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Abstract

Static memory management replaces runtime garbage collection with compile-time annotations that make all memory allo-
cation and deallocation explicit in aprogram. Weimprove upon the Tofte/Tal pin region-based scheme for compile-time memory
management [TT94]. In the Tofte/Talpin approach, al values, including closures, are stored in regions. Region lifetimes coin-
cide with lexical scope, thus forming a runtime stack of regions and eliminating the need for garbage collection. We relax the
requirement that region lifetimes be lexical. Rather, regions are allocated |ate and deallocated as early as possible by explicit
memory operations. The placement of allocation and deall ocation annotations is determined by solving a system of constraints
that expresses all possible annotations. Experiments show that our approach reduces memory requirements significantly, in some
cases asymptoticaly.

1 Introduction

In arecent paper, Tofte and Talpin propose a novel method for memory management in typed, higher-order languages[TT94].
In their scheme, runtime memory is partitioned into regions. Every computed value is stored in some region. Regions them-
selves are allocated and deallocated according to a stack discipline akin to the standard implementation of activation recordsin
procedural languages and similar to that of [RM88]. The assignment of valuesto regionsis decided statically by the compiler
and the program is annotated to include operations for managing regions. Thus, there is no need for a garbage collector—all
memory allocation and deallocation is statically specified in the program.

Thesystemin[TT94] makessurprisingly economical use of memory. However, itisusually possibleto do significantly better
and in some cases dramatically better than the Tofte/Talpin algorithm. In this paper, we present an extension to the Tofte/Talpin
system that removesthe restriction that regions be stack allocated, so that regions may have arbitrarily overlapping extent. Pre-
liminary experimental results support our approach. Programstransformed using our analysistypically use significantly less (by
a constant factor) memory than the same program annotated with the Tofte/Talpin system alone. We have also found that for
some common programming idioms the improvement in memory usage is a factor of Q(n) or more. The memory behavior is
never worse than the memory behavior of the same program annotated using the Tofte/Talpin algorithm.

It is an open question to what degree static decisions about memory management are an effective subgtitute for runtime
garbage collection. Our results do not resolve thisquestion, but we do show that static memory management can be significantly
better than previoudy demonstrated. Much previouswork hasfocussed on reducing, rather than eliminating, garbage collection
[HJ90, Deu9q]. The primary motivation for static memory management put forth in [TT94] isto reduce the amount of memory
required to run general functional programs efficiently. Two other applicationsinterest us. First, the pausesin execution caused
by garbage collection pose a difficulty for programs with real-time constraints. While there has been substantial work on real-
time garbage collection [DLM 78, NO93], we find the simpler model of having no garbage collector at all appealing and worth
investigation. Second, most programs written today are not written in garbage-collected applicative languages, but rather in
procedural languages with programmer-specified memory management. A serious barrier to using applicative languagesis that
they do not alwaysinteroperate easily with procedural languages. Theinteroperability problemisduein part to the gap between
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thetwo memory management models. We expect that implementationsof applicativelanguageswith static memory management
would make writing components of large systemsin applicative languages more attractive.

Our approach to static memory management is best illustrated with an example. We present the example informally; the
formal presentation beginsin Section 2. Consider the following simple program, taken from [TT94]:

(let z=(2,3) in)Xy.(fst z,y) end) 5

Thesourcelanguageisaconventional typed, call-by-valuelambdacalculus; itisessentially the applicative subset of ML [MTH90].
The annotated program produced by the Tofte/Talpin system is:

Example 1.1
[ etregionpgpsin
letregionpgin
et x =(2Qp,, 3Qpg) Qpyin
(Ay.(fst z,y) @p) Qps
end
end 5Qp3
end

There are two kinds of annotations: | et r egi on p i n e binds a new region to the region variable p. The scope of p is
the expression e. Upon completion of the evaluation of e, the region bound to p and any values it contains are deallocated.
The expression e@p evaluates e and writes the result in p. All values—including integers, pairs, and closures—are stored in
some region. Note that certain region variables appear free in the expression; they refer to regions needed to hold the result of
evaluation. Theregionsintroduced by al et r egi on arelocal to the computation and are deallocated when eval uation of the
| et r egi on completes.

Thesolid linesin Figure 1c depict thelifetimes of regionswith respect to the sequence of memory accesses performed by the
annotated program above. Operationally, evaluating the function application first allocates the regions bound to p4, p5, and pg.
Next the integer 2 is stored (in the region bound to p»), then the integer 3 (in pg), the pair x (in p4), and the closure Ay. ... (in
ps). At thispoint, theinner| et r egi on iscompleteand pg isdeallocated. Evaluating the argument of the function application
storestheinteger 5 (in p3). Finaly, evaluating the application itself requiresretrieving the closure (from ps), retrieving the first
component of x (from p,4), and constructing another pair (in p;).

In the Tofte/Talpin system, the | et r egi on construct combines the introduction of aregion, region alocation, and region
deallocation. In our system, we separate these three operations. For us, | et r egi on just introduces a new, lexically scoped,
region variable bound to an unallocated region. The operation al | oc_bef or e p e alocates space for the region bound to p
before evaluating e, and the operation f r ee_af t er p e deallocates space assigned to the region bound to p after evaluating e.
The operationsf r ee_bef or e andal | oc_af t er are defined analogoudly.

The problem we address is: given a program annotated by the Tofte/Tal pin system, produce a completion that adds alloca-
tion/deallocation operations on region variables. Figure 1a shows the most conservative legal completion of the example pro-
gram. Each region is allocated immediately upon entering and deallocated just before exiting the region’s scope; this program
has the same region lifetimes as the Tofte/Tal pin annotated program above. Theal | oc_bef ore pandfree_after panno-
tations may be attached to any program point in the scope of p, so long as the region bound to p actually is allocated whereitis
used. In addition, for correctnessit is important that a region be allocated only once and deallocated only once during its life-
time. Within these parameters there are many legal completions. Figure 1b shows the completion computed by our algorithm.
Thereisone new operationf r ee_app. Inan application e; ez, the region containing the closure can be freed after both e; and
e are evaluated but before the function body itself is evaluated. This point is not immediately before or after the evaluation of
any expression, so we introducef r ee_app to denotefreeing aregion at this point.

The dotted linesin Figure 1c depict the lifetimes of regions under our completion. This particular completion is optimal—
spacefor avalueisallocated at the last possible moment (immediately prior to thefirst use of the region) and deallocated at the
earliest possible moment (immediately after the last use of theregion). For example, thevalue 3@Qpg isdeallocated immediately
after itiscreated, whichis correct because there are no uses of the value. While an optimal completion doesnot alwaysexist, this
exampledoesillustrate some characteristic features of our algorithm. For example, spacefor apair ideally isallocated only after
both components of the pair have been evaluated—thelast point beforethe pair itself is constructed. Similarly, at the last use of
afunctionits closure is deall ocated after the closure has been fetched from memory but before the function body is evaluated.
These properties are not special cases—they follow from the general approach we adopt.

For any given program, our method produces a system of constraints characterizing all completions. Each solution of the
constraints correspondsto avalid completion. The constraintsrely on knowledge of the sequence of reads and writesto regions.
Thus, the constraints are defined over the program’s control flow. However, because of higher-order functions, inferring control

1We assume small integers are boxed to make the presentation simple and uniform. In practice, small integers can be unboxed.



[ etregionps,psin
al l oc_beforepsfreeafter pyall oc_beforepsfreeafter p;
letregionpgin
al | oc_beforepgfreeafter pg
[ et © =(2Qpy, 3Qpg) Qpyin
(Ay.(fst z,y) @Qp1) @Qp;
end
end 5Qp3
end

(a) The example with explicit region allocation/deallocation operations.

[ etregionpgpsin
free_app ps
letregionpgin
let x=(2Qp,, al l oc_after pyall oc_beforepgfreeafter psg 3Qpg) Qpyin
al | oc_beforeps (Ay.(freeafter pysfst z,y) Qp) Qps
end
end 5Qp3
end

(b) The example with the optimal explicit region allocation/deall ocation operations.
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region lifetimesin program (a)
.................................... region lifetimesin program (b)

(c) Graph of region lifetimes with respect to the sequence of memory operations.

Figure 1: An example comparing stack vs. non-stack region allocation.

flow from the syntactic form of the programisdifficult. A well-known solution to thisproblemisclosureanalysis[Ses92], which
gives a useful approximation to the set of possible closures at every application.

Our algorithm consistsof two phases. We beginwith the Tofte/Tal pin annotation of aprogram (Section 2), ultimately produc-
ing acompleted program with explicit allocation and deallocation operations (Section 3). In thefirst phase, an extended closure
analysis computesthe set of closuresthat may result from eval uating each expression in every possibleregion environment (Sec-
tion 4). In the second phase, local constraints are generated from the (expression, region environment) pairs (Section 5). These
constraints express facts about regionsthat must hold at a given program point in agiven context. For example, if an expression
e accesses aregion z, there are constraints such as “z must be allocated sometime before the evaluation of e” and “z must be
deall ocated sometime after the evaluation of e.”

A novel aspect of our algorithm arises in the resolution of the constraints. As one might expect, solving the constraints
yields an annotation of the program, but finding a solution is not straightforward. Some program points will be, in fact, under
constrained. For example, in the program in Figure 1, the initial constraints specify that the region bound to p; must be allo-
cated when Ay . . . isevaluated, but there is no constraint on the status of the region bound to ps prior to the evaluation of Ay.
That is, we must choose whether pj isallocated prior to the evaluation of Ay or not—there arelegal completionsin both scenar-
ios. Given the choice, we prefer that p; not be allocated earlier to minimize memory usage; this choice forces the completion
al | oc_bef ore ps A\y.... Adding the constraint that ps is unallocated prior to evaluation of Ay affects the legal completion
in other parts of the program. Thus, our algorithm alternates between finding “ choice points’ and constraint resolution until a



completion has been constructed.

The soundness proof is presented in Section 6. Detailed discussion and measurements of the behavior of our algorithm
are presented in Section 7. A discussion of some relevant related work isin Section 8. Section 9 concludes with a discussion
of practical issues. Our system is accessible for remote experimentation through the World Wide Web. The server analyzes
arbitrary programs, and displays the trandlated program as well graphs showing memory usage over time. The URL is:

http://kiw .cs. berkel ey. edu/ “nogc

2 Background on the Tofte/Talpin System

Our approach makes use of Tofte and Talpin's region and effect inference algorithm. This section describes the Tofte/Talpin
region inference system in more detail. For afull description, please refer to [TT94]. This section is intended as an informal
overview to aid in understanding our extensions.

We use the term full systemto refer to the composition of the Tofte/Talpin system as described in [TT94] and our extensions.
In the full system, each source program isfirst translated by the Tofte/Talpin system, and then the translated programis further
analyzed and annotated by our extensions.

2.1 Sourcelanguage

The sourcelanguage of the full system, and thus of the Tofte/Tal pin region inference system, isan ML-like functional language.
We present only the core language, omitting pairing, selection, lists, and arithmetic operations for clarity. The grammar is:

e == z|Az.eler ey
| letz=eineend
|

letrec f(z)=e;inesend

The operational semanticsfor the source languageis quite standard, and given in Figure 2. The rules derive sentences of the
form E + e — v, meaning that in environment E, expression e evaluatesto value v. Thereis no explicit store. The notation
E + E' extendsfinitemaps. (E + E')(x) is E'(x) whenz € Dom(E'), or E(z) otherwise. The notation {z — v} standsfor
the singleton map which maps z to v.

2.2 Target language of of the Tofte/Talpin system

The Tofte/Talpin region inference system trand ates source language programsinto target language programs. In the context of
thefull system, thistarget languageistheinput to the extended closure analysis and constraint generation phases presented later
in this report.

Thetarget languageis given by the following grammar:

x| Az.eQp|e ez | f[7]1@p
l et x =ejinesend

letrec f[p](x)@p =e; i nesend
letregionpineend

The target language differs from the source language in that allocation and use of memory is made explicit. The dynamic se-
mantics of the target language introduces a new, nonstandard model of the store. In this model, the store is a stack of regions,
each capable of holding an arbitrary number of values. Any region in the stack can support both get (retrieving a value previ-
oudly stored in the region) and put (increasing the size of the region by onevalue, and storing avaluein the space thus all ocated)
operations.

Thestack of regionsmodel differsfrom thetraditional stack model in put operationsare not restricted to the top of the stack.
Thus, we cannot implement the stack of regionsusing atraditional stack. Rather, the implementation techniqueis similar to the
“stack of subheaps’ scheme of Ruggieri and Murtagh [RM88].

Thetarget language introduces two annotations:

letregionpineend
e@Qp



EtF \z.e — (z,¢e,E)
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Elrees —w

EF ey — (x0,e0, Eo, f) El ey — vy
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Elees—w

Ele — v E+{z—uv}tFke—w
Etrlet z=e;iney — v

E+{fH<$,€1,E,f>}l_62_)v
Etrletrec f(z) =eiines —w

Figure 2: Operational semantics of source language.



The first annotation (I et r egi on p i n e end) specifies a runtime sequence of operations. first a new, empty region is
created and bound to region variable p, then e is evaluated, and finally the region (including all its contents) is destroyed. The
second annotation (e@p) simply specifiesthat the result of evaluating expressione will be stored at the region bound to theregion
variable p. Region variable bindings are lexical.

Any operation (get or put) dynamically occurring outside the extent of the corresponding | et r egi on isan error. That the
trangation must not derive programsthat can exhibit this error is the major correctness constraint.

Just addingl et r egi on and“@p” annotationswould result in very conservativetrandationsfor most interesting programs.
Thus, Tofte and Talpin extended their system to include region polymor phism, which allows expressions to perform operations
on different regions depending on the context. In the Tofte/Talpin system, introduction of region polymorphism is combined
with thel et r ec construct. A region polymorphic function takes extra region parameters, which are bound to actual regions
by aregion instantiation construct. The syntax for region polymorphicl et r ec is:

letrec f[p](z) =erineyend

Similarly, the syntax for region instantiation is:

flr1@p

Region instantiation retrieves the region polymorphic closure, instantiates the formal regions parameters of the closure with
actual region parameters p, and stores a new region monomorphic closurein p (see rule [REGAPP] in Figure 4).
Region polymorphism isimplemented by passing the regions at runtime as extra parametersto the function.

2.3 Types
Source language types are the standard ones of the Damas-Milner type system [DM82], as specified by the following grammar:

Tu=alint|tr -7

Thetarget language has a somewhat richer type language, which describes an expression’s use of regions, aswell asthetype
of itsvalue. In the following grammar, 7 represents the type of an expression, and ;. represents the type and region.

T alint|p =5 p
I (1,p)

The €. denotes an arrow effect. The effect of evaluating an expression is the set of regions accessed (i.e. read or written)
as aresult of that evaluation. The arrow efffect of afunction isthe effect of applying that function. In[TT94], thereisafurther
distinction between get and put effects, but that distinction is not needed here.

The e namesthe effect, and is useful for two purposes. First, when quantified, it reflects that the function can beeffect poly-
morphic, which is to say that its effect can depend on the context. A typical example is a higher-order function that calls its
argument. The arrow effect of the argument is incorporated into the overall effect of applying the function; different arrow ef-
fectsfor the argument will result in different effects for the application.

By design, avalue'stype captures all regions accessible by the value, either by traversal in the case of pairsand lists, or by
application in the case of functions.

Type schemes are given by the following grammar:

o = Vai,...,0n,€1,. .. ,€n.T simple type schemes
| Vo1, .., pryQ1,. .. Qp,€1, ... €. cOmpound type schemes

Simple type schemes quantify over both ordinary type variables and effect variables, and areintroduced by | et constructs.
Compound type schemes quantify over region variables aswell, and are introduced by | et r ec constructs.

Given a compound type scheme o = Vp1,... ,pr,a1,... ,an,€1,... ,6,.7 and type 7/, we use the notation of [TT94]
to denote instantiation: o > 7' (via S) meansthat 7’ is an instance of o, if there exists a substitution S such that S(7) = 7.
Instantiation in the case where o is a simple type schemeis defined similarly.

As an example of the types, consider the following target |anguage code fragment:

letrec f[ p1, p2] (z:(int,p1)) =(z+(1Qpg) ) Qpain ...
Theregion polymorphic function f has the following compound type scheme:

e1-{po,p1,p2}
—

Vo1, p2,€e-(int, p1) (int, p2)



TE(z) = (o,p) csmple o>71

TEFxz=x:(1,p),0 VAR
TE(f) = (a,p") o compound,i.e.c =Vps,...,pr.01, Whereo; issimple
o>rviaS e=1{p,r'} [REGAPP]
TEF f= f[S(p1),---,S(pr)]@p = (1,0),
TE+{z—m}lte=e:p,0 ©C¢
— ABS
TE & Az.e = Az.e'Qp: (g —— pa2, p), {p}
TEFe =eé): (' =5 pu,p),p1 TEFes=eh:pu' oo APP]

TEVFejes = eleh:pu,oUp UpsU{eph

TEFe =¢é :(m,m), o
TE+{z(op)tFea=enippr o =TyEGeNTE, p1)(71) LET]
TEFletz=eiinex=let z=ejiney:pp1Ups

TE+{f — (Vpe1,p)} F Az.ey = Az.e]Qp : (1, p), 1
Ve = RegEffGen(TE, o1 )(r)
o' = RegTyEffGen(TE, p1)(7)
TE+{f— (¢c/,p)}Fex=e€h:p, e [LETREC]
TEFletrec f(z)=e1ine; =
letrec flpl(x)@p=elineh:pu e Ups

TEbe=e:pp ¢ =0bseve(TE,p)(v)  {p1,-- o} =Ffrv(p\ ¢')
TEFe=letregionp,...,prine :p, ¢

[LETREGION|

Figure 3: Regioninferencerules.

2.4 Theregion inference algorithm

A full description of the region inference algorithm is beyond the scope of this report (for more details, see [TT94]). However,
we givethe inference rules (Figure 3) and a high-level overview.
Theinferencerulesare arefinement of the ML typeinferencerules[DM82]. They derivetrandationsof thefollowing form:

TE+Fe=e :u, @

This sentence states that, in type environment 7'E, source language expression e tranglates into target language expression
€', which has type and place 11, and effect . A type environment is a finite map from program variablesto (o, p) pairs.

