
Better Static Memory Management: Improving Region-Based Analysis
of Higher-Order Languages

(Tech Report CSD-95-866)

Alexander Aiken� Manuel Fähndrich Raph Levieny

Computer Science Division
University of California, Berkeleyz

Abstract

Static memory management replaces runtime garbage collection with compile-time annotations that make all memory allo-
cation and deallocation explicit in a program. We improve upon the Tofte/Talpin region-based scheme for compile-time memory
management [TT94]. In the Tofte/Talpin approach, all values, including closures, are stored in regions. Region lifetimes coin-
cide with lexical scope, thus forming a runtime stack of regions and eliminating the need for garbage collection. We relax the
requirement that region lifetimes be lexical. Rather, regions are allocated late and deallocated as early as possible by explicit
memory operations. The placement of allocation and deallocation annotations is determined by solving a system of constraints
that expresses all possible annotations. Experiments show that our approach reduces memory requirements significantly, in some
cases asymptotically.

1 Introduction

In a recent paper, Tofte and Talpin propose a novel method for memory management in typed, higher-order languages [TT94].
In their scheme, runtime memory is partitioned into regions. Every computed value is stored in some region. Regions them-
selves are allocated and deallocated according to a stack discipline akin to the standard implementation of activation records in
procedural languages and similar to that of [RM88]. The assignment of values to regions is decided statically by the compiler
and the program is annotated to include operations for managing regions. Thus, there is no need for a garbage collector—all
memory allocation and deallocation is statically specified in the program.

The system in [TT94] makes surprisingly economical use of memory. However, it is usually possible to do significantly better
and in some cases dramatically better than the Tofte/Talpin algorithm. In this paper, we present an extension to the Tofte/Talpin
system that removes the restriction that regions be stack allocated, so that regions may have arbitrarily overlapping extent. Pre-
liminary experimental results support our approach. Programs transformed using our analysis typically use significantly less (by
a constant factor) memory than the same program annotated with the Tofte/Talpin system alone. We have also found that for
some common programming idioms the improvement in memory usage is a factor of
(n) or more. The memory behavior is
never worse than the memory behavior of the same program annotated using the Tofte/Talpin algorithm.

It is an open question to what degree static decisions about memory management are an effective substitute for runtime
garbage collection. Our results do not resolve this question, but we do show that static memory management can be significantly
better than previously demonstrated. Much previous work has focussed on reducing, rather than eliminating, garbage collection
[HJ90, Deu90]. The primary motivation for static memory management put forth in [TT94] is to reduce the amount of memory
required to run general functional programs efficiently. Two other applications interest us. First, the pauses in execution caused
by garbage collection pose a difficulty for programs with real-time constraints. While there has been substantial work on real-
time garbage collection [DLM+78, NO93], we find the simpler model of having no garbage collector at all appealing and worth
investigation. Second, most programs written today are not written in garbage-collected applicative languages, but rather in
procedural languages with programmer-specified memory management. A serious barrier to using applicative languages is that
they do not always interoperate easily with procedural languages. The interoperability problem is due in part to the gap between

�This material is based in part upon work supported by NSF Young Investigator Award No. CCR-9457812 and NSF Infrastructure Grant No. CDA-9401156.
The content of the information does not necessarily reflect the position or the policy of the Government.

ySupported by an NSF graduate research fellowship.
zAuthors’ address: Computer Science Division, Soda Hall, University of California, Berkeley, CA 94720-1776.

Email: faiken,manuel,raphg@cs.berkeley.edu
URL: http://kiwi.cs.berkeley.edu/˜nogc

the two memory management models. We expect that implementations of applicative languages with static memory management
would make writing components of large systems in applicative languages more attractive.

Our approach to static memory management is best illustrated with an example. We present the example informally; the
formal presentation begins in Section 2. Consider the following simple program, taken from [TT94]:

(let x = (2,3) in �y:(fst x; y) end) 5

The source language is a conventional typed, call-by-value lambda calculus; it is essentially the applicative subset of ML [MTH90].
The annotated program produced by the Tofte/Talpin system is:

Example 1.1
letregion �4; �5 in

letregion �6 in
let x = (2@�2,3@�6)@�4 in

(�y:(fst x; y)@�1)@�5
end

end 5@�3
end

There are two kinds of annotations: letregion � in e binds a new region to the region variable �. The scope of � is
the expression e. Upon completion of the evaluation of e, the region bound to � and any values it contains are deallocated.
The expression e@� evaluates e and writes the result in �. All values—including integers, pairs, and closures—are stored in
some region.1 Note that certain region variables appear free in the expression; they refer to regions needed to hold the result of
evaluation. The regions introduced by a letregion are local to the computation and are deallocated when evaluation of the
letregion completes.

The solid lines in Figure 1c depict the lifetimes of regions with respect to the sequence of memory accesses performed by the
annotated program above. Operationally, evaluating the function application first allocates the regions bound to �4, �5, and �6.
Next the integer 2 is stored (in the region bound to �2), then the integer 3 (in �6), the pair x (in �4), and the closure �y: : : : (in
�5). At this point, the inner letregion is complete and �6 is deallocated. Evaluating the argument of the function application
stores the integer 5 (in �3). Finally, evaluating the application itself requires retrieving the closure (from �5), retrieving the first
component of x (from �4), and constructing another pair (in �1).

In the Tofte/Talpin system, the letregion construct combines the introduction of a region, region allocation, and region
deallocation. In our system, we separate these three operations. For us, letregion just introduces a new, lexically scoped,
region variable bound to an unallocated region. The operation alloc before � e allocates space for the region bound to �
before evaluating e, and the operation free after � e deallocates space assigned to the region bound to � after evaluating e.
The operations free before and alloc after are defined analogously.

The problem we address is: given a program annotated by the Tofte/Talpin system, produce a completion that adds alloca-
tion/deallocation operations on region variables. Figure 1a shows the most conservative legal completion of the example pro-
gram. Each region is allocated immediately upon entering and deallocated just before exiting the region’s scope; this program
has the same region lifetimes as the Tofte/Talpin annotated program above. The alloc before � and free after � anno-
tations may be attached to any program point in the scope of �, so long as the region bound to � actually is allocated where it is
used. In addition, for correctness it is important that a region be allocated only once and deallocated only once during its life-
time. Within these parameters there are many legal completions. Figure 1b shows the completion computed by our algorithm.
There is one new operation free app. In an application e1 e2, the region containing the closure can be freed after both e1 and
e2 are evaluated but before the function body itself is evaluated. This point is not immediately before or after the evaluation of
any expression, so we introduce free app to denote freeing a region at this point.

