx (i, j+1/2,k) and Hy (i+1/2,j,k), the phase factor inside the

integral takes on different values for the different variables E*, Ey, Hx, and Hy. For instance,

£x(Kx,Ky) =j;5:Ex(i+l/2J,k+l/2)e^:r^[i+1/2,Ax+,VjAy+K*Ik+1/2IAz)
« j

"M"*V =ZXEy(i,j+l/2,k+l/2)e-*(K>ii%+*>li+l/2]*+x>lk+1/2]*z)
» j

(6.4)

(6.5)

(6.6)

At<**V =Z2Hy(i+1/2.J>k)^(KxI,+1/2IAX+KyJAy+KlkAZ) (6.7)
i j

In order to determine the different correction factors for the different nodes, a reference must be

chosen. For the node (i,j,k), the reference spatial location is chosen to be at

(i +1/4, j +1/4, k +1/4). TTius, the correction factors for the diffraction harmonic with wave

numbers (Kx»Ky»K2) are respectively exp[<PT(-KxAx/4+KyAy/4-K2Az/4)l,
exp[</^T(KxAx/4-KyAy/4-KzAz/4)], exp[</^T(KxAx/4-KyAy/4+KzAz/4)l, and
exp [V^-KjAx^+1^/4+1^/4)] for Ex(i +l/2,j,k+l/2),
Ey(i,j +l/2,k+l/2), Hx(i,j +l/2,k) and Hy(i+l/2,j,k). For example, the Fourier

coefficients ofthe Ex component is
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fix(K ,k ) =e"A(-'<"4I/4+^4y/4-^^/4,SXEx(i +l/2,j)k +l/2)e-A(^x+K^v,
" y i j

=e^T(-KxiJ/4+Vy/4-Kl^4)DFT[

where DFT [Ex] represents the discrete Fourier transform of Ex.

6.6.4 Validity of Hopkins' Approximation

2.0

0.0 8.0

Figure 6.7 Alignment mark structure used in the study of the validity of Hopkins'
approximation. The mark is 600 nm wide and 150 nm deep. The period of the
simulation domain is 8.0 um.

Intuitively, the assumption of constant diffraction efficiencies with respect to illumination

angle should be valid for small angles. However, the smallness of the incident angle requires

quantification. Consider the alignment mark structure shown in Figure 6.7. The mark is 600 nm

wide (1.2A.) and 150 nm deep (0.3A,), andis illuminated at 0.488 um. For a m27C phase difference

(where mis aninteger) between the leftand right boundaries102, angular steps of about 3.5° can be

used. The results of simulations performed on this alignment mark illustrated in Figure 6.8 show

that the magnimdes of the diffraction efficiencies aremore or less constantfor illumination angles

which are less than 30°. This corresponds to an NA of 0.5, larger than the numerical apertureused

in the alignment collection optics for this application. Thusforthis application, onlythe diffraction

efficiencies calculated for normal incidence are necessary.

Inother applications, diffraction calculations atseveral oblique angles may benecessary. A

measure of a reasonable step size can be determined by drawing the parallelism between
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Figure 6.8 First order diffraction efficiency magnitude as a function of the incidentangle for
analignment mark.The magnitude is moreorless constant forincidentangles less
than about 30°.

electromagnetic scattering of siliconwaferstructures andantenna theory. Forauniform rectangular

aperture of length a,thehalf-power width in degrees is44

A6 = 51°(X/a) (6.9)

Angular steps three or four times smaller than A6 would likely be adequate. The angles

allowed in TEMPEST simulations are given by mX = dsinO102. Using the small angle

approximation and converting radians to degrees gives

^TEMPEST3570^) <610>
Thus, choosing the period to be four times the structure size (d £ 4a) gives angular steps about four

times smaller than the full width half maximum bandwiddi as desired. Since in most applications

the periodd is a parameter which can be freely chosen for simulation purposes,increased angular

accuracy can be obtained.

6.7 Conclusions

Some implementation issues of TEMPEST and the basic operation of the program are

presented. An important finding with regard toimplementation (which ensures accurate simulation

results) is that more than one layer of simulation nodes must be excited initially (at t=0).
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Convergence of the electromagnetic fields is found to depend primarily on physical scattering

phenomena. This has a favorable consequence for problems in photolithography as the rate of

convergence does not deteriorate with problem size.

The software package includes auxiliary routines which cater to user convenience and

remote use of the connection machine. Linkage with the simulation program SPLAT allows the

undertaking ofcombined scattering and imaging problems. The combination ofrigorous scattering

analysis and optical image system analysis is important in predicting the aerial images of structures

such as photomasks and alignment marks.

Although the current implementation is not optimal, improved implementations will likely

evolve from this experience. For example, improvement in computation efficiency could be

accomplished by rewriting the program in the SPMD or the MPMD mode. Despite its

imperfections, the current implementation is effective in modeling important technological issues

in photolithography. Validation of TEMPEST through comparison with experimental results as

well as applications of the program in assessing technological issues are presented in the next two

chapters.
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Chapter 7

Two-dimensional Applications:
Phase-shifting Mask Studies

7.1 TEMPEST Applications

The possible applications of TEMPEST in photolithography are diverse. Problems in

alignment mark signal integrity, metrology, reflective notching, and mask transmission can be

smdied. Many of these problems are basically two-dimensional and have been smdied with the

initial TEpolarization version ofTEMPEST45. These includereflective notching81, alignment mark

signal integrity", photomask edge and coating effects14, and polysilicon gate metrology82.

Extensions ofTEMPEST tothe TM polarization aswell asoblique incidence102 made possible the

examination ofpolarization effects inmask transmission100, phase-shifting mask edge effects73,101,

and theeffects ofmulti-layer coating defects onreflective x-ray masks66. These simulation results

have proven to be useful for the integrated circuit fabrication industry.

In this chapter, the contribution by the author on one of these examples, namely two-

dimensional phase-shifting mask structures73'101, is examined to illustrate the usefulness and

validity ofTEMPEST. The simulation program is used to provide physical insight on the extent to

which the non-planar mask topography affects image quality in optical projection printing. Design

compensation data are also provided for certain PSM technologies. Since the PSMs under smdy are

all two-dimensional structures in which one ofthe dimensions is the mask thickness, mask patterns

are limited to one-dimensional, i.e., long line patterns. Furthermore, two-dimensional illumination

effects are only modeled bymaking Hopkins' approximation5 asdiscussed in §6.6. Despite these

shortcomings, however, TEMPEST can provide valuable intuition as to the effects ofphase-shifter

edges on optical signals.

12 Simulation Technique

In a TEMPEST simulation, an incident (normal or oblique) wave of arbitrary amplimde

profile is excited at the top boundary of the simulation domain. Dlumination is assumed to be
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monochromatic and linearly polarized, with the electric field or the magnetic field perpendicular to

the two-dimensional simulation domain (the TE or TM polarizations). The incident angle can take

on discrete values depending on the illumination wavelength and the horizontal dimension of the

simulation domain. Steady-state fields are found throughout the simulation domain as the incident

field interacts with the topography. Either the transmitted diffraction efficiencies (for transmission

masks, for example) or the reflected diffraction efficiencies (for alignment signals, for instance) can

be calculated. Partial coherent effects can be approximated by using Hopkins' approximation5 as

discussed in Chapter 6. Hence, the optical image for Kdhler illumination can be calculated by

weighing each pair of diffraction field harmonics by the overlap of the illumination and lens

acceptance cones.

A typical simulation domain ofthe phase-shifting mask structures examined in this chapter

is divided into a square grid of 1024 by 512, with about 15 simulation nodes per wavelength in the

region with the highest refractive index. The incident radiationis assumed to be a normally incident

plane wave. Steady-state is reached after about 30 to 50 wave cycles, which takes about 5 minutes

on a CM-2 machine with 8192 processors.(Each processoron the CM-2 consists of64 kilobytes of

memory and there are a total of 32768 processors on the CM-2 at the Thinking Machines

Corporation in Cambridge, Massachusetts.) The calculated diffracted harmonics are then

transferred to a workstation for image synthesis. Image formation in the program is divided into

three parts: Fourier transform of the electric field transmitted through the mask (the diffracted

harmonics), filtering due to the finite pupil of the collecting lens, and the inverse Fourier transform

of the filtered diffracted harmonics.

The diffracted harmonics can be used to gain insight as to when scattering differences

between the etched and unetched regions is important For a phase-shift pattern with odd symmetry

such as that of an alternating and chromeless PSMs, simple scalar and thin mask approximations

predict that all the even order diffraction harmonics vanish. In particular, the zeroth order or the

straight through diffracted order should be zero. In addition, the +1 and -1 orders should be equal.

Deviation from these two conditions means an imbalance in the peak intensities as well as image

degradation for some depth of focus. This can be illustrated by the special case ofwhen the pitch of

the lines and spaces is so small such that the exit pupil only collects the lowest three diffracted
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harmonics (0, ±1) and a three-beam interference results. In this case, if odd symmetry exists, the

peak intensities of the 0° region andthe 180°regionwould be equal andthe depth of focus would

be infinite for a coherent system, because only the ±1 beams interact. When the zeroth harmonic is

non-zero but the +1 and -1 harmonics have the same magnitude, it is possible to discern the size of

the D.C. (0th order) component from the maximum imbalance inthe peak intensity.

73 Different Phase-shifting Mask Techniques

Phase-shifting masks (PSMs) haveshown promise in increasing the resolution anddepth

of focus in photolithography. Different PSM techniques (shown inFigure 7.1)such as alternating42,

attenuated43, outrigger87, rim67 and chromeless90 have been extensively smdied in recent years.

These differentstylesrequire different fabrication techniques, but commonto allis the inevitability

ofnon-planar topography becauseofthe necessityto create phasedifferences. Oneofthe important

issues in examining trade-off among different phase-shifting mask technologies is the effects these

edges have on the aerial images in a projection printing system. Computer simulation programs

such as SAMPLE70 and SPLAT89 can play amajor role inexploring as well as optimizing layout

patterns64. However, such tools assume that the masks have ideal dark-bright transitions and hence

do not model mask edge scatteringeffects which can be important in PSM technologies.

