

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FORMULA-DEPENDENT EQUIVALENCE FOR

COMPOSITIONAL CTL MODEL CHECKING

by

Adnan Aziz, Thomas R. Shiple, Vigyan Singhal,
Robert K. Brayton, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M94/78

20 June 1994

FORMULA-DEPENDENT EQUIVALENCE FOR

COMPOSITIONAL CTL MODEL CHECKING

by

Adnan Aziz, Thomas R. Shiple, Vigyan Singhal,
Robert K. Brayton, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M94/78

20 June 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FORMULA-DEPENDENT EQUIVALENCE FOR

COMPOSITIONAL CTL MODEL CHECKING

by

Adnan Aziz, Thomas R. Shiple,Vigyan Singhal,
Robert K. Brayton, and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M94/78

20 June 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Formula-Dependent Equivalence for
Compositional CTL Model Checking

Adnan Aziz Thomas R. Shiple Vigyan Singhal
Robert K. Brayton Alberto L. Sangiovanni-Vincentelli

Email: {adnan, shiple,vigyan,brayton, alberto}®eecs. berkeley. edu
Department of EECS, University of California, Berkeley, CA 94720

June 20, 1994

Abstract

We present a state equivalence that is defined with respect to a given CTL formula. Since
it does not attempt to preserve all CTL formulas, like bisimulation does, we can expect to
compute coarser equivalences. We use this equivalence to manage the size of the transition
relations encountered when model checking a system of interacting FSMs. Specifically, the
equivalence is used to reduce the size of each component FSM, so that their product will be
smaller. We show how to apply the method, whether an explicit representation is used for the
FSMs, or BDDs are used. Also, we show that in some cases our approach can detect if a formula
passes or fails, without composing all the component machines. The method is exact and fully
automatic, and handles full CTL.

1 Introduction

Formal design verification is the process of verifying that a design has certain properties that the
designer intended. A well known verification technique is computation tree logic (CTL) model
checking. In this approach, a design is modeled as a finite state machine (FSM), properties are
stated using CTL formulas, and a "model checker" is used to prove that the FSM satisfies the given
CTL formulas [6]. The complexity of model checking a formula is linear in the number of states of
the FSM.

Oftentimes, large designs are constructed by Unking together a set of FSMs. The straightfor
ward approach to model checking such a design is to first form the product of the component FSMs
to yield a single FSM, and then proceed to model check this single FSM. However, the size of the
product machine can be exponential in the number of component machines, and hence the model
checker may take exponential time. This is known as the "state explosion problem" when using
explicit representations, or the "representation explosion problem" when using implicit representa
tions, like ordered binary decision diagrams (BDDs). As it turns out, we cannot hope to do better
than this in the worst case, because the problem of model checking a system of interacting FSMs
is PSPACE-complete [1].

1

REQ IDLE ACK IDLE

Figure 1: Finite state machine M with inputs 0 and 1 and outputs REQ, ACK, IDLE and EOT. The
symbol T means "true", the union of all input assignments.

M'

&&&&<$
REQ IDLE ACK IDLE

Our goal is to develop an algorithm that alleviates the explosion problem by identifying equiv
alent states in each component machine. These equivalent states are then used to simplify the
components before taking their product, thus leading to a smaller product machine. It is well
known that bisimulation equivalence is the coarsest (or weakest) equivalence that preserves the
truth of all CTL formulas [4]. However, in general we are interested in model checking a system
with respect to just a few formulas, and hence preserving all CTL formulas is stronger than needed.
Thus, we investigate a formula-dependent equivalence that preserves the truth of a particular for
mula of interest, but possibly not of other formulas. This leads to a coarser equivalence, and thus
to a greater opportunity for simplification. If an explicit representation is used for the FSMs, then
this equivalence is used to form the quotient machines of the components. If BDDs are used, then
the equivalence relation is used to define a range of permissible transition relations, among which
we want to use the one with the smallest BDD.

Consider for example the FSM M described in Figure 1. The CTL formula <f> = VG(req -•
VjPack) expresses the property that every request is eventually acknowledged. The behaviors from
state 1 and 5 are different. However, since there are no behaviors from states 4 and 8 where REQ
is produced, then <f> is always true at these states. Hence, states 1 and 5 can actually be merged,
with respect to <f>. Consequently, M can be replaced by the 5-state machine M': verifying <j> on a
product machine containing the component M is equivalent to verifying <f> on the product machine
with M replaced by M'.

The approach we have developed can be applied to any formula of CTL. Thus, we can handle
formulas that refer to atomic propositions of any number of the component machines, and the
formulas can be nested arbitrarily. The approach is fully automatic and it is exact, that is, it
returns exactly the set of product states satisfying the formula of interest. Finally, in some cases
the approach can detect if a formula passes or fails, without composing all the component machines.

Section 2 discusses related work, and Section 3 presents some preliminaries. In Section 4 we
develop our formula-dependent equivalence, and in Section 5 we discuss how this equivalence can
be used to simplify compositional model checking. Finally, Section 6 mentions future work and
gives conclusions, and the appendix contains the proofs of the theorems in the paper. The body of
this paper appeared in [2].

2 Related Work

Other researchers have addressed the problem of reducing the complexity of model checking. As
mentioned in the introduction, bisimulation preserves the truth of all CTL formulas, and hence can
be used to identify equivalent states to derive smaller component machines. This technique has
been used by [3].

Clarke et al. presented the interface ru/e, which can be applied when a CTL formula refers to
the atomic propositions of just one machine, the "main" machine [7]. In this case, the outputs of
the other machines that cannot be sensed by the main machine, can be "hidden". After hiding
such outputs, some states in the other machines may become equivalent, and hence the number of
states can be reduced. This technique is orthogonal to our approach, and thus the two approaches
could be combined. In general, any output not referred to by the formula, and not observable by
other machines, can be hidden.

Grumberg et al. defined a subset of CTL, known as ACTL, which permits only universal path
quantification, and not existential path quantification [11]. They go on to develop an approach to
compositional model checkingfor ACTL. If an ACTL formula is true of one component in a system,
then it is true of the entire system. Thus, in some cases the full product machine can be avoided.
However, the formula may be true of the entire system, without being true of any one component in
isolation, i.e. their approach is conservative, and not exact. In this case, some components must be
composed, and the procedure repeated. The user has the option of manually forming abstractions
for some of the machines. If the formula is false, then the product machine must always be formed.
An asset of this approach is that it handles fairness constraints on the system.

Dams et al. have also devised an approach using ACTL [9]. Like our method, they compute
an equivalence with respect to a single formula. Although they are limited to formulas of ACTL,
it may turn out that coarser equivalences are possible by restricting to a subset of CTL. They do
not address how their equivalence can be used in compositional model checking, where a formula
may refer to the atomic propositions of several interacting machines.

Our experience indicates that existential path properties are useful for determining if a system
can exhibit a certain behavior. This is especially true when ascertaining if the environment for a
system has been correctly modeled so that it can produce the stimuli of interest. Hence, we are
interested in techniques that can handle full CTL.

The work of Chiodo et al. [5] has similar aims as ours, and the current work can be seen as an
outgrowth of that work. Both approaches are exact, fully automatic, and formula dependent. We
have extended Chiodo's method (see Section 5.2), and have cast our extension as an equivalence
on states.

3 Preliminaries

3.1 Finite States Machines

The systems that we want to verify are synchronous, interacting FSMs. Each component FSM
receives a set of binary-valued inputs, and produces another set of binary-valued outputs. Formally,
an FSM is a 5-tuple M = (5, J, J,T,0), where 5 is a finite set of states, / = {c*i,..., am} is a set
of m inputs supplied by the environment of the FSM, J = {/?!,...,/?„} is a set of n outputs, T
is the transition relation, and 0 is the output function. T relates a starting state, an assignment

to the inputs, and an ending state, i.e. T C S x E x 5, where £ = 27. We require the transition
relation to be complete, so that for each a € £ and x € 5, there exists at least one y 6 5 such that
(x, a,y) 6 T. The output function takes a state in 5 and returns an assignment to the outputs, i.e.
0 :S-* 2J. Our definition of FSM is equivalent to that of a Moore machine in [11].

Composition is defined in the usual way. In composing two interacting FSMs, some inputs of
each machine may be equal to the outputs of the other machine, whereas other inputs may come
from the environment of the composed FSM. Thus, the inputs of the composition are the inputs of
the components that are not outputs ofeither component. The outputs ofthe composition are all
the outputs of the components. Figure 2shows an example, where Mi has states {1,2,3}, and M2
has states {l',2'}. The sets of inputs and outputs for Mi are {a,g} and {p} respectively; and for
M2 are {a,p} and {q} respectively. For the composition Mi x Af2, the sets of inputs and outputs
are {a} and {p,q} respectively.

Figure 2: Example of FSM composition: p is the output of Mu q is the output ofM2, and a is
an external input, aq is shorthand for the subset {{a}} C 2<a'9>. The union of aq, aq and aq is
denoted by a+q.

3.2 Computation Tree Logic

Computation tree logic is a language used to describe properties ofstate transition systems. We
are interested in checking CTL formulas that describe properties of the composition of a set of
interacting FSMs. Since the composition of a set of FSMs is again an FSM, we give the syntax and
semantics of CTL for a single FSM M. We allow two types ofatomic propositions:

1. each output variable is an atomic proposition, and

2. each subset of states is an atomic proposition

The second type arises naturally when recursively checking formulas. With this, the set of CTL
formulas is defined inductively as follows:

• p is a CTL formula, where p is an output variable or a subset of states, and

• if ipi and V>2 are CTL formulas, then so are -i^fa, ^>i V fo, 3A"V>i, 3G^i, and 3[^>i U ^2]-

Note that inputs are not allowed as atomic propositions. However, by modeling an input by an
FSM whose output describes the expected behavior of the input, one can implicitly use an input
as an atomic proposition.

The semantics of CTL is usually defined on finite Kripke structures, which are directed graphs
where each node is labeled by a set of atomic propositions [6]. To extend these semantics to
FSMs, we just ignore the labels on the transitions of the FSMs, and we view the outputs as atomic
propositions. Let M = (SjI^J^T^O) be an FSM. A path from state xo is an infinite sequence of
states a:o^i^2--« such that for every i, there exists an a 6 £ such that (£t»a»£i+i) € T. The
notation M, xq |= <f> means that <f> is true in state xq of FSM M. The semantics of CTL is defined
inductively as follows:

• M, xq |= p, where p £ J, iff p € O(x0).

• M, xo (= p, where p C 5, iff xo € p.

• M,xo|= -^1 iff Mtzo V= "»^i•

• M, £0 |= V>i V V>2 iff M, xq |= V>i or M, z0 1= V>2-

• M,xq |= 3A'V>i iff there exists a path zo^ia^... such that M,xi |= ^i-

• M,aro (= 3GV>i iff there exists a path xqXiX2 ... such that for all i, Af,art- ^= ^>x.

• M, «o |= 3[V>i U ^2] iff there exists a path xo^ia^... and some i > 0 such that M,x,- |= V2
and for all j < i, M,Xj |= fa.