For any semantic object A, frv(A) isthe set of region variablesthat occur freein A, ftv(A) isthe set of free type variables
in A, and fev(A) isthe set of free effect variablesin A. The notation A \ B represents set difference. The three operations for
forming type schemes are defined thus:

RegTyEffGen(A)(r) = Vfrv(r) \ frv(A), ftv(r) \ ftv(A4),fev(r) \ fev(A).7
RegEffGen(A)(r) = Vfrv(r) \ frv(4),fev(r) \ fev(4).7
TYEffGen(A)(r) = Vftv(r) \ ftv(4),fev(r) \ fev(A).7

The observable part of ¢ with respect to A iswritten Observe( A)(y) and is defined to be the following subset of ¢:
Observe(A)(¢) = ¢ N (frv(A4) Ufev(4))

The [LETREGION] rule, in its use of the Observe function, contains the key idea of region inference. Observe(T'E, ¢)
describes the regions that appear free in the type environment and result type. The effect ¢ of the expression includes these



observableregions, aswell asadditional, non-observableregions. Theideabehindthe[LETREGION] ruleisthat non-observable
regionsin the effect set of an expression are purely local to the evaluation of the expression, in that no other part of the program
will ever access them. Thus, these regions can be created immediately before the expression, and destroyed immediately after.

Another important aspect of the type inferencerulesisthe use of effect variablese. Effectively, these are used to implement
asimpleform of constraints on set variables using unification, in this case sets of atomic effects. To do so requires an extended
notion of substitution of effect variables: S(e.) = €'.(¢' U S(p)), wheree'.o" = S(e). Asaresult of this modification, when
multiple arrow effects are unified, the union is taken of all the atomic effects ().

A related property of effect variablesistheir use in describing dependence rel ationships among effect sets. For example, the
effect of (A\f.\z.fx) h 5 dependson the arrow effect of h. Thisisreflected in the type for the expression A f. \x. fx:

6.0 E”- ! 6’. 67
(a <% 8, p) =22, (o <HoBb 5 )

Oneway of understanding e variablesis as away of expressing constraints between effect sets. In fact, some previouswork
on effect systems used explicit systems of constraints [TJ92]. However, explicit constraints were not used in the Tofte/Talpin
system because of a problem in conjunction with recursion. Thel et r ec region inference rule expresses the recursion by
matching the type assumptions for f (ocurring in the body) with the derived type for f. In the implementation of the region
inference rules [TT94], this matching is accomplished by iterating until afixpoint is reached. Such an implementation requires
that testing equality of types can be done efficiently. Allowing arbitrary constraints to appear in types would defeat this. Asit
is, the type languageis expressive enough that the necessary constraints can be specified, and simple enough that type equality
can be tested efficiently.

If the language included recursive generic polymorphism, typing would be undecidable [Hen93]. Thus, in an expression of
theforml et rec f(z) = e; i n eq, thetypevariablesin thetypeof f arequantified only withine,, notin e;. However, typing
isstill decidableinthe presence of recursive region polymorphism, so region variablesin thetypeof f are quantified within both
e1 and e,. Theintroduction of recursive region polymorphismis one of the main technical advancesof [TT94] and is essential
for the quality of the results.

Hereisan exampleof thetrandation. The source program, given below, smply countsdownto zero intail-recursivefashion.
To make the example interesting, we use constructs outside the minimal language presented above. The expression i@Qp stores
integer i in the region bound to p; the expression (e; — e») @p storesthe differenceof e; and e» in the region bound to p. Other
arithmetic and comparison operations are defined analogously.

letrec f(z) =
ifz=0thenz
el se f(z-1)
in
f100
end

Thetrangdation produces the target language program below:

 etregionp;
in
letrec
fLp2] (2= (int, p2)) @p; =
ifletregionps
inletregionpsin(z=(0Qps)) Qpsend
end
thenz
el se
| etregionps
in
Il p2] @ps
(letregionpgin(z-(1Qpg)) @Qps end)
end
in letregionp;in f[ p] @p7 (100@p,) end
end
end



2.5 Concrete semantics of target programs

The concrete semantics of target programs is very similar to the concrete semantics of fully annotated programs as given in
Figure 4 (for an explanation of the notation, see Section 3. The only differencesare in the [LETREGION] rule (the target lan-
guagel et r egi on actually correspondsto the [LETREGION_TT] rulein Figure 4), and the absence of [ALLOCBEFORE] and
[FREEAFTER] rules, since these constructs are missing from the target language.

An exampleillustrates the [LETREC] and [REGAPP] rules. Consider the following program:

Example 2.1
[ etregionpy,ps,psin
| et z:l@pl,j:2@pzl n
letrec flps,psl(k: (int,p5)) Qps =
letregionpsin
(k+(1Q@pr)) @ps
end
in
( flp1, pal@po i + flp2, pa]@po j) @py
end
end
end

In this program, nested | et and| et r egi on constructs are abbreviated.

InExample2.1,1 et r ec f[ps, ps|( k) Qpsz = ... storesanew region polymorphic closureat afresh addressa intheregion
bound to ps;. Next, the expression (f[p1, pa] @po i + f[p2, pa] Qpo j) Qp, isevaluated in an environment n wheren(f) = a.
A region application f[p1, pa] @p, creates an ordinary closure (stored at the region bound to p) with formal region parameters
ps and pg bound to the region values of p; and p, respectively. When applied to the argument i (in p), the result is stored in
pa. Theclosureresulting from f[p2, p4] expectsits argument in p, instead. Region polymorphism allowsthe function f to take
arguments and return results in different regionsin different contexts.

2.6 Storage mode analysis

The Tofte/Tal pin system contains one more optimization after theregioninference phase: storage modeanalysis. Theanaysisis
motivated by the fact that some programs have very poor memory utilization. In fact, the standard notion of “tail call optimiza-
tion” is not expressible by the region inference trandation alone. Thus, isisimpossible that a program with arbitrary recursion
depth can execute in constant space.

Storage mode annotation addressesthis problem. It extendsthe existing store operationimplicitine@p to two different kinds
of store operations, known asat t op and at bot . An expression of theform e at t op p is operationally the same as before;
the size of the region bound to p isincreased by one, and the value is stored in the space thus alocated. However, e at bot p
behaves differently; first, the region is reset, meaning that all valuesin the region are discarded. Then, the new valueis stored
in the region. After the operation, the region has a size of one storable value.

Thepurpose of storage mode analysisisto determinewhen the store can bereplaced withtheat bot annotation, and when it
mustremainat t op. Todo so, it usesarather standard backwardsflow algorithm, similar to globalization and single-threadedness
analyses [Ses92, Fradl, Sch85].

A further goal of storage mode analysisisto allow region polymorphic functions to also be polymorphic in storage mode.
Thisisaccomplished by adding storage modesto regioninstantiation constructs, and allowing athird storage mode (sonewher eat )
for | et r ec bound region variables, indicating that the storage mode is to be one specified with that region variable when it is
instantiated. In fact, the only storage modes permitted for | et r ec bound variablesare at t op and sonmewher eat ; at bot
is not a valid choice because it is always to instantiate the function in a region in which values written before the application
would be used afterwards. At runtime, the storage modes are passed in as extra argumentsto region polymorphic functions, as
are the regions themselves.

There is no published account of storage mode analysis. Our knowledge of it is based on the prototype implementation
provided to us by Mads Tofte, aswell as a personal communication [ Tof94].

As an example of the storage mode analysis, the result of the analysis applied to the countdown example of Section 2.4 is
below:

l etregionp;
in
| etrec
fLp2] (= : (int, p2)) atbot p; =



ifletregionp;
inletregionpsin(xz=(0atbot ps)) atbot p3; end
end
t hen z
el se
| etregionps
in
f[ sat p2] at bot p;
(letregionpgin(z-(1atbot pg)) sat p» end)
end
in letregionp;in f[atbot py] at bot p; (100 at bot py) end
end
end

Itisworth noting that all of thewritesintoregion p, resolveto at bot annotations, either directly (aswith theinitial value of
100), orindirectly throughsomewher eat (aboveabbreviatedtosat ) whentheregionisl et r ec-boundtovariablep,. Thus,
inthis case, storage mode annotation correctly optimizesthetail recursion of thisregion. Unfortunately, it does not optimizethe
regionsstoring theregioninstantiated closuresfor f. The Tofte/Talpin system contains an optimization by which the application
and| et r egi on constructs are combined so that the lifetimes of the new regions are limited to the evaluation of the function
and the argument, but not of the function body itself. This optimization in conjunction with storage mode analyis doesimprove
the results to constant space. We will have more to say about the quality of these resultsin Section 7.2.

3 Definitions

Inthissection, we devel op our extensionsto the Tofte/Tal pin system. Tothe Tofte/Tal pintarget language describedin Section 2.2
we add operationsto allocate and free regions:

(&

freebeforepe | freeafter pe
freeapppe; e

| allochbeforepe | allocafter pe
|
|

The operational semantics of thislanguage derives facts of the form

!
s,n,rFe—a,s

whichisread “in store s, environment n, and region environment r the expression e evaluates to store address a and new store
s'.” The structures of the operational semantics are:

RegionState = unallocated + deallocated +
(Offset A, Clos + RegClos)
Store = Region fin, RegionState
Clos = Lam x Env x RegEnv
RegClos = RegionVar* x Lam X Env x RegEnv
Env = Var -5 Region x Offset
RegEnv = RegionVar fin, Region
A store containsa set of regions zy, z», . . . . A region has one of three states: it isunallocated, deallocated, or it isallocated. In

thelast caseitisafunction frominteger offsetso, , 0o, . .. within theregion to storable values. A region can hold valuesonly if
it isallocated. Note that regions are not of fixed size—a region potentially holds any number of values. A region environment
maps region variables py, po, . .. toregions. A vector of region variablesis written p.

In this small language, the only storable values are ordinary closures and region polymorphic closures. Ordinary closures
havetheform (Az.e@p, n, r), where Az.e@p isthe function, n is the closure’s environment, and r is the closure’s region envi-
ronment. A region polymorphic closure has additional region parameters. The set of Axz.e@p termsis Lam; the @p annotation
is elided whenit is clear from context or unneeded.
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Figure 4 gives the operational semantics. An addressis a (region, offset) pair. Given an addressa = (z, 0), we generally
abbreviate s(z)(o) by s(a). All maps (e.g., environment, store, etc.) in the semantics arefinite. The set Dom/(f) isthe domain
of map f. Themap f[x — v] ismap f modified at argument z to givev. Finaly, f|x ismap f with thedomain restricted to X .

The operational semanticsin Figure 4 differsfrom the semantics given for the sourcelanguagein Figure 2 in several impor-
tant respects. Most importantly, the notion of store is explicit. The representation of recursion is changed accordingly; instead
of aspecia closureform for recursivefunctions, astandard closureis used, but with acyclein the store. The operationa seman-
tics of Figure 4 are quite similar to those given in [TT94], for which it was proved that the trandation specified by the region
inference rulesis sound. The semantics given in Figure 4 do differ somewhat from the Tofte/Talpin system, in that unallocated
and deallocated states for regions, and extra allocation and deall ocation expressions have been added. The correctness of our
trandlation scheme with respect to these additionsis the subject of Section 6.

The semantics in Figure 4 enforces two important restrictions on regions. First, the semantics forbids operations on are-
gion that is not allocated; reads or writes to unallocated/deallocated regions are errors. Second, every region introduced by a
| et r egi on progressesthroughthreestages: itisinitially unallocated, then allocated, and finally deallocated. For example, the
[ALLOCBEFORE] ruleallocates apreviously unallocated region before the eval uation of an expression. Only onerepresentative
of each of the allocation and deallocation operationsis presented in the semantics; the others are defined analogoudly.

4 Region-based Closure Analysis

In reasoning about the memory behavior of a program, it is necessary to know the order of program reads and writes of mem-
ory. Closure analysis, an application of abstract interpretation [CC77], approximates execution order in higher-order programs
[Shi88, Ses92]. However, closure analysisaloneisnot sufficient for our purposes, because of problemswith state polymorphism
and region aliasing (see below). Imprecision in state polymorphism gives poor completions, but failure to detect aliasing may
result in unsound completions.

Consider again the program in Example 2.1. Within the body of the function f, the + operation is dwaysthe last use of the
valuek in ps. Thus, it is safe to deallocate the region bound to ps inside the body of f after the sum:

letrec flps,ps](k) @ps =letregionprin
freeafter ps (k+(1@Qp7)) @pg)end ...

Now consider the two uses of f in the body of thel et r ec in Example 2.1. With this completion, the region bound to p; is
allocated (not shown) when f[p1, p4] i isevaluated, and deallocated when f[p2, p4] j isevauated. Thus, to permit this comple-
tion the analysis of f must be polymorphicin the state (unallocated, allocated, or deallocated) of the region bound to p; . If the
analysis requires that the region bound to p; be in the same state at all uses of f, then in the body of f, the same region (now
bound to p5) cannot be deall ocated.

Region aliasing occurs when two region variablesin the same scope are bound to the sameregion value. Thereisno aliasing
in Example 2.1 as written. However, if the expression f[p2, p4] isreplaced by f[p2, p2], then region parameters ps; and pg of
f arebound to the same region. In this scenario, it isincorrect to deallocate the region bound to p5 as shown above, since the
result of the call to f (stored in the same region, but bound to pg) is deallocated even though it is used later. This example
illustrates three points. First, region aliasing must be considered in determining legal completions. Second, the completion of
a function body depends strongly on the context in which the function is used; i.e., determining legal completions requires a
global program analysis. Third, to obtain accurate completions, we require precise aliasing information. Approximate or may-
aliasinformation is not good enough. Knowing only that two region variables may be aliased would not permit allocation and
deall ocation operations on the region.

Our solution to these problemsisto distinguish for each expression e the region environmentsin which e can be evaluated.
We define [e] R to bethe set of valuesto which e may evaluatein region environment R. Including region environments makes
region diasing explicit in the analysis. Since the only values are closures, [e] R is represented by sets of abstract closures
{{Az.e’ @p, R')}, which intuitively denotes closures with function Az.e’ and region environment R’.

Sinceeach| et r egi on introducesaregion, the set of region environmentsisinfinite. We use afinite abstraction of region
environments, mapping region variablesto colors. A color stands for a set of runtime regions. An abstract region environment
R hasavery specia property: R maps two region variablesto the same color iff they are bound to the same region at runtime.
Thus, an abstract region environment preserves the region aliasing structure of the underlying region environment.

Theregion-based closureanalysisisgivenin Figure 5. Following [PS92], the analysisis presented asasystem of constraints;
any solution of the constraints is sound. We assume that program variables are renamed as necessary so that each variable is
identified with a unique binding. We write Vis(z) for the set of region variablesin scopeat | et rec z[g](y) =,1 et = =, or
Az,

Theruleforl et r egi onintroducesanew color ¢ not already occurringin R. A distinct colorischosenbecausel et r egi on
allocates a fresh region, distinct from all existing regions. To make the analysis deterministic, colors are ordered and the min-

11



n(z) =a
s,n,rFx—a,s

n(f) =a s(a) = (7, \z.e,ng,70)
o & Dom(s(r(p')))

a' = (r(p'),0)

¢ = (rieomo.rolif — r(7)])
s,n,rF flp'l@Qp" — d, sl « (]

o & Dom(s(r(p))) a = (r(p),0)
s,m, 7 FAr.e@p — a,s[la — (Az.e,n,r)]

s,n,TrFe —a,s

$1,n,T Fex — as, So

s2(a1) = (Az.e,ng,rp)
S2,Mo[T — as],ro F e — as, s3

s,n,r ey es — ag, S3

s,n, T e — a,s
Sl’n[m (—(1,1],7' '—62 — a2, 52
s,nm,rElet x=ejineend — as,s:

o ¢ Dom(s(r(p)))
n' =nlf < (r(p),o)]

S[(T(p)’o) — (ﬁ: )\%.61,’[7,’,7")],”,,7" F €2 — a'asl

s,n,rFletrec flg](z)@Qp=erine — a,s

z ¢ Dom(s)

S0 = s[z « unallocated]

S0,M,T[p— 2zl Fe—ay,s;

s1(z) = deallocated
s,n,rletregionpine— ay,si|poms)

z ¢ Dom(s)

so = s[z — {}]

Sﬂ,nar[p(_z]l_e_)alysl
s,m,rFletregionttpine— ai,si|poms)

r(p) = 2

s(z) = unallocated

so = s[z — {}]

so,n, T e —a,s
s,n,rFallocbeforepe—ay,s

s,n,re—a,s

r(p) =z

s1(z) isdlocated

s9 = s1[z « deallocated)|
s,n,rFfreeafter pe— ay, s

Figure 4: Operational semantics.
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[z] B = [z] Blvs)
[Me.e@p] R = {(Az.e@p, R)}

[e1 e2] R foreach (A\z.e@p,R') € [e1] R
[e] R Ce1ex] R
[e2] R C [z] R

[let z=e1ine] R = J[ex] R
[[61]] Rg II.Z’]]R
[l etrec flp1,...,pu](z)@p=erine] R = [e] R

{(Az.e;@p, 5, R)} = [f] R

[flpr...on]@p] R = {(Az.eQp, R'[p; — R(p:)])}
where [f] R = {(\z.e @', 7', R')}

[l etregionpinel] R = [e] Rlp < c|]wherecisacolornotin R

Figure 5: Region-based closure analysis.

imal color is selected. There can be no more colors than the maximum number of region variablesin scope at any point in the
program. Thus, the set of abstract region environmentsisfinite, which ensuresthat the closure constraints have afinite solution.

From the region-based closureanalysis, it is possibleto derive an ordering on program points. For example, in an application
e1 ex Within region environment R, first e; is evaluated, then e, and finally one of the closuresin [e] R. Thisordering playsa
central rolein computing completions.

4.1 Implementation

Our implementation of the extended closure analysisisfairly standard. Each of the constraintsin Figure 5 can be expressed in
the form of either smple set inclusion constraints of the form S C T, or conditional set inclusion constraints of the form “if
valuevisinset S, thenT C U,” where S, T', and U areall set variables. The form of the constraints suggests aworklist-based
algorithm that iteratively refines apartial solution. Each step finds a constraint S C 7' which is inconsistent, and replaces the
value of T' with S U T, thus satisfying that constraint. Whenever the guard of a conditional constraint becomes true, the set
inclusion constraint is added to the worklist of constraints.

The actual implementation represents the constraints using a graph. Each node in the graph correspondsto an (expression,
region environment) pair (e, R). Each node is associated with a set variable containing the (partial) result of evaluating [e] R.
An edge from (e, R) to (e’, R") means that the abstract value [¢'] R’ dependson [e] R. This meansthat if the value of [e] R
changes (i.e. becomes larger), then constraints of theform .S C [e'] R’ may become inconsistent. Dependence edges encode
direct dependencies (for each constraint of theform[e] R C [e'] R thereisadependenceedgefrom (e, R) to (¢’, R'), and also
indirect dependencies, for example those associated with conditional constraints. All such dependencies are represented; the
absence of a dependency edge in the graph implies the absence of a dependency between the corresponding set variables.