The detailed shape of the phase-shifteredges (line edge topography) on PSMs has been

shown both experimentally19 and through computer simulation47 to have crucial effects on the

optical signals that the PSMs create. ForPSMs fabricated using the subtractive process, a previous

smdy using thesimulation program TEMPEST73 showed that effects of the chromium profile and

refractive index are minimal compared to the glass edge profile, and that the difference in

transmission for equally sized openings of 0° and 180° means that interchanging 0° and 180°

regions onthemask does notresult inthesame photoresist profiles73. A similar conclusionhas been

drawn by Yuan110 using an alternative simulation technique. Ramifications of this observation are

widespread.In the rim PSM technology, thereis adifferencebetween etching the rim orthe middle

signal region. In the alternating PSM technology, this problem can be addressed by properly

shaping the etched glass profile. These simulation results were confirmed by experimental
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studies73. Besides unequal linewidths due to differences in transmission, two nearby glass edges

may interact and produce resonant effects101.

In this chapter, image quality issues in alternating, rim, attenuated and chromeless PSMs

are studied. For simplicity, all PSMs examined here are assumed to have been fabricated using the

quartz etch process with vertical glass edges. Except for attenuated PSMs, the opaque layer is

chromium with vertical edges of thickness of 80 nm and refractive index of (2.5, -J2.0). The four

styles of PSMs considered in this chapter are shown in Figure 7.1. An alternating mask has

openings of 0° and 180° separated by opaque regions. The large clear area of a rim mask is

surrounded by small transmitting areas which are 180° out of phase. There are two subclasses of

rimPSMs. The first has its rimetched to 180° (rim-etched) andthe second has its large cleararea

etched to 180° (middle-etched). An attenuated mask issimilar to aconventional mask except that

the normally opaque layer is partially ttarisrnitting. The phase of the field from the partially

transmitting area is 180° with respect to the clear openings so that it contributes to a decreased
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image width. Achromeless mask relies solely on the destructive interference between light
transmitted through the 0° and 180° regions to produce dark images.

The organization of this chapter is as follows: the lack of intensity balance between

alternating etched and unetched openings in an alternating PSM is first investigated. Remedies to

this problem by undercutting the glass opening and by afeature size-independent bias are proposed.
Rim type PSMs are then considered. The difference between a rim-etched and a middle-etched

mask, as well as the dependence of mask performance on the rim dimension and the middle

dimension are examined. The optimal transmission level of the leaky layer in attenuated type PSM
is then considered In the final section, resonance like phenomenon in dielectric ridges and its effect

on imaging with different optical system parameters isinvestigated.

7.4 Alternating PSMs

Figure 7.2

• •' 1 •.... . I
2 3

Position (um)

Instantaneous electric field just underneath the chromium layer of an alternating
PSM with vertical glass edges directly aligned withthechromium edges in theTE
polarization. The 0° region(right side)indicateshigher energytransmission.

Figure 7.2 shows the instantaneous electric field just underneath the chromium absorption

layer of an alternating PSM with vertical glass edges directly aligned with the chromium edges. The

unetched 0° region is on the right side and the etched 180° region is on the left side. The 0° region

indicates higher energy transmission due to the higher peak field value and die higher curvature of

the electric field. The image created by such a mask on a proto-typical 5X optical system (called

78



System A) with (a=0.248 um, NA=0.35, a=0.64, M=5) indicates that the peak intensity of the 0°

region is 10% higher than that ofthe 180° region. Ferguson et al.19 attributed this imbalance inpeak

intensity to the effective transmission and phase errors associated with the glass edges.

9^B
•1H|H

llll I

IVMni

(a)

Figure 7.3

(b) (c) (d)

Simulated images and exposure results of 0.25 um lines and spaces created by
different alternating PSMs. (a) A mask with vertical glass edges creates an
intensity imbalance which is manifested as a 0.1 um linewidth difference in the
photoresist, (b) Isotropic etching of the 180° glass opening overcompensates the
problem and makes the peak intensity at the 180° region higher and the photoresist
line wider, (c) Anisotropic etching followed by 60 nm of isotropic etching
produces images of equal peak intensity and photoresist lines with equal widths,
(d) The same mask as in case (c) except that the amount of isotropic etch is 120 nm
tends to overcompensate the problem. (Photoresist pictures courtesy of Christophe
Pierrat at AT&T Bell Laboratories.)

This difference in transmission means that equal spaces of 0° and 180° phases on the mask

do not print equally on the wafer as illustrated in Figure 7.373. The simulated intensity profile in

Figure 7.3a shows a peak intensity which is 10% lower at the 180° opening than at the 0° opening.

This result is confirmed by the SEM picture of the imaged 0.25 um linespaces (negative)
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photoresist shown in the same figure. There is a 0.1 um linewidth difference between the 180° and

the 0° openings. This difference in intensity can be reduced by undercutting the glass beneath the

opaquechromium layer via isotropic wet etchingas shown in Figure 7.3b. However, the intensity

ofthelightgoing through theetchedportionofthemaskin thiscasebecomeshigher thanthatgoing

throughthe unetchedportion. Anotherpossible solution is to etch the glass first by anisotropic dry

etch and then slightly undercutting both the shifted and non-shifted regions on the mask using an

isotropic wet etch as shown in Figure 7.3c and Figure 7.3d. Depending on the amount of glass

etched during the second wet etch, the intensity of light going through the etched portion of the

mask is higher or lower compared to the unetched portion ofthe mask. In this case, an undercut of

60 nm shownin Figure 7.3c produces equal peakintensities for both openings asindicated by the

simulatedimages andthe photoresist lines. An undercutof 120nm tends to make the peak intensity

at the etched opening higher as shown in Figure 7.3d.

The suggested remedies to the problem by hiding the glass edges under the chromium layer

using both isotropic and anisotropic etching arequite successful in equalizing the peak intensities.

However, the amount of undercut is feature size dependent. It would be better if a feature size

independent solution could be found.

Since equalization of peak intensities can be interpreted as reducing the DC component of

the spatial Fourier transform of the mask, equal intensities may be achieved by a design scheme

based on biasing the etched 180°regionto increase transmissionand reduce the DC component of

the transformed mask. Figure 7.4 shows the peak intensities for etched (180° and 360°) and

unetched (0°) openings ofdifferent sizes for the TE andTM polarizations. Simulation results from

SPLAT89 areincluded asthe solidline for anidealmask behavior. Tlie differences between the two

polarizations for the unetched mask (-3%) and the etched mask (-1%) are slight However,

comparison with the ideal mask shows that the peak intensities are about 8% and 25% lower for the

unetched and etched masks respectively. Thus, etching the glass reduces the transmitted intensity

by about 17% ofthe clear field value for small features.

It is interesting to note from the figurethat the difference in peak values ofthe unetched and

the etched openings is constant for a wide range of opening sizes ranging from 0.3 to 0.7 A/NA.
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This suggests that a possible correction scheme for equal peak intensities is to use a fixed bias of

0.05 X/NA for eachetched opening on the mask over a size rangeof 0.3 to 0.7 X/NA.

Figure 7.4

Opening Size (L/NA)

Peak intensity as a function of opening size for various degrees of glass etching.
The amount of bias seems to be constant at 0.021 X/NA for a large range of
openingsizes ranging from0.3 to 0.7 X/NA.

Table 7.1 shows the ratio of the 0° peak intensity value to die 180° peak value for different

feature sizes when a constant bias of 0.042 X/NA is appliedto the 180° region. The constant bias

minimizes the peak intensity differences to within about 1% for all the three feature sizes of 0.35,

0.42, and 0.49 X/NA (corresponding to 0.25, 0.30, and 0.35 um lines and spaces), and this

equalization of peak intensities corresponds to the equalization of the critical dimension (CD). It

was found that the DC component of the Fourier transformed mask is two orders of magnimde

lower in the biased mask than the unbiased mask for a 0.25 um feature size.

Table 7.1

Feature 0° Peak/180° Peak 0° Peak/180° Peak

0.25 1.080 1.008

0.30 1.042 0.989

0.35 1.042 1.001

0° to 180° peak intensity ratios for different feature sizes with a constant bias of
+0.042 X/NA applied to the 180° region. The constant bias shows marked
improvement in peak intensity ratio due to the reduced DC component
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Because of the reducedDC component, the biased masks arealso expected to have better

defocus behavior than the unbiased masks as explained above. Table 7.2 shows that for a 0.25 um

feature size, the peakintensity ratio changes by only±1% for thebiased maskovera focus range of

±2 Rayleigh units (1 RU =0.5*(X/(NA)2) =1.0 um). For the unbiased mask, however, the peak

intensity ratio changes by more than 6% for a 2 RU of defocus. Thus, applying a constant bias to

the 180° regions of alternating PSMs can equalize the peak intensities for different feature sizes as

well as improve the DOF.

Table 7.2

Defocus 0° Peak/180° Peak 0° Peak/180° Peak

-2.0 1.017 0.990

-1.0 1.055 0.997

0.0 1.080 1.008

+1.0 1.069 1.011

+2.0 1.031 1.005

Peakintensity ratio for 0.25 um feature size as a function of defocus in Rayleigh
units. The biased mask shows better defocus behavior than the unbiased mask.

7.5 Rim PSM

Decreasedtransmission of etchedopenings alsohas importantconsequences on the choice

ofthe style of rim PSMs. Twotypesof rim PSMsare shownin Figure 7.1. The firsttype has its rim

etched to 180° (rim-etched) whereas the second type has the middle of the open area etched

(middle-etched). The dimension of the middle signalregionis dj and the dimension of the rim is

d2. Sincean etchedglassedgecontributes to a decrease in peakintensity, the peakintensity of the

middle-etched mask is expected to be lower than that of the rim-etched mask of the same

dimensions. Thisis becausethe field at the rimcanbe thoughtof as subtracting fromthe fieldof the

middle signal region. When the rim is etched, the field being subtracted is less than what it would

be ifit werenotetched. Asa result, therim-etched maskis expected to givea higherpeakintensity

than the middle-etchedmask. This expecteddifferencein mask transmission must be simulated by

a rigorous electromagnetic model because the scalarapproach doesnotmodelscattering due to the
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glass edges, and hence would give identical images for both the rim-etched and middle-etched

masks.

