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Abstract

Retiming has been proposed as an optimization step for sequential circuits represented at
the net-list level. Retiming moves the latches across the logic gates and in doing so changes the
number of latches and the longest path delay between the latches. In this paper we show by
example that retiming a design may lead to differing simulation results when the retimed design
replaces the original design. We also show, by example, that retiming may not preserve the
testability ofa sequential test sequence fora given stuck-at faultas measured bya simulator. We
identify the cause ofthe problem as forward retiming moves across multiple-fanout points in the
circuit. Theprimary contribution ofthispaper isto show that, while an accurate logic simulation
maydistinguish the retimed circuitfromthe originalcircuit, a conservative three-valued simulator

cannot do so. Hence, retiming is a safe operation when used in a design methodology based on
conservative three-valued simulation starting each latch with the unknown value.

1 Introduction

We are interested in the optimization of synchronous digital circuits represented at the so-called

net-list level. A synchronous circuit is defined loosely as an interconnection ofcombinational logic
gates (gates) andsynchronizing memory elements (latches) where where each cycle contains at least
one latch. For simplicity, we consider circuits consisting of edge-triggered latches clocked directly
by a single input signal.
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^Motorola Inc., MD OE321, 6501 Wm Cannon Drive West, Austin, TX 78735
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Many sequential optimization techniques further assume the existence of a single input signal

connected to each latch to set the state of the latch before the circuit begins operation. The

corresponding pin on the latch is called a synchronous reset (or synchronous set) pin. However,

very few designs satisfy the requirement that every latch is reset in this manner. For example,

consider a digital signal processing circuit consisting of a controller connected to a datapath. The

datapath consists of e.g., adders, multiplexors, and registers (latches). The controller is typically

reset during the first cycle by an input signal which is connected to each latch in the controller.

However, it is unnecessary for the correct operation of the circuit to force the datapath latches to

reset on power-up with the same global reset line. Once the controller is reset, it simply applies a

sequence of inputs to the datapath to ensure that any datapath registers (e.g., an accumulator) are
initialized properly. For many designs of this style, the controller contributes less than 10% of the

total latches in the design. Also, the size of a latch with a reset signal is larger than the size of

latch without a reset signal and a significant area penalty arises from the routing of the reset signal.
Therefore, to reduce the size of the design, none of the datapath latches is directly reset. As an

extreme example, consider a pipelined 32-bit multiplier with 4 pipeline stages; to force the latches

in this finite memory subcircuit to a defined value with a global reset signal is costly and totally
unnecessary.

The above observation has sparked interest in algorithms for analyzing and optimizing designs

where none of the latches have reset signals. In these algorithms, latches in the design which have

synchronous control pins (e.g., set, reset, load enable) aremodelled as simple latches surrounded by

additional gates. For example, a synchronous reset latch with positive logic reset signal R and data

input signal D is modelled by a simple latch and an andgate with the and gate fed by not(R) and
D.

Logic optimization modifies acircuit to improve a cost function on the circuit (such asminimizing

the area required to meet a specified clock period) while preserving the behavior of the circuit. It

is important to note that these modifications are done at the net-list level with no knowledge of

the environment in which the circuit is used;1 hence, it is important that the optimized circuit be

able to replace the original circuit for any environment. As a simple example, combinational logic

optimization restricts modifications to the gates in the circuit. As long as the Boolean functions

Sometimes limited knowledge of the environment, such as output don't-cares or an initializing sequence, may be
provided by the designer; however, our goal is to develop optimization algorithms which do not require suchinformation
to be provided



produced at the outputs of the combinational portionofthe circuit remains unchanged, the optimized

circuit is can safely replace the original circuit.

A sufficient condition which allows a design to be replaced independent of its environment is the

classical notion of equivalent FSMs (i.e., for every state in the first machine there is an equivalent
state in the second machine, and vice-versa). A weaker condition, which is both necessary and

sufficient for replacement was recently introduced by Pixley et al. and is called safe-replacement
[PSAB94].