For example in machine Mi x Af2 of Figure 2, state (1,2') satisfies the formula 3G(-ipA-ig), whereas
none of the other states do. The expression 3F^ is an abbreviation for 3[<n/e U ^], where true is a
logical tautology. Lastly, we define the CTL model checking problem as the problem of determining
all states of the system that satisfy a given formula.1

4 Formula-Dependent Equivalence

Our goal is to define an equivalence on the states of each component machine that is as coarse
as possible with respect to a given CTL formula <f>, while being efficiently computable. Section 5
explains how we intend to apply this equivalence to model checking, but the main idea is to
merge equivalent states to minimize the size of each component. The minimized machines are
then composed. Optionally, the product can be computed incrementally by composing a few of
the minimized machines, and then computing a new equivalence for this sub-product. When the
top level is reached and just a single machine remains, the usual CTL model checking algorithm is
applied to determine the states that satisfy <f>.

Our formula dependent equivalence can be best explained by comparing it to bisimulation
("strong bisimulation" of Milner [12, p. 88]). Given an FSM M = (S,I,J,T,0), the bisimulation

]If a set of initial states is known, then we can restrict our attention to the reachable state space. In this case,
we can apply known techniques for exploiting the unreachable states, such as minimizing the transition relation with
respect to unreachable states; these techniques are orthogonal to those discussed in this paper.

equivalence relation, denoted by ~, is the coarsest equivalence relation satisfying the following:
For all x, y € 5, x ~ y implies
• O(x) = 0(y) and
• for all a G£ (recall from Section 3 that £ = 27)

- whenever x —• t, then for some iu, y A w and 2~ iy, and
- whenever j/Atu, then for some t, ar A <and t ~ w.

The soundness of this definition follows from the observation that the class of equivalence relations
satisfying the above definition contains the identity, and is closed under union. Intuitively, two
states are bisimilar if their corresponding infinite computation trees2 "match". This means that
the two states have the same outputs, and on each input, the two states have next states whose
infinite computation trees again match.

We use the notion of PASSand FAIL states to ease the strict requirement of bisimulation that
the infinite computation trees of twostates match. Loosely, if a state is a PASS* state with respect
to a CTL formula <f>, then it satisfies <f> in all environments; likewise, if a state is FAIL*, then
it does not satisfy <f> in any environment. Given PASS* and FAIL* states, the first modification
to bisimulation we make is that subtrees rooted at FAIL* states are ignored. This means that
transitions to FAIL* states from one state need not be matched by the other state. This works
because only potential witnesses to a formula need to be preserved. The second modification is
that two states are equivalent if they are both PASS* states. A consequence of this is that whereas
bisimulation requires the infinite computation trees of next states to match, nowit is sufficient that
the next states are both PASS* states. This is what we mean by two infinite trees matching up to
PASS* states. Essentially then, we say that two states are equivalent with respect to <f> if

1. they are equivalent with respect to the immediate subformulas of <j>, and

2. either they are both PASS* states or both FAIL* states, or the infinite computation trees of
the two states match up to PASS* states, ignoring all subtrees rooted at FAIL* states.

Before formally defining our equivalence relation, we define the PASS* and FAIL* sets. For a given
formula cf>, PASS* and FAIL* sets are defined for each component. In the following definition, we
assume a system of just two components, M and M'. In defining the PASS* and FAIL* sets for
M, M' is referenced because the atomic propositions in <f> may refer to M'. The symbols p0 and pi
are used to distinguish those output atomic propositions produced by M and those produced by
M'.

Definition 1 Let M = (SJ,J,T,0) and M' = (S'J',J',T,0') be FSMs, and let <f> be a CTL

2The infinite computation tree ofa state is formed by "unrolling" the FSM starting from that state.

TC 3 T'

Figure 3: Illustrating PASS* and FAIL*, and the fact that Z* is coarser than bisimulation.

)^§T^0I>^

formula. Let p0 GJ,Pi£ J', and ps C S x 5'. PASS** and Fj4/Z^ for M are subsets of 5, as follows:

4>
Pi P4SS* 0

A4/L* 0

Po PASS* {x GS\p0 G0(x)}
FAIL* S\PASS*

Ps PASS* {xes\WeS',{x,s')€Ps}
FAIL* {xeS\WeS',(x,s')<£ps}

-itj) PASS* FAIL*

FAIL* PASS*

fa V ^2 PASS* PASS*1 U PASS*2
FAIL* FAIL*1 n FAIL*2

3X^ PASS* {x G5|Va G£,3t € F>155^ s.t. ^i}
FAIL* {#o € 5|for every path soa^a^ ... ,xi G FAIL*}

3GV PASS* greatest fixed-point of: R0 = P>155^;
#l+i = Ri n{xe 5|Va € £, St G#, s.t. x A i}

FAIL* {^o € 5"|for every path aro^a^ •••, there exists i > 0
s.t. *,- € itt/i^}

3ty>i^2] PASS* least fixed-point of: R0 = PASS*2;
Ri+i = RiU{xe S\x GPASS*1, and Va € £,

3< G.Ri s.t. a; A <}
FAIL* {xq G 5|for every path a?o^i^2 •••>either

1) there exists i > 0 s.t. x{ G FAIL*1 and
Vj <i,XjeFAIL*2, or

2)Vi>0,XiGF^/Iv'2}

As an example of PASS* and FAIL*, consider the FSM in Figure 3. For ip = p, states 1, 2, 3,
5, 6 and 7 lie in PASS* and states 4 and 8 he in FAIL*. For0 = 3Gp,states 3 and 7 he in PASS*,
while states 4 and 8 lie in FAIL*, and states 1, 2, 5 and 6 he in neither. The following proposition
says that, indeed, if x is in PASS*, then any product state with a: as a component satisfies <f>.

Proposition 2 Let 0 be a CTL formula, let x be a state of M, and let t be a state of any FSM
M'. Ifx GPASS*, then M x Af', {x, t) |= 0. Likewise, if x GE4/£*, then M x M', (*, /) ft <£.

Note that the converse is not true. For example, consider a component M and the formula

Figure 4: Component machine used to show that computing FAIL* exactly is EXPTIME-hard.

<f> = qA-.g, where q is an output of some other component. Then FAIL* for M is empty (because
FAIL9 and PASS9 are empty by case p,), even though <j> is not satisfiable (i.e. for any component
M', no state in M x M' satisfies <f>). In fact, by generalizing this reasoning, we can show that if
FAIL* were defined in such a way that the converse of Proposition 2 did hold, then FAIL* would
be EXPTIME-hard to compute. The reduction is from CTL satisfiability, which is known to be
EXPTIME-complete [10]. To check if a formula <f> is satisfiable, compute FAIL* for the component
M shown in Figure 4, where p is some atomic proposition not in <j>. We can show that x G FAIL* if
and only if <f> is not satisfiable, and thus satisfiability can be answered if we could compute FAIL*
exactly. Similarly, since x G FAIL* if and only if x G PASST*, the same reduction shows that
PASS* would also be EXPTIME-hard to compute.

Now we formally define ourequivalence relation. LetM = (5, /, J,T,0) and M' = (5', V, J1, T',0')
be FSMs, and let <f> be a CTL formula. Following Milner's development of bisimulation, we define
the equivalence relation I* on the states ofFSM M as the coarsest equivalence relation satisfying
the following:

YoTx,yeS,€*{x,y)m:
Case <f> = pii (x, y) G S x 5.
Case <f> = p0: x GPASS* and y GPASS1', or x GFAIL* and y GFAIL*.
Case <f> = ps: for all s' G5', {x,s') Gp* iff (jm') Gpa.
Case <£ = -iij): £*(x,y).
Case 0 = fa V<02: £^(a,y) and S*2{x,y).
Case <£ = 3X0: £*(x,y) and

1. a; GF4/L* and y GF>1/^, or * GiMSS* and y GPASS*, or
2. O(ar) = 0(y), and for all a G £

• whenever x A i and t g FAIL*, Sw s.t. y A w and £^(t, iu), and
• whenever j/Att; and wg FAIL*, St s.t. x A <and £^(*, w).

Case 0 = 3G0: £^(s,y) and
1. * € #4/1* and y GF4Ji^, or x GiMSS* and y GJMSS*. or
2. O(x) = O(y), and for all a G £

• whenever x A t and <£ FAIL*, Sw s.t. j/Atu and £*(t,w), and
• whenever y A w and w 0 FAIL*, St s.t. zAi and £*(i, w).

Case ^ = 3fth tf tfj: S*1^^) and £*»(*, y) and
1. a: G itt/L* and y GFAIL*, or x € PASS* and y GPASS*, or
2. O(ar) = 0(y), and for all a G £

• whenever iAi and t £ FAIL*, 3w s.t. y A w and £^(<, w), and
• whenever y A to and w £ FAIL*, St s.t. a; A t and £^(t, u>).

In a manner similar to Milner, we can show that S* is the maximum fixed-point of a certain

ap ap ap

ap

Mx

©^~<g>
apq apq

@ T >@ T >(^J
aP9 apq apq

Mi x M2

Figure 5: Equivalence on subformulas is required. Only the states reachable from (1,1') and (4,1')
are shown in Mi x M2.

functional. Hence, using a standard fixed-point computation, £* can be computed in polynomial
time.

Notice that S* requires equivalence on all subformulas. As the following example shows, this
requirement is warranted. Consider Mi in Figure 5. For <j> = SF(p A SF(p Aq)), states 2, 3 and
5 Ue in FAIL* because p is false in these states. So with respect to <f>, the infinite computation
trees of 1 and 4 match when FAIL* states are ignored, and if we did not require equivalence on
subformulas, they would be ^-equivalent. However, if we were to compose Mi with M2, <f> holds
in state (1,1') but does not hold in state (4,1'). Thus, it would be wrong to have 1 and 4 be
^-equivalent. Requiring equivalence on all subformulas fixes this problem.

Since we define CTL so that formulas may refer directly to states via atomic propositions,
then any formula-independent equivalence (e.g. bisimulation) will distinguish every pair of states,
whereas £* may make some states equivalent. However, even if we could not refer to states, £* is
still coarser than bisimulation. As stated earlier, one reason for this is that the subtrees rooted at
FAIL* states are ignored. This is illustrated in Figure 3: if <f> = SGp, then 4 is a FAIL* state, and
thus 1 and 5 are ^-equivalent; however, they are not bisimilar.

On the other hand, there are cases where £* distinguishes two states that can actually be
merged. Consider the FSM Mi in Figure 6 and the formula <f> = SGq, where q is an output of
some component not shown. Since q is an input to Mi, the sets PASS? and FAIL* are empty, and
hence £* reduces to bisimulation. States 1 and 3 are not bisimilar because 2 and 4 have different
outputs, and thus 1 and 3 are not ^-equivalent. However, q must be false to reach states 2 and
4, and thus the difference between states 1 and 3 does not affect the validity of <f>. Hence, states 1
and 3 can be merged with respect to <j>, but £* will not merge them.

The following proposition says that ^-equivalent states cannot be distinguished, with respect
to <j>, by any environment. This is key in proving Theorem 4, the theorem of correctness.

Proposition 3 Let 0 be a CTL formula, and let x and y be states of M such that £*(x, y). Then
for any state t of any FSM M', the following holds: M x M',(x,t) \= <j> iff M x M',{y,t) \= <f>.