Edge effect in rim PSMs was assessed using TEMPEST simulation on a proto-typical 4X

deep-UV system (called System B) with (MU48 um, NA=0.5, <x=0.4, M=4). Forrim masks of

dimensions dx=1.6 um and d2=0.3 um, the peak intensity of the rim-etched mask is 10% higher

than that of the middle-etched. However, peak intensity is only one of the important aspects of an

image, image slope is also important. Figure 7.5 shows that despite a lower peak intensity, the

maximum image slope of the middle-etched mask is higher than that of the rim-etched mask. In

addition, the middle-etched mask gives a narrower image than the rim-etched mask, which is

evident from the locations of the peaks of the image slope.

x (um at wafer)

Figure7.5 Image slope ofrim-etched and middle-etched rim PSMs. The middle-etched mask
shows a higher image slope and a narrowerwidth, although it shows a lower peak
intensity.

In orderto determine the importanceof the dimensions of the rim (cy andthe middle (d^

in affecting the peak intensity, image slope, etc., a set of simulations were done with different dj

and d2 values using an approach analogous to a two-level experimental design. Since thereis no

noise in simulation studies, the significance of the effects due to variations in the dj and d2

dimensions is determined by comparison with the variance ofthe data over the noiseless cases. The

observed parameters arethe peak intensity, die image slope, die sidelobe amplimde, and the image

width which is defined to be the distance between the steepest points in the image. The nominal
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dimension for dt is 1.60um and ford2is 0.50 um. Variations in the dx andd2 dimensions are±0.2

um.

Table7.3 shows the dependence of peakintensityon variations of dlt d2, andthe product

d1«d2 for arim-etched mask.Increasing bothdj and d2 was found to increase the peakintensity, but

dj is about 2.5 times more effective than d2. Tfiere is virtually no curvature or the interaction effect

dx*d2. Thus, the peak intensity is predominately a linear function ofdj and d2.

diOim) d2(um) di«d2 Peak

1.80 (+) 0.70 (+) + 1.426

1.80 (+) 0.30 (-) - 1.232

1.40(-) 0.70 (+) - 1.029

1.40 (-)

2.658

0.30 (-)

2.455

+ 0.931

sum+ 2.357

sum- 1.960 2.163 2.261

difference 0.692 0.292 0.096

0.048effect 0.346 0.146

1.812a 0.764a 0.251a a=0.191

average 1.155

center 1.60 0.50 1.162

curvature -0.007

Table7.3 Applicationof an approach analogous to a two-level experimental design to smdy
the effects on the peak intensity of the rim and middle dimensions in a rim-etched
mask. The effect of middle dimension(dj) is about 2.5 times more important than
the rim dimension (d^. a2 isthe variance ofthe data.

The previous results are for the peak intensity dependence of a rim-etched mask. The same

procedure when applied to a middle-etched mask showed tittle qualitative difference. Tlie effect of

the middledimension is 1.90aand thatof therimdimension is 0.611a, where a2 is the variance of

the data (o=0.239). Thereis again virtually no curvature or secondorder effect dependence on the

term di*d2-ln fact» curvature and second ordereffects were found to be insignificant in all other

studies including amplimdes ofthe sidelobes,the maximum slope, andthe width ofthe image. This

is an indication that there is no direct electromagnetic interaction between the phase-shifter edge
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and the chromium edge. In fact, interaction between the edges is significant only if they are

separated by lessthan 0.1 urn101.

From a design point of view, several observations can be made from the results, and these

aresummarized by the datain Table7.4. The rim dimension d2in a rim PSM functions to increase

the image slope and to reduce the linewidth, althoughincreasing it increases the sidelobe amplimde

as well. The dx and d2 dimensions should therefore be optimized in such a way that the image width

and the sidelobe amplimde are minimized whereas the peak intensity is maximized to increase

contrast and throughput This optimization is not complicated by second order effects, and the

response of the image characteristics are almost bilinearwith respect to dx and d2. This suggests

that d2 should be as largeas possible within an allowed sidelobe amplimde level. Then dx can be

chosen based on the peak intensity requirement.

run

etched

di

d2

dx«d2

a

middle

etched

di
d2

dx»d2

a

peak

1.812ap

0.764ar

sidelobe

-0.257as

1.980ac

0.251a„ -0.073afi

0.191

peak

1.900ap

0.61 lar

0.109

sidelobe

-0.181as

1.993aB

0.176a„ -0.051aB

0.239 0.138

slope

-1.049ax

1.694ax

0.132ax

0.144

slope

-0.94ax

1.707ax

0.443ax

0.0902

width

1.109a,

-1.664a,

0.0aw

0.018

w

width

1.000a,w

-1.667a
w

0.333a
w

0.015

Table7.4 The importance of the dx and d2 dimensions on four aspects of the image: peak
intensity, sidelobe amplimde, maximum image slope, and image width. The effects
areexpressed in units ofa, which is the standard deviation ofthe data points. Tlie
rim-etched and middle-etched masks show similar behaviors.
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7.6 Attenuated PSM

7.6.1 Transmission Level of the Partially Transmitting Layer

Attenuated PSMs have advantages over other types of PSM techniques because of the

compactness of features on the masks andthe absenceofthe phase conflict problem. However, the

design of attenuatedmasks is complicatedby the choice of an appropriate level of transmission for

the partially transmitting layer. In this smdy, the partially transmitting layer is assumed to have a

transmission of 7% and a phase of 110° when the thickness is 0.1 um. From these data, the index

ofrefractionofthe partially transmitting layercanbe determinedto be (2.115, -jO.756). Thus, a4%

transmitting layer would be 0.126 um thick and have a phase of 136°.

Figure 7.6 shows the optical image profiles generated by a 5X i-line projection printing

system (called System C) with(X^0.365 um,NA=0.48, o=0.38, M=5). Tfiese are images in theTE

polarization oftwo attenuatedmasks with different degreesofintensity transmission of7% and4%

for the partially transmitting layer.The image corresponding to the lower transmission mask shows

a higher peak intensity as well as lower sidelobes. However, the 7% transmission mask shows a

smaller feature size than the 4% transmission mask. Therefore, the optimal transmission of the

partially transmitting layer is a balance betweena tolerable sidelobe amplimde(especially when

defocus is taken into consideration) and a narrowimage.

Tb accurately predict the images generated by attenuated masks, a rigorous

electromagnetic modelis necessary. Figure 7.7 shows the simulated images of a 1.50um opening

on a4% transmission attenuated mask usingthe scalar approach of SPLAT andthe rigorous model

in TEMPEST for the TE polarization on optical System C. Tlie feature size is equivalent to a kx

valueof0.4. The two imagesagree extremely well in the partially transmitting regions. However,

the two simulators gave drastically different peak intensities. The peak intensity of the SPLAT

image is about20%higherthanthatofthe TEMPESTimage.This difference is attributed to glass

edge scattering and is consistent with the data shownin Figure 7.4. Thus, a rigorous simulation

model must be used to model attenuated PSMs.
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Figure 7.6 Images of two attenuated masks with different degrees of transmission of the
partially transmitting layer. The mask with higher transmission gives a smaller
feature whereas the mask with lower transmission gives a higher peak intensity
and a lower sidelobe amplimde.
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Figure 7.7 Simulated images from SPLAT and TEMPEST of a 1.50 um opening on a 4%
transmitting attenuated mask. The rigorous approachofTEMPEST predicts about
a 30% lower peak intensity than the scalarapproachof SPLAT.

Tb investigate the feasibility of printing features at kx=0.4, Table 7.5 shows the image

contrast at different focus levels produced by attenuated masks of transmission of 7%, 4%, and

0.5%. Contrast is defined as the ratioof the difference between the main signal intensity value and

the sidelobe amplimde to their sum. A negativecontrast value means that the sidelobe amplimde is
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higher than the main signal. If a contrast of as low as 0.3 can be tolerated, then a 7% transmission

mask can barely work with less than±l RU (1 RU = 0.79 um) ofDOF. A minimum contrast of0.5

would render a 7% transmission mask impossible whereas a 4% mask still functions with about±1

RU of DOF. If severe substrate reflection causes large standing waves in the photoresist, then a

contrast of at least 0.8 is required. This means that only a mask with low transmission (close to a

conventional mask) can be useful.

Table 7.5

Defocus Contrast Contrast Contrast

-2.0 -0.281 -0.035 N/A

-1.0 0.194 0.408 0.833

0.0 0.378 0579 0.864

+1.0 0.324 0.531 0.702

+2.0 -0.020 0.182 N/A

Image contrast for an isolated open space at ^=0.4 at different focal depths for
three attenuated masks with 7%, 4%, and 0.5% transmission. Although the 7%
mask gives a narrower image, the image contrast in focus is only 0.38.

A kx value of 0.4 is a challenge to.the state-of-the-art technology. In production, however,

a kx value of 0.6 is more common.Table7.5 shows the image contrast at different focal depths for

an opening size corresponding to kj=0.6 on attenuated masks with 7% and 4% transmission. A 7%

transmission mask is possible with about 2 RU of DOF if a contrast of about 0.6 is acceptable. For

the same contrast level, a 4% partially transmitting mask gives a larger DOF of approximately 3

RU. Thus, at a fixed contrast requirement, a less transparent partially transmitting layer is

recommendedfor smaller featuresor better DOFlatitude.However, less transparencyalso means a

slighdy wider image.