Pixley introduced Sequential Hardware Equivalence (SHE) [Pix92] to consider the equivalence

of digital circuits under the assumption that digital circuits must operate correctly starting from
a random power-up state. Consider the state transition graph of a digital circuit, which, by his

definition, is a completely-specified machine with 2n states given n latches. Collapse this machine

by merging equivalent states. Strongly connected component analysis of any directed graph yields a

directed acyclic graph of strongly connected components (SCC). Pixley argued that for the behavior

of the circuit to be well-defined under the assumption ofa random power-up state, the state-minimal

graphofthe circuit musthave a single sink SCC (i.e., a single terminal SCC or TSCC). All interesting
notionsof replacement require equivalence of the TSCCs of the two designs, as the TSCC defines the

steady-state behavior of the machine. The subtlety which distinguishes SHE and various notions of

replacement is in dealing with the transient behavior of the machine (all states outside the TSCC).
Replacement requires that the environment be able to drive a replacement machine into its steady-

state behavior (i.e., reset the machine) with the same sequence used to reset the original machine.

Retiming was first formulated by Leiserson and Saxe [LS83] in the context of systolic systems.

When applied to digital circuits, retiming is an optimization step which moves the latches across

the logic gates and in doing so changes the number of latches and the longest path delay between
the latches. In this manner, the number of latches can be reduced, and/or the cycle time of the

circuit can be improved. Recent results by Shenoy and Rudell [SR94] have improved the efficiency

of retiming so that circuits up to 50,000 equivalent gates can be retimed for minimum area under

a delay constraint. This has sparked further interest in exploring the application of retiming as a
general optimization step during logic synthesis.

Prior literature has assumed that retiming can be directly applied to sequential circuit optimiza

tion. However, it has been recently pointed out by Pixley et al. [PSAB94] that retiming does not
satisfy the safe-replacement condition. Note that the theorem of Leiserson and Saxe on the validity

of retiming is not in doubt. They simply made the assumption that the environment of the circuit



could be modified to wait a fixed number of cycles (dependent upon the retiming) before applying
its inputs. It is this requirement which violates safe-replacement and casts a doubt on whether

retiming is valid as part of a synthesis methodology for net-list level sequential circuits.

In this paper, we first show in Section 2 how a designer who applies retiming to a circuit could
be surprised during simulation when the retimed design replaces the original design. Specifically,
it is possible that a logic simulator could produce a different output sequence when simulating the
retimed circuit. We also show on the same example that an input sequence which tests a fault in

a circuit cannot test the same fault in the retimed circuit. In Section 3 we formalize our model

of retiming on sequential circuits, which is slightly different from that of Leiserson and Saxe in

that we distinguish the case where a latch moves from the output of one gate to the inputs of
each of its fanouts. We then re-prove in Section 4 the Leiserson and Saxe result that retiming
is a safe operation as long as one can wait long enough after power-up before applying the input
sequence. As a consequence of our proof, we identify that the only incorrect retiming transformation
is one which moves a latch forward across a multiple-fanout junction; i.e., if we limit the retiming
transformations, then retiming satisfies the condition of safe-replacement. Section 5 is the key to
the paper. We define a conservative three-valued logic simulator (CLS) as a three-valued simulator
using the values '0', '1', and 'X' which performs only local propagation of the X values (i.e., QX = 0
but 1 •X = X).2 Further, the CLS begins operation with all latches in the X state. In Section
5 we show that while a simulator could distinguish a retimed circuit from the original, in fact, a

conservative three-valued logic simulator cannot. In other words, retiming retains an invariant on

the output sequences produced by conservative three-valued simulation.

As a final comment, note that our model of a synchronous circuit does not require a latch to
have a set or reset line and does not require any notion of the initial state of the circuit. Hence, we
avoid the problem pursued by Touati and Brayton [TB93] in retiming the initial state.

In contrast, an exact three-valued simulator will output an X only in the case that some assignment of values to
X on the input yield differing outputs; for a conservative simulator the local propagation of X's may cause an X on
the output even though the output is a 0 (or a 1) for every input.
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Figure 1: Retimed circuit is not initialized with input sequence 0.

D C
Figure 2: Design where retiming breaks down an initializing sequence of length 1.