As an aside, note that the converse of Proposition 3 is not true. In fact, just because two states

%
p v Mx

Figure 6: £* equivalence is incomplete. The input to Mi is q, and the output is p. States 1 and 3
can be safely merged with respect to the formula <f> = SGq.

cannot be distinguished with respect to <j> by any environment, this does not imply that they can be
merged. For example, consider Mi in Figure 5, and the formula <f> = SF(pASF(pAq)). As stated
earlier, states 2 and 5 He in FAIL*, and thus for any state t of any FSM M', Mx x M', (2, t) |=
<f> iff Mi x M', (5,*) |= <f> (i.e. by Proposition 2, neither (2,t) nor (5,<) satisfies <f>). However, if we
were to merge states 2 and 5 into a single state, states 1 and 4 would become equivalent. But, as
discussed earlier, it would be wrong to have 1 and 4 be ^-equivalent.

Ultimately, the purpose of computing £* is to be able to merge equivalent states, thus leading
to smaller component machines. Given an equivalence relation on the states of an FSM, we define
the quotient machine in the usual way. As we describe in the next section, if weare usingan explicit
representation for FSMs, then we use the quotient machine of each FSM in place of the original
component. The following theorem asserts that doing this does not alter the result returned by
the model checker. If we are using an implicit representation, then we use £* to define a range of
permissible transition relations for each component, among which we want to use the smallest.

Theorem 4 Let <f> be a CTL formula, and let Mi,...,Mn be FSMs. Let Mi/Sf be the quotient
ofM{ with respect to £f, and let [*,-] denote the equivalence class of €f containing s,-. Then for all
product states (si,...,sn),

Mi x...xMn,(5l,...,5n)|=0 iff Mil£+ x .. .x Mn/£*,([si},.. .,[sn\) ^ 4>.

5 Compositional Model Checking

The equivalence relation £* can be used to manage the size of the transition relations encountered
in compositional model checking. The assumptions are that each component machine is relatively
small and easy to manipulate, and that the full product machine is too large to build and ma
nipulate. The general idea is to minimize each component machine, with respect to £* for that
machine, before composing it with other machines. We can incrementally build the product ma
chine by composing machines into clusters, and again applying minimization to each cluster. When
just one machine remains, we apply a standard CTL model checker. Figure 7 outhnes a procedure
for this approach.

The question of how to minimize a component with respect to £* depends on what sort of
data representation is used for the transition relations. If an explicit representation is used (e.g.
adjacency lists), then minimization is simply a matter of forming the quotient machines M{/£*.
After the model checker is applied to the product of the quotient machines, Theorem 4 can be
directly applied to recover the product states in the original state space that satisfy <f>.

If an implicit representation is used, then minimization becomes more complicated. Wefocus on
the case where BDDs are used. There is no correlation between the size of the BDD for a transition

10

function compositional_model_checker(<£, Mi,...,Mn) {
if (n = 1)

return model_checker(<£, Mi);
for (i = l;t < n;i++)

M* = minimize(M,-, (j>);
M{,...,M; = form-clusters(M1*,...,M*);
compositional_model_checker(0, M[,...,M[);

}

Figure 7: Outhne of procedure for compositional model checking: minimize and form product
incrementally.

relation, and the number of transitions in the relation. Thus, the idea behind minimization in this
case is to use £* to define a range of transition relations, any of which can be used in place of
the original transition relation, and then choose the relation in this range with the smallest BDD.
It should be noted however, that smaller component BDDs do not guarantee a smaller product
BDD—this is only a heuristic.

For a component M, we take the upper bound of the range to be Tmax, which is the relation
formed by adding to T any transition between two states for which there exists a transition between
equivalent states (e.g. if s A s' is in T and £*(x,s) and £*(x',s'), then x A x' is added). The
lower bound is T itself. Given these bounds, a heuristic like restrict [8] is used to find a small BDD
between T and Tmax. It can be shown that any transition relation between T and Tmax can be
used without altering the result returned by the model checker. Alternatively, instead of looking
for a small relation between T and Tmax, we can just use Tmin, which is the transition relation of
the quotient machine, if it turns out that Tm%n is small.

5.1 Early Pass/Fail Detection

Sometimes the model checking problem is posed as: given a formula <j> and a subset of product
states Q, is Q contained in the set of states satisfying <j>1 For example, Q may be the set of initial
states. Since our method returns all states satisfying <f>, a simple containment check answers the
question. However, in some cases, we may be able to answer the question without composing all
the machines, yielding a further savings in time. This is known as early pass/fail detection.

Let Q = {ql,q2,...,qm}, where qj is the product state {s{,s{,...,s3n), and let FAIL* be the
FAIL* states in component i. If s{ GFAIL*, then any product state (tu.. .,t^i,s\,U+i,. ..,<„)
does not satisfy <f>, so in particular, qi does not satisfy <j>. Hence, the answer to the above question
is "no". So in summary, if for any i, FAIL* intersects the ith state component of the set Q, then
the answer is "no".

On the other hand, to reach an early "yes" answer, we need each state in Q to be "covered"
by at least one PASS* state. If s3{ € PASS?, then every state in Qwith s{ as its ith component is
guaranteed to satisfy <f>. So in summary, if for every state in Q, at least one of its component states
is a PASS* state, then the answer is "yes".

11

5.2

<f> PASS* FAIL* equiv classes

1 o 0 0 {1,2,3}
2 p {2,3} {1} {1},{2,3}
3 pAq 0 {1} {1},{2,3}
4 SG(pAq) 0 {1} {1},{2,3}
5 Q 0 {3} {1,2},{3}
6 (SG(pAq))AQ 0 {1,3} {1},{2},{3}
7 Q' 0 {1,2,3} {1,2,3}
8 Q' AQ 0 {1,2,3} {1,2},{3}

Table 1: Equivalence classes for Mi of Figure 2 on (SG(p Aq))AQ.
Processing Subformulas

As the number of subformulas in <f> increases, the equivalence £* becomes finer because equivalence
on all subformulas is required. However, if some of the subformulas of <f> are first replaced by fresh
atomic propositions representing the product states satisfying the subformulas, then this may lead
to a coarser equivalence. This follows since knowing which product states satisfy a subformula adds
information to what was originally known, information that can be used at the component level in
computing £* (for the new </>).

This is illustrated by the system in Figure 2, where <f> = (SG(p Aq)) AQ, and Q is the set
{(1,1,),(2,1')} of product states. Lines 1 through 6 of Table 1 show the equivalence classes cal
culated for Mi on the subformulas of (f>. The end result (line 6) is that no states are equivalent;
hence, we have gained nothing. Instead of processing all of <f>, we could stop after computing the
equivalence for SG(pAq). In this case, states 2 and 3 are equivalent (line 4), and thus a smaller
machine can be built for Mi. When this quotient machine is composed with M2 and the model
checker is applied, we discover that no product states satisfy SG(pAq). At this point, we can create
a fresh atomic proposition, Q', to represent this (empty) set of states. Then when we calculate the
equivalence on Mi for Q'AQ (which is the same as the original <j>), we see that states 1 and 2 are
now equivalent (line 8), so we can again construct a smaller machine for Mi.

Thus, we may want to follow a strategy where a nested formula is recursively decomposed into
simpler subformulas, and the compositional model checker of Figure 7 is applied to each subformula.
Note that whereas Chiodo et al. [5] recursively decompose a formula into its immediate subformulas,
we can decompose a formula into arbitrary subformulas, since our equivalence works on nested
formulas.

Of course, even though we may be able to compute coarser equivalences with this strategy, the
drawback is that a reduced product machine must be reconstructed for each subformula. Experi
ments are required to determine how to decompose a formula to achieve a balance between these
conflicting demands.

6 Future Work and Conclusions

We have presented a formula-dependent equivalence that can be used to manage the size of the
transition relations encountered in compositional CTL model checking. We have yet to implement
the method, and the ultimate effectiveness ofthe method can be confirmed only by experimentation.
Given an arbitrary CTL formula <f>, the method works by first computing an equivalence on the
states of each component machine, which preserves <f>. If an explicit representation for transition

12

relations is used, then the quotient machine is constructed for each component, and the quotient
machines are used to build a smaller product machine.

If BDDs are used, then the equivalence for each component is used to determine a range of
permissible transition relations. More work remains to derive a procedure for efficiently choosing a
relation from this range that will ultimately lead to a smaller product machine.

Our approach can be applied incrementally to build the product machine by clustering some
minimized machines, forming their product, and repeating the equivalence computation. Research
is needed to understand how best to cluster the components to achieve the smallest sub-products.
Also, we outlined how our approach can be applied to the subformulas of a formula, to achieve
a coarser equivalence. We need to devise a heuristic to inteUigently decompose a formula into
subformulas to take advantage of this.

An important part of a CTL model checker is the ability to generate counter-examples. Since
we are altering the product machine, a counter-example in the altered product may not actually
exist in the full product. A method needs to be developed to handle this. Finally, we plan to
extend our method to fair-CTL model checking, and we would hke to apply similar ideas to the
language containment paradigm.

Acknowledgments

We wish to thank the reviewers for their helpful comments. This work was supported by SRC
grant 94-DC-008, SRC contract 94-DC-324, and NSF/DARPA grant MIP-8719546. In addition,
the second author was supported by an SRC Fellowship.

References

[1] A. Aziz and R. K. Brayton. Verifying interacting finite state machines. Technical Report
UCB/ERL M93/52, Electronics Research Laboratory, College of Engineering, University of
California, Berkeley, July 1993.

[2] A. Aziz, T. R. Shiple, V. Singhal, and A. L. Sangiovanni-Vincentelli. Formula-dependent
equivalence for compositional CTL model checking. In D. L. Dill, editor, Proceedings of the
Conference on Computer-Aided Verification, volume 818of Lecture Notes in Computer Science,
pages 324-337, Stanford, CA, June 1994. Springer-Verlag.

[3] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. Minimal stategraph
generation. Science of Computer Programming, 18(3):247-271,1992.

[4] M. C. Browne, E. M. Clarke, and 0. Grumberg. Characterizing Kripke structures in tem
poral logic. Technical Report CS 87-104, Department of Computer Science, Carnegie Mellon
University, 1987.

[5] M. Chiodo, T. R. Shiple, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Automatic compo
sitional minimization in CTL model checking. In Proc. Int'l Conf. on Computer-Aided Design,
pages 172-178, Nov. 1992.

13

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans, on Programming Languages and
Systems, 8(2):244-263, Apr. 1986.

[7] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In J^th Annual
Symposium on Logic in Computer Science, Asilomar, CA, June 1989.

[8] 0. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines
based on symbolic execution. In J. Sifakis, editor, Proceedings of the Workshop on Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Sci
ence, pages 365-373. Springer-Verlag, June 1989.

[9] D. Dams, 0. Grumberg, and R. Gerth. Generation of reduced models for checking fragments
of CTL. In C. Courcoubetis, editor, Proceedings of the Conference on Computer-Aided Ver
ification, volume 697 of Lecture Notes in Computer Science, pages 479-490. Springer-Verlag,
June 1993.

[10] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 995-1072. Elsevier Science Publishers B.V., 1990.

[11] O. Grumberg and D. E. Long. Model checking and modular verification. In J. C. M. Baeten
and J. F. Groote, editors, CONCUR '91, International Conference on Concurrency Theory,
volume 527 of Lecture Notes in Computer Science. Springer-Verlag, Aug. 1991.