7.6.2 Edge Effects on Image Quality

Besides the importance of choosing a suitable transmission level of the attenuating

material, two other issues associated with attenuatedPSMs are phase error and phase-shifter edge

effects on the image quality. In §7.4, glass edge scattering have been shown to reduce transmission
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Defocus Contrast Contrast

-2.0 0.164 0.333

-1.0 0.558 0.660

0.0 0.681 0.778

+1.0 0.610 0.725

+2.0 0.317 0.472

Table 7.6 Image contrast for an isolated open space at kx=0.6. at different focal depths for
two attenuated masks with 7% and 4% transmission. The larger feature size in this
case makes a 7% partially transmitting mask possible.

in alternating PSMs. The attenuated PSM technology is also likely to be subjected to edge effects.

In this section, these effects are examined by comparing experimental results from the IBM Aerial

Image Measurement System (AIMS)7 with predictions from simulations using the thin mask

approximation (SPLAT) and the rigorous electromagnetic model (TEMPEST). The structures

under consideration are isolated space, isolated line and linespace patterns. For all these patterns,

masks with five different phases of 155°, 170°, 180°, 190°, and 205° are examined in order to smdy

the interplay among glass edge scattering, phase error and defocus effects.

7.6.2.1 Experimental Technique

Aerial images generated by attenuated masks were measured using the IBM Aerial Image

Measurement System (ATMS)7. The AIMS tool is constructed ona Zeiss microscope base, with a

deep-UV objective used to emulate the imaging lens of a stepper. An aperture is placed within the

imaging objective in order to adjust the numerical aperture (NA) of the system. Selection of this

aperture depends upon the NA ofdie stepper under consideration as well as the magnification ofthe

reticle being analyzed. A Mercury-arc lamp generates the exposure energy, with the appropriate

wavelength selected through an optical filter. Thus far, the system has been configured to run at both

i-line (0.365 um) as well as deep-UV (0.248 um) wavelengths. In the illumination system, an

interchangeable aperture is used to choose the partial coherence (a) or to create a modified

illumination configuration.The apertureis imagedonto the entrance pupil ofthe imaging objective
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to achieve Kohler illumination. The projected image is collected by a CCD camera with 512x512

pixels at a magnification of approximately 200X from mask to CCD array.The focus ofthe system

is adjusted by moving the stage containing the reticle; typically, the aerial image is collected during

one measurement at eleven different positions of the stage. The collected aerial image is normalized

by measurements taken in a large clear area to generate a relative intensity.

7.6.2.2 Simulation Context

The context chosen to explore the edge effects is that of 4X deep-UV (248 nm) projection

printing with an NA of 0.5 and a a of 0.54 (called System D). The attenuated PSMs have a

chromium layer of thickness of 293 A and a refractive index of (1.623, -j1.627). The measured

intensity transmission is 7% and the phaseis 19°. The remaining phase is createdby etchinginto

the glass substrate of refractive index (1.5, -jO.O), resulting in a trench with vertical sidewalls.

SPLAT is a FORTRAN program which simulates two-dimensional projection-printing

based onthe Hopkins' formulation ofpartially coherent imaging5. It assumes that the lithographic

mask is infinitesimally thin and thus neglects possible edge effects. Such idealization nevertheless

gives good prediction for binary mask patterns. For alternating PSMs, however, effects of glass

edge scattering can render the thin-mask approximation in SPLAT in error by as much as 10% of

the clear field intensity73. In such instances, rigorous electromagnetic simulation of transmission

through masks is required. Thus, the importance ofedge scattering is measured by the difference in

the simulation results between SPLAT and TEMPEST. For structures in which edge scattering is

insignificant, SPLAT can be used to predict mask behaviors. When edge scattering is important,

however, the computation intensive model ofTEMPEST must be used to obtain useful predictions.

7.6.2J Isolated Space

One of the concerns in the fabrication of attenuated PSMs is the exact control of the phase

and transmission of the partially transmitting layer due to non-uniformities during the course of

layer deposition. This results in the difficultyof maintaining a 180° phase shift between the opening

regions and the leaky regions. Although the phase can be controlled to better than one degree for

particular features, etch rate fluctuations may result in phase errors of±10° for openings ofdifferent
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sizes. Study of the effect of phase error on aerial images were done on five different masks with

phases of 155°, 170°, 180°, 190°, and 205°, corresponding to phase errors of-25°, -10°, 0°, 10°, and

25°, respectively.
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AIMS measured in-focus images of 0.25 urn openings (wafer dimension) for five
different phases of 155°, 170°, 180°, 190°, and 205°. The lateral shift of the images
is only a measurement artifact

AIMS measured in-focus aerial images of 0.25 um space patterns (wafer dimension) for

the five different phases of the masks are shown in Figure 7.8. If the masks were infinitesimally

thin, the change in the peak intensity with respect to phase would be very gradual and symmetric

with respect to 180°. In-focus SPLAT images for the five different masks shown in Figure 7.9

indicate this behavior. However, the experimental and TEMPEST images behave differently. A

very rapid and asymmetric behavior is observed in the AIMS measurements in Figure 7.8 as well

as from TEMPEST simulation results as shown in Figure 7.10. From the discrepancy between the

two simulators and the experimental data, one can conclude that glass edge scattering dominates

over phase error in affecting in-focus images of isolated spaces in attenuated PSMs. In fact,

simulation results from SPLAT shown in Figure 7.9 suggest that a pure phase error of ±25° does not
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Figure 7.9

1 2

i (omit wafer)

SPLAT simulations of in-focus images of 0.25 um openings (wafer dimension) for five
differentphases of 155°, 170°,180°,190°,and205°.The images varyby only 1%.

have noticeableeffects on the images,i. e., the 180°mask shows the highest peak intensity; but the

peak intensities of the 155° and 205° masks areonly about 1% less than that of the feature with no

phase error. An examination of the normalized SPLAT images shows that all the aerial images are

almost identical. This indicates that a pure phase error is non-critical. Scattering due to the glass

edges is thus significant as the peak intensity is reduced in an asymmetrical manner about 180°. A

205° (+25° phase error) mask shows a lower peak intensity than a 155° (-25° phase error) mask

because the 205° mask has a deeper glass trench andlonger glass edges.

This increased scattering with increasing glass trench depth is shown in Figure 7.11 for a

space opening on a binary mask. Tlie total energy transmitted through the opening, however, is

constant to within 0.5% for the different etcheddepths despite the decreasein peak intensity. This

suggests that the glass edges reduce the peak intensity by diffracting light out ofthe collection cone

of the optical system and the amount of scattering increases with the glass etched depth. Trie

efficiency of glass edge scattering,however, may be dependent on the mask structure. For a 0.5 V

NA spaceopening, the SPLAT image for a conventionalbinary mask shows a peak intensity which

is 30% higher than that ofthe TEMPEST image. For an opening on an attenuated PSM ofthe same
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Figure 7.10 TEMPEST simulationsshow the same behavioras observed experimentally.

dimension, the peak intensity of the SPLAT image is only 23% higher than that of the TEMPEST

image. This indicates that the phase interaction between the clear area and the leaky area in an

attenuated PSM reduces the effect of glass edge scattering.

Although the peak intensities for the features with different phases vary by as much as 10%

as the phase changes from 155° to 205°, the normalized images as shown in Figure 7.12 do not

differ by too much except that the sidelobe and the background transmission become relatively

more important as the glass etched depth increases. This increased relative importance of the

sidelobe intensity is not important for in-focus printing. For out-of-focus printing, however, the

slighdy decreasedcontrastmay causethe depth-of-focus (DOF)to degrade forhigher phase masks.

A possible remedy to the problem of reduced peak intensity is to fabricate the attenuated

PSM using the recessed leaky chrome (RLC) technique20 as shown in Figure 7.13 where the

structureofa normal leaky chrome (NLC) mask is alsoillustrated.The inverted configurationofthe

RLC mask was implemented in orderto reducethe effect of electromagnetic scattering from the

sidewalls of the etched glass openings. The efficacy of the RLC mask in reducing glass edge

scatteringis smdied by examining the electric fieldin the vicinity of a glass edge for the two types

of masks as shown in Figure 7.13. Incident radiation propagates from the top of the figures and
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Figure 7.11 Peak intensity of a 0.25 um opening (wafer dimension) in a binary chrome mask as a
function of glass etched depth (phase) from TEMPEST. Deeper glass trenches result in
lower peak intensities.
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Figure 7.12 Normalized TEMPEST images of Figure 7.10 show that there is not much difference in
image quality for die five different phases, otherthanthedifference in peakintensity.

impinges uponthe masktopography creating the transmitted field distribution at the lowerpart of

the figures. For the NLC mask, Figure 7.13a shows that a region of low electric field is created in
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the air adjacent to the glass edge. The reduction in peak intensity can be attributed to the formation

of this shadow region. For the RLC mask, however, Figure 7.13b shows that the light tends to

concentrate in the opening region and remain in the optically denser material (glass). Thus, the

RLC mask is expected to alleviate the problem of transmission loss due to glass edge scattering.

(a) Normal Leaky Chrome (b) Recessed Leaky Chrome

Figure 7.13 The RLC mask can be used to alleviate the problem of glass edge scattering in
attenuated PSMs. (a) In the NLC mask, a region of low electric field is created by
the glass edge which results in a loss in peak intensity, (b) In the RLC mask, the
low electric field region does not exist because the field tends to remain in the
optically denser material.

7.6.2.4 Isolated Line

For isolated tine patterns, SPLATsimulation results show that a pure phase error of±25° is

again not significant in affecting die in-focus images. Contrary to the isolated space patterns, the in-

focus images as measured by the AIMS tool and predicted by TEMPEST and SPLATmatch closely

with one another as shown in Figure 7.14. (The AIMS measured image has a higher minimum

intensity which may be caused by flare in the measurement environment.) Thus, scattering from the

glass edges does not play an important role in degrading the in-focus aerial images of isolated lines.

