

Copyright © 1994, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SYNTHESIZING INTERACTING FINITE

STATE MACHINES

by

Adnan Aziz and Robert K. Brayton

Memorandum No. UCB/ERL M94/96

9 December 1994

V

SYNTHESIZING INTERACTING FINITE

STATE MACHINES

by

Adnan Aziz and Robert K. Brayton

Memorandum No. UCB/ERL M94/96

9 December 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SYNTHESIZING INTERACTING FINITE

STATE MACHINES

by

Adnan Aziz and Robert K. Brayton

Memorandum No. UCB/ERL M94/96

9 December 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Synthesizing Interacting Finite State Machines

Adnan Aziz* Robert K. Brayton
Email: {adnan,brayton}Qic. eecs. berkeley. edu

Fax: 1 (510) 643 5052
VLSI CAD Group

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA

Abstract

We use the logic SIS as the foundation upon which to base the theo
retical analysis of issues related to the synthesis of interacting finite state
systems. Using SIS we derive simple and rigorous proofs of existing syn
thesis algorithms, and fill in several gaps left open. We also use SIS to
extend existing results to non-deterministic systems with fairness. We
merge these results with classical work related to the Church solveability
problem and apply it to discrete control.

Keywords: Finite state machine, Regular languages, Fairness, Sequential
synthesis, Discrete control, SIS, Church solveability, Tree automata

'Supported by SRC Grant 94-DC-008

1 Introduction

The advent of modern VLSI CAD tools has radically changed the process of
designing digital systems. The first CAD tools automated the final stages of
design, such as placement and routing. As the low level steps became better
understood, the focus shifted to the higher stages. In particular logic synthesis,
the science of optimizing designs (for various measure such as area, speed, or
power) specified at the gate level, has shifted to the forefront of CAD research.
Another area rapidly gaining importance is design verification, the study of
systematic methods for formally proving the correctness of designs.

Logic synthesis algorithms originally targeted the optimization of PLA im
plementations; this wasfollowed by research in synthesizing moregeneral multi
level logic implementations. Currently, the central thrust in logic synthesis is
the automatic optimization of the entire system, including both the sequential
elements (latches) in addition to combinational elements (gates).

Automated approaches to formal verification typically proceed by represent
ing the design as a state machine and then traversing the state graph. The
input system to formal verification tools is usually non-deterministic and has
fairness constraints; this could be because the original design was too complex
and had to be replaced by a simpler abstraction, or because at early stages of
the design process components are left under specified.

Designs invariably consist of a set of interacting components. Natural ques
tions related to such systems are what is the optimal choice of a component, and
automatically deriving a component so as to satisfy given properties. In this
paper we answer these questions using as our basic tool the sequential calculus
SIS.

Previous work related to optimizing interacting state machines has tended
to be ad hoc and incomplete. Relevant papers include [18, 7, 12, 20, 21, 22).
One attempt at formal synthesis framework based on trace and automata the
ory is given in [8]. The central theorem relating flexibility in a sub-circuit to
the specification and the environment is incorrect; we give the correct formu
lation. There is a large body of theoretical work related to the existence of
efficient decision procedures for deciding logics of programs, eg [23, 14, 6, 16].
In particular, [23] observes that the set of acceptable moves for a controller is
an u>-regular set.

The rest of this paper is structured as follows: § 2 reviews the basic defi
nitions and salient results. In § 3 we apply these results to systems operating
on inputs and outputs bounded over time; in section § 4 we turn our atten
tion to systems with fairness operating on infiniteinputs. Wefinish by drawing
conclusions, and suggesting extending this work to timed [1] and stochastic

systems [3].

2 Definitions and Basic Results

Definition 1 Given a finite set E, the set E* is the set of all finite sequences
over E, i.e. maps / : n -*• E, n G w. A *-language over E is a subset of E*.
Given x € E*, j x | denotes the cardinality of x. The set E" is the set of all
infinite-sequences over E, i.e. maps / : w —» E. An w-language over E is a
subset of E".

Definition 2 A finite state automaton (FA) is a 5-tuple (L,S,so,T,A) where
E is a finite set called the alphabet, S is a finite set of states, so € 5 is the initial
state, TcSxExSis the transition relation, and A C S is the set of accepting
states.

The automaton is said to be deterministic if (Vs)(Vx) [| {t : T(s, x,t)}\ < 1];
otherwise it is said to be non-deterministic.

A string x € E* is accepted by the FA if there exists a sequence of states
coai.. .<r„ such that n = | x | +1, <r0 = so, <rn € A, and (Vi)[T(ai,Xi,ai+1)].
The languageof the automaton is the set ofstrings accepted by it; this language
is said to be *-regular if it is the language accepted by some automaton.

The following facts are proved in [11].

• The class of ^-regular languages is closed under union, intersection, and
projection; this is shown via construction.

• For any *-regular language £, there is a deterministic FA accepting C.
Thus NFA and DFA have the same expressive power. Also, since DFA
are immediatelyseen to be closed under complement, the classof ^-regular
languages is closed under complement.

•

•

Deciding universality (are all strings accepted) for NFA is PSPACE com
plete; deciding universality for DFA is in P. Thus the complexity of NFA
is higher than that of DFA.