[12] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

A Preliminaries

In the definitions, theorems and proofs that follow, x is used synonymously with xo. For example,
when we say "there exists a path x0 -*• xx -> ...", it is implicit that x = x0. Also, {x,y) G V*
means the same thing as lZ*(x,y).

Fact 5 Given two FSMs Mi and M2. If the path (x0, so) -»• (a?i» $i) -*• •••exists in Mi x M2, then
the path xq —• xi —*• ... exists in M\.

B PASS* and FAIL*

For easy reference, we give the sets -»PASS* and -iFAIL*.

Fact 6 Let M = {S,I,J,T,0) and M' = (5', J', J',2",0*) be FSMs, and let <j> be a CTL formula.

14

4> ^PASS* •^FAIL*

Pi S S

Po {x GS\p i 0{x)} {xeS\peO{x)}
Ps {xesiss'es',^,*')??,} {xeS\3s'eS',(x,s')ep3}
-til) ->FAIL* ^PASS*

i>\ v^2 -tPASS*1 n ^PASS*2 -iFAIL*1 U 1FAIL*2

SXtl) {a:GS|3aG S s.t. V*,a? -^ t
imphes t G -^PASS*}

{xo G 5|there exists a path zo^ia^...,
s.t. xi i FAIL*}

3Gj> (not needed) {xo G 51there exists a path aro#i£2 •• •»
s.t. \ii>Q,Xi$FAIL*}

3[^i U i>2] (not needed) {xq G S\there exists a path a?o£ia:2 ••• and Si > 0
s.t. Xi $ FAIL*2 and Vj < i,Xj <£ FAIL*1}

Also, it is worth keeping in mind the following two equivalences:

-i3[0i U 7p2] & V([-1V2 U(->1>i A->ip2)] VG-nfa) (not a CTL formula)
iV[0i U i>2] & 3[->i>2 # (-»V>i A-^2)] V3G-i^2

Proposition 7 (Proposition 2 of paper) Let <f> be a CTL formula, let xbea state of M, and let i
be a state of any FSM M'. If x G P-ASS*, then M x Af',(a:,t) |= <f>. Likewise, if x G FAIL*, then

Proof (by induction on the structure of <f>)

Case <j> —Pi
Since PASS* = Fj4/Z* = 0, this case is vacuously true.

Case 4> —Po
PASS: x GPASS* imphes p0 G0(x), which imphes p0 G0((x,t)), which imphes (a:,*) |= (f>.
FAIL: ar GF/lil* imphes p0 £O(x), which imphes p0 <jt 0({x,t)), which imphes (x,t) ^ <£.

Case <j> —ps
PASS: x GP.A5S* implies Vs' GS',(z,s') Gp3, which implies (a;,/) Gps which implies (x,t) (= <j>.
FAIL: a: GF4/Z* imphes Vs' GS',(a;,sr) £ps, which imphes (x,t) gps which imphes <a:,<) ^ 0.

Case 0 = -1^

PASS: a: G P.ASS* imphes x G F4/Z^, which by the I.H. imphes (x,t) ^ ^, wliich implies
(<M>M.
FAIL: x G E4JI* imphes x G /M550, which by the I.H. imphes {x,t) \= if>, which implies
{x,t)^4>.

Case <f> = fa V $2
PASS: x GJMSS* implies x GP.455^1 or a; GP>155^2, which by the I.H. imphes (x,t) (= V'i or
{x,t) |= -02, which implies {x,t) ^=^V ^2-

15

FAIL: x GFAIL* imphes x GFAIL*1 and x Gitt/L^, which by the I.H. imphes (x,t) fi V>i and
(a:,<) [£ ^2, which imphes (x,t) ^ Vi VV>2-

For the remaining formula types, the intuition is as follows. For the PASS case, if x has a
"PASS path" in M, then in the presence of any environment, x will still have a PASS path, since
the environment and M are required to be complete. For the FAIL case, if all the paths from x in
M are "FAIL paths", then composing M with some environment may remove some paths from x,
but whichever remain are still FAIL paths.

Case <f> = 3Xi)
PASS: Assume x GPASS*. We must show that there exists a next state (x',t') of (x,t) such that
(x',t') \= \f>. By the completely specified assumption, every state has a next state, solet (a:', t') be a
next state of (x,t). It remains to show that (x',t') |= ty. Suppose (a;',*') y=. i}>, and suppose x A x'.
x GPASS* imphes there exists x" such that x A x" and x" GPASS*. By the I.H., (x",s) |= i>,
for all s GS'. If x" = a;', we have a contradiction. If x" ^ x', then (a:", i') must also be a next state
of (x,t). Since (a:",*') (= if>, we are done.

FAIL: Assume x GFv4/L*. Let (x',t') be a next state of (x,t). Since a: GFAIL*, then a:' GF/l/L^,
which by the I.H. imphes {x',t') ^ ip, which finally imphes {x,t) ^ 0.

Case <\> = 3GV>
PASS: Assume x G PASS*, and suppose that (x,<) ^ 3G^. This imphes that for every path
{xo,to) —*• (xi,ti) —* ..., there exists k such that (a:*,**) ^ V- By the completely specified assump
tion, there must exist at least one such path. Let K be the maximum of all such k. The foUowing
claim shows that this leads to a contradiction, where N = K.

Claim: If x GPASS*, then for any JV > 0, there exists a path3 {x0,t0) —• {xi,ti} —•...-• (xyv,<;v)
such that for all i < N, (xi,ti) \= if> and Xi GPASS*.

Base, N=0: We are given that x G PASS*. This implies x G P^SS^, which by the I.H. of the
proposition imphes that (x,s) |= $, for all s G5'. Thus, (a:,i) ^ ^>.

I.H.: For k < N, there exists a path (xo,*o) -»• {xi,h) —•...—• (a;*,**) such that for all ?' < fc,
{xi,U) \= $ and a:,- G PASS*.

I.S.: By the completely specified assumption, there exists a next state (xk+i,tk+i) of {xk,tk)- Sup
pose {xk+i,tk+i) J£ if>, and suppose a:* A Xk+i- Xk GPASS* imphes there exists xk+1 such that
Xk -^ x'k+1 and a:^+1 GPA550, and hence that x'k+1 GiMS^. By the I.H., {x'k+Jis) \= tj), for all
s G5'. If x'k+1 = Xk+i, we have a contradiction. If x^j ^ Xk+i, then (*i+i»*fc+i) is also a next
state of (xk,tk)- Since (x'k+1,tk+i) (= ^, we are done. This finishes the claim, and hence proves
that {x,t) (= SGip.

FAIL: Let (xo,<o) -*• {xi,ti) -*• ... be a path. Since x G FAIL*, there exists an i > 0 such that
Xi GFAIL*. By the I.H., this imphes that (a?,-,*;) ^ ^- Since thepathwas arbitrary, then (x,t))£• <f>.

Paths were defined on page 5 to be infinite. However, in a few cases we also use the same term to refer to finite
paths; the correct interpretation will be obvious from the context.

16

Case <f> = 3[0i U fa]
PASS: Assume x GPASS*. Define Ro = J2o, and for t > 0, Ri = Ri\ Ri-i, where Ri refers to the
definition of PASS*. Then for some i, x G Ri. Suppose the fixed-point is reached at iteration N.
Then for i < N, the following claim proves the proposition.

Claim: For all x G Ri, and for all t G S', (x,<) |= <f>.

Base, i=0: x G Ro imphes x G PASS*2. By the I.H. of the proposition, this imphes (x,t) \= fa
which in turn imphes (x, t) \= <f>.

I.H.: For k < i, for all x G Rk, and for all t G S', (x,t) \= <f>.

I.S.: x G .ftjfc+i imphes x £ i?o, which imphes x G PASS*1. By the I.H. of the proposition, this
implies (x,t) |= Vi- By the completely specified assumption, there exists a next state {x',t') of
(x,t). If x' G Rk, then x' G Rj for some j < k. Hence, by the I.H. (x',t') (= <j>, and therefore
(x,t) p </>. If x' £ i^, then suppose x A x'. Since x GRk+i, then there exists x" GRk such that
x A x", and therefore {x",t') is also a next state of (x,<). Since x" GRk, then applying the I.H.
as above, we have (x, t) |= <f>.

FAIL: Let (xo,io) -* (*ii*i) —• ... be a path. Since x G FAIL*, either

1. there exists i > 0 such that x, GFAIL*1 and for ah j < i, Xj GFAIL*2, or

2. for all i > 0, x, G FAIL*2.

By the I.H., this imphes

1. there exists i > 0 such that (xj,i,-) p Vi and for all j < i, (xj,tj) p ip2, or

2. for all t >0, (xt-,<f) p ^2-

Since the path was arbitrary, then {x,t) p <j>.
•

Corollary 8 PASS* and FA/I* are disjoint.

Proof For the sake of contradiction, suppose there exists a state x such that x G PASS*C\FAIL*.
Then by Proposition 7, for all t, M x M', (x,t) |= <f> and M x M', (x,t) p <f>. Since a formula and
its negation cannot be true at the same state (because x |= ->ij> iff x p ip), this is a contradiction. •

C Formula-dependent Equivalence Relation

The development of the equivalence relation follows that of Milner.

17

Definition 9 Let M = (S,I,J,T,0) and M' = (S',r,J',T',0') be FSMs, and <f> a CTL formula.
A binary relation H* C S x S is a, formula-dependent bisimulation (FDB) if Tl*(x,y) imphes:

Case <£ = pi
{x,y)e SxS.

Case 4> = p0
x G/ttJI* and 3/ GF4JL*, or x GPASS* and y GPASS*.

Case <f> = ps
for all s' GS', (x, s') Gps iff (y, *') € pa.

Case 0 = -i^»
there exists an FDB 1Z* such that U*(x,y).

Cases <f>= fay fa and cf> = faAfa
there exist FDBs ft*1 and ft*2 such that H*^(xyy) and Tl*2(x,y).

Case <£ = 3A>
there exists an FDB Tl* such that Tl*(x,y) and

1. x GF4/I* and y GP4/Z,*, or x GP4SS* and y GPASS*, or

2. O(x) = O(y), and for all a G S

• whenever x A f and t g FAIL*, Sw s.t. y -^ w and ft*(<, w), and
• whenever y A w and w £ FAIL*, St s.t. x A t and Tl*(t,w).

Cases <f> = SGip and 0 = SFtj)
there exists an FDB Tl* such that ft*(x, y) and

1. x GP47I* and y GF4/£*, or x GPASS* and y GP4SS^, or

2. O(x) = O(y), and for all a G £

• whenever x A t and <£ FAIL*, Sw s.t. y -^ w and ft*(<, w), and
• whenever y -^ w and w £ FAIL*, St s.t. x A t and ft*(<, w).

Case <j> = 3[V>i £/" V>2]
thereexist FDBs Tl*1 and Tl*2 such that 7^(x,y) and Tl*2(x,y) and

1. xe FAIL* and j/ GFA/L*, or x GP4SS^ and y GP4SS*, or

2. O(x) = O(y), and for all a G £

• whenever x A t and t £ FAIL*, Sw s.t. j/-^to and ft*(<, w), and
• whenever j/Aw and w g FAIL*,St s.t. x -^ *and ft*(<, w).

18

The following lemma imphes that if the state pair (x,y) is in Tl* and one of the states is in
PASS*, then the other state must also be in PASS*; likewise for FAIL*.