We wish to avoid the overhead of storing the constraints explicitly. Thus, for all language constructs other than variables,
the constraintsare determined by syntactic examination of e’ and its subexpressions. Variables, however, are subject to nonlocal
dependencies.

Oneefficiency concernisthe quadratic number of dependency edgesfrom each binding of avariable svalue (in applications)
to each use of the variable. Our approach to eliminating the quadratic blowup isto introduce variable nodesinto the graph. The
graph contains one such node (var z, R) for each program variable = and each region environment R in which z isbound. An
application of a closure {(Az.e @ p, R)} to an abstract value [e2] R establishes the constraint [var z] R C [ez] Rz. Simi-
larly, an occurrence of = in aregion environment ' whichisan extension of R (i.e. R = R'|pom(r)) establishes the constraint
[z] R C [var z] R. Thelatter constraints are not syntactically apparent from the expression z. They can, however, be deter-
mined from the dependence edges leading into (z, R'). Thusthe rule: constraints on variable occurrences are derived from the
in-edgesin the dependence graph; for all other expressions, the constraints are derived from the syntax of the expression.

A worklist keeps track of which constraints are inconsistent. Specifically, the worklist holds nodes n such that constraints
between n and n’s successor nodes may be inconsistent. For any node n not in the worklist, all constraints betweenn and n's
successors are satisfied (thisis the invariant of the algorithm). The nodes are also marked with one of WORK or | DLE to denote
their membership in the worklist, so that adding a node to the worklist without duplication is a constant time operation.
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The worklist step chooses a node on the worklist, removesit from the worklist, determines the constraints associated with
that nodeusing therule above, and if necessary updatesthe abstract valueto satisfy the constraints. If the abstract value changes,
all successor nodes are added to the worklist.

When the worklist becomes empty, the algorithm terminates. From the invariant, it holds that if there are no nodes on the
worklist, then all constraints are satisfied. Further, termination is guaranteed, because each step increases the size of the partial
solution, and the space of solutionsis finite.

Theimplementation of the closure analysisis about 1000 lines of SML/NJ code, not counting support code to trandlate data
structures used in the Tofte/Talpin system.

5 Completions

This section first outlines the constraint |anguage and constraint generation. The following subsections deal with finite abstrac-
tionsfor regions, constraint generation, and constraint resolution in detail.

We want to characterize the set of legal completions of a program using a constraint system. The variablesin this system
arethe states (unallocated U, allocated A, or deallocated D) of regionsat program pointsin the source program. These variables
arereferred to as state variables and written ¢, ¢4, 5, . . . . The constraint system for a particular program must encode

1. at which program points particular regions must bein the allocated state,
2. theflow of regions along the program’s execution paths.

Both points are necessary to guarantee that a region is actually alocated wherever it is accessed. Encoding the control flow
is necessary to ensure that the state of aregion is consistent over time and changes only at explicit alocation and deallocation
constructs. Closure analysis provides an approximation to the control flow in higher order functions. Region states can thus be
tracked along control flow paths by suitably constraining the state variables between successive program points. However, the
main problems in constraint generation are to find a suitable abstraction for dynamic regions and to define which regions’ state
ismodeled by a particular state variable. An abstraction of dynamic regionsis required because programsmay be recursive and
their execution may produce an infinite number of distinct regions. Section 5.1 developsan abstraction for dynamic regionsand
region environments.

Given a suitable definition of the set of regions described by a single state variable, the following three kinds of constraints
are sufficient to encode points 1 and 2 above: (1) allocation constraints, (2) choice constraints, and (3) equality constraints:

t=A (1)
(tl,cp,t2>a

(tl,cp,t2>d (2)
t =t (3)

At program pointswherevaluesareread from or written to regions, allocation constraintsare placed on state variablesabstracting
those regions; they express that a region must be allocated at this point. Choice constraints are used to connect state variables
at consecutive program points where a region may change state. Choice constraints are either allocation triples or deallocation
triples.

Definition 5.1 An allocation triple expresses a relationship between two state variablest, , t» and aboolean variable ¢,, associ-
ated with program point p:

def
(tl,Cp,tz)a = (Cp = (tl =UANty = A)) A ("Cp = ) = tz)

The boolean ¢, encodes whether or not the associated region isto be allocated at program point p. If ¢, = true the region state
prior to the allocation pointis U and afterwards A, i.e. alocation. If ¢, = false, then the state prior is equal to the state after, i.e.
no allocation. This approachis similar in spirit to the coercions of [Hen92]. The definition of deallocation triplesis analogous:

Definition 5.2 A deallocation triple expresses a relationship between two state variables ¢, t» and aboolean variable ¢, asso-
ciated with program point p:

def
(tl,Cp,tz)d = (Cp R (tl = A/\t2 = D)) A ("Cp = t = tz)

Equality constraints are used to constrain state variables to the same state, e.g. at consecutive program points, where no alloca-
tion/deallocation is possible.

Condtraints are generated as afunction of thetarget program structure, the Tofte/Tal pin types and effects of the program, and
arefinement of the region-based closure analysis (Section 4). Before presenting the details of constraint generation, we define
an abstraction for dynamic regionsin Section 5.1. Section 5.2 contains further notation and definitions, Section 5.3 containsthe
constraint generation rules, and Section 5.4 discusses constraint resolution.
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5.1 Abstracting dynamic Regions

This section develops afinite abstraction for dynamic regions by successively refining a naive approach.

5.1.1 Naiveapproach

Summary All regions created by aparticular | et r egi on construct are abstracted by a single abstract region. The problem
with thisapproachisthat it does not distinguish enough regionsto makeinsertion of any allocation/deall ocation constructs safe.

In the naive approach, dynamic regions are abstracted by colors, one color per syntactic| et r egi on. Because of recursion, a
color representsthe (possibly infinite) set of dynamic regions produced by the particular | et r egi on statement it is associated
with. Encoding theflow of regionsinthe constraint system isdone by associating with each program point and each color asingle
state variable. State variables of consecutive program points are constrained with equalities or choice constraints, according to
color.

Although intuitive, this approach does not allow us to infer where regions can be allocated or deallocated. The difficulty
stems from the fact that each color represents a set of dynamic regions. For example, if in a particular execution context, two
region variables p; and p» bind two distinct regions z; and z, but the abstraction uses asingle color ¢ to denote z; and z,, then
the abstraction cannot model the states of regions z1, z» before and after aconstruct likeal | oc _bef or e p; withasingle state
per program point. The region z; must be in the unallocated state before the construct, and in the allocated state after. If the
abstraction capturesthe states of z1, then it iswrong for z» (z2's stateis not affected by al |1 oc _bef or e p;), and vice versa.

In general, at a program point p, alocation or deallocation constructs can only be inserted on region variables whose color
unambiguously denotes a single unknown dynamic region in the context of p. Thisis of course impossible to achieve for all
program points, due to the unbounded number of dynamic regions. However, below we explore an abstraction that is able to
assert the singleton requirement at some program points. In the remainder of this report, region abstractions are always termed
colors.

5.1.2 Abstract region environments

Summary Instead of abstracting individual regions, region environments are abstracted as awhole, resulting in a closer cor-
respondence between abstract and concrete regions. The remaining problem is the handling of quantified effect variables.

In the naive approach above, the state of every dynamicregion is apparent at every program point. Thisover-specificationisthe
source of the problem that asingle color abstracts many distinct dynamic regions. The problemis overcomeby expressing facts
only about dynamic regionsthat actually matter at a program point in a particular context. Regions are accessed through region
variables appearing in the target program. Region variables are mapped to regions through a region environment as shown in
the operational semantics in Figure 4. 1t seems that the evaluation of an expression can therefore only access regions that are
bound in the current region environment. This observation is not entirely true, but it can be refined later. For the moment, we
assume that evaluation of an expression in aregion environment r needs only be concerned with the state of regions appearing
inr.

Defining theregion or set of regions abstracted by a color becomes easier in the context of an entire abstract region environ-
ment. An obvious choiceisto say that if an abstract region environment R abstracts a concrete region environment r, a color
¢ bound to aregion variable p in R abstracts exactly the region bound to p in . However, more than one region variable may
bind the same color. In thiscaseit is no longer clear which region the color abstracts, and how many distinct regions there are.
This problem is solved by adding a consistency constraint between abstract and concrete region environments, expressing that
each color in an abstract region environment denotes a unique region in the concrete region environment, and vice versa:

R(p) = R(p') <= r(p) =1(p')

We call thisrelation r sat R, and define it more precisely as:

Q.

rsat R 2 Dom(r) = Dom(R) A

V(p, p' e Dom(r)) R(p) = R(p') <= r(p) =r(p')

Theimplication R(p) = R(p') = r(p) = r(p’) saysthat each color denotes a single dynamic region in the region en-
vironment ». This fact alone is not sufficient to reason about the states of all regionsin the region environment after e.g. an
al | oc_bef or e p construct. If two region variables p; and p, are aiased (bind the same region), an alocation on p; implies
an alocation of the region bound to p, and vice versa. The symmetry of the r sat R relation, however, is strong enough to
capture aliasing between region variables, since the aliasing is the same in the abstraction. Abstract region environments are
computed by the region-based closure analysis given in Section 4.

15



We now describe how state variables are associated with program points. Consider a program point p, and the smallest
syntactic expression e that contains p. Let p be the effectsinferred by the Tofte-Tal pin effect inference for expression e in the
entire program. Given aregion environment, the effect set ¢ characterizesthe regionsthat are used by the evaluation of e. From
the region-based closure analysis, we can computeaset of abstract region environments{ Ry, . .. , R, } that arepossibleat p. For
each such abstract region environment R;, we associate a state variable with each color in the range of R; and mapped by some
region p in . Thus, not only can we distinguish between the states of aregion occurring in two distinct region environments,
but we also restrict our state variablesto the set needed to express the states of regions accessed during the evaluation of e.

Compared to the initial naive approach, there is an important difference: the state variable associated with color ¢ mapped
by region variable p in region environment R, stands only for the state of the dynamic region mapped by p in a corresponding
concrete region environment, but not for the states of regions abstracted by the same color ¢ in unrelated region environments.

However, as hinted at above, the set of regions accessed by an expression may include regions not mapped by region vari-
ables! Effect sets may contain effect variables. Effect variables are introduced by effect quantificationin |l et and|l et rec
expressions, and they expressthat an expression may access different sets of regionsin different contexts (Section 2.2). Asare-
sult, if region environmentsdo not contain mappingsfor effect variables, the set of regionsthat an effect referstoisonly partially
known; i.e. the regions (or abstractions thereof) denoted by effect variables are not known. The following partially annotated
exampleillustrates the problem;

Example5.3 I et appl = A\f. f 1 (*)

in
| etregi on p;
in
let a = 2@1
in
appl (Ay. y+a)  (**)
end
end
end

Assume the quantified type of the appl function is Ve e5.(int @10 int) ot it (region variables have been omitted for

clarity). Suppose the color associated with region variable p; is ¢; in a particular context. The flow of this region from the
beginning of thel et r egi on expression to the application of appl at (**) is easy. The latent effect set (effect of evaluating
the function body) of Ay includes p; becauseit is accessed when the variable a is used in the addition. The instantiated type of

appl at the application is therefore (int 1L, int) 1L, int (again most region variables have been omitted for clarity).
If we now look at the latent effect set at the application of appl at (**) and the latent effect set of the callee A f, we see that they
differ. In particular, the set of colors obtained by pointwise application of the region environment to the instantiated effect set
at (**) differsfrom the set obtained from the quantified effect set and the region environment captured at (*). Color ¢; does not
appear in the latent effect set of the quantified type of appl at (*). Thereis no state variable inside the appl function that we
could connect to from the caller. Theinverse problem appearsat the application of f 1 at (*). Thelatent effect at the application
isep, but the latent effect of the function Ay, bound to f, is{p1, ... }. In essence, the handle on ¢, (through aregion variable)
islost at program pointsin the body of appl, because appl is polymorphicin that effect.

In order to produce a constraint system that characterizes only legal completions, we need to track at al program points the
states of regionsbound only to effect variables, aswell asthe states of regions mapped by region variables. Section 5.1.3 extends
the notion of aregion environment to include mappings from effect variablesto sets of regions. Such mappings are obtained
through effect variable instantiation.

5.1.3 Effect variableinstantiation

Summary Making the mappings of effect variables to sets of regions explicit through effect instantiation guarantees that all
regions accessed during evaluation of an expression are bound to region or effect variableson al control flow paths. However,
the cardinality of the set of regions bound to an effect variable may be unbounded.

What happens to the region bound to p; in Example 5.3 where the function appl is called? As described in the previous sub-
section, in the context of the application at (**) in Example 5.3, the effect variablee; isinstantiated to {p1, ... }. Theregion
bound to p; doestherefore not really disappear at program pointsinside the appl function. It is part of the set of regionsbound
to the effect variable ;. Effect variable instantiations are computed by the Tofte/Tal pin system during effect inference, but tar-
get programs are not annotated with these instantiations because effect variable instantiations do not affect the evaluation of
programs. For our analysis however, explicit effect variable instantiations are necessary. We therefore extend the Tofte/Talpin
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target language dightly:

| letrec f[p,elp](z)@p=e;ine;end
| fl7',¢'19p

For purposes of presentation we only consider effect variable quantification at | et r ec constructs. Effect variable quantifica-
tion at | et constructsis handled similarly. Analogous to quantified region variables, quantified effect variablesat | et r ec
constructs becomeformal parameters(ep ). The parameter names are represented as arrow-effectse. o, because the known part
of the effect () is required for the definition of how to compute instantiations (discussed below). At region application, effect
variables are instantiated to sets of regions through effect parameters (@'). The scope of an effect variable is the function body
e1 bound by thel et r ec-definition where the effect variable is quantified.

Thefollowing paragraphsshow how the set of regionsto be boundto an effect variableat region applicationiscomputed. The
goal isto extend the region environment of aclosure obtained at aregion application with mappingsfrom effect variablesto sets
of regions. Consider aletrec-bindingl et r ec f[7,e%]. .. inregionenvironmentr, and aregionapplication f[5’, '] inregion
environment r'. Inthe[REGAPP] rule of the operational semanticsin Figure 4, the closure resulting from the region application
containsaregion environment r; obtained by extending o, with mappingsfor the region parameters p; (ith component of vector
p):

1 =ro[p; — 7' (p})]
We further extend the region environment r; with mappingsfor theformal effect parameters (e;) to sets of regions(d;) computed
asafunction of 1, p; and ', i
To = T1[€;  dy

The sets d; are computed such that the set of regions denoted by the arrow-effect ¢;.¢; in region environment r, isequal to the
set of regions denoted by the effect parameter ), in region environment r':

d; Uri(pi) =7'(0}) wherers(e;.0;) = ra(e;) Ura(pi) = d; Uri(p;)

To satisfy the equality, the set d; is constrained by the following upper and lower bound (the safety of Tofte/Talpin typings
guaranteesthat r1 (¢;) C r'(})):

() = rilps) C di C1r'(4))
At thispointit doesn’t really matter how we choose d; within the specified bounds. The exact way to computethe setsd; depends
on the abstraction chosen for dynamic regions.

We set out to compute effect variable mappings for region environmentsin order to maintain the following invariant: all
regions accessed by the evaluation of an expression e in region environment r are bound in » by region or effect variables.
Example 5.3 showed why thisinvariant is required to model the state of regions along al control flow pathsin a program.

Unfortunately, abstracting region environments with effect variable mappingsis non-trivial. Section 5.1.1 showed that in
order to add an allocation/deallocation construct for aregion variable p at aparticular program point p, astate variablemodelling
exclusively the state of the region bound to p at p isrequired. This requirement motivated the r sat R relation of Section 5.1.2.
Extending abstract region environmentsand the r sat R relation with effect variables, such that each color till denotesasingle
dynamicregion, may requirean unbounded number of colorsfor some programsbecause the number of regionsboundto asingle
effect variable may be infinite. To appreciate this fact, consider the following example (only relevant annotations are shown):

Example5.4 | etrec fac(n) = Ag.
if n =0then g1
el se
letregion p; in
fac (n-1) (Az.g (z*n)) @
end
in
fac 10 (Az.z*1)
end

The program defines the factorial function in “continuation passing style”’. Consider the continuation parameter g and its (sim-
plified) type: int =% int. The effect variable e; is quantified by the | et r ec construct and stands for the set of regions that
the continuation accesses when executed. At the recursive call to fac, a new instance of ¢; is instantiated (made possible by
recursive polymorphism). Theinstantiation isthe latent effect of the lambdaexpression Az, which includese; duetothecall to
g. It also contains other regions, namely p; holding the closure of Az. Since, the region bound to p; islocal to the body of fac,
the number of regionsin the latent effect of the continuation grows at each iteration.
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5.1.4 Abstract region environmentswith effect variables

Summary Thissubsection describes an abstraction of region environmentsthat requiresonly afinite number of colorsfor any
program. This abstraction is the one used for constraint generation.

To keep the number of required colors finite, we choose an abstraction of region environments that models may-aliasing of
regions bound to effect variables w.r.t. other regions. For regions bound solely to region variables, the aliasing information is
perfect. In terms of colors this means that a color in the set bound to an effect variable denotes a set of regions (defined more
precisely below), whereasacolor mapped solely by region variablesdenotesthe singl eregion bound by the sameregionvariables
in the concrete region environment.

Colorsforregionvariablesinl et r egi on-constructsare chosen accordingto the exact ssmerulesdescribedin Section 5.1.2:
the color for the new region variable is different from any colors already bound to region variablesin the current region envi-
ronment. Consequently, the same finiteness argument applies, and aliasing between region variables is perfectly modelled by
the aiasing of colors. In order to define the refined r sat R relation, we assume that each dynamic region is annotated with a
color (written as subscript) chosen according to the same rule as in the abstraction. The consistency relation between abstract
and concrete region environmentsis defined by:

rsatR 2 Dom(r) = Dom(R) A
V(p,p' eDom(r)) R(p) = R(p') <= r(p) =7(p') A
V(p e Dom(r)) R(p) = color(r(p)) A
V(e e Dom(r)) R(e) = colors(r(e))

where color isafunction from dynamic regionsthe their color annotation, and colorsisthe set extension of color. Thefirst two
clauses are unchanged. The two new clauses require that the color annotation of dynamic regions correspond to the colors used
to abstract those dynamic regions.

