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Abstract
Rigorous Three-dimensional Time-Domain Finite-Difference Electromagnetic Simulation
. by
Alfred Kwok-Kit Wong
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California at Berkeley
Professor Andrew R. Neureuther, Chair

This thesis describes the latest embodiment of a three-dimensional electromagnetic
simulation program called TEMPEST which is implemented on the connection machines CM-2
and CM-5, and is used to predict and study technology trade-offs of interest in photolithography.
Highlights of the new algorithm include generalization to three-dimensional calculation, analysis
of dispersive materials, an efficient absorbing boundary condition, oblique incidence, and image
synthesis based on Hopkins’ formulation.

The finite propagation speed of electromagnetic waves makes the time-domain finite-
difference approach a natural choice for implementation on parallel computer architectures. This
thesis addresses algorithmic issues including the accuracy and stability of the numerical scheme,
and numerical boundary conditions. The conventional time-domain finite-difference scheme is
second order accurate and requires 15 simulation nodes per wavelength to achieve a 2% accuracy.
Stability of the scheme depends on the ratio between the spatial and tempbral discretizations.
Analogous to previous work in plasma physics, instability 6f the algorithm due to highly dispersive
materials has been alleviated by calculating explicitly the time-domain convolution relation
between the electric field and the electric displacement. A novel boundary condition derived from
the harmonic nature of electromagnetic waves is used to bound the simulation domain with
minimal artificial reflection.

Implementation of a software package which caters to user convenience in data processing
and remote use of the connection machine is also included. A link between TEMPEST and the
optical image simulation program SPLAT allows the study of the interaction among mask
topography effects, partial coherence effects, and lens aberrations.



Validation of TEMPEST via experimental comparison and the usefulness of the program in
predicting and assessing complex technological issues in photolithography are presented. In
particular, TEMPEST is used to predict important effects such as glass edge scattering in phase-
shifting masks and resonance in dielectric ridges. These predictions have been subsequently
confirmed experimentally. Transmission loss and polarization effects in small contact holes are
characterized as a function of the feature size. TEMPEST is also shown to be well-suited for
analyzing three-dimensional effects of reflection from underlying topography during photoresist

exposure which can cause variations in the critical dimensions of the features being formed.
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Chapter 1
Introduction

Computer aided design (CAD) tools have come to play an important role in integrated
circuit design, device design, and process design. Circuit simulation programs such as SPICES2
were among the first to be developed and gain popular acceptance. Device simulation programs
such as MINIMOS™ and PISCES?* are helpful in understanding device performance. Process
simulation tools such as DEPICT®S, SAMPLE', SOLID?, and SUPREM* are becoming more
popular as the cost of performing experiments rises continually with time and the cost of
computation decreases dramatically from year to year. However, with the introduction of new
technologies and the scaling of optical lithography to smaller feature sizes, greater demands are
placed on the scope of the physical models and the accuracy of their implementation in algorithms.
At the same time, these numerical models must be efficient in order to provide a rapid solution.
These needs together have placed stringent requirements on the completeness, accuracy and
efficiency of process simulation tools.

Modeling of the optical lithography and electromagnetic scattering processes has proven to
be one of the greatest challenges. For example, standing wave patterns within the photoresist
caused by substrate reflection must be accurately modeled. Image defocus effects within the
photoresist layer may cause unwanted variation in the photoresist linewidth. Photoresist bleaching
requires the modeling of an inhomogeneous layer of material whose optical properties dynamically
change during exposure. Simulation of the dissolution of photoresists requires the tracking of
moving surfaces which can collide with one another and produce loops. Removal of these loops
poses a challenge for the computer programmer. Non-planar topographies in photomasks can cause
lateral scattering of electromagnetic fields which often adversely affect the optical images. Further,
topography on the silicon wafer can redirect waves in undesired directions and cause problems such
as reflective notching. Alignment signals may also vary tremendously with a tiny change in the
underlying layers or the alignment mark shape.

Electromagnetic problems are particularly computation intensive because typical feature

sizes of interest are on the order of a wavelength. In this regime, neither geometric optics nor



Rayleigh’s method suffices. Even with the most advanced numerical techniques, some of these
problems are not tractable. For example, solving the problem with rigorous frequency-domain
methods requires the solution to a system of millions of simultaneous equations. Direct solution of
the matrix is not feasible with the current numerical techniques. Iterative solutions such as the
conjugate gradient method®® or GMRES’® are not attractive as the matrix is not positive definite
and the condition number is large. With time-domain methods, typically 15 simulation nodes per
wavelength are required to achieve the desired accuracy. For modeling of deep-UYV lithography at
a wavelength of 0.248 pm, a typical volume of interest is 4 pm by 4 pm by 2 pm, corresponding to
204823 or 8 million simulation nodes. The size of the problem makes it difficult to solve even on
the most advanced workstations.

With the advent of supercomputers such as the Cray and the connection machine, some of
these difficult problems can be tackled through the massive amount of computer power. The key is
to shorten the computation time by parallel evaluation of the problem. In the modeling of
photolithography, such a parallelization is possible for the simulation of electromagnetic (light)
wave propagation using the time-domain finite-difference (TDFD) method. Unlike most
frequency-domain approaches in which each simulation node is coupled to all the other nodes in the
simulation domain, information is only exchanged with the nearest neighboring nodes in the TDFD
method because of the finite propagation speed of light. The solution for a problem is achieved by
time iteration until steady-state is reached. Hence, it is not necessary, in the TDFD approach, to
invert a large matrix which is often the limiting factor for frequency-domain approaches.

- Furthermore, since Maxwell’s equations are satisfied everywhere in space, the updating equations
for all simulation nodes (except for the boundary nodes) are identical, and this makes programming
‘simple. This approach is both accurate and efficient. It is accurate because no approximation
concerning the propagation of the electromagnetic wave is made (as Maxwell’s equations are
solved); it is efficient because each processor on the parallel computer is solving identical equations
in paraliel.

This thesis presents the formulation and implementation aspects of electromagnetic
simulation using the TDFD method. The computer program is called TEMPEST and it is

- implemented on the parallel computer architectures connection machine 2 (CM-2)*° and



connection machine 5 (CM-5)%. The simulation program solves Maxwell’s equations using the
TDFD method. The algorithm is built on that proposed by Yee!® and the initial formulation and
implementation by Guerrieri?® and Gamelin®3. Electromagnetic wave propagation and scattering
are simulated by solving iteratively the discretized Maxwell’s equations until the electromagnetic
field inside the simulation domain reaches steady-state. In this thesis, generalization to three-
dimensional analysis is discussed. Discretized equations are shown for this first three-dimensional
formulation on the connection machine, together with the accuracy and stability of the numerical
scheme. Accuracy of the leap-frog numerical scheme is shown to be second order accurate except
for materials with the property that €, » € . Stability of the algorithm depends both on the ratio of
the spatial discretization Ax to the temporal discretization At being greater than the speed of light
multiplied by a constant as well as the real part of the refractive index being larger than the
imaginary part. Simulation of highly dispersive materials in which n; >n_ is feasible when the
convolution between the electric field E and the electric displacement D is explicitly calculated.
Two susceptibility models relating E and D are used: the Debye model which models ionic-like
materials and the Lorentz model which models metallic-like materials. Another difficulty with
accurate and efficient three-dimensional electromagnetic simulation is the need for a robust
numerical absorbing boundary condition. A novel numerical boundary condition derived from the
harmonic nature of electromagnetic waves is used to bound the simulation domain with minimal
artificial reflection,

Another theme of the thesis is the assembly of a software package. In addition to the
electromagnetic solver TEMPEST, the software package contains auxiliary routines including
utilities to display the calculated electromagnetic fields and a program which checks for the
correctness of the input files. The optical image profile of the simulated structure can also be
calculated via a link to the simulation program SPLAT®Y, This linkage allows the results of rigorous
electromagnetic simulation from TEMPEST (the electromagnetic fields transmitted through or
reflected from two-dimensional and three-dimensional objects) to be interpreted in the context of
optical system effects (such as lens aberrations).

Application studies of problems of interest in photolithography are the driving forces

. behind the algorithm. The first version of TEMPEST formulated by Guerrieri®® and implemented
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by Gamelin?® has been useful in the initial studies of many areas of photolithography such as
reflective notching®!, optical metrology®?, signal integrity in mask transmission!4, and alignment
mark signal quality®. To better facilitate these application studies, the original two-dimensional
TEMPEST was generalized by the author in his M. S. thesis!%2, This extended two-dimensional
TEMPEST which includes the capabilities to analyze the transverse magnetic polarization and
oblique incidence has been applied in the studies of phase-shifting mask (PSM) techniques such as
alternating and rim’3, attenuated?’, and chromeless!?!, as well as issues in extreme ultraviolet
lithography (EUV) such as defects in multi-layer masks%. One application study of particular
interest is considered in detail in this thesis: examining the trade-offs in four different PSM
techniques including alternating, rim, attenuated, and chromeless. With the added three-
-dimensional and image synthesis capabilities, TEMPEST is expected to make an even greater
impact on the integrated circuit fabrication industry because it can examine truly three-dimensional
technological issues in photolithography accurately and efficiently. Initial results of three-
dimensional studies of transmission in contact holes and reflective notching are also presented.

A historical account of the different techniques proposed to solve electromagnetic
problems in photolithography is first discussed in Chapter 2. These different techniques fall
primarily into two categories: time-domain methods and frequency-domain methods. The TDFD
approach used by TEMPEST is then discussed in Chapter 3. Stability of the numerical scheme
depends on the ratio of the temporal discretization (At) to the spatial discretization (Ax) not being
greater than some number related to the speed of light. In order to confine the computation volume,
numerical absorbing boundary conditions are necessary. These boundary conditions must be
efficient yet robust enough to minimize the amount of artificial reflection. In Chapter 4, several
absorbing boundary conditions are presented including a novel boundary operator derived based on
the harmonic nature of the electromagnetic radiation. Extension of the conventional TDFD method
to analyze highly dispersive materials is shown in Chapter 5. This extension is necessary for
lithographic applications because many of the commonly used materials in the fabrication of
integrated circuits have the property that the imaginary part of the refractive index is greater than
the real part. This results in a negative permittivity and the conventional TDFD algorithm becomes
- unstable.



Chapter 6 discusses some aspects of the software package TEMPEST and its
implementation on the connection machine. Convergence of the program is observed to be
dominated by physical scattering phenomena rather than the numerics. The need for careful
excitation of the simulation domain and correction factors for the computation of diffraction
harmonics due to the staggering of the FDTD grid are also discussed. Since TEMPEST only
calculates the electromagnetic response of a structure whereas the optical image is the quantity
which is the most often desired, conversion from the steady-state fields calculated by TEMPEST
into an intensity profile is necessary. This task is accomplished by an interface to another simulation
program called SPLAT®S,

Applications of the program and validation of TEMPEST by experimental verification are
presented in Chapter 7 and Chapter 8. These applications show the applicability of the program in
assessing the state-of-the-art technologies. In Chapter 7, TEMPEST is applied in the study of two-
dimensional PSMs. Four different techniques including alternating, rim, attenuated, and
chromeless are examined. Simulation results show that glass edge scattering is important in
degrading the images of all these types of PSMs. This finding is confirmed by experimental studies.
In Chapter 8, three-dimensional effects such as contact hole printing, phase defect printability, and
reflective notching are examined. It is shown that transmission loss and polarization effects are
important for small openings on chromium binary masks. Furthermore, 360° phase bump defects
do not affect the optical image as adversely as 360° phase trench and protrusion effects. An initial
study of latent image formation in photoresist over underlying topography shows that the critical
dimension of the polysilicon gate varies over a stepped substrate.

Chapter 9 concludes the thesis and presents some possible extensions to the current
simulation program. These include expanding the applicability of TEMPEST to a wider scope of
problems such as the modeling of laser cavities. Furthermore, with the advent of multiple-program
multiple data (MPMD) supercomputers, it is possible to improve the efficiency of the current
simulation program, which is coded in the single-instruction multiple-data (SIMD) or the
massively-parallel programming mode.



Chapter 2

Numerical Methods in
Electromagnetic Simulation

2.1 Introduction

The electromagnetic problems of interest in photolithography present some difficulties for
numerical modeling because typical feature sizes are on the order of a wavelength. In this regime,
neither geometric optics (assuming that the radii of curvature of the surfaces are much larger than
the wavelength) nor Rayleigh’s method (assuming that the wavelength is much larger than the radii
of curvature) suffices. The general problem of electromagnetic scattering from topography has been
addressed in various ways. In this chapter, an overview of these different methods are described.
These techniques can be classified as either frequency-domain or time-domain methods. (This is
not the only classification. Yeung!?’ classified the different techniques as modal expansion, Green’s
function based, volume based, and fast multipole methods.) For frequency-domain methods, the
electromagnetic fields are usually expressed as a superposition of some basis functions. The steady-
state electromagnetic solution is found by solving (directly or iteratively) a matrix. For time-
domain methods, a time parameter is introduced and the steady-state electromagnetic fields are
found by time-marching, i.e., electromagnetic interaction with matter is solved in time until the
fields become time-harmonic. In general, frequency-domain methods have the advantage of
simplicity as the solution is found once the system of equations is solved. However, the system of
equations may be so large that the resulting matrix becomes impractical to solve. Time-domain
methods do not have the problem of solving large matrices, but time-marching may be so
computation intensive that a solution cannot be found within a reasonable amount of time.

22 Frequency-Domain Methods

22.1 Rayleigh’s Method

Rayleigh made one of the first attempts to analyze the problem of electromagnetic
scattering from a periodic grating rigorously. He made the assumption that the fields can be



expressed as a linear superposition of propagating and evanescent waves’>, Based on Rayleigh’s
hypothesis, Meecham®2 used a variational method to calculate the diffraction efficiencies when a
plane wave is incident upon a periodic reflecting surface. Rayleigh’s assumption was unquestioned
until Deriugin!® and Lippmann*’ raised objections to it. In 1966, Petit and Cadihac’? demonstrated
that the Rayleigh hypothesis is tenable only if the product of the wave number and the grating depth
is less than 0.448. Nevertheless, Gallatin et al.22 as well as Bobroff and Rosenbluth? applied this
method to model the images of alignment marks under photoresist. But their methods are limited to
long, shallow features with homogeneous layers. Another drawback of Rayleigh’s method is that
the computation time increases with the grating depth and the refractive index of the grating
material as demonstrated by Zaki!!!,

22.2 The Waveguide Method

Burckhardt® tackled the problem of diffraction at a sinusoidally stratified dielectric grating
by solving Maxwell’s equations. The method of separation of variables was employed, and the
transverse electric solution was found by truncating the infinite series representation of the electric
field within each layer of the stratification. The resulting matrix was solved on an IBM 7094 in
1966. Kasper? extended Burckhardt’s method to include complex dielectric constants and non-
sinusoidal stratifications. Following the approach of Burckhardt and Kasper, Nyyssonen and Kirk®
developed the waveguide method and applied it in the examination of photolithographic issues such
as edge detection® and alignment mark signals®’. Yuan et al.!8 extended the waveguide method to
the transverse magnetic polarization and applied it in the study of wafer alignment and linewidth
measurement!®. Lucas et al.* also applied the same technique in the study of two-dimensional
phase-shifting mask structures.

223 Differential and Integral Methods

Neviere et al.% used the differential method to study the resonances of holographic thin
film couplers. In this technique, the electromagnetic field as well as the square of the wave number
are expanded as Fourier series. The Helmholtz equation thus becomes a set of coupled ordinary
.differential equations. However, this method has problems in modeling highly conducting gratings



(because of the difficulty in Fourier expansion of a large or infinite permittivity) and the transverse
magnetic polarization (because of the boundary condition at material interfaces). Neureuther and
Zaki®® proposed an integral method which alleviated the problems of the differential technique.
Their formulation involved integral equations with kernels containing the periodic Green’s function
and its derivative. BottenS extended the integral method by reducing the integral equations to the
solution of a Fredholm integral equation of the first kind. Maystre’! further improved the method
for an arbitrary number of layers. The method requires (p — 1) successive matrix inversions for a

p-layer structure.

22.4 Finite-Element Methods

Morgan et al.%0 solved electromagnetic boundary value problems using the finite-element
method combined with the surface integral equation. In this technique, the internal region finite-
element field solution is coupled to equivalent cutrents on the boundary surface through a surface
integral solution. Using a similar procedure, Moaveni et al.% studied electromagnetic scattering of
periodic cylinders of arbitrary cross-section embedded in an inhomogeneous and lossy dielectric.
Matsuzawa et al.* solved the Helmholtz equation using the finite-element method together with the
boundary-element method and applied it in the study of photoresist bleaching on a stepped
perfectly conducting substrate. The approach was improved by Urbach and Bernard®® with the
extension to more general domains and partial coherence. Using the spectral element method in
which the electromagnetic field is expanded with the Legendre polynomials as the basis functions,
Barouch et al.! is able to study three-dimensional reflective notching on non-planar substrates. The
method consists of solving the Helmholtz equation by performing static condensation on the matrix

system.

22.5 Other Techniques

There are many other frequency-domain techniques besides those mentioned previously.
Mei* proposed the unimoment method which enables the separation of the exterior boundary value
problem from an interior one. Such a formulation has the advantage that inhomogeneous media can
. be easily modeled, but has the disadvantage of requiring a direct matrix solution because of stability



of the resulting system of equations. Bischoff et al.2 formulated a method based on the principles of
Keller’s geometrical theory of diffraction and their uniform extension (the locality principle) in
order to study latent images in photoresists. Yeung et al.® investigated an approximate method
combining physical optics with the integral equation method. This technique is well-suited for

general geometries and has compared well with rigorous solutions.

23 Time-Domain Approaches

The previous section discusses the solution of electromagnetic problems via frequency-
domain methods. In such techniques, a large system of equations must be solved. Thus, the
difficulty of frequency-domain approaches is the solving of a large matrix. Time-domain
approaches, on the other hand, require no matrix inversion. The electromagnetic solution is found
by time-marching. The difficulty in solving a large matrix is replaced by the need to perform
billions and even trillions of additions and multiplications.

Yee!™ was one of the first to replace Maxwell’s equations by a set of finite difference
equations and solve the electromagnetic problem via a staggered grid. Merewether’® applied the
technique together with the use of the radiation condition (numerical absorbing boundary
condition) to study transient currents induced on a metallic body of revolution by an
electromagnetic pulse. Taflove and Brodwin®® examined the steady-state electromagnetic field
resulting from the scattering of a two-dimensional uniform and circular dielectric cylinder.

Improvements of the conventional TDFD method to allow for more flexible geometries
and more efficient memory usage were also suggested. Mei et al.* demonstrated the feasibility of
the conformal TDFD method which enables the finite-difference mesh to conform to the object
surfaces. Zivanovic et al.!12 proposed a subgridding TDFD method which employs a variable step
size. The entire computation volume is divided into a coarse grid with a large step size, and a fine
grid is introduced only around material interfaces. This subgridding method decreases the memory
usage and does not introduce additional numerical error.

There has also been efforts aiming to combine frequency-domain and time-domain
techniques. Taflove and Umashankar®® investigated a hybrid TDFD and method of moment
-approach and applied it in the study of electromagnetic coupling and aperture penetration into



complex geometries. Fornberg?! studied the pseudospectral method in which the spatial derivatives
are computed in the frequency-domain whereas the steady-state solution is found by time-
marching. This technique has been applied by Carcione et al.? in the computation of synthetic
seismograms.

Because of its computation intensive nature, time-domain solutions of electromagnetic
problems in photolithography was impractical until the advent of powerful supercomputers in the
late 1980s. Wojcik et al. studied the time-domain finite-element (TDFE) method®® and applied it in
the study of light scattering from silicon surfaces®, alignment mark signals®, and linewidth
metrology®’. Concurrently, Guerrieri et al.2 formulated and Gamelin?® implemented the TDFD
approach on the connection machine CM-2 and applied it in the study of reflective notching?!,
metrology of polysilicon gate structures®?, mask material and coating effects on image quality4,
and alignment mark signal integrity®.

24 Summary

Electromagnetic simulation in photolithography is difficult because of the problem size and
the requirements of accurate and efficient numerical models. The advances in numerical techniques
as well as the tremendous increase in computation power in recent years allow the tackling of
complex problems in integrated circuit processing. The inherent parallel nature of wave
propagation together with the advent of parallel computers make the TDFD approach a natural
choice for simulation of electromagnetic problems in photolithography. In the following chapters,
previous works relevant to the TDFD approach are extended to allow the modeling of problems in
photolithography. These include a three-dimensional formulation which results in six discretized
equations, generalization of the conventional TDFD numerical scheme to model highly dispersive
materials, and the implementation of a novel numerical boundary condition which is efficient and
minimizes artificial reflection.

10



Chapter 3
The TDFD Algorithm

31 Introduction

Coherent Source of Arbitrary
Amplitude Profile

| |
v v

Field Values=0 Initially

./\_/_\
Photoresist
/\P'm_x/\

Si wafer

ft.’x

Figure 3.1 A typical simulation domain in TEMPEST. The structure can represent arbitrary
three-dimensional non-planar and inhomogeneous topography. The domain is
excited at the top by a monochromatic plane wave.

This chapter presents the time-domain finite-difference (TDFD) scheme used for three-
dimensional electromagnetic field calculation on the connection machine. Two-dimensional
formulations in the transverse electric (TE) and transverse magnetic (TM) polarizations can be
found respectively in previous works by Gamelin®® and Wong!92, This three-dimensional
formulation is an extension of the concepts by Yee!% and Guerrieri?’. The complete sei of updating
equations is first derived. The accuracy of the numerical scheme is then estimated by consideration
of the eigenvalues and eigenfunctions as well as the local truncation error. Stability of the numerical
scheme is also studied using the Fourier method, resulting in a relationship between the spatial
discretization Ax and the temporal discretization At.
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3.2 Formulation

A typical simulation domain for electromagnetic fields calculation is shown in Figure 3.1.
The structure can represent arbitrary three-dimensional non-planar and inhomogeneous
topography. For lithographic applications, the interest is almost always the response of the structure
at a particular frequency or at a narrow band of frequencies. The simulation domain is thus excited
with monochromatic radiation at the top. (Note that monochromatic excitation is not an assumption
in the TDFD scheme, and thus the techniques discussed in this thesis are applicable to the general
problem in which the incident radiation consists of waves of different frequencies.) The problem is

to find the steady-state solution for Maxwell’s equations”:

s oD »

VxH = 5+ 3.1
. 0B

Vx E = = 3.2)

supplemented with the constitutive relations:

b

ﬁ:uH
D =¢E
J=oE

where g, |, and o are respectively the permittivity, permeability, and conductivity of the material.
In general, the parameters I, €, and G are functions of the frequency of the electromagnetic wave.
For the application in hand, however, they are assumed to be constant because of monochromatic
excitation. Using Stokes’ theorem, equations (3.1) and (3.2) can be re-written in the weak form:

- aﬁ
?HOd =£ 5t (3.3)
§Eedl = - -g-'t’od§ (3.4)
1 s

*, In the MKS system.
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where § Fediand ji‘:‘ o dS represent respectively the line integral and surface integral of a variable
1 s

S

F.

z Incident Radiation

' ’I v ]
y Ax
=48

VA Periodic Boundary Ax=Ay=Az
YA V474747 Conditions

::m Boundary
Conditions

Figure 3.2 The TEMPEST simulation domain. Maxwell’s equations are solved over a cubic
grid using the TDFD method. The field components are staggered over the grid.