This is because the relative importance of the scattered light is less when the mask background is
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Figure 7.14 Comparison of die images from AIMS, TEMPEST, and SPLAT for a 170° 025 um line.
The three images are similar, indicating die applicability of the thin mask and scalar
approximations.

bright than when it is dark.The thin mask approximation is therefore adequate for in-focus image

prediction.
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Figure7.15 AIMS measured images of 0.25 um linespace patterns of fivedifferent phases. Similar to
the isolated space pattern, thepeakintensitydecreases with increasing phase.
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7.623 Linespace Pattern

i(nm)

Figure 7.16 Normalized images of linespacepatternsof Figure 7.15 from TEMPEST simulationsshow
that there should not be much in-focus performance difference among the masks with
different phases.

AIMS measured images for linespace patterns with the five different phases are shown in

Figure 7.15. Similar to the behavior of isolated spaces, the mask with the lowest phase (155°)

shows the highest peak intensity. The peak intensity decreases as the phase is increased, reaching a

minimum for the 205° mask with a peak intensity which is about 15% lower than that of die 155°

mask. However, this decrease in peak intensity may not be significant in adversely affecting the

mask performance because the normalized images from TEMPEST simulation shown in Figure

7.16 are very similar. Furthermore, contrary to the isolated space pattern, this decrease in peak

intensity with increasing phase may not cause significant degradation in the DOF because of the

absence of sidelobes in the images.

7.6.2.6 Defocus Behavior

The images of a 180° space pattern from SPLAT simulations for different defocus levels

are shown in Figure 7.17. The images show a behavior which is symmetric with respect to the in-
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Figure 7.17 SPLAT images of a 180° space atdefocus levels of 1.0,0.75,0.5,0.25,0.0, -0.25, -0.5, -
0.75, and -1.00 um. The defocus behavior issymmetric with respect tothe in-focus image.

focus image, i.e., the image for+x um of defocus is the same as the image for -x um of defocus.

However, such is not the case for the defocus images from TEMPEST simulations as shown in

Figure 7.18. This asymmetry with respect tothezero defocus image can be attributed to glass edge

scattering which causes an effective phase-shift ofthe opening19. In fact, aplot ofthe peak intensity

as a function of defocus from AIMS measurements, and TEMPEST and SPLAT simulations in

Figure 7.19 showsthat although the SPLAT images showno focus shift, the TEMPEST images

show a focus shift of about 0.1 um. Determination of focus shift from ATMS images is difficult

because of the difficulty in establishing a reference plane. Thus, the apparent focus shift of the

ATMS imagesin Figure 7.19 cannot be interpreted asquantitatively correct Nevertheless, AIMS

measurements do indicate a focus shift whichchanges monotonically with the glass etcheddepth.

This focus shift canbe explained by the path difference betweenlight diffracted from the

glass trench opening and the light leaking through the chromium layer. Since the diffracted light

from the glass trench has an energy distribution which is almost uniform across the lens whereas

the leaky field uses primarily the center part of the lens, the path difference or the focus shift is

approximately (d^NA^/a^)) Rayleighunit (RU), where disthe depth oftheglass trench, NAm
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Figure 7.18 TEMPEST images of die same mask at the same defocus levels as Figure 7.17. The
defocus behavior is asymmetric with respect to the in-focus image, indicating the influence
ofmask edge effects.

is thenumerical aperture ofthe lens onthe mask side, and 1RU=0.5«(X/NA2). The number two is

a heuristic factor which accounts for the fact that the diffracted field from the glass trench must be

averaged over the entire lens. For the structure under consideration, d=X(<j>giass/360°)/(ngiass-

nair)=0.22um, NAjqsO.125, and the focus shift is calculatedto be about 0.22 RU or 0.11 um. This

theoretical value agrees well with the observed focus shift from the TEMPEST curve in Figure

7.19. In practice, the value of this focus shift is different for different features across the field of

exposure; and this would result in a loss of DOF. A similar phenomenon is observed for line

patterns as well. Although SPLAT usually gives reasonable results near focus, it would need

modifications such as a trench depth dependent phase correction factor to work well out-of-focus.

Trie similarity between TEMPEST results andthe AIMS data, together with their agreementwith

the above theoretical consideration,validatesthat TEMPEST is capableofmodeling subtle effects

in photolithography.

Fromthe AIMS defocus images, the DOFofthe masks with different phasesarecalculated

via an E-D analysis with a 15% exposure latitude; and the results are shown in Figure 7.20. The

DOF for both the isolated space (open squares) and the linespace patterns (shaded squares) are
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Figure 7.19 Peak intensity versus defocus for a 180° space from AIMS, TEMPEST and SPLAT. The
TEMPEST data as well as AIMS measurements show a focus shift whereas the SPLAT

data do not This focus shift is related to thepath difference betweenlightdiffracted from
dieglass trench opening anddielightleaking through thechromium layer. Thehigherpeak
intensity shown by the AIMS measurements than the TEMPEST data is reasonable
because of flare in the measurement environment

larger than the line pattern (darksquares). Forthe 180°mask, the DOF for a0.25 um isolated space

feature is 0.99 um; for a 0.25/0.25 um linespace feature it is 1.05 urn; and for a 0.25 um isolated

line it is only 0.52 um. This poorDOFperformance ofisolatedlines canbe improved,however,by

biasing. If a 1 um line on the mask (corresponding to 0.25 um in 4X reduction printing) is used to

print 0.28 um lines, the DOFis improved tremendouslyas shown by die dark diamonds in Figure

7.20. The DOF for a 180°line increases from 0.52 um to 0.86 um, representing a 50% increasein

DOF with a 12% increase in the kt factor. This suggests that in the attenuated PSM technology,

printing small isolated space and linespace patterns is more robust than isolated lines.

Reading the curves in Figure 7.20 individually, it is observed that for the isolated space

pattern, the DOF generally decreases slowly as the phase increases. This is because the contrast of

isolated space images decreases as the phase increasesdue to the reduction in peak intensity. As a

result, die sidelobes become relatively more important when the image gets out of focus. The line

pattern also shows a decrease in DOF as the glass trench becomes deeper. The linespace pattern
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Figure 7.20 DOF as a function ofphase.The DOF for spaceand linespace patternsarecomparable;but
die DOF for the tine pattern is much smaller.

shows the least variatioa This is due to the similarity among the normalized images in Figure 7.16

as well as the absence of sidelobes.

7.7 Chromeless PSMs

Chromeless PSMs are useful in printing dense lines and spaces. However, phase conflict

and defect printability are major concerns for this technique. Methods to alleviate the phase conflict

problem include introducing one 90° or two 60° phasesteps between the 0° and 180°regions on the

mask16. Despite these concerns, another issue of die chromeless technology is uneven linewidths

for equal width patterns on the mask, similar to die simation of the alternating PSM technology

discussed above. For chromeless masks, asymmetry can arise because glass sticking up from the

mask substrate can attractradiation emanating from the bottom ofthe trench. Figure 7.21 shows the

aerialimages created by two masks with equal 0° and 180° widths (intended to produce a 0.5 um

pitch pattern on a wafer) on two different optical projectionprinting systems: System A and System

B. SPLAT predicts a balanced image in both cases but this is not correct ForTEMPEST, system B

gives equal peak heights at the 0° and 180° regions. However, system A does not The peak
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intensitycorresponding to the 180° region (tothesidein the figure) is lowerthanthatcorresponding

to the 0° region (in the middle of the figure). Thus, in orderto obtain equal linewidths, a system

dependent bias to the mask must be applied.

Figure 7.21

x (am at wafer)

Optical image profiles created by chromeless masks for system B (above) and
system A (below). System B shows symmetry between the 0° and the 180°
regions; but system A does not

The imbalance in peak intensities in system A arises because the small but non-vanishing

zeroth and second diffracted ordersbecomes more important at small kxvalues and largea. Since

kx=0.35 for system A, the collection lens captures only a fraction ofthe energy in the ±1 diffraction

harmonics. As a result, the energy associated with the zeroth and the second diffraction harmonics

are relatively more important. In system B, however, the kj value of0.5 is high enough and a low

enough so that the collection lens captures all the energy of the ±1 harmonics, and the importance

of the zeroth and second order harmonics remains negligible compared to the ±1 beam interaction.

Another interesting phenomenon associated with chromeless mask repair is the difference

between a 360° trench and a 360° protrusion. A phase defect is normally repairedby removing

102



glass at the defect position to attaina 360°trench. Figure 7.22 shows the images createdby System

B when such a methodology is employed for repairing defects ofdifferent sizes. The 2.0 urn wide

trench (a large defect) shows that a single 0° to 360° transition produces a dip to 80% of the clear

field value. As the trench width decreases, the two glass edges interact to double the intensity

decrease to 40%, corresponding to a dip going as low as 60% of the clear field value. This

maximum dip occurs for a 0.25 um wide trench. As the trench size decreases from 0.25 um, the dip

becomes less severe as the trench becomes more difficult to resolve. The two curves marked by

diamonds in Figure 7.23 show this simple behavior. The percentage intensity decrease is the most

severe when the trench width is about one freespace wavelength. The severity of the effect

decreases monotonically to both sides, reaching zero for very small defects and reaching the effect

of a single edge for very large defects.

Figure 7.22

x (um at waiter)

Images of 360° phase-shifter trenches of2.00,1.00,0.50,0.25 and 0.125 um wide
on chromeless phase-shift masks for the TM polarization.