The dotted lines in Figure 1c depict the lifetimes of regions under our completion. This particular completion is optimal—
space for a value is allocated at the last possible moment (immediately prior to the first use of the region) and deallocated at the
earliest possible moment (immediately after the last use of the region). For example, the value 3@�6 is deallocated immediately
after it is created, which is correct because there are no uses of the value. While an optimal completion does not always exist, this
example does illustrate some characteristic features of our algorithm. For example, space for a pair ideally is allocated only after
both components of the pair have been evaluated—the last point before the pair itself is constructed. Similarly, at the last use of
a function its closure is deallocated after the closure has been fetched from memory but before the function body is evaluated.
These properties are not special cases—they follow from the general approach we adopt.

For any given program, our method produces a system of constraints characterizing all completions. Each solution of the
constraints corresponds to a valid completion. The constraints rely on knowledge of the sequence of reads and writes to regions.
Thus, the constraints are defined over the program’s control flow. However, because of higher-order functions, inferring control

1We assume small integers are boxed to make the presentation simple and uniform. In practice, small integers can be unboxed.

2

letregion �4; �5 in
alloc before �4 free after �4 alloc before �5 free after �5
letregion �6 in

alloc before �6 free after �6
let x = (2@�2,3@�6)@�4 in

(�y:(fst x; y)@�1)@�5
end

end 5@�3
end

(a) The example with explicit region allocation/deallocation operations.

letregion �4; �5 in
free app �5

letregion �6 in
let x = (2@�2,alloc after �4 alloc before �6 free after �6 3@�6)@�4 in

alloc before �5 (�y:(free after �4 fst x; y)@�1)@�5
end

end 5@�3
end

(b) The example with the optimal explicit region allocation/deallocation operations.

: : : :�6

: : : : : : : : : : : : : : : : : :�5

: :�4

operation write write write write write read read write
value 2 3 x (a pair) �y 5 �y x pair

region �2 �6 �4 �5 �3 �5 �4 �1

region lifetimes in program (a)
: region lifetimes in program (b)

(c) Graph of region lifetimes with respect to the sequence of memory operations.

Figure 1: An example comparing stack vs. non-stack region allocation.

flow from the syntactic form of the program is difficult. A well-known solution to this problem is closure analysis [Ses92], which
gives a useful approximation to the set of possible closures at every application.

Our algorithm consists of two phases. We begin with the Tofte/Talpin annotation of a program (Section 2), ultimately produc-
ing a completed program with explicit allocation and deallocation operations (Section 3). In the first phase, an extended closure
analysis computes the set of closures that may result from evaluating each expression in every possible region environment (Sec-
tion 4). In the second phase, local constraints are generated from the (expression, region environment) pairs (Section 5). These
constraints express facts about regions that must hold at a given program point in a given context. For example, if an expression
e accesses a region z, there are constraints such as “z must be allocated sometime before the evaluation of e” and “z must be
deallocated sometime after the evaluation of e.”

A novel aspect of our algorithm arises in the resolution of the constraints. As one might expect, solving the constraints
yields an annotation of the program, but finding a solution is not straightforward. Some program points will be, in fact, under
constrained. For example, in the program in Figure 1, the initial constraints specify that the region bound to �5 must be allo-
cated when �y : : : is evaluated, but there is no constraint on the status of the region bound to �5 prior to the evaluation of �y.
That is, we must choose whether �5 is allocated prior to the evaluation of �y or not—there are legal completions in both scenar-
ios. Given the choice, we prefer that �5 not be allocated earlier to minimize memory usage; this choice forces the completion
alloc before �5 �y : : : . Adding the constraint that �5 is unallocated prior to evaluation of �y affects the legal completion
in other parts of the program. Thus, our algorithm alternates between finding “choice points” and constraint resolution until a

3

completion has been constructed.
The soundness proof is presented in Section 6. Detailed discussion and measurements of the behavior of our algorithm

are presented in Section 7. A discussion of some relevant related work is in Section 8. Section 9 concludes with a discussion
of practical issues. Our system is accessible for remote experimentation through the World Wide Web. The server analyzes
arbitrary programs, and displays the translated program as well graphs showing memory usage over time. The URL is:

http://kiwi.cs.berkeley.edu/˜nogc

2 Background on the Tofte/Talpin System

Our approach makes use of Tofte and Talpin’s region and effect inference algorithm. This section describes the Tofte/Talpin
region inference system in more detail. For a full description, please refer to [TT94]. This section is intended as an informal
overview to aid in understanding our extensions.

We use the term full system to refer to the composition of the Tofte/Talpin system as described in [TT94] and our extensions.
In the full system, each source program is first translated by the Tofte/Talpin system, and then the translated program is further
analyzed and annotated by our extensions.

2.1 Source language

The source language of the full system, and thus of the Tofte/Talpin region inference system, is an ML-like functional language.
We present only the core language, omitting pairing, selection, lists, and arithmetic operations for clarity. The grammar is:

e ::= x j�x:e j e1 e2

j let x = e1in e2 end

j letrec f(x) = e1 in e2 end

The operational semantics for the source language is quite standard, and given in Figure 2. The rules derive sentences of the
form E ` e ! v, meaning that in environment E, expression e evaluates to value v. There is no explicit store. The notation
E + E0 extends finite maps: (E + E0)(x) is E0(x) when x 2 Dom(E0), or E(x) otherwise. The notation fx 7! vg stands for
the singleton map which maps x to v.

2.2 Target language of of the Tofte/Talpin system

The Tofte/Talpin region inference system translates source language programs into target language programs. In the context of
the full system, this target language is the input to the extended closure analysis and constraint generation phases presented later
in this report.

The target language is given by the following grammar:

e ::= x j�x:e@� j e1 e2 j f [~�]@�

j let x = e1in e2 end

j letrec f [~�](x)@� = e1 in e2 end

j letregion � in e end

The target language differs from the source language in that allocation and use of memory is made explicit. The dynamic se-
mantics of the target language introduces a new, nonstandard model of the store. In this model, the store is a stack of regions,
each capable of holding an arbitrary number of values. Any region in the stack can support both get (retrieving a value previ-
ously stored in the region) and put (increasing the size of the region by one value, and storing a value in the space thus allocated)
operations.

The stack of regions model differs from the traditional stack model in put operations are not restricted to the top of the stack.
Thus, we cannot implement the stack of regions using a traditional stack. Rather, the implementation technique is similar to the
“stack of subheaps” scheme of Ruggieri and Murtagh [RM88].

The target language introduces two annotations:

letregion � in e end
e@�

4

E(x) = v

E ` x! v

E ` �x:e! hx; e; Ei

E ` e1 ! hx0; e0; E0i E ` e2 ! v2 E0 + fx0 7! v2g ` e0 ! v

E ` e1 e2 ! v

E ` e1 ! hx0; e0; E0; fi E ` e2 ! v2
E0 + ff 7! hx0; e0; E0; fig+ fx0 7! v2g ` e0 ! v

E ` e1 e2 ! v

E ` e1 ! v1 E + fx 7! v1g ` e2 ! v

E ` let x = e1 in e2 ! v

E + ff 7! hx; e1; E; fig ` e2 ! v

E ` letrec f(x) = e1 in e2 ! v

Figure 2: Operational semantics of source language.