Lemma 10 Let <f> be a CTL formula, and suppose that Tl* is an FDB such that ft*(x,y) . Then
x GPASS* imphes y GPASS*, and x GFAIL* imphes y GFAIL*.

Proof (by induction on the structure of <f>)

Case (f> = pi
Since PASS* = FAIL* = 0, this case is vacuously true.

Case (f> = p0
ft*(x,y) imphes x GPASS* and y GP4SS*, or x GP4/I* and y GPA/I*. Since x GPASS*,
then x GPASS* and y GPASS*, which imphes y GPASS*. Similarly if x GFAIL*.

Case <p = ps
Tl*{x, y) imphes that for all s' GS', (x,s') Gps iff (y, s') e ps. x 6 PASS* imphes Vs' GS', (x,s') G
ps. Thus, V*' GS',(y,sf) Gp5, and hence y GPASS*. Similarly if x GFAIL*.

Case <f> = ->V
ft*(x, y) imphes there exists an FDB Tl* such that Tl*{x, y). x GPASS* imphes x GFAIL*, which
by the I.H. imphes y GPA/L*, which then imphes y GPASS*. Similarly if x GFAIL*.

Case <j> = fa\/ fa
PASS: ft*(x,y) imphes there exist FDBs ft*1 and ft*2 such that ft*J(x,y) and ft*2(x,y). x G
PASS* imphes x GPASS*1 or x GPASS*2, which by the I.H. implies y GPASS*1 or y GPASS*2,
which then imphes y G PASS*.

FAIL: x G PA/I* imphes x G PA/I*1 and x G P4/I*2, which by the I.H. implies y G PA/I*1
and y GFAIL*2, which then implies y GPA/I*.

For the remaining cases, we proceed as follows. Assume that ft*(x,y) and x G PASS*—we
want to show y GPASS*. ft*(x,y) holds because x GP4/I* and y GP4/I*, or x GPASS* and
y GPASS*, or by condition 2 of Definition 9. By Corollary 8, x GPASS* implies -ix GPA/I*, and
hence it cannot be the case that x GFAIL* and y GPA/I*. If ft*(x,y) holds because x GPASS*
and y GPASS*, then y GPASS* and we are done. Hence, we assume ->y GPASS*, which imphes
that ft*(x, y) holds by condition 2, and proceed to show a contradiction. We proceed in a similar
fashion to show that ft*(x, y) and x GFAIL* implies y GPA/I*.

Case <£ = SXif>
PASS: Assume x G PASS* and y £ PASS*. Since y £ PASS*, there exists a G £ such that
whenever y -^ w, then iu £ PASS*. Let a' be such an a. Since x G PASS?, there exists i such
that x i t and *GPASS*. Since ft*(x,y) holds by condition 2 and t £ P4/I*, then there exists
an FDB ft* and there exists w such that y^w and Tl*(t,w). But this implies, by the I.H., that
w G PASS*, a contradiction. Hence, y G PASS*1.

19

FAIL: Assume x GP4/I* and y £ FAIL*. Since y £ PA/I*, there exists a next state w of y on a
such that w $ FAIL*. Since ft*(x,y), there exists a next state t of x on a and an FDB ft* such
that Tl*(t,w). Since x GP4/I*, then t GFAIL*. But Tl*(t,w) and <GP4/I* imply, by the I.H.,
that w GFAIL*, a contradiction. Hence, y GFAIL*.

Case <£ = 3GV>
PASS: Assume x GPASS* and y £ PASS*. The claim below shows that y GP„Vi > 0, where Ri
refers to the definition of PASS*. Since the fixed point is reached in a finite number of steps, then
y G PASS*, which is a contradiction.

Claim: If x GPASS* and there exists an FDB ft* such that ft*(x,y), then for all i > 0, y GP,.

Base, i=0: ft*(x,y) imphes there exists an FDB ft* such that ft*(x,y). Also, x GPASS* imphes
that x GPASS*. Thus, by the I.H. ofthe lemma, these facts imply that y GPASS*, which imphes
y GPo.

I.H.: For k < i, if x GPASS* and there exists an FDB ft* such that ft*(x,y), then y GP*.

I.S.: To show that y G P*+i, we need to show

1. y G Pit, and

2. Va G£, 3u> s.t. y A iu and iu GP*.

Thefirst part Mows by the I.H., since x GPASS* and there exists an FDB ft* such that ft*(x, y).
For the second part, let a G £. Since x G PASS*, then there exists a next state t of x on a such
that t GPASS*. If y GPASS*, then automatically y GPfc+i, sowe can assume that ft*(x,y)holds
by condition 2. Hence, there exists a next state w of y on a such that Tl*(t, w). Since *G PASS*
and there exists an FDB ft* such that Tl*(t,w), then by the I.H. w GP*. Hence, y GPa-+i-

FAIL: Assume x G P4/I* and y g FAIL*. Since y £ PA/I*, there exists a path y0 ^ yi ^ ...
such that yi g FAIL* for all i, which in turn imphes that y,- g FAIL* for all i.

Since x GFAIL*, then every path x0 ^ xi ^ ... from x must eventually reach a state x* such
that Xk GFAIL*. This imphes that all states leading up to Xk must also be P4/I* states (because
if not, then there would be a path from x that never reaches a FAIL* state). Since ft*(x, y) holds
by condition 2 and yt- £ P4/I* for all i, then repeated apphcation of condition 2 shows that one
of the paths x0 ^ xi ^ ... is such that ft*(x,-, y,) holds for all i < k, where Xk G FAIL*. But
K*(xk,yk) imphes that there exists an FDB ft* such that ft*(xfc,y&). But since xk GP4/I*, then
by the I.H., y* G FAIL*, which is a contradiction.

Case ^ = 3[V>i U fa]
PASS: Assume x G PASS* and y £ PASS*. Since x G PASS*, then there exists i > 0 such that
x G Ri, where P, refers to the definition of PASS*. Therefore, by the Mowing claim, y G Ri,
which imphes y G PASS*, a contradiction.

Claim: For all i > 0, if ft*(x,y) and x GRi, then y GP,.

20

Base, i=0: x G Ro imphes x G PASS*2. ft*(x,y) imphes there exists an FDB ft*2 such that
ft*2(x, y). Then by the I.H. of the lemma, y GPASS*2, which implies y GP0.

I.H.: For k < i, if ft*(x, y) and x GPjfc, then y GRk-

I.S.: x G Pjk+i imphes one of the following:

• x e Rk

• x GPASS*1, and Va G£, 3< s.t. x A t and <GRk-

If x G Pjt, then by the I.H. y G Rk and we are done. So assume x £ Rk. To show y G Pfc+i,
we will show that y G PASS*1, and Va G £,3w s.t. y A w and w G P*. Since x G PASS*1 and
thereexists an FDB ft*1 such that ft*1(x,y), then by the I.H. y GPASS*1. Now, let o^E. Since
x G P&+i, then there exists i s.t. x —* <and 2 G P*. If y G Pjt+i we are done, so assume that
ft*(x,y) holds by condition 2 of the definition of FDB. Since t GP*, then t GPASS*, so condition
2 imphes there exists w s.t. y A w and Tl*(t,w). Thus, since * G P^ and Tl*(t,w), then by the
I.H. to G Rk- Hence y G Pfc+i-

FAIL: Assume x GP4/I* and y £ PA/I*. Since y £ PA/I*, there exists a finite path y0 ^ yi ^
...^ yn such that y,- £ FAIL*1 for all i < n, and yn £ FAIL*2, which in turn imphes y, £ P4/I*
for all i < n.

Since x GFAIL*, then for every path xo ^ Xi ^ ..., one of the Mowing must be true:

1. there exists A: > 0 such that xk G FAIL*1 and xk G FAIL*2, and for all i < k, x, G FAIL*2,
or

2. for all i > 0, xt- G FAIL*2.

Since ft*(x,y) holds by condition 2 and y,- £ FAIL* for all *' < n, then repeated apphcation of
condition 2 shows that one of the paths Xo ^ xi ^3- ... is such that one of the following is true:

1. ft*(x,-,y,) holds for all i < k. This imphes that there exist FDBs ft*1 and ft*2 such that
ft*1(x,-,y,) and ft*2(xj,yt) for all i < k. We must consider 3 different ranges for k:

(a) k < n: Xk e FAIL*1 imphes xt- G FAIL*1 for some i < n, which by the I.H. imphes
y,- G FAIL*1 for some i < n, which is a contradiction.

(b) k = n: xn GPA/I*2 imphes by the I.H. yn GFAIL*2, a contradiction.

(c) fc > n: Since for all i < n x, G FAIL*2, by the I.H., yn G FAIL*2, a contradiction.

2. ft*(xj,y.) holds for all i < n. This imphes that there exists an FDB ft*2 such that
ft*2{xmyn)- But since xn G FAIL*2, then by the I.H., yn G P4/I*2, which is a contra
diction.

In each case we have a contradiction, and hence y G FAIL*.
•

Definition 11 through Proposition 16 establishes that there exists a largest FDB, which we call
£*, that £* is indeed an equivalence relation, and that the converse of Definition 9 holds for £*.

21

Definition 11 Given binary relations ft,- (i = 1,2,...) over a set S, define:

1. Ids = {{x,x)\x€S}

2. ftf1 = {(y>*)!(*>y)eft,-}

3. ftift2 = {(z,z)| for some y,(x,y) Gfti and (y,z) Gft2}

4. ft! Uft2 = {(x, y)|(x, y) Gfti or (x, y) Gft2}

Lemma 12 Assume that each of ftf (i = 1,2,...) is an FDB. Then the foUowing relations are all
FDBs:

1. Id*

2. ftf-1

3. Tl*Tl*2.

4. Ut€j ft*, for some index set /.

Proof (by induction on the structure of <f>)

Case 4> = p,

1. Let (x,x) GZ^. Then (x,x) e S x S.

2. Let (y,x) GTl*'1. Then (x,y) Gftf, which implies that (x,y) e S x S, which implies that
(y,x)G SxS.

3. Let (x,*) GTl*Tl*2. Then for some y, we have (x,y) Gftf and (y,z) Gft*. This imphes that
for some y, (x,y) ^ S x S and (y,*) GS x S, which imphes that (x,z) e S x S.

4. Let (x,y) GUt€/^f- Then for some i, (x,y) Gftf, which imphes that (x,y) GS x S.

Case <f> = p0

1. Let (x,x) GId*s. Ifx GPASS*, then x GPASS* and x GPASS*. Likewise ifx GFAIL*.

2. Let (y,x) G ftf"1. Then (x,y) Gftf, which imphes x G PASS* and y G PASS*, or
x G P4/I* and y G FAIL*. By symmetry of conjunction, this imphes y G PASS* and
x G P4SS*, or y G P4/I* and x GFAIL*.

3. Let (x,z) Gft*ft*. Then for some y, we have (x,y) Gftf and (y,*) Gft2. This imphes that
for some y, x ^ PASS* and y GPASS^, or x GPA/I* and y G FAIL*, and y G PASS^ and
z G PASS* or y G P4/I*, and z G P4/I*. This imphes x G PASS1, and y G PAS5* and
z GPASS*, or x G FAIL* and y GPA/I* and z GPA/I*, which in turn imphes x GPASS*
and 2 G PASS*, or x G FAIL* and * G FAIL*.