Following the TDFD method proposed by Yee!™, equations (3.3) and (3.4) are solved
using a cubic grid in which the field components are staggered and occupy distinct locations in
space as shown in Figure 3.2. The surface integral and line integral are thus evaluated on square
surfaces. With this discretization scheme, equations (3.3) and (3.4) become six scalar equations for
the field components E;, Ey, E,, H,, Hy, and H,. For example, Figure 3.3 shows that the electric
field in the z-direction is calculated by summing up (with the sign properly taken into
consideration) the magnetic field values of the four neighboring points. This scheme assumes that
the electric field is constant over the square surface and the magnetic field is constant along each
line segment which makes up the square. This results in the following spatially discretized
equation:

(sgi-m) E, (i, j, k) Ax? =
[H 3, j— k) —H, (i, j+ k) +H, (i+ %,j, k) -H, (i- %,j, k)]Ax (3.5)
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H,(i,j+1/2,K)
A4 LT
H, (-

12jk) — E,(1,j,k) — Hy(i+12jk) —

l———-—‘ Hy(i,j-1/2,) ———JI y
< P zé}»x

Ax/2

4

Figure 3.3 The electric field component E,(i,j,k) is calculated by summing up the magnetic
field values of the four neighboring nodes. The magnetic field components are
assumed to be constant along the line segments 1-2, 2-3, 3-4, and 4-1, and the
electric field component E, is assumed to be constant over the square surface
bounded by 1-2-34,

where (i, j, k) stands for the spatial location (iAx, jAx, kAx), and the medium is assumed to be

homogeneous. To obtain a suitable time discretization of equation (3.5), it is possible to use the

leap-frog scheme. The electric field components are assumed to be constant within the time period
[nAt, (n+1)At) , and the magnetic field components are constant within the time period

[(n-1/2)At, (n+1/2)At) . The use of this scheme leads to the following TDFD equation:

EX*1(4,),k) = oER (4, ], k) +

n+1 n+-

1
B[ 40 -, Z(j+5K) +H, 2(i+1,),k) -H, 20 2,j,k)](36>

where
2e — OAt
~ 2e+OAt G
At 2
p= Ax ' e+ oAt G3)

Following the same procedure, the updating equations for the other field components are:
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E3* (5,4 5, k+5) = GED (1,4 2,k +2) +

1 1
+= +=
B H 2(i--l-,j+l k+ ) Hn 2(i+5 j+1,k+l)+
: 2 2 35+
n+— D+
H, 2(.j+5k+ 1) <H, 2(,j+50 ] 39
E"”(1+;,1,k+1)=aE:(i+%,j,k+l)+
n+% 1 n+%
BlH, “ (i+ ,J.k) -H, “(i+ ,j,k+1)+
l
n"'i D+§ _ l
(145,04 gkt 3) —H, 2(i+5,)=5,k+7) ] (3.10)
by 1, 1. 1, .83
I’lz (l+§,1+§,k+~2-)= (i+2,j+ k+ )'

Irgngel gl 1
u[Ex(i+2,j,k+2) E,(1+2,J+1,k+2) +

1

W : l —ED(; l l
By (i+1,j+5,k+7) ~E} (i, ) + 5, k+ 5 ] G

3)

n+- n-3

2(1+2,J,k)—Hy (i+ ,J,k)-ﬁo—[E“(l,J,k) ~E;(i+1,j,k) +

RS TR PO B |

Ex(1+2,1,_k+2) Ex(i+2,j,k 2)] (3.12)
1 1

nbz n-3 1. At ] . .

Hy 26,0450 =H, 200450 - 52 o 1[E30I+5,k=3) B3 (Lj+ 3, k+ )
+E2(L,j+1,k) ~EX(i,j, k) ] (3.13)

Distortion of the Structure

The updating equations derived in the previous section are valid for homogeneous

materials. For inhomogeneous materials, the values of i, €, and ¢ have spatial variations as the

simulated structure can represent different materials. In such cases, not only are the coefficients o
and P spatially dependent, modification of the updating equations may be necessary at material
interfaces because of the boundary conditions imposed by Maxwell’s equations (such as continuity
- of the normal component of the electric displacement). With the discretization scheme as shown in

15



Figure 3.2, it turns out that no modification of the updating equations are necessary to account for
changes of material properties. The only modification is that the multiplicative coefficients become
spatially dependent, i.e., o becomes o (i, j, k) and f§ becomes B (i, j, k) , with o (i, j, k) and
B (i, j, k) being constant within each node (i, j, k) . The permeability . is assumed to be constant
throughout the simulation domain and is equal to pg since only non-magnetic materials are of
interest. Magnetic materials can easily be represented by replaéing pwith p (i, §, k) .

Although no modification is needed for the updating equations, the discretization scheme
in Figure 3.2 nevertheless distorts the real structure through its representation of the structure by
cubes. An arbitrary volume is represented by cubes with edges parallel to the x-, y- and z-
directions. Any material interface is thus approximated by line segments with only three
orientations: along the x-direction, the y-direction, and the z-direction. Curved interfaces and
slanted interfaces are approximated by stair-cases.

To determine how a structure is distorted by the staggered grid representation is equivalent
to finding the exact volume occupied by a node (i, j, k) containing the field variables E, (i, j, k),
E,(i+1/2,j,k+1/2), E ,(i,j+1/2,k+1/2), H,(i+1/2,j+1/2,k+1/2),
H, (i,j+1/2,k),and Hy (i+1/2,j, k) . Inorder to achieve this, the boundary conditions impose
by Maxwell’s equations must be considered. For example, consider a two-dimensional slice along
the xy-plane of the three-dimensional grid as shown in Figure 3.3. Suppose that the node (i, j, k)
containing the field variables H (i+1/2,j+1/2,k+1/2), E, (i+1/2,j,k+1/2), and
Ey (i,j+1/2,k+ 1/2) has different material properties from the neighboring nodes containing
the field variables E, (i +1/2,j+1,k+1/2) ,and E (i +1,j+ 1/2,k + 1/2), the problem is to
find the location of the material interface. From Maxwell’s equations, the normal component of the
electric displacement D is continuous across any interface (assuming that this is no free charge). If
an interface exists somewhere within the interval x = (iAx, (i+ 1) Ax), then Maxwell’s
equations require that the electric displacement at the interface at one side (Dll = e,Ell) be equal
to that at the other side (Dzl = azEzl) . However, the updating equation for H, in the TDFD
scheme requires that the electric field components E, and Ey, be constant along each line segment
1-2, 2-3, 34, and 4-1, i.e, E, = E, . Both conditions together imply that €, = ¢,, or there
cannot be an interface in the interval x = (iAx, (i+1)Ay) or y = (jAy, (j+1) Ax) . Hence,
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Figure 3.4 Requirements from the TDFD scheme together with Maxwell’s equations
determine the exact extent of each simulation node (i, j, k) .

the interface must be located at x = (i+ 1) Ax, and y = (j+ 1) Ax. Similar considerations for
the other two components of the magnetic field H, and H, lead to the conclusion that the volume
represented by the node (i, j, k) is a cube of volume Ax3 defined by x = [iAx, (i+1)Ax),
y = [jAx, (j+1)Ax), and z = [(k-1/2)Ax, (k+1/2)Ax ) . Consideration of the
uédating equations for the electric field components does not yield additional constraints because
all materials are assumed to have the same permeability . Both the normal and tangential
components of the magnetic field are thus continuous across any material interface.

34  Accuracy

As a rough estimation of the accuracy of the TDFD scheme, consider the wave equation
resulting from Maxwell’s equations in non-conductive materials:
2%
at?

For time-harmonic electromagnetic waves, without loss of generality, the electric field can be
assumed to be travelling in the z-direction and polarized in the x-direction with a magnitude Eg, an

VZE = pe (3.14)

angular frequency @ and a wave number x related to ® by x=w/, ie,
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ﬁ(f, t) = E,(z,t) = Eysin(wt-xz). In continuous space, this sinusoidally varying electric

field is an eigenvector of the operator V2 with an eigenvalue of -2, i.e.,

VZE,(z,1) = %Ex(z, t) = -x%E, (z,1) (3.15)

For finite-difference schemes, the V2 operator can be approximated by the discrete operator D,2

V2D? = D? = Z%(Kl-zxonc_,) (3.16)

where K E (kAx) = E ((k+m) Ax) . Operation of D,2 on the sinusoidally varying electric field
E, (z,t) results in the following discrete equation:

D?EX(Z, t) = ﬁ [E((k+1)Ax,t) —2E (kAx,t) +E((k—-1)Ax,t)]
X
E
= = [sin (@t - xAx (k+ 1)) ~2sin (at - KAXK) + sin (0t - kAX (K~ 1)) ]
X

= -2 (1 - cos (xAx) ) sin (0t - xz)

Taylor series expansion of cos (xAx) for small xAx gives the following result:
x2Ax?

2 = - -
DZE, (z,t) = —x3(1 5

) sin (0t - xz) (.17

The discrete operator D,2 thus preserves the eigenvector but gives an error in the eigenvalue. The
fractional error in the eigenvalue is (Kzsz) /12. In terms of the number of simulation nodes per
wavelength d = (A/Ax), the relative error, which is defined as the total error in the value of the
field divided by the magnitude of the incident field, is given by

n? 1
error,

rel = 3 : ? (3.18)

To achieve a 2% accuracy thus requires a node density of about 13 simulation nodes per
wavelength. The d'2 dependence of the relative error shows that the operator D,2 is second order
accurate in space. Following the same procedure, the discrete time derivative operator
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92 . n2_ 1
0 D! = 5 (2, =220+ Z.) (3.19)

where Z_E (nAt) = E((n+m)At) is seoond order accurate in time as well. The TDFD scheme
is thus expected to be second order accurate in both the spatial discretization Ax and the temporal
discretization At.

The above analysis gives estimations of the error of the discrete operators D2 and D2 A
better estimate of the accuracy of the TDFD scheme described in equations (3.6) to (3.13) can be
ascertained from the local truncation error . 1 is defined as the amount by which the exact solution
fails to satisfy the numerical scheme. Let us take equation (3.6) as an example. The updating
equation for E, is repeated here:

E*1(1,j,k) = aE: (i, j, k) +
1
+

1 1
2(,j+1 k) +H, "2+l k)-—Hy+2(i-%,j,k)]

1
n+s n
ﬁ[Hx (l’j " k) H 2! 2;];

The exact solution can be found by Taylor series expansion of each individual term in the above
equation around the spatial point (iAx, jAy, kAz) and at time (n+ 1/2) At. For instance,

1 1 1
n+3 = +=
Eu+l(l,], k) = E (l j, k) + %% :+2( 1L} 1k) + - aa En Z(I,J,k) +
At3 aB n+% . a ; t5 a n+%
FE 2000+ gl 200 + g LB R0 0 ke 320

where 0< 0, ¢, n < 1. Expanding all the terms in equation (3.6) results in the following expression
for the local truncation error:

At %, Af oE, Al e, At 9%,

= (a-1)E, -—(a+1)§ (a 1)az VT (a+1)¥ +m(a—l)—
A aH BH Axsaaﬁ AxsaSH O (AL + AxS

+B XT XT 3 373 - 3 + O (At’ + Ax7) (321

where all the derivatives are evaluated at the spatial location (iAx, jAy, kAz) and at time

(n+1/2) At. This expression of T can be simplified by considering the z-component of the

Faraday’s law:
E)Hy oH,_ JE, E 322
'a—x --a—y = Sa—t +0Ok, (3.22)
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All the first order terms involving Ax and At are cancelled and the local truncation error becomes

2% 2% 23 23
T {[—cA—‘—zz-zeA—t—sz] + [A" - 3?"]} (3.23)

To estimate the magnitude of the local truncation error, approximations of the derivatives as well as

the values of € and ¢ are necessary. The magnitudes of the derivatives can be estimated by

oE

— 4 =0|E

OH, _|9Hy| _ |Eo - OJE:
ox | |ox nl ¢|m

where X is the wave number, © is the angular frequency of the incident radiation, c is the phase

‘velocity of the medium, and 1 is the intrinsic impedance of the material, and

2xc
o=ck= - (3.24)

From stability considerations (which are discussed in §3.5), the relation between At and Ax
is

Ax
At< ;,/-; (3.25)

The relative error of the scheme is thus estimated to be

an?(e,/24+7€/72)
e+ (177e/d) &

error,,; = (3.26)

where d is the density of simulation nodes per wavelength, and €, and €; are respectively the real
and imaginary parts of the relative permittivity of the material. Notice in equation (3.26) that the
relative error is no longer second order accurate in the spatial discretization Ax when the material
is lossy. In the limit when g, » € , the relative error vaﬁes as d’! instead of d2 and the TDFD
scheme is only first order accurate. Such cases arise when the magnitudes of the real and imaginary
parts of the refractive index are comparable because € = n’—n? and €, = 2n.n,. Only for
lossless materials does the TDFD scheme retain the second order accurate behavior. For slightly

lossy materials in which & _2 ¢,. the TDFD scheme still possesses a nearly second order behavior
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so long as d >2 because the first term in the denominator (¢;) dominates over the second term

(1.77¢,/d) . As an example, consider silicon at a wavelength of 0.365 um. The refractive index is
(6.522,-j2.705)"!. In the MKS system of units, this gives a permittivity of 35.2¢; (e,=35.2) and a
conductivity of 35.3weq (€;=35.3). The estimated relative error is 2% with a node density of 15 per
wavelength, agreeing with the estimation from the D2 and D, operators.

To determine how well the theoretical prediction of accuracy corresponds with the
numerical results, simulation runs with different node densities (values of d) are carried out on a
planar dielectric stack consisting of three lossless layers of refractive indexes of 1 (semi-infinite), 2
(of thickness !.0 jm), and 4 (semi-infinite), respectively. The free space wavelength of the incident
radiation is 0.5 pm. The simulated steady-state electric field amplitudes in the middle layer are
compared with the exact solution calculated from the Fresnel equation®! as shown in Figure 3.5.
With a node density of 4 nodes per wavelength in the optically densest material, the relative error
is approximately 25%. The relative error for 8 nodes per wavelength is about 5%. For 16 nodes per
wavelength, the relative error is less than 2%. This is consistent with the theoretical calculz_;tion that
the relative error varies as 1/d? and is about 2% with 15 nodes per wavelength.

An interesting point to note in Figure 3.5 is the apparent increase in the wave number as the
node density is lowered. This is due to the increased difference between the actual dispersion
relation x = @w/c and the numerical dispersion relation as the node density decreases. The

numerical dispersion relation is given by!S:
5 12

1 2 1 1 1 .21 1
—sin (5%AX) +—;sin ( x,Ay) b sin (5%A2) | =sin(;0A0)  (327)
x? Ay?

35  Stability

Engquist et al.!® have shown that the TDFD scheme described in equations (3.6) to (3.13)
is unstable unless the temporal discretization At and the spatial discretization Ax satisfy the
following relation:

-172

1 .21 1 ° 1 %1
At< (A—-sm (= lg‘Ax)-l- sm ( =X Ay) + sin (= xAz) (3.28)
Ay?
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Figure 3.5 TEMPEST calculated electric field amplitude of a 3-layer planar dielectric stack
with different node densities. A relative error of less than 2% can be achieved with
15 nodes per wavelength in the region with the highest refractive index.

for arbitrary K, K, and x,. Since 0 < sinz(KxAx/Z) <1, and Ax = Ay = Az, equation (3.28)
reduces to

Ax
c./dim

Ats (3.29)

The factor dim in equation (3.29) represents the number of dimensions of the structure. For a planar
structure, dim = 1. For a structure which is uniform across one of the dimensions such as a
photoresist line, dim = 2. For a general structure, dim = 3.

However, equation (3.29) provides only a necessary condition for the TDFD scheme to be
stable. To guarantee stability, it turns out that the magnitude of the real part of the refractive index
n, must be greater than the imaginary part n;. In other words, €, = (nZ —n?) > 0. To demonstrate
this, consider a two-dimensional structure in the TE polarization. The TE polarization is defined in
such a way that the electric field is parallel to all surfaces, i.e., the electric field is polarized such
that it oscillates perpendicular to the plane of the structure. Under this special case, only three out
of the six equations of the TDFD scheme remain:
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El*1(4,5) = aBR (i, j) +

1 1 1
n+i . 1 n+§ . 1 n+§ . 1 ) n+-i 1 .
B[H, (hj=3) —H, *(bj+3) +H, *(i+5,)) -H, (1-5,1)] (3:30)
n-o-l 1 n—1 1
H, *(ij+3) =H, *(bj+3) -7[E}(Lj+1) -E;(L))] (3.31)
n+l 1 n== 1
Hy, 2(i+30) =H, *(+50) -7[E; (L)) ~E;(i+1,))] (3:32)

where o and § are given in equations (3.7) and (3.8), and ¥ = p (At/Ax) . To determine stability
for this scheme, the Fourier analysis is used. Consider the discrete Fourier transform of E,:

JE1 (6, +i8,)

E.(8,,8,) = YYE,(ij)e (3.33)
ij
The two-norms of E, (i, j) and Ez(e,, 6,) arerelated by Parseval’s theorem:
1 2n2n )
ISIE, G = [ [[B.(8,,6,)[ 6,00, (3:34)
L 0o

The “energy” in the time-domain variable E, is therefore equivalent to the integrated spectral

energy.

Fourier transformation of equations (3.6) to (3.32) results in the following equations in the
frequency space of 8; and 0,:

£2*1(0,,0,) = B [a+4By(sin®(8,/2) +sin?(8,/2))] +

A, [i2Psin (6,/2) ] + A [-12Psin (6,/2) ] (3.35)
A;*'(0,,0,) = A} +E}[i2ysin (6,/2)] (3.36)
Ay (0,,0,) = A)+E; [—i2ysin (6,/2)] (3.37)

The above equations can be written in terms of a system of equations as f‘n” = A(6,,6,) £

where

£ = (BN A A and
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o +4Py(sin’(6,/2) +sin?(6,/2)) i2Bsin (0,/2) -i2Bsin (0,/2)
A(0,,6,) = i2ysin (6,/2) 1 0 3.38)
-i2ysin (0,/2) 0 1
Parseval’s theorem then gives
2n2n o2
IE=+1l, = an? | [|af"d6,d0, <l A2+ 1[IFl, (3.39)
00

Assuming that A can be diagonalized, i.e., A = XDX™!, equation (3.39) becomes

2n2n
2
le2* 1Y, = 422 | [|aE" a0,d0, <l xDo* x| |l (340)
00

The TDFD scheme is thus two-norm stable if || D|| , < 1 and if X is bounded. The former condition
means that the magnitude of the eigenvalues of the matrix A must be bounded by 1; the latter
condition implies that the eigenvectors of A must not blow up when the spatial and temporal
discretizations Ax and At approach zero. To verify the former condition, the characteristic equation

for the matrix is

(A—1) [A*+ 2 (4By {sin?(8,/2) +5in*(8,/2)} —0—1) +a] = 0 (341)

Denoting sin®(8,/2) + sin’(6,/2) by A, the eigenvalues are A, = 1, and
1 2 1

Ay, = %[(MHBM) + J16B22A2 - 8BYA (0. + 1) + (= 1)?] (342)

The magnitudes of A, 3 in equation (3.42) is less than or equal to 1 if and only if €>0 and
CAt/Ax<1/ ,ﬁ . (The factor under the square root sign corresponds to the number of dimensions
and is 2 in this case.) The latter requirement corresponds to that derived by Engquist!3, but the
former is also necessary for the TDFD scheme to be stable. The condition € > 0 puts a constraint
on the allowable material properties. Since € = nf - niz, this condition means that only materials
with n, >n; can be studied. This is a severe restriction as the refractive indexes of a lot of
commonly used materials in the fabrication of integrated circuits shown in Table 3.1 possess the
quality that n;, >n,. The problem of simulation of highly dispersive materials, i.e., materials in
which n; > n,, is tackled in Chapter 5.



Material 0.365 pm 0.248 pm 0.213 pm 0.193 um
Silicon 6.522, -j2.705 1.68, -j3.58 1.119,-j3.025 | 0.883,-j2.778
Chromium 1.40, -j3.26 0.85, -j2.01 0.967, -j1.737 0.84, -j1.65
Photoresist ~(1.58%,-j0.02) | ~(1.65",-0.02) | ~(1.68,-j0.02) | ~(1.68,-j0.02)
Oxide (glass) 1.47453, -j0 1.50841, -j0 1.53429, -j0 1.563, -j0
a-silicon 3.90, -j2.66 1.69, -j2.76 1.19, -j2.36 0.974, -j2.10
Nitride 2.093, -j0 2.278, -j0.005 2.468 -j0.07 2.66, -j0.243
Tungsten 3.39, -j2.66 3.40, -j2.85 2.0, -j3.61 1.30, -j3.02
Gold 1.716,-j1.862 | 1.484,-j1.636 | 1.432,-j1.364 | 1.425,-j1.156
GaAs 3.596,-j2.076 | 2.273,-j4.084 | 1.311,-j2.625 | 1.358,-j2.013
Table 3.1 Refractive indexes of commonly used materials in the fabrication of integrated circuits’!.

*Kodak KTFR photoresist®®,

To verify the latter condition for stability, i.e., the boundedness of the eigenvectors of A,

notice that the eigenvectors

8 = ((1-1),-J~12ysin (6,/2), /~12ysin (6,/2)) wherei = 1,2,3 (343)

are bounded when Ax and At approach zero.

36 Conclusions

A three-dimensional TDFD numerical scheme for solving Maxwell’s equations is
formulated for implementation on the connection machine. This scheme is shown to be second
order accurate (except for materials with the property that €, » € ), with a relative error of 2% when
the simulation node density is 15 per wavelength. It is also stable provided that both the ratio of the
spatial discretization Ax to the temporal discretization At is greater than the speed of light
multiplied by ﬁ and the real part of the refractive index is larger than the imaginary part. The
problem of modeling of highly dispersive materials is presented in Chapter 5. In the next chapter,
numerical boundary conditions used to terminate the simulation domain are discussed.
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Chapter 4
Numerical Boundary Conditions

4.1 Introduction

In simulation of electromagnetic scattering, there is a need to confine the area of
computation due to computer memory and CPU limitations. This leads to the introduction of
artificial boundaries surrounding the simulation domain. Ideally, these artificial boundaries should
not affect the propagation of electromagnetic waves, i.e., they should annihilate the outward-going
waves. These absorbing boundary conditions require special attention because boundary conditions
with poor absorbing properties can cause a significant amount of artificial reflection which in turn
can lead to inaccurate simulation results. At the same time, these numerical boundary conditions
should not require too much computation resource because they decrease the overall computation
efficiency as they lead to equations at the boundaries which are distinct from those in the interior
simulation domain described in Chapter 3. This decrease in efficiency is especially significant for
massively-parallel computer architectures such as the connection machine CM-2 because the
interior simulation nodes are idled during calculations at the boundary nodes.

Taylor et al.?%, Taflove and Brodwin®3, Merewether¢, and Kunz and Lee* had proposed
different time-domain finite-difference boundary conditions in the early 1970s. These boundary
conditions were further refined by Mur®!, and Engquist and Majda'”!® around 1980. In recent
years, Higdon?® proposed a stable boundary condition with a one-dimensional spatial stencil; and
Mei’6 also proposed the superabsorption method which is based on error cancellation between the
. artificially reflected electric and magnetic fields. Furthermore, from a mathematical point of view,
Trefethen!?? discussed the stability and well-posedness of absorbing boundary conditions. A
review and comparison of these boundary conditions can be found in Blaschak® and Renaut’’.
These different numerical absorbing boundary conditions proposed in the literature are all based on
the discretization of spatially and temporally continuous boundary operators. In this chapter, these
continuous boundary operators and their absorption properties are first described. A novel



numerical boundary condition based not on boundary operators but on the harmonic nature of the
wave is then derived and compared with the boundary conditions proposed by Mur®! and Higdon?.

42 Continuous Boundary Conditions

Consider the three-dimensional wave equation:

if:-vzﬁ = ﬁf_g(iﬁfi_ ﬁ) =0 @1
ot ot ox* dy° 9z
A solution to the equation is:
E = Eqexp (J~1 (ot +x x+ K,y +K,2)) 4.2)
The wave numbers X, Ky, and x; are related through:
2
K+l =@ 4.3)
where
2 ®
K= T = E 44

For waves travelling in the -z-direction, the following relation is satisfied:
&E_ B =0 @.5)
oz z = boundary
In general, x;, can take on any value between 0 and . In numerical implementation, however, the

value of x, must be fixed at some value x,q. Thus, equation (4.5) becomes

B(E] = (£-/ x| E=0 (4.6)

z = boundary
where B is the (continuous) boundary operator. This boundary operator is perfectly absorbing
provided that the wave approaches the boundary with a wave number in the z-direction equal to k.
In most applications, however, waves generally approach the boundary from different directions. In
these cases, the boundary condition in equation (4.6) is no longer perfectly absorbing. It produces
artificial reflections. To determine the reflection coefficient, assume that at the boundary, the
electric field is given by:

E=1. exp (./-_l(mt+ K X+ lcyy-xzz)) +b- exp(./—_l((otﬂcxx +1cyy+ lczz)) (CN))
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where |3 is the outward-going wave amplitude and |b| is the artificially reflected wave amplitude.
Substituting this expression of the electric field into the boundary equation (4.6) gives a refiection

coefficient of
i cos9 — cos9
IR = [ = [0 (4.8)
a cos0 + cosf,

where 0 is the angle between the wave propagation direction and the normal of the boundary
(which will be called the exiting angle from now on), and k,, = xcos0,, i.e., the boundary
condition is perfectly absorbing for waves propagating with an exiting angle of 6. The reflection
coefficient as a function of the exiting angle with different values of the perfect absorption angle 6,
is shown in Figure 4.1. The figure shows that as 8 is increased from zero, reflection at small exiting
angles becomes larger; but reflection for exiting angles around 6 is small. From this observation,
one might expect that the larger the perfect absorption angle is, the smaller the reflection coefficient
for exiting angles close to 90°. Figure 4.1 shows, however, that for any perfect absorption angle
6, = [0°,90°) , the reflection coefficient always approaches 1.0 as the exiting angle approaches
90°.