The consistency relation between abstract and concrete region environmentsleads to the following definition of what acolor
abstracts: (aformal statement can be found in Definition 6.6)

A state variable associated with a color ¢, program point p, and abstract region environment R representsthe state
of al regions z.. colored by ¢ (bound to region or effect variables) that may appear at program point p in a concrete
region environment abstracted by R.

A color may now abstract multiple regions asin the naive approach of Section 5.1.1. In contrast to the naive approach how-
ever, the structure of an abstract region environment states which colors abstract a single dynamic region, and which colors
potentially abstract more than one dynamic region. A color mapped solely by region variables (not contained in the mapping
of any effect variable) abstracts a single dynamic region. If aregion variable mapsto such acolor, potential allocation or deal-
location constructs for that region variable can be modelled by the constraints. On the other hand, if a region variable mapsto
acolor that appearsin any effect variable mappings, allocation/deallocation on that region variable cannot be expressed in the
constraints.

In order to find good program completions, we prefer to have as many potential allocation/deallocation choice points for a
program as possible. As spelled out in the previous paragraph, the sets of colors mapped by effect variables has an influence
on the potential choice points. The reminder of this subsection describes how to compute minimal color sets for effect variable
instantiations in abstract region environments.

Instantiations of effect variables to sets of colors are computed anal ogous to the sets of concrete regions described in Sec-
tion 5.1.3. Given aletrec-binding | et r ec f[g,eZp]... in abstract region environment R, and aregion application f[5"', 3]
in abstract region environment R/, the abstract closure resulting from the region application contains a region environment that
is obtained by extending R, with mappingsfor the region parameters (giving R;) and further extending R, with mappingsfor
effect variables:

Ri = Rolpi — R'(p})]
R2 = R1 [Gi — Dl]

The sets of colors D; are computed as afunction of Ry, ¢; and R', ¢} such that the set of colors for the arrow-effect €;.¢; in
abstract region environment R; is equal to the set of colors of ¢} in abstract region environment R':

D;UR; (Lpl) = Rl(cp;) WhereRz(e,».goi) = Rz(fi) U Rz((pi) =D;U Rl(‘Pi)
Asisthe case for concrete regions, the equality is satisfied if D; lies within the following bounds:
R'(¢;) — Ri(pi) € D; C R'(¢})
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The lower bound is obviously the preferred choice for our instantiation, since it adds the minimal number of colors to effect
variable mappings. However, the abstract and concreteregion environments R», r» after instantiation haveto be consistent with
respect to the r, sat R relation. Choosing the lower bound for D; and d; does not result in consistent region environments as
shown by the following example (colors are letters a, b):

effect formal parameter e1.{p1, p2}

concreteregion environment  ry = [p1 < 24, p2 — %)

abstract region environment Ry = [p1 < a, p2 < b)

effect argument oy = {p1, p2, €2}

concreteregion environment ' = [p1 «— 24, p2 «— 2, €2 — {2} }]
abstract region environment R’ = [p1 <« a, pa — b,€e3 — {a}]

As before, region environments Ry, r; are obtained by extending Ry, o captured at thel et r ec-definition, and R', ' are the
region environments at the region application. Using the lower bound for D, d; and assuming that z, and 2!/ are distinct, we
obtain

Ry = Riler < {}]

r = nifa = {z}]

which clearly doesn’t setisfy r» sat Rs, eventhough r; sat Ry and r’ sat R'. Thecolor set of ¢; inrs is{a}, whereasin R,
the set is empty.

Failing to include color a in the mapping because it is aready bound to p; iswrong because there are two distinct regions
with color a in the effect argument, whereas p; binds only a single region. Whenever a region environment contains multiple
distinct regions with the same color, all but one of those regions must appear in mappings of effect variables. This observation
followsfromthe R(p) = R(p’) < r(p) = r(p") clauseinthe definition of » sat R. Since we know which colors potentially
denote multiple regions, the sets D;, d; can be computed as follows:

di = 7'(g)) —{r(p) | p€wiyu [J (o)

< €
R'(¢}) —{Ri(p) | p€ i} U |J R'(e)

eenpi

D;

By adding in all colors (resp. regions) bound to effect variablesin ¢}, we guarantee that if there are multiple distinct regions
with the same color annotation in the effect argument, the instantiation retains this fact. The soundness of equation (1) isproven
in Section 6 in the [REGAPP] case.

5.1.5 Discussion

Computing effect variable instantiations during the extended closure analysisis expensive, since it may lead to a combinatorial
explosion of the number of distinct region environments.

A cheaper alternativeisto infer asingle mapping for every quantified effect variable appearing in the type derivation, inde-
pendent of itscontext. Such mappingscan befound quite easily through aglobal system of subset constraintsusing equation (1)
at every instantiation. Thischeaper approach computesfor each effect variable, the union of instantiation mapsover al contexts.
Such an approximationis still safe, but leads to fewer potential allocation/deall ocation points.

Yet athird approach avoids computing effect variable instantiations altogether, by being more conservative. At applications
with potentially non-empty effect variable instantiations, all regionsin the caller and callee can be constrained to be allocated
without matching up individual regions. Thus, whenever regionsdisappear from the region environment due to effect variables,
theseregions arein the allocated state.

It turns out that it is easiest to prove the system correct with explicit effect variable instantiation. Section 6 shows that this
approach is sound. Section 7 discusses the approaches used in the actual implementation.

Thereminder of Section 5isorganized asfollows. Theregion-based closure analysisbased on explicit effect variableinstan-
tiationsisgivenin Section 5.2. Section 5.3 describesthe constraint generation rules. Finally, Section 5.4 contains the resolution
algorithm.

5.2 Definitions

This section introduces notation used in the region-based closure analysis and the constraint generation rules. We overload no-
tation for applying abstract region environmentsto region variables R(p), effect variables R(¢), sets of both R((), and arrow-
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[AMx.e: u] R _ {(Az.e:p, R)}

[l etrec flg,epl(x)@p=e;ine] R = [e] R
{(Az.ex:n, p,ep, R)y = [f1 R

UIFG18AR = {(aem R — R(pi).e — Rlylo) ~ R1,(e) URL()])
where [f] R = {(Az.e:u, p', € .’ ,R')}

Figure 6: Changes to the region-based closure analysis (explicit effect variable instantiation).

effects R(e.p). The exact form should always be clear from context:

R(p) {e]3pe st R(p) =c}UU., Re)
R(ep) = R(pU{e})
Restricted domain and rangefunctions separate region and effect variables. Dom|,,(R) isthe set of region variablesin thedomain

of the region environment R, and Dom|.(R) is the set of effect variablesin the domain of R. The range functions are defined
analogously.

Dom|,(R) = {p|p e Dom(R)A p € RegVar}
Dom|.(R) = {e|ee€Dom(R) A e € EffVar}
Rangel,(R) = {R(p)|p € Dom|,(R)}
Rangel-(R) = U{R(e)|e e Doml(R)}

We also make use of restricted mappings R|, () and R|.(¢) to map only region or effect variablesin ¢:

Rlp(p) {E(p) | p € (¢ N Dom|,(R))}
Rlc(p) U{R(e) | € € (p " Doml(R))}

Asmotivatedin Section 5.1, theregion-based closure anal ysis needsto be extended to keep track of effect variables. Figure6
showsthechangesto therulesin Figure5. Effectinstantiationisexplicitintherulesfor| et r ec andregioninstantiation. Effect
variableinstantiations are computed as described in Section 5.1.4. The types of lambda abstractions are included in the abstract
closures. Thisinformationis needed to produce constraintsfor applications. Thel et r egi on ruleisunchanged, i.e. the color
bound to the newly introduced region variable is chosen to be different from all colors already bound to region variables, but
irrespective of the sets of colors bound to effect variables.

5.3 Constraint Generation

As motivated in Section 5.1, with each program point having effect set o, abstract region environment R, and color ¢ in R(yp)
is associated a state variableranging over {U, A, D} (unallocated, allocated, deallocated). State variables are grouped together
into state vectors Sy’ ., S35, and S, assoCi ated with an expression e and region environment R. Vectors S , and S¢'y, rep-
resent the state variables of the first (resp last) program point of expression e, whereas vectors Sg R represent state variables
of internal program points of e (e.g. between two subexpressionse; and e, of €). We refer to state variables by indexing state
vectors with acolor ¢, asin S .[c]. Constraints are placed on individual state variables in a state vector. The three kinds of
constraintsintroduced at the beginning of Section 5 are

t=A (Allocation constraint)
<t1 Cp t2 ) a . .

P Choice constraints
(tl ) cp: t2 ) d ( )
t1 =to (Equality constraint)

Constraint generation produces all constraints necessary to guarantee that regions are allocated when they are accessed. This
task involves placing allocation constraints wherever regions are read or written, aswell aslinking thein and out states of each
subexpression with the corresponding program points in the enclosing expression, and linking states between application con-
texts and function bodies. Choice constraints are introduced at possible allocation or deallocation points and link the region
states before and after the choice point.
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A program point p is a possible allocation/deallocation point for a region variable p, if p appears in the effect set at that
program point and if in every abstract region environment R at p, the color bound to p does not appear in the effect variable
mappings of R. The former condition implies that regions do not change state if they don’t appear in the Tofte/Talpin effects.
The latter condition is made explicit in the constraint generation to ease the proof.

Potential allocation and deallocation points are indicated by the syntax al | oc_before pc, eandfree_beforepcye,
wherec,, istheboolean variableassociated with theall ocation (resp. deall ocation) point. Prior to constraint generation, all poten-
tial al | oc_after,all oc_before,free.after,free_before,free_app expressions are added to the Tofte/Tapin
target program. Wetreat only al |1 oc _bef or e andf r ee_af t er formally. The other constructs can be handled similarly. The
f r ee_app construct is a combination of an application and a deallocation.

Thefollowing paragraphs explain the constraint generation rulesin Figure 7. Constraints are generated as a function of the
in and out state vectors of each expression e, the current abstract region environment R, and the effect set ¢ of e (inferred by
Tofte/Talpin effect inference). The rule for variables says that no regions are accessed and thus no constraints are needed.

In the abstraction rule, we place an allocation constraint on the region where the closure is written. No other regions are
accessed by this expression.

For region instantiation, we place an allocation constraint on the region holding the polymorphic closure and on the region
where the instantiated closure is written. No other regions are accessed.

The handling of | et is straightforward. The relevant regions for e; are connected between the entry points of e and the
intermediate program point between e; and e;. Regions not relevant to e; or which cannot change state are connected directly
from the entry of e to the intermediate program point. The reasoning for e, is analogous.

Intherulefor | et r ec, an alocation constraint is placed on the region where the polymorphic closure is written. The rel-
evant regionsfor e; are connected between e’s input and output points.

The color d inthel et r egi on rule is chosen according to the same rules as in the region-based closure analysis. The
boolean variable ¢, encodes whether the newly created region starts and ends in the allocated state or whether it is allocated
and deallocated within e;. Thisirregularity arises due to our finite abstraction of regions. Equally colored regionsin aregion
environment must all bein the same state. The color for anew region at al et r egi on-construct is chosen to be different from
all colorsbhoundto region variables, but irrespective of colorsappearing in effect variable mappings. Asaresult, the new region
may be given acolor that already appearsin an effect variable mapping. In such a case, the new region cannot be start in theU
state and end in the D state, because the region in the effect variable mapping shares these states. The only consistent statesin
that case are for the regionsto be allocated.

Theal | oc_bef or e rule connects the states of regions bound to p between the input states of e and e; with an allocation
triple. The state of all other regions cannot change. A key point is that allocation triples generated from the same potential
allocation point, but in different region environment contexts, share the same boolean variable. This setup guaranteesthat the
completion is valid in all contexts. Allocation/deallocation choice points for different region variables are sequentialized to
ensurethat if two region variables are aliased (i.e. they map to the same color in the abstract region environment), at most one
allocation/deall ocation point is chosen.

The application rule is the most difficult. The key idea is that at runtime, the regions in the arrow-effect (R(y;)) of the
function expression e, are the same as the regions in the effect of the closure (Ry(y;)). Therefore, the states of regionsin
R(pyp) prior to evaluation of the function body match the states of regionsin Ry (¢} ) on entry to the function (and similarly
on return). In the abstract region environments of the caller and callee, the colors of the effect of the call are equal, justifying
equality constraintsbetween state variablesat thecall siteand in theinput vector of thefunction body (ssimilarly on output). These
equality constraints model the flow of regions from the caller into the function body and back. All regions a function touches
appear inthefunction’seffect. 1t isthussufficient to place the equality constraintsonly on state variables corresponding to colors
from R(yy). Other regionsin the caller’s context are not touched in the the function body; the function is state-polymorphic
in these regions. The set of possible closures in an application of a given region environment is computed by the region-based
closure analysis.

5.4 Constraint Resolution

In general, the constraint system has multiple solutions. For example, the state of a region after the last use is unspecified.
We may place the point of deallocation of such a region anywhere after its last use, but obviously we prefer the first possible
program point. The choice of whereto allocate (or deallocate) aregion affectsthe states of regionsin other parts of the program.
Therefore, it isnecessary to iterate solving constraints and choosing all ocation/deal | ocati on points based on the partial solution.

Recall Example 1.1. Consider ps and the control flow path from the point p;, where the lambda abstraction is stored in
the region bound to ps, to the point p,, where it is retrieved to perform the application. Clearly the region bound to ps must
be allocated both at p; and p,. Because the language semantics forbid the region to change from the deall ocated state to the
allocated state, we can conclude that on all control paths from p; to ps, it must be allocated.

The congtraints are simplefirst-order formulasfor which resolution algorithmsare well-known. Thereis, however, theissue
of deciding which solution to choose; clearly some completions are better than others. We illustrate our resolution algorithm
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€=

e = Az.e;@Qp

e= flp", ¢'1ap

€ =e1 €

e=letz=ejiney

e=letrec f[g,el](z)Qp=eriney

e=letregionpine;

e=allocbeforepc.e;

e=freeafter pc.e;

R0

R{p}

no constraints

SerlR(p)] = A

Se.rlR(p)] = Sip[R(p)]
Ser[R(p)] = A
S r[R(p)] = A, where (T, p) isthetype of f

Ve € R(p). Se rld] = S¢glel

Let o1, 2 betheeffect setsof ey, ey
V(ce R(y1)) S¢ glel = S, glel A S gle] = ScRlc]

V(ce R(¢) — R(p1) U R|.()) S'e”R[C] eR[]
V(ce R(p2)) S, glel = S¢, gle] A Sg; pld] = 52 g
V(ce R(¢) — R(p2) U RI.()) eR[C] 52 gle]

Let (1 —2 ps, p) bethetypeof e;
S? glR(p)] = A

For all (\z. 6b,R0> € [e1] R, with typeul RS

V(ceR(pp)) S2 plel = S7, pylel A Sg g, le] = Sigle]
V(ce Role(py)) S¢, Ryl = A
V(ce R(p) — R(pp) U Rle()) S gl = S2igle]

Let o1, 2 bethe effect sets of ey, ey
V(ce R(p1)) S¢ plel = Sg, gle] A S glc] = S R[c]

V(ce R(p) — R(¢1) UR|.(9)) S ple] = S! 4[]
V(ce R(y2)) S; glel = S¢, gle] A S gle] =S¢y
V(ce R(p) — R(¢2) UR|.(9)) SL plc] = S[c]
Let o2 bethe effectsetof e

Se,R[R(p)] _

V(ce R(p2)) S;"R[C] Sey,rlC]

V(ce R(p2)) SZL; rlel = SZL?R[C] _

V(ce R(p) — R(¢2) UR|.(9)) SE ple] = S4[c]

Let oo bethe effect set of ey

Let d = minimum color ¢ Range|,(R)
Let Ry = R[p « d]

Ve € R(p).5¢ gle] = 5§, g, ]

Ve € R(go).Sgul‘,Rl [c] = S;L:‘R[c]

ce = Sy g, =U A S g ld] =
—ce =S¢ g, (A=A A S¥ g [d=A

V(ce R(p) St.c # R(p)) St = Sk
(32, r[R (P)] Ce; Se, R[R(p)]>a
V(CER( 1)) SelR — Sln R A Sout _ Sout
Y(ce R(p) — (¢1)UR| (©)) eR_Sout

R(p) € R|(¢) = c. = false

V(ce R(p1)) S'"R =Sy LR N Som ,R = Se R

V(ce R(p) - R{p1) U Rlc(p )5'",3—56,3
v(ceR( ) st. c#R( )) Se.r = SR

(Se r[R(p)], ce, SZr[R(p)])a

R( )ER|€( ):>ce false

Figure 7: Constraint generation rules.
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Pe te,1 tgo=A t6,3 6,4

)

Ps ts,1 5.2 5,3 tsa=A ts5 tsg=A ts,7 t5,8

P4 a1 t42 taz=A ta,a ta5 ta,6 tar=A tsg

operation  write  write write write  write read read write

value 2 3 z (apair) Ay 5 Ay x pair
region  po Pe P4 Ps P3 Ps pa P

Table 1. Example constraint resolution.

with an example.

Refer again to the examplein Figure 1. Table 1 shows the state variables associated with py4, ps, ps. Assume that we have
added allocation triples between all consecutive program points for colors bound by ps—ps, with associated boolean variables
¢;,;,» meaning a possible alocation of p; just after state ¢; ;.

Table 1 contains explicit allocation constraints on states where regions are accessed. We must havet; 5 = A because it
lies on an execution path between two states where the region bound to ps is alocated. The same holds for ¢4 4—. We aso
set all allocation choice points cg,2—, ¢5 45, 8d c4,3— 10 false, because the regions must be allocated before these program
points are reached. At this point we have proven all facts derivable from the initial constraints—nothing forces other states to
be unallocated, allocated, or deallocated. We can now choose to set any boolean variable ¢, of an alocation triple (¢1, ¢, t2)q
totrue, if thevariablec, isnot constrained. Among the possible choices, we are particularly interested in allocation pointslying
on the border of an unconstrained state and an allocated state, i.e., alocation triples (¢4, ¢;, t2), Where:

t1 isunconstrained A to = A

By the definition of an allocation triple, choosing ¢, = trueforcest; = U. Thestate U is propagated to earlier program points,
since theregion can be in no other state there. In the example, we choosecs 3 = true, sett; 3 = U, and propagate U backwards
through ¢5 »— tothel et r egi on for ps. Similarly, we choosecg ; = trueand cq,5 = true.

For efficiency, our solver is optimistic and assumesthat setting any choice variableto true resultsin a constraint system with
at least one solution. This assumption appearsto bevalid for all realistic programs, and allows usto avoid what appearsto be a
combinatoric problem.