2 Retiming Violates Safe-Replacement

2.1 Simulation Example

Here we show how a simple retiming move might change the behavior of a design. Consider the

circuit D and the retimed version C in Figure 1. The STGs for these circuits are shown in Figure 2.

Design D has two states and is initialized to state 0 on the length-1 input sequence 0, whereas C is
not initialized with this input sequence.

If we simulate the two design D and C with an input sequence, we may get different results.

Consider the input sequence 0 •1 •1 •1. The simulation results for this input sequence from all the

power-up states of D and C are shown in Table 1. This input sequence produces the same output

sequence from every power-up state of D. However, if design C powers up in state 10, it will output

0 •1 •0 •1, resulting in an input/output behavior which was not present in the original design.

Suppose we had a sufficiently powerful simulator which given any input sequence, outputs



power-up output power-up output
state of D sequence state of C sequence

0 0-0-1-0 00 0-0-1-0

1 0-0-1-0 11 0-0-1-0

01 0-0-1-0

10 0-1-0-1

Table 1: Simulation results for D and C on input sequence 0-1-1-1.

• a 1 at an output at some time step iff all power-up states output 1 at that time step

• a 0 at an output at some time step iff all power-up states output 0 at that time step

• an X otherwise, i.e. if there exist two power-up states, one of which outputs a 0 and the
outputs a 1.

For the input sequence 0 •1 •1 •1 this simulator would output 0 •0 •1 •0 for design D and output
0 •X •X •X for the design C.

Note, however, that if we clock the circuit for one redundant cycle (with arbitrary input) before
applying our input sequence, even our imaginary powerful simulator will produce the same output
for both circuits. This is the sense of a delayed circuit which we define in Section 3 and is the notion

of equivalence used by Leiserson and Saxe when proving that retiming was a valid transformation
on a circuit.

2.2 Testing Example

The example in the previous subsection shows that retiming can change the behavior of a design as

measured by a simulator. Next we show that test sets can also be affected similarly, contradicting
the result of Marchok et al. [MERM94]:

(Theorem 1 in [MERM94]) The retiming transformation preserves testability with respect to
a single stuck-at-fault test set.

This theorem implies that if a test sequence uncovers a given stuck-at-fault in a circuit, then the

same sequence can detects the same faults in a retimed version of the circuit. For a counterexample,

consider circuits D and C in Figure 3. For the given stuck-at-1 fault shown, the test sequence

0 •1 detects the fault in the original circuit D. For the input sequence 0-1, the fault-free version

of D produces the output 0 •0 from all power-up states whereas the faulty version of D produces



D C
Figure 3: Retiming does not preserve test sequence 1-1.

the output sequence 0-1. Thus, 0 • 1 is a valid test sequence for the stuck-at-fault in D since

it distinguishes the faulty design from the fault-free design. However, for the fault-free version of

circuit C, the input sequence 0 • 1 may produce output 0 • 0 or 0 • 1 depending on which state C

powers up in (see the STG for C in Figure 2); the faulty version of C still produces 0 •1 from any

power-up state. Thus, 0 • 1 is no longer a test sequence for the retimed design D.

3 Background

3.1 Leiserson-Saxe Retiming Model

Leiserson and Saxe introduced retiming [LS83] through a graph-theoretic model. A designis modeled

as a finite edge-weighted directed graph G = (V,E). Each vertex in V represents either a gate in

the design, a primary input or output, or a special dummy node called the host. There is an edge

in E from one gate to another if an output of this gate fans out to the second gate; there is an edge

from the host to each primary input node; and, an edge from each primary output node to the host.

The non-negative weight of an edge represents the number of latches on the corresponding path in

the design. The host and primary input and primary output nodes are required to have a lag of 0.

A retiming of a design is an assignment of each vertex v to an integer lag(v) such that for every

edge (w, v) with weight tu, the value w + lag(v) —lag(u) is non-negative. Informally, the lag of a

vertex denotes the number of backward retiming moves across this register, for example a lag of -2

on a logic element means that 2 forward retiming moves are performed across this element.