4. Let (x,y) GU,€/^f- Then for some i, (x,y) Gftf, which imphes that x GPASS* and
y G PASS*, or x G P4/I* and y GP4/I*.

22

Case <j> = ps

1. Let (x, x) GId*s. Trivially, for all s' GS', (x,s') Gp3 iff (x, s') Gps.

2. Let (y, x) Gftf ~\ Then (x, y) Gftf, which imphes for all s' GS',(x, s') Gpa iff (y, s') Gpa.
By symmetry of "iff", this imphes for all s' GS',(y,s') Gpa iff (x,s;) Gpa.

3. Let (x,z) Gftfftf. Then for some y, we have (x,y) Gftf and (y,z) Gftf. This imphes that
for some y, for all s' GS', (x, s') Gp5 iff (y, s') Gps, and for all s' GS', (y, s') Gps iff (2, s') G
ps. By transitivity of "iff", this implies for all s' GS', (x, s') Gpa iff" (2, s') Gps.

4. Let (x,y) GUt€/^f- Tnen f°r some *, (x,y) Gftf, which imphes that for all s' GS',(x,s') G
ps \f[{y,s')eps.

Case 0 = -i^»

1. Let (x,x) G/rffj. Since Id*s = Idfj, then (x,x) G/df?. Thus, /dfj serves as the needed FDB
ft*.

2. Let (y,x) Gftf _1. Then (x,y) Gftf, which imphes that there exists an FDB ftf such that
ftf(x,y). This in turn imphes ftf _1(y,x). By the I.H., ftf"1 is an FDB, and hence serves
as the needed FDB.

3. Let (x,z) Gftfft*. Then for some y, we have (x,y) Gftf and (y,z) Gftf. This implies
that there exist FDBs ftf and Tl* such that ftf(x,y) and ft*(y,z). This in turn implies
(x, z) Gftf ftf. By the I.H., ftfft* is an FDB, and hence serves as the needed FDB.

4. Let (x,y) GUigJ^f• Then for some i, (x,y) Gftf, which implies that there exists an FDB
ftf such that ftf(x,y). Thus, ftf serves as the needed FDB.

Case <f> = fa V fa

1. Let (x,x) GId*. Since /d* = /«*? = Idf, then (x,x) GId*1,Id*2. Thus, /d*1 and /d*2
serve as the needed FDBs.

2. Let (y,x) eTlf'1. Then (x,y) Gftf, which imphes that there exist FDBs ftf1 and ftf2
such that ftf'(x,y) and ftf2(x,y). This in turn implies ftf1 _1(y,x) and ftf2 _1(y,x). By
the I.H., ftf1 _1 and ftf2 -1 are FDBs, and hence serve as the needed FDBs.

3. Let (x,z) Gftfftf. Then for some y, we have (x,y) Gftf and (y,z) Gftf. This imphes that
there exist FDBs ft*1 and ftf2, and ftf1 and ftf2, such that ftf!(x,y) and ft*2(x,y), and
ftfJ(y,^) and ftf2(y,*). This in turn implies (x,z) Gftf'ftf1 and (x,z) Gftfftf2. By the
I.H., ftfft*1 and ft*2ftf2 are FDBs, and hence serve as the needed FDBs.

4. Let (x,y) GU«6/^f- Then for some i, (x,y) Gftf, which imphes that there exist FDBs ftf1
and ftf2 such that ftfJ(x,y) and ftf2(x,y). Thus, ftf1 and ftf2 serve as the needed FDBs.

Case <f>=SXip
We first must show that "there exists an FDB ft* such that ft*(x, y)". This is doneexactly as for
the case <f> = -i^'- As a reminder, the needed FDB for each case is:

23

1./d*

2. ftf"1

3. ftfft*

4. ftf

It remains to show that condition 1 or 2 is satisfied. We break this into case a, where x G FAIL*,
and case b, where x £ P4/I* and x £ PASS*. The case where x GPASS* is similar to case a.

1. Let(x,x)G/dfj.

(a) x G PA/I* imphes x G PA/I* and x G PA/I*.

(b) 0(x) = 0(x). Let a and t be such that x A <and * £ FAIL*. Then trivially, a and t
are such that x A $, and Idg(t, t).

2. Let (y,x) € ^f _1. Then (x,y) Gftf.

(a) By Lemma 10, this imphes y GP4/I*. Hence, y G P4/I* and x GP4/I*.

(b) This imphes 0{x) = 0{y), and Va G E

• whenever x A *and t g FAIL*, Sw s.t. y A wand ftf (t,w), and
• whenever y A wand iu 0 FAIL*, St s.t. x A t and ftf (i,w).

By symmetry of equality and conjunction, this imphes 0{y) = 0{x), and

• whenever y A wand w£ FAIL*, St s.t. x A t and ftf(i, w), and
• whenever x A *and t g FAIL*, Sw s.t. y A ty and ftf (J, tu).

Finally, Tlf(t,w) imphes ftf -1(rM). Hence, we have O(y) = 0(x), and
• whenever y A wand u> £ FAIL*, St s.t. x A *and ftf _1(u;,i), and
• whenever x A *and t g FAIL*,Sw s.t. yA wand ftf _1(tM)-

3. Let (x,z) Gftfftf. Then for some y, we have (x,y) Gftf and (y,z) Gftf.

(a) By Lemma 10, we have y G FAIL*, and a second apphcation of Lemma 10 gives z G
P4/I*. Hence, x G P4/I* and z GP4/I*.

(b) (x,y) Gftf and x £ P4/I* and x g PASS* imply 0(x) = 0(y), and Va€E
• whenever x A t and t g FAIL*,Sw s.t. yA wand ftf (*, w), and
• whenever y A w and w£ FAIL*, St s.t. x A <and ft*(<, u>).

By Lemma 10, we have y g PA/I* and y g PASS*. This and (y,z) G ftf imply
0(y) = 0(z), and

• whenever y A wand iu £ FAIL*, Sv s.t. 2 A v and ft*(w, v), and
• Va, v s.t. z A v and v £ FAIL*, Sw s.t. y A w and ft*(u>, v).

24

By transitivity of equality, 0(x) = O(z). To show the second part, let a and t be such
that x —• t and t g FAIL*. This imphes the existence of w such that y A w and
Tlf(t,w). By Lemma 10, we have wg FAIL*. This in turn imphes the existence of v
such that z A v and Tl*(w,v). Therefore, Tl*(t,w) and ftf(t/>,v) imply ft*ft*(*,v).
Putting this all together, we have that x A t and t $. FAIL* imply that there exists v
such that z A u and ft{ft2(/, v). Likewise, it can be shown that a next state v of 2 on
a imphes that there exists a next state t ofx on a such that ftfft*(<, t>).

4. Let (x,y) GU,€/^f- Then for some i, (x,y) Gftf.

(a) By Lemma 10, this imphes y GPA/I*. Hence, x GPA/I* and y G P4/I*.

(b) We need to show that
0(x) = 0(y), and Va G E

• whenever x A *and *£ FAIL*, Sw s.t. yA wand ftf (i,w), and
• whenever y A Wand w; £ FAIL*, St s.t. x A <and ftf(i, u>).

But this is exactly what Tl*(x,y) imphes.

Case <f> = SGij>
We first must show that "there exists an FDB ft* such that ft*(x, y)". This is done exactly as for
the case <f> = -iip.

It remains to show that condition 1 or 2 is satisfied. We break this into case a, where x G FAIL*,
and case b, where ft GFAIL* and /c G PASS*. Case a is exactly the same as for <f> = SXip. Case
b is nearly the same (just replace ^ by 0 everywhere ^ occurs in FAIL* and ft*).

Case <j> = 3[^i U fa]
The existence of FDBs ft*1 and ft*2 such that ft*J(x,y) and ft*2(x,y) can be shown as for case
<f> = fa v fa. The rest of the proof is the same as for the case <j> = SGtp.

•

Definition 13 Define £* = \J{Tl*\Tl* is an FDB}.

Lemma 14 1. £* is the largest FDB.

2. £* is an equivalence relation.

Proof

1. By Lemma 12(4), £* is an FDB and includes any other such.

2. refl.: For any x GS, £*{x,x) by Lemma 12(1), since £* includes Id*s.
sym.: If £*{x,y), then ft*(x,y) for some FDB ft*. Hence ft*_1(y,x), and so £*{y,x) by
Lemma 12(2).

trans.: If£*(x,y) and £*(y,z) then ftf(x,y) and ftf(y,z) for some FDBs ftf and ftf. So
ftfftf (x, 2), and so £*{x,z) by Lemma 12(3).

25

We have shown that £* is an FDB. Now we want to show that £* also satisfies the converse of
Definition 9. FoUowing Milner, we define a new relation T* in terms of £*. Then we show that T*
and £* are in fact equivalent.

Definition 15 T*(x,y) iff:

Case <t> = pi
(x,y)eS xS.

Case <f> = p0
x GPASS* and y GPASS*, or x GP4/I* and y GP4/I*.

Case <f> = pa
for all s' GS', (x, a') Gpa iff (y, s') Gps.

Case 0 = -i^>

Cases <j>= fay fa and <£ = V'i and ^2
£*1(x,y)2Liid£*2(x,y).

Case 4>=SXj>
£*(x,y)and

1. x GP4/I* and y GP4/I*, or x GPASS* and y GPASS*, or

2. 0(x) = O(y), and Va G E

• whenever x A <and / £ FAIL*, Sw s.t. y A wand £*(t,w), and
• whenever y A w and w£ PA/I*, 3< s.t. x A t and £*(<, w).

Cases <f> = 3GV> and <f> = 3PV
£*(x,y)and

1. x GPA/I* and y GP4/I*, or x GPASS* and y GPASS*, or

2. 0(x) = O(y), and Va G E

• whenever x A *and t g FAIL*, Sw s.t. y A wand £*(*, iu), and
• whenever y A w and w £ FAIL*, St s.t. x A *and £*(*, w).

Case <f> = S[fa U fa]
£*1(x,y)3,nd£*2(x,y)B.nd

1. x GPA/I* and y GP4/I*, or x GPASS* and y GPASS*, or

2. 0{x) = 0(y), and Va G E

26

• whenever x A / and t £ FAIL*, Sw s.t. y A wand £*(t, w), and
• whenever y A wand iu £ FAIL*, St s.t. x A J and £*(*, w).

Proposition 16 £*(x,y) iffT*(x,y).

Proof (=*•) For the base cases, £*{x,y) directly imphes T*(x,y). Of the remaining cases, we
show the case <j> = SGtp in detail; the rest of the cases are similar.

Case <}> = SGtj)
Since £* is an FDB, £*(x,y) imphes:
there exists an FDB ft* such that ft*(x,y) and

1. x GFAIL* and y GPA/I*, or x GPASS* and y GP4SS*, or

2. O(x) = O(y), and Va G E

• whenever x A t and t g FAIL*, Sw s.t. y A u> and £*(t, w), and
• whenever y A u? and w£ FAIL*, St s.t. x A / and £*(t, w).

Let ft7* be such an FDB. Since £* includes all FDBs, then ft'*(x,y) imphes £*(x,y). Hence, we
have:

£*(x,y)and

1. x GFAIL* and y GP4/I*, or x GPASS* and y GPASS*, or

2. O(x) = 0(y), and Va G E

• whenever x A t and t £ FAIL*, Sw s.t. y A w and £*(<, tu), and
• whenever y A w and w £ FAIL*, St s.t. x A i and £*(<, w).