During the course of phase defect repair, however, small downward pointing glass

protrusionsor dielectricridges may be left behind. Assuming that the protrusions have 360° phase

and vertical edges, they can producedecreasein the intensity of as much as 80% causing the image

to dip to as low as 20% of the clear field value as shown in the two curves marked by squares in

Figure7.23. This region of sharp decrease occurs for both polarizations and shows an oscillatory

behavior with respect to the width ofthe protrusion, indicatingthat aresonant phenomenon may be
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Figure 7.23 Percentage intensity decrease as a function of the width of the 360° trench
(diamond marked) and protrusion (square marked) for the TE and TM
polarizations. The oscillatorybehavior associated with the protrusion suggests a
resonance within the protrusion.

occurring within the protrusion. (Such a phenomenon does not occur if the defect is a trench etched

into the glass substrate as discussed above.) If the resonanceis due to reflection between the glass

edges, the full width at half maximum (FWHM) of the resonance, i.e., the range of protrusion

widthswhichproduce severe drop in theintensity, should be about 0.5^^31- The first resonances

inFigure 7.23 for both polarizations show widths ofabout 0.3Xq, which isabout 0.5^1^, agreeing

with the above prediction. The difference in the resonance location (protrusion width which gives

the most severe drop in intensity) between the two polarizations can be attributed to the difference

in reflection coefficients for the two polarizations.

lb test if the observed behavior is a function of the mask structure or the optical system

parameters,the same structure was simulated with the optical System B, except that the resolution

in this case is halved by reducing the numerical aperture from 0.5 to 0.25. Figure 7.24 shows that

the worst intensity decrease in this system is 50%, or 30% less than the previous system owing to

lower resolution. However, the width of the protrusioncorresponding to the worst case is the same

for both systems and does not scale with resolution, indicating that the resonance is a property of

the mask structureitself. Thus, the opticalsystem parameters such asthe numericalaperture andthe

partial coherent factor were found to affect the degree of the intensity decrease but not the basic
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Figure 7.24 Percentage intensity decrease as a function of protrusion width for a system with
an NAof0.25.The percentagedrop for thissystemis less than the previoussystem
with an NA of 0.50, but the locationsof the peaks and valleys are identical.

behavior itself. This structural effect can even be seen in oblique incidence. Figure 7.25 shows the

instantaneous magnetic field for a 0.125 um wide glass protrusion for an incident angle of 3.6° in

theTMpolarization (k=0.248 um). Thehighpeakvalues in thevicinity of thedielectric protrusion

again suggest a resonant phenomenon.

The difference in behavior between a dielectric ridge and a trench can also be seen

experimentallyas shownin Figure 7.26.The feature on the left correspondsto the printedimage of

a glass trench and the feature on the right correspondsthatofa protrusion.Tlieeffectofa protrusion

is bigger than a trench as can be seen by the darker (deeper) line in the SEM picture.

7.8 Conclusions

Effects of phase-shifting mask edge in projection printing for four types ofphase-shifting

masks were assessed using rigorous electromagnetic simulation on four different optical systems

and validated with experimental data. Important effects of glass edge scattering of light rays

through the masks were found, resulting in imageswhichare 10 to 30 per cent different from the

ideal images predicted by scalar and thin mask models in simulators such as SPLAT. The etched

glass edges were found to scatter light and lead to a lowering in peak intensity. For alternating

masks, edge scattering can be remedied by reducing the opening dimension by 0.021 X/NA per
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Figure7.25 Instantaneous magnetic field for a 0.125 um wide glass protrusion for oblique
incidence (TM). The field shows high peak within the protrusion, suggesting a
resonant phenomenon.

edge for feature size ranging from 0.3 to 0.7 A/NA. To model such an effect in SPLAT to first order,

Figure 7.4 can be used as a design graph to determine the amount of bias needed.

For rim type PSMs, edge to edge interaction is shown to be insignificant based on an

approach analogous to a two-level experimental design. No direct electromagnetic interaction

between chromium edges and shifter edges was found. Hence, optimization of the rim size and the

middle size is not complicated by the second order effect of the product of the rim and middle

dimensions. The rim dimension can thus be designed solely on the basis of the sidelobe level and

peak intensity.For attenuatedPSMs, a lower level of transmission of the partially transmitting layer

is recommended for smaller features based on consideration of image contrast through focus.

Topographies on attenuated PSMs also have important effects on the image quality and defocus

behavior of isolated space, isolated line, and linespace patterns. These edge effects cause a loss in

peak intensity and hence a possible reduction in throughput. Remedy to this problem with the

recessed leaky chrome mask is promising. The trench depth also produces a focus shift which is

slightly pattern dependent. Improvements may bemade if a suitable attenuating material is found
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Figure 7.26 SEM picture of photoresist lines produced by a 1 um dielectric ridge (right) and a
1 um trench (left). The effect of a protrusion is bigger than a trench as is indicated
by the darker (deeper) line in the picture. Exposure is done on a 4X deep-UV
stepper with a numerical aperture of 0.6 and a partial coherence factor of 0.5. The
photoresist is negative tone SNR-248. (Photoresist picture courtesy of Marco
Zuniga at the University of California, Berkeley.)

such that little height difference occurs between the open and attenuated regions. For chromeless

PSMs, optical system parameters can affect the peak intensity balance between the 0° and the 180°

regions for small features through the increase in relative importance of the small but non-

negligible even order diffracted harmonics.

In any PSM technology, small 360° glass protrusions may produce a drastic drop in the

intensity. This effect was first predicted by TEMPEST and then observed experimentally. The

qualitative behavior of this resonance is dependent only on the mask structure, and is independent

of the optical system parameters. The effect is expected to be smaller for "real-life" protrusion

defects since the rough and non-vertical edges may inhibit the resonance which exists for a vertical

edge protrusion.

Through the study of these different PSM techniques, in advance predictions by TEMPEST

have shown quantitative agreement with experimental data taken on different systems. TEMPEST

predictions of focus shift and the effects of glass edge scattering in attenuated PSMs were
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confirmed by AIMS measurements. The difference in behavior between a dielectric ridge and a

glass trench in the chromeless PSM technology predicted by TEMPEST was also supported by

SEM pictures of photoresist lines. For the alternating PSM technique, variations of the optical

image due to subde changes in the mask aresuccessfullypredicted by TEMPEST andvalidated by

photoresist exposure smdies. TEMPEST is thus a useful and accurate electromagnetic modeling

program for understanding difficult and complicated issues in photolithography.
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Chapter 8

Three-dimensional Applications:
Mask Edge Effects and Reflective Notching

8.1 Introduction

The ability to analyze three-dimensional structures is very important in photolithography

as it allows many complicated issues to be examined. Effects in two-dimensional features may be

exaggerated or diminished in a three-dimensional structure. For example, results from two-

dimensional rigoroussimulationof a 0.5 X/NA wideisolatedspacefeatureon a binarymaskshow

polarizationeffects of 3% and atransmission loss of10% asthelightpasses through theopening100.

These effects are expected to be larger in three-dimensional mask features such as contact hole

patterns. Another interesting problemis that of the printabilityof a 360° phase quartz bump defect

For a 360° phase ridge, the previous chapter indicates the existence of resonance within the

dielectric ridge which can cause a 70% drop in the intensity. The corresponding three-dimensional

bump defect is not expected to show such a drastic effectbecause such a structure does not support

a waveguide mode. Reflective notching is another important three-dimensional issue as non-planar

topography on the wafer can cause undesired exposure in the photoresist and a change in the critical

dimension of the feature being formed.

8.2 Simulation Context

A typical TEMPEST simulation described in this chapter uses a simulation domain of4 um

by 4um by 1 urn (length by width by height). The domain is divided into a cubic grid of256 by 256

by 64 simulation nodes. This translates to about one simulation node per 16 nm. The incident

radiation is assumed to be a normally incident plane wave with the electric field polarized in the x-

direction (the length direction). Steady-state is reached after about 30-50 wave cycles, which takes

about 10 minutes on a 32-node partition on the CM-5. (Each node on the CM-5 consists of 32

megabytes of memory, and there are a total of 512 nodes on the CM-5 at the National Center for

Supercomputing Applications (NCSA) in Illinois. A larger problem can be solved by using more

processor nodes.) Tlie calculated diffraction harmonics are men transferred to SPLATfor image
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synthesis. Two-dimensional image calculation using SPLAT generally takes less than one minute

on a workstation, although longer computation time may be needed for larger problems.

83 Polarization Effects and Transmission loss in IX Contact Holes

Evidence of the importance of polarization effects and transmission loss was shown to be

important for IX deep-UV projection printing100. These effects areexpected to bemore severe for

mask patterns such as contact holes and elbows because of increased interactions between the

electromagnetic fields and the chromium absorption layer. In this smdy, square openings of sizes

ranging from 0.1 urn to 1.0 um in length on each side are examined for transmission loss and

polarization effects. Tfie context chosen to explore these effects is that of IX deep-UV (248 nm)

projection printing with a numerical aperture (NA) of 0.5 and a partial coherence factor (o) of0.4.

Thus 1 X/NAis approximatelyequal to 0.5 um. The absorptionlayer ofthe mask is chromium with

a refractive index of(2.5, -j2.0) and a thickness of 80 nm. The glass substrate has a refractive index

of(1.5,j0.0).

Figure 8.1

MINIMUM

O001J

MAXIMUM

U

13

Images of a 0.5 um by 0.5 um (1 X/NA by 1 X/NA) opening predicted by
TEMPEST(left) and SPLAT (right)simulations. The SPLATimage shows a four
fold symmetry whereas the TEMPEST image shows only a two-fold symmetry,
indicating polarization effects.

Trieimages of a 0.5 um by 0.5 um (1 X/NA by 1 X/NA) opening predicted by TEMPEST

and SPLAT (thin maskand scalarapproximations) simulations are shownin Figure8.1. Noticein
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the figure that the SPLAT image shows a peak intensity which is 25% higher than that of the

TEMPEST image. This loss in peak intensity is also observed for space patterns100, and is

apparentlydue to a combinationof propagation througha small aperture and energydissipationin

the chrome due to its finite thickness. In fact, a plot of the peak intensity as a function of opening

size for TEMPEST and SPLAT simulations shown in Figure 8.2 indicates that the SPLAT image

shows higherpeak intensity for opening sizes of less than 1 X/NA. The SPLAT imagecan give a

peak intensity which is almost 2X higherthanthat predictedby TEMPEST for the caseof a0.4 um

by 0.4 um (0.8 X/NA x 0.8 X/NA) opening. Trie difference in the peak intensities between SPLAT

and TEMPEST is greater for contact hole structuresthan for a space pattern. An exact relationship

oftransmission loss between an open space and a square contact hole is complicated. However, for

feature sizes smaller than 1 X/NA, transmission loss for a square contact hole is about three times

that of an isolated space.This increaseis due to the simultaneous presenceof the north/south and

east/west edge effects in a contact hole structure.
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Figure&2 Peak intensity of squareopenings as a function of size. For openings smaller than
1 X/NA, SPLAT images show higher peak intensity than the TEMPEST images.