This model is not well suited for retiming on gate-level sequential circuits. The problem is that

if a single output of an element fans out to more than one element, this model does not distinguish



Figure 4: The edge-weighted digraph representing the circuits D and C from Figure 1.

where the latches are placed with respect to the fanout junction. This is best seen with respect to

the retiming example discussed in Section 2.1. Both the circuits in Figure 1 are represented by the
same retiming graph, which is shown in Figure 4.

3.2 Circuit Model

Our model of a sequential circuit is the traditional net-list level model which consists of elementary

cells from a library interconnected with wire connections (for example, the circuits in Figure 1).
The library cells consist of combinational gates and latches. As discussed in the introduction, we
allow latches with synchronous control signals (set, reset, load enable) but do not require that all
latches be of this type.

The reason retiming caused a problem in the example of Section 2.1 is that we retimed a latch

forward across a fanout junction and created a power-up statewhich could not occur in the original
circuit. If there are multiple-output gates in the cell library such that there exist output vectors of
the cell which cannot be produced by any input vector to the cell, then retiming latches forward
across such elements leads to the same problem as retiming latches forward across fanout junctions.

This motivates the definition of justifiable and non-justifiable multiple-output gates. Consider
a multi-output gate F with n inputs and m outputs. The m output functions are denoted by
/i> •••»/m- F is justifiable if and only if for every output y e 2m, there exists an input x € 2n such
that y = F(x); if there exists y € 2m such that for all x € 2n, y ^ F(x)y then F is non-justifiable.

A fc-way fanout junction (k > 1) is a special case ofa multi-output gate (which we call JUNC)
with 1 input line x and k (k > I) output lines yi,3fe>• •.,!ljt, where y\ = ••• = yk = x (Figure 5).
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Figure 5: A junction can be treated as a multi-output gate.

backward

forward

Figure 6: Forward and backward retiming moves across a multi-output element.

The element JUNC is clearly non-justifiable since only two of the 2k output vectors (000.. .0 and
111...1) are possible. For the remainder of this paper we assume that all fanout junctions are
replaced by JUNC elements. This implies that each output ofeach gate (latch) fans out to exactly
one other gate (latch).

For a gate-level network which replaces junctions with multi-output gates as described above,
there are two kinds of atomic retiming moves: forward and backward. A forward move removes

one latch from each of the n inputs and places one latch at each of the m outputs; a reverse move

removes one latch from each of the to outputs andplaces one latch at each ofthe n inputs (Figure 6).
We view retiming starting from an initial circuit and applying a sequence of these atomic moves to
result in the retimed circuit.

3.3 Notions of Replaceability

Here we discuss the various notions of design replacement that are relevant to our work.

The notion of safe replaceability was presented in [PSAB94]. A design C is a safe replacement
for a design D (denoted by C •< D) if for any state si in design C and any input sequence, there
exists a state s0 in design D such that the output behavior from s\ is the same as that from s0
on that input sequence. It was shown that the above condition is necessary and sufficient so that
the replacement cannot be detected by anyenvironment that canonly control and observe only the



primary inputs and outputs, respectively, of the design.

A stronger notion of design replacement is the classical notion of state machine implication

usually defined in the context of state machine equivalence. A design C implies design D (we

denote that by C C D) if for any state s\ in design C there exists a state sq in design D such that

si is equivalent to so (i.e., on any input sequence, the output behavior from 3i is the same as that

from so)-

The difference between •< and C lies in the fact that for the former the state s0 in D depends

not only on s\ but also on the input sequence, whereas for C sq only depends on s\ and is the same

for any input sequence. It has been shown in [PSAB94], that if C < D, there may be a state in C
which is not equivalent to any state in D. Thus, C is a strictly stronger notion than <

In the following sections we will prove results which characterize the conditions under which the

relation C holds between two designs. The following proposition shows that these results automat
ically imply safe replaceability (<) as well.

Proposition 3.1 IfCCD, then C <D.