5

The first annotation (letregion � in e end) specifies a runtime sequence of operations: first a new, empty region is
created and bound to region variable �, then e is evaluated, and finally the region (including all its contents) is destroyed. The
second annotation (e@�) simply specifies that the result of evaluating expressionewill be stored at the region bound to the region
variable �. Region variable bindings are lexical.

Any operation (get or put) dynamically occurring outside the extent of the correspondingletregion is an error. That the
translation must not derive programs that can exhibit this error is the major correctness constraint.

Just addingletregion and “@�” annotations would result in very conservative translations for most interesting programs.
Thus, Tofte and Talpin extended their system to include region polymorphism, which allows expressions to perform operations
on different regions depending on the context. In the Tofte/Talpin system, introduction of region polymorphism is combined
with the letrec construct. A region polymorphic function takes extra region parameters, which are bound to actual regions
by a region instantiation construct. The syntax for region polymorphic letrec is:

letrec f [~�](x) = e1 in e2 end

Similarly, the syntax for region instantiation is:

f [~�]@�

Region instantiation retrieves the region polymorphic closure, instantiates the formal regions parameters of the closure with
actual region parameters ~�, and stores a new region monomorphic closure in � (see rule [REGAPP] in Figure 4).

Region polymorphism is implemented by passing the regions at runtime as extra parameters to the function.

2.3 Types

Source language types are the standard ones of the Damas-Milner type system [DM82], as specified by the following grammar:

� ::= � j int j � ! �

The target language has a somewhat richer type language, which describes an expression’s use of regions, as well as the type
of its value. In the following grammar, � represents the type of an expression, and � represents the type and region.

� ::= � j int j�
�:'
��! �

� ::= (�; �)

The �:' denotes an arrow effect. The effect of evaluating an expression is the set of regions accessed (i.e. read or written)
as a result of that evaluation. The arrow efffect of a function is the effect of applying that function. In [TT94], there is a further
distinction between get and put effects, but that distinction is not needed here.

The � names the effect, and is useful for two purposes. First, when quantified, it reflects that the function can be effect poly-
morphic, which is to say that its effect can depend on the context. A typical example is a higher-order function that calls its
argument. The arrow effect of the argument is incorporated into the overall effect of applying the function; different arrow ef-
fects for the argument will result in different effects for the application.

By design, a value’s type captures all regions accessible by the value, either by traversal in the case of pairs and lists, or by
application in the case of functions.

Type schemes are given by the following grammar:

� ::= 8�1; : : : ; �n; �1; : : : ; �m:� simple type schemes
j 8�1; : : : ; �k; �1; : : : ; �n; �1; : : : ; �m:� compound type schemes

Simple type schemes quantify over both ordinary type variables and effect variables, and are introduced by let constructs.
Compound type schemes quantify over region variables as well, and are introduced by letrec constructs.

Given a compound type scheme � = 8�1; : : : ; �k; �1; : : : ; �n; �1; : : : ; �m:� and type � 0, we use the notation of [TT94]
to denote instantiation: � � � 0 (via S) means that � 0 is an instance of �, if there exists a substitution S such that S(�) = � 0.
Instantiation in the case where � is a simple type scheme is defined similarly.

As an example of the types, consider the following target language code fragment:

letrec f[�1,�2](x : (int; �1))=(x+(1@�0))@�2 in : : :

The region polymorphic function f has the following compound type scheme:

8�1; �2; �1:(int; �1)
�1:f�0;�1;�2g
��������! (int; �2)

6

TE(x) = (�; �) � simple � � �

TE ` x) x : (�; �); ;
[VAR]

TE(f) = (�; �0) � compound, i.e. � = 8�1; : : : ; �k:�1; where �1 is simple
� � � via S ' = f�; �0g

TE ` f) f [S(�1); : : : ; S(�k)]@� : (�; �); '

[REGAPP]

TE + fx 7! �1g ` e) e0 : �2; ' ' � '0

TE ` �x:e) �x:e0@� : (�1
�:'0

��! �2; �); f�g
[ABS]

TE ` e1) e01 : (�
0 �:'
��! �; �); '1 TE ` e2) e02 : �

0; '2
TE ` e1 e2) e01 e

0
2 : �; ' ['1 ['2 [f�; �g

[APP]

TE ` e1) e01 : (�1; �1); '1
TE + fx 7! (�; �1)g ` e2) e02 : �; '2 � = TyEffGen(TE; '1)(�1)

TE ` let x = e1 in e2) let x = e01 in e
0
2 : �; '1 ['2

[LET]

TE + ff 7! (8~�~�:�; �)g ` �x:e1) �x:e01@� : (�; �); '1
8~�~�:� = RegEffGen(TE; '1)(�)
�0 = RegTyEffGen(TE; '1)(�)
TE + ff 7! (�0; �)g ` e2) e02 : �; '2

TE `letrec f(x) = e1 in e2)
letrec f [~�](x)@� = e01 in e

0
2 : �; '1 ['2

[LETREC]

TE ` e) e0 : �; ' '0 = Observe(TE; �)(') f�1; : : : ; �kg = frv(' n '0)

TE ` e) letregion �1; : : : ; �k in e
0 : �; '0 [LETREGION]

Figure 3: Region inference rules.

2.4 The region inference algorithm

A full description of the region inference algorithm is beyond the scope of this report (for more details, see [TT94]). However,
we give the inference rules (Figure 3) and a high-level overview.

The inference rules are a refinement of the ML type inference rules [DM82]. They derive translations of the following form:

TE ` e) e0 : �; '

This sentence states that, in type environment TE, source language expression e translates into target language expression
e0, which has type and place �, and effect '. A type environment is a finite map from program variables to (�; �) pairs.

For any semantic object A, frv(A) is the set of region variables that occur free in A, ftv(A) is the set of free type variables
in A, and fev(A) is the set of free effect variables in A. The notation A nB represents set difference. The three operations for
forming type schemes are defined thus:

RegTyEffGen(A)(�) = 8 frv(�) n frv(A); ftv(�) n ftv(A); fev(�) n fev(A):�
RegEffGen(A)(�) = 8 frv(�) n frv(A); fev(�) n fev(A):�

TyEffGen(A)(�) = 8 ftv(�) n ftv(A); fev(�) n fev(A):�

The observable part of ' with respect to A is written Observe(A)(') and is defined to be the following subset of ':

Observe(A)(') = ' \ (frv(A) [fev(A))

The [LETREGION] rule, in its use of the Observe function, contains the key idea of region inference. Observe(TE; ')
describes the regions that appear free in the type environment and result type. The effect ' of the expression includes these

7

observable regions, as well as additional, non-observable regions. The idea behind the [LETREGION] rule is that non-observable
regions in the effect set of an expression are purely local to the evaluation of the expression, in that no other part of the program
will ever access them. Thus, these regions can be created immediately before the expression, and destroyed immediately after.