Since the transmission loss of a square contact hole is about three times that of an isolated

space, the effects in a contact hole cannot be approximated by summing the effects of two

perpendicular spaceopenings.Non-linear effects arepresent These effects can alsobe ascertained

from Figure 8.2 as the transmission loss is not constant over any range ofthe feature size, implying
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that a different bias must be used for features of different sizes. This is not a serious restriction in

IC fabrication, however, because all the contact holes usually have the same dimensions.

Another interesting feature in Figure 8.1 is that the image predicted by SPLAT shows a

four-fold symmetry (with respect to the x-axis, the y-axis, the x = y line and the x = -y line)

whereas the TEMPEST imageexhibitsonly atwo-fold symmetry (with respectto the x-axis andthe

y-axis). Since the four-fold symmetry shown by the SPLAT image is also present in the square

mask pattern, lack of symmetry with respect to the x = y line and the x = -y line in the

TEMPEST image indicates that the electromagnetic fields interact with the metal chromium

differently depending on the relative orientation between the incident polarization and the metal

surface. In fact, theTEMPEST image in Figure 8.1 shows anelliptical shape which is elongated in

the x-direction when the incident electric field is polarized in the x-direction. Trie eccentricity

(defined as the ratio of the image width in the y-direction to the width in the x-direction) as a

function of the opening size is shown as the open squares in Figure 8.3. In the absence of

polarization effects, a square contact withkj=0.8 prints slightly eccentric by 6% asshown by the

SPLAT image in Figure 8.1. Tfie polarization effect is about 3 times larger as the eccentricity

reaches a maximum of 1.17 when the openingsize is 1 X/NA. This suggests that there is a critical

size at which polarization effects are the most important For sizes smaller than this critical size,

polarization effects are relatively lessimportant because of the difficulty in transmission through a

small opening, and thecontact holebecomes more difficult to resolve. For contact holes larger than

this critical size, the relative importanceof the metal edges decreases as the clear areaincreases.

lb test if this critical size is a function of the mask structure or of the optical system

parameters, the samecontactholes weresimulated with another opticalsystem with anNA of0.35.

This system produces features whichare 13 timeslarger thanthe former system. The results are

shown asthe opendiamonds in Figure 8.3.Comparing the two curvesin Figure 8.3,the critical size

is the same for both systems atabout 1X/NA, although theNA=0.5 system shows ahigher degree

of eccentricity. Tfius, the critical size is dependent on the optical system parameters. For the

NA=0.5 system, the critical sizeis 0.5 um x 0.5 um whereas for the NA=0.35 system, the critical

size is 0.7 um x 0.7 um.
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Figure S3 Eccentricity as a measure of lack of symmetry. The value should be one in the
absence ofany polarization effects. Eccentricity is system dependent as it peaks at
1 X/NA for two opticalsystems.

The elliptical shape of die TEMPEST images can be partly explained by the

electromagnetic boundary conditions on a metal surface imposed by Maxwell's equations. On the

surface of a good conductor, the parallel electric field is almost zero whereas the perpendicular

electric field is nonzero. Thus, when the incident electric field is polarized in the x-direction, the

electric field is almost zero at the metal surfaces parallel to the x-axis. The effective length of the

mask in the y-dimension is therefore smaller than the effective length in the x-dimension, leading

to the elliptical shape ofthe images.

The dependence ofthe critical size on the optical system parameters suggests that besides

purely electromagnetic considerations, there is an interplay between electromagnetic scattering on

the mask and the optical system which creates the mask image. Since the image eccentricity arises

because of the metallic layer on the mask, the most important optical system parameter should be

the cone angle on the mask side. The larger the cone angle, the more eccentric the image is as

suggested by Figure 8.3. Thus, there should be tittle eccentricity in square contact hole images for

reduction masks as the cone angle on die mask side is small.

This polarization effect is expected to be more pronounced for rectangular patterns because

a narrow slit may transmit different amounts of energy depending on the incident polarization.
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Figure 8.4 shows the TEMPEST images ofa0.4 urnby 0.5 um mask and a0.5 um by 0.4 um mask.

Figure 8.4 Images of a 0.4 um by 0.5 um openingby TEMPEST (left), a 0.5 um by 0.4 um
opening by TEMPEST (middle), and a 0.5 um by 0.4 um opening by SPLAT
(right). Polarization effects make the effective y dimensionofthe opening smaller
in TEMPEST simulations.

It can be seen from the figure that for the 0.4 by 0.5 mask, the image is longer in the x-direction than

in the y-direction although the mask opening is longer in the y-direction. This indicates that

polarization effects are even stronger than the orientation of the rectangular mask feature. For the

0.5 by 0.4 mask, polarization shortening of the y dimension causes the structure to appear more

elliptical as indicated by the oval shape ofthe image. The image predicted by SPLAT shown in the

same figure displays a less elliptical image, indicating the effects of polarization in the TEMPEST

images.

Since the effective length of the opening in the y-direction is smaller when polarization

effects are considered, the eccentricity of the images predicted by TEMPEST is smaller than the

eccentricity of the images predicted by SPLAT. Table 8.1 shows the eccentricity of the images

predicted by TEMPEST and SPLAT for different sized rectangular openings. The eccentricity is

determined by the x and y extent ofthe image atthe 30%intensity level (with respectto clear field).

The difference between the eccentricities can be as much as 31% for an opening of 0.5 um by 0.6

um. Notice also that for certainstructures, the eccentricityof the TEMPEST images may be less

than 1while the mask aspect ratio is greater than1.This effect may complicatethe designofmasks

as different bias values areneeded for the two different directionsif polarized illumination is used.
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From Table 8.1, a bias of about 0.05 um in the y-direction is needed to correct for polarization

effects assuming that no bias is applied to the x-direction. In most projection systems, however, the

use of unpolarized light sources would reduce almost all asymmetries due to polarization effects,

but it would still be important to bias the contact hole according to Figure 8.2 to increase the peak

intensity of the image.

Mask Size Mask Aspect Eccentricity Eccentricity Percentage
(umbyum) Ratio (TEMPEST) (SPLAT) Difference

0.2x0.5 2.50 N/A 1.66 N/A

0.4x0.5 1.25 0.97 1.15 -18.6%

0.6x0.5 0.83 0.75 0.84 -12.0%

0.8x0.5 0.63 0.57 0.58 -1.8%

1.0x0.5 0.50 0.45 0.45 0.0%

0.5x0.2 0.40 N/A 0.60 N/A

0.5x0.4 0.80 0.85 0.87 -2.4%

0.5x0.6 1.25 0.91 1.19 -30.8%

0.5x0.8 1.60 1.32 1.72 -30.3%

0.5x1.0 2.00 1.88 2.24 -19.1%

Table 8.1 Eccentricity of the TEMPEST and SPLAT i mages for mask op•enings of difl
dimensions. For any contact hole, die eccentricity of die TEMPEST image is less than the
SPLATimage. The differencecan be as large as 31% for a 0.5 um by 0.6 um opening.

All the contact holes considered so far are ideal. Contact holes on masks which are used in

photolithography have non-idealities such as rounded comers and defects. These non-idealities can

also be examined with TEMPEST. For example, the image ofa 0.5 um by 0.5 um contact hole with

its comers obscured is shown in Figure 8.5 together with the image of an ideal contact hole. The

obscurities at the comers are chromium with the same thickness as the opaque region. The cross-

sections of each obscurity is a square of size 50 nm in length on each side. There is little

qualitatively difference between the two images, although the ideal contact hole gives a slightly

higher peak intensity and a slighdy larger image.

8.4 Defect Printability in Chromeless Phase-Shifting Masks

It was shown that a 360° glass ridge in a chromeless PSM produces resonances that may

cause anintensity drop of70% to30% ofthe clear field value101. Such adrastic drop inthe intensity
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The images of an ideal contact hole (left) and a contact hole with obscurities at the
comers (right) show little qualitatively difference in the aerial images. The ideal
contact hole shows a slighdy higher peak intensity.
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Figure 8.6 Image of a 0.9 um by 0.9 um 360° phase bump defect The image attains a
minimum in the middle of the defect This is typical of the behavior of such
defects.

level was attributed to wave-guiding effects of the dielectric protrusion. It is thus interesting to

investigatedie printability of 360° phase quartz bump defects.The context chosento explore this

phenomenonis thatof4X deep-UVprojection printing with anNA of0.5 andaa of0.4. Tfie point

defects allhave verticalglassedgeswhich are 2X(0.496um) long in the verticaldimension in order
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to create a phase of 360° with the refractive index of glass assumed to be (1.5, jO.O). In the

horizontal dimensions, the protrusion has a square surface which varies in size from 0.1 um to 1.0

um in length on each side on the mask.

Figure 8.7
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Minimum intensity as a function of defect size. The bump defect shows a smooth
behavior whereas the ridge defect shows an oscillatory behavior.

A typical optical image profile of such a defect is shown in Figure 8.6 for a defect size of

0.9 um by 0.9 um. Notice that the image shows a four-fold symmetry, indicating that polarization

effects are not important. This is also thecase for a 360° phase glass ridge or glass trench101. Trie

0°-360° transitioncauses anintensity dropwhich is the most severe in the middle ofthe defect; and

this point of lowest intensity can be used to characterize the impact of the defect. Figure 8.7 plots

this minimum intensity as a function of defect size. The impact of the defect reaches a maximum

for adefect of size 1 um by 1 um (0.5 X/NA by 0.5 X/NA), wheredie intensityis reduced by 40%.