Proof: Consider any state S\ GC. Since C C D, there exists a state s0 € D which is equivalent to
s\. Thus, given «i, for any input sequence tt, there is a state in D (namely s0) such that si and s0
output the same sequence on it. m

3.4 Delayed Designs

We need the notion ofdelayed designs (similar to sufficiently old configuration of [LS83]) to show
the results inour paper. Given a design D, an n-cycle-delayed design (denoted by Dn) is the set of
states of D if we allow arbitrary inputs to run through design D for n clock cycles after power-up.
The design Dn will be design D minus some transient behavior ofdesign D which can be seen only
during the first n cycles after power-up. For example, consider the design C in Figures 1 and 2. If
we run arbitrary inputs through C for one cycle after power-up, we can never reach states 01 or 10.

The delayed design C1 consists ofstates 11 and 00 only and thus C1 is equivalent to the design D.

4 Safety of Retiming Moves

In this section we classify retiming moves intothose which arestrictly safe for safe-replacement, and
those which are safe only under the assumption ofa delayed design.
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There are four kinds of atomic retiming moves:

(i) Backward across a justifiable element.

(ii) Forward across a justifiable element.

(iii) Backward across a non-justifiable element.

(iv) Forward across a non-justifiable element.

Proposition 4.1 If design C is obtained from design D by a single retiming move which is either

a backward move or across a justifiable element, then C C D.

Proof: Cases (i) and (iii) (backward retiming moves). Assume that design D has latches

/i,/2,..., h- Let the latches l\,/2,...,lm be retimed to latches /J,/2,..., l'n. Consider any state

in design C, say 8l = [(«,/J,...,/;,/«+!,...,/*) = (Y{,Yi,...,Yi,Ym+u...,Yk)]. Let Y' denote

(Y/,Y2',..., Yi). Weclaimthat state s0 = [(lu fe, ---,h) = (fi(Y')>f2(Y%..., /m(Y'), Yn+1,..., Yk)]
in design D has the same input-output behavior as si. The proof of this claim is by induction on the

length of an input sequence. Outside of the retimed area, the two circuits D and C are identical. On

the first clock cycle, the local output of F is (/i(Y')> hlX'),..., /m(Y')) in both designs D and C.

Suppose the local outputs are identical upto the fc-th input vector. Then the fc-th input vector W

reaching the retimed area will be identical for both designs. Now, the local outputs of the retimed

area in both designs is (/i(Y/),/2(Y/),.. .,/m(Y')). Since we have shown that the local outputs

are equal in both designs, and outside the retimed area the designs are identical, the two primary

outputs of the two designs are also equal. Thus, sq and s\ are identical.

Case (ii) (forward retiming move across a non-justifiable element) Assumethat design D

has latches /i, /2,..., h> Let the latches /i, /2,..., /n be retimed to latches l[y /2,..., Vm. Consider any

state in design C, say Sl = [(/i,/5,...,C/w+i,...,/*) = (Y1,,Y2,,...,Y^,Yn+1,...,Y*)]. Since the

logicelement is justifiable, there must exist an input vector Z = (Zi,..., Zn) such that for each i €

{l,...,m}: fi(Z) = Y{. Now, consider the states0 = [(Ji.fe,...,/*) = (Zu. ..,Zn,Yn+i,.. .,Yfc)] in

design D. Using an induction argument, similar to the last case, on the length of the input sequence,

we can easily show that the two states so and si are equivalent.

Thus, for all three cases, for every state in C there is a state in D which is equivalent to it. •

Proposition 4.2 If design C is obtained from design D by a single forward retiming move across

a non-justifiable element, then C1 C D.

11



Proof: Assume that the original design has latches /i,/2,...,/*. Let the latches /i,/2,...,/n be

retimed to latches /J, /2,..., Vm. Let the latches /i, J2,..., /„ be retimed to latches /{,/2,..., l'm. Con

sider any state in design C1, say sx = (/!,/£,...,/ip/m+i,...,'*) = (*7,*2>--->ym>ym+i>--.,*y.
Since the design C1 represents the design C after it has been clocked throughfor 1 cycle, there must

exist a vector Z = (Zi,..., Zn) such that for each i 6 {1,..., m}: /i(Z) = iy. The rest of the proof

is identical to that of case (ii) in Proposition 4.1. •

The Propositions 4.1 and 4.2 lead to the following corollary which is the primary correctness

result proven by Leiserson and Saxe [LS83]:

Corollary 4.3 (Lemma 1 in [LS83]) If C is obtained from D using an arbitrary sequence of

retiming moves, then Cn C D, for some positive finite integer n.