Our congtraint solver consists of four components. Thefirst component performs graph cal culations to determine that some
choice variables must be false in any consistent solution, and sets them to false. The second component assigns values to all
variables for which the values can be computed entirely from local context. After all such variables have been found, the third
component of the algorithm chooses an unconstrained choice variable ¢, as above. In our experience, this process eventually
leads to a consistent solution of the constraints for aimost all programs. The only exceptions we have found are carefully con-
structed counterexamples designed to force our solver into an inconsistent state (e.g. a region constrained to be both allocated
and deallocated). In such cases, the fourth component identifies the region which became inconsistent, and assign it the triv-
ia solution (i.e. choosing the earliest alocation inside thel et r egi on, and the latest deallocation). In thisway, the solver is
guaranteed to find a solution; in the worst case, it isidentical to the original Tofte/Talpin target program.

5.4.1 Reformulation asgraph problem

To facilitate an efficient solution, it is helpful to reformulate the constraint system as a graph problem. Several non-local graph
properties can be immediately computed. These properties correspond to sets of choice variables which cannot be true in any
consistent solution, so they are assigned a value of false.

Thegraphisconstructed asfollows: the nodesin the graph are state variablest;, and the directed edgesin the graph are allo-
cation and deallocation triples (¢4, ¢, t2 ), where the endpoints of the edgeare t; and ¢». Each choice variable thus corresponds
to a set of edges. The graph is described formally as follows:

G = StateVar x E
E = StateVar x StateVar
TripMap = E 2% Triple
Triple = StateVar x ChoiceVar x StateVar x {a,d}

A map M € TripMap always satisfies the property that M (¢1,t2) = (t1,cp,ta)q OF M(t1,t2) = (t1, ck, t2)q fOr SOME k.
Thereis at most one choice variable for any pair of state variables, which ensuresthat M is single-valued.
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The graph does not encode equality constraints between state variables. In the implementation, equality constraints force
unification of the state variables before the constraints are translated into graph form.

We define the notion of a consistent labelling of the graph and show a mapping between consistent labellings and solutions
of the original constraints.

ELabelling = E 2 Bool

NLabelling = StateVar—>{U,A,D}
Labelling = ELabelling x NLabelling

Weintroduceashorthand: any predicate containing thenotation (1, ¢, t2 ), must hold for both (t1, ¢, t2), @nd (t1, cx, t2)q-

Definition 5.5 A labelling (EL, N L) of graph (N, E) with triple map M is consistent iff:

forall est. M(e) = (t1,ck,t2)s A EL(e) = false, NL(t1) = NL(t3)

forall est. M(e) = (t1,ck,t2)a A EL(e) =true, NL(t;) = U A NL(t3) = A
forall est. M(e) = (t1,ck,t2)a AN EL(e) =true, NL(t1) = AANNL(t2) = D
for all e1,es St M( 1) (tl,Ck,tZ) A M(ez) = <t3,Ck,t4>I,EL(€1) = L(€2)

Thelast of these predicates states that all edges sharing a choice variable must be labelled the same. It impliesthat labelling
an edge and labelling a choice point are equivalent notions; wewill use thesetermsinterchangeably in the sequel. Theremainder
of this section discusses each of the four components of the constraint solver in turn.

5.4.2 Graph properties

It isnow possibleto state the graph properties mentioned above. First, along acycle, all edges must belabelled false. Second, if
any two edges along a path share a choice variable, then those edges must be labelled false. These properties encode non-local
information about the graph. Without this information, a solver based on strictly local information is likely to get stuck, and
possibly arrive at an inconsistent labelling.

To prove these properties, we order the labellings for each state variable as follows: U < A < D. From the definition of
consistent labelling, for any graph edge (¢1,t2) wehave NL(t) < NL(t).

Lemma 5.6 For any consistent labelling (EL, N L) of agraph, for al edges (¢1,t2) inacycleinthegraph EL(t,t,) = false.

Proof:  Thecycleinduces acycle of < relationships among the labellings state variables at the nodes. Therefore, these la-
bellings are equal. From the definition of consistent labelling, equality of endpoints of an edge implies alabelling of false for
the corresponding choice variable. O

Lemma 5.7 For any consistent labelling (EL, N L) of agraph, for any path that includes two edges sharing a choice variable,
the label for the edgesisfalse.

Proof: By contradiction. Let (¢, t2) bethefirst edge, and (¢3, t4) bethesecond (i.e. thereisapath from ¢, to 3. Without loss
of generality, let both edges map to dlocation triples. Assume that the EL(t,,t2) = EL(t3,t4) = true. Then, NL(t2) = A
and NL(t3) = U,s0 NL(t2) > NL(t3). However, there is a path from ¢ to ¢3, implying (due to the transitivity of <) that
ty < t3, acontradiction. O

Our implementation detects cycles with a standard algorithm for finding strongly connected components. Cycles are re-
moved, leaving an acyclic digraph for the remainder of the algorithm. Our implementation performs a depth first search for
each choice variable to find edges on a path sharing a choice variable.

5.4.3 Local transformations

The next phase performslocal transformations of the graph. This phase maintains a partial labelling of the graph. Each local
transformation refines the partia |abelling to contain more information. This process repeats until no more such local trans-
formations are possible, at which point one of the remaining unconstrained choice points is labelled true. The choice phase
alternates with the local transformation phase until either the labelling is completed or becomesinconsistent.

The partial labelling assigns three possible values to each choice variable and six possible values to each state variable.
Choice variables can be true, false, or unknown. State variablescan beoneof {U, A, DD,V ,8}. Of these, ) statesthat U and
A are still considered possible alternatives, [/ states that A and D are possible, and # means that the final labelling is as yet
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Figure 8: Strict partial order on the restrictedness of state variables

unconstrained. These six valuesform a strict partial order, as shown in Figure 8. We write § </ to indicate that § containsless
information about the final labelling than does. Theleast upper bound z LI y is defined asthe least value which is greater than
both = and y.

Thepartial labelling isinitialized asfollows. All edgesknown from the graph propertiesto be false are labelled as such. All
other edges are labelled unknown. Any state variable constrained by at; = A constraint islabelled A, otherwise 6.

Thelocal transformations are specified by the following table. For eachtriple of theform (¢y, ¢y, t2)4, where ¢y, isunknown,
the table specifies a refinement to the labelling for the state variables t; and ¢, and the choice variable ¢;,. Therow is N L(t;)
and the columnis N L(t>). A blank or numerical table entry indicates that the labelling cannot be made more precise just from
local information. A “—" entry indicates that the partial labelling isinconsistent. Otherwise, the partial labelling is updated so
that NL mapst; to thefirst symbol and ¢, to the third, and £ L mapsall instances of ¢;, to the third symbol (where ¢ represents
true, f representsfalse, and ? representsthat the choice variable will remain unknown).

NL(ts)
U A D p 9

UfU UtA — 2 UtA UD
— AfA  — AfA AfA  AfA
— — DfD — DfD DfD
1 — DA PP
— AfA DfD AfA YV UfV
UfU P?A DfD PP

NL(t,)

SASASACE S~
-
~
-

Allocation triple: (t1, ci,t2)a

For atriple of theform (¢4, ¢k, t2) ., Wherecy istrue, if NL(¢;) < U and N L(t2) < A, then the labelling is updated to so
that N L mapst; to U and ¢» to A. Otherwise, the partia labelling isinconsistent. Finally, for atriple of the form (¢y, ¢, t2)q,
where ¢;, isfalse, the labelling is updated so that VL maps both #; and ¢, to their least upper bound if comparable, otherwise

the partial labelling is inconsistent.
Therules for deallocation triples are analogous. For each deallocation triple in which the choice variable is unknown, the

following table specifies the rewrite, as above.

NL(t,)

U A D D v 0
UlUfU — — UfU — UU
NL(t;) A| — AfA AtD AfA 1 A'p
D| — — DfD — DfD Df

D |UfU AfA AtD DPfp AMp
Ul — AfA 2 AfA vy

0 |UfU AfA YD P70 VP

Dedllocation triple: (t1, ¢k, t2)q

Deallocation triplesin which the choice variable is false are handled as all ocation triples. Deallocation triples in which the
choicevariableistrue are handled similarly to allocation triples, except that the two state variables are assigned A and D rather
than U and A, respectively.
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5.4.4 Resolving choice points

Ultimately, the process of local transformation either reaches a consistent solution, aninconsistency, or issimply unableto refine
the partial labelling based on local information. In the latter case, there are unresolved choice variables. Our algorithm chooses
one and setsit to true, and then propagates|ocal transformations again.

There remains the question of which choice variable to select. In principle, any unknown choice variable can be chosen.
In practice, we want the choice to lead to a good annotation of the program, i.e. placing allocations as late as possible and
deallocationsasearly as possible. Thus, the choice pointsare prioritized and onewith the highest priority is chosen. Thepriority
numbers are listed in the above tables, with 1 as the highest priority.

Priority 1 entries represent choice points “on the boundary”, i.e. those that connect a state variable constrained to A and
another one unconstrained. Labelling such a choice variable true corresponds to the latest possible allocation and the earliest
possible deallocation. Priority 2 entries represent choice pointsin connecting two state variables neither of whichis constrained
to A. These choice pointsgenerally remain only when thereisno A constraint on apath (e.g., inonebranchof ani f statement).
In these cases, selecting such a choice point will result in a completion in which the allocation of the region is immediately
followed by the corresponding deall ocation.

5.4.5 Inconsistent labellings

It would be very niceif the system as presented above would always find a consistent labelling. However, we have been able
to construct contrived exampleswhich lead the solver to an inconsistent partial labelling. To cope with this case, we smply fall
back to amore conservative solution for al choice variables associated with the region responsible for the inconsistency.

When an inconsistency is found, all choice and state variables that are affected by the inconsistency are assigned the most
conservativelabelling. The set of affected variablesisthe transitive closure of all graph edges, reversed graph edges, and shared
choicevariables. The most conservativelabelling is defined asfollows: set all affected choice variablesto false, and all affected
state variablesto A. Then, the constraint solver continues.

The termination argument for the overall algorithm is quite simple: each step decreases the number of partially labelled
variables. In the worst case, when an inconsistency is found for every region, eventually all variables would be assigned the
most conservative labelling.

6 Soundness

This section states and proves a soundnesstheorem for our system. The soundnesstheorem expressesthat when a program com-
pletion corresponds to a solution of the associated constraint system, the evaluation of the annotated program does not deref-
erence dangling pointers. In particular, all accesses to regions are to allocated regions. The theorem is formulated as follows.
Assumethat s,7,n F e : ¢ — a,s', and assumethat [e] R = V istheresult of the region-based closure analysisfor e, where
R abstracts the region environment . Assume further that the regionsin e’s effect ¢ mapped by r in store s areiinitialy in the
states given by the solution of the state variables Sy . The theorem shows that the evaluation of e leaves these regionsin the
states specified by the the solution for S2*,. To prove this theorem we introduce extra notation and definitions, an operational
semantics for the completion language that makes effect instantiation explicit, and definitions of relations between abstract and
concrete entities. We then present afew lemmas and the detailed proof.

6.1 Notation and Definitions

We generally use capital |etters for abstract entities and lowercase | etters for concrete entities, z. denotesa concrete region with
color ¢, sisastore, and S : StateVar — {U, A, D} isasolution of the constraints. The function color maps a concrete region
z. toits associated color ¢, and the function colors maps sets of regions to sets of colors by taking the union of the pointwise
application of color. The function state maps the state of aregion z. inastore s to {U, A, D}:

state(s,z.) =< A ifs(z.) = Xo...

U if s(z.) = unallocated
D if s(z.) = deallocated

Asfor abstract region environments, we overload notation for applying concrete region environmentsto region variablesr(p),
effect variables r(¢), sets of both r(y), and arrow-effectsr(e.¢). The exact form should always be clear from context and the
operand kind (definitions for abstract region environmentswere given in Section 5.2):

rp) = {zlFpepstr(p) =z} UU.,r(e)
rlep) = rlpU{e})
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Special domain and range functions separate region and effect variables. Dom|,(r) isthe set of region variablesin the domain
of the region environment r, and Dom|(r) is the set of effect variables in the domain of ». The range functions are defined
analogously.

Dom|,(r) = {p|p e Dom(r)A pec RegVar}
Dom|(r) = {e]|e e Dom(r)Ae e EffVar}
Range|,(r) = {r(p) | p € Dom|,(r)}
Rangelc(r) = U{r(e) | e € Dom|c(r)}

We also make use of restricted mappingsr|,(y) and r|.(¢) to map only region or effect variablesin :

{r(p)

rlo (%) |
U{r(e)

rle(¢)

p € (¢ N Dom|,(r))}
| € € (¢ N Dom|(r))}

6.2 Refined Operational Semantics

The soundness proof uses the following property of the Tofte and Talpin typing: for every expression e, al regions accessed
during evaluation of e are present in the current region environment. In other words, the evaluation of e will not accessarandom
region that can’t be determined from the direct context of e. Thisproperty isintuitivefor expressionswithout applications, since
regions are accessed only through region variables and therefore appear in the region environment. The property islessintuitive
when e contains applications, since a called function may access regionsthat e doesn’t directly use. However, the latent effect
set of the called function specifies region variables through which regions are accessed during the call, and this effect set is
part of e’'s effect. Because |latent effects can contain effect variables, not all regions accessed during evaluation of e are “region
variable’-bound. Some regions are “effect-variable”-bound in the environment of e.

In Section 5.1 we used the above-mentioned property implicitly to motivate the handling of quantified effect variables. In
the proof we use a corollary of the property, which expressesthat at every application, the caller and the callee agree on the set
of regionsthat are potentially accessed during the call. In the presence of quantified region and effect variables, this property is
not syntactic, but it can be expressed by the following general lemma.

Lemma 6.1 Given the evaluation of an expression e in region environment r
s,rn ke (> pa,p) — a, s

with the resulting closure value
s'(a) = (Aze’ = (1 > pi, p'), 7 ')

then the set of regions accessed by calling this closure is known to the calling context:

For region polymorphic closures, therelationisr’(¢") C (). Region and effect instantiation reestablishes the equality. Thus
the equality always holdsfor ordinary closures.

Proof: By induction on the evaluation of the closed expression containing e (requires explicit type variableinstantiation). O

Asdiscussed above, Lemma6.1 depends on effect variable instantiation, which is not needed in the standard operational seman-
ticsfor the completionlanguagegiven in Figure 4. The extended operational semanticsgivenin Figure 9 makestypesand effects
explicit: in particular effect variable quantification and instantiation is explicit. Concreteregion environmentsare extended with
mappings from effect variablesto sets of regions. For simplicity, we assumethat effect variablesare only quantifiedat | et r ec
constructs, but not at | et . Extendingtheproof tol et effect variablequantification for non-expansivelet-expressions ([ Tof90])
does not pose new technical difficulties, but the operational semantics must be modified in unintuitive ways. Note that the re-
finements presented here do not affect the way programs are executed. An implementation can be based solely on the original
operational semantics. Therules have the general form:

s,m,rke:p,p—a,s

where s is the store prior to the evaluation of the expression ¢, n is the value environment, r the concrete region environment
containing region and effect variables, 1 and o are the static Tofte and Talpin type and effect for e, a isthe address of the result
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of the evaluation, and s’ is the store after evaluating e. The domains used by the operational semantics are given below. Note
that region environments always map region variablesto asingle region, and effect variablesto sets of regions.

Region = Int x Color
Lam = Varxexp
RegionState = unallocated + deallocated +
(Offset A Clos + RegClos)
Store = Region fin, RegionState
Clos = Lam x Env x RegEnv
RegClos = Lam x RegionVar® x EffectVar® x Env x RegEnv
Env = Var -5 Region x Offset
RegEnv = RegionVar + EffectVar fin, Region + P(Region)

Thefollowing paragraphs describe and motivate the refinementsto the rules of the operational semanticsin Figure 9. Effect
variable instantiation is made explicit in the [REGAPP] rule. The instantiation vector ¢ is found analogoudly to the region
variable instantiations by type and effect inference. Region polymorphic closures contain an extra vector of quantified effect
variables. Thisinformation is used in the [REGAPP] rule to extend the region environment of the instantiated closure. The
effect instantiation is computed as described in Section 5.1.3 and equation (1). The effect sets ¢} are obtained from the arrow-
effects (e}.}) of the quantified effect variable ;.

Closuresinclude the type of the associated lambda abstraction, asis apparent from the [LETREC], [REGAPP], [ABS], and
[APP] rules. Thisinformation is used in the proof of the [APP] rule to reason about the syntactic type of the callee.

Concrete regions are subscripted with colors. Colors are chosen in the same manner asin the region-based closure analysis,
creating the necessary correspondence between concrete and abstract regions (see Definition 6.2).

The proof requirestwo distinct| et r egi on constructsasshownin rules[LETREGION] and [LETREGION_TT]. Thefirst
construct (I et r egi on) behaves exactly as described in Section 2, where the new regionisinitialy unallocated and is deallo-
cated at the end. The second construct| et r egi on_tt hasthe same semanticsasin [TT94], i.e. aregionisinitially alocated
but empty, and still allocated at theend. Thereareno free/alloc constructsfor such regions. Thereasonfor the second constructis
the finite nature of our color abstraction. Recall that in the region-based closure analysis, the color abstracting the new regionin
al et r egi on construct ischosen to be different from all other “region variable€” -bound colors(to correctly capturethe aliasing
between region variables). However, we cannot choose the color to be distinct from colors bound by effect variables, because
thiswould potentially require an infinite number of distinct colors. The color for the new region may thus already be boundto an
effect variable. Our constraintstrack asingle region state per color and region environment at each program point. We therefore
cannot require that the state of the freshly chosen region be unallocated, because it must be the same as the states of equally
colored regions mapped by effect variables. Note that we have chosen unification of statesto happen directly at | et r egi on
constructs. Thischoiceisarbitrary and it is possible to delay the unification of the region states (e.g. until applications). Delay-
ing state unification may lead to slightly better annotations, but the current approach is preferred for purposes of readability and
simplicity in the proof. The solution to the constraints for a particular Tofte/Talpin target program determines the kind of each
| et r egi on construct.

Our proof does not attempt to make the reuse of regions formally safe. The proof requires| et r egi on constructs to use
fresh regions. Thisis arguably a weakness with respect to the Tofte/Talpin system, where the reuse of regionsis provably safe
[TT93]. However, we prove that once aregion is deallocated, no more reads or writes to the memory held by that region are
made.

6.3 Relations between abstract and concrete entities
The following paragraphs define rel ations between abstract and concrete entities that are used throughout the proof.