Reflection Coefficient

~~~~~~~~
-
-
.
~
-
-
-
-
~

Py~ . \\‘“’
30 40 50 60
Incident Angle (degrees)
Figure 4.1 The reflection coefficient as a function of exiting angle for different values of

perfect absorption angle 6. The reflection coefficient is 1 at 90° regardiess of the
value of 6.

T —)

The boundary operator in equation (4.6) with the reflection coefficient calculated above is
- first order only. For a perfect absorption angle of 0°, the reflection coefficient at 45° is 0.17. This
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means that application of the boundary operator would result in a 17% error in the electric field
value for waves exiting at an angle of 45°. To improve the absorbing property of the boundary
operator, two approaches can be taken. In the first method, x, in equation (4.5) is expanded as a
Taylor series. Keeping the higher order terms result in a higher order boundary conditions. This is
the approach adopted by Mur®!. In the second method, boundary operators with different values of
K,o are multiplied together, resulting in a higher order boundary operator. This is the approach
adopted by Higdon?8, These two methods are described in detail below.

42.1 Mur’s Method

To illustrate Mur’s method, assume without loss of generality that x,, = x. Then equation

(4.5) can be written as

-] - 2 - )

Assuming that K, and x, are small and utilizing equation (4.4), Taylor series expansion of equation

=0 4.9)

z =boundary

(4.9) results in the following equation:
=0 4.10)

(gf '/:‘” ( 2 (‘él:zni) ¥ )E) 2= houndary

Keeping only the first two terms of the series and identifying J=1@ with 9/at, the second order

boundary operator is:

,.¢c. 2
B, “‘[zté‘az 5(62+§)]E 0 @.11)

The reflection coefficient of this boundary operator is given by
cosO — cosf, 2
cos0 + cos6,
With 6, equal to 0°, the reflection coefficient for waves exiting at 45° is only 3%, reduced from 17%
of the first order boundary condition. Higher order boundary operators can be derived by keeping

Rz..| = 4.12)

more terms in the Taylor series expansion in equation (4.10).
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42,2 Higdon’s Method

Another way to obtain higher order boundary operators is to multiply together first order
boundary operators with different values of x,q. This is Higdon'’s approach. In this method, the
boundary operator in equation (4.6) is modified to read

= (0 _99\g_(38__C 9\g=
L [E] = (ﬁ Kzoaz)E B (at coseoaz)E 0 “.13)

Then an n® order boundary operator can be written as

n
= 9__C 0=
Bnhlsdon [E] = jl;[l (at coseojaz)E 0 4.14)

For example, a second order boundary condition is

=(8__€¢ d\(a__C 9\ -
B ruigeon (B = (at cosOolaz) (at coseozaz)E 0 “.15)
and the reflection coefficient is
cos0 — cos 90l c0s0 — cos Oozl

(4.16)

| thlgdonl =

cos0 + cosf, || cos + cosf |
1 2

43 Discretization of the Boundary Operators

From the expression for the two second order boundary operators in equations (4.11) and
(4.15), one can see that Higdon’s approach would result in a more efficient discretization scheme in
three-dimensional electromagnetic simulation as it requires a three-level one-dimensional spatial
(in the z-direction) and a three-level temporal stencil. For the Mur method, a three-level three-
dimensional spatial and a three-level temporal stencil is required. Higdon'’s method is thus
preferred over Mur’s approach because of a smaller stencil. For two-dimensional applications,
however, since the number of field components is three instead of six, the Mur boundary operator
of equation (4.11) can be simplified. Assuming the TE polarization with only one electric field
component in the x-direction and two magnetic field components in the y- and z-directions.

Ampere’s law then gives
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3, 0B, JE, 0B,

3 =—m andﬁ =§ 4.17)

and the second order boundary operator becomes

3E  13E cuoH,

2-D
By IBH] = ot o+ o

=0 (4.18)

This two-dimensional boundary operator involves only first order derivatives. The discretized
equation for a wave travelling in the -z-direction becomes

1 1
o+l _ o CAt-nAx Ke 2At [ D+ n+s
Ei'j’o B Ei'j'l— (cAt+nAx)E"J'° 2n (cAt+ nAx) zl.!+l/2.l—Hzl.j-l/2,|
1 1
D+ D+ CAt-nAx
2 - 2 n+1
%,§+1/2,0 Hzl.j-m.o] (CAt+nAx)EIJ 1 4.19)

where iAx and jAx are respectively the abscissa and ordinate (the index i is constant in this case as
the structure is only two-dimensional), and the third index represents the z-position. A value of 0
represents the boundary node, and a value of 1 represents the first node inside the simulation
domain. For waves travelling in other directions, the boundary equations are easily derived by
coordinate transformation.

For three-dimensional applications, however, the relation among the derivatives of the
electric and magnetic field components in equation (4.17) no longer holds, and the stencil becomes
three-dimensional in space. In this case, Higdon’s boundary operator is more advantageous. In
order to discretize the continuous boundary operator of equation (4.13), Higdon proposed the
following discrete boundary operator

Z c

-1
)[(1-a)I+aK] -cosﬁo

D, Kz = (=2 ESD ta-mr+sz @20

where K and Z denote the forward shift operators with respect to space and time respectively, i.e.,

Ku;}, U x+1 and Zug;, = u:’,*{, I is the identity. The coefficients a and b represent

i '
respectively the weighted space and time averages of the temporal and spatial differences. Equation

(4.20) gives the following discretized boundary equation:

D,,..[El = (I+aK~- Bz -ykZHE = 0 @421)
with the coefficients o, B, and y given by
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axcos0,Ax — (1-b) wAt (1-2) xcos6,Ax — bwAt
= (T-a)xcosB,Ax+ (1-b)wAt’ © ~ (1-—a) kcosB,Ax + (1 —b) wAE
axcos6,Ax + bwAt
V= {T-2)xcos0,Ax + (1 -b) WA

o ,and

4.22)

With values of a = 0.5 and b = 0.5 (center differencing), a first order discretized boundary

equation becomes

+1 _ n+l _
Doy (B = B0 = Bij1 + Garaax (Eiit ~Fijol (4.23)

A second order equation can be derived by twice applying the discretized boundary operator

D, on the electric field, resulting in the following relation:
on

higd

Dy, 0 [E1 = EP*1 = [=(0; + ) K - 0,0,K? + (B +B)Z7! +

L],

(1, + ¥+ 0B, + B ) KZ ™ + (07, + 0,y ) K?Z7 - B,B,Z72 - (B,,+B,y,) KZ

-WLKZP1E (4.24)

The parameters oy, 0, €tc., can be adjusted by setting 90l and 002 such that the boundary condition
is perfectly absorbing for exiting angles of 001 and 002. For practical applications, 901 and 902 are

chosen to be the directions in which the most wave energy propagate.

44 A Novel Boundary Condition

The discretized boundary relation of equation (4.21) indicates that the field value of the
boundary node E)} § is a linear combination of the three field values E'}], Ef; o, and EI, |.
However, since the electromagnetic field components vary in a harmonic fashion, the value of any
field component at any point and instant should be determined by its amplitude and phase only.
Thus, theoretically speaking, only two parameters are necessary to specify the value of any
boundary point at any instant of time. In other words, E}'} ¢ can be given by a linear combination
of two field values instead of three as in equation (4.21).

To derive such a relationship. assume that the field varies harmonically with an angular

frequency w as follows:
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E(x,¥,2t) = Asin(0t+x X+ KoY +KyZ + Q) (4.25)
where A is the amplitude and Q is an arbitrary phase. With this form, the field value of an arbitrary

node at any time step can be written as

E}TL™™ = Asin (¢ - @mAt+ K, kAx) (4.26)

where ¢ = ©(n+1)At+1K,AX+K jAx+Q. Thus, in terms of ¢, E;‘j},_sin¢
Ei’ﬂ sin (¢ +K,9Ax), and E}; o = sin (¢—wAt) . Expanding the arguments for EM ' and

i, j, o Tesults in the following set of simultaneous equations:
. . 1
oSk, Ax sink,(Ax||sing| _ E:‘;L @2
coswAt —sinwAt||cos¢ D0
The solution for this system of simultaneous equations is

[sin¢ = — -1 [‘Si““’At ‘s‘n"zoAﬂ I:E:l ;}] | (4.28)

cos sin (k,AX + WAt) |-coswAt cosk,,Ax :lj o

Since Ef} ¢ = sin¢, a boundary condition can be written as

D, [E] = I-oK-BZHE=0 (4.29)
or
sinwAt sink_,Ax
o+l o n+l z0 D
830 = S (K AX+@AD 17 S (K gAX + 0AD Eijo (4.30)

where the boundary node value is written as a linear combination of only two field values.
However, a problem arises with this boundary equation as the coefficients do not sum up exactly to
1. To alleviate this problem, the small angle approximation for sine is used. Keeping only the first
order term, the following boundary condition results:

@At ey, A% 431)

pn+l _ T ppd v
w (BV=Eij0 = T ontthi 1 ¥ X Ax+ oAt 50

and the coefficients sum up exactly to 1.
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Using this concept, the boundary node value Ef;'(', is not restricted to be a linear
combination of any two specified field values. For instance, instead of E} 1and El;o0 Eij ! and
E[ ;1 can be used, and a different boundary condition can be derived:

_IczoAx—mAt
WAt

En+l+w5n. 4.32
ii 1Y TgAE Siinl 4.32)

1

Dlnnz [E] = EEIO =
Moreover, this concept is not only limited to two field values. More node values can be

used, although only two free parameters are allowed. For example, using the field values of the

nodes E** 1, E?

i11» Eij 1 and E; o, the following system of equations can be obtained

[cos (X,,AX—@At) sin (KzoAx—mAt)] [sin¢:| _|oE “
COSK,,AX — COSWAL sink, ,Ax + sinwAt{ | cos¢ E’f ;‘ : - E?,j,o
and the corresponding boundary condition is
n+l _ ED WAt - KzoAx En-l-l En ’
Dy, [E1=Eijo=Ei; 1+ v ax K_,Ax [E;;1-Ej;ol . (439

The above boundary condition is identical with Higdon’s first order boundary condition with center
differencing shown in equation (4.23).

The boundary conditions given in équations (4.31) and (4.32) are only first order. To obtain
higher order boundary conditions, different discrete boundary operators can be multiplied together
similar to Higdon’s approach. For example, twice multiplying the discrete boundary operator in
equation (4.31) results in the following second order boundary condition:

Dzhun [E] =>E::;(l) = [(u’l+a2)K - "'1“21(2 + (ﬂl"'ﬂz) z!- (alBZ+aZBl) Kz.

BB, Z 2 1ETS | (4.35)

where ., = WAt/ ("zo,A" + wAt) and B, = "zoiAX/ ("zo,Ax + wAt) . The same procedure can
be applied to the discrete boundary operator of equation (4.32) to obtain higher order boundary

conditions, or alternatively, the operators of equations (4.31) and (4.32) can be cross-multiplied.
For instance, D%.m [E] is



Dy, [E} :E:;(‘) = [0y + @) K - 00K+ (B, +B)KZ™' +

(o,B,+0,B,) K?Z™ - B B,K*Z 7 JED} (4.36)

where o, = (Kzole-coAt) /@At and B, = sz'Ax/(oAt. Cross-multiplying D,ml and D,

bar2

results in

Dtz [E] = E:::, = [(o,-)K + alc‘sz + Blz-l + (B0, +B,) Kz!-

o,B,K*Z™ - B,B,KZ2]E! g 4.37

i Js
where @, = WAL/ (K, AX+ @A), By = Ky AX/ (K o AX+0AY),
a, = (xzozAx—coAt) /WAt, and B, = "zo,A"/ WAL,

The advantage of representing the boundary value as a linear combination of two field
values is the decreased amount of computation resource needed. For a first order boundary
condition, only two multiplications and one addition are needed for Dlw [E] whereas three
multiplications and two additions are needed for the operator Dlmm [E]. The difference in
computation operations increases as the order of the boundary condition increases. For a second
order boundary condition, Dzmml [E] requires eight multiplications and seven additions,
D2|m|2 [E] requires six multiplications and five additions, whereas Dzwu [E] and Dzlmzz [E]
require only five multiplications and four additions.

The harmonic boundary operator discussed above is derived based on the assumption that
the electromagnetic field varies in a harmonic fashion. However, its use is not limited to time-
harmonic problems with monochromatic excitation. Indeed, the harmonic boundary operators (just
as Mur’s and Higdon’s boundary operators) are applicable to problems in which the speed of wave
propagation is constant with respect to the wave number, i.e., the medium is non-dispersive. This is
because the boundary operators in equations (4.31), (4.32) and (4.34) depend not on the individual
values of the angular frequency » and the wave number K, but on the ratio between them. Since any
propagating waveform in an isotropic medium can be decomposed into a superposition of waves
with different wave numbers travelling at the same speed c, the harmonic boundary operators
actually apply to electromagnetic wave propagation in non-dispersive media in general. Thus, the
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harmonic operators can be used in steady-state as well as transient field calculations under

monochromatic or polychromatic excitation.

45 Boundary Conditions Comparison

In this section, the different boundary conditions described in the previous sections are
compared for accuracy: Mur’s method, Higdon’s method, and the harmonic method. Because
Mur’s simplification applies only for two-dimensional structures, the comparison is performed for
two-dimensional structures only. For three-dimensional applications, Higdon’s method and the
harmonic method are superior to Mur’s method in terms of efficiency because of the one-
dimensional spatial stencil utilized. Assuming that the wave travels in the -z-direction, the
discretized equations for the different boundary conditions are listed as follows:

For Mur’s method, D, _[E, H] gives

2 1 1
n+! _ n CAt-nAx . pc At [ n+3 n+>
Bi,j,o = E’,j.l (CAt-l-DAX) i,j,O + zn(CAt"‘nAx) 4.14'1/2.1 -Hzi,j-llz.l
1 1
n+s D+ cAt-nAx
2 - 2 n+l
41720 qu-m,o] (Catnax) Eiit (4.38)

For Higdon’s method, DzmmI [E] gives
Ef;“(‘, = [-(0,+0,)K - &, 0,K* + (B, +B,)Z7! + (1, + ¥+, B,+0,B)KZ! +

(aﬂz + az'Yl) Kzz-l - ﬂlﬂzz-z - (B 172 + 5271) Kz-z = 71721(22—2 ] E:I(l) 4.39

where
aixcoseole - (1-Db;) wAt (1-3) KCOSGOIAX - b;0At
o = (1-a;)xcos8, Ax+ (1-b,) wAt’ B, = (1-a) xcoseole+ (1-b;) cu)At’and
8;kc0s8, Ax +b0At
Y = (=2 koosB, Ax+ (1-B) @At “.40)
For the harmonic method, D,_m" [E] gives
E}lo = [(o,+0)K - 0,0, K + (B, +B,)Z! - (a,B,+0,B,)KZ"! -
B,B,Z21E G (4.41)
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where o, = WAt/ (KzO’Ax+coAt) and B, = Kzole/ (Kzole+coAt). With Dzh"n[E], the

boundary condition becomes

Pro = [—(o+0)K - a0 K>+ (B +B,) KZ™ + (0B, + 0, B) K*Z7! -

3
B,B,K*Z " 1E} (4.42)

where o, = (k,o AXx—0At) /WAt and B, = kzole/mAt. Cross-multiplication of the two first

order boundary conditions gives
?,Ié = [(o-a))K + o, 0K + B, Z7 + (B0, +By) KzZ™ - CI1I32KZZ'1 4

B,B,KZ21E}; (4.43)

where the coefficients oy and f; are given in the previous section.
These five different boundary conditions are applied to four different structures and their
properties such as accuracy and convergence are compared. The four different structures are shown

in Figure 4.2. The first structure is a 1 pm by 1 pm empty (vacuum) simulation domain at A=0.5

Empty Domain Planar Structure Dielectric Grating Chromium Mask

[ Vacuum (1, -j0) [ Air (1, -j0) [ Air (1, -§0) [ Glass (1.5, -j0)
[l Dielectric (3, -j0) [l Dielectric (3, -j0) [l Chrome (4.02, -j2.11)

Figure 4.2 Four different structures used to assess the properties of the different absorbing
boundary conditions. The first structure is an empty domain (left), the second
structure consists of two semi-infinite materials with a planar interface (middle
left), the third structure is a dielectric grating which can be highly resonant (middle
right), and the fourth is a chromium mask (right), a structure typical in
photolithographic applications.
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pm. Thus, the boundary conditions are expected to give no reflection (0%) and all the energy should
be transmitted (100%). The second structure contains two semi-infinite lossless materials. The
simulation domain is again 1um by 1um with the incident wavelength at 0.5 pm. Electromagnetic
energy is incident from air (vacuum) with a refractive index of 1. A dielectric material with a
refractive index of 3 has a planar interface with air. The (electric field) reflection coefficient is -0.5;
and thus the reflected energy should be 25% whereas the transmitted energy should be 75%. The
third structure is a non-planar dielectric grating. The grating has a 1.0 pm period and a duty cycle
of 1.0. The height of the grating is 0.2 um and the edges are vertical. The perfect absorption angles
used are 0° and 30° for Higdon’s boundary condition and the harmonic boundary conditions
(corresponding to the directions of the 0 and 1% diffracted orders). With an incident wavelength
of 0.5 pm, such a structure may reflect a large portion of the incident light wave energy in the non-
specular directions and may pose accuracy problems for the numerical boundary conditions. The
fourth structure is a chromium mask opening. This is a typical geometry encountered in
photolithography. The incident wavelength is 0.248 pm. The mask opening space has a width of
0.25 pm (~1A) with a period of 2.0 um. The opaque chromium layer has a refractive index of (4.02,
-j2.11) and a thickness of 80 nm. The incident layer is glass with a refractive index of (1.5, -j0.0).
The perfect absorption angles used are 0° and 7.12° for Higdon’s boundary condition and the
harmonic boundary conditions (corresponding again to the directions of the O and the 1%
diffracted orders), and 0° for Mur’s boundary condition.

Table 4.1 compares the different boundary conditions. All the results are given for two-
dimensional simulation in the transverse electric (TE) polarization. In terms of accuracy, the five
different boundary conditions are comparable and adequate for the empty and the planar structure,
except for the planar structure with Dzmn where the error in the total energy calculated is 2.57%.
For the dielectric grating and the chromium mask structure, however, Higdon’s boundary condition
gives slightly different results for both the reflected and the transmitted energy. Investigation of the
electric field amplitude confirms the difference among the different boundary conditions. Figure 4.3
shows the electric field amplitude (for the chrome mask structure) both along a vertical line through
the middle of the opening and a horizontal line just underneath the chromium layer. There is

“virtually no difference in the electric field amplitude along the horizontal line underneath the
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Empty Structure
Boundary Condition

Mur
Higdon
Harmonic;; eq. (4.41)
Harmonic,; eq. (4.42)
Harmonic,, eq. (4.43)

Planar Structure
Boundary Condition

Mur
Higdon
Harmonicy, eq. (4.41)
Harmonic,, eq. (4.42)
Harmonic ; eq. (4.43)

Dielectric Grating
Boundary Condition

Mur
Higdon
Harmonicu €q. (4.41)
Harmonic,, eg. (4.42)
Harmonic,, eg. (4.43)

Chrome Mask
Boundary Condition

Mur
Higdon
Harmonic;; eq. (4.41)
Harmonic,, eq. (4.42)
Harmonic,, eg. (4.43)

Table 4.1

Reflected
Energy (%)

0.00
0.00
0.00
0.00
0.00

Reflected
Energy (%)

24.92
25.11
24.75
25.20
25.73

Reflected
Energy (%)

22.07
19.82
22.27
22.28
22.59

Reflected
Energy (%)

28.64
28.63
29.16
28.69
28.83

Transmitted
Energy (%)

100.22
100.52
100.27
100.94
100.31

Transmitted
Energy (%)

76.24
101.04
77.82
75.43
74.32

Transmitted
Energy (%)

717.80
74.63
77.61
76.59
76.38

Transmitted
Energy (%)

9.29
8.69
9.36
9.27
9.26

Total
Energy (%)

100.22
100.52
100.27
100.94
100.31

Total
Energy (%)

101.16
100.52
102.57
100.63
100.05

Total
Energy (%)

99.87
94.45
99.88
98.87
98.97

Total
Energy (%)

3793
37.32
38.52
3796
38.09

Convergence
(cycles)

N NN NN

Convergence
(cycles)

11
11
12
11
11

Convergence
(cycles)

17
35
37
13
17

Convergence
(cycles)

13
20
16
13
13

CPU Time
(s)

56.39
76.74
61.30
69.29
69.47

CPU Time
(s)

77.55
106.88
90.21
96.06
96.34

CPU Time
)]

108.27
283.41
231.13
108.65
135.72

CPU Time
®)

309.48
578.59
389.64
362.63
372.31

Comparison of the different boundary conditions for two-dimensional simulations.

All the boundary conditions give similar energy calculations. For the empty and
planar structures, there is virtually no difference in convergence. For the chromium
* mask structure, however, Higdon’s method shows the worst convergence property.

_chromium layer, except that Higdon’s boundary condition gives a slightly higher amplitude at the
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center of the opening. For the vertical line along the opening, a larger discrepancy is seen. Mur’s
boundary condition and all of the harmonic conditions in equations (4.41), (4.42) and (4.43) agree
well. However, the difference in electric field amplitude between Higdon’s method and the other
methods can be as large as 5% at particular spatial locations, although the locations of the standing
wave peaks and valleys are the same for all the boundary conditions.

1S ——rr 15
., o
g gl
‘5 g
<
-} b
3 3
= )
0‘0':.’ ‘. .l- N : : ] 05 H M H H . H H . l
x(om) y (um)

Figure 4.3 Electric field amplitude of the chromium mask structure calculated by the different
boundary conditions. The field amplitude shows virtually no difference at a
horizontal line just underneath the chromium layer (left). For a vertical line along
the opening (right), however, Higdon’s boundary condition shows slight
discrepancy when compared with the other boundary conditions. Nevertheless, the
location of the standing wave peaks and valleys are the same for all the different
boundary conditions

The efficiency of the boundary conditions are also evaluated in Table 4.1. There are two
criteria: the amount of computer time used and the number of wave cycles for convergence. The
criterion for convergence is that the electric field varies by less than 1% for three consecutive
periods at the same instant of the wave cycle. While the amount of computer time is the most
important quality for an efficient boundary condition, the number of wave cycles for convergence
is a good indicator of whether the boundary condition absorbs the waves well. In general, a large
number of wave cycles for convergence means that either the structure under examination is highly

- resonant or the waves are artificially reflecting off the simulation domain boundaries. Therefore,
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comparing the number of wave cycles for convergence required for the different boundary
conditions for the same structure gives an indication of the absorbing quality of the boundary
conditions. Table 4.1 indicates that for two-dimensional simulations, Mur’s boundary condition is
the most efficient, both in terms of the computation time and the number of wave cycles for
convergence. The harmonic boundary conditions in equations (4.42) and (4.43) are comparable to
Mur’s boundary condition in terms of number of cycles for convergence, but the computation time
of the two harmonic boundary conditions are slightly highly than that of Mur’s boundary condition.
Higdon’s boundary condition seems to be the worst among all the boundary conditions as it
requires the most amount of computer time as well as wave cycles for convergence.

The above accuracy comparison demonstrated that the boundary conditions are suitable for
implementation. Choice of the boundary condition to use thus depends on the efficiency. The
previous efficiency discussion suggests that Mur’s boundary condition is the best for two-
dimensional calculations as it requires the lowest amount of computer time. For three-dimensional
calculations, however, Mur’s boundary condition no longer has the advantage over the other
boundary conditions as its stencil becomes large. To estimate the efficiency of the boundary
conditions for three-dimensional structures, first note that the computer time consumes by the
boundary conditions is about 75% of the total simulation time?. Table 4.1 thus implies that the
harmonic boundary conditions are slower than Mur’s boundary condition by about 20%. Counting
the number of additions and multiplications, Mur’s boundary condition needs three multiplications
and six additions (a total of 9 floating point operations) whereas the harmonic boundary condition
Dzmlz requires six multiplications and five additions (a total of 11 floating point operations). The
ratio of the number of floating point operations is 1.22, agreeing with the 20% increase in computer
time for the harmonic boundary condition. For three-dimensional calculations, the number of
floating point operations is 75 (41 additions and 34 multiplications) for Mur’s boundary condition
and 11 (6 multiplications and 5 additions) for the harmonic boundary condition H;,. The advantage
in the efficiency of the harmonic boundary condition is thus estimated to be almost 600%.
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4.6 Conclusions

In this chapter, different boundary conditions resulting from the discretization of
continuous differential operators are presented. In particular, the methods proposed by Mur and
Higdon are compared with novel boundary conditions derived based on the space- and time-
harmonic variation of the field. All these boundary conditions are shown to produce reasonable
results; they also agree well with one another except for Higdon’s boundary condition. In terms of
efficiency, Higdon’s method and the harmonic method are more efficient than Mur’s method for
three-dimensional applications. This is because Mur’s method requires a three-dimensional spatial
stencil whereas Higdon’s method as well as the harmonic method require only a one-dimensional
spatial stencil. The harmonic method is slightly more efficient than Higdon’s method as it requires
fewer number of multiplications and additions. In terms of accuracy, Mur’s boundary condition and
the harmonic boundary condition are superior to Higdon’s method. Based on these considerations,
the harmonic boundary condition Dzhm2 in equation (4.43) is chosen for three-dimensional
implementation as it is expected to converge (in terms of the number of wave cycles) as fast as
Mur’s boundary condition and requires about one seventh of the computer time of Mur’s boundary

condition.
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Chapter §
Modeling Dispersive Materials

5.1 Introduction

Electromagnetic simulation using the TDFD approach has received increasing attention in
recent year because of its applicability for execution on massively parallel computer architectures.
However, difficulty arises when the TDFD approach is applied in problems involving dispersive
materials. The original TDFD formulation by Yee!®* requires that the electric permittivity,
magnetic permeability, and conductivity of all the materials in the structure to be frequency
independent. Nevertheless, this assumption of frequency independent material constants alone does
not place a constraint on applications where the only interest is the response of a structure at a
particular frequency, since the uniqueness theorem®® states that any converged solution is the true
solution. The problem of the TDFD approach arises when a material has the property that the
magnitude of the imaginary part of the refractive index is larger than the real part. This causes the
real part of the permittivity of the material to be less than zero, and the TDFD formulation becomes
unstable as shown in Chapter 3.

Different schemes have been proposed to solve this instability problem. A possible scheme
is the complex field method in which the field variables as well as the material constants are
expressed as complex numbers. This approach can be viewed as solving for two separate problems,
with a 90° phase difference between them. Another approach is proposed by Luebbers et al.8 in
which the convolution relation between the electric field and the electric displacement is calculated
‘at each time step by a recursion relation. This approach is called the frequency-dependent finite-
difference time-domain ((FD)2TD) method in this chapter. Lee et al.*! proposed a scheme in which
the electric displacement (magnetic induction) is first found from Ampere’s law (Faraday’s law),
and then the electric field (magnetic field) is derived from the electric displacement (magnetic