Another important aspect of the type inference rules is the use of effect variables �. Effectively, these are used to implement
a simple form of constraints on set variables using unification, in this case sets of atomic effects. To do so requires an extended
notion of substitution of effect variables: S(�:') = �0:('0 [S(')), where �0:'0 = S(�). As a result of this modification, when
multiple arrow effects are unified, the union is taken of all the atomic effects (').

A related property of effect variables is their use in describing dependence relationships among effect sets. For example, the
effect of (�f:�x:fx)h 5 depends on the arrow effect of h. This is reflected in the type for the expression �f:�x:fx:

(�
�:;
�! �; �)

�00:f�0
g

����! (�
�0:f�;�g
����! �; �0)

One way of understanding � variables is as a way of expressing constraints between effect sets. In fact, some previous work
on effect systems used explicit systems of constraints [TJ92]. However, explicit constraints were not used in the Tofte/Talpin
system because of a problem in conjunction with recursion. The letrec region inference rule expresses the recursion by
matching the type assumptions for f (ocurring in the body) with the derived type for f . In the implementation of the region
inference rules [TT94], this matching is accomplished by iterating until a fixpoint is reached. Such an implementation requires
that testing equality of types can be done efficiently. Allowing arbitrary constraints to appear in types would defeat this. As it
is, the type language is expressive enough that the necessary constraints can be specified, and simple enough that type equality
can be tested efficiently.

If the language included recursive generic polymorphism, typing would be undecidable [Hen93]. Thus, in an expression of
the form letrec f(x) = e1 in e2, the type variables in the type of f are quantified only within e2, not in e1. However, typing
is still decidable in the presence of recursive region polymorphism, so region variables in the type of f are quantified within both
e1 and e2. The introduction of recursive region polymorphism is one of the main technical advances of [TT94] and is essential
for the quality of the results.

Here is an example of the translation. The source program, given below, simply counts down to zero in tail-recursive fashion.
To make the example interesting, we use constructs outside the minimal language presented above. The expression i@� stores
integer i in the region bound to �; the expression (e1� e2) @� stores the difference of e1 and e2 in the region bound to �. Other
arithmetic and comparison operations are defined analogously.

letrec f(x) =
if x = 0 then x

else f(x-1)
in

f 100
end

The translation produces the target language program below:

letregion �1
in

letrec
f[�2](x : (int; �2))@�1 =

if letregion �3
in letregion �4 in (x=(0@�4))@�3 end
end

then x
else

letregion �5
in

f[�2]@�5
(letregion �6 in (x-(1@�6))@�2 end)

end
in letregion �7 in f[�0]@�7 (100@�0) end
end

end

8

2.5 Concrete semantics of target programs

The concrete semantics of target programs is very similar to the concrete semantics of fully annotated programs as given in
Figure 4 (for an explanation of the notation, see Section 3. The only differences are in the [LETREGION] rule (the target lan-
guage letregion actually corresponds to the [LETREGION TT] rule in Figure 4), and the absence of [ALLOCBEFORE] and
[FREEAFTER] rules, since these constructs are missing from the target language.

An example illustrates the [LETREC] and [REGAPP] rules. Consider the following program:

Example 2.1
letregion �1; �2; �3 in

let i = 1@�1, j = 2@�2 in
letrec f [�5; �6](k : (int; �5)) @�3 =

letregion �7 in
(k + (1@�7)) @�6

end
in

(f [�1; �4]@�0 i+ f [�2; �4]@�0 j)@�4
end

end
end

In this program, nested let and letregion constructs are abbreviated.
In Example 2.1,letrec f [�5; �6](k)@�3 = : : : stores a new region polymorphic closure at a fresh address a in the region

bound to �3. Next, the expression (f [�1; �4] @�0 i+ f [�2; �4] @�0 j) @�4 is evaluated in an environment n where n(f) = a.
A region application f [�1; �4] @�0 creates an ordinary closure (stored at the region bound to �0) with formal region parameters
�5 and �6 bound to the region values of �1 and �4 respectively. When applied to the argument i (in �1), the result is stored in
�4. The closure resulting from f [�2; �4] expects its argument in �2 instead. Region polymorphism allows the function f to take
arguments and return results in different regions in different contexts.

2.6 Storage mode analysis

The Tofte/Talpin system contains one more optimization after the region inference phase: storage mode analysis. The analysis is
motivated by the fact that some programs have very poor memory utilization. In fact, the standard notion of “tail call optimiza-
tion” is not expressible by the region inference translation alone. Thus, is is impossible that a program with arbitrary recursion
depth can execute in constant space.

Storage mode annotation addresses this problem. It extends the existing store operation implicit in e@� to two different kinds
of store operations, known as attop and atbot. An expression of the form e attop � is operationally the same as before;
the size of the region bound to � is increased by one, and the value is stored in the space thus allocated. However, e atbot �
behaves differently; first, the region is reset, meaning that all values in the region are discarded. Then, the new value is stored
in the region. After the operation, the region has a size of one storable value.

The purpose of storage mode analysis is to determine when the store can be replaced with the atbot annotation, and when it
must remainattop. To do so, it uses a rather standard backwards flow algorithm, similar to globalization and single-threadedness
analyses [Ses92, Fra91, Sch85].

A further goal of storage mode analysis is to allow region polymorphic functions to also be polymorphic in storage mode.
This is accomplished by adding storage modes to region instantiation constructs, and allowing a third storage mode (somewhereat)
for letrec bound region variables, indicating that the storage mode is to be one specified with that region variable when it is
instantiated. In fact, the only storage modes permitted for letrec bound variables are attop and somewhereat; atbot
is not a valid choice because it is always to instantiate the function in a region in which values written before the application
would be used afterwards. At runtime, the storage modes are passed in as extra arguments to region polymorphic functions, as
are the regions themselves.

There is no published account of storage mode analysis. Our knowledge of it is based on the prototype implementation
provided to us by Mads Tofte, as well as a personal communication [Tof94].

As an example of the storage mode analysis, the result of the analysis applied to the countdown example of Section 2.4 is
below:

letregion �1
in

letrec
f[�2](x : (int; �2)) atbot �1 =

9

if letregion �3
in letregion �4 in (x=(0 atbot �4)) atbot �3 end
end

then x
else

letregion �5
in

f[sat �2] atbot �5
(letregion �6 in (x-(1 atbot �6)) sat �2 end)

end
in letregion �7 in f[atbot �0] atbot �7 (100 atbot �0) end
end

end

It is worth noting that all of the writes into region �0 resolve to atbot annotations, either directly (as with the initial value of
100), or indirectly throughsomewhereat (above abbreviated tosat) when the region isletrec-bound to variable �2. Thus,
in this case, storage mode annotation correctly optimizes the tail recursion of this region. Unfortunately, it does not optimize the
regions storing the region instantiated closures for f . The Tofte/Talpin system contains an optimization by which the application
and letregion constructs are combined so that the lifetimes of the new regions are limited to the evaluation of the function
and the argument, but not of the function body itself. This optimization in conjunction with storage mode analyis does improve
the results to constant space. We will have more to say about the quality of these results in Section 7.2.