Definition 6.2 A concreteregion environment » and an abstract region environment R match (written» sat R), if they havethe
same domain and aliasing structure, and the color annotation of concrete regions correspondsto the colorsin the abstract region
environment.

def
rsat R =
Dom(R) = Dom(r) A
R(p) = R(p') < r(p) =r(p') A
R(p) = color(r(p)) A
R(e) = colors(r(e))
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n(z) =a
s,myrEx i, —a,s

n(f) =a )
s(a) = (Az.e: p',p", €.¢',ng, o)  Wherep' = (7', p")
n' = no[f « a
ay = (r(p), 0) o ¢ Dom(s(r(p)))
' =l r(7)
' =r'le; — (rlo (i) = 7'1,(05)) Urle(pi)]
s1 = slay «— (Az.e: p',n 7]
s,n,m = f1p,81Qp: p, {p, p't — ar, 51

a = (r(p),0) o ¢ Dom(s(r(p)))
s,n,TEAr.eQp:p, {p} — a,sla — (\zx.e: u,n,r))

s,n,rer o1 — a1 wherep = (s =5 p, p)
S1,M, T es: la, pa — as, So
52(0’1) = (/\are : l/‘ll,nﬂ,r[]) Where:u’ll = (:U’IQ - :U'val)
So,Molx — as],ro Fe: ', o — as,ss

s,m, T Fepes:p,pr UpaUp, U{p}— as,ss

a1 = (r(p),0) o ¢ Dom(s(r(p)))

n' =n[f «— a1]

s1 = slay «— (Az.eq : py, p,elp,n,r)]  wherep, isthetypeof Az.e;
s1,n/,rFes: s, 00 — a, sy

s,n,rEletrec flg,ep](z)Qp=-erines: ps,po U{p} —a,s

zq fresh d = minimum color not in color (Range],(r))
sp = $[zq < unallocated|

S(),TL,T'[p — Zd] Fe: o U {p} — a1, 31

s1(zq4) = deallocated

s,n,rEletregionpine:u,o— a,si|poms)

zq fresh d = minimum color not in color (Range] ,(r))
s0. = slza — {}]

S(),TL,T'[p — Zd] Fe: o U {p} — a1, 31

s1(zq) isdlocated

s,n,rletregiontt pine:p,o— ai,s|poms)

r(p) = 2. s(z.) = unallocated

so = slze — {}]

so,n,r e, —a,s
s,n,rallocbeforepe: u,pU{p}—ai,s

s,m,rte:u,p—a,s

r(p) = 2. s1(z.) isalocated

S9 = s1[z. < deallocated]|
s,n,r-freeafter pe:u,pU{p} — a1, s

Figure 9: Refined Operational Semantics.
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Definition 6.3 A store s and address a match a set of abstract values V' (written s, a sat V), if V' contains an abstraction of the
concretevaluestored at addressa in s, and theenvironment of the concrete closure matchesthe region-based closureanalysis| - |
(defined below).

s,asatV dEEf

a = (0, z)

z. € Dom(s) A state(s, z.) = A =
s(a) = (Az.e,r',n') A
I(Ax.e,R'y eV st.

s,r',n'sat[-] R

Definition 6.4 A store s, concrete region environment r, and concrete value environment n match an abstract region environ-
ment R and theregion-based closureanaysis (written s, 7, n sat [ - ]| R), if the abstract and concrete region environmentsmatch,
and if for every variable z in the concrete environment, [2] R’ contains an abstraction of the concrete value.

s,r,msat [-] rRE
rsat R A
V(z e Dom(n)) 3R’ st.
(Rlpom(ry = R" A s,n(z) sat [z] R')

Definition 6.5 A store s and a concrete region z. with color ¢ match a state variable S, g[c] (written s, 2. sat S, y[c]), if the
state of the region 2. in the store s correspondsto the solution for S, z[c].

def
8,2c sat S, plc] =
2. € Dom(s) = state(s, z.) = S(S, glc])

Definition 6.6 Finaly, astate s and concrete region environment r match an abstract region environment R, state vector S, g,
and effect set o (written s, r sat R, S, p, ¢), if r and R match, the states of all regionsin ¢ match the solution of the constraints
for S, g, andif the color of aregion isbound to an effect variablein ¢, then the regionisin the allocated state.
s,rsat R, S, p,¢ i

» C Dom(R) A

T sat R A

V(zeer(p)) s,z sat S, pleolor(z.)]

¥(ceRlc(p)) S(S, gle) = A

6.4 Soundness Theorem

The proof of our soundness theorem is aided by several lemmas presented below. Lemma 6.7 expresses that a set of abstract
values matching a concrete value can be augmented without changing the relation.

Lemma6.7 s,asatV A VCV' — s,asat V'

Proof:  Followsfrom the definition of s,a sat V. O

A store s can be extended with regions and/or offsets without affecting the validity of the environment abstraction. Thisfactis
expressed by Lemma6.8.

Lemma6.8 If s,r,nsat [-] R and s’ isaregion and/or offset extension of s, then s’, 7, n sat [ -] R.

Proof:  Store extensions cannot recapture dangling references because new regions are always chosen to be fresh. O

A region may change from the unallocated state to the allocated state, or from the allocated to the deallocated state without
affecting the validity of the environment abstraction. Thisfact is expressed by Lemma6.9.

Lemma6.9 If state(s,z) = U and s,r,n sat [-] Rthens[z «— {}],r,n sat [-] R. Similarly, if state(s,z) = A and
s,r,n sat [ -] R then s[z < deallocated],r,n sat [-] R.
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Proof:  Allocation of aregion cannot recapture dangling references, because the region has never before been in the allocated
state and regions are not reused. [

The next Lemma (6.10) is used in the proof to establish the relation between the store and the constraints after an inductive step
on a subexpression.

Lemma 6.10 Given the following relations and constraints

(D s,rsat R, 8% p,
(2 s',rsat R, S? p, o1
©) p1 S
4 Dom(s) = Dom(s')
(5) V(z. e Dom(s)) st. z. & r(p1) State(s, z.) = state(s’, z.)
6)  V(ce(R(p) — R(p1) URI(9)) SLald] = S2 ol
we conclude
s',rsat R, S? g,
Proof:
(7 » C Dom(R) by 1
(8) rsat R by 1
9) V(2. €r(p)) 8, 2 sat S ple] by 1
(20) V(z.er(p1)) s, z. sat S RrlC] by 2
(1) V(ceRl(¢)) S(S4ld) = A by 1.def. 6.6
(12 V(ceRl(¢)) S(S24lc) = A by 11,6
To show: V(zcer( ) 8, 2 sat S gle].
(13) € (R(p) — R(p1)) = zc € (1) by 3,8
(14) ‘v’(zc er(p) —r(p1)) c € (R(p) — R(p1)) = ¢, 2. sat S rld] by 5,13,6,9
(15)  let zc € r(p) — (1) st.c & (R(p) — (1))
(16) c € R(¢1) by 15
an Azl er(pr) St. 2, # 2. by 16,15
(18) ze €7)c(p) V 2L € 7l(p) by 17,8,3
(19) ¢ € R|(¢) by 18,8
(20) state(s, z.) = state(s’, z!) by 10,1,6,19
(21) state(s, z.,) = state(s, z.) by 1
(22) state(s’, z.) = state(s’, z1,) by 20,21,15,5
(23) s',zc sat S? pld] by 22,10
(28 V(zeer(p) —r(pr)) o & (R(p) — R(pr)) = o', 7 sat 82 4[] by 15,23

The result follows from 10,14,24, and 12. O

The soundness of our analysisis stated by Theorem 6.11, which says that if the evaluation of an expressione;, resultsin an
address a and anew store s, then the value stored at a in s’ is correctly modeled by the abstract closure analysis. Furthermore,
the states of regionsin store s’ is as predicted by the solution of the constraints.

Theorem 6.11 Assumethat S isthe solution to the constraintsfor aclosed expression e, of which e, isasubexpression. Given
the result of the region-based closure analysis [ -] and the following premises,

Q) s,r,nke:pp—a,s
2 s,r,msat[-] R
3 s,rsat R, Sy g,

we conclude

s',asat [ex] R
s',rsat R, 52‘27R,¢
Proof:  The proof is by induction on the structure of e;,. Note that

4 rsat R by 2

()

¢ C Dom(R)
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There are 9 cases. We prove each onein turn.

Casel Theoperational semanticsrulefor [VAR] is

(6) s,r,mbx:p,p— n(x),s
where p = ()

By the definition of the region-based closure analysis and the constraint generation, we have
) [z] R = U{lz] R' | Rlpom(r) = R'}

Therefore
(8) IR’ st. Rlpom(rr) = R' A s,n(x) sat [z] R by 2
©  [BRCER by 7
(10) s,n(z) sat [z] R by 8,9,Lemma6.7
(11) s,rsat R, S .0 by def 6.6

Theresult for [VAR] followsfrom 10 and 11. O

Case2 The operational semanticsrulefor [ABS] is
(12) s,r,nt Ar.eQp:p, o —a,s
wherea = (r(p),0) and p = {p}
(13) s'=sla — (Az.e: p,r,n)]
By the definition of the region-based closure analysis and the constraint generation, we have
(14) [Mz.e: p] R = {{Az.e: u, R)}

(15) e rIE(P)] = A
(16) e, rIR(p)] =S¢ RIR(p)]

Therefore
17 state(s, r(p)) = A by 3,12,15
(18) s',rsat R, S p,¢ by 3,13,12,16
(19) s'asat [Ax.e: u] R by 2,12,14

Theresult for [ABS] follows from 18 and 19.

Case3 Theoperationa semanticsrule for [LETREGION] is
(20) zq fresh (to avoid recapture of dangling references)
(21) d'" = minimum color ¢ colors(Range],(r))
(22) T = T'[p — Zdr]
(23) so = s[zq¢ < unallocated)]
(24) so,ri,n e p,pU{p} > a5
(25) s,r,ni-letregionpines :u,¢ — ai,si|poms)
By the definition of the region-based closure analysis and the constraint generation, we have
(26) d = minimum color ¢ Range|,(R)
(27 Ry = Rlp < d]
(28) [letregionpine ] R=[ei] R:
(29)  Vee R(p).Sg, gld =S¢, g,
(30)  Vee R(p)-S g, ldl = 52 gl
(32) e =S¢, p,[d =U A S g [d =D
(32) oy = SP g ldl=A A SH R [d=A
Thechoicevariable ¢;, associated with theletregion construct expressesthe kind of Ietregion chosen by the constraint solver:
¢, = | etregi on,and—¢, = | etregi on_tt. Theoutlineof theproof for [LETREGION] isasfollows: Letp; = pU{p}.
We first show that
So,71,n sat [-] Ry
0,71 5at R1, 5S¢, g1
By induction, using so,71,n F €1 : i, 1 — a1, s1, wederive
S1,a1 sat [[61]] Ry
s1,71 sat Ry, Sgu;,}h , P1
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We then show that
51|pom(s), @1 sat [l etregionpine] R
51 |pom(s), T Sat R, S R

and the result follows immediately.

(33) d=d

(34 ry sat Ry

(35 so,r,nsat[-] R

(36) So,T1,M sat[[-]]R1

@7 pU{p} CDomM(R[p « d])

(3 (S5 p,ld)=U A S(S% g,[d) =D

(39 80, za sat Sy, g, [d]

Now we establish that there are no regions with color d in region environment R.

(40) Assume 3zl er|(p)st.e=d

(41) d € R|c(p)
(42) S(Se, rld]) = A
(43) S(Sy, g, ld]) = A

(49 Azl er|(p)st.e=d
(45) Sp, 71 sat R17Sm1,R17(p

e

(46) Sp, 71 sat Rl,Sénlle,(pl

(47) S1,0a1 sat [[61]] R1
(48) S1,71 sat Rl,Sgult’Rl,(pl

by 4,21,26

by 33,4,27,22

by 2,23,Lemma6.8
by 35,34,27

by 5

by 31,letreg. choice
by 33,23,38

by 40,4

by 41,3,def. 6.6

by 42,29

by 40,43,38,contrad.
by 3,23,44,21

by 34,37,45,39

by 24,36,46,induct
by 24,36,46,induct

It remains to be shown that the abstract value of the letregion construct abstracts the result, and that the storeisin the state

specified by the constraints.
(49) si,ar satletregionpine] R
(50) Dom(sy) — Dom(s) = {z4}
(51 51|pom(s), @1 sat [l etregionpine] R
(52) si,rsat R, 5S¢0 g,
(53) 51 |pom(s), T sat R, Ser ro P
Theresult for [LETREGION] follows from 51 and 53.

Case4 Theoperational semanticsrulefor [LETREGION_TT] is
(54 zq fresh (to avoid recapture of dangling references)
(55) d'" = minimum color ¢ colors(Range],(r))

(56) T = T'[p — Zdr]
(57) so = slzar — {}]
(58) s0,T1,n e u,oU{p} — ar, s

(59) s,r,mi-letregiontt piney:p,o— ai,si|poms)

by 47,28

by 23,33

by 49,50, T&T typing
by 48,0 C ©1,22,27
by 52,30

By the definition of the region-based closure analysis and the constraint generation, we have

(60) d = minimum color ¢ Range|,(R)

(61) Ry = Rlp < d]

(62) [letregionpine ] R=[ei] R:

(63)  Vee R(p).Sg, gld =S¢, g,

(64)  Vee R(p).S g, lcl = 5 gl

(65) cr = S;”l,Rl [d=U A Sgultle [d =D
(66) -cp = S;”th [d =A A Sgult7R1 [d = A

The choicevariable ¢;, associated with the letregion construct again expresses the kind of letregion chosen by the constraint
solver: ¢, = | etregi on,and—c, = | etregi on_tt. Theproof for[LETREGION_TT] isvery similar to [LETREGION],
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except for the state of region z4: Let 1 = o U {p}.

(67) d=d by 4,55,60
(68) r1 sat Ry by 67,4,56,61
(69) so,r,msat[-] R by 2,57,Lemma6.8
(70) so,r1,nsat [-] Ry by 69,68,61
(72) ¢ U{p} C Dom(R[p « d]) by 5
(72) St o ldl=A AN SH g d=A by 66,letreg. choice
(73) 50, za sat S g, [d] by 67,57,72
Now we do the inductive step on e; .
(74) s0,7 sat R, 5S¢ g, by 3,63,57
(75) 0,71 5at R1, 5S¢, g1 by 74,73
(76) s1,a1 sat [er] Ry by 59,70,75,induct.
(77) s1,71 53t Ry, S p o1 by 59,70,75,induct.
It remains to be shown that the abstract value matches the concrete value and that the store satisfies the constraints.
(78) si,ap sat [l etregiontt pine] R by 76,62
(79) Dom(s;) — Dom(s) = {z4} by 57,67
(80) 51|pom(s), a1 sat [l etregiontt pine] R by 78,79, T&T typing
(81) s1,rsat R, 5S¢ g, by 77,0 C ¢1,56,61
(82) 51|pom(s), 7 sat R, S . by 81,64

Theresult for [LETREGION_TT] follows from 80 and 82.

Case5 Theoperational semanticsrulefor [APP] is
(83) s,m,m b eyt iy, o1 — ay, s where g = (p2 =% 1, p)
(84) 51,T,n eyt g2, 02 — az, 2

(85) sa(a1) = (Aa.ep : ph,no,mo)  Where it = (uh =% 1!, p')
(86) 52,70, Mol — az] Fep : p', ) — as, s3
(87) s,r,mbEees:p,p—as,s3 wherep = p; Ups U, U{p}
By the definition of the region-based closure analysis and the constraint generation, we have
(88) For each ()\1‘.6[, : ,U,ll,R[)) S [[61]] R

(89) [es] Ro C [er e2] R

(91) A = R(pp) = Rolw})

(92) V(ce R(y1)) S¢, glel =S¢, gle] NS¢ gle] = S2, Rlc]
(93) V(ce R(p) — R(p1) U R|e(9)) Sy, gle] = S¢, gl
(94) V(ce R(p2)) Se, glel = S&, gl A g gl = SZ, r
(95) V(ce R(p) = R(p2) UR|(9)) Se, glc] = S2, glc]
(96) V(ce A) Sezk,R[ ] = S'enb,Ro [c] A SZL:,RO [c] = SZL,:,R[C]
97) V(ce Rolc(#})) S&, golc] = A

(98) V(ce R(p) = AUR|c(y)) S2, glc] = S gle]

(99) Sz, rlE(p)] = A

The proof for [APP] proceeds as follows: We use induction and Lemma 6.10 on expressionse; and e, to establish the state
relation prior to evaluating the function body e;,. Then the state relation and the environment abstraction is established in the
context of e, and its abstract region environment R,. Finally, the state relation after evaluating e, is mapped back to the calling
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context ey,.
(100) w1 Co
(101) s,rsat R, S¢, g, p1
(102) s1,a1 sat [e1] R
(103) s1,rsat R, 5S¢ g, 1
(104)  s1,rsatR, S, g, ¢

(105) sy,r,nsat[-] R
Now similarly for e,.

(106) s C o

(207) s1,7 sat R, Sy, g, p2

(108) S2,as sat [ea] R

(109) s2,7 sat R, 5¢) g, 2

(120) so,T sat R, Sek’R, ©

In order to do the inductive step on ey, we show

S2,T0, o[ — as] sat [-] Ry
52,70 sat Ro, Y. g, ¢

(1112) state(so, r(p)) = A

(112) (Ax.ep : py, Ro) € [e1] R

(113) ro sat Ry

(114) S2,T0,ng sat [-] Ro

(115)  so,70,n0[x — as] sat [-] Ry

(116) @ Co
(117)  r(ps) = 7"0(<P')
(118)  R(ps) = Ro(w})
(119) V(z.€r(pp)) 2, 2. sat Sek rld]
(120) V(zcero(py)) S2, 2c sat Se,, Rolcl
(121)  V(ceRole(py)) S(SE, g, lcl) = A
(122) s2,19 sat Ro, Sy, Ro> Ph
Using induction on e, we obtain:
(123) s3, a3 sat [ep] Ro
(124) s3,rg sat Ry, S°“ RO,(pb
(125) s3,as sat [e; 62]] R

It remainsto be shown that sz, r sat R, %! g, ¢.

(126)  V(zc€ro(py)) 83,2 sat gy g [c]
(127)  V(zcer(pp)) 3,2 sat Sgt ple]
(128)  s3,rsat R, S¢ 5,0

(129)  s3,rsat R, Sek,R’(p

Theresult for [APP] follows from 125 and 129.