By Definition 15, this implies T*(x,y).
(<*=) It suffices to show that T* is an FDB, since £* includes aU FDBs. For the base cases, the
definition for T* directly imphes the FDB definition. Of the remaining cases, we show the case
4> = SGij) in detail; the rest of the cases are similar.

Case <f> = SGij>
By Definition 15, T*(x,y) implies:
£*(x,y)and

1. x GP4/I* and y GP4/I*, or x GPASS^ and y GPASS*, or

2. O(x) = 0(y), and Va G E

• whenever x A t and t g FAIL*,Sw s.t. y A w and £*(t,w), and
• whenever y A iy and w g FAIL*, St s.t. x A t and £*[t,w).

Since £* is an FDB, then this implies that there exists an FDB ft* such that ft*(x,y), Also, by
the forward implication of this proposition, £*{t,w) imphes T*(t,w). Thus, T*(x,y) implies the
following, and hence is an FDB:
thereexists an FDB ft* such that ft*(x, y) and

27

1. x GFAIL* and y GP4/I*, or x GPASS* and y GPASS*, or

2. O(x) = 0(y), and Va G E

• whenever x A t and t g* FAIL*,Sw s.t. y A w and T*(i,iy), and
• whenever y A w and it; £ FAIL*, St s.t. x A J and T*(t,w).

Fact 17 For the cases <f> = 3C?V>, and <f> = 3[^i tf ^2], those states related by condition 2 of the
definition of £* are computed by the foUowing greatest fixed-point computation:

Qo = {(*,y)€SxS|0(x) = 0(y)}
Qi+i = <9in{(x,y)GSxS|VaGE,

(V< GS s.t. x A *and t g FAIL*, Sw GS s.t. y A w and (*, w) G£,), and
(Vw GS s.t. y A w and w g P4/I*, St GS s.t. x A t and (*, w) GQt)}

Proposition 18 (Proposition 3 of paper) Let <f> be a CTL formula, and let x and y be states of
M such that £*{x,y). Then for any state t of any FSM M',

M x M', (x, <) |= <f> iffM x M', (y,t) |= 0.

Proof The proof is by induction on the structure of <j>. We show that M x M', (x, t) |= <j> imphes
M x M', (y, t) |= <j>. The converse holds by symmetry.

Case <f> = pi
(x,t) \= pi implies (z,t) |= p,- for all z GS, which in turn imphes (y,t) |= p,-.

Case <j> = p0
(x,t) \= p0 imphes p0 GO(x). £*(x,y) imphes p0 G0{x) iffp0 GO(y), and thusp0 GO(y). Finally,
this imphes (y,t) f= p0.

Case <f> = pa
{x,t} |= p* imphes (x,t) G ps. £*(x,y) imphes for all 5' G S',(x,<') G pa iff(y,<;) G ps. Thus,
(y,0 € ps, which in turn imphes {y,t) \= pa.

Case <j> = -i^>
(x,i) |= <f> imphes (x,<) ^ ^. £*{x,y) imphes £*{x,y),which by the I.H. imphes (y,*) ^ V, which
in turn imphes (y, t) (= <j>.

Case <f> = fay fa
(x,t) |= 0 imphes (x,<) |= ^ or {x,t) \= fa. £*(x,y) imphes £*x{x,y) and £*2(x,y), which by the
I.H. imphes (y,t) f= fa or (y,<) |= fa, which in turn imphes {y,t) |= <£.

28

Case <f> = SX$
(x,t) ft <f> imphes that there exists a next state (x',tf) of (x,t) such that (x',t') ft ^. Suppose
a C I such that x A x' and (a n J') C 0'($). Now, since (x,t) ft <f>, then by Proposition 7,
x £ FAIL*. Also, if y G PASS*, then the lemma foUows, so assume y £ PASS*. Thus, £*(x, y)
holds by condition 2, and hence O(x) = 0(y) and there exists y' such that y A y' and £*(x',y').
This imphes that (y, <) —• (y',<'), and by the I.H. (y',t') ft ifr. Finally, this imphes (y,t) ft <f>-

Case <f> = SGip
(x,t) ft <f> imphes that there exists a path (xo,<o) -*• (xi,ti) —• ... such that (xi,U) ft ip for all i.
This imphes by Proposition 7 that xt- £* FAIL* for aU i, which in turn imphes x; £ FAIL* for aU
i. Suppose a,- C / such that xo ^ Xi ^ ... and (a,- n «/') C 0'(ti-i).

For the sake of contradiction, suppose (y,<) ^ 30?^. This imphes that for every path (yo,so) —*
(yi,^i) —•..., there exists A; such that (yfc,Sfc) ft V- For each path, we are interested in the
minimum such k. Since (y*,«sjt) ft ^, this imphes that for all i < k, (yi,Si) ft <f>, which by
Proposition 7 imphes y,- £ PASS*.

Since £*(x,y) holds by condition 2 and xt- £ FAIL* for all t', then repeated apphcation of
condition 2 shows that one of the paths yo -^ yi ^ ... is such that 0(xt) = 0(y,) and £*(xi,yi)
holds for all i < k. This imphes that (yo,<o) —> (yi,*i) -+...—*• (yfc,**) is a path. By assumption,
(y*,<*) ft fa £Hxk,Vk) imphes £*(xk,yk)\ since (xfc,<jt) |= ^, then by the I.H., (yjt,<fc) |= fa which
is a contradiction. Hence, (y, i) |= 0.

Case <j> = S[faU fa]
(x,t) ft <f> imphes that there exists a path (xo,<o) -* (xi,h) —• ... and some A; such that (xk,tk) ft
fa and for all j < k, {xj,tj) ft fa. This imphes by Proposition 7 that x* €* FAIL*2 and for all
j < k, Xj g FAIL*1, which in turn implies x, £ FAIL* for aU i < k. Suppose a, C / such that
x0 ^ xj ^ ... and (a, n J') C 0'(<;_i).

For the sake of contradiction, suppose {y,t) ft S[fa U fa]. This imphes that for every path
(yo,so) —»• (yi, 5i) —>..., one of the foUowing is true:

1. 3/ > 0 such that {yi,si) ft fay fa and Vj < /, {yj,Sj) ft fa (for each path, we are interested
in the minimum such /).

2. Vi>0, (yi,Si)ftfa.

This imphes that for each path, one of the foUowing is true:

1. 3/ > 0 such that Vj <l,yji PASS*,

2. Vi > 0, yi i PASS*.

Since £*(x,y) holds by condition 2 and x, £ FAIL* for aU i, then repeated apphcation of
condition 2 shows that one of the paths yo ^ yi ^ ... is such that one of the foUowing is true:

1. If / < k, then 0(xt) = 0(y,) and ^*(x,-,y,) holds for all t < /. This imphes that (yo,<o) —'
(yi,*i) -*...-»• (y/,</) is a path. By assumption, (yi,ti) ft fa. £*{x\,yi) implies £*(x/,y/);
since (x/,i/) |= fa, then by the I.H., (yi,ti) ft fa, which is a contradiction.

If / > k, then 0(xt) = 0(yt) and 5*(x,-,yt) holds for all i < k, where y* £ PASS1'2. This
implies that (yo,<o) -* (yi,*i) -• ••• -♦ (y*>U) is a path. By assumption, (yk,tk) ft fa-

29

£*{xk,yk) imphes £*{xk,yk)\ since (x*,**) |= fa, then by the I.H., (yk,tk) ft fa, which is a
contradiction.

2. Same as the case for / > k immediately above.

In each case, we have a contradiction. Hence, (y,t) ft <f>.
•

Definition 19 Let M = (S,I,J,T,0) and let <f> be a CTL formula. Impose an arbitrary total
ordering on the elements of S. Let the equivalence classes of the equivalence relation £* C S x S be
denoted by S* = {ci,C2, ...,cr}, where c; C S. Define c,- to bethe representative ofc,, where c; is the
least element of ct. Then the quotient machine of M with respect to £* is M* = (S*,I,J,T*,0*),
where

• T* C S* x E x S* such that (c,a,a*) GT* iff 3x Gc and 3y Gd such that (x,a,y) G2\ and

. O* : S* -h. 2J such that 0*(c) = 0(c).

Note that the output of c depends on the ordering of the states of M. However, in the proofs
to foUow, we never assume anything about the ordering; that is, the output of c can be chosen
to be the output of any state in the equivalence class c. Note also that we use [s] to denote the
equivalence class of s.

Definition 20 Let M = {S,I,J,T,0), let <j> be a CTL formula, and let M* = (S*,I,J,T*,0*)
be the quotient machine ofM induced by £*. Define M = (S,I,J,f,6) as Mows:

• S = S US*,

• f CSx Ex Ssuch that (s,a,t) Gf iff (s,a,t) GTor (s,a,t) GT*,

• 6 :S -+ 2J such that 6(s) = 0(s) ifs GS, and 0(s) = 0*(s) if 5GS*.

Intuitively, M is derived by "placing M and M* side-by-side", and considering the result as a single
FSM. Let £* denote the equivalence computed on M with respect to <j>.

Lemma 21 Let M = (S,I,J,T,0) and M' = (S',r,J',T,0') be FSMs, and let 0 be a CTL
formula. Let M refer to the machine defined in Definition 20. Thenfor all states s GS, (5, [s]) G£*.

Proof (by induction on the structure of <fi)

For this lemma, we carefully state the inductive hypothesis: for every subformula ip of <j>, and
for all s GS, (s, [s]) G£*, where [s] is always the equivalence class of s with respect to <f>.

Case <f> = pi
Since £* contains all pairs ofstates in M, it contains (s,[s]).

Case <f> = p0
If p0 GO(s), then for all <such that £*(s,t), p0 G0(i). Hence, regardless of the representative
used for [s], we have p0 G0*([s]). Therefore, (>,[s]) G£*.

30

Likewise, if p0 £ 0(s), then for all t such that £*{s,t), p0 $ 0{t). Hence, regardless of the
representative used for [s], we have p0 # 0*([s]). Therefore, (s, [s]) G£*.

Case 4> —Ps
Since ps C S XS', we must first extend pa to p3 C S XS'. If (5,«') 6 5 x S', then (5, s') Gps iff
(5,5;) Gp3. If (M,s') GS* xS;, then ([s],s') Gpa iff for all t GSsuch that £*{s,t), \t,s') Gp3.

Now we are ready to prove this case. For all states t GS, if£*(s,i), then for all s' GS', (s,s;) G
ps iff (t,s') Gp3. Hence, (s, [5]) G£*.
Case 0 = -i^
By the I.H., (s,[s]) G£*. But, since £* = £*, then trivially (s,[s]) G£*.

Case <f> = fay fa
By the I.H., (5, [s]) G£* and (s,[s]) G£*>. Hence (5, [5]) G£*.

We break each remaining case into three mutually exclusive subcases: s G FAIL*, s G PASS*,
and s $ FAIL* U P4SS*.