3 Definitions

In this section, we develop our extensions to the Tofte/Talpin system. To the Tofte/Talpin target language described in Section 2.2
we add operations to allocate and free regions:

e ::= � � �
j alloc before � e j alloc after � e
j free before � e j free after � e
j free app � e1 e2

The operational semantics of this language derives facts of the form

s; n; r ` e! a; s0

which is read “in store s, environment n, and region environment r the expression e evaluates to store address a and new store
s0.” The structures of the operational semantics are:

RegionState = unallocated + deallocated +

(O�set
�n
�! Clos + RegClos)

Store = Region
�n
�! RegionState

Clos = Lam� Env�RegEnv

RegClos = RegionVar� � Lam� Env�RegEnv

Env = Var
�n
�! Region�O�set

RegEnv = RegionVar
�n
�! Region

A store contains a set of regions z1; z2; : : : . A region has one of three states: it is unallocated, deallocated, or it is allocated. In
the last case it is a function from integer offsets o1; o2; : : : within the region to storable values. A region can hold values only if
it is allocated. Note that regions are not of fixed size—a region potentially holds any number of values. A region environment
maps region variables �1; �2; : : : to regions. A vector of region variables is written ~�.

In this small language, the only storable values are ordinary closures and region polymorphic closures. Ordinary closures
have the form h�x:e@�; n; ri, where �x:e@� is the function, n is the closure’s environment, and r is the closure’s region envi-
ronment. A region polymorphic closure has additional region parameters. The set of �x:e@� terms is Lam; the @� annotation
is elided when it is clear from context or unneeded.

10

Figure 4 gives the operational semantics. An address is a (region, offset) pair. Given an address a = (z; o), we generally
abbreviate s(z)(o) by s(a). All maps (e.g., environment, store, etc.) in the semantics are finite. The set Dom(f) is the domain
of map f . The map f [x v] is map f modified at argument x to give v. Finally, f jX is map f with the domain restricted to X .

The operational semantics in Figure 4 differs from the semantics given for the source language in Figure 2 in several impor-
tant respects. Most importantly, the notion of store is explicit. The representation of recursion is changed accordingly; instead
of a special closure form for recursive functions, a standard closure is used, but with a cycle in the store. The operational seman-
tics of Figure 4 are quite similar to those given in [TT94], for which it was proved that the translation specified by the region
inference rules is sound. The semantics given in Figure 4 do differ somewhat from the Tofte/Talpin system, in that unallocated
and deallocated states for regions, and extra allocation and deallocation expressions have been added. The correctness of our
translation scheme with respect to these additions is the subject of Section 6.

The semantics in Figure 4 enforces two important restrictions on regions. First, the semantics forbids operations on a re-
gion that is not allocated; reads or writes to unallocated/deallocated regions are errors. Second, every region introduced by a
letregion progresses through three stages: it is initially unallocated, then allocated, and finally deallocated. For example, the
[ALLOCBEFORE] rule allocates a previously unallocated region before the evaluation of an expression. Only one representative
of each of the allocation and deallocation operations is presented in the semantics; the others are defined analogously.

4 Region-based Closure Analysis

In reasoning about the memory behavior of a program, it is necessary to know the order of program reads and writes of mem-
ory. Closure analysis, an application of abstract interpretation [CC77], approximates execution order in higher-order programs
[Shi88, Ses92]. However, closure analysis alone is not sufficient for our purposes, because of problems with state polymorphism
and region aliasing (see below). Imprecision in state polymorphism gives poor completions, but failure to detect aliasing may
result in unsound completions.

Consider again the program in Example 2.1. Within the body of the function f , the + operation is always the last use of the
value k in �5. Thus, it is safe to deallocate the region bound to �5 inside the body of f after the sum:

letrec f [�5; �6](k) @ �3 = letregion �7 in
free after �5 ((k + (1 @ �7)) @ �6) end : : :

Now consider the two uses of f in the body of the letrec in Example 2.1. With this completion, the region bound to �1 is
allocated (not shown) when f [�1; �4] i is evaluated, and deallocated when f [�2; �4] j is evaluated. Thus, to permit this comple-
tion the analysis of f must be polymorphic in the state (unallocated, allocated, or deallocated) of the region bound to �1. If the
analysis requires that the region bound to �1 be in the same state at all uses of f , then in the body of f , the same region (now
bound to �5) cannot be deallocated.

Region aliasing occurs when two region variables in the same scope are bound to the same region value. There is no aliasing
in Example 2.1 as written. However, if the expression f [�2; �4] is replaced by f [�2; �2], then region parameters �5 and �6 of
f are bound to the same region. In this scenario, it is incorrect to deallocate the region bound to �5 as shown above, since the
result of the call to f (stored in the same region, but bound to �6) is deallocated even though it is used later. This example
illustrates three points. First, region aliasing must be considered in determining legal completions. Second, the completion of
a function body depends strongly on the context in which the function is used; i.e., determining legal completions requires a
global program analysis. Third, to obtain accurate completions, we require precise aliasing information. Approximate or may-
alias information is not good enough. Knowing only that two region variables may be aliased would not permit allocation and
deallocation operations on the region.

Our solution to these problems is to distinguish for each expression e the region environments in which e can be evaluated.
We define [[e]]R to be the set of values to which emay evaluate in region environmentR. Including region environments makes
region aliasing explicit in the analysis. Since the only values are closures, [[e]] R is represented by sets of abstract closures
fh�x:e0@ �;R0ig, which intuitively denotes closures with function �x:e0 and region environmentR0.

Since each letregion introduces a region, the set of region environments is infinite. We use a finite abstraction of region
environments, mapping region variables to colors. A color stands for a set of runtime regions. An abstract region environment
R has a very special property: R maps two region variables to the same color iff they are bound to the same region at runtime.
Thus, an abstract region environment preserves the region aliasing structure of the underlying region environment.

The region-based closure analysis is given in Figure 5. Following [PS92], the analysis is presented as a system of constraints;
any solution of the constraints is sound. We assume that program variables are renamed as necessary so that each variable is
identified with a unique binding. We write Vis(x) for the set of region variables in scope at letrec x[~�](y) =, let x =, or
�x.