Case6 Theoperational semanticsrulefor [LETREC] is

(130) a1 =(r(p),0) o ¢ Dom(s(r(p)))
(131) ' =n[f < a1

(132) s1 = s[a; — (Az.eq : p1, p,elp,n,T)]
(133) s1,7,n' ey g, 2 — az, so

where i, isthetype of A\z.e;

(134) s,r,nEletrec flg,ep](z)@p=-e;ines: 2,9 — as,ss

where ¢ = ¢ U {p}

by 87

by 3,92,100

by 83,2,101,induct
by 83,2,101,induct

by 3,103,100,92,
93,Lemmab.10
by 2,83,Lemmas6.8, 6.9

by 87

by 104,94,106

by 84,105,107,induct
by 84,105,107,induct

by 104,109,106,94,
95,Lemmab.10

by 110,99

by 85,102,111

by 102,112

by 102,Lemmas6.8,6.9
by 108,90,114

by 87

by 83,85,Lemma6.1
by 117,4,113

by 110,def. 6.6,116
by 119,117,118,91,96
by 97

by 113,120,121

by 86,115,122,induct
by 86,115,122,induct
by 123,89, Lemma 6.7

by 124,def 6.6
by 126,117,118,96
by 127,110,98

by 110,128,116,117,
86,98,Lemma6.10



By the definition of the region-based closure analysis and the constraint generation, we have

(135) [l etrec flg,elp](x)@p=erine] R=[e] R
(136) (Mr.ey i g, 0,0, R)y = [f] R
(137) Sy rlR(p)=A
(138) V(ce R(p2)) 8¢, rlel = Se, gle]
(139)  V(ceR(p2)) 52 gle = 52 pld]
(140)  V(ce R(p) — R(p2) U RL.(¢)) S5, ple] = 52l
We first prove that the region for the polymorphic closureis allocated.
(141) peyp
(142)  date(s,r(p)) = A

Now we establish the environment relation for n’ and use an inductive step on es.

(143)  sy,rmsat[-] R
(144) s1,a1 sat [f] R
(145) sy,r,n' sat [-] R
(146) s1,7sat R, SY, g,
(147) @2 Co

(148) s1,7 sat R, S¢, g, p2
(149) S2, a2 sat Jez] R
(150) 2,7 sat R, 5¢) g, 2
(151)  sg,azsat[letrec flg,efp]...] R
(152) 2,7 sat R, S¢) p, o2
(153) s2,7 sat R, 5S¢ p, o

Theresult for [LETREC] follows from 151 and 153.
Case7 The operational semanticsrule for [REGAPP] is
(1549  n(f)=a ~
(155) s(a) = (Av.er : p!, g’ €' ng,m0) Wherep' = (7', p')
(156) n' =nglf < a
(157)  v" =rolp; « r(pi)] wherep; = §'[i], pi = pli]

-

(158) " =1'e; = (rlo(ps) — '], (1)) Urle(wi)]  wheree; = &'li], i = Fi]

(159) 51 = s[a; « (Az.eq : p/,n' "]

(160)  s,myn k- f[5,B1Qp: p,p — a1, 81 Wherep = {p, p'}

by 134
by 3,137,141

by 2,132,Lemma6.8
by 143,136,132

by 143,144,131

by 3,132

by 134

by 146,138,134

by 133,145,148,induct
by 133,145,148,induct
by 149,135

by 150,139

by 146,152,147,133,
140,Lemma6.10

By the definition of the region-based closure analysis and the constraint generation, we have

(161)  {(Az.e1:p/, 7" €9, Ro)} = [f] R
(162) R’ = Ro[p; — R(p;)]
(163)  R" = R'le; «— (R|o(p:) — B'[o(#7)) U Re(9i)]

(164)  [f[7,8)Gp] R = {(Az.er : ', R")}
(165) S5, g[R(p)] = A

(166) o R[R(p)] = A

(167)  V(ceR(p)) S5, pld = 5 plc]
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Themain point in this caseis to establish therelations "’ sat R"” and s1, 7", n' sat [-] R". Note that the effect sets ¢} are
part of the arrow-effect €/} associated with the quantified effect variable € in the type 7. We have:

(168) 7o sat Ry by 2,155,161
(169)  date(s,r(p')) = A by 3,166
(170)  tate(s,r(p)) = A by 3,165
(a71) ™ |bom(re) = To = T|pom(ro) by 157,158, etr ec
(172)  R"|pom(ro) = Ro = Rlpom(ro) by 162,163, et r ec
A73)  {p},...,pl,}nDoml,(ro) =0 by 171
(174)  {p},...,pl,} UDom|,(re) = Dom|,(r") by 157,158
(175)  {€\,... e, } nDom|(rg) =0 by 171
(a76)  {e€),... e} uDom|(r) = Dom|.(r") by 157,158
(A77)  V(@e{1,...,n})r"(p}) =r(p:) by 157,158
(178)  V(ie{l,...,n}) R"(p)) = R(p;) by 162,163

Wefirst proveY(p, p' e Dom|,(R")) R"(p) = R"(p') <= r"(p) =7r"(p').
(179)  V(p,p' € Doml|,(Ry)) R"(p) = R"(p'") <= r"(p) =7"(p") by 171,172,173,168
(180)  ¥(i,je{l,...,n}) R"(p}) = R"(s}) <= R(p;) = R(p;) by 178
(181)  V(i,je{l,...,n}) R"(pj) = R"(pj) <= r(m) =r(p;) by 180,4
(182)  V(i,je{l,...,n}) R"(p;) = R"(p}) <= r"(p;) =r"(p}) by 181,177

179 and 182 leave us with the case

V(peDom|,(Ro)) V(i€ {1,... ,n}) R"(p) = R"(p;) <= 1"(p) =r"(p})

(183)  Letp € Dom|,(Ro),i € {1,...,n}
(184) Case =: Assume R"(p) = R"(p}) =
(185) R(p)=c by 183,184,172
(186) R(p;)) =c by 183,184,178
(187) r(p) = r(p:) by 185,186,4
(188) r'(p) =r"(p}) by 187,183,171,177
(189) R"(p) = R"(p;) = r"(p) =" (p}) by 184,188
(190) Case <: Assumer'/(p) = r"(p}) = z.
(192) r(p) = 2 by 183,171,190
(192) r(pi) = ze by 183,177,190
(193) R(p) = R(p;) by 191,192,4
(194) R"(p) = R"(p}) by 193,183,172,178
(195) '(p) =1"(p;) = R"(p) = R"(p}) by 190,194
(196)  V(peDom|,(Ry))V(ie{l,...,n}) R"(p) = R”(p ) <= r"(p)=7r"(p;) by183,195
(197)  V(p,p' €Dom|,(R")) R"(p) = R"(p) <= v"(p) =71"(p') by 174,179,182,196

Now we proveV(p € Dom|,(R")) R"(p) = color(r(p)).
(198)  V(peDom|,(Ry)) R"(p) = color(r"(p)) by 171,172,168
(199) V(ie{l,...,n}) R"(p}) = color(r'"(p})) by 177,178,4
(2000  V(peDom|,(R'")) R"(p) = color(r"(p)) by 198,199,174

To establish "’ sat R", it remainsto be shown that V(e € Dom|.(R")) R'(e) = colors(r' (¢)).
(201) V(e eDom|(Ro)) R"(e) = colors(r"(¢)) by 171,172,168
(202) Letie{1,...,m}
(203) Assumec € R"(e})
(204) ¢ € (Rl,(¢:) — R'|,(¢}) U Rl(:) by 203,202,163
(205) Caselic € Rl,(pi) A c R'|p(¥})
(206) Jz. er|,(p;) st.color(z,) = ¢ by 4,205
(207) Azeer'|,(}) st.color(z,) = ¢ by 200,205,158,163
(208) Azc € (7] (i) — '], (@) Urle(i)) st.color(z.) = ¢ by 206,207
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(209)

Case2: ¢ € R.(:)

by 4,209
by 203,208,210

by 212,158

by 214, 4

by 200,214,163,158
by 215,216

by 217,163

by 219,4

by 220,163

by 212,218,221
by 202,211,222
by 201,223,176

by 197,200,224

by 2

by 171

by 227,159, Lemma6.8

by 228,225,171,172,def 6.4
by 154,226,159

by 229,230,156

by 159,164,231

by 3,167

by 244,245
by 243,245,def 5.2

(210) Az, er|(p;) st.color(z.) = ¢
(2112) ¢ € R"(e]) = c € colors(r''(e})
(212) Assume c € colors(r’(e}))
(213) Azcer|, (i) — r'|,(9}) Ur|e(p;) St.color(z.) = ¢
(214) Casel: z. € rlp(pi) A 2 & 7'],(¢7)
(215) ¢ € R|,(¢i)
(216) c & R'|p(¢;)
(217) c € R|p(pi) — B[, (¢})
(218) c € R'(¢€))
(219) Case2: z. € (i)
(220) ¢ € Rl(p:)
(221) c € R"(€})
(222) c € colors(r”’(€})) = ¢ € R"(€})
(223)  V(ie{l,...,m}) R"(€;) = colors(r"(e}))
(224)  V(eeDom|(R'")) R"(e) = colors(r' (€))
It follows that
(225) r" sat R"
We now show s;, 7", n' sat [-] R" and the result for [REGAPP] follows easily.
(226) s,n(f)sat[f] R
(227)  s,rg,npsat [-] R
(228) s1,70,np sat [-] Ro
(229) s, ngsat [-] R
(230) si,asat [f] R
(231)  sp,r" n'sat[-] R"
(232)  s1,a1 sat [f]7,3)Qp] R
(233) s1,7sat R, 52 g,
Theresult for [REGAPP] follows from 232 and 233.
Case8 The operational semanticsrule for [FREE_AFTER] is
(234) s,m,r e u,p1 — al, s
(235)  r(p) = z
(236) state(sy, z.) = A
(237)  s2 = s1[z. < deallocated]
(238) s,n,r-freeafter pe;: u1,p — a1,s2 wherep = p; U {p}
By the definition of the constraint generation and obvious extension of the region-based closure analysis, we have
(239) [freeafter pes] R=[e1] R
(240)  V(ceR(p1)) S5, p =50 g A S% g =5k n
(241)  ¥(ceR(p) — R(p1) UR(9)) S5 5= S, 5
(242)  V(ceR(p)stc#R(p) S, n=5"n
(243)  (SL, alR(p)],cu, S wIR(P)a
(244)  R(p) € R|(¢) = ¢, = false
Notethat ¢, = truesincethef r ee_af t er construct actually appearsin the completion. We therefore have:
(245) ¢, = true
(246)  R(p) € R|(¢)
(247)  S(SL, RlR(p) = A
(248)  S(S 4[R(p)]) =D
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Wefirst do theinductive step and then establish the new store relation.

(249)
(250)
(251)
(252)
(253)
(254)

(255)
(256)
(257)
(258)
(259)
(260)
(261)
(262)

s,r sat R, S¢, g, p1

S1,a1 sat [[61]] R

s1,7 sat R, S¢% g, 1

s1,ap sat [freeafter pe;] R
s1,7sat R, 5% g, @1

s1,7sat R, 5% g,

state(s;,r(p)) = A
52,7(p) sat 54 [R(p)]
V(zcer(p) st.color(z.) # R(p)) s2,zc sat gt plcolor(z.)]
Azl er(p) st 2z, #r(p) A color(z.) = R(p)
V(zcer(p)) s2,2c sat Sgi plcolor(z.)]
257,258,256
V(ce Rl(y)) S(5 glc)) = A
s2,7 sat R, 5S¢ p, o

Theresult for [FREE_AFTER] follows from 252 and 262.

Case9
(263)
(264)
(265)
(266)
(267)

The operational semanticsrule for [ALLOC_BEFORE] is
r(p) = z
state(s, z.) = U
so = s[ze — {}]
S0, My T e1 1,01 — ay, 81

s,n,rHalloc_beforepe;:pi,o — ai,s
where p = 1 U {p}

by 3,240,238

by 234,2,249,induct
by 234,2,249,induct
by 250,239

by 251,240

by 3,253,238,234,
241,Lemma6.10
by 247,254

by 237,248

by 254,242

by 4,246

by 254,242,246
by 238,4,259,261

By the definition of the constraint generation and obvious extension of the region-based closure analysis, we have

(268)
(269)
(270)
(271)
(272)
(273)

[al l oc_beforepe;] R=[ei] R
V(ceR(p) st.c # R(p) St 5 = S!, n

(S5 mIR(P). ek, SL plB(p))a

V(ceR(p1)) Se, r =S8 r A S8 r =54 R
V(e R(p) - R(p1) URLL(¢)) 8L o= 5% o
R(p) € R|(p) = ¢, = false

Notethat ¢;, = truesincetheal | oc_bef or e construct actually appearsin the completion. We therefore have:

(274)
(275)
(276)
(277)

¢, = true

R(p) & R|(¢)
S(S¢,, r[R(p))) =U
S(S;, r[B(p)]) = A

We first establish the new store relation.

(278)
(279)
(280)
(281)
(282)
(283)
(284)

state(s, r(p)) = U

s0,7(p) sat S} gp[R(p)]

V(2 er(p) st. color(z.) # R(p)) so, 2. sat ¢, pcolor(z.)]
Bzt er(p) st 2 #r(p) A color(zL) = R(p)

Y(z.€r(¢p)) S0, 2 sat SelkyR[color(zc)]

V(ceRl(¢)) S(S¢, gld) = A

80,7 sat R, 5% p, ¢
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by 273,274
by 270,274,def 5.1
by 270,274,def 5.1

by 3,276

by 265,263,277
by 3,269

by 4,275

by 279,280,281
by 3,269,275

by 267,4,282,283



Now we can do the inductive step.

(285) so,r,msat[-] R by 2,Lemma6.9

(286)  so,7sat R,S" pop1 by 284,271,267

(287) 1,01 sat e ] R by 266,285,286,induct
(288)  si,7sat R,S* Lo by 266,285,286,induct
(289) s1,a; sat Jal | oc_beforepei] R by 287,268

(290) s1,7 sat R, S¢ p,p1 by 288,271

(291)  si,7sat R, S g by 284,290,267,2686,

272,L.emma6.10
Theresult for [ALLOC_BEFORE] follows from 289 and 291.

7 Implementation and Experiments

We have implemented our algorithm in Standard ML [MTH90]. Our system is built on top of an implementation of the system
described in [TT93, TT94], generoudy provided to us by Mads Tofte. The implementation is extended with numbers, pairs,
lists, and conditionals, so that non-trivial programs can be tested. For each source program, we first use the Tofte/Tal pin system
to region annotate the program. We then compute the extended closure analysis (Section 4). The next step adds allocation and
deallocation choice points and generates the allocation constraints (Section 5). The constraints are solved and the solution is
used to complete the source program, transforming sel ected choice pointsinto all ocation/deallocation operations, and removing
therest. Theimplementationisroughly 5,500 lines plusthe roughly 8,500 lines of codein the Tofte/Taplin base implementation.

Our annotations are orthogonal to the storage mode analysis mentioned in [TT94] and described in more detail in [ Tof94]
and in Section 2.6. Thus, thetarget programs contain both storage mode annotations and the all ocation annotations described in
this paper. On the other hand, our analysis subsumes the optimization described in Appendix B of [TT94], so that optimization
isdisabled in our system. Summary performance measures are in Table 2. All of the exampleswe have tried are analyzed in a
matter of seconds by our system on a standard workstation.

Thetarget programswere run on an instrumented interpreter, also written in Standard ML/NJ. In addition to the data above,
we also gather complete memory traces, which we present as graphs depicting memory usage over time.

While we have tested our system on many programs, neither the size of our benchmarks nor the size of our benchmark suite
islarge enough to draw meaningful statistical conclusions. Instead, we present representative examples of threetypical patterns
of behavior we have identified.

A number of programs show asymptotic improvement over the Tofte/Talpin system. One example givenin their paper (due
to Appel [App92]), has O(n?) space complexity. Our completion of this program exhibits O(n) space complexity (Figure 10).
Inthisprogram, our analysisisableto deall ocate arecursivefunction’s parameter beforefunction eval uation completes. Because
the Tofte/Talpin system enforces a stack discipline, it cannot reclaim function parametersthat become“ dead” part way through
the activation of a function. Another example, a straightforward tail-recursive factorial function, has a similar pattern. The
improvement in this caseisfrom O(n) to O(1) space complexity.

Another typical pattern is that our system has the same asymptotic space complexity as Tofte/Talpin, but with a constant
factor improvement. Representative examplesinclude Quicksort, Samsort, Fibonacci, and Randlist. The memory usage graphs
are shown in Figures 11, 12, 14, and 15, respectively. The measurements for the graphs were made using smaller inputs than
the experimentsin Table 2; smaller problem sizes yield more readable graphs.

The Quicksort graph (Figure 11) has acurious feature: at times the memory usage drops below the amount needed to store
thelist! Our measurements count only heap memory usage. The evaluation stack is not counted, a measurement methodol ogy
consistent with [TT94]. Quicksort isnot unusua in the behavior of using the evaluation stack to store values that would seem
to belong in the heap. The program recursively traversesitsinput list, stores the contents on the evaluation stack, freesthelist
cellswhen it reaches the end, and builds up the output list upon return.

Inthe third class of programs our system has nearly the same memory behavior as Tofte/Talpin (e.g., the factorial function).
This case arises most often when the Tofte/Talpin annotation is either already the best possible or very conservative. Conserva-
tive annotations distinguish few regions. Because values in regions must be deallocated together, having fewer regions results
in coarser annotations. Of course, the memory behavior of a program annotated using our algorithm is never worse than that of
the same program annotated using the Tofte/Talpin algorithm.