induction). This method, which is called the four-step method in this chapter, requires no explicit
calculation of the convolution integral. In this chapter, these different schemes are assessed for their
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applicability and efficiency. While only electric dispersive materials are considered, extension to
modeling magnetic dispersive materials is straightforward.

52 The Complex Field Method

In the conventional TDFD approach, the following pair of equations is solved:

oE

VxH = sm +0E .1
o oH
VXE = -u-a—t (5.2)

This pair of equations assumes that there is no magnetic loss, and that the electric loss is represented
by the conductivity o. In the complex field method (CFM), each field variable is represented by a
complex number instead of a real number in conventional time-domain schemes. The motivation of
this formulation comes from frequency-domain approaches in which each field component is
represented by an amplitude and a phase (a phasor). The difference in the CFM is that instead of an
amplitude and a phase, each field component is represented by a real part and an imaginary part. In
this scheme, electric loss is not represented by the conductivity, but by a complex dielectric
constant. Hence, the set of equations which the CFM solves is as follows:

IO 5
VxH = g5 (5.3)
VXE = -ﬂg—? (5.4)

where the underscore indicates a complex quantity. Equations (5.3) and (5.4) are actually four finite
- difference equations, corresponding to the real and imaginary parts of the electric and magnetic

fields, i. e.,
- oE, OF,
VxH =ex"-g5" (5.5)
- aﬁ’ a-‘
V x Hi = '& ! + eiFtEl (5.6)



VB, = s 5.7)
VxE = -pg—?‘ (5.8)

where the subscripts r and i represent the real and imaginary parts respectively.

To justify the use of complex dielectric constants in a time-domain scheme, notice that the
conductivity ¢ can be associated with an imaginary relative permittivity with the imaginary part
given by -J-1(c/w) for time-harmonic fields. Indeed, the difference between the use of
conductivity and the use of a complex permittivity is primarily philosophical”. Therefore, at
steady-state, Maxwell’s curl equations can be expressed by equations (5.3) and (5.4), with the

dielectric constant given by

§=£r’~["—13i =e—J——1% (5.9

The advantages of the CFM is its simplicity. There is no major modification of the finite-
difference equations. However, this scheme requires more field variables (more memory) and more
computation per iteration (more CPU time). Moreover, the CFM does not model dispersive
behavior of materials since it assumes that the complex dielectric constant g is independent of
frequency. However, this latter limitation does not place severe restrictions on applications in
photolithography since most sources can be assumed to be monochromatic.

The CFM, although simple and straightforward in implementation, is unstable except for
lossless materials. In order to examine the stability of the CFM, consider the two-dimensional
finite-difference equations in the TE polarization:

1 1 1 1
At n+ = n+ = n+= n+-
E3*' i) =§—A—X[H, 2(Lj-5) ~H, >G.)+3) +H, 2(+2.) -H,+2(i-%.j)]
+E2(4,) (5.10)
n+% 1 n-% 1 At
B, 2U+z0) =B, 20430+ 2 (BI(+1) ~E} (L)) 5.1)
n+% 1 n-% 1 At
H, 2Gi-7) =B, 20J-) +2 o B G-1 - G.)] (5.12)
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In order to use Fourier analysis as was done in Chapter 3, equation (5.10) must first be modified by
substituting equations (5.11) and (5.12) for H2*!/2 and H3* /2. The scheme thus becomes

! - .-l !
E3*1 () =0t[Hx 2(,j-3) ~H, 2(,i+5) +H, 2(+5,0) -H, 2(1—%.1)]+
OB [E i+ 1,)) ~2B2(,J) +E2(i-1,]) +B3 (] +1) ~2E2G.)) +E2(h§ - 1)1 +

E2 (i, j) (5.13)

where oo = At/ (gAx) and B = At/ (pAx). The Fourier transform of the finite-difference
equations (equations (5.10) to (5.12)) can thus be expressed as

£ = A0, 0,)F" (5.14)

where £" = (B}, A}, _ﬁ;) T and

1-4aB ((sin’0,/2) + (sin’,/2)) i2asind,/2 -i2asing, /2
A(8,,6,) = 12Bsing,/2 1 0 (5.15)
-i2Psin@,/2 0 1

The characteristic equation for the matrix A is

(A=1) [A\>+2A(20B (sin’0 /2+5in’0,/2) —1) +1] =0 (5.16)

The eigenvalues are A, = 1 and

My 3 = 1-20f (sin’0 /2 + sin’0,/2) [1 F Jl — (1/0f (sin’0 /2 + sin’0,/2) )] (5.17)

The magnitudes of A, and A5 are greater than or equal to 1, with equality holding only when
g, = 0. Therefore, the TDFD numerical scheme using the CFM is stable only if the materials are
lossless, and is thus not practical.

53 The Four-step Method

In the conventional TDFD approach, the following pair of equations is solved:



oE

VxH = ea +oE (5.18)
N oH
VXE = ‘"§E (5.19

where the permittivity €, permeability u, and conductivity ¢ are assumed to be constants. This
leap-frog algorithm consists of two major steps. In the first step, the magnetic field values in the
previous time step are used to update the electric field. In the second step, these newly updated
electric ficld values are used to update the magnetic field. In the four-step approach developed by
Lee et al.*!, two extra steps are added in which the following set of equations is solved:

VxH = %—5 (5.20)
D(w) = (0 E(w) (5.21)
VxE = %: (5.22)
B(w) = p(0)H(w) (5.23)

Equations (5.20) and (5.22) are essentially the conventional equations except that the electric
displacement D replaces €E and the magnetic induction B replaces pH. Equations (5.21) and (5.23)
are additional equations which model the dispersive nature of the material. Note that equations
(5.21) and (5.23) are frequency-domain equations. To obtain their time-domain counterparts, one
must model the frequency dependence of the permittivity and permeability as well as make the
appropriate connections from the frequency-domain expressions to the time-domain expressions.
For example, consider the electric dispersion relation of equation (5.21), the tasks become finding
a suitable mathematical model for the electric pérmitﬂvity and transforming the frequency-domain
relation of equation (5.21) into a corresponding time-domain equation.

The dispersive behavior of a material may be characterized by many complex physical
phenomena. For the application in hand in which the interest is only in a narrow band of
frequencies, the mathematical model of the permittivity should satisfy two constraints only.
Besides matching the characteristics of the material within the interested frequency range, the

47



causality condition must be obeyed. Two possible mathematical models are the Debye model'2 and
the Lorentz model!!, shown in the following equations respectively:

€ —€
Enopee (0) = €+ : " 5.24
Debye 1-J-1(0/@) G249
(02
eLorentz((’o) =1+ 2 (5.25)

@? ~ @? - J=1(0/w,)
In equation (5.24), €_is the permittivity of the material at zero frequency, €_, is the permittivity
when © — e, and @, is the resonance frequency. The parameter o, in the Lorentz model of
equation (5.25) is the “plasma” frequency, ®_ and 1/, are respectively the resonance frequency
and the damping constant. Equations (5.24) and (5.25) are frequency-domain equations which can

be transformed into time-domain equations by making the substitution

= -J-lo (5.26)

Yl

Hence, for the Debye model, the frequency domain relation in equation (5.21) is transformed via
equation (5.26) into the following time-domain equation

€,
(1 + )D(t) = eo( +——)E (t) 5.27)

Similarly, the time-domain equation for the Lorentz model is

(02+ 2,19 p =¢ (@2 +a’+3 a2 +—-—)E(t) (5.28)
at2 (ooat 0 otz ot )
With equations (5.27) and (5.28), the discretized time-domain counterpart of equation (5.21) for the

Debye and Lorentz models are as follows, rgspectively:

+1 € €
g+l = el - (( 1 +1)Dn +(1-L)P:+(_w-_’)l§“) (5.29)
o )

W5 WAt 27 g, 2 myAt” g, \wyAt 2
WAt~ 2
2A¢2 2A¢2 - -
o+t Dn+1 0;At" -2 D" _ n\ woAt - 1-At/20, (po-1 _e-1 530
g, 1 +At/2w,\ € } 1 +At/2m0 1+At/20,\ &,
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where the superscript n stands for the n time step. With equation (5.29) or (5.30) relating the
electric field E to the electric displacement D, the four-step algorithm is complete. Firstly, the
electric displacement is found from values of the magnetic field at the previous time step. Secondly,
the electric field is found from the electric displacement with either equation (5.29) or (5.30),
depending on the mathematical model used. The third and fourth steps update the magnetic
induction and the magnetic field similar to the first and second steps. For two-dimensional
simulations of electric dispersive problems in the TE polarization with the Lorentz model, the set
of updating equations (corresponding to equations (5.20), (5.21), (5.22), and (5.23)) becomes

D2*1(4,§) = DR(L,j) +

1 1
At n+§ 2 . 1 n+§ 1 o n+§ .-1 . )
( 4,j- 5) H (i,1+5)+H, (i+§,1) H, °@ 03 (5.31)

Ax
D 1@, j) @A’ -2 (DB, j)
n+1l,: 2y _ z 8 z . - .
E;T L)) = & 1+At/2m°( & Ez(i’j))
oA 1-At20,D371GLG)
Travze, 5 & D+1+At/2mo( g “'J’) 632
n+% n-i At
(bi-3) =H, 2(j-3) + 1Az (B2 () -1 -E; (L) (5.33)
1 1
“"i n 2 n n
(l+2,J) = (i+ ,j)+ (E (i+1,j) -E;(i,))) (5.34)

This method has been applied in the study of several topographies. In the problem of half
space filled with water*, this method was found to give numerical results which are in excellent
agreement with theoretically calculated results*!, For the problem of a two-dimensional cylindrical
dispersive scatterer®!, it was found to give good agreement with the results calculated using the
eigenfunction expansion approach!®, These numerical results have demonstrated and confirmed the
validity and accuracy of the four-step approach.
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54 The Frequency-dependent Finite-difference Time-domain Method

The frequency-dependent finite-difference time-domain (FD)2TD method was proposed by
Luebbers et al.*® to solve problems involving transient propagation in a plasma, but their method is
equally applicable in solving photolithography problems involving highly dispersive materials.
Their method consists primarily of expressing the electric displacement D as a convolution between
the electric field E and the frequency dependent electric susceptibility ). This approach replaces
the need to find the electric displacement D first and then update the electric field using the electric
displacement values (in the four-step method) by the calculation of a time integral. In the (FD)2TD
method, the electric displacement D is related to the electric field as:

t
D(t) = e,gE (1) +g,JE(t-T)x(T)dr (535)
0

where €, is the permittivity of free space, €, is the relative permittivity of the material when
® —> oo, and Y is the electric susceptibility of the material. Theoretically, €  equals 1.0 for all
materials®2, but is left in the equation for the purpose of comparison with the conventional TDFD
approach. Assuming that all the field values are constant during each time step and are all zero for
t < 0, discretization of equation (5.35) results in the following equation:

D*!-D" = ¢_gy (E**! - E") +e,E"*![o'x (1) dv +

n-1
g X, B ([ D (0 dr— [ Dy (1) dr) (5.36)

m=0
Denoting x,, = {3 Y4y (1) dv and Ay = X ~X,,, , the updating equation for the electric

field becomes

n+1 _ At 1 p+1/2 _n+172
E}*ti (L)) = A_xm(H¥+ (1+1/2,j) -Hy*(i-1/2,)) +
n+1/2 n+1/2 bt
Hx* 1,j-172) —H"" (i,j+1/72) ) + em-'-xoli;’(i,j) +
| G
EX"™(,j)A 53
ew+x0m§o z () AX,, (5.37)

for a two-dimensional structure in the TE polarization. Equation (5.37) is obtained by discretization
of the curl equation of Ampere’s Law and substituting equation (5.36) for the temporal electric
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displacement difference (D"“ —D"). Note that for non-dispersive materials, e(w) = € = €_
and x, = X,, = 0, and equation (5.37) reduces to the conventional TDFD equation.

At first glance, calculation of the electric field at the n'd time step via equation (5.37)
requires storage of a large number of electric field values from previous time steps because of the
summation term. However, this is not necessarily the case for a suitable choice of the mathematical
model of the permittivity. For instance, for the Debye model of equation (5.24), and for the Lorentz
model of equation (5.25) with @, = 0, the summation term in equation (5.37) can be calculated
recursively. Therefore, the (FD)’TD method requires only one additional storage element. To
illustrate, consider the Debye model of the permittivity in equation (5.24). The electric
susceptibility is given by

g€,
1-J~1(0/0)
Fourier transformation of equation (5.38) leads to the time-domain susceptibility function (for

t20)

xDebye (w) = (5.38)

xDebye (7) = (es-ew) WeCXPp ("mot) (5.39)
With this time-domain susceptibility function, the summation term in equation (5.37) can be

written as
n-1
Y2 (i,5) = 3 E; (L) Ax, = exp(~0,A) W2 (i, §) +Ax,E; () (5.40)
m=0

Thus, calculation of the summation term in equation (5.37) can be performed via the recursion
expression for ‘¥, in equation (5.40). This requires only one additional storage element (‘¥,) and
can be updated easily. For the Lorentz model of the permittivity in equation (5.25) with @, = 0,
the time-domain susceptibility function is

mz

Aiorentz () = 53 (1-exp(-tay)) (5.41)

In this case, the recursion relation in equation (5.40) still applies, but the expressions for ¥, and
Ay, are different. Thus, regardless of the mathematical model used, the updating equations in the
(FD)2TD method are formally identical. For instance, for two-dimensional simulations in the TE
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polarization with only electric dispersive materials, the set of updating equations for the (FD)2TD
method is

n-1
Y3(i,) = X E;TU(L,)) A, = exp(-0pAt) 1 (4, ) +AxE; (1, ) (542)
m=0
At 1

EX*1(1,j) = H3*V2(1+1/2,5) -H3* 12 (1-1/2,) +

Axe, (e +Xo) (

€
H* 1234, -1/2) —HIM V2 (4,1 +1/2) ) + E.(L.)) +
€. *+Xo

1

em+xo‘1’§ ) (543)
1
“*5 H, 2 1, At n
(hi-3) = H, 2(i] ) *ax B (hi-1 -E; (L)) (544)
..+1 n_l
, 2+g.0) = 2(i+2,j)+llA (E;(i+1,)) ~E; (1)) (5.45)

The only difference between the Debye and the Lorentz model is in the multiplicative coefficients.

The (FD)?TD method has been applied in the computation of the reflection coefficient for
an air-water interface over a wide frequency band. The result was in excellent agreement with the
exact results?®, In the calculation of the complex reflection and transmission coefficients for a
pulsed plane wave incident on a plasma slab, the (FD)’TD method has shown excellent agreement
with the exact frequency domain calculations®. These numerical results have demonstrated and
confirmed the validity and accuracy of the (FD)*TD method.

55  Comparison of the Four-step Method and the (FD)2TD Approach

As both the four-step method and the (FD)TD method had been shown to give accurate
numerical results,-the choice between them depends on the efficiency (computation time per
iteration), ease of convergence, memory storage requirement and ease of implementation. Consider
two-dimensional electromagnetic scattering simulations in the TE polarization with electric
dispersive materials alone, the set of updating equations in the four-step method (equations (5.31),
(5.32), (5.33), and (5.34)) and in the (FD)?TD method (equations (5.42), (5.43), (5.44), and (5.45))

“are compared. In terms of the efficiency of the algorithm, the four-step method requires thirteen
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(13) additions and seven (7) multiplications per iteration. The (FD)*TD method requires ten (10)
additions and seven (7) multiplications per iteration. Although the four-step method requires three
more additions, the actual increase in computation time is minimal when all other computations are
taken into account (for instance, the boundary conditions and initialization of the variables). In
terms of convergence, both algorithms should take approximately the same number of wave cycles
to converge. This is because in the four-step method, both the electric displacement D and the
electric field E must converge. For the (FD)’TD approach, both the electric field E and the
summation variable ¥ must converge before steady-state is reached. Moreover, convergence of the
TDFD approach mainly depends on the simulated structure® and should not differ between the two
methods. Therefore, in terms of efficiency and ease of convergence, both approaches are similar.
In terms of ease of implementation, however, the (FD)zTD approach is superior to the four-
step method. The form of the updating equations in the (FD)*TD method is identical for all
mathematical models of electric susceptibility. Hence, it is not necessary to modify the updating
equations with different mathematical models. Only the multiplicative coefficients (terms
involving %, and A),) are affected, and this only requires a change in the initialization routine. In
the four-step approach, the updating equations are model dependent. Since the time-domain
relationship between the electric field and the electric displacement is converted directly from the
frequency-domain counterpart via the substitution of equation (5.26), the number of variables and
hence the number of additions and multiplications depend on the mathematical model of the
electric susceptibility. The Lorentz model requires more variables than the Debye model because
the latter model involves only first order time derivatives (and hence requires two levels of time
information) whereas the former model involves second order time derivatives (and therefore
requires three levels of time information). Model dependent updating equations of the four-step
approach means that this approach is not flexible in adapting to materials of different
characteristics. Furthermore, the four-step method generally requires more memory storage than
the (FD)”l'D approach. Memory requirement for the conventional, four-step, and (FD)’TD
approaches are compared in Table 5.1 where the Lorentz model of permittivity is assumed for the
four-step method. In the conventional method, a total of five variables are needed in the updating
equations for two-dimensional simulations. The (FD)TD method requires three (3) more variables
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whereas the four-step method requires nine (9) more. As a result, the (FD)2TD approach is chosen

for implementation over the four-step method based on all these considerations.

Approach Polarization # of Field Variables  # of Coefficients Total Variables

Conventional TE 3 2 5
™ 3 2 5
3D 6 2 8
Four-step TE 7 3 10
™ 11 3 14
3-D 18 3 21
(FD)’TD TE 4 3 7
™ 5 3 8
3-D 9 3 12
Table 5.1 Memory storage requirement of the conventional, four-step, and (FD)2TD

approaches. For two-dimensional simulations in the TE and TM polarizations. The

. TM polarization requires more variables than the TE polarization for both the four-
step and the (FD)?TD methods because there are two electric field variables (Ex
and E,) in the TM polarization whereas there is only one (E,) in the TE
polarization. For three-dimensional simulations, memory requirement of the four-
step method is excessive.

5.6 Implementation of the (FD)TD Approach

In the implementation of the (FD)2’I‘D method, a question arises as to which susceptibility
model to use for the materials in the simulation domain. To answer this question, one must keep in
mind that the interest of the user is the response of the structure to an electromagnetic excitation at
a specific and fixed frequency. Therefore, the mathematical model must give the true material
property at the interested frequency. At all other frequencies, the model of the susceptibility
function may differ from the real material property and will not affect the simulation results. Based
on this consideration, the Debye model is well-suited for materials in which the real part of its
relative permittivity is greater than or equal to 1.0, and the Lorentz model is suitable for materials

"in which the real part of its relative permittivity less than 1.0 (even less than zero). The physical
reason for this choice of model is that materials in which €, = n?~n? 21 is more ionic than
metallic in nature and hence the Debye model of ionic polarizability is more suitable. The Lorentz
model with @, = 0 indicates that the material has a resonance at D.C., meaning that the material

‘is more metallic than ionic in nature.



Having determined the applicability of each of the susceptibility models, the next step is to

determine the parameters associated with each model. Taking €_ = 1.0 in the Debye model, the

parameters ®,, € as well as ), and Ay, are determined as follows

(e,-1.0) o,
Wy = ————
1
o,
e, = (¢,-10) H(E—o) +10
Xo = (5,—1.0) (1-¢""")
-m,At, 2

Axo = (,—1.0) (1-e )

For the Lorentz model, the parameters are

2 2
o ® - At
Xo = —At-— (1= )

2

@ -m,At_2
Axg=-—(1-e ")
@o

(5.46)

(547)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

where € _and €; are respectively the real and imaginary parts of the relative permittivity and o, is
the angular frequency of the incident radiation. Note that for lossless materials, the Debye model is

used. The parameters for such materials become

W, = o

E =€

Xo = €, -1
Ay, =€ -1

These formulas apply for all components of the electric field and electric displacement.
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5.7 Performance Evaluation
5.7.1 Accuracy

The accuracy of the (FD)Z’I'D algorithm was discussed for an air-water interface over a
wide frequency band*® as well as for pulsed plane wave incident on a plasma slab®. In this section,
calculations from the (FD)2TD algorithm for two simple planar structures is compared with the
Fresnel formulas for reflection’!. The first structure contains two semi-infinite materials.
Electromagnetic energy of wavelength 248 nm is incident from air (vacuum) with a refractive index
of 1. A dielectric material with a refractive index of (n=0.85, k=2.0) has a planar interface with air,
The second structure is a three-layer structure with 100 nm of a hypothetical material (n=1, k=2)
sandwiched between two semi-infinite layers of air. The incident wavelength in this case is 500 nm.
The simulation results tabulated in Table 5.2 shows excellent agreement with theoretically
calculated values.

Structure 1 (Simulation) P (Simulation) Fresnel Theory
Two-layer 0.532 0.542
Three-layer 0.093 0.001

Table 5.2 Simulation results of reflection coefficients using the (FD)"TD algorithm and the

theoretically calculated values for normal incidence on dielectric stacks. The slight
discrepancy between the simulations results and the theoretical calculations are
due to discretization and floating point errors.

5§72  Efficiency

To compare the efficiency of the (FD)ZTD approach with the conventional approach, three
geometries shown in Figure 5.1 were simulated with both the (FD)*TD and the conventional
approaches. The three structures simulated were: a) A 5X chromeless phase-shift mask of linespace
patterns at an incident wavelength of 0.248 um in which all materials are lossless. The period of the
simulation domain is 5.0 pm, corresponding to a feature size of 0.25 pm. b) A planar structure of
air (n=1.0, k=0.0) on 400 nm of a hypothetical photoresist material (n=1.5, k=1.0) on silicon

(n=4.0, k=2.0) with an incident wavelength of 0.248 pm. c) Photoresist (n=1.68, k=0.0273)
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Chromeless PSM Planar Structure Chromium Mask

[ Vacuum (1, -j0) [ Resist (1.5, -j1.0) [ Resist (1.68, -j0.0273)
Bl Glass (1.5, -j0) [l Silicon (4.0, -j2.0) [l Silicon (10.0, -j6.0)
Figure 5.1 Three different structures used to assess the efficiency of the (FD)?TD algorithm.

The first structure is a 5X chromeless phase-shifting mask (left), the second
structure consists of three planar layers (middle), and the third is a silicon step
covered with photoresist.

bleaching over an underlying silicon step (n=10.0, k=6.0). The structure is periodic with a period
of 4.0 pm and the silicon step is 2.0 pm wide and 0.5 pm high with an edge slope of 1.0. The
photoresist (with a=0.74, b=0.20, and c¢=0.012) is exposed with a dose of 50.0 mJ/cm? at 0.365 pm.
This exposure dose is divided into five dose steps in the simulations. All these simulations are done
with materials which have the real parts of their refractive indexes larger than the imaginary parts
because the conventional approach is not applicable for materials with larger imaginary parts than
real parts. Simulation results in Table 5.3 show that for lossless materials, the efficiency of the
(FD)*TD approach is the same as the conventional approach, both in terms of efficiency per wave
cycle and number of cycles for convergence. For the lossy planar structure, iteration time per wave
cycle of the (FD)?TD method increases by less than ten per cent over the conventional approach.
This increase is not significant because the number of wave cycles for convergence is small for
planar structures. For the photoresist bleaching example, the iteration time per wave cycle of the
(FD)ZTD method increases only by about three per cent over the conventional approach. However,
the actual computation time is doubled due to the larger number of wave cycles required for
convergence.

The reason for the larger number of wave cycles for convergence in the (FD):"TD is due to

the small magnitude of the lossy part of the photoresist material. Referring to equation (5.40),
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Structure Method  Polarization CM Time (s) Cycles Time/Cycle

Chromeless Mask Con TE 243 95 2.56

™ 265 104 2.55

(FD)*TD TE 243 95 2.56

™ 278 104 2,67

Lossy Planar Con TE 85 11 173

™ 68 8 8.50

(FD)’TD TE 9 11 8.55

™ 99 11 9.00

Resist Bleaching Con TE 390 89 4.38

™ 364 81 449

(FD)’TD TE 800 178 4.49

™ 684 147 4.65
Table5.3 = Comparison of the 2[’)le']a;{ormances of the (FD)’TD method and the conventional
approach. The (FD) method takes about 10% more computation time per wave

cycle of iteration.

convergence of the variable ¥'7 (i, j) depends on the value of Ay,,. A small value of Ay, means
fast convergence because the first factor in (5.40) is exponentially decreasing with time. For
materials which have small but non-zero imaginary refractive index, convergence of Y7 (1, §) is
slow because of a relatively large Ay, value. Therefore, for structures containing slightly lossy
materials, the conventional TDFD scheme should be used for better efficiency.

58 Conclusions

Different techniques which may be applied to model dispersive materials with the TDFD
method have been assessed. The complex field approach is not applicable as the algorithm is
unstable for lossy materials. The (FD)?TD approach and the four-step approach are both suitable in
modeling dispersive materials. The (FD)"TD method is chosen for implementation because of its
advantages in memory storage requirement and the ease of implementation over the four-step
method. The speed (per iteration) of the (FD)?TD method is only slightly slower (less than 10%)
than that of the conventional TDFD approach, but the total computation time of the (FD)?TD
approach may double that of the conventional method if a slightly lossy material is present because
of the greater number of wave cycles for convergence. Therefore, the conventional TDFD method
is preferred in the modeling of materials with small imaginary refractive indexes.
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In TEMPEST, two permittivity models are implemented in the (FD)’TD method: the
Debye model which models ionic-like materials and the Lorentz model which models metallic-like
materials. Furthermore, with accurate mathematical models for the electric permittivity and
magnetic permeability, the (FD)>TD approach has the potential of analyzing the frequency
response of a structure by examining the frequency spectrum of its impulse or square wave
response. Moreover, anisotropic materials can be modeled with additional terms in the updating
equations.
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Chapter 6
TEMPEST Software Package

6.1 Introduction