The rule forletregion introduces a new color c not already occurring inR. A distinct color is chosen becauseletregion
allocates a fresh region, distinct from all existing regions. To make the analysis deterministic, colors are ordered and the min-

11

n(x) = a

s; n; r ` x! a; s
[VAR]

n(f) = a s(a) = h~�; �x:e; n0; r0i
o 62 Dom(s(r(�0)))
a0 = (r(�0); o)
c = h�x:e; n0; r0[~� r(~� 0)]i

s; n; r ` f [~� 0] @ �0 ! a0; s[a0 c]

[REGAPP]

o 62 Dom(s(r(�))) a = (r(�); o)

s; n; r ` �x:e@ �! a; s[a h�x:e; n; ri]
[ABS]

s; n; r ` e1 ! a1; s1
s1; n; r ` e2 ! a2; s2
s2(a1) = h�x:e; n0; r0i
s2; n0[x a2]; r0 ` e! a3; s3

s; n; r ` e1 e2 ! a3; s3

[APP]

s; n; r ` e1 ! a1; s1
s1; n[x a1]; r ` e2 ! a2; s2

s; n; r ` let x = e1 in e2 end! a2; s2

[LET]

o 62 Dom(s(r(�)))
n0 = n[f (r(�); o)]
s[(r(�); o) h~�; �x:e1; n

0; ri]; n0; r ` e2 ! a; s0

s; n; r ` letrec f [~�](x)@ � = e1 in e2 ! a; s0

[LETREC]

z 62 Dom(s)
s0 = s[z unallocated]
s0; n; r[� z] ` e! a1; s1
s1(z) = deallocated

s; n; r ` letregion � in e! a1; s1jDom(s)

[LETREGION]

z 62 Dom(s)
s0 = s[z fg]
s0; n; r[� z] ` e! a1; s1

s; n; r ` letregion tt� in e! a1; s1jDom(s)

[LETREGION TT]

r(�) = z
s(z) = unallocated
s0 = s[z fg]
s0; n; r ` e! a1; s1

s; n; r ` alloc before � e! a1; s1

[ALLOCBEFORE]

s; n; r ` e! a1; s1
r(�) = z
s1(z) is allocated
s2 = s1[z deallocated]

s; n; r ` free after � e! a1; s2

[FREEAFTER]

Figure 4: Operational semantics.

12

[[x]] R = [[x]] RjVis(x)

[[�x:e@ �]] R = fh�x:e@ �;Rig

[[e1 e2]] R for each h�x:e@ �;R0i 2 [[e1]] R
[[e]] R0 � [[e1 e2]] R
[[e2]] R � [[x]] R0

[[let x = e1 in e2]] R = [[e2]] R
[[e1]] R � [[x]] R

[[letrec f [�1; : : : ; �n](x)@ � = e1 in e2]] R = [[e2]] R
fh�x:e1@ �; ~�;Rig = [[f]] R

[[f [�1 : : : �n] @ �]] R = fh�x:e@ �;R0[�0i R(�i)]ig
where [[f]] R = fh�x:e@ �0; ~� 0; R0ig

[[letregion � in e]] R = [[e]] R[� c] where c is a color not in R

Figure 5: Region-based closure analysis.

imal color is selected. There can be no more colors than the maximum number of region variables in scope at any point in the
program. Thus, the set of abstract region environments is finite, which ensures that the closure constraints have a finite solution.

From the region-based closure analysis, it is possible to derive an ordering on program points. For example, in an application
e1 e2 within region environment R, first e1 is evaluated, then e2, and finally one of the closures in [[e]] R. This ordering plays a
central role in computing completions.

4.1 Implementation

Our implementation of the extended closure analysis is fairly standard. Each of the constraints in Figure 5 can be expressed in
the form of either simple set inclusion constraints of the form S � T , or conditional set inclusion constraints of the form “if
value v is in set S, then T � U ,” where S, T , and U are all set variables. The form of the constraints suggests a worklist-based
algorithm that iteratively refines a partial solution. Each step finds a constraint S � T which is inconsistent, and replaces the
value of T with S [T , thus satisfying that constraint. Whenever the guard of a conditional constraint becomes true, the set
inclusion constraint is added to the worklist of constraints.

The actual implementation represents the constraints using a graph. Each node in the graph corresponds to an (expression,
region environment) pair (e;R). Each node is associated with a set variable containing the (partial) result of evaluating [[e]] R.
An edge from (e;R) to (e0; R0) means that the abstract value [[e0]] R0 depends on [[e]] R. This means that if the value of [[e]] R
changes (i.e. becomes larger), then constraints of the form S � [[e0]] R0 may become inconsistent. Dependence edges encode
direct dependencies (for each constraint of the form [[e]] R � [[e0]] R there is a dependence edge from (e;R) to (e0; R0), and also
indirect dependencies, for example those associated with conditional constraints. All such dependencies are represented; the
absence of a dependency edge in the graph implies the absence of a dependency between the corresponding set variables.

We wish to avoid the overhead of storing the constraints explicitly. Thus, for all language constructs other than variables,
the constraints are determined by syntactic examination of e0 and its subexpressions. Variables, however, are subject to nonlocal
dependencies.

One efficiency concern is the quadratic number of dependency edges from each binding of a variable’s value (in applications)
to each use of the variable. Our approach to eliminating the quadratic blowup is to introduce variable nodes into the graph. The
graph contains one such node (var x;R) for each program variable x and each region environmentR in which x is bound. An
application of a closure fh�x:e@ �;Rig to an abstract value [[e2]] R2 establishes the constraint [[var x]] R � [[e2]] R2. Simi-
larly, an occurrence of x in a region environmentR0 which is an extension of R (i.e. R = R0jDom(R)) establishes the constraint
[[x]] R0 � [[var x]] R. The latter constraints are not syntactically apparent from the expression x. They can, however, be deter-
mined from the dependence edges leading into (x;R0). Thus the rule: constraints on variable occurrences are derived from the
in-edges in the dependence graph; for all other expressions, the constraints are derived from the syntax of the expression.

A worklist keeps track of which constraints are inconsistent. Specifically, the worklist holds nodes n such that constraints
between n and n’s successor nodes may be inconsistent. For any node n not in the worklist, all constraints between n and n’s
successors are satisfied (this is the invariant of the algorithm). The nodes are also marked with one of WORK or IDLE to denote
their membership in the worklist, so that adding a node to the worklist without duplication is a constant time operation.

13

The worklist step chooses a node on the worklist, removes it from the worklist, determines the constraints associated with
that node using the rule above, and if necessary updates the abstract value to satisfy the constraints. If the abstract value changes,
all successor nodes are added to the worklist.

When the worklist becomes empty, the algorithm terminates. From the invariant, it holds that if there are no nodes on the
worklist, then all constraints are satisfied. Further, termination is guaranteed, because each step increases the size of the partial
solution, and the space of solutions is finite.

The implementation of the closure analysis is about 1000 lines of SML/NJ code, not counting support code to translate data
structures used in the Tofte/Talpin system.

5 Completions

This section first outlines the constraint language and constraint generation. The following subsections deal with finite abstrac-
tions for regions, constraint generation, and constraint resolution in detail.