The above result requires us to delay using the retimed design for n clock cycles after power-up.

In that sense this may change the observed behavior from a design, as shown by the example in

Section 2.1. However, if we disallow the forward retiming moves across non-justifiable elements we

have the following result which shows that the retimed design is a safe replacement of the original
design.

Corollary 4.4 If C is obtained from D using an arbitrary sequence of retiming moves, none of

which is a forward retiming move across a non-justifiable element, then C C D.

In the proofof Lemma 1 in [LS83], the integer n was shown to be the equal to maxv€v(-fa<7(t7))>
i.e. the maximum number of forward retiming moves across any combinational element in the

circuit.3 We can tighten this result to make it independent ofthenumber offorward retiming moves
across any non-justifiable element.

Theorem 4.5 If C is obtained from D using a sequence of retiming moves such that there are no

more than k forward retiming moves across any non-justifiable element, then Ck C D.

The proof of the above theorem is quite long, and is omitted here because it is not the focus of

this paper. This result would imply, for example, that if a design has only single-output gates, then

any number of retiming moves (forwardor backward) across those gates is fine, but we must restrict

Since the host is required to have lag(v) = 0, n is well-defined for a given retiming.

12



the number of forward retiming moves across any fanout junction to be at most k for Ck C D to
hold.

Note that the maximum number of forward retiming moves across anygate can be bounded by
the maximum number of registers in any simple cycle in the circuit.4

Test Set Preservation

The example given in Section 2.2 showed that retiming may invalidate a single-stuck-at-fault which

was valid before retiming. We can use the results discussed above to show the following result:

Theorem 4.6 If C is obtained from D using a sequence of retiming moves such that there are no

more than k forward retiming moves, then the test setfor D is also a test set for Ck.

Proof: (Sketch) Consider the fault-free circuit G and the faulty circuit F. Create a circuit T =

(G || F) which denotes the two circuits next to each other and each pair of outputs of G and F

fed to an XNOR gate. Any single stuck-at-fault test will produce a 0 at one of the outputs of

T. Consider any single forward retiming transformation which modifies the two parts of T in the

same way; the resulting circuit is T". Now, for any single stuck-at-fault outside the retimed area

we can use the techniques in the proof of Theorem 4.5 to prove the desired result. The forward

retiming step creates m new nets between the logic element and the m retimed latches. For any

single stuck-at-fault on any such input net to a latch, we use the observation that we can use the

same test as for the output net of the latch but we may have to delay the circuit by 1 clock cycle to

let the stuck-at-value settle inside the latch. •

For the example in Section 2.2 this theorem concludes that the test sequence 0 • 1 is a test

sequence for the same fault in design C (Figure 3). Thus, either of the two sequences 0 • 0 • 1 or

1-0-1 would serve as a test sequence for C. It can be seen by simulating the design that either of

these test sequences produces X •0 •0 in the fault-free version of C and the sequence X •0 •1 in the

faulty version, thus distinguishing the two versions on the 3rd clock cycle.

4Recall that the primary outputs of the circuit are connected to the host and the primary inputs are fed by the
host) hence, cycles may include paths from the primary outputs through the host to the primary inputs.
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5 Retiming Preserves Conservative Three-valued Simulation

Consider again the example of Figure 1 of Section 2. In circuit D the output of AND gate-1 is 0

whether the latch has value 0 or 1. For this reason, it is easy to deduce that a single cycle with

primary input 0 will reset the latch to value 0. However, notice that if the latch is assigned the

indeterminate value X> then a conservative three-valued simulator (CLS) will propagate X values

to both of the inputs of AND gate-1. Furthermore, the CLS will propagate an A" as output of the

AND gate because the CLS has lost the information that the A"'s are complements of each other.

Hence a single cycle input of 0 that will actually reset design D will not appear to reset design D
in three-valued simulation. This should not surprise us because the amount of information lost by

three-valued simulation is precisely the same information lost by moving a latch forward across an

unjustifiable element. We show that this is a general phenomena relating three valued simulation
and retiming.