Results for alarger suite of programs are presented in Table 3. The source code for all of these programs may be found at
http://kiw .cs. berkel ey. edu/ “nogc/ exanpl es/ .
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Appel(100) Quicksort(500) | Fibonacci(6) | Randlist(25) Fac(10)
A-F-L T-T | A-F-L TT | A-F-L | T-T | A-F-L | T-T | A-F-L | T-T
@) 208 1111 112 | 1520 15| 20 12| 90 25| 25
(2) | 81915 | 81915 | 45694 | 45694 190 | 190 289 | 289 66 | 66
(3) | 101814 | 101814 | 65266 | 65266 190 | 190 363 | 363 66 | 66
(4 306 | 20709 | 2509 | 8078 10| 14 85 | 161 14| 14
5) 1 1 1502 1502 1 1 7 77 1 1
(1) Maximum number of regions allocated (unit: 1 region)
(2) Total number of region allocations
(3) Total number of value allocations
(49 Maximum number of storable values held (unit; 1 sv)
(5) Number of values stored in the final memory (unit; 1 sv)
Table 2: Summary of results.
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Figure 11: Memory usage in Quicksort example
(sort 50 element list of random integers).
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Figure 12: Memory usage in Samsort example
(smooth applicative mergesort 20 element list of randomintegers).
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Figure 13: Memory usage in Fac4 example
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Figure 14: Memory usage in Fibonacci example

(recursive fibonacci of 6).
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randlist
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Figure 15: Memory usage in Randlist example
(generate 25 element list of random integers).
max max max max region value
program total total final regions regions values values ratio ratio
name regions values regions (T-T) (A-F-L) (T-T) (A-F-L) T-T/IA-F-L T-T/A-F-L
Appel 1005 1194 1 121 28 279 36 4.32 7.75
alias 9 11 4 7 5 7 4 1.40 175
append 19 27 11 6 6 12 11 1.00 1.09
big | 52633 70163 1753 779 271 5018 2259 2.87 222
copy 16 33 10 10 10 19 13 1.00 1.46
count 48 77 11 7 4 34 32 1.75 1.06
crunch 347 684 31 42 12 377 47 3.50 8.02
downfrom 2115 3912 901 13 10 1807 1805 1.30 1.00
facl 66 66 1 25 25 14 14 1.00 1.00
fibonacci 190 190 1 20 15 14 10 1.33 1.40
map 73 121 32 11 9 56 55 1.22 1.02
mergesort2 | 35519 46056 752 77 264 1767 1291 2.94 1.37
quick | 19606 27334 752 770 75 4012 1259 10.27 3.19
randlist 289 363 77 90 12 161 85 7.50 1.89
relax | 42727 73124 301 618 19 30913 409 32.53 75.58
samsort 819 1112 186 91 20 334 239 4.55 1.40

Table 3: Summary of results for larger suite.



7.1 Constraints

The current implementation handles quantified effect variables dightly differently than describedin Section 5.1.5, for simplicity
of implementation. The implementation does not explicitly represent effect variables in the region environments. Instead, it
categorizesall effect variablesinto one of three classes. unquantified, quantified monotonic, and quantified antimonotonic. The
classisdetermined by first finding the point in the program where the effect variable was quantified, and then inspecting the type
quantified at that point. If thereisno such point, it isunquantified. If thereis such apoint, and the effect variable does not appear
in an anti-monotonic position in thetype, thenit isquantified monotonic. If thevariable doesappear in an antimonotonic position
in the type, then it is quantified antimonotonic. The classification of effect variablesis a syntactic property of the program; no
analysisis required, which was the primary motivation for this approach.

At an application point, we examine the arrow effect for both the function subexpression in the application (i.e. the “caller
effect” ) and at the abstraction where the closure was generated (i.e. the“ callee effect” ). If any of the effect variablesin the
caller or callee effect are quantified antimonotonic, then all region variables in both effects are constrained to be A, in both the
application and the abstraction.

If none of these effect variables are quantified antimonotonic, then we conjecture that the set of colors obtained by applying
the caller’sregion environment (i.e. R) to the caller effect is a superset of the corresponding set of colors obtained by applying
the callee’'s region environment R’ to the callee effect. In other words, we conjecture that:

R(p) 2 R'(¥")

All the colorsin R(¢) \ R'(¢') are constrained to A aswell.

We can only conjecture that thisimplementation is sound. Certainly, it works for all the examples we have tried. We plan
to replace it with the global effect flow analysis described in Section 5.1.5. We expect the newer analysis to be more precise as
well as better grounded theoretically, with aminimal increase in execution time. It is likely that implementing the full system
in which abstract region environments map both region variables and effect variables would lead to an exponential blowup in
the number of states generated in the region-based closure analysis.

Also, we have not yet implemented the phase of the constraint solver which deals with inconsistent partial labellings. In
practice, we find that only highly contrived counterexamples lead to inconsistent partial labellings. For al other programswe
tried, the constraint solver found asolution. Also, in all of these cases, there was no additional improvement to the solution that
was apparent.

7.2 Comparison with storage mode analysis

Both our system and the storage mode analysis (Section 2.6) performed by the base Tofte/Tal pin system are designed to improve
memory utilization. It isinstructive to compare the two.

First, the two optimizations are orthogonal. Storage mode analysis “resets’ the region at various times during its lifetime.
Our system allocates the region at some point (hopefully the latest possible) before the dynamic lifetime, and freesiit at some
point (hopefully the earliest) after the dynamic lifetime. The two optimizations do not interfere with each other. All of our
measurements were peformed with storage mode analysis enabled.

It has been our experience that sometimes the storage mode annotation is effective by itself, sometimes our analysisis ef-
fective even without the storage mode annotation, and sometimes it is possible to fool both analyses. We illustrate this point
by comparing the effectiveness of the two approachesin performing tail call optimization of variants of an iterative factorial
function.

Thefirst variant is successfully optimized by the storage mode analysis:

Example 7.1

| etrecfacl(p) =
let n=sndpin
| et acc=fst pin
ifn=0
t henp
el sefacl(n* acc, n- 1)
end
end
i nfacl( 1, 10)
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| etregion rl01

in
letrec
facl[r102,r103,r104] (p:(((int,r102)*(int,r103)),r104)) attop r101 =
let n:(int,r103) = snd p
inlet acc:(int,r102) = fst p
in letregion r105
in
if letregion r106 in (n=(0 attop r106)) attop r105 end
then p
el se
| etregi on r107
in
facl[ sat r102, sat r103, sat r104] attop r107
(((n*acc) sat r102,
letregion r108 in (n-(1 attop r108)) sat r103 end
) sat r104
)
end
end
end
end
) at rlo1
in letregion r109,r110
in
f st
| etregion rlil
in
facl[ atbot r0, atbot r109, atbot r110] attop ri1ll
(((1 attop r0), (10 attop r109)) attop r110)
end
end
end
end

Figure 16: Trandlation of facl example.
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Thetranglation of this program is shown in Figure 16. Because p appearsin thet hen branch, the input and output regions
of the function are unified. In the tranglation of this program, the definition of facl quantifiesthree region variables: oneregion
holds both the input and output n, another holds both the input and output ace, and the third holds the pair.

It turns out that in this case, the storage mode analysis is able to determine that all three storesin the el se branch can be
donewith an at bot annotation, meaning that they are reset to size one on each iteration.

If the order of thetwo argumentswerereversed asin Example 7.2, then the store of the new value of n isforcedtoanat t op
annotation, because the n * acc computation followsthen — 1 computation, so that the old value of n is still live. Thus, storage
grows linearly with the number of iterations.

Example 7.2

| etrecfac2(p) =
let n=fst pin
| et acc=sndpin
ifn=0
thenp
el sefac2(n- 1, n* acc)
end
end
i nfac2( 10, 1)

Unfortunately, our system cannot improve Example 7.2 because the input and output regions of fac2 are unified. Each of
these regionsis live during the entire fac2 computation; there is no opportunity to free them earlier.

In our experience with the full system, we have found that separating regions as much as possible often improves results.
With storage mode analysis alone, however, separating regions often makes things worse. Consider, for example, changing
Example 7.1 so that the t hen branch performs a copy of p:

Example 7.3

| etrecfac3(p) =
let n=sndpin
| et acc=fst pin
ifn=0
then(n+0, acc+0)
el sefacl(n* acc, n- 1)
end
end
i nfacl(1, 10)

In general, separating regionsimprovesthe accuracy of the region inference algorithm, but in this case it also eliminates the
opportunity for storage mode analysisto optimizethetail call. In Example 7.3, fac3 uses separate regionsto store the inputsand
the outputs. It also makes use of recursive region polymorphism, so that the argumentsto the recursive call are in another set of
regions.

Now, the argument regions become dead as soon as the new argumentsfor the recursive call are built. However, thereisno
way for storage mode analysisto exploit thisfact; it can only optimizewhen thereisastoreto aregion. Infac3, thereisno store
to the regions containing the argument.

Our analysis, on the other hand, easily discovers that the argument regions become dead before the recursive call, and in-
serts deall ocation annotationsimmediately after the last use of each argument value. Thus, it successfully optimizesthetail call
recursion, allowing fac3 to run in constant space.

The ability of our system to optimize the tail recursion of Example 7.3 survives switching the order of the arguments.

Thisexampleillustratesanumber of points. First, it showsthat our system isincomparableto storage mode analysis; neither
optimization subsumes the other. Second, it showsthat it is capable of making the overall optimization quality less sensitive to
small program changes. At least in this example, it makes the dictum “separate regions where possible” much more useful.
With storage mode annotation alone, this dictum is problematical, because sometimes it inhibits another optimization that was
working better when the regions were unified.

Itisdifficult to generalize the experiencewith thefactorial program, but theidiomsare common enough that the effect should
be significant.
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letrec f = fn x =>

i f 1 then 41 el se
i f 2 then 82 el se
i f 3 then 123 el se
i f 4 then 164 el se
i f 5 then 205 el se
i f 6 then 246 el se
i f 7 then 30 el se

i f 8 then 71 el se

i f 9 then 112 el se
i f 10 then 153 el se

X X X X X X X X X X

Figure 17: Source of scalel0 example.

7.3 Remote experimentation
Our system is accessible for remote experimentati on through the World Wide Web at:
http://kiw .cs. berkel ey. edu/ “nogc
TheWeb server allows experimentersto enter arbitrary programs, then reports the annotation performed, and also generates
graphs similar to Figures 10-15.
7.4 Performance

This section describes some measurements of the performance of our system, in particular its scaling behavior. Table 4 presents
the measurements. For each program, the following information is given:

e Number of textual lines of code.

e Number of (expression, region environment) pairs generated in the extended closure analysis.
e Number of constraints generated.

e Number of state variables.

e Number of choice variables.

e Time (in seconds) performing closure analysis.

¢ Time (in seconds) generating the constraints.

e Time (in seconds) solving the constraints.

e Total time spent (sum of the previous three plus housekeeping).

Overal, we find that our algorithm scales similarly to the Tofte/Talpin system. The implementations of both Tofte/Talpin
system and our extensions are prototypes, containing numerous possibilities for improvement.

The programs scalel, scalel0, and scalel00 are synthetic programs designed to characterize the scaling behavior of our
system. The sourcefor scalel0isshownin Figure 17; the other two programsare defined similarly, varying the number of lines
of code. This example exercises a performance problem in our implementation: it generates constraints for more regions than
needed (in particular, all | et r egi on-bound variablesin scope within the current abstraction). Thus, the number of constraints
generated is quadratic in the size of the program. A morefaithful implementation of the constraint generation process described
in Section 5.3 would yield alinear increase in the number of constraintsfor this program.

The worst case time complexity of the analysisis exponential. One simple attempt to elicit exponential scaling was unsuc-
cessful because of arbitrary limitsimposed by the prototype implementation of the Tofte/Tal pin region inference algorithm.
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Onefactor contributing to the complexity of our analysisisitsinterprocedural nature. The completion of afunction depends
on the context in which it isused. A straightforward intraprocedural version of our analysiswould give very poor results, since
afunction would never be able to free or alocate an argument or result region without knowing whether its caller needed it to
remain allocated.

A substantial amount of time is spent in the constraint solver, which is partly explained by the fact that the constraint gen-
eration and solution processis currently memory-bound. We feel that switching to an incremental solver (i.e. interleaving the
processes of refining the partial solution and generating constraints) would improve both the speed and the amount of memory
required.

All measurements were performed on a DEC AXP 3000/300 with 64MB of main memory, using SML/NJ 1.07.8. Times
reported are user times according to the check CPUTI mer system function.

number of number of timein time time

program | number number  number of State choice closure generating solving total
name of lines of nodes constraints variables variables anaysis constraints constraints  time
Appel 20 397 2393 2075 363 0.22 0.28 101 151
alias 23 40 95 49 75 0.01 0.01 0.02 0.05
append 26 113 329 226 96 0.01 0.01 0.01 0.03
copy 7 48 243 182 104 0.02 0.03 006 011
count 12 33 163 122 116 0.01 0.02 0.03 0.06
crunch 24 214 1770 1282 498 0.16 0.18 065 0.99
downfrom 11 107 679 479 247 0.06 0.06 0.18 0.30
facl 10 38 152 112 107 0.01 0.02 0.03 0.06
fac2 10 38 150 110 107 0.01 0.02 0.03 0.06
fac3 10 118 546 437 137 0.06 0.06 0.17 0.29
fibonacci 10 166 991 824 144 0.09 0.11 041 0.61
map 13 101 628 425 224 0.05 0.06 0.17 0.28
mergesort2 100 2975 22682 19052 1546 3.08 3.65 2247 29.22
quick 91 2772 16714 13081 917 8.00 2.46 11.81 22.29
randlist 32 165 873 645 236 0.11 0.10 025 046
relax 44 720 4700 3688 605 0.51 0.55 219 326
samsort 83 1030 8415 5664 1975 214 1.01 465 7.83
scalel 6 16 59 42 42 0.01 0.01 0.01 003
scalell 15 79 671 492 546 0.06 0.07 021 035
scalel00 105 709 37976 31722 32316 5.27 23.11 39.59 68.25

Table 4: Summary of performance measurements.

8 Reated Work

This section describes some of the relevant related work.

We have presented our system as an alternative to garbage collection. We would like to avoid some of the well known
problems of garbage collection, including the large heap requirements, pauses (hence unsuitable for real-time or interactive ap-
plications), and interoperahility. These problems have also been addressed by trying to improve garbage collection.

The problem of alarge heap requirement is a consequence of stop and copy collectors[FY 69]. In their simplest form, these
collectorswork by allocating all new storage in a contiguous space, i.e. by incrementing an all ocation pointer. When the space
is exhausted, al thelive (i.e. reachable from the roots) datais copied into another space. Obviously, the memory requirement
isat least twice as large as the reachable data. However, if the memory were exactly twice the size of the reachable data, then
garbage collection would be required for every allocation. Garbage overhead decreases with as the ratio increases. A typical
valuefor theratioisfive.

Generational garbage collection [LH83] significantly reduces the average time per garbage collection, but does not change
the fundamental time/space tradeoff. The key idea of generational garbage collection is to separate objects by their lifetime;
short-lived objects are treated separately from long-lived ones. Modern generational garbage collectors [App90] exhibit good
overall performance, often with an overhead of under 40% (including the overhead of maintaing garbage collector invariants,
and reasonable cache performance [DTM94]. However, it retains many of the problems mentioned above: pauses, memory
consumption, and interoperability.
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Thereare anumber of techniquesfor reducing or eliminating the garbage collection pauses, including the incremental mark-
sweep collector of Dijkstraet d [DLM*78] and theincremental copying collector of Baker [Bak78]. Thelatter techniquerelies
on some additional computation (called aread barrier) for read operations. On modern architectures, it is generally agreed that
the cost of aread barrier is prohibitive. Another efficiency problemis that, unlike in a traditional stop-and-copy collector, the
ol der reachabledataisinterleaved with newly all ocated data, reducing thelocality of thedata, thus making the cache performance
worse.

Another approach to avoiding pauses is for the program to maintain alog of changes to memory, which is consumed by a
collector thread (i.e. process sharing the same address space) [NO93]. Thisapproach reducesthe pauses, but does not eliminate
them altogether. Also, the technique does not address the problems of memory usage or interoperability.

Conservative garbage collection [BW88] does address theinteroperability issue. With thistype of collector (based on mark
and sweep rather than copying), the compiler need maintain no invariantsfor the garbage collector. Without any such invariants,
the collector isnot capable of precisely distinguishing between pointers and non-pointers. Rather, a conservative approximation
isused, which may classify some non-pointersas pointersthereby forcing some garbageto beretained. All pointersareidentified
as pointers, which is required for correctness.

All of the techniques described so far are fully dynamic; they do not rely on any information about the individual program
(with the possible exception of the knowledge that certain invariants are maintained). In the remainder of this section, we will
discuss static analysis techniques which attempt to improve the memory behavior of programs.

Oneclass of static analyses detectswhen aparticul ar valueisno longer reachable, and returnitimmediately to thefreelist. In
amark and sweep collecter, this can be valuable in delaying garbage collection, and thus reducing garbage collection overhead.
In a copying garbage collector, there is no explicit free list. However, if the explicit deallocation is paired with a subsequent
allocation (of a compatible number of bytes), the two operations can be merged into areuse, avoiding the overhead of both the
deallocation and the allocation. One example of this analysisisthe reference count analysis of Hudak [Hud86], implementedin
the Russel compiler by Hederman [Hed88]. In Hederman's implementation, the reference count analysis associates an abstract
reference count with each program point and variable. When such a reference count passes from one to zero, the value bound
to the variable may be deallocated.

Theresult of this optimization is to reduce the frequency of garbage collections. Garbage collection itself, with its attendant
problems, is still required.

There are a number of other analyses that have the same goal, to identify some of the values which are no longer live, in-
cluding sharing analysis [HJ90], which determinesthat some storage cells are not shared, so that when the last reference to the
cell disappearsit can be immediately reclaimed. All other cells are subject to garbage collection.

Another promising avenueislinear logic [Gir87]. Expressionswith linear typesare guaranteed to have only onereferenceto
eachvalue. If itispossibletoinfer that afunctionislinear, then other optimizationsmay be possible. Lafont proposedinteraction
nets [Laf90] as language design based on linear logic. Lafont claims that interaction nets can be implemented without garbage
collection.

Ruggieri and Murtagh [RM88] proposed an analysis with the aim of eliminating garbage collection altogether. In their anal-
ysis, al heap-allocated datais divided into a stack of sub-heaps, one for each procedure activation record. When the procedure
exits, al of the datain the associated activation record is deallocated. Thisruntime layout differsfrom atraditional stack in that
allocations can be performed in any of the sub-heaps, not just the one at the top of the stack.

The most closely related work to oursis of course the Tofte/Talpin region inference [TT94], which is described in detail in
Section 2.

9 Discussion and Conclusions

It remains an open question whether our system is a practical approach to memory management. The complexity of the region-
based closure analysis is worst-case exponential time. In practice, we have found it to be of comparable complexity to the
Tofte/Talpin system, but we do not as yet have enough experience to judge whether this holdsin general. The constraint gener-
ation and constraint solving portions of our analysis both run in low-order polynomial time. A separate issue is that the global
nature of our analysis presents seriousproblemsfor separate compilation, which weleave asfuturework. Finally, we havefound
that static memory allocation is very sensitive to the form of the program. Often, asmall changeto the program, such as copying
one value, makes a dramatic differencein the quality of the completion. Thus, for this approach to memory management to be
practical, feedback to programmers about the nature of the completion will be important.

Our system does do agood job of finding very fine-grain, and often surprising, memory management strategies. Removing
the stack allocation restriction in the Tofte/Talpin system allows regions to be freed early and allocated late. The result is that
programs often require significantly less memory (in some cases 2(n) less or better) than when annotated using the Tofte/Tal pin
system alone.
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