• There is a sequence of languages L\, L2, •.. such that every DFA Dn ac
cepting Ln has at least 2n_1 states, whereas there are NFA Nn accepting
Ln with only n states. Thus NFA can be exponentially more succinct than
DFA.

Finding a minimum state NFA equivalent to a given NFA is PSPACE
complete; furthermore the minimum state NFA's are not necessarily iso
morphic. Finding a state minimal DFA equivalent to a given DFA can be
performed in polynomial time; all minimumstate DFA are isomorphic.

Definition 3 A Muller automaton (MA) is a 5-tuple (E,S,s0,T,M) where E
is a finite set called the alphabet, 5 is a finite set of states, s0 € S is the initial
state, T C S x E x S is the <ransi*»*on relation, and M C 25 is the acceptance
condition.

The automatonis said to be deterministic if (Vs)(Vx) [| {< : T(s, x,*)} |< 1];
otherwise it is said to be non-deterministic.

A string x € Ew is accepted by the FA if there exists a sequence of states
<tq<ti... such that <r0 = s0, and (Vt)^^,^,-,^,^.!), and inf{tr) € M, where
inf(a) is the infinitary set of a. The language of the automaton is the set of
strings accepted by it; a language is said to be w-regular if it is the language
accepted by some Muller automaton.

Variants on the acceptance condition yield different classes of automaton on
w-strings.

1. The acceptance condition for Biichi automaton is a subset B of 5; a run
cr is accepting if tn/(<r) C\B ^ <f>.

2. The acceptance condition for Streett automaton is a set of pairs of sub
sets of the state space {(Ui, V\),(tf2,V2),...,(Un,Vn)}\ a is accepting if
(Vi) (inf(<r) nUi?<f>-^ inf{<r) CiVi?*)

3. The acceptance condition for Rabin automaton is a set of pairs of sub
sets of the state space {(Ui, Vi), (U2, V-j),..., (Un, Vn)}; <r is accepting if
(3f) [(m/((7) n Ui # <f>) A (inf(<r) n V{ = 0)]

The following facts are proved in [19]:

• The class of w-regular languages is closed under union, intersection, and
projection; this follows from construction.

• Non-deterministic Biichi automaton (NBA) accept the class of w-regular
languages;deterministic Biichi automaton are strictly lessexpressive than
(NBA).

• Deterministic Rabin Automaton (DRA)and deterministicStreett automa
ton accept the class of w-regular languages.

• There is a sequence of w-regular languages L\,L2y... such that the small
est BA accepting Ln has Q(cn) states, while the smallest RA for Ln has
0(nk) states.

• Given an NBA on n states, thereisa DSA on0(2cn,og<n)) states accepting
the same language.

• Deterministic Muller automaton (DMA) accept the class of w-regular lan
guages; from this it immediately follows that the class of w-regular lan
guages is closed under complement.

Definition 4 The logic SIS (second order theory of one successor) is a second
order logicover the alphabet givenby the set {0,5, =, <, G,A,-», 3, xi, x2,..., X\, X2,
Lower case variables xi, x2,... are first order variables ranging over elements of
the universe, and upper case variables X\,X2,... are second order variables
ranging over subsets of the universe. The well formed formulae of the logic SIS
are given by the following syntax:

• Terms are constructed from the constant 0 and first order variables by
repeated applications of the successor function 5. Examples of terms - 0,
550, SSSSx3.

• Atomic formulae are of the form t\ = /2, <i < t2, t G -X*. Examples of
atomic formulas - 0 < 50, X3 = 555xs, 5x7 € X2.

• SIS formulas are constructed from atomic formulas by using the boolean
connectives A, -> and quantification over both kinds of variables. Examples
of SIS formulas- (0 < 50) A(5x7 € X2), (3X) (3x) [(x G X) A(5x G X)].
We write <f>(X\ ,X2,..., Xn) to denote that at most X\, X2,..., Xn occur
free in <f> (i.e. are not in the scope of any quantifier). We will routinely
use the symbols V,«—, V, etc as logical abbreviations.

SIS can be interpreted over the following model: a = (w,0, +1, <) where the
underlying universeu = {0,1,2...} is the set ofnatural numbers. The semantics
of SIS over a is the usual Tarskian interpretation of truth; we illustrate this by
means of an example.
Example 1: (Existence of least elements in non empty subsets of w)

V = (VX)(3x)[(xeX)^(3y)((yeX)*^{(3z){z€X A{z<y)))))

The above sentence states that for every subset (X) of w, if X is non-empty
(3x (x GX)), then it contains a least element (y). It is true in the model a.
Example 2: (Defining subsets of u> which contain 5 whenever they contain 3.)

&>(*) = (5550 GX) - (SSSSS0 GX)

Example 3: (Defining the subset of even integers)

^i(X) = (OeX) A-.(1GX) A(Vx)(xGX<-55xGX)

Example 4: (Defining the relation "every even number in X is in Yn)

<f>2{X, Y) = (Vx)[(VZ) (fa(Z) A x GZ) - (x GX -* x GV)]

The class of subsets of a; is in a one to one correspondence with the set of
w-sequences on {0,1} - the l's in the sequence can be thought of as representing
the integers in the corresponding set, eg01011 = {1,3,4}. Thus, given a formula
0(Xi) in SIS, it naturally defines an w-language on {0,1}, i.e. the set {/? C w |
p \= 6(Xi)}. In general, formulas <f>(X\,X2,...,Xn) define languages over
({0, l}n)w. The following result is one of the cornerstones of descriptive set
theory:

Theorem 2.1 (Biichi 1961 [19, 5]) Anu-language is definable in SIS if and
only if it is u-regular.