Simulation is an important component of the IC design verification process. The most popular
and fastest way of simulating gate-level designs is three-valued simulation [JMV69]. It is assumed
that all latches power up as A", meaning that the value is undetermined. Three-valued logic is well-
known forgate-level elements [Eic65]. Three-valued simulation results give the output sequences for

a given input sequence. However, it is well-known that three-valued simulation is more conservative

than reality: if three-valued simulation shows a 0 (or a 1) for an output, that output will be 0 (or
1) for all power-up states; however, the converse is not true because three-valued simulation might
show an X for an output even though that output may be determined to be either 0 or 1 from

all power-up states. Although three-valued simulation is conservative, in the absence of other fast

methods of verification it is popular in the design process. In fact, if a three-valued simulation shows

an X where a designer expects a 0 or a 1,the designer often changes the design sothat the outputof
a CLS agrees with the desired output, even though the original design may also have been correct.

This motivates the work presented in this section. Here, we show that if our yardstick for
correctness of a design is the output of a CLS, starting from the state in which all latches are

initialized to X, then retiming transformations do not change the observed behavior ofa design (as
seen from the output of the CLS).

Given that a conservative three-valued simulation is used for the design, we can assume that
three-valued logic is already defined for all the combinational logic elements in the design, for
example, for a 2-input NOR gate, the output is 1 if both inputs are 0, 0 if either input is 1, and A"
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Figure 7: Backward retiming move across a multi-output logic element.

otherwise. We have to show that if two designs D0 and Dn start off with each latch initialized to

A, and Dn is obtained from Do by a sequence of retiming moves, then any sequence of three-valued

inputs will produce the same outputs from both Dn and D0. As in the last section, we model

junctions as a special single-input multiple-output combinational element JUNC. Also, assume that

if all inputs of any combinational element are A's, then all outputs are A"'s. We need this condition

to guarantee that when all of the latches are initialized to A"'s in both an initial and a retimed

circuit, they will generate the same outputs. For example, if a gate had a constant value of, say 0,

then then a forward retiming move across this gate would assign the value of X in the initial state.

If the output of the gate were a primary output, they would obviously have different observable

behavior.

We prove the main result in this section by considering one retiming move at a time, and then

using induction on the number of retiming moves. Suppose that design D is obtained from design

C by a single retiming move (Figure 7). We define a relation H between the states of C and the

states of D. We will assume that the retiming move is backward across F. The case for a forward

retiming move is symmetric — just the roles of C and D are interchanged in the definition of

Tl. Since D results from C by a single retiming move, designs C and D are identical except for

the retiming area around the logic element F shown in the figure. Suppose that jP implements the

functions /i, f2i..., fq. Fordesign C, let inputs to F be (ti, i2i..., ijfc), the latchesC be (/i, l2,..., lq)

and the outputs be (01,02,.. .,o9). For design D, let the inputs be (ii,i2>--->li)> tne latches be

(Hi,M2) •••11lk) and the outputs of F be (oi,o2,...,o'q).
Now consider any state sq of C and state s\ of D. Without loss of generality and to simplify

the discussion, we assume that the primary inputs of C and D are latched immediately outside the

retiming area. We are going to define what it means for sq and s\ to be related by 1Z. First we

require that (1) corresponding latches outside of the retiming area have the same values for states
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«o and s\. Second we require corresponding that (2) outputs of the retiming area have equal values,

that is for each i, o,- = oj. We observe that conditions (1) and (2) imply that the primary outputs

of the two circuits have equal values.

We now show that that if soTZsi and if both designs are clocked one cycle with the same primary

inputs to get states s0 and si, respectively, then SqUs^. This implies that for any sequence of the

same three-valued inputs to the two designs, the primary outputs will also be equal.

Theorem 5.1 Suppose circuit D is obtained from C by one retiming move. Suppose also that sq

and s\ are three-valued states of C and D respectively, and suppose that sqR,S\ . Let s0 and s[ be
states of C and D respectively after introducing the same input sequence. Then SqIZs^.