The numerical techniques presented in the previous three chapters are implemented in the
program TEMPEST on the connection machines CM-2 and CM-5. This chapter discusses some
additional numerical aspects of the program as well as supporting routines of the software package
including a link to the simulation program SPLAT® for aerial image analysis. While parallel
computers are expected to give future leverage in the modeling of photolithography, currently the
supercomputer architectures are still evolving. The CM-2 and the CM-5 were chosen due to their
availability as massively-parallel computers. The particular implementation will probably evolve
with time along with the computer architectures. One of the areas of the current implementation
which will likely evolve further is the efficiency of the numerical boundary conditions as affected
by the increasing generality of computer architectures.

The connection machine CM-2% announced in 1985 operates in the single-instruction
multiple-data (SIMD) mode where each processor has relatively low intelligence and executes the
same instruction on the data. The next generation of the connection machine CM-5%8 available in
1992 operates in both the SIMD and the single-program multiple-data (SPMD) modes. In SPMD
machines, the processors (which have higher intelligence than those in the CM-2) execute the same
program but not necessarily the same instruction. This feature of the CM-5 makes it more flexible
in the modeling of a wide variety of problems ranging from cosmology to molecular biology®4.
There is still another operating mode called the multiple-instruction multiple-data (MIMD) mode
in which different processors within the supercomputer can execute different programs
simultaneously. This programming mode is supported on architectures such as the Intel Paragon
iPSC30 and the Kendall Square Research KSR1%,

This chapter begins with a discussion of the reduced computation efficiency due to the
numerical boundary condition. The importance of proper excitation of the simulation domain is
then shown. Convergence of the electromagnetic fields is found to depend primarily on the physics
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of the problem. The software package TEMPEST is also briefly described. Besides the
electromagnetic fields solver TEMPEST, the package contains other supporting routines such as
input file checking. Post processing options include data processing and display utilities, as well as
image synthesis via a link to SPLAT®. This linkage which combines electromagnetic scattering
and optical system effects is also discussed.

62 Reduction of Computation Efficiency due to the Boundary Condition

Termination of the simulation domain leads to a different set of updating equations for the
boundary nodes. This is discussed in Chapter 4. Since the boundary nodes have a different stencil
from the interior nodes, they need to be solved separately from the interiors nodes. For massively-
parallel computer architectures such as the CM-22, the second order boundary condition consumes
about 75% of the computation time whereas only 25% is used by the interior nodes®, The reason
is that while updating the boundary nodes, the interior nodes must be idled. This is an unworthy
price to pay because the number of boundary nodes usually constitutes less than 1% of the total
number of simulation nodes.

Increased efficiency can be achieved by implementing more efficient boundary conditions
which reduce the number of additions and multiplications in the boundary equations. A better
solution to the problem is to make use of the computer resource more effectively, i.e., all the
processors on the parallel machine should be kept busy as much as possible. This is possible with
the more recent version of the connection machine CM-5% as it can operate in the SPMD
programming mode. In the SPMD programming mode, each processor is running the same program
(and hence single-program) on different sets of data (and hence multiple-data). The single program
is not limited to parallel programs. It can also be a serial program. Thus, more efficient computer
usage can be achieved by decomposing the simulation domain in such a way that each processor
contains the same number of boundary and interior nodes. A serial program with an if-then-else
loop can then be written in such a way that all the processors on the parallel machine are solving
the same equation at the same time, i.e., all the processors are simultaneously solving either the
interior equation or the boundary equation. This avoids idling of computation resource as is the case

. in the SIMD programming mode. As an initial implementation on the CM-5, however, TEMPEST
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is programmed in the SIMD mode, which can be made more efficient in the future by rewriting in
the SPMD mode or even the MPMD mode on other parallel machines.

6.3 Domain Excitation

Field Value
(=]

-1

[
z (um)

Figure 6.1 The effect of incorrect domain excitation on the steady-state electric field.
Although the normalized peak-to-peak amplitude is 2, the normalized electric field
oscillates between 0.84 and -1.16.

Care must be exercised in exciting the simulation domain because an improper method of
excitation can lead to inaccurate simulation results. To illustrate, take the simple case of an empty
simulation domain under normal incidence. Initially (t=0), all the field values are set to zero except
for the top layer of simulation nodes, which have a non-zero value of sin¢. For ¢ = 0, the
simulation result is correct. For ¢ = n/2, however, the simulated steady-state field as shown in
Figure 6.1 indicates that the steady-state electric field has a non-zero D.C. offset. While the
‘normalized pe:ak-to-peak amplitude is still 2, the normalized electric field oscillates between +0.84
and -1.16. The reflected electric field at the top boundary should be zero at all time. However, as
shown in Figure 6.2, the diffracted ficld shows a non-zero offset which is constant with respect to
time (iteration cycle). In fact, this D.C. offset is dependent on the initial excitation value sin¢. If

sing = O, then no D.C. offset is introduced and the simulation results are correct.

This anomalous behavior can be explained by considering the numerical boundary
conditions. Since the sum of the multiplying coefficients in the numerical boundary condition such
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Figure 6.2 The diffracted field shows a non-zero offset which is constant with respect to time.
This shows incorrect coupling of the excitation field into the numerical boundary
condition.

as eqﬁaﬁon (4.43) is 1, the numerical boundary condition does not act on D.C. signals, i.e., the

numerical boundary condition cannot distinguish between a sinusoidal wave and the same

sinusoidal wave plus a D.C. offset. Therefore, for this particular method of excitation, an initial
value (sin¢) dependent D.C. signal is coupled into the diffracted electric field via the boundary
condition and results in incorrect simulation results. To elaborate, consider the boundary condition
in equation (4.43), the electric field value at the top boundary (Z% node) for the (n+1)™ time step
(E3*') depends on the variables E3, E3*!, and E} _,. It is the dependence on E3*} and E5 _,
which causes the D.C. offset. Since the boundary equation applies only to the diffracted electric
field, the incident electric field must be subtracted from the total electric field before the boundary
equation can be applied at the top boundary. At t=0, the wave has not propagated to the Z-1)"® node
yet, and the total electric field is zero. The incident electric field should also be zero. Howeyver, in
order to facilitate computation in the actual computer code, the incident electric field at the (Z-l)th
node has already assumed its value at the second time step when the boundary field value for the
first time step is calculated. As a result, subtraction of the incident electric field from the total field
at t=0 gives a value which is equal to the negative of the initial incident field value when it should
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be zero. It is this value which causes the D.C. offset observed, and this is why no error is observed
when the domain is excited by sin¢ = 0.

One way to solve this problem is to add a conditional statement in the computer code which
gives a zero diffracted field during the first time step. However, addition of this conditional
statement will make the simulation program less efficient. A simpler way to solve the problem is to
start the simulation assuming that the electromagnetic wave has already propagated several node
layers into the simulation domain, i.e., the top few simulation layers have non-zero electric and
magnetic field values at t=0. As a result, the previous discontinuity at the top boundary is now
moved inside the simulation domain. Subtraction of the incident electric field at the (Z-1)! node
during the first iteration step would then give the correct result. The discontinuity inside the
simulation domain does not affect the steady-state solution since there is no source to support it. It
is eventually absorbed by the numerical absorbing boundary condition.

With this technique, the empty box is again simulated. The steady-state electric field shows
the expected sinusoidal shape with no D.C. offset. The diffracted electric field at the top boundary
as a function of iteration cycles shown in Figure 6.3 indicates that the field value converges to 0.0
as expected. The diffracted field also shows a transient behavior starting at about 0.3 wave cycle.
This transient behavior is caused by the back propagation of the discontinuity inside the simulation
domain when the fields are introduced at t=0. This excitation method also works well for obliquely

incident waves.

64 Convergence

In order to study the convergence properties of TEMPEST, the two structures shown in

Figure 6.4 are used. Both structures are planar dielectric stacks consisting of three lossless layers of

materials. In the first structure, the incident layer is air with a refractive index of (1.0, -j0.0). The

second layer has a thickness of 0.5 pm and a refractive index of (2.0, -j0.0), and the third layer has

a refractive index of (4.0, -j0.0). The free space wavelength of the incident radiation is 0.5 pm. The
second structure is the same as the first, except that the middle layer is 1.0 um thick.

Convergence of the fields is monitored by the reflected electric field at the top of the

- simulation domain. When the incident wave interacts with the structure, a change in the reflected

64



Lo

E-Field Value
=]

Wave Cycles

Figure 6.3 Diffracted electric field at the top boundary as a function of wave cycles. The
transient behavior which starts around 0.3 wave cycle is caused by the back
propagation of the discontinuity associated with the excitation method.

First Structure Second Structure
[] dielectric 1 (1.0, -j0.0) [ dielectric 1 (1.0, -j0.0)
& dielectric 2 (2.0, -j0.0) 0.5 pm Bl dielectric 2 (2.0, -§0.0) 1.0 pm
[ dielectric 3 (4.0, -j0.0) [l dielectric 3 (4.0, -j0.0)
Figure 6.4 Two structures used to study the convergence of the program. Both structures
consist of the same materials. The only difference between them is the thickness of
the middle layer.

field amplitude occurs whenever a reflection from an interface reaches the top boundary. For the
structures under consideration, two changes in the reflected electric field amplitude is expected,
once from each of the material interface. Increasing the thickness of the second layer would lead to

an earlier occurrence of the first change in reflected field amplitude while the second change in
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amplitude is delayed because the second layer is an optically slower material than air (vacuum).

The first structure is thus expected to converge faster than the second structure.
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Figure 6.5 Reflected electric field for the two structures. The field of the first structure (left)
converges faster than that of the second structure (right). This shows that
convergence of the program is dominated by physical scattering phenomena.

07

These qualitative considerations are confirmed by the results of simulation as shown in
Figure 6.5. The reflected field of the first structure shown on the left indicates that the electric field
converges in 11 wave cycles whereas the reflected field of the second structure shown on the right
converges after 13 wave cycles. This analysis indicates that convergence of the program is
dominated by physical scattering phenomena.

65 Program Operation

The basic steps of running TEMPEST are shown in Figure 6.6. For a typical simulation, the

input file is edited and checked for correctness in the local computing environment. The file is then
‘transferred to the supercomputing environment under which the electromagnetic fields are
calculated. Steady-state is normally reached after 5 minutes (30-50 wave cycles) at which point the
diffraction harmonics are calculated. These diffraction harmonics are written to an output file which
“also contains a recapitulation of the input parameters as well as-additional information including
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Figure 6.6 The basic steps of running TEMPEST. The software package TEMPEST contains
the electromagnetic solver together with other supporting routines.

numerical parameters such as the spatial and temporal discretizations (Ax and At), run time and
convergence information. The diffraction harmonics can then be used to synthesis the optical image
profile of the simulated structure as discussed in the next section. A detail description of program
operation as well as other auxiliary routines associated with the software package can be found in
the TEMPEST users’ guide!®3,

6.6 Image Synthesis
6.6.1 Motivation

TEMPEST calculates the steady-state electromagnetic fields throughout the volume of a
structure under the excitation of a monochromatic harmonic field. In many instances in
photolithography, however, the interest of the user is not in the electromagnetic fields themselves
but the image of the structure as viewed through an optical imaging system. Furthermore, typically
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only the intensity distribution resulting from the fields can be observed to validate the simulation
results. There thus exists a need to convert the steady-state fields calculated by TEMPEST into an
intensity profile. The basic idea is to Fourier transform the electric and magnetic fields across a
horizontal plane into the diffraction harmonics from which imaging information can be found.

There are two physical phenomena to consider in extending TEMPEST for use in image
formation. First, the imaging systems used in photolithography are (spatially) partially coherent to
reduce ringing at the dark-bright transitions whereas illumination is assumed to be coherent in
TEMPEST. One way to model partial coherent effects is to superpose simulation results for a lot of
different angles of illumination. This approach, although accurate and feasible, generally requires a
lot of simulation runs and is inefficient. Hopkins’ approximation® can be used to simplify the
problem. The key assumption is that the magnitudes of the diffraction efficiencies are independent
of the incident angle. This approximation is adequate even for 1X projection systems with a
numerical aperture (NA) of less than 0.5. The results which support this conclusion is briefly
considered in §6.6.41%2,

The second physical phenomenon to consider is aberration of the imaging system. For non-
aberrated systems, the calculation of the optical image is a straightforward integral. For aberrated
systems, however, the calculation becomes complicated. This calculation can again be simplified
by using Hopkins’ approximation to separate mask and imaging system parameters. With this
assumption, the calculation becomes primarily that of computation of the transmission cross
coefficients’ (TCCs). Routines for the calculation of these TCCs are available, for example, in a
simulation program called SPLAT®. However, SPLAT, which is based on the scalar diffraction
theory and assumes infinitesimally thin masks, must be modified to link in the vector diffracted
field information from TEMPEST.

6.6.2 TEMEPST-SPLAT Interface
SPLAT simulates aerial images of photomasks with the assumption that the masks are

infinitesimally thin and have ideal transitions. The optical image profile of any mask at any spatial
point is thus given by’



I(xy) = ””TCC L K'ym" x K y) M(x<',, K'y) M’ (x" oK' y) .

e-J-_ll (K.!-K" X) X+ (“y-xw y) Y) dK‘de'ydK" de" y (6_1)

where M (x, xy) represents the Fourier coefficients of the mask and the asterisk represents
complex conjugation. In SPLAT simulations, the values of M (x,, xy) are calculated by Fourier
transformation of the ideal mask. Thus, in order to link SPLAT and TEMPEST, the values of
M(x,, xy) must be modified.

The quantity MM* for the scalar fields can be thought of as the energy transmitted through
the ideal mask. Thus, it is analogous to the Poynting vector § = E x H* for the vector fields.
Assuming that the mask lies in the xy-plane, the quantity of interest is then the energy travelling in
the z-direction. Thus, only the z-component of the Poynting vector S, = (E;H/* - Eny* ) isof
interest. The spatial intensity distribution can thus be expressed by modifying equation (6.1) as

1(x,y) = [[[[TCC(K, & ,ik" o K" ) [E (K, & JH* (K", K" ) -

~AL L w3t (K - %" Y]

E, (K, K ) H* (K", X" ) ] ee dx' dx’ dx" dx" (6.2)

With this connection, rigorous electromagnetic simulation is combined with arbitrary lens
aberrations, allowing the study of mask topography effects, partial coherent effects as well as the
influence of lens aberrations simultaneously. Different illumination schemes such as annular and
quadruple illumination as well as resolution enhancement techniques such as spatial filtering can be
modeled. Application is not limited to mask transmission studies, however, because SPLAT can be
perceived as imitating the functions of a microscope. Therefore, many problems such as a dark-
field or bright-field alignment system can be studied.

6.6.3 Implementation
An interface to SPLAT requires information on the diffraction harmonics of the electric and
the magnetic fields in both the x- and y-directions as discussed above. To calculate the diffraction

harmonics, Fourier transforms of the instantaneous fields are taken on either the top (for the
reflected diffraction harmonics) or the bottom (for the transmitted diffraction harmonics) xy-plane.
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Since the quantity (E,H*, -E H*) is needed, Fourier transformation must be performed on
each of the four field variables E,, Ey, Hy and Hy. However, since these variables are displaced from
one another in the FDTD grid, care must be exercised in obtaining the phase of the diffraction
harmonics or the resulting image would be in error. A correction factor must be multiplied to the
Fourier transformed variables to take into account the staggering of the numerical grid.

To illustrate, the two-dimensional discrete Fourier transform of any variable F is found via

Bk, k) = SYFG, ) ke Wox+ ity rian 63)
i

Since the node (i, j, k) in the simulation domain contains the variables E (i+1/2,j,k+1/2),
"Ey G,j+1/2,k+1/2), H (i,j+1/2,k) and I-ly (i+1/2,j,k), the phase factor inside the
integral takes on different values for the different variables E;, E,, H,, and H. For instance,

NRL(k i+ 1/2] Ax + x jAy + X, [k +1/2] A2)

Ex(‘(x’ Ky) = 2", j E (i+1/2,j,k+1/2)e (6.4)
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x(Kp X)) = TYH (1,j+1/2,k)e (6.6)
ij
o NELOx 114172 Ax + % jAy + X kA2)
y (K Ky) = ZZHY (i+172,j,k)e 6.7)
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In order to determine the different cormrection factors for the different nodes, a reference must be
chosen. For the node (i,j, k), the reference spatial location is chosen to be at
(i+1/4,j+1/4,k+1/4) . Thus, the correction factors for the diffraction harmonic with wave
mumbers  (k,,k,%,) are respectively expl[J-1(-K,Ax/4+x Ay/4-x,Az/4)],
exp[J~1(x,Ax/4-x Ay/4-x,Az/4)], expld/-1 (x,Ax/4-x Ay/4+x,Az/4)], and
exp [./-_l(-KxAx/4+KyAy/4+ x,Az/4)] for E,(i+1/2,j,k+1/2),
E,(1,j+1/2,k+1/2), H,(},j+1/2,k) and H, (i+ 1/2,j,k). For example, the Fourier

coefficients of the E, component is
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where DFT [E,] represents the discrete Fourier transform of E,.

6.6.4  Validity of Hopkins’ Approximation

20

0.0 8.0

Figure 6.7 Alignment mark structure used in the study of the validity of Hopkins’
approximation. The mark is 600 nm wide and 150 nm deep. The period of the
simulation domain is 8.0 pm.

Intuitively, the assumption of constant diffraction efficiencies with respect to illumination
angle should be valid for small angles. However, the smallness of the incident angle requires
quantification. Consider the alignment mark structure shown in Figure 6.7. The mark is 600 nm
wide (1.2A) and 150 nm deep (0.3A), and is illuminated at 0.488 pwm. For a m2r phase difference
(where m is an integer) between the left and right boundaries'%, angular steps of about 3.5° can be
used. The results of simulations performed on this alignment mark illustrated in Figure 6.8 show
that the magnitudes of the diffraction efficiencies are more or less constant for illumination angles
which are less than 30°. This corresponds to an NA of 0.5, larger than the numerical aperture used
in the alignment collection optics for this application. Thus for this application, only the diffraction
efficiencies calculated for normal incidence are necessary.

In other applications, diffraction calculations at several oblique angles may be necessary. A

measure of a reasonable step size can be determined by drawing the parallelism between
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Figure 6.8 First order diffraction efficiency magnitude as a function of the incident angle for
an alignment mark. The magnitude is more or less constant for incident angles less
than about 30°.

electromagnetic scattering of silicon wafer structures and antenna theory. For a uniform rectangular

aperture of length a, the half-power width in degrees is*

AG = 51°(A/a) (6.9)

Angular steps three or four times smaller than A@ would likely be adequate. The angles

allowed in TEMPEST simulations are given by mA = dsin0!%2, Using the small angle
approximation and converting radians to degrees gives

AB pvpesT = 57° (A/4) (6.10)
Thus, choosing the period to be four times the structure size (d 2 4a) gives angular steps about four
times smaller than the full width half maximum bandwidth as desired. Since in most applications
the period d is a parameter which can be freely chosen for simulation purposes, increased angular
accuracy can be obtained.

6.7 Conclusions

Some implementation issues of TEMPEST and the basic operation of the program are
presented. An important finding with regard to implementation (which ensures accurate simulation
results) is that more than one layer of simulation nodes must be excited initially (at t=0).
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Convergence of the electromagnetic fields is found to depend primarily on physical scattering
phenomena. This has a favorable consequence for problems in photolithography as the rate of
convergence does not deteriorate with problem size.

The software package includes auxiliary routines which cater to user convenience and
remote use of the connection machine. Linkage with the simulation program SPLAT allows the
undertaking of combined scattering and imaging problems. The combination of rigorous scattering
analysis and optical image system analysis is important in predicting the aerial images of structures
such as photomasks and alignment marks.

Although the current implementation is not optimal, improved implementations will likely
evolve from this experience. For example, improvement in computation efficiency could be
accomplished by rewriting the program in the SPMD or the MPMD mode. Despite its
imperfections, the current implementation is effective in modeling important technological issues
in photolithography. Validation of TEMPEST through comparison with experimental results as
well as applications of the program in assessing technological issues are presented in the next two

chapters.
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Chapter 7

Two-dimensional Applications:
Phase-shifting Mask Studies

7.1 TEMPEST A pplications

The possible applications of TEMPEST in photolithography are diverse. Problems in
alignment mark signal integrity, metrology, reflective notching, and mask transmission can be
studied. Many of these problems are basically two-dimensional and have been studied with the
initial TE mlaﬁzaﬁon version of TEMPEST®, These include reflective notching®!, alignment mark
signal integrity®®, photomask edge and coating effects'®, and polysilicon gate metrologys2.
Extensions of TEMPEST to the TM polarization as well as oblique incidence!%? made possible the
examination of polarization effects in mask transmission!®, phase-shifting mask edge effects’>10!,
and the effects of multi-layer coating defects on reflective x-ray masks%, These simulation results
have proven to be useful for the integrated circuit fabrication industry.

In this chapter, the contribution by the author on one of these examples, namely two-
dimensional phase-shifting mask structures’>!%!, js examined to illustrate the usefulness and
validity of TEMPEST. The simulation program is used to provide physical insight on the extent to
which the non-planar mask topography affects image quality in optical projection printing. Design
compensation data are also provided for certain PSM technologies. Since the PSMs under study are
all two-dimensional structures in which one of the dimensions is the mask thickness, mask patterns
are limited to one-dimensional, i.e., long line patterns. Furthermore, two-dimensional illumination
effects are only modeled by making Hopkins’ approximation’ as discussed in §6.6. Despite these
shortcomings, however, TEMPEST can provide valuable intuition as to the effects of phase-shlﬁer
edges on optical signals.

72 Simulation Technique

In a TEMPEST simulation, an incident (normal or oblique) wave of arbitrary amplitude
profile is excited at the top boundary of the simulation domain. Illumination is assumed to be
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monochromatic and linearly polarized, with the electric field or the magnetic field perpendicular to
the two-dimensional simulation domain (the TE or TM polarizations). The incident angle can take
on discrete values depending on the jllumination wavelength and the horizontal dimension of the
simulation domain. Steady-state fields are found throughout the simulation domain as the incident
field interacts with the topography. Either the transmitted diffraction efficiencies (for transmission
masks, for example) or the reflected diffraction efficiencies (for alignment signals, for instance) can
be calculated. Partial coherent effects can be approximated by using Hopkins’ approximation® as
discussed in Chapter 6. Hence, the optical image for K6hler illumination can be calculated by
weighing each pair of diffraction field harmonics by the overlap of the illumination and lens
acceptance cones.

A typical simulation domain of the phase-shifting mask structures examined in this chapter
is divided into a square grid of 1024 by 512, with about 15 simulation nodes per wavelength in the
region with the highest refractive index. The incident radiation is assumed to be a normally incident
plane wave. Steady-state is reached after about 30 to 50 wave cycles, which takes about 5 minutes