Proof: Refer to [19]. •
With minor modifications, Biichi's result also holds for sets of finite words

i.e. when set quantification is restricted to finite sets only. In this case one
speaks of the theory WS1S (weak SIS). The corresponding result for WS1S
states that a * language is definable in WS1S if and only if it is ^-regular [19, 5].

Thus we can uniquely identify an automaton A (FA or MA) over the alpha
bet {0,l}n, with a formula <f>A(X\,X2,...,Xn). Hence, elegant yet rigorous
proofs can be given to a large class of solutions to problems related to finite
state systems. Furthermore these proofs are constructive: given a formula in
S1S/WS1S it is possible to mechanically construct an equivalent automaton.

Definition 5 A finite state machine M is a 5-tuple (S,so,I,0,T) where 5 is
a finite set of states, Sq G 5 is the initial state, J is a finite set of inputs, O is
a finite set of outputs, and T C 5 x J x O x 5 is the transition relation.
M is deterministic if

(Vs)(Vi)(Vo) \{t:T(s,i,o,t)}\<l

M is said to be complete if

(Vs)(Vi)(3o)(3t)[T(s,i,o,t)]

M is said to be an implementation if it is complete and

(V«)(Vi) \{t,o:T(s,i,o,t)}\<l

Givenan input sequence i = (»i**2 •••in), and output sequence o = (o\o2 ••-on),.

0/b, 1/aQT)

1,0£i1,0/a.b 03

M2

1/1
o/o e—>> o/o

V»2 J V50 J Vs!

0/0 1/1

Figure 1: An example of an FSM which is not complete but still realizable

ajb/1

0a,0b lb la,0a

Figure 2: Product of Mi and M2

Mi

a corresponding run is a sequenceofstates <r = (so«i •••«„) such that (Vib)(sjt,»jk+i,ojk+i,st+i) G
T. The notion of a run trivially generalizes to infinite sequences.

Remark: Our definition of deterministic finite state machine has been referred

to as "pseudo non-deterministic" (PNDFSM) in the past [22]. The term deter
ministic was reserved for what we refer to as implementable. A related notion
is that of incompletely specified finite state machines (ISFSM), where given a
state s and an input i, either (3o)(3t) [T(s,i,o,t)] or (Vo)(V<) [T(s,i,o,t)].
Remark: Because of non-determinism a machine may be incompletely spec
ified, but it may still be true that for all input sequences there are output
sequences, as in figure 1.

Synchronous hardware consists of a set of interacting components driven by
a common clock. Thus the composition of FSMs (referred to as the product
machine) is synchronous; an example of the product machine construction is
given in figure 2. Refer to [4] for details.

Definition 6 The *-language identified with an FSM M = (S,r,I,0,T), de
noted by Ml({, o), is the set of sequences in (/ x O)* such that for all («, o) G

ML{i,o) there exists a corresponding run.

Remark: Clearly the behavior Ml{}>o) is a regular language([11, 19]) on the
alphabet I x O. The automaton Ma defining the language is simply the FSM
itself - the states of Ma are the states 5, initial states of Ma are the states
r, the transition relation of the automaton is {(«,(*,o),t) : T(s,i,o,t)}, and
all states are accepting. Note that the behavior of a deterministic machine is
defined by a deterministic finite automaton.

Definition 7 Givena languageL C (Ej xEo)*,a finite state machineM with
inputs E/, outputs Eo is said to be compatible with L if Ml(i,o) C L; M is
said to be a realization of L if it is compatible with L and is an implementation.
A language is said to be realizable if there exists a realization of it; similarly an
FSM is realizable if its language is realizable.

It has been empirically observed that finding a state minimal realization
of the language defined by a PNDFSM is harder than finding a state minimal
realization of an ISFSM even though both the associated decision problems are
NP-complete.

Definition 8 A finite state machine with Muller fairness is a tuple (M, C)
where M is an FSM, and C is a set of subsets of the states of M. Given
F = (M,C), an FSM with fairness, F is said to be deterministic (complete) if
M is deterministic (complete).

The notion of a corresponding run over infinite input/output sequences is
defined analogously to that for ordinary FSMs; a run a is fair if the infinitary set
of states is an element of C. Similarly the language of a finite state machine with
fairness is defined to be the language of the corresponding Muller automaton.

3 Synthesizing * languages

In this section we will restrict our attention to ^-languages; in the next section
we will see how our results generalize to ^-languages.

3.1 The E-machine

Consider machines communicating in the configurationshown in figure 3. Sup
pose x and y are the observable inputs and outputs, and 5(x, y) is a specification
on them. Also suppose the machine M(x,u,v,y) is fixed.

M(x,u,v,y)

Tj—J
Figure 3: General example of interacting finite state systems

Theorem 3.1 The set of all behaviors on u, v which will yield behavior on the
inputs and outputs which is compatible with the specification is given by the
following expression:

lC4>° (u,v) = {Vx,y)[<l>M(x,y,u,v)-+<l>s(x,y)] (1)

Proof: Equation 1 could infact be taken as begin correct by construction.
However we add to its credibility by showing an alternate game theoretic for
mulation.