The effect of the defect decreases monotonically for larger and smaller sizes. This behavior is in

contrastto a glassridge which showsthe oscillating behavior(discussedin die previouschapter) as

shown by the open diamonds in Figure 8.7. This result indicates that a waveguide mode is not set

up within the glass protrusion. Quartzbump defects of 360° phase are thus not problematic when

the dose to clear is below 55% of the clear field exposure value.
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8.5 Reflective Notching

Side View

0.7 um

0.25 um

0.171 Jim
0.009 Jim
0.329 um

Plane View

0.4 pm

1.35 urn

0.4 um

Photoresist (1.69, -jO.Ol)

Polysilicon (6.187, -J2.453)

Gate Oxide (1.4745, -jO.O)
Field Oxide (1.4745, -jO.O)

Silicon (6.551, -J2.648)

Latent image forms here

Figure 8.8 Printing of a polysilicon gate. The 0.25 um thick conformal polysilicon is coated
on the oxide; it passes from the field oxide through the bird's beak onto the active
region.

Besides its applications in the smdy of mask problems, three-dimensional TEMPEST is

also useful in the smdy of formation of latent images in photoresistover non-planar topography.

This is especially important in the patterningofthe polysilicon gate. Topography on the wafer may

cause uneven exposure and hence non-uniform critical dimension of the polysilicon gate as it

transverses over the active region and field oxide. As an example, consider the printing of a

polysilicon line as shown in Figure 8.8. A conformal layer of polysilicon with a thickness of 0.25

um is coated on the oxide. The polysilicon runs from the field oxide (--0.5 um thick) through the

bird's beak (lateral dimension of0.4 um) onto the active region with agate oxide thickness of 90A.

A latent image is formed on the planar photoresist layer withDill's ABC parameters15 given as

(0.95,0.083,0.016). Trie image is formedby SPLAT simulationof a 1.75 um wide opening on a
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5X reduction mask at a wavelength of 0.365 um. Atotal dose of 100 mJ is delivered. Dynamic
bleaching ofthe photoresist is modeled by dividing the total dose into five steps.
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PAC concentration ofavertical plane along the line aa4 in Figure 8.8. Far away
from the bird's beak, the latent image shows the effects ofstanding waves. At the
polysilicon step, the exposure energy is re-directed by the topography, resulting in
a region of low exposure.

Figure 8.9 shows the latent image within the photoresist (PAC concentration) ofavertical

plane along the line aa4 in Figure 8.8. Far away from the step, the latent image shows the effects of

standing waves caused by the high reflectance of the polysilicon layer. At the bird's beak, the

exposure energy is re-directed by the polysilicon topography, resulting in aregion of low exposure.

The effect of the step can also be seen in Figure 8.10, in which the PAC concentration ofvertical

planes along bb4, cc4, and dd4 are shown. The picture on the top (bb4) shows the standing wave

within the photoresist in the field oxide region. The picture on the bottom (dd4) shows the PAC

concentration in the photoresist in the active region. These latent images show wider critical

dimensions than the one in the middle picture (cc4) in which the PAC concentration ofa vertical

plane at the location ofthe bird's beak is plotted. This reduction ofpolysilicon critical dimension

due to the slope ofthe bird's beak has also been observed experimentally38.
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Figure 8.10

y (um)

PAC concentration of vertical planes along bb4 (top), cc4 (middle)
(bottom). The critical dimension at the bird's beak (middle picture) is
from the other two.

1.9

and dd4

different

8.6 Conclusions

The three-dimensional version of TEMPEST has been shown to be very useful in

characterizing potential mask and reflective notching problems in photolithography. Smdies of

quartz bump defects of360° phase do not show significant eccentricity orsevere intensity reduction

and will not print if tht dose to clear isbelow 55% ofthe clear field exposure value. They also do

not appear to have a resonance as is the case for a glass ridge. Examination of IX projection

printing ofcontact holes at248 nm shows that transmission loss is typically three times more than

the loss in isolated opening spaces. Polarization effects in binary mask transmission produce

eccentricities inthe images ofsquare contact holes. The effect can beas large as17% which isthree
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times that of a square contact hole at 5X projection printing. These eccentricities can be more

important than the slight imbalance in the lengths of the sides of a normally square opening. It is

hoped that these predictions will be confirmed by smdies on IX projection printing systems and/or

aerial image monitoring systems. For example, transmission loss in small contact holes can be

tested by using a series of contact holes of different sizes and monitoring the time of exposure

required to clear the photoresist as a function ofopening size.

TEMPEST has also been applied in an initial smdy ofreflective notching in the printing of

the polysilicon gate. Trie slope of the bird's beak re-directs the exposure energy and cause

variations in the critical dimension. This effect has also been observed experimentally.
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Chapter 9

Conclusions

Rigorous electromagnetic simulation in photolithography is expected to play a major role

in the IC fabrication industry because of its ability to predict subde effects of electromagnetic

interaction with matter. For example, with the phase-shifting mask technique, rigorous

electromagnetic simulations canpredict the changes in aerial images due to subdechanges in the

glass edge shape. Moreover, the ability in simulation smdies to isolate certain effects also makes

simulationattractive in the examination of complex ideas andnovel methods. Furthermore, with

the increasing costof performing experiments and the decreasing costof computer memory and

time, simulation is expected to bean indispensable tool indeveloping newfabrication techniques.

The contributions of this thesis can be viewed as pushing the frontier of rigorous

electromagnetic simulation in three areas: numerical methods, integration of scattering and

imaging simulation software, and applications of simulation in the smdies of state-of-the-art IC

fabrication technologies. With regard to numerical methods, a three-dimensional formulation of

rigorous electromagnetic modeling using the time-domain fimte-difference approach on the

connection machine CM-5 is presented. The useof a cubic grid in which the six electromagnetic

field components are staggered in space makes the problem maps well onto parallel computer

architectures. Stability of the conventional TDFD numerical scheme requires that the time stepbe

smaller than a fraction of the spatial step multiplied by the speed of lightaswellasthereal part of

the refractiveindex be greater than the imaginary part The latterrequirementcan be relaxed with

the use ofdie frequency-dependent finite-difference time-domain method in which the convolution

relation between the electric displacement and the electric field is modeled via a recursive relation.

The Debye model (which models ionic-like materials) or the Lorentz model (which models

metallic-like materials) are used with this (FD)2TD scheme. Termination of the simulation domain

is achieved by the application of a novel second order absorbing boundary condition which is

derived basedon the harmonicnature ofelectromagnetic waves.This boundaryconditionis shown

to be as accurateand more efficient than other existing boundary conditions.
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Several extensions can be made to the current algorithm. More efficient boundary

conditions can be formulated so that the simulation domain can be terminated as close to the

scatterer as possible. This would reduce the memory requirement, allowing larger problems to be

solved. These boundary conditions must be derived based on a different concept (such as the MEI

method57) than the conventional radiation boundary condition because close to the scatterer

surfaces, the electromagnetic fields cannot be decomposed into propagating plane waves alone.

Savings in memory is also possible with the use of a variable grid instead of the cubic grid

implemented currentiy. This would maintain a constant node density throughout the simulation

domain. Other possible extensions include the capabilityto analyze anisotropicmaterialsand even

non-linear effects. These would enable the modeling of quantum electronics such as laser cavities.

With regard to softwareintegration, the softwarepackage TEMPEST contains supporting

routines and a link to the aerial image simulation program SPLAT in addition to the

electromagnetic solver. The linkage to SPLAT for image synthesis allows the results of rigorous

electromagnetic simulation from TEMPEST to be interpreted in the context of optical system

effects such as arbitrarylens aberrations. The execution time ofeach TEMPEST simulation is about

10 minutes on the connection machine CM-5. The number ofCM-5 nodes required depends on the

problem size. For a typical simulation domain of4 um by 4um by lum, 64 nodes (out of a total of

512 nodes at the National Center for Supercomputing Applications) are needed. Convergence of

the program is dominated by physical scatteringphenomena.

Some improvements in the software package can be made. First, the program can be

implemented a multiple-instruction multiple-data computer architecture such that the boundary

condition can be calculatedmore efllciendy. Second, TEMPEST can be rewritten for execution on

more accessible computer architectures such as the Cray. In terms of simulation tool integration,

TEMPEST canbe integrated under the technology CAD framework ofSLMPL24. This wouldallow

the simultaneous smdy of deposition and etching effects, optical system characteristics, and

electromagnetic scattering, enlarging the scope of applicability of thesesimulation tools.

With regard to apptications, TEMPEST is shown to be useful in two-dimensional and

three-dimensional smdies. Predictions ofTEMPEST indifferent phase-shifting mask techniques

had been validated by experimental data taken on different systems. Predictions from the program
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can also be used to provide physical insight and design data for different fabrication technologies.

Other two-dimensional applications such as metrology, alignment mark signal integrity and mask

transmission have also been examined in other publications82'99,100. Initial three-dimensional

smdies are also undertaken inthis thesis inthe areas ofmask effects inprojection printing of IX

contact holes and reflective notching. Through these different smdies, TEMPEST has proven itself

to be avaluable prediction toolin photolithography.

With regard to future work in the area of TEMPEST applications, experimental

verifications of IXcontact hole predictions and 360° phase bump defect printability are important

inorder to validate the program. Anintegrated SIMPL-SPLAT-TEMPEST software package would

allow more realistic structures to be simulated such as the acmal alignment mark and trench

memory structures. Other interesting applications include the effects ofreflection from underlying

topography during photoresist exposure which can cause variations inthe polysilicon gate critical

dimension, and characterization ofprojection printing ofcontact holes on attenuated phase-shifting

masks. Alignment mark detection is another challenging issue as the planarization process makes

the marks almost invisible.

With the current capabilities, TEMPEST is effective in modeling two-dimensional and

three-dimensional electromagnetic scattering problems in photolithography. It is hoped that

TEMPEST would continue to beuseful in developing future integrated circuit processes.
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