on a CM-2 machine with 8192 processors. (Each processor on the CM-2 consists of 64 kilobytes of
memory and there are a total of 32768 processors on the CM-2 at the Thinking Machines
Corporation in Cambridge, Massachusetts.) The calculated diffracted harmonics are then
transferred to a workstation for image synthesis. Image formation in the program is divided into
three parts: Fourier transform of the electric field transmitted through the mask (the diffracted
harmonics), filtering due to the finite pupil of the collecting lens, and the inverse Fourier transform
of the filtered diffracted harmonics.

The diffracted harmonics can be used to gain insight as to when scattering differences
between the etched and unetched regions is important. For a phase-shift pattern with odd symmetry
such as that of an alternating and chromeless PSMs, simple scalar and thin mask approximations
predict that all the even order diffraction harmonics vanish. In particular, the zeroth order or the
straight through diffracted order should be zero. In addition, the +1 and -1 orders should be equal.
Deviation from these two conditions means an imbalance in the peak intensities as well as image
degradation for some depth of focus. This can be illustrated by the special case of when the pitch of
the lines and spaces is so small such that the exit pupil only collects the lowest three diffracted
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harmonics (0, +1) and a three-beam interference results. In this case, if odd symmetry exists, the
peak intensities of the 0° region and the 180° region would be equal and the depth of focus would
be infinite for a coherent system, because only the £1 beams interact. When the zeroth harmonic is
non-zero but the +1 and -1 harmonics have the same magnitude, it is possible to discern the size of

the D.C. (0% order) component from the maximum imbalance in the peak intensity.

73 Different Phase-shifting Mask Techniques

Phase-shifting masks (PSMs) have shown promise in increasing the resolution and depth
of focus in photolithography. Different PSM techniques (shown in Figure 7.1) such as alternating?2,
attenuated*?, outrigger®’, im%’ and chromeless®® have been extensively studied in recent years.
These different styles require different fabrication techniques, but common to all is the inevitability
of non-planar topography because of the necessity to create phase differences. One of the important
issues in examining trade-off among different phase-shifting mask technologies is the effects these
edges have on the aerial images in a projection printing system. Computer simulation programs
such as SAMPLE"? and SPLAT® can play a major role in exploring as well as optimizing layout
patterns®. However, such tools assume that the masks have ideal dark-bright transitions and hence
do not model mask edge scattering effects which can be important in PSM technologies.

The detailed shape of the phase-shifter edges (line edge topography) on PSMs has been
shown both experimentally'® and through computer simulation*’ to have crucial effects on the
optical signals that the PSMs create. For PSMs fabricated using the subtractive process, a previous
study using the simulation program TEMPEST"? showed that effects of the chromium profile and
refractive index are minimal compared to the glass edge profile, and that the difference in
transmission for equally sized openings of 0° and 180° means that interchanging 0° and 180°
regions on the mask does not result in the same photoresist profiles’>. A similar conclusion has been
drawn by Yuan!!? using an alternative simulation technique. Ramifications of this observation are
widespread. In the rim PSM technology, there is a difference between etching the rim or the middle
signal region. In the alternating PSM technology, this problem can be addressed by properly
shaping the etched glass profile. These simulation results were confirmed by experimental
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Figure 7.1 Different types of PSMs.

studies”?. Besides unequal linewidths due to differences in transmission, two nearby glass edges
may interact and produce resonant effects'?".

In this chapter, image quality issues in alternating, rim, attenuated and chromeless PSMs
are studied. For simplicity, all PSMs examined here are assumed to have been fabricated using the
quartz etch process with vertical glass edges. Except for attenuated PSMs, the opaque layer is
chromium with vertical edges of thickness of 80 nm and refractive index of (2.5, -j2.0). The four
styles of PSMs considered in this chapter are shown in Figure 7.1. An alternating mask has
openings of 0° and 180° separated by opaque regions. The large clear area of a rim mask is
surrounded by small transmitting areas which are 180° out of phase. There are two subclasses of
rim PSMs. The first has its rim etched to 180° (rim-etched) and the second has its large clear area
etched to 180° (middle-etched). An attenuated mask is similar to a conventional mask except that
the normally opaque layer is partially transmitting. The phase of the field from the partially

transmitting area is 180° with respect to the clear openings so that it contributes to a decreased
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image width. A chromeless mask relies solely on the destructive interference between light
transmitted through the 0° and 180° regions to produce dark images.

The organization of this chapter is as follows: the lack of intensity balance between
alternating etched and unetched openings in an alternating PSM is first investigated. Remedies to
this problem by undercutting the glass opening and by a feature size-independent bias are proposed.
Rim type PSMs are then considered. The difference between a rim-etched and a middle-etched
mask, as well as the dependence of mask performance on the rim dimension and the middle
dimension are examined. The optimal transmission level of the leaky layer in attenuated type PSM
is then considered. In the final section, resonance like phenomenon in dielectric ridges and its effect

on imaging with different optical system parameters is investigated.

74  Alternating PSMs

Normalized Field Value
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Position (um)
Figure 7.2 Instantaneous electric field just underneath the chromium layer of an alternating

PSM with vertical glass edges directly aligned with the chromium edges in the TE
polarization. The 0° region (right side) indicates higher energy transmission.

Figure 7.2 shows the instantaneous electric field just underneath the chromium absorption
layer of an alternating PSM with vertical glass edges directly aligned with the chromium edges. The
unetched 0° region is on the right side and the etched 180° region is on the left side. The 0° region
indicates higher energy transmission due to the higher peak field value and the higher curvature of

the electric field. The image created by such a mask on a proto-typical 5X optical system (called
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System A) with (A=0.248 pm, NA=0.35, 0=0.64, M=5) indicates that the peak intensity of the 0°
region is 10% higher than that of the 180° region. Ferguson et al.!? attributed this imbalance in peak

intensity to the effective transmission and phase errors associated with the glass edges.

Figure 7.3 Simulated images and exposure results of 0.25 pm lines and spaces created by
different alternating PSMs. (a) A mask with vertical glass edges creates an
intensity imbalance which is manifested as a 0.1 pm linewidth difference in the
photoresist. (b) Isotropic etching of the 180° glass opening overcompensates the
problem and makes the peak intensity at the 180° region higher and the photoresist
line wider. (c) Anisotropic etching followed by 60 nm of isotropic etching
produces images of equal peak intensity and photoresist lines with equal widths.
(d) The same mask as in case (c) except that the amount of isotropic etch is 120 nm
tends to overcompensate the problem. (Photoresist pictures courtesy of Christophe
Pierrat at AT&T Bell Laboratories.)

This difference in transmission means that equal spaces of 0° and 180° phases on the mask
do not print equally on the wafer as illustrated in Figure 7.37. The simulated intensity profile in
Figure 7.3a shows a peak intensity which is 10% lower at the 180° opening than at the 0° opening.
This result is confirmed by the SEM picture of the imaged 0.25 pm linespaces (negative)
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photoresist shown in the same figure. There is a 0.1 pm linewidth difference between the 180° and
the 0° openings. This difference in intensity can be reduced by undercutting the glass beneath the
opaque chromium layer via isotropic wet etching as shown in Figure 7.3b. However, the intensity
of the light going through the etched portion of the mask in this case becomes higher than that going
through the unetched portion. Another possible solution is to etch the glass first by anisotropic dry
etch and then slightly undercutting both the shifted and non-shifted regions on the mask using an
isotropic wet etch as shown in Figure 7.3c and Figure 7.3d. Depending on the amount of glass
etched during the second wet etch, the intensity of light going through the etched portion of the
mask is higher or lower compared to the unetched portion of the mask. In this case, an undercut of
60 nm shown in Figure 7.3c produces equal peak intensities for both openings as indicated by the
simulated images and the photoresist lines. An undercut of 120 nm tends to make the peak intensity
at the etched opening higher as shown in Figure 7.3d.

The suggested remedies to the problem by hiding the glass edges under the chromium layer
using both isotropic and anisotropic etching are quite successful in equalizing the peak intensities.
However, the amount of undercut is feature size dependent. It would be better if a feature size
independent solution could be found.

Since equalization of peak intensities can be interpreted as reducing the DC component of
the spatial Fourier transform of the mask, equal intensities may be achieved by a design scheme
based on biasing the etched 180° region to increase transmission and reduce the DC component of
the transformed mask. Figure 7.4 shows the peak intensities for etched (180° and 360°) and
unetched (0°) openings of different sizes for the TE and TM polarizations. Simulation results from
SPLAT® are included as the solid line for an ideal mask behavior. The differences between the two
polarizations for the unetched mask (~3%) and the etched mask (~1%) are slight. However,
comparison with the ideal mask shows that the peak intensities are about 8% and 25% lower for the
unetched and etched masks respectively. Thus, etching the glass reduces the transmitted intensity
by about 17% of the clear field value for small features.

It is interesting to note from the figure that the difference in peak values of the unetched and
the etched openings is constant for a wide range of opening sizes ranging from 0.3 to 0.7 A/NA.
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This suggests that a possible correction scheme for equal peak intensities is to use a fixed bias of
0.05 A/NA for each etched opening on the mask over a size range of 0.3 to 0.7 A/NA.

13

Peak Intensity

o'::i;isiii,»us
Opening Size (L/NA)

Figure 7.4 Peak intensity as a function of opening size for various degrees of glass etching.
The amount of bias seems to be constant at 0.021 A/NA for a large range of
opening sizes ranging from 0.3 to 0.7 A/NA.

Table 7.1 shows the ratio of the 0° peak intensity value to the 180° peak value for different
feature sizes when a constant bias of 0.042 A/NA is applied to the 180° region. The constant bias
minimizes the peak intensity differences to within about 1% for all the three feature sizes of 0.35,
0.42, and 0.49 A/NA (corresponding to 0.25, 0.30, and 0.35 pm lines and spaces), and this
equalization of peak intensities corresponds to the equalization of the critical dimension (CD). It
was found that the DC component of the Fourier transformed mask is two orders of magnitude
lower in the biased mask than the unbiased mask for a 0.25 pm feature size.

Feature  |0° Peak/ 180° Peak|[0° Peak / 180° Peak
0.25 1.080 1.008
0.30 1.042 0.989
0.35 1.042 1.001
Table 7.1 0° to 180° peak intensity ratios for different feature sizes with a constant bias of

+0.042 M/NA applied to the 180° region. The constant bias shows marked
improvement in peak intensity ratio due to the reduced DC component.
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Because of the reduced DC component, the biased masks are also expected to have better
defocus behavior than the unbiased masks as explained above. Table 7.2 shows that for a 0.25 pm
feature size, the peak intensity ratio changes by only 1% for the biased mask over a focus range of
+2 Rayleigh units (1 RU = O.S*OJ(NA)Z) = 1.0 um). For the unbiased mask, however, the peak
intensity ratio changes by more than 6% for a 2 RU of defocus. Thus, applying a constant bias to
the 180° regions of alternating PSMs can equalize the peak intensities for different feature sizes as

well as improve the DOE
Defocus  [0° Peak / 180° Peak|0° Peak / 180° Peak
2.0 1.017 0.990
-1.0 1.055 0.997
- 0.0 1.080 - 1,008
+1.0 1.069 1.011
+2.0 1.031 1.005
Table 7.2 Peak intensity ratio for 0.25 pm feature size as a function of defocus in Rayleigh

units. The biased mask shows better defocus behavior than the unbiased mask.

7.5 Rim PSM

Decreased transmission of etched openings also has important consequences on the choice
of the style of rim PSMs. Two types of rim PSMs are shown in Figure 7.1. The first type has its rim
etched to 180° (rim-etched) whereas the second type has the middle of the open area etched
(middle-etched). The dimension of the middle signal region is d; and the dimension of the rim is
d,. Since an etched glass edge contributes to a decrease in peak intensity, the peak intensity of the
middle-etched mask is expected to be lower than that of the rim-etched mask of the same
dimensions. This is because the field at the rim can be thought of as subtracting from the field of the
middle signal region. When the rim is etched, the field being subtracted is less than what it would
be if it were not etched. As a result, the rim-etched mask is expected to give a higher peak intensity
than the middle-etched mask. This expected difference in mask transmission must be simulated by
arigorous electromagnetic model because the scalar approach does not model scattering due to the
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glass edges, and hence would give identical images for both the rim-etched and middle-etched
masks.

Edge effect in rim PSMs was assessed using TEMPEST simulation on a proto-typical 4X
deep-UV system (called System B) with (A=0.248 pm, NA=0.5, 6=0.4, M=4). For rim masks of
dimensions dy=1.6 pm and d,=0.3 pm, the peak intensity of the rim-etched mask is 10% higher
than that of the middle-etched. However, peak intensity is only one of the important aspects of an
image, image slope is also important. Figure 7.5 shows that despite a lower peak intensity, the
maximum image slope of the middle-etched mask is higher than that of the rim-etched mask. In
addition, the middle-etched mask gives a narrower image than the rim-etched mask, which is
evident from the locations of the peaks of the image slope.
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Figure 7.5 Image slope of rim-etched and middle-etched rim PSMs. The middle-etched mask
shows a higher image slope and a narrower width, although it shows a lower peak
intensity.

In order to determine the importance of the dimensions of the rim (d,) and the middle (d,)
in affecting the peak intensity, image slope, etc., a set of simulations were done with different d;
and d, values using an approach analogous to a two-level experimental design. Since there is no
noise in simulation studies, the significance of the effects due to variations in the d, and d,
dimensions is determined by comparison with the variance of the data over the noiseless cases. The
observed parameters are the peak intensity, the image slope, the sidelobe amplitude, and the image
width which is defined to be the distance between the steepest points in the image. The nominal
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dimension for d, is 1.60 pm and for d, is 0.50 pm. Variations in the d; and d, dimensions are +0.2
pm.

Table 7.3 shows the dependence of peak intensity on variations of dy, d,, and the product
d, ¢d, for a rim-etched mask. Increasing both d, and d, was found to increase the peak intensity, but
d, is about 2.5 times more effective than d,. There is virtually no curvature or the interaction effect
dyed,. Thus, the peak intensity is predominately a linear function of d; and d,.

dy(um) dy(um) djed;  Peak

1.80(+) 0.70 (+) + 1.426
1.80(+) 0.30() - 1.232
140(-) 0.70(+) - 1.029
140(-) 0.30() + 0.931

sum+ 2.658 2.455 2.357
sum - 1.960 2.163 2.261
difference 0.692 0.292 0.096

effect 0.346 0.146 0.048
18120 0.7640 0.251c0 0©=0.191

average 1.155
center 1.60 0.50 1.162
curvature -0.007
Table 7.3 Application of an approach analogous to a two-level experimental design to study

the effects on the peak intensity of the rim and middle dimensions in a rim-etched
mask. The effect of middle dimension (d;) is about 2.5 times more important than
the rim dimension (d,). 62 is the variance of the data.

The previous results are for the peak intensity dependence of a rim-etched mask. The same
procedure when applied to a middle-etched mask showed little qualitative difference. The effect of
the middle dimension is 1.90 and that of the rim dimension is 0.611c, where 62 is the variance of
the data (6=0.239). There is again virtually no curvature or second order effect dependence on the
term d;ed,. In fact, curvature and second order effects were found to be insignificant in all other
studies including amplitudes of the sidelobes, the maximum slope, and the width of the image. This

is an indication that there is no direct electromagnetic interaction between the phase-shifter edge
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and the chromium edge. In fact, interaction between the edges is significant only if they are
separated by less than 0.1 pm!%!,

From a design point of view, several observations can be made from the results, and these
are summarized by the data in Table 7.4. The rim dimension d, in a rim PSM functions to increase
the image slope and to reduce the linewidth, although increasing it increases the sidelobe amplitude
as well. The d, and d; dimensions should therefore be optimized in such a way that the image width
and the sidelobe amplitude are minimized whereas the peak intensity is maximized to increase
contrast and throughput. This optimization is not complicated by second order effects, and the
response of the image characteristics are almost bilinear with respect to d; and d,. This suggests
that d, should be as large as possible within an allowed sidelobe amplitude level. Then d; can be
chosen based on the peak intensity requirement.

rim
etched peak  sidelobe  slope width
d, 18120, 02570, -1049; 11090,
d, 07640, 1980, 1.6940, -1.664c,
djed,  025lc, -00730, 01325, 00,
¢ 0.191 0.109 0.144 0.018
middle
etched peak  sidelobe  slope  width
d, 19000, -0.181c, -0.94c; 1.000c,
d, 0611c, 19936, 17070, -1.667c,
d;ed, 01760, -0.051c; 0443c; 03330,
o 0.239 0.138 00902 0015
Table 7.4 The importance of the d; and d, dimensions on four aspects of the image: peak

intensity, sidelobe amplitude, maximum image slope, and image width. The effects
are expressed in units of ¢, which is the standard deviation of the data points. The
rim-etched and middle-etched masks show similar behaviors.
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7.6 Attenuated PSM
7.6.1 Transmission Level of the Partially Transmitting Layer

Attenuated PSMs have advantages over other types of PSM techniques because of the
compactness of features on the masks and the absence of the phase conflict problem. However, the
design of attenuated masks is complicated by the choice of an appropriate level of transmission for
the partially transmitting layer. In this study, the partially transmitting layer is assumed to have a
transmission of 7% and a phase of 110° when the thickness is 0.1 pm. From these data, the index
of refraction of the partially transmitting layer can be determined to be (2.115, -j0.756). Thus, a 4%
transmitting layer would be 0.126 pm thick and have a phase of 136°.

Figure 7.6 shows the optical image profiles generated by a 5X i-line projection printing
system (called System C) with (A=0.365 pm, NA=0.48, 6=0.38, M=5). These are images in the TE
polarization of two attenuated masks with different degrees of intensity transmission of 7% and 4%
for the partially transmitting layer. The image corresponding to the lower transmission mask shows
a higher peak intensity as well as lower sidelobes. However, the 7% transmission mask shows a
smaller feature size than the 4% transmission mask. Therefore, the optimal transmission of the
partially transmitting layer is a balance between a tolerable sidelobe amplitude (especially when
defocus is taken into consideration) and a narrow image.

To accurately predict the images generated by attenuated masks, a rigorous
electromagnetic model is necessary. Figure 7.7 shows the simulated images of a 1.50 pm opening
on a 4% transmission attenuated mask using the scalar approach of SPLAT and the rigorous model
in TEMPEST for the TE polarization on optical System C. The feature size is equivalent to a k;
value of 0.4. The two images agree extremely well in the partially transmitting regions. However,
the two simulators gave drastically different peak intensities. The peak intensity of the SPLAT
image is about 20% higher than that of the TEMPEST image. This difference is attributed to glass
edge scattering and is consistent with the data shown in Figure 7.4. Thus, a rigorous simulation
model must be used to model attenuated PSMs.

86



X (um at wafer)

Figure 7.6 Images of two attenuated masks with different degrees of transmission of the
partially transmitting layer. The mask with higher transmission gives a smaller
feature whereas the mask with lower transmission gives a higher peak intensity
and a lower sidelobe amplitude.
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Figure 7.7 Simulated images from SPLAT and TEMPEST of a 1.50 pm opening on a 4%
transmitting attenuated mask. The rigorous approach of TEMPEST predicts about
a 30% lower peak intensity than the scalar approach of SPLAT.

To investigate the feasibility of printing features at k;=0.4, Table 7.5 shows the image
contrast at different focus levels produced by attenuated masks of transmission of 7%, 4%, and
0.5%. Contrast is defined as the ratio of the difference between the main signal intensity value and
the sidelobe amplitude to their sum. A negative contrast value means that the sidelobe amplitude is
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higher than the main signal. If a contrast of as low as 0.3 can be tolerated, then a 7% transmission
mask can barely work with less than £1 RU (1 RU =0.79 pm) of DOF. A minimum contrast of 0.5
would render a 7% transmission mask impossible whereas a 4% mask still functions with about 1
RU of DOF. If severe substrate reflection causes large standing waves in the photoresist, then a
contrast of at least 0.8 is required. This means that only a mask with low transmission (close to a

conventional mask) can be useful.

Defocus Contrast Contrast Contrast
2.0 -0.281 -0.035 N/A
-1.0 0.194 0.408 0.833
0.0 0.378 0.579 0.864
+1.0 0.324 0.531 0.702
+2.0 -0.020 0.182 N/A
Table 7.5 Image contrast for an isolated open space at k;=0.4 at different focal depths for

three attenuated masks with 7%, 4%, and 0.5% transmission. Although the 7%
mask gives a narrower image, the image contrast in focus is only 0.38.

A k; value of 0.4 is a challenge to.the state-of-the-art technology. In production, however,
a k; value of 0.6 is more common. Table 7.5 shows the image contrast at different focal depths for
an opening size corresponding to k;=0.6 on attenuated masks with 7% and 4% transmission. A 7%
transmission mask is possible with about 2 RU of DOF if a contrast of about 0.6 is acceptable. For
the same contrast level, a 4% partially transmitting mask gives a larger DOF of approximately 3
RU. Thus, at a fixed contrast requirement, a less transparent partially transmitting layer is
recommended for smaller features or better DOF latitude. However, less transparency also means a
slightly wider image.

7.6.2 Edge Effects on Image Quality

Besides the importance of choosing a suitable transmission level of the attenuating
material, two other issues associated with attenuated PSMs are phase error and phase-shifter edge
effects on the image quality. In §7.4, glass edge scattering have been shown to reduce transmission
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Defocus Contrast Contrast
-2.0 0.164 0.333
-1.0 0.558 0.660
0.0 0.681 0.778
+1.0 0.610 0.725
+2.0 0.317 0472
Table 7.6 Image contrast for an isolated open space at k;=0.6. at different focal depths for

two attenuated masks with 7% and 4% transmission. The larger feature size in this
case makes a 7% partially transmitting mask possible.

in alternating PSMs. The attenuated PSM technology is also likely to be subjected to edge effects.
In this section, these effects are examined by comparing experimental results from the IBM Aerial
Image Measurement System (AIMS)’ with predictions from simulations using the thin mask
approximation (SPLAT) and the rigorous electromagnetic model (TEMPEST). The structures
under consideration are isolated space, isolated line and linespace patterns. For all these patterns,
masks with five different phases of 155°, 170°, 180°, 190°, and 205° are examined in order to study
the interplay among glass edge scattering, phase error and defocus effects.

7.6.2.1 Experimental Technique

Aerial images generated by attenuated masks were measured using the IBM Aerial Image
Measurement System (AIMS)’. The AIMS tool is constructed on a Zeiss microscope base, with a
deep-UV objective used to emulate the imaging lens of a stepper. An aperture is placed within the
imaging objective in order to adjust the numerical aperture (NA) of the system. Selection of this
aperture depends upon the NA of the stepper under consideration as well as the magnification of the
reticle being analyzed. A Mercury-arc lamp generates the exposure energy, with the appropriate
wavelength selected through an optical filter. Thus far, the system has been configured to run at both
i-line (0.365 pm) as well as deep-UV (0.248 pm) wavelengths. In the illumination system, an
interchangeable aperture is used to choose the partial coherence (G) or to create a modified
illumination configuration. The aperture is imaged onto the entrance pupil of the imaging objective
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to achieve Kohler illumination. The projected image is collected by a CCD camera with 512x512
pixels at a magnification of approximately 200X from mask to CCD array. The focus of the system
is adjusted by moving the stage containing the reticle; typically, the acrial image is collected during
one measurement at eleven different positions of the stage. The collected aerial image is normalized

by measurements taken in a large clear area to generate a relative intensity.

7.6.2.2 Simulation Context

The context chosen to explore the edge effects is that of 4X deep-UV (248 nm) projection
printing with an NA of 0.5 and a ¢ of 0.54 (called System D). The attenuated PSMs have a
chromium layer of thickness of 293 A and a refractive index of (1.623, -j1.627). The measured
intensity transmission is 7% and the phase is 19°. The remaining phase is created by etching into