View the problem of finding the set of ti's which can be generated corre
sponding to a given v as the problemoffindingstrategies for a game, given that
the player corresponding to the controller knows the systems structure, but can
not observe x or y. The object of the controller is to play moves so that the
specification is not violated. Then the strategy, based on perfect reasoning is
the following: if x was an input to M consistent with u, v being input/output,
then all y consistent with x,u,v should be acceptable, and any other y loses the
game. Mathematically, this strategy is defined by the following (the reason for
the odd notation will become apparent later)

<t?>{v,u) = (Vx)[(3y)^(x,«,V,y)--(Vy)(^(x,U,V,y)-*^(x,y))]

The following lemma proves that the strategy followed in the game yields the
E-machine.

Lemma 3.1 h <j>°* (v, u) «-• <f>c*{v, u)

Proof:

(Vx) [(3y>M(x, u, v, y) - (Vy) (*"(«, ti, v, y) - 05(x, y))]
-(Vx)h(3y)^(x,u,t;,y) A (Vy)(V(5,«,v,y) A 4>s{i,y))\
~(Vx)[(Vy)0M(x,ii,t;,y) A ^y)(^M{x,u,v,y) A <f>s(x,y))]

Figure 4: A system for which every input can be controlled, by no realizable
controller exists

(Vx)[(Vy)(V"(x,«,r;,y) A <f>S(x,y)))
(Vx)(Vy)[^M(x,tx,t;,y)-,^(x,y)]

The equivalence of the two completes the proof of the theorem. •
Equation 1 can be rewritten to give the following expression:

4>c\u,v) = -(3x,y)[^(x,y,u,t;)A(^5(x,y))] (2)

By the remarks in section 2, C*(u,v) is regular. Furthermore, the number of
states in the DFA derived from the expression is upper bounded by 2'5mI'2|SsI,
where Ss, Smare the state spaces ofthe automatadefining 5l(x, y) and M(x, u,v,y).
In the special case when the automaton defining Sl(x, y) is deterministic, the
corresponding upper bound is 2'5mII5sI. This is precisely the construction
of [22].

The specification automaton could be M x C; this corresponds the re-
synthesis problem, i.e. suppose we wish to find a replacement for the C block
which is optimal (with respect to an appropriate objective function) while pre
serving the observed behavior. Then the behavior of the replacement must be
contained in the behavior Cm(v,u).

In the most general setting M and the specification automaton are non-
deterministic and incompletely specified. In this case, simply deciding if an
implementation exists for the block C which is compatible with the specification
is non-trivial; this motivates the next section.

3.2 Discrete Control

There are obvious applications of the theory developed above to discrete control.
Indeed the set C*(u,v) is the acceptable controller behavior. The set of inputs
which can be controlled is defined by the formula

<f>D\x) = (3u,v,y)[<f>M(x,u,v,y)^<f,s(x,y)]

10

AlgorithmJ5tarXontroHerJStrategy:(i?J:!A_/ype; D)
while (TRUE) {

remove states 5 from D such that

-4(3ti,O(T(«I(0,ti)1<)A
(* £ A)) A (3u',t')T((s,(0,u'),t') A (f GA))]

if (no states were removed)
break;

}

Figure 5: Algorithm for deciding if a strategy exists

This does not mean that a controller can be realized which will generate ac
ceptable outputs for all inputs in D*(x); this is due to the usual problem with
causality, viz the control input may be forced to guess the future values of
the input. Conceptually an implementable controller must be finite state and
causal; in [16] it is argued that a necessary and sufficient condition for imple-
mentability is that a strategy tree must exist for a player observing inputs over
V and producing outputs over U while ensuringthat the input-output behavior
is compatible with the relation C*(u,v).

Deciding if an implementable controller exists is simply the Church solve
ability problem [17], which can be settled using algorithmsfor emptinessof tree
automaton.

We are given C*(v,u) C (Ev x E[/)* and wish to determine the existence
of a finite state machine C(v,u) which is compatible with C*(v, u) in the sense
(Vv, u) foc(«.«) -+ 0C>.°)]. The procedure for doing this is as follows:

1. Determinize the ^-automaton for C*{y, u) by the usual power set construc
tion

2. Use the algorithm in figure 5 to check if a strategy tree exists: (For sim
plicity we assume Ev = {0,1})

Lemma 3.2 An implementable controller exists if and only if the DFA left
remaining after this algorithm converges is non empty.

If the DFA is nonempty, the existence of a controller strategy (finite state
machineimplementing acceptable control) is proved. However we may want to

11

Mi

«o «i to <1

STG

M2

STG

5^

E-machine for Mi

0/a,l/&C3 M/0tc/lO
-/c a/1, 6/1, c/0

-/c

-/c

Implementation

Figure 6: A simple cascadesystem in which the range of permissible behaviors
for the driving machine is not definable by an ISFSM.

come up with state minimal strategies; in the *-case, the fixed point DFA of
the above algorithm is a PNDFSM. If the tree language is non empty, there is
not necessarily one strategy whichis maximum,since controllingone input may
come at the cost of not controlling another. However again, we believe there
are simple greedy strategies for coming up with maximalcontroller strategies,
i.e. controller that control a maximal set of input behaviors.