We want to characterize the set of legal completions of a program using a constraint system. The variables in this system
are the states (unallocated U, allocated A, or deallocated D) of regions at program points in the source program. These variables
are referred to as state variables and written t; t1; t2; : : : . The constraint system for a particular program must encode

1. at which program points particular regions must be in the allocated state,

2. the flow of regions along the program’s execution paths.

Both points are necessary to guarantee that a region is actually allocated wherever it is accessed. Encoding the control flow
is necessary to ensure that the state of a region is consistent over time and changes only at explicit allocation and deallocation
constructs. Closure analysis provides an approximation to the control flow in higher order functions. Region states can thus be
tracked along control flow paths by suitably constraining the state variables between successive program points. However, the
main problems in constraint generation are to find a suitable abstraction for dynamic regions and to define which regions’ state
is modeled by a particular state variable. An abstraction of dynamic regions is required because programs may be recursive and
their execution may produce an infinite number of distinct regions. Section 5.1 develops an abstraction for dynamic regions and
region environments.

Given a suitable definition of the set of regions described by a single state variable, the following three kinds of constraints
are sufficient to encode points 1 and 2 above: (1) allocation constraints, (2) choice constraints, and (3) equality constraints:

t = A (1)

ht1; cp; t2ia
ht1; cp; t2id

(2)

t1 = t2 (3)

At program points where values are read from or written to regions, allocation constraints are placed on state variables abstracting
those regions; they express that a region must be allocated at this point. Choice constraints are used to connect state variables
at consecutive program points where a region may change state. Choice constraints are either allocation triples or deallocation
triples.

Definition 5.1 An allocation triple expresses a relationship between two state variables t1; t2 and a boolean variable cp associ-
ated with program point p:

ht1; cp; t2ia
def
� (cp () (t1 = U ^ t2 = A)) ^ (:cp () t1 = t2)

The boolean cp encodes whether or not the associated region is to be allocated at program point p. If cp = true the region state
prior to the allocation point is U and afterwardsA, i.e. allocation. If cp = false, then the state prior is equal to the state after, i.e.
no allocation. This approach is similar in spirit to the coercions of [Hen92]. The definition of deallocation triples is analogous:

Definition 5.2 A deallocation triple expresses a relationship between two state variables t1; t2 and a boolean variable cp asso-
ciated with program point p:

ht1; cp; t2id
def
� (cp () (t1 = A ^ t2 = D)) ^ (:cp () t1 = t2)

Equality constraints are used to constrain state variables to the same state, e.g. at consecutive program points, where no alloca-
tion/deallocation is possible.

Constraints are generated as a function of the target program structure, the Tofte/Talpin types and effects of the program, and
a refinement of the region-based closure analysis (Section 4). Before presenting the details of constraint generation, we define
an abstraction for dynamic regions in Section 5.1. Section 5.2 contains further notation and definitions, Section 5.3 contains the
constraint generation rules, and Section 5.4 discusses constraint resolution.

14

5.1 Abstracting dynamic Regions

This section develops a finite abstraction for dynamic regions by successively refining a naive approach.

5.1.1 Naive approach

Summary All regions created by a particular letregion construct are abstracted by a single abstract region. The problem
with this approach is that it does not distinguish enough regions to make insertion of any allocation/deallocation constructs safe.

In the naive approach, dynamic regions are abstracted by colors, one color per syntactic letregion. Because of recursion, a
color represents the (possibly infinite) set of dynamic regions produced by the particular letregion statement it is associated
with. Encoding the flow of regions in the constraint system is done by associating with each program point and each color a single
state variable. State variables of consecutive program points are constrained with equalities or choice constraints, according to
color.

Although intuitive, this approach does not allow us to infer where regions can be allocated or deallocated. The difficulty
stems from the fact that each color represents a set of dynamic regions. For example, if in a particular execution context, two
region variables �1 and �2 bind two distinct regions z1 and z2, but the abstraction uses a single color c to denote z1 and z2, then
the abstraction cannot model the states of regions z1; z2 before and after a construct like alloc before �1 with a single state
per program point. The region z1 must be in the unallocated state before the construct, and in the allocated state after. If the
abstraction captures the states of z1, then it is wrong for z2 (z2’s state is not affected by alloc before �1), and vice versa.

In general, at a program point p, allocation or deallocation constructs can only be inserted on region variables whose color
unambiguously denotes a single unknown dynamic region in the context of p. This is of course impossible to achieve for all
program points, due to the unbounded number of dynamic regions. However, below we explore an abstraction that is able to
assert the singleton requirement at some program points. In the remainder of this report, region abstractions are always termed
colors.

5.1.2 Abstract region environments

Summary Instead of abstracting individual regions, region environments are abstracted as a whole, resulting in a closer cor-
respondence between abstract and concrete regions. The remaining problem is the handling of quantified effect variables.

In the naive approach above, the state of every dynamic region is apparent at every program point. This over-specification is the
source of the problem that a single color abstracts many distinct dynamic regions. The problem is overcome by expressing facts
only about dynamic regions that actually matter at a program point in a particular context. Regions are accessed through region
variables appearing in the target program. Region variables are mapped to regions through a region environment as shown in
the operational semantics in Figure 4. It seems that the evaluation of an expression can therefore only access regions that are
bound in the current region environment. This observation is not entirely true, but it can be refined later. For the moment, we
assume that evaluation of an expression in a region environment r needs only be concerned with the state of regions appearing
in r.

Defining the region or set of regions abstracted by a color becomes easier in the context of an entire abstract region environ-
ment. An obvious choice is to say that if an abstract region environment R abstracts a concrete region environment r, a color
c bound to a region variable � in R abstracts exactly the region bound to � in r. However, more than one region variable may
bind the same color. In this case it is no longer clear which region the color abstracts, and how many distinct regions there are.
This problem is solved by adding a consistency constraint between abstract and concrete region environments, expressing that
each color in an abstract region environment denotes a unique region in the concrete region environment, and vice versa:

R(�) = R(�0) () r(�) = r(�0)

We call this relation r sat R, and define it more precisely as:

r sat R
def
� Dom(r) = Dom(R) ^

8(�; �0 2Dom(r)) R(�) = R(�0) () r(�) = r(�0)

The implication R(�) = R(�0) =) r(�) = r(�0) says that each color denotes a single dynamic region in the region en-
vironment r. This fact alone is not sufficient to reason about the states of all regions in the region environment after e.g. an
alloc before � construct. If two region variables �1 and �2 are aliased (bind the same region), an allocation on �1 implies
an allocation of the region bound to �2 and vice versa. The symmetry of the r sat R relation, however, is strong enough to
capture aliasing between region variables, since the aliasing is the same in the abstraction. Abstract region environments are
computed by the region-based closure analysis given in Section 4.