the glass substrate of refractive index (1.5, -j0.0), resulting in a trench with vertical sidewalls.

SPLAT is a FORTRAN program which simulates two-dimensional projection-printing
based on the Hopkins® formulation of partially coherent imaging’. It assumes that the lithographic
mask is infinitesimally thin and thus neglects possible edge effects. Such idealization nevertheless
gives good prediction for binary mask patterns. For alternating PSMs, however, effects of glass
edge scattering can render the thin-mask approximation in SPLAT in error by as much as 10% of
the clear field intensity’>. In such instances, rigorous electromagnetic simulation of transmission
through masks is required. Thus, the importance of edge scattering is measured by the difference in
the simulation results between SPLAT and TEMPEST. For structures in which edge scattering is

-insignificant, SPLAT can be used to predict mask behaviors. When edge scattering is important,
however, the computation intensive model of TEMPEST must be used to obtain useful predictions.

7.6.2.3 Isolated Space

One of the concerns in the fabrication of attenuated PSMs is the exact control of the phase
and transmission of the partially transmitting layer due to non-uniformities during the course of
layer deposition. This results in the difficulty of maintaining a 180° phase shift between the opening
regions and the leaky regions. Although the phase can be controlled to better than one degree for
- particular features, etch rate fluctuations may result in phase errors of +£10° for openings of different
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sizes. Study of the effect of phase error on aerial images were done on five different masks with
phases of 155°, 170°, 180°, 190°, and 205°, corresponding to phase errors of -25°, -10°, 0°, 10°, and

25°, respectively.
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Figure 7.8 AIMS measured in-focus images of 0.25 pm openings (wafer dimension) for five
different phases of 155°, 170°, 180°, 190°, and 205°. The lateral shift of the images
is only a measurement artifact.

AIMS measured in-focus aerial images of 0.25 pm space patterns (wafer dimension) for
the five different phases of the masks are shown in Figure 7.8. If the masks were infinitesimally
thin, the change in the peak intensity with respect to phase would be very gradual and symmetric
with respect to 180°. In-focus SPLAT images for the five different masks shown in Figure 7.9
indicate this behavior. However, the experimental and TEMPEST images behave differently. A
very rapid and asymmetric behavior is observed in the AIMS measurements in Figure 7.8 as well
as from TEMPEST simulation results as shown in Figure 7.10. From the discrepancy between the
two simulators and the experimental data, one can conclude that glass edge scattering dominates
over phase error in affecting in-focus images of isolated spaces in attenuated PSMs. In fact,

simulation results from SPLAT shown in Figure 7.9 suggest that a pure phase error of £25° does not
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Figure 7.9 SPLAT simulations of in-focus images of 0.25 pm openings (wafer dimension) for five
different phases of 155°, 170°, 180°, 190°, and 205°. The images vary by only 1%.

have noticeable effects on the images, i. e., the 180° mask shows the highest péak intensity; but the
peak intensities of the 155° and 205° masks are only about 1% less than that of the feature with no
phase error. An examination of the normalized SPLAT images shows that all the aerial images are
almost identical. This indicates that a pure phase error is non-critical. Scattering due to the glass
edges is thus significant as the peak intensity is reduced in an asymmetrical manner about 180°. A
205° (+25° phase error) mask shows a lower peak intensity than a 155° (-25° phase error) mask
because the 205° mask has a deeper glass trench and longer glass edges.

This increased scattering with increasing glass trench depth is shown in Figure 7.11 for a
space opening on a binary mask. The total energy transmitted through the opening, however, is
constant to within 0.5% for the different etched depths despite the decrease in peak intensity. This
suggests that the glass edges reduce the peak intensity by diffracting light out of the collection cone
of the optical system and the amount of scattering increases with the glass etched depth. The
efficiency of glass edge scattering, however, may be dependent on the mask structure. For a 0.5 /
NA space opening, the SPLAT image for a conventional binary mask shows a peak intensity which
is 30% higher than that of the TEMPEST image. For an opening on an attenuated PSM of the same
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Figure 7.10 TEMPEST simulations show the same behavior as observed experimentally.

dimension, the peak intensity of the SPLAT image is only 23% higher than that of the TEMPEST
image. This indicates that the phase interaction between the clear area and the leaky area in an
attenuated PSM reduces the effect of glass edge scattering.

Although the peak intensities for the features with different phases vary by as much as 10%
as the phase changes from 155° to 205°, the normalized images as shown in Figure 7.12 do not
differ by too much except that the sidelobe and the backgfound transmission become relatively
more important as the glass etched depth increases. This increased relative importance of the
sidelobe intensity is not important for in-focus printing. For out-of-focus printing, however, the
slightly decreased contrast may cause the depth-of-focus (DOF) to degrade for higher phase masks.

A possible remedy to the problem of reduced peak intensity is to fabricate the attenuated
PSM using the recessed leaky chrome (RLC) technique?® as shown in Figure 7.13 where the
structure of a normal leaky chrome (NLC) mask is also illustrated. The inverted configuration of the
RLC mask was implemented in order to reduce the effect of electromagnetic scattering from the
sidewalls of the etched glass openings. The efficacy of the RLC mask in reducing glass edge
scattering is studied by examining the electric field in the vicinity of a glass edge for the two types

.of masks as shown in Figure 7.13. Incident radiation propagates from the top of the figures and
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Figure 7.11 Peak intensity of a 0.25 um opening (wafer dimension) in a binary chrome mask as a

function of glass etched depth (phase) from TEMPEST. Deeper glass trenches result in
lower peak intensities.
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Figure 7.12 Nommalized TEMPEST images of Figure 7.10 show that there is not much difference in
image quality for the five different phases, other than the difference in peak intensity.

impinges upon the mask topography creating the transmitted field distribution at the lower part of
the figures. For the NLC mask, Figure 7.13a shows that a region of low electric field is created in
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the air adjacent to the glass edge. The reduction in peak intensity can be attributed to the formation
of this shadow region. For the RLC mask, however, Figure 7.13b shows that the light tends to
concentrate in the opening region and remain in the optically denser material (glass). Thus, the

RLC mask is expected to alleviate the problem of transmission loss due to glass edge scattering.
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(a) Normal Leaky Chrome (b) Recessed Leaky Chrome

Figure 7.13 The RLC mask can be used to alleviate the problem of glass edge scattering in
attenuated PSMs. (a) In the NLC mask, a region of low electric field is created by
the glass edge which results in a loss in peak intensity. (b) In the RLC mask, the
low electric field region does not exist because the field tends to remain in the
optically denser material.

7.6.2.4 Isolated Line

For isolated line patterns, SPLAT simulation results show that a pure phase error of £25° is
again not significant in affecting the in-focus images. Contrary to the isolated space patterns, the in-
focus images as measured bjr the AIMS tool and predicted by TEMPEST and SPLAT match closely
with one another as shown in Figure 7.14. (The AIMS measured image has a higher minimum
intensity which may be caused by flare in the measurement environment.) Thus, scattering from the
glass edges does not play an important role in degrading the in-focus aerial images of isolated lines.

This is because the relative importance of the scattered light is less when the mask background is
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Figure 7.14 Comparison of the images from AIMS, TEMPEST, and SPLAT for a 170° 0.25 pm line.
The three images are similar, indicating the applicability of the thin mask and scalar
approximations.

bright than when it is dark. The thin mask approximation is therefore adequate for in-focus image

prediction.
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Figure 7.15 AIMS measured images of 0.25 um linespace patterns of five different phases. Similar to
the isolated space pattemn, the peak intensity decreases with increasing phase.
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7.6.2.5 Linespace Pattern

g}

Normalized Intensity

Figure 7.16 Normalized images of linespace patterns of Figure 7.15 from TEMPEST simulations show
that there should not be much in-focus performance difference among the masks with
different phases.

AIMS measured images for linespace patterns with the five different phases are shown in
Figure 7.15. Similar to the behavior of lsélated spaces, the mask with the lowest phase (155°)
shows the highest peak intensity. The peak intensity decreases as the phase is increased, reaching a
minimum for the 205° mask with a peak intensity which is about 15% lower than that of the 155°
mask. However, this decrease in peak intensity may not be significant in adversely affecting the
mask performance because the normalized images from TEMPEST simulation shown in Figure
7.16 are very similar. Furthermore, contrary to the isolated space pattern, this decrease in peak
intensity with increasing phase may not cause significant degradation in the DOF because of the
absence of sidelobes in the images.

7.6.2.6 Defocus Behavior

The images of a 180° space pattern from SPLAT simulations for different defocus levels
are shown in Figure 7.17. The images show a behavior which is symmetric with respect to the in-
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Figure 7.17 SPLAT images of a 180° space at defocus levels of 1.0, 0.75, 0.5, 0.25, 0.0, -0.25, -0.5, -
0.75, and -1.00 pum. The defocus behavior is symmetric with respect to the in-focus image.

focus image, i.e., the image for +x pm of defocus is the same as the image for -x pm of defocus.
However, such is not the case for the defocus images from TEMPEST simulations as shown in
Figure 7.18. This asymmetry with respect to the zero defocus image can be attributed to glass edge
scattering which causes an effective phase-shift of the opening!®. In fact, a plot of the peak intensity
as a function of defocus from AIMS measurements, and TEMPEST and SPLAT simulations in
Figure 7.19 shows that although the SPLAT images show no focus shift, the TEMPEST images
show a focus shift of about 0.1 pm. Determination of focus shift from AIMS images is difficult
because of the difficulty in establishing a reference plane. Thus, the apparent focus shift of the
AIMS images in Figure 7.19 cannot be interpreted as quantitatively correct. Nevertheless, AIMS
iheasurements do indicate a focus shift which changes monotonically with the glass etched depth.
This focus shift can be explained by the path difference between light diffracted from the
glass trench opening and the light leaking through the chromium layer. Since the diffracted light
from the glass trench has an energy distribution which is almost uniform across the lens whereas
the leaky field uses primarily the center part of the lens, the path difference or the focus shift is
approximately (dsNA)/(2(\/4)) Rayleigh unit (RU), where d is the depth of the glass trench, NA,,,
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Figure 7.18 TEMPEST images of the same mask at the same defocus levels as Figure 7.17. The
defocus behavior is asymmetric with respect to the in-focus image, indicating the influence
of mask edge effects.

is the numerical aperture of the lens on the mask side, and 1 RU=0.5¢(A/NA2). The number two is

a heuristic factor which accounts for the fact that the diffracted field from the glass trench must be

averaged over the entire lens. For the structure under consideration, d=A(Qg1ass/360°)/(ngiass-

Ny;)=0.22um, NA;=0.125, and the focus shift is calculated to be about 0.22 RU or 0.11 pm. This

theoretical value agrees well with the observed focus shift from the TEMPEST curve in Figure

7.19. In practice, the value of this focus shift is different for different features across the field of

exposure; and this would result in a loss of DOF. A similar phenomenon is observed for line

patterns as well. Although SPLAT usually gives reasonable results near focus, it would need
modifications such as a trench depth dependent phase correction factor to work well out-of-focus.

The similarity between TEMPEST results and the AIMS data, together with their agreement with

the above theoretical consideration, validates that TEMPEST is capable of modeling subtle effects

in photolithography.
From the AIMS defocus images, the DOF of the masks with different phases are calculated
via an E-D analysis with a 15% exposure latitude; and the results are shown in Figure 7.20. The

DOF for both the isolated space (open squares) and the linespace patterns (shaded squares) are
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Figure 7.19 Peak intensity versus defocus for a 180° space from AIMS, TEMPEST and SPLAT. The
TEMPEST data as well as AIMS measurements show a focus shift whereas the SPLAT
data do not. This focus shift is related to the path difference between light diffracted from
the glass trench opening and the light leaking through the chromium layer. The higher peak

.intensity shown by the AIMS measurements than the TEMPEST data is reasonable
because of flare in the measurement environment.

larger than the line pattern (dark squares). For the 180° mask, the DOF for a 0.25 pm isolated space

feature is 0.99 um; for a 0.25/0.25 pm linespace feature it is 1.05 pm; and for a 0.25 pm isolated

line it is only 0.52 pum. This poor DOF performance of isolated lines can be improved, however, by
biasing. If a 1 um line on the mask (corresponding to 0.25 pm in 4X reduction printing) is used to
print 0.28 pm lines, the DOF is improved tremendously as shown by the dark diamonds in Figure

7.20. The DOF for a 180° line increases from 0.52 pm to 0.86 pm, representing a 50% increase in

DOF with a 12% increase in the k; factor. This suggests that in the attenuated PSM technology,

printing small isolated space and linespace patterns is more robust than isolated lines.

Reading the curves in Figure 7.20 individually, it is observed that for the isolated space
pattern, the DOF generally decreases slowly as the phase increases. This is because the contrast of
isolated space images decreases as the phase increases due to the reduction in peak intensity. As a
result, the sidelobes become relatively more important when the image gets out of focus. The line

pattern also shows a decrease in DOF as the glass trench becomes deeper. The linespace pattern
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Figure 7.20 DOF as a function of phase. The DOF for space and linespace patterns are comparable; but
the DOF for the line pattern is much smaller.

shows the least variation. This is due to the similarity among the normalized images in Figure 7.16

as well as the absence of sidelobes.

7.7 Chromeless PSMs

Chromeless PSMs are useful in printing dense lines and spaces. However, phase conflict
and defect printability are major concerns for this technique. Methods to alleviate the phase conflict
problem include introducing one 90° or two 60° phase steps between the 0° and 180° regions on the
mask!6. Despite these concerns, another issue of the chromeless technology is uneven linewidths
for equal width pattefns on the mask, similar to the situation of the alternating PSM technology
discussed above. For chromeless masks, asymmetry can arise because glass sticking up from the
mask substrate can attract radiation emanating from the bottom of the trench. Figure 7.21 shows the
aerial images created by two masks with equal 0° and 180° widths (intended to produce a 0.5 pm
pitch pattern on a wafer) on two different optical projection printing systems: System A and System
B. SPLAT predicts a balanced image in both cases but this is not correct. For TEMPEST, system B
gives equal peak heights at the 0° and 180° regions. However, system A does not. The peak
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intensity corresponding to the 180° region (to the side in the figure) is lower than that corresponding
to the 0° region (in the middle of the figure). Thus, in order to obtain equal linewidths, a system
dependent bias to the mask must be applied.

x (um at wafer)

x (um at wafer)

Figure 7.21 Optical image profiles created by chromeless masks for system B (above) and
system A (below). System B shows symmetry between the 0° and the 180°
regions; but system A does not.

The imbalance in peak intensities in system A arises because the small but non-vanishing
zeroth and second diffracted orders becomes more important at small k; values and large ©. Since
k;=0.35 for system A, the collection lens captures only a fraction of the energy in the +1 diffraction
harmonics. As a result, the energy associated with the zeroth and the second diffraction harmonics
are relatively more important. In system B, however, the k; value of 0.5 is high enough and ¢ low
enough so that the collection lens captures all the energy of the 1 harmonics, and the importance
of the zeroth and second order harmonics remains negligible compared to the 1 beam interaction.

Another interesting phenomenon associated with chromeless mask repair is the difference
between a 360° trench and a 360° protrusion. A phase defect is normally repaired by removing
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glass at the defect position to attain a 360° trench. Figure 7.22 shows the images created by System
B when such a methodology is employed for repairing defects of different sizes. The 2.0 pm wide
trench (a large defect) shows that a single 0° to 360° transition produces a dip to 80% of the clear
field value. As the trench width decreases, the two glass edges interact to double the intensity
decrease to 40%, corresponding to a dip going as low as 60% of the clear field value. This
maximum dip occurs for a 0.25 pm wide trench. As the trench size decreases from 0.25 pm, the dip
becomes less severe as the trench becomes more difficult to resolve. The two curves marked by
diamonds in Figure 7.23 show this simple behavior. The percentage intensity decrease is the most
severe when the trench width is about one freespace wavelength. The severity of the effect
decreases monotonically to both sides, reaching zero for very small defects and reaching the effect

of a single edge for very large defects.

x (um at wafter)

Figure 7.22 Images of 360° phase-shifter trenches of 2.00, 1.00, 0.50, 0.25 and 0.125 pm wide
on chromeless phase-shift masks for the TM polarization.

During the course of phase defect repair, however, small downward pointing glass
protrusions or dielectric ridges may be left behind. Assuming that the protrusions have 360° phase
and vertical edges, they can produce decrease in the intensity of as much as 80% causing the image
to dip to as low as 20% of the clear field value as shown in the two curves marked by squares in
Figure 7.23. This region of sharp decrease occurs for both polarizations and shows an oscillatory
behavior with respect to the width of the protrusion, indicating that a resonant phenomenon may be
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Figure 7.23 Percentage intensity decrease as a function of the width of the 360° trench
(diamond marked) and protrusion (square marked) for the TE and TM
polarizations. The oscillatory behavior associated with the protrusion suggests a
resonance within the protrusion.
occurring within the protrusion. (Such a phenomenon does not occur if the defect is a trench etched
into the glass substrate as discussed above.) If the resonance is due to reflection between the glass
edges, the full ﬁdm at half maximum (FWHM) of the resonance, i.e., the range of protrusion
widths which produce severe drop in the intensity, should be about 0.5Ap4teria1. The first resonances
in Figure 7.23 for both polarizations show widths of about 0.3Aq, which is about 0.5A1,s, agreeing
with the above prediction. The difference in the resonance location (protrusion width which gives
the most severe drop in intensity) between the two polarizations can be attributed to the difference
in reflection coefficients for the two polarizations.

To test if the observed behavior is a function of the mask structure or the optical system
parameters, the same structure was simulated with the optical System B, except that the resolution
in this case is halved by reducing the numerical aperture from 0.5 to 0.25. Figure 7.24 shows that
the worst intensity decrease in this system is 50%, or 30% less than the previous system owing to
lower resolution. However, the width of the protrusion corresponding to the worst case is the same
for both systems and does not scale with resolution, indicating that the resonance is a property of
the mask structure itself. Thus, the optical system parameters such as the numerical aperture and the
partial coherent factor were found to affect the degree of the intensity decrease but not the basic
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Figure 7.24 Percentage intensity decrease as a function of protrusion width for a system with
an NA of 0.25. The percentage drop for this system is less than the previous system
with an NA of 0.50, but the locations of the peaks and valleys are identical.

behavior itself. This structural effect can even be seen in oblique incidence. Figure 7.25 shows the

instantaneous magnetic field for a 0.125 pm wide glass protrusion for an incident angle of 3.6° in
the TM polarization (A=0.248 tm). The high peak values in the vicinity of the dielectric protrusion
again suggest a resonant phenomenon.

The difference in behavior between a dielectric ridge and a trench can also be seen
experimentally as shown in Figure 7.26. The feature on the left corresponds to the printed image of
a glass trench and the feature on the right corresponds that of a protrusion. The effect of a protrusion
is bigger than a trench as can be seen by the darker (deeper) line in the SEM picture.

78 Conclusions

Effects of phase-shifting mask edge in projection printing for four types of phase-shifting
masks were assessed using rigorous electromagnetic simulation on four different optical systems
and validated with experimental data. Important effects of glass edge scattering of light rays
through the masks were found, resulting in images which are 10 to 30 per cent different from the
ideal images predicted by scalar and thin mask models in simulators such as SPLAT. The etched
glass edges were found to scatter light and lead to a lowering in peak intensity. For alternating
‘masks, edge scattering can be remedied by reducing the opening dimension by 0.021 A/NA per
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Figure 7.25 Instantaneous magnetic field for a 0.125 pm wide glass protrusion for oblique
incidence (TM). The field shows high peak within the protrusion, suggesting a
resonant phenomenon.

edge for feature size ranging from 0.3 to 0.7 A/NA. To model such an effect in SPLAT to first order,
Figure 7.4 can be used as a design graph to determine the amount of bias needed.

For rim type PSMs, edge to edge interaction is shown to be insignificant based on an
approach analogous to a two-level experimental design. No direct electromagnetic interaction
between chromium edges and shifter edges was found. Hence, optimization of the rim size and the
middle size is not complicated by the second order effect of the product of the rim and middle
dimensions. The rim dimension can thus be designed solely on the basis of the sidelobe level and
peak intensity. For attenuated PSMs, a lower level of transmission of the partially transmitting layer
is recommended for smaller features based on consideration of image contrast through focus.
Topographies on attenuated PSMs also have important effects on the image quality and defocus
behavior of isolated space, isolated line, and linespace patterns. These edge effects cause a loss in
peak intensity and hence a possible reduction in throughput. Remedy to this problem with the
recessed leaky chrome mask is promising. The trench depth also produces a focus shift which is

slightly pattern dependent. Improvements may be made if a suitable attenuating material is found
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Figure 7.26 SEM picture of photoresist lines produ'ced'by a 1 pm dielectric ridge (right) and a
1 pm trench (left). The effect of a protrusion is bigger than a trench as is indicated
by the darker (deeper) line in the picture. Exposure is done on a 4X deep-UV
stepper with a numerical aperture of 0.6 and a partial coherence factor of 0.5. The
photoresist is negative tone SNR-248. (Photoresist picture courtesy of Marco
Zuniga at the University of California, Berkeley.)

such that little height difference occurs between the open and attenuated regions. For chromeless

PSMs, optical system parameters can affect the peak intensity balance between the 0° and the 180°

regions for small features through the increase in relative importance of the small but non-

negligible even order diffracted harmonics.

In any PSM technology, small 360° glass protrusions may produce a drastic drop in the
intensity. This effect was first predicted by TEMPEST and then observed experimentally. The
qualitative behavior of this resonance is dependent only on the mask structure, and is independent
of the optical system parameters. The effect is expected to be smaller for “real-life” protrusion
defects since the rough and non-vertical edges may inhibit the resonance which exists for a vertical
edge protrusion.

Through the study of these different PSM techniques, in advance predictions by TEMPEST
have shown quantitative agreement with experimental data taken on different systems. TEMPEST

predictions of focus shift and the effects of glass edge scattering in attenuated PSMs were
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confirmed by AIMS measurements. The difference in behavior between a dielectric ridge and a
glass trench in the chromeless PSM technology predicted by TEMPEST was also supported by
SEM pictures of photoresist lines. For the alternating PSM technique, variations of the optical
image due to subtle changes in the mask are successfully predicted by TEMPEST and validated by
photoresist exposure studies. TEMPEST is thus a useful and accurate electromagnetic modeling
program for understanding difficult and complicated issues in photolithography.
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Chapter 8

Three-dimensional Applications:
Mask Edge Effects and Reflective Notching

8.1 Introduction

The ability to analyze three-dimensional structures is very important in photolithography
as it allows many complicated issues to be examined. Effects in two-dimensional features may be
exaggerated or diminished in a three-dimensional structure. For example, results from two-
dimensional rigorous simulation of a 0.5 /NA wide isolated space feature on a binary mask show