There are variations in the formulation of the discrete event system control
problem. One is the model matching problem in which the system is charac
terized by the finite state machine M(it,y), and the specification is given by
S(x,y). The objective is to design a controller which takes as input x,y and
outputs u so that the composition of the plant and the controller satisfies the
specification. The set of acceptable controller moves is given by

tC*f (x,y,u) = <f>M(u,y)^<i>s(x,y)

The algorithmoffigure 5 can be applied to C*(x,y,u) to determine ifa controller
exists; take the input to be the tuple (x,y), and the output to be u.

3.3 Optimization of Interacting FSMs

We now turn our attention to networks of finite state machines. For such sys
tems, the full range of admissible behavior at a node is described by the E-
machine. We now provide more intuitive descriptions of the flexibility at a
component.

Let x,y be the input and output of the FSM network. Let S(x,y) be the
specified input/output behavior of the network. Considera component machine

12

C on inputs v and outputs «. Let M(x, u,v,y) be the rest of the network.

Definition 9 The strong satisfiability dont care set for C(v,u) is logically de
fined by the following formula:

<f>SDC?(v) = ^(3x,u,y)<f>M(x,u,v,y)

It is precisely the set of sequences over v which can never be generated, no
matter what replacement is used for C.

This set gives a certain amount of flexibility in choosing implementations for C;
namely any behavior in the machine Cq(u, v) defined below is acceptable.

<j>Co(v,u) = -i<f>SDCZ(v)-+<j>c(v,u)

The following lemma states that the construction is sound but not complete:

Lemma 3.3 <f>Co(v, u) h <f>c'(u, v) but <l>c*(u, v) \f<f>Co(v, u)

Definition 10 The weak satisfiability dont care set for C(v, u) is mathemati
cally given by the following expression:

<j>SDC?(v) = ^(3x,u,y)[<j>M(x,u,v,y) A<f>c(u,v)]

It is precisely the set of sequences over v which can never be generated in the
product machine M x C, and corresponds to the input dont care sequences
of [20].

This set gives more flexibility in choosing implementations for C\ namely any
behavior in the machine C\{u, v) defined below is acceptable.

4>Ci{v,u) = ^<j>SDC^(v)-^<f>c{y,u)

The following lemma states that the construction is sound, yields more flexibility
than the previous construction, but is still not complete.

Lemma 3.4 <f>Ci(v,u) h <f>c°(u,v); but <f>c°(v,u) \f <f>Cl(v,u). <t>c*{v,u) h
<t>c\u,v) but <f>c'(u,v)\/<j>c^v,u)

Proof: We provide a formal proof (in the sense of mathematical logic - re
fer [10]).
TPT

(3x,«, y) [4>M(x, u, v, y) A<f>c{u, v)) ^ <f>c(u, v) h (Vx, y) [<f>M{x, y, u, v) - ^5(x, y)]

13

We show the contrapositive:

(3x, y) [<f>M(x, y, u, v) A-.^5(x, y)] h (3x, ti, y) [^(x,«, v, y) A0C(«, v)] Â c(u, v)

First we show

(3x,y)faM(x,y,u,i;)A-^5(x,y)] h -u£c(«,*) (3)

Since M ®C satisfies the original specification, the following is an axiom:

kc = (Vx, u, v, y) [<j>M(x, u, v, y) A<f>c(u, v) -> <f>s(x, y)]

By generalization,

«C I" (V£,mM(£,«,v,y)A<l>c(u,v) -> <t>s{£,y)]

applying generalization and tautology again,

kc h 4>C{u,v)^(>ix,y)[<t>M(x,u,v,y)^<f>s{x,y)]

by the contrapositive,

kc, (3x,y)[<f>M{x,u,v,y) A-*f>s(x,y)] h -*j>c(u,v)

This completes the proof of 3. Now we show

(3x, y) [<f>M(x, y, u, v) A<£5(x, y)] h (35, x, y) [<j>M(x, y, u, v) A<f>c(u, v)][4)

By tautology, STS

(3x, y) [<f>M(x, y, u, v)] h (3«, x, y) [<j>M(x, y, ii, v) A^c(ti, t;)]

By generalization, STS

(Vfi)(3x,y)[^(x,y,ti,t;)] h (3u)[(3x,y)^M(x,«,t;,y) A0C(«, v)]

But since C is an implementation, we have as an axiom:

Xc = (Vii)(3«)[^(ti,t;)]

By generalization,

Xc h (3u)[<f>c(u,v)]

14

Hence,

Xc, (Vfi) (3x, y) [<f>M(x, y, u, v)] h (3u) [<f>c(u, v) A<j>M{x, y, u, v)}

proving 4.
The conjunction of the results in 3 and 4 yields the lemma. •

Definition 11 The strong observability equivalence relation for C(v,it) is math
ematically given by the following expression:

<f>°?(v) = (Vx,y,u)[<j>M(x,u,v,y)^<f>s(x,u))

It is precisely the set of sequences over v for which any output sequence can
be safely generated. Clearly, for input sequences which are never generated any
output is acceptable, so <f>SDCi (v) —* <f>°o (t>).

This set gives still more flexibility in choosing implementations for C\ namely
any behavior in the machine C2{u, v) defined below is acceptable.

<f>c>(v,u) = ^<f>°Z(v)^<j>c(u,v)

The following lemma states that the construction is sound, yields more flexibility
than the previous construction, but is still not complete.