Proof: Suppose circuit D is obtained from C by a backward retiming move. The forward case is the

same with C and D reversed. Suppose that s0 and s\ are states of designs C and D respectively,

such that sqRs\. We aim to show that next states s0 and s[ are also related by Tl. Conditions (1)
and (2) of11 and the assumption that primary inputs are the same imply that outside the retiming
area, the next state functions ofcorresponding latches have the same value. Therefore condition (1)
of 71 is satisfied for next states s0 and s[.

We observe that conditions (1) and (2) imply that (3) the corresponding inputs to the retiming
area are equal, that is, for all j, ij = tj. But (3) implies that that the inputs (i.e., next state)
to latches lu/2,...,/, equal F(i'lyi2,...,i'k). That is to say, the inputs to the / latches equal F of
the inputs of the // latches. This in turn implies that, in the next state, corresponding outputs of
the retiming area are equal, i.e., condition (2) holds in the next state. We therefore conclude that
s'qUs^.

By induction, we conclude that the relation R is preserved by any sequence of inputs starting
from states in which R is true and the theorem is established. •

By induction on the number of retiming moves, we have the following corollary:

Corollary 5.2 Suppose circuit Dn is obtained from Dq by a sequence ofn retiming moves. Suppose
also that s0 and si are states ofD0 and Dn respectively and that sqIIsi . Then for any sequence of
three-valued input vectors, the output sequences ofDq and Dn from the states s0 and si, respectively,
are the same.

When a CLS is used to verify the correctness of designs, all latches are initialized to A"'s and
input vector sequences are supplied to the CLS. If all latches are initialized to A"'s in both the
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original design D0 and the retimed design Dn, then clearly the two initial three-valued states in

the two designs are related by the relation H (it is here that we need our assumption that for any

combinational element in the design if all inputs are A"'s, then all outputs are A's). The above

results lead to the following result, which establishes the validity of retiming moves, if three-valued

simulation is used as a criterion for correctness of the design:

Corollary 5.3 Suppose circuit Dn is obtainedfrom Dq by any sequence of retiming moves. Suppose

that so and S\ are the states of Do and Dn respectively obtained by initializing each of the latches to

the value X. Thenfor any sequence ir of three-valued inputs, the output sequences from of Do and

Dn are the same. If it resets Do then it also resets Dn and vice-versa.

6 Conclusions

Much of the prior logic synthesis literature has pursued refinements of retiming without first ad

dressing the validity of retiming as part of a design methodology. Our goal in this paper has been

to show how to fit retiming into a synthesis design flow. We strongly advocate that useful sequen

tial optimization techniques must deal with circuits which contain latches without reset signals.

Hence, we have explored retiming under this model and demonstrated that retiming could cause a

simulator to produce different results. We then showed that the conservative nature of traditional

three-valued simulators allows retiming to maintain a simulation invariant. Because, in practice, all

current design methodologies rely on this type of three-valued simulation, we conclude that retiming

of designs without set and reset signals fits into a synthesis methodology.

We have not addressed a technical point: whether retiming materially affects the operation of

the real circuit. We know that if we wait long enough (a number of clock cycles bounded by the

number of latches in any cycle) then retiming does not affect the circuit operation. When a circuit

powers-up there is always some delay before the circuit begins operation; it takes time, potentially

many clock cycles, for the voltages to settle, etc. Therefore, the requirement that the circuit settle

for a slightly longer number of cycles before it begins computation may not, in actuality, cause a

problem. However, modern design methodologies rely heavily on logic simulation to the point that

if simulation says the circuit doesn't work, then the designer must assume the circuit doesn't work.

One future area we wish to explore further is the notion of three-valued safe replacement. This

is similar to the notion of equivalence used by Cheng [Che93] for synthesis via redundancy removal.

We have shown in this paper that if we replace the strict notion of equivalent output sequences with
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the weaker notion of equivalent output from a conservative three-valued simulator, that retiming

can be viewed as an operation preserving safe replaceability. We would like to develop algorithms

to validate three-valued simulation equivalence and other optimization algorithms which seek only

to preserve this invariant (and not the invariant of safe replaceability).
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