polarization effects of 3% and a transmission loss of 10% as the light passes through the opening!®.
These effects are expected to be larger in three-dimensional mask features such as contact hole
patterns. Another interesting problem is that of the printability of a 360° phase quartz bump defect.
For a 360° phase ridge, the previous chapter indicates the existence of resonance within the
dielectric ridge which can cause a 70% drop in the intensity. The corresponding three-dimensional
bump defect is not expected to show such a drastic effect because such a structure does not support
a waveguide mode. Reflective notching is another important three-dimensional issue as non-planar
topography on the wafer can cause undesired exposure in the photoresist and a change in the critical
dimension of the feature being formed.

8.2 Simulation Context

A typical TEMPEST simulation described in this chapter uses a simulation domain of 4 pm
by 4um by 1 pm (length by width by height). The domain is divided into a cubic grid of 256 by 256
by 64 simulation nodes. This translates to about one simulation node per 16 nm. The incident
radiation is assumed to be a normally incident plane wave with the electric field polarized in the x-
direction (the length direction). Steady-state is reached after about 30-50 wave cycles, which takes
about 10 minutes on a 32-node partition on the CM-5. (Each node on the CM-5 consists of 32
megabytes of memory, and there are a total of 512 nodes on the CM-5 at the National Center for
Supercomputing Applications (NCSA) in Illinois. A larger problem can be solved by using more
processor nodes.) The calculated diffraction harmonics are then transferred to SPLAT for image
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synthesis. Two-dimensional image calculation using SPLAT generally takes less than one minute
on a workstation, although longer computation time may be needed for larger problems.

83 Polarization Effects and Transmission loss in 1X Contact Holes

Evidence of the importance of polarization effects and transmission loss was shown to be
important for 1X deep-UV projection printing!%. These effects are expected to be more severe for
mask patterns such as contact holes and elbows because of increased interactions between the
electromagnetic fields and the chromium absorption layer. In this study, square openings of sizes
ranging from 0.1 pm to 1.0 pm in length on each side are examined for transmission loss and
polarization effects. The context chosen to explore these effects is that of 1X deep-UV (248 nm)
projection printing with a numerical aperture (NA) of 0.5 and a partial coherence factor () of 0.4.
Thus 1 A/NA is approximately equal to 0.5 pm. The absorption layer of the mask is chromium with
arefractive index of (2.5, -j2.0) and a thickness of 80 nm. The glass substrate has a refractive index
of (1.5, j0.0).
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Figure 8.1 Images of a 0.5 pm by 0.5 um (1 A/NA by 1 A/NA) opening predicted by
TEMPEST (left) and SPLAT (right) simulations. The SPLAT image shows a four-
fold symmetry whereas the TEMPEST image shows only a two-fold symmetry,
indicating polarization effects.

The images of a 0.5 um by 0.5 pm (1 A/NA by 1 A/NA) opening predicted by TEMPEST
and SPLAT (thin mask and scalar approximations) simulations are shown in Figure 8.1. Notice in
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the figure that the SPLAT image shows a peak intensity which is 25% higher than that of the
TEMPEST image. This loss in peak intensity is also observed for space patterns'®, and is
apparently due to a combination of propagation through a small aperture and energy dissipation in
the chrome due to its finite thickness. In fact, a plot of the peak intensity as a function of opening
size for TEMPEST and SPLAT simulations shown in Figure 8.2 indicates that the SPLAT image
shows higher peak intensity for opening sizes of less than 1 A/NA. The SPLAT image can give a
peak intensity which is almost 2X higher than that predicted by TEMPEST for the case of a 0.4 pm
by 0.4 um (0.8 A/NA x 0.8 A/NA) opening. The difference in the peak intensities between SPLAT
and TEMPEST is greater for contact hole structures than for a space pattern. An exact relationship
of transmission loss between an open space and a square contact hole is complicated. However, for
feature sizes smaller than 1 A/NA, transmission loss for a square contact hole is about three times
that of an isolated space. This increase is due to the simultaneous presence of the north/south and

east/west edge effects in a contact hole structure.
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Figure 8.2 Peak intensity of square openings as a function of size. For openings smaller than
1 MNA, SPLAT images show higher peak intensity than the TEMPEST images.

Since the transmission loss of a square contact hole is about three times that of an isolated
space, the effects in a contact hole cannot be approximated by summing the effects of two
perpendicular space openings. Non-linear effects are present. These effects can also be ascertained
from Figure 8.2 as the transmission loss is not constant over any range of the feature size, implying
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that a different bias must be used for features of different sizes. This is not a serious restriction in
IC fabrication, however, because all the contact holes usually have the same dimensions.

Another interesting feature in Figure 8.1 is that the image predicted by SPLAT shows a
four-fold symmetry (with respect to the x-axis, the y-axis, the x = y line and the x = -y line)
whereas the TEMPEST image exhibits only a two-fold symmetry (with respect to the x-axis and the
y-axis). Since the four-fold symmetry shown by the SPLAT image is also present in the square
mask pattern, lack of symmetry with respect to the x = y line and the x = —y line in the
TEMPEST image indicates that the electromagnetic fields interact with the metal chromium
differently depending on the relative orientation between the incident polarization and the metal
surface. In fact, the TEMPEST image in Figure 8.1 shows an elliptical shape which is elongated in

:the x-direction when the incident electric field is polarized in the x-direction. The eccentricity
(defined as the ratio of the image width in the y-direction to the width in the x-direction) as a
function of the opening size is shown as the open squares in Figure 8.3. In the absence of
polarization effects, a square contact with k=0.8 prints slightly eccentric by 6% as shown by the
SPLAT image in Figure 8.1. The polarization effect is about 3 times larger as the eccentricity
reaches a maximum of 1.17 when the opening size is 1 A/NA. This suggests that there is a critical
size at which polarization effects are the most important. For sizes smaller than this critical size,
polarization effects are relatively less important because of the difficulty in transmission through a
small opening, and the contact hole becomes more difficult to resolve. For contact holes larger than
this critical size, the relative importance of the metal edges decreases as the clear area increases.

To test if this critical size is a function of the mask structure or of the optical system
parameters, the same contact holes were simulated with another optical system with an NA of 0.35.
‘This system produces features which are 1.5 times larger than the former system. The results are
shown as the open diamonds in Figure 8.3. Comparing the two curves in Figure 8.3, the critical size
is the same for both systems at about 1 A/NA, although the NA=0.5 system shows a higher degree
of eccentricity. Thus, the critical size is dependent on the optical system parameters. For the
NA=0.5 system, the critical size is 0.5 pm x 0.5 pm whereas for the NA=0.35 system, the critical
size is 0.7 pm x 0.7 pum.
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Figure 8.3 Eccentricity as a measure of lack of symmetry. The value should be one in the
absence of any polarization effects. Eccentricity is system dependent as it peaks at
1 A/NA for two optical systems.

The elliptical shape of the TEMPEST images can be partly explained by the
electromagnetic boundary conditions on a metal surface imposed by Maxwell’s equations. On the
surface of a good conductor, the parallel electric field is almost zero whereas the perpendicular
electric field is nonzero. Thus, when the incident electric field is polarized in the x-direction, the
electric field is almost zero at the metal surfaces parallel to the x-axis. The effective length of the
mask in the y-dimension is therefore smaller than the effective length in the x-dimension, leading
to the elliptical shape of the images.

The dependence of the critical size on the optical system parameters suggests that besides
purely electromagnetic considerations, there is an interplay between electromagnetic scattering on
the mask and the optical system which creates the mask image. Since the image eccentricity arises
because of the metallic layer on the mask, the most important optical system parameter should be
the cone angle on the mask side. The larger the cone angle, the more eccentric the image is as
suggested by Figure 8.3. Thus, there should be little eccentricity in square contact hole images for
reduction masks as the cone angle on the mask side is small.

This polarization effect is expected to be more pronounced for rectangular patterns because
a narrow slit may transmit different amounts of energy depending on the incident polarization.
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Figure 8.4 shows the TEMPEST images of a 0.4 pm by 0.5 pm mask and a 0.5 pm by 0.4 pm mask.

W g
y (om) ¥ (om) ¥ (um)

Figure 8.4 Images of a 0.4 um by 0.5 um opening by TEMPEST (left), a 0.5 pm by 0.4 pm
opening by TEMPEST (middle), and a 0.5 um by 0.4 pm opening by SPLAT
(right). Polarization effects make the effective y dimension of the opening smaller
in TEMPEST simulations.

It can be seen from the figure that for the 0.4 by 0.5 mask, the image is longer in the x-direction than
in the y-direction although the mask opening is longer in the y-direction. This indicates that
polarization effects are even stronger than the orientation of the rectangular mask feature. For the
0.5 by 0.4 mask, polarization shortening of the y dimension causes the structure to appear more
elliptical as indicated by the oval shape of the image. The image predicted by SPLAT shown in the
same figure displays a less elliptical image, indicating the effects of polarization in the TEMPEST
images.

Since the effective length of the opening in the y-direction is smaller when polarization
éffects are considered, the eccentricity of the images predicted by TEMPEST is smaller than the
eccentricity of the images predicted by SPLAT. Table 8.1 shows the eccentricity of the images
predicted by TEMPEST and SPLAT for different sized rectangular openings. The eccentricity is
determined by the x and y extent of the image at the 30% intensity level (with respect to clear field).
The difference between the eccentricities can be as much as 31% for an opening of 0.5 pm by 0.6
pum. Notice also that for certain structures, the eccentricity of the TEMPEST images may be less
than 1 while the mask aspect ratio is greater than 1. This effect may complicate the design of masks
as different bias values are needed for the two different directions if polarized illumination is used.
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From Table 8.1, a bias of about 0.05 pm in the y-direction is needed to correct for polarization
effects assuming that no bias is applied to the x-direction. In most projection systems, however, the
use of unpolarized light sources would reduce almost all asymmetries due to polarization effects,
but it would still be important to bias the contact hole according to Figure 8.2 to increase the peak

intensity of the image.
Mask Size Mask Aspect Eccentricity Eccentricity Percentage
(um by pum) Ratio (TEMPEST) (SPLAT) Difference
02x0.5 2.50 N/A 1.66 N/A
04x0.5 1.25 097 1.15 -18.6%
06x0.5 0.83 0.75 0.84 -12.0%
08x0.5 0.63 0.57 0.58 -1.8%
1.0x0.5 0.50 045 045 0.0%
0.5x02 0.40 N/A 0.60 N/A
05x04 0.80 0.85 0.87 -24%
0.5x0.6 1.25 091 1.19 -30.8%
05x0.8 1.60 1.32 1.72 -30.3%
05x1.0 2.00 1.88 224 -19.1%
Table 8.1 Eccentricity of the TEMPEST and SPLAT images for mask openings of different

dimensions. For any contact hole, the eccentricity of the TEMPEST image is less than the
SPLAT image. The difference can be as large as 31% for a 0.5 pm by 0.6 pm opening.

All the contact holes considered so far are ideal. Contact holes on masks which are used in
photolithography have non-idealities such as rounded corners and defects. These non-idealities can
also be examined with TEMPEST. For example, the image of a 0.5 pm by 0.5 pm contact hole with
its corners obscured is shown in Figure 8.5 together with the image of an ideal contact hole. The
obscurities at the corners are chromium with the same thickness as the opaque region. The cross-
sections of each obscurity is a square of size S0 nm in length on each side. There is little
qualitatively difference between the two images, although the ideal contact hole gives a slightly
higher peak intensity and a slightly larger image.

84 Defect Printability in Chromeless Phase-Shifting Masks

It was shown that a 360° glass ridge in a chromeless PSM produces resonances that may
cause an intensity drop of 70% to 30% of the clear field value!®!, Such a drastic drop in the intensity

115



x (um)
x (um)

I E— Wt =35
¥y (um) ¥ (um)

Figure 8.5 The images of an ideal contact hole (left) and a contact hole with obscurities at the

corners (right) show little qualitatively difference in the aerial images. The ideal

contact hole shows a slightly higher peak intensity.
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Figure 8.6 Image of a 0.9 um by 0.9 pm 360° phase bump defect. The image attains a
minimum in the middle of the defect. This is typical of the behavior of such
defects.

level was attributed to wave-guiding effects of the dielectric protrusion. It is thus interesting to
~ investigate the printability of 360° phase quartz bump defects. The context chosen to explore this
phenomenon is that of 4X deep-UV projection printing with an NA of 0.5 and a ¢ of 0.4. The point
defects all have vertical glass edges which are 2A (0.496 jtm) long in the vertical dimension in order
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to create a phase of 360° with the refractive index of glass assumed to be (1.5, j0.0). In the
horizontal dimenéions, the protrusion has a square surface which varies in size from 0.1 pm to 1.0
pm in length on each side on the mask.

Minumum Intensity

01 02 03 04 (] 2
Defect Size (UNA)

Figure 8.7 Minimum intensity as a function of defect size. The bump defect shows a smooth
behavior whereas the ridge defect shows an oscillatory behavior.

A typical optical image profile of such a defect is shown in Figure 8.6 for a defect size of
0.9 pm by 0.9 pm. Notice that the image shows a four-fold symmetry, indicating that polarization
effects are not important. This is also the case for a 360° phase glass ridge or glass trench!0!, The
°-360° transition causes an intensity drop which is the most severe in the middle of the defect; and
this point of lowest intensity can be used to characterize the impact of the defect. Figure 8.7 plots
this minimum intensity as a function of defect size. The impact of the defect reaches a maximum
for a defect of size 1 pm by 1 um (0.5 A/NA by 0.5 A/NA), where the intensity is reduced by 40%.
The effect of the defect decreases monotonically for larger and smaller sizes. This behavior is in
contrast to a glass ridge which shows the oscillating behavior (discussed in the previous chapter) as
shown by the open diamonds in Figure 8.7. This result indicates that a waveguide mode is not set
up within the glass protrusion. Quartz bump defects of 360° phase are thus not problematic when
the dose to clear is below 55% of the clear field exposure value.
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8.5 Reflective Notching

Side View
0.7 pm <«——  Photoresist (1.69, j0.01)
0.25 pm TN\
0.171 um — <4—— Polysilicon (6.187, -j2.453)
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0.329 “uﬁ e K ——  Gate Oxide (1.4745, 50.0)
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0.4 pm «——  Silicon (6.551, -j2.648)
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Figure 8.8 Printing of a polysilicon gate. The 0.25 um thick conformal polysilicon is coated
on the oxide; it passes from the field oxide through the bird’s beak onto the active
region.

Besides its applications in the study of mask problems, three-dimensional TEMPEST is
also useful in the study of formation of latent images in photoresist over non-planar topography.
This is especially important in the patterning of the polysilicon gate. Topography on the wafer may
cause uneven exposure and hence non-uniform critical dimension of the polysilicon gate as it
‘transverses over the active region and ficld oxide. As an example, consider the printing of a
polysilicon line as shown in Figure 8.8. A conformal layer of polysilicon with a thickness of 0.25
pum is coated on the oxide. The polysilicon runs from the field oxide (~0.5 pm thick) through the
bird’s beak (lateral dimension of 0.4 um) onto the active region with a gate oxide thickness of 90A.
A latent image is formed on the planar photoresist layer with Dill's ABC parameters!® given as
(0.95, 0.083, 0.016). The image is formed by SPLAT simulation of a 1.75 pm wide opening on a
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5X reduction mask at a wavelength of 0.365 pm. A total dose of 100 mJ is delivered. Dynamic
bleaching of the photoresist is modeled by dividing the total dose into five steps.

40.949
0.854
0.759
0.664
0.569
0.474
0.38
0.285
0.19

10.0949

[\-
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Figure 8.9 PAC concentration of a vertical plane along the line aa‘ in Figure 8.8. Far away

from the bird's beak, the latent image shows the effects of standing waves. At the
polysilicon step, the exposure energy is re-directed by the topography, resulting in
a region of low exposure.

Figure 8.9 shows the latent image within the photoresist (PAC concentration) of a vertical
plane along the line aa‘ in Figure 8.8. Far away from the step, the latent image shows the effects of
standing waves caused by the high reflectance of the polysilicon layer. At the bird's beak, the
exposure energy is re-directed by the polysilicon topography, resulting in a region of low exposure.
The effect of the step can also be seen in Figure 8.10, in which the PAC concentration of vertical
planes along bb*, cc*, and dd* are shown. The picture on the top (bb‘) shows the standing wave
within the photoresist in the field oxide region. The picture on the bottom (dd*) shows the PAC
concentration in the photoresist in the active region. These latent images show wider critical
dimensions than the one in the middle picture (cc*) in which the PAC concentration of a vertical
plane at the location of the bird’s beak is plotted. This reduction of polysilicon critical dimension
due to the slope of the bird’s beak has also been observed experimentally?,
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Figure 8.10 PAC concentration of vertical planes along bb‘ (top), cc* (middle) and dd*
(bottom). The critical dimension at the bird’s beak (middle picture) is different
from the other two.

8.6 Conclusions

The three-dimensional version of TEMPEST has been shown to be very useful in
Characterizing potential mask and reflective notching problems in photolithography. Studies of
quartz bump defects of 360° phase do not show significant eccentricity or severe intensity reduction
and will not print if the dose to clear is below 55% of the clear field exposure value. They also do
not appear to have a resonance as i§ the case for a glass ridge. Examination of 1X projection
printing of contact holes at 248 nm shows that transmission loss is typically three times more than
the loss in isolated opening spaces. Polarization effects in binary mask transmission produce

eccentricities in the images of square contact holes. The effect can be as large as 17% which is three
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times that of a square contact hole at 5X projection printing. These eccentricities can be more
important than the slight imbalance in the lengths of the sides of a normally square opening. It is
hoped that these predictions will be confirmed by studies on 1X projection printing systems and/or
aerial image monitoring systems. For example, transmission loss in small contact holes can be
tested by using a series of contact holes of different sizes and monitoring the time of exposure
required to clear the photoresist as a function of opening size.

TEMPEST has also been applied in an initial study of reflective notching in the printing of
the polysilicon gate. The slope of the bird’s beak re-directs the exposure energy and cause
variations in the critical dimension. This effect has also been observed experimentally.
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Chapter 9

Conclusions

Rigorous electromagnetic simulation in photolithography is expected to play a major role
in the IC fabrication industry because of its ability to predict subtle effects of electromagnetic
interaction with matter. For example, with the phase-shifting mask technique, rigorous
electromagnetic simulations can predict the changes in aerial images due to subtle changes in the
glass edge shape. Moreover, the ability in simulation studies to isolate certain effects also makes
simulation attractive in the examination of cqmplex ideas and novel methods. Furthermore, with
the increasing cost of performing experiments and the decreasing cost of computer memory and
time, simulation is expected to be an indispensable tool in developing new fabrication techniques.

The contributions of this thesis can be viewed as pushing the frontier of rigorous
electromagnetic simulation in three areas: numerical methods, integration of scattering and
imaging simulation software, and applications of simulation in the studies of state-of-the-art IC
fabrication technologies. With regard to numerical methods, a three-dimensional formulation of
rigorous electromagnetic modeling using the time-domain finite-difference approach on the
connection machine CM-5 is presented. The use of a cubic grid in which the six electromagnetic
field components are staggered in space makes the problem maps well onto parallel computer
architectures. Stability of the conventional TDFD numerical scheme requires that the time step be
smaller than a fraction of the spatial step multiplied by the speed of light as well as the real part of
the refractive index be greater than the imaginary part. The latter requirement can be relaxed with
the use of the frequency-dependent finite-difference time-domain method in which the convolution
relation between the electric displacement and the electric field is modeled via a recursive relation.
The Debye model (which models ionic-like materials) or the Lorentz model (which models
metallic-like materials) are used with this (FD)”I'D scheme. Termination of the simulation domain
is achieved by the application of a novel second order absorbing boundary condition which is
derived based on the harmonic nature of electromagnetic waves. This boundary condition is shown

to be as accurate and more efficient than other existing boundary conditions.
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Several extensions can be made to the current algorithm. More efficient boundary
conditions can be formulated so that the simulation domain can be terminated as close to the
scatterer as possible. This would reduce the memory requirement, allowing larger problems to be
solved. These boundary conditions must be derived based on a different concept (such as the MEI
method®’) than the conventional radiation boundary condition because close to the scatterer
surfaces, the electromagnetic fields cannot be decomposed into propagating plane waves alone.
Savings in memory is also possible with the use of a variable grid instead of the cubic grid
implemented currently. This would maintain a constant node density throughout the simulation
domain. Other possible extensions include the capability to analyze anisotropic materials and even
non-linear effects. These would enable the modeling of quantum electronics such as laser cavities.

With regard to software integration, the software package TEMPEST contains supporting
routines and a link to the aerial image simulation program SPLAT in addition to the
electromagnetic solver. The linkage to SPLAT for image synthesis allows the results of rigorous
electromagnetic simulation from TEMPEST to be interpreted in the context of optical system
effects such as arbitrary lens aberrations. The execution time of each TEMPEST simulation is about
10 minutes on the connection machine CM-5. The number of CM-5 nodes required depends on the
problem size. For a typical simulation domain of 4 pm by 4um by 1pm, 64 nodes (out of a total of
512 nodes at the National Center for Supercomputing Applications) are needed. Convergence of
the program is dominated by physical scattering phenomena.

Some improvements in the software package can be made. First, the program can be
implemented a multiple-instruction multiple-data computer architecture such that the boundary
condition can be calculated more efficiently. Second, TEMPEST can be rewritten for execution on
more accessible computer architectures such as the Cray. In terms of simulation tool integration,
TEMPEST can be integrated under the technology CAD framework of SIMPL24. This would allow
the simultaneous study of deposition and etching effects, optical system characteristics, and
electromagnetic scattering, enlarging the scope of applicability of these simulation tools.

With regard to applications, TEMPEST is shown to be useful in two-dimensional and
three-dimensional studies. Predictions of TEMPEST in different phase-shifting mask techniques
had been validated by experimental data taken on different systems. Predictions from the program
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can also be used to provide physical insight and design data for different fabrication technologies.
Other two-dimensional applications such as metrology, alignment mark signal integrity and mask
transmission have also been examined in other publications®29+1%, Initial three-dimensional
studies are also undertaken in this thesis in the areas of mask effects in projection printing of 1X
contact holes and reflective notching. Through these different studies, TEMPEST has proven itself
to be a valuable prediction tool in photolithography.

With regard to future work in the area of TEMPEST applications, experimental
verifications of 1X contact hole predictions and 360° phase bump defect printability are important
in order to validate the program. An integrated SIMPL-SPLAT-TEMPEST software package would

-allow more realistic structures to be simulated such as the actual alignment mark and trench

“memory structures. Other interesting applications include the effects of reflection from underlying
topography during photoresist exposure which can cause variations in the polysilicon gate critical
dimension, and characterization of projection printing of contact holes on attenuated phase-shifting
masks. Alignment mark detection is another challenging issue as the planarization process makes
the marks almost invisible.

With the current capabilities, TEMPEST is effective in modeling two-dimensional and
three-dimensional electromagnetic scattering problems in photolithography. It is hoped that
TEMPEST would continue to be useful in developing future integrated circuit processes.
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