Lemma 3.5 <f>c'(v,u) h 0Cl(u,v); but <f>Cl(v,u) \f <f>c'(v,u). 0Ca(v,«) h
<f>c'(u,v)but <f>c'(u,v)\/<t>c'(v,u). Infact^(v) ~ (Vu)0c,(v,ti)

Definition 12 The weak observability equivalence relation for C(v,u) is math
ematically given by the following expression:

^{v,u) = (Vx)[(3u,y)(^M(x,«,^^

Sequences v and u are in this relation precisely when the following condition is
met for every external input:

• if x was an input to M which was consistent with v being output, then all
primary outputs y consistent with x,u,v should be acceptable.

This set gives yet moreflexibility in choosing implementationsfor C; namely
any behavior in the machine Cz(u,v) defined below is acceptable.

0Cs(V,«) = <f>c?(v,u)

15

Because this relation requires that for any primary input x which couldproduce
v the output must be consistent (and hence ignores the requirement that x must
be consistent with u also) it is still incomplete.

Lemma 3.6 <l>Ci(v,u) \- 4>c*(v,u); but <f>C3(v,u) \f <f>Ci(v,u). <j>c*(v,u) h
4>c\u, v) but <f>c'(u, v)\f <f>c*(v, u).

Definition 13 The true observability equivalence relation for C(v, u) is math
ematically given by the followingexpression:

<f>°^(v,u) = (Vx)[(3y)^M(x,u,r,,y)^(Vy)(^(x,u,t;,0^05(x,y))]

As was shown in theorem 3.1, the true observability equivalence relation is
equivalent to the E-machine, and hence captures all the flexibility possible for
synthesizing C. Let C4 be the machine defined by <j>°°(v,u)

3.4 Deriving Optimal Implementations

Given the E-machine, one would like to derive an implementation that is op
timal. One criterion for optimality is state minimality. State minimization of
incompletely specified state machines (ISFMs) is easier than that for pseudo
non-deterministic finite state machines (PNDFSMs). Our interest in input dont
care sequences and satisfiability don't care sequences stems from the fact that
using them for flexibility gives ISFSMs rather than PNDFSMs.

Usually, the E-machine is a PNDFSM, rather than a ISFSM. In the case of
cascade machines, as in figure 6, the E-machine for C is an ISFSM. It would
seemthat a simple topology might be in certainsituations guarantee that the E-
machine is an ISFSM. However this is not the case. Even in the simple cascade
circuit of figure 6, the E-machine for M is not an ISFSM, even though there is
some flexibility in choosing an implementation. If it were, then for some state
and input, the machine shouldbe allowed to transit to anystate while producing
any input, which is clearly not the case.

Lemma 3.7 The machines Co,Ci,C2 are always ISFMS's while the machines
CZ,CA are PNDFSM's.

3.5 Combinational Resynthesis of Sequential Hardware

The theory developed in the previous section can also be applied to optimizing
sequential designs specified as combinational blocks interacting with sequential
elements, i.e. netlists of interconnected gates and flip flops. Given a sequential
circuit we willnow characterize the changeswhich can be made to the associated

16

"" > y

^ R(x,u,v,y) "f^

u ki i i i Hv
C(u,v)

Figure 7: R is the relation defining the combinational portion of the circuit. C
is the FSM derived from the latches Ii,12,...,Il in the circuit; let (t'11'2 ... i'l)
be the initial state of the design. Then u[i+ 1] = v[i\ and tt[0] = (t'11'2 .. .t'x,)

combinational logic without any changes to the latches. Pictorially, this is
represented in figure 7.

The "E-machine" at R (keeping C fixed) is given by the following

^'(x.u.^y) = 4c(v,u)^<f>s(x,y)

where <f>s(x,y) = (3u,v)(<j>R(x,u,v,y) A<f>c(u,v)) is the formula defining the
original machine.

Generally, <f>M (x,u,v,y) is a sequential machine. Valid combinational im
plementations include:

<f>Rl(x,u,v,y) = <f>R(x,v,u,y)
<j>R>(x,u,v,y) = (3v)(<f>s(v,v) A <j>R(x,v,u,y))
<j>R>{x,u,v,y) = <j>R(x,v,u,y) V -(^ch(u))

where <f>£(v, v') is the relation that states v,v' are input-output equivalent, and
<f>Reh(u) is the relation that u is reachable in the original machine. Variants of
the above are given in [9].

Definition 14 The static dont care set for the design is the set of all combina
tional functions that map E^ x Ey to Ey x Ev which aTe implementations of
<f>M\x,u,v,y).

The use of the term "dont care" set is of course a misnomer; the class of functions
comprising the set is highly discontinuous, and not even definable by a relation
let alone a single function with a dont care set. In fact, generally deciding if a
given NDFSM has a combinational implementation is NP-complete, as is shown
by the following lemma.

Lemma 3.8 Given an NDFSM M on input Ey and outputs Ey, it is NP-
complete to decide if there exists a combinational implementation compatible

17

*l/-.*2 /-.•••.*n/~

:**>

Figure 8: We are taking C\ = (xj V xjj V X3) for illustration.
*1 = xi/l,x2/-,x3/-,...,xn/-; k\ = xi/-,x2/0,x3/-,...,xn/-; k\ =
aJi/-,«2/-,a?3/l,-..,«n/-;

with A/", i.e a function / : Ey —* Ey such that ^ —• ^ holds.