Case <f> = 3A>
s GP4/I*: Let a GE. and let [t] be such that [s] A [*] in M*. We need to show that [t] GP4/I*.
Since [s] A [t]t there exists x and y such that£*($,x) and £*(t, y) and x A y in M. Since £*(s, x)
and 5 G PA/I*, then by Lemma 10, x G PA/I* and hence y G P4/I*. Then £*(t,y) implies
£*(*, y), which implies t GP4/I*. By the I.H., (*,[*]) G£*, and thus [*] GFAIL*, which implies
that [5] GP4/I*. Hence, (5, [5]) G£*.

3 G PASS*: Let a G E. Then since 5 G PASS*, there exists * such that s A * and / G PASS*.
Therefore, there exists [*] such that [s] A [*]. By the I.H., (t,[t]) G £*, and thus [t] G PASS*.
Hence, {s, [s]) G£*.

3 g* FAIL* UPASS*: In this case, every state equivalent to 5 under £* is related by condition 2 of
the definition of £*. Therefore, for all x such that £*(x,s), 0(x) = 0(s), and thus 0{s) = 0*{[s]),
regardless of the representative chosen for [5].

Let a GE, and let t be such that s A t and t &FAIL*. Then there exists [t] such that [s] -^ [t],
and by the I.H., (t, [t]) G£*. This satisfies the first half of condition 2.

On the other hand, let [t] be such that [s] A [t] and [t] # FAIL*. Then there exists x and y such
that £*(s, x)and £*(t, y) and x A y. By the I.H., (t, [t]) G£*. Then £*(*, y) imphes £*(*, y), which
implies by transitivity that £*([t], y). Then by Lemma 10, y £ FAIL*. Now we apply condition 2 to
show that there exists vsuch that s A vand £*(y, v). By transitivity, £*([t], v). Hence (5, [3]) G£*•

Case 0 = SGi>
s GFAIL*: For sake of contradiction, assume that [s] £ FAIL*. This implies that there exists a
path [w0] ^i [u>i] ^ ..., where w0 = s, such that for aU i > 0, [wi] g FAIL*. By the following
claim, this implies that that there exists a path $0 ^i si ^ ..., where so = s, such that for all
i > 0, Si # FAIL*. But this contradicts the fact that s GP4/I*, and hence [s] GP4/I*.

Claim: For all j > 0, if s0 G P4/I* and there exists a path [w0] ^ [wi] ^ ... -^ [wj], (where
wo = so), such that for all 0 < t < j, [wi] &FAIL*, then there exists a path s0 ^ si ^ ... ^4 $,-,

31

where sq = s, such that for all 0 < i < j, Si 0 FAIL* and £*(si,Wi).

Base, j=0: [w0] £ FAIL* imphes [s0] & FAIL*, since w0 = s0. By the I.H. of the lemma,
(so,[so]) G£*, and hence s0 &FAIL*. Since w0 = s0, then trivially £*(s0, w0).

I.H.: For k < j, if s0 GP4/I* and there exists a path [tu0] ^ [m] ^ ... ^ [10*], (where u>0 = s0),
such that for all 0 < i < k, [w^ g FAIL*, then there exists a path s0 ^ si %• ... ^ Sk, where
s0 = s, such that for all 0 < i < k, s,- £ PA/I* and £*(si,Wi).

I.S.: [tut] -i1 [wjfc+i] imphes there exists x and ysuch that £*{x, Wk) and £*(y, Wk+i) and x °^t1 y.
Since s0 GP4/I* and for all 0 < i < k, Si $ FAIL*, then sk GP4/I*. By transitivity, £*(x,sk),
and hence x G P4/I*. Also, £*(x,sjfc) imphes £*(x,sk), which imphes x £ FAIL*. Since M is
completely specified, there exists Sjt+i such that Sk °^1 «jt+i •

Now, since x £ P4/I* and x G P4/I*, then y G P4/I*. Likewise, since sk i FAIL* and
Sk GP4/I*, then s*+i GP4/I*. This imphes that £*(y,sk+i), which by transitivity, implies that
£*(sk+i,Wk+i). By the I.H. of the lemma (wk+i,[wk+i]) G£*, which imphes that Wjt+i £ FAIL*.
FinaUy, by Lemma 10, this imphes that Sk+i &FAIL*.

s GPASS*: We show that [s] GPASS* by proving the foUowing claim, where P, refers to the defi
nition of PASS*.

Claim: If s GPASS*, then for all i > 0, [5] GPt.

Base, i=0: s G PASS* implies s G PASS*. By the I.H. of the lemma, (s, [s]) G £*, and hence
[s] GPASS*. Thus, [5] GP0.

UL: For A? < t, if a € PASS*, then [5] GP*.

ULl By the I.H., [5] G P*. Let a G E. Since s G PASS*, then there exists t such that 5 A t and
<GPASS*. Therefore [5] A [<), and since t GPASS*, by the I.H., [t] GRk-

s$FAIL* UPASS*: The foUowing claim shows that (s,[s]) G£* by showing that for aU i > 0,
(5, [«]) GQ,, where Qi refers to the fixed point computation for £*. Remember that £* is already
known.

Claim: For all i > 0, (s, [s]) G <?,•.

Base, i=0: Since aU the states in the equivalence class of s have the same outputs, then O(s) =
0*([s]). Hence, (s,[s])eQ0-

ULl For k < i, (5, [s]) G Qk-

ULi By the I.H., (s,[s]) G Q*. Let a G E. Let t be such that s A <and t £ P4/I*. Then there
exists [*] such that [5] A [t], and by the I.H., (t,[t]) G<2*. This satisfies the first half of condition

32

2.

On the other hand, let [t] be such that [s] A [t] and [t] g FAIL*. Then there exists x and y such
that £*($, x) and £*(t, y) and x A y. We need to show that y £ P4/I* in order to apply condition
2. Ify GFAIL*, then by Lemma 10, t GFAIL*. Then applying the above subcase, this implies that
[t] GFAIL*, which is a contradiction. Hence, we can assume that y £ FAIL*. Applying condition
2, there exists v such that s A t> and £*(y, v), which by transitivity imphes that £*{t, v). This triv
ially imphes that (t, v)eQk, which combined with the I.H. that (/, [t]) GQk, gives that ([*], v) GQk-

Case ^ = 3[V>i U fa]
s GFAIL*: (This proof is similar to the corresponding case for Lemma 10.) For sake of contra
diction, assume that [s] g FAIL*. This imphes that there exists a path [w0] ^ [wi] %•..., where
w0 = s, and there exists j > 0 such that [wj] £ P4/I*2 and for aU i < j, [wi] £ FAIL*1. The fol
lowing claim shows that a path of aU non-P4/I*J states from [wq] can be matched by a path ofall
non-FAIL*1 states from s0. Then we consider the fact that there exists j such that [wj] g FAIL*2.
By the I.H. ofthe lemma, (wj, [wj]) G£*2, and hence Wj £ FAIL*2. By the claim, £*(sj,wj), which
imphes £*2(&j,Wj), which in turn imphes Sj £ FAIL*2. This contradicts the fact that s GFAIL*,
and hence [s] GP4/I*.

Claim: For aU j > 0, if s0 GFAIL* and there exists a path [w0] ^ [wi] %• ... %[wj], (where
wo = so), such that for all 0 < i < j, [wi] g FAIL*1, then there exists a path s0 ^ Si ^ ... ^ Sj,
where so = s, such that for aU 0 < i < j, s, £ FAIL*1 and £*(si, Wi).

The proof is exactly the same as for the corresponding claim in the case <f> —SGij), except that
ip is replaced by ^i.

s GPASS*: Since s G PASS*, then there exists i > 0 such that s G Ri, where P,- refers to the
definition of PASS*. We show that [s] GPASS* by proving the foUowing claim.

Claim: For aU i > 0, if s G Ri, then [5] G Ri.

Base, i=0: 5 G P0 imphes s G PASS*2. By the I.H. of the lemma, (5, [s]) G £*2, and hence
s GPASS*2. Thus, [s] GP0.

I.H.: For fc < i, if 5 G Rk, then [3] G P*.

I.S.: To show that [s] G Pjt+i, we need to show that:

• [s] G Pjt, or

• [s] GPASS*1, and Va GE,3[<] s.t. [s] A [t] and [t] GPfc.

Let 3 G Pfc+i. If s G Rk, then by the I.H., [s] G P*. So assume s £ Pfc. First, by the I.H. of the
lemma, (s,[s]) G£**, which imphes [s] GPASS*1. Next, let a GE. Since 5^ Pfc, there exists i
such that s A i and t e Rk- Therefore [s] A [t], and since t GPjt, by the I.H., [<] GP*.

s g" FAIL* UPASS*: Same as for the corresponding subcase for the case 0 = SGi/>.

33

Theorem 22 Let M = (S,I,J,T,0) and M' = (S',r,J',T,0') be FSMs, and let 0 be a CTL
formula. Then for all product states (s,s'),

M x M', (s, s') ft<j>if[M*x M', ([s], s') ft <f>.

Proof By Lemma 21, (s, [$]) G£*. Then applying Proposition 18, we have

M x M',(s,s')ft<}>mMx M',([s],s') ft 4>.

Since M and M* do not interact with each other, we have

M x M', (s,s')ft<t>ifiMx M', (s,s') ft <j>,
and

M x M', ([s], s') ft <f> iff M* x M', {[s], s') ft <j>.
Combining this series of equivalences gives the theorem. •

Note that a formula <f> may directly refer to the states S of a component machine M via an
atomic proposition paQSxS'. Ifwe want tomodel check 0on a system where Mhas been replaced
by its quotient M*, then we must first modify <f> by replacing ps with a new atomic proposition p*
that refers to the states in S* rather than S. In particular, ([*],*') Gp* iff for all t GS such that
£*(s,t), (t,s')epa.

Corollary 23 (Theorem 4 ofpaper) Let cf> be a CTL formula, and let Mu..., Mn be FSMs. Let
Mf be the quotient of M; with respect to £*, and let [st] denote the equivalence class of £*
containing s,-. Then for all product states (si,...,sn),

MiX...xMn,{si,...,sn)ft<f>\ffM*x...xM*, ([si],..., [sn]) ft <f>.

Proof If we can show that for any i

Mi x...xMt_! xMixMi+i x...xMn,{si,...,Si-i,Si,Si+i,...,sn)ft<f>if[
MiX...xMi-ixMfxMi+iX...xMn,(si,...,Si-i,[si],Si+i,...,sn)ft<f>,

then by applying this fact successively n times, the coroUary is proved.
By associativity and commutativity of FSM composition, we have

MiX...xMi-ixMixMi+iX...xMn,(si,...,Si-i,Si,si+i,...,sn}ft<f>ifi
(Mix...x Mi-i x Mi+i x ... x Mn) x Mi,((si,...,Si-i,si+i,...,sn),Si) ft <f>.

Then applying Theorem 22 gives

(MiX...xMi-ixMi+iX...xMn)xMi,((si,...,Si-i,si+i,...,sn),Si)ft<f>\f[
(MiX...xMi-ixMi+iX...xMn)xM?,((si,...,Si-i,Si+i,...,sn),[si])ft<f>,

and finally associativity and commutativity gives

(MiX...xMi-ixMi+iX...xMn)xM?,((si,...,si-i,Si+i,...,sn),[si])ft<fiiff
Mix...x M^i x Mf x Mi+i x... x M», (*,...,*_i, [*],**!,...,3») |= 0

34

	Copyright notice 1994
	ERL-94-78