Proof: Membership in NP is trivial: a combinational implementation can be
described in 0(\ Ey | • | Ey |) bits, and tested for containment in NDFSM in
polytime.

To demonstrate NP-hardness we use a reduction from 3-SAT. Let <f> = CiA
C2A.. .ACm be a given 3-CNF form over variables xi,x2i.. ,,xn. Construct a
PNDFSM over inputs {xi, x2,..., x„} and outputs {0,1} as shown in figure 8.

Combinational implementations of the above PNDFSM are maps from the
set {xi,X2,. ..,xn} to {0,1}, and are in a natural correspondence with truth
assignments to the variables in <f>. It should be clear from the construction
that a combinational implementation corresponds to a truth assignment that
satisfies^ and vice versa. The reduction is in polynomialtime, and thus deciding
combinational implementability is NP-complete. •

4 Synthesizing General Finite State Systems

4.1 Fair Systems

The analysis of systems with fairness is of growing importance. This is in part
due to the advent of formal verification [2, 15]. In order to verify large systems,
they have to be simplified; in practise this is often done by abstraction, i.e.
adding behaviors (possibly through non-determinism) that the original system
did not have in order to obtain a more compact representation. Verification
performedon the abstract system is usuallyconservative. To get a moreaccurate
representation of the system, fairness constraints, which are restrictions on the
infinitary behavior of the system, are added. Fairness also plays an integral role
in the top-down paradigmfor hierarchical design paradigmproposed by [13].

Since fairness is a restriction on the infinitary behavior of the system, the
defining relations for languages derived from FSMs with fairness are formula

18

in SIS rather than WS1S. Thus, the definition for the E-machine continues to
give the range of permissible behaviors at a node in the context of ^-languages.
The formulae for Co,Ci,C2,Cz,C4 continue to define approximations to the
E-machine; any implementation compatible with an approximation is correct.

For the case of infinite strings, i.e. Lc*(v,u) C (Ev x Ey)w, defined by a
non-deterministic Buchi automaton over the alphabet Ev x Ey the procedure for
determining if a finite state machine C(v,u) exists which implementsC*(v, u)
in the sense (Vi>) (Vu) [<f>c(v,u) -*• <f>c*(v,u)] is as follows:

1. Determinize the NB automaton defining C*(v,u) to obtain a deterministic
Rabin automaton (Complexity — O(2nlog^n^), where n is the number of
states in the NB automaton)

2. In the DR automaton, project the symbols of the alphabet Ev x Ey down
to Ev- Interpret the new structure as a Rabin automaton on trees and
check for tree emptiness; An implementable controller exists if and only if
the tree emptiness is negative. The algorithmof Rosner [16] for Rabin tree
emptiness actually derives an implementation if one exists. (Complexity:
Rabin tree emptiness is known to be NP-complete; the algorithm of [16]
has complexity polynomial in the number of states and exponential in the
number of accepting pairs.)

We would like to maintain some degree of optimality in the controller syn
thesis process; one criterion for optimality could be state minimality. For *-
languages we were able to reduce the search for state minimal implementations
to finding the minimum state implementation in a PNDFSM. In general, this is
not the case for w-languages.

4.2 Timed Systems

The formal analysis of real time systems is an area of active research [1]. The
behavior of a timed system is now a map from 3? rather than u as was the case
for discrete time systems. Languages can be defined in terms of sets of maps
from 9£ to the output, a finite set of scalars. The real time control/synthesis
problem is defined in a manner analogous to that for discrete time.

Let S(x, y) a timed automaton whose language describes an acceptable re
lationship between the input timed trace x and the output timed trace y, and
M(x, y,u,v) a timed automaton on inputs x, u and outputs y,v. The game the
oretic formulation and derivation of the E-machine continues to hold - the set

C*(u,v) of strategies for a controller which can observe v and control u which
yields acceptable behavior isstillgiven by-«(3x, y)[<f>M(x, y,u,v)A->(<f>s(x, y))],

19

where <f>A is a formula defining the language of the timed system A in an ap
propriate logic.

Different formulationsof timed automaton yielddifferent classes of definable
timed languages. Unfortunately, noneof the non-deterministictimed automaton
formulations define classes which are closed under complement. Even if we start
with deterministic timed automaton which are closed under complement (eg
timed deterministic Muller automaton), the quantification step in the defining
relation for C* will lead to non-deterministic timed automaton; thus even for
such simple systems there is no "regular" form for C*.

4.3 Stochastic Systems

A formal analysis of definitions and verification of stochastic systems has been
carried out in [3]. Let thesystem to becontrolled bea Markov process M(x,y,u,v)
where x, u are inputs and y,v are outputs, and S(x, y) C E/* x E0* be the spec
ification. Given that the controller observes v and controls u, the stochastic
control problem in this context can be cast as finding the "best" control strat
egy, i-e. given input v the controller shouldplay v such that the probability that
the system fails the specification is minimized. The following twostrategies are
variants on this theme.

The relation below defines the strategy which seeks minimize the net prob
ability of failure. Formally define C* as follows:

C7(ti,v) = (Vv)[/i{x,y| M(x,u,v,y)A-.S(x,y)} > /i{x,y\ M(x,«,t;,y)A-i5(x,y)}]

where /* is the measure function derived from the Markov process.
The following strategy seeks to minimize the maximum probability of a

specific failure.

C»(«.») = (Vi>)[. max u(M(x,u,v,y)) > max u(M(x,u,v,y)))
{x,y\ -»5(x,y)} {a:,y| -iS(*,y)}

5 Conclusion

In report we have described applications of the sequential calculus SIS to prob
lems related to the synthesis and controlof interacting finite state systems. We
gavea detailed analysisof FSMs on finitestrings, and related our results to past
work. Wealso sketched extensions of the theory to moregeneral classes of finite
states systems, including fair, timed, and stochastic systems. In the future we
plan to study these systems in more detail.

20

References

[1] R. Alur and D. L. Dill. Automata for Modelling Real Time Systems.
In International Colloquium on Automata, Languages and Programming, 1990.

[2] A. Aziz, F. Balarin, R. K. Brayton, S.-T. Cheng, R. Hojati, T. Kam,
S. C. Krishnan, R. K. Ranjan, A. L. Sangiovanni-Vincentelli, T. R.
Shiple, V. Singhal, S. Tasiran, and H.-Y. Wang. HSIS: A BDD-Based
Environment for Formal Verification. In Proc. of the Design Automation
Conf., June 1994.

[3] A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. The Temporal Logic of Stochastic Systems. Submitted

for publication, 1995.

[4] A. Aziz, V. Singhal, G. M. Swamy, and R. K. Brayton. Minimizing In
teracting Finite State Machines: A Compositional Approach to the

Language Containment Problem. In Proc. Intl. Conf. on Computer Design,
pages 255-261, Oct. 1994.

[5] J. R. Buchi. On a Decision Method in Restricted Second Order Arith
metic. In International Congress on Logic, Methodology, and Philosophy of Sci
ence, pages 1-11, 1960.

[6] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchro
nization Skeletons Using Branching Time Logic. In Proc. Workshop on
Logic of Programs, VOLUME 131 OF Lecture Notes in Computer Science, PAGES
52-71. Springer-Verlag, 1981.

[7] S. Devadas. Optimizing Interacting Finite State Machines Using Se
quential Don't Cares. IEEE Trans. Comput.-Aided Design Integrated Cir
cuits, PAGES 1473-1484, DEC. 1991.

[8] J. Fron, J. C.-Y. Yang, M. Damiani, and G. D. Micheli. A Synthesis
Framework Based on Trace and Automata Theory. In Workshop Notes
of Intl. Workshop on Logic Synthesis, Tahoe ClTY, CA, May 1993.

[9] H. L. Harkness and G. M. Swamy. Minimization of Transition Relation
Representations for Complex FSM's. EE290H Class Project Report,
Dec. 1992.

[10] H. Henderton. A Mathematical Introduction to Logic . Academic Press,
1972.

[11] J. E. HOPCROFT and J. D. ULLMAN. Introduction to Automata Theory, Lan
guages and Computation. ADDISON-WESLEY, 1979.

[12] J. Kim and M. M. Newborne. The Simplification of Sequential Ma
chines With Input Restrictions. IRE Transactionson Electronic Computers,
pages 1440-1443, Dec. 1972.

21

[13] R. P. Kurshan. REDucmmiTY in Analysis of Coordination. In Discrete
Event Systems: Models and Applications, VOLUME 103 OF LNCIS, PAGES 19-39.
Springer-Verlag, 1987.

[14] Z. Manna and P. Wolper. Synthesis of Communicating Processes from
Temporal Logic Specifications. ACM Trans. Prog. Lang. Syst., 6(l):68-93,
1984.

[15] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[16] A. Pneuli and R. Rosner. On the Synthesis of a Reactive Module. In
Proc. ACM Symposium on Principles of Programming Languages, PAGES 179-
190, 1989.

[17] M. O. Rabin. Automata on Infinite Objects and Church's Problem, volume 13
OF RegionalConf. Series in Mathematics. American Mathematical Society,
Providence, Rhode Island, 1972.

[18] J.-K. Rho, G. Hachtel, and F. Somenzi. Don't Care Sequences and the
Optimization of Interacting Finite State Machines. In Proc. Intl. Conf.
on Computer-Aided Design, PAGES 418-421, Nov. 1991.

[19] W. Thomas. Automata on Infinite Objects. In J. van Leeuwen, editor,
Formal Models and Semantics, VOLUME B OF Handbook of Theoretical Computer
Science, pages 133-191. Elsevier Science, 1990.

[20] H.-Y. Wang and R. K. Brayton. Input Don't Care Sequences in FSM
Networks. In Proc. Intl. Conf. on Computer-Aided Design, 1993.

[21] H.-Y. Wang and R. K. Brayton. Permissible Observability Relations
IN FSM Networks. In Proc. of the Design Automation Conf, June 1994.

[22] Y. Watanabe and R. K. Brayton. The Maximum Set of Permissible
Behaviors for FSM Networks. In Proc. Intl. Conf. on Computer-Aided
Design, 1993.

[23] H. Wong-Toi and D. L. Dill. Synthesizing Processes and Sched
ulers from Temporal Specifications. In Proc. of the Second Workshop
on Computer-Aided Verification, 1990.

22

	Copyright notice 1994
	ERL-94-96