15

We now describe how state variables are associated with program points. Consider a program point p, and the smallest
syntactic expression e that contains p. Let ' be the effects inferred by the Tofte-Talpin effect inference for expression e in the
entire program. Given a region environment, the effect set ' characterizes the regions that are used by the evaluation of e. From
the region-based closure analysis, we can compute a set of abstract region environmentsfR1; : : : ; Rng that are possible at p. For
each such abstract region environmentRi, we associate a state variable with each color in the range of Ri and mapped by some
region � in '. Thus, not only can we distinguish between the states of a region occurring in two distinct region environments,
but we also restrict our state variables to the set needed to express the states of regions accessed during the evaluation of e.

Compared to the initial naive approach, there is an important difference: the state variable associated with color c mapped
by region variable � in region environment R, stands only for the state of the dynamic region mapped by � in a corresponding
concrete region environment, but not for the states of regions abstracted by the same color c in unrelated region environments.

However, as hinted at above, the set of regions accessed by an expression may include regions not mapped by region vari-
ables! Effect sets may contain effect variables. Effect variables are introduced by effect quantification in let and letrec
expressions, and they express that an expression may access different sets of regions in different contexts (Section 2.2). As a re-
sult, if region environments do not contain mappings for effect variables, the set of regions that an effect refers to is only partially
known; i.e. the regions (or abstractions thereof) denoted by effect variables are not known. The following partially annotated
example illustrates the problem:

Example 5.3 let app1 = �f.f 1 (*)
in

letregion �1
in

let a = 2@�1
in

app1 (�y.y+a) (**)
end

end
end

Assume the quantified type of the app1 function is 8�1�2:(int
�1:;
��! int)

�2:f�1g
����! int (region variables have been omitted for

clarity). Suppose the color associated with region variable �1 is c1 in a particular context. The flow of this region from the
beginning of the letregion expression to the application of app1 at (**) is easy. The latent effect set (effect of evaluating
the function body) of �y includes �1 because it is accessed when the variable a is used in the addition. The instantiated type of

app1 at the application is therefore (int
f�1;:::g
�����! int)

f�1;:::g
�����! int (again most region variables have been omitted for clarity).

If we now look at the latent effect set at the application of app1 at (**) and the latent effect set of the callee �f , we see that they
differ. In particular, the set of colors obtained by pointwise application of the region environment to the instantiated effect set
at (**) differs from the set obtained from the quantified effect set and the region environment captured at (*). Color c1 does not
appear in the latent effect set of the quantified type of app1 at (*). There is no state variable inside the app1 function that we
could connect to from the caller. The inverse problem appears at the application off 1 at (*). The latent effect at the application
is �1, but the latent effect of the function �y, bound to f , is f�1; : : : g. In essence, the handle on c1 (through a region variable)
is lost at program points in the body of app1, because app1 is polymorphic in that effect.

In order to produce a constraint system that characterizes only legal completions, we need to track at all program points the
states of regions bound only to effect variables, as well as the states of regions mapped by region variables. Section 5.1.3 extends
the notion of a region environment to include mappings from effect variables to sets of regions. Such mappings are obtained
through effect variable instantiation.

5.1.3 Effect variable instantiation

Summary Making the mappings of effect variables to sets of regions explicit through effect instantiation guarantees that all
regions accessed during evaluation of an expression are bound to region or effect variables on all control flow paths. However,
the cardinality of the set of regions bound to an effect variable may be unbounded.

What happens to the region bound to �1 in Example 5.3 where the function app1 is called? As described in the previous sub-
section, in the context of the application at (**) in Example 5.3, the effect variable �1 is instantiated to f�1; : : : g. The region
bound to �1 does therefore not really disappear at program points inside the app1 function. It is part of the set of regions bound
to the effect variable �1. Effect variable instantiations are computed by the Tofte/Talpin system during effect inference, but tar-
get programs are not annotated with these instantiations because effect variable instantiations do not affect the evaluation of
programs. For our analysis however, explicit effect variable instantiations are necessary. We therefore extend the Tofte/Talpin

16

target language slightly:

e ::= � � �

j letrec f [~�; ~�:'](x)@� = e1 in e2 end

j f [~� 0; ~' 0]@�

For purposes of presentation we only consider effect variable quantification at letrec constructs. Effect variable quantifica-
tion at let constructs is handled similarly. Analogous to quantified region variables, quantified effect variables at letrec
constructs become formal parameters (~�:'). The parameter names are represented as arrow-effects �:', because the known part
of the effect (') is required for the definition of how to compute instantiations (discussed below). At region application, effect
variables are instantiated to sets of regions through effect parameters (~' 0). The scope of an effect variable is the function body
e1 bound by the letrec-definition where the effect variable is quantified.

The following paragraphs show how the set of regions to be bound to an effect variable at region application is computed. The
goal is to extend the region environment of a closure obtained at a region application with mappings from effect variables to sets
of regions. Consider a letrec-bindingletrec f [~�; ~�:'] : : : in region environmentr0 and a region applicationf [~� 0; ~' 0] in region
environment r0. In the [REGAPP] rule of the operational semantics in Figure 4, the closure resulting from the region application
contains a region environment r1 obtained by extending r0 with mappings for the region parameters �i (ith component of vector
~�):

r1 = r0[�i r0(�0i)]

We further extend the region environment r1 with mappings for the formal effect parameters (�i) to sets of regions (di) computed
as a function of r1; 'i and r0; '0

i:
r2 = r1[�i di]

The sets di are computed such that the set of regions denoted by the arrow-effect �i:'i in region environment r2 is equal to the
set of regions denoted by the effect parameter'0

i in region environment r0:

di [r1('i) = r0('0
i) where r2(�i:'i) = r2(�i) [r2('i) = di [r1('i)

To satisfy the equality, the set di is constrained by the following upper and lower bound (the safety of Tofte/Talpin typings
guarantees that r1('i) � r0('0

i)):
r0('0

i)� r1('i) � di � r0('0
i)

At this point it doesn’t really matter how we choose di within the specified bounds. The exact way to compute the sets di depends
on the abstraction chosen for dynamic regions.

We set out to compute effect variable mappings for region environments in order to maintain the following invariant: all
regions accessed by the evaluation of an expression e in region environment r are bound in r by region or effect variables.
Example 5.3 showed why this invariant is required to model the state of regions along all control flow paths in a program.

Unfortunately, abstracting region environments with effect variable mappings is non-trivial. Section 5.1.1 showed that in
order to add an allocation/deallocation construct for a region variable � at a particular program point p, a state variable modelling
exclusively the state of the region bound to � at p is required. This requirement motivated the r sat R relation of Section 5.1.2.
Extending abstract region environments and the r sat R relation with effect variables, such that each color still denotes a single
dynamic region, may require an unbounded number of colors for some programs because the number of regions bound to a single
effect variable may be infinite. To appreciate this fact, consider the following example (only relevant annotations are shown):

Example 5.4 letrec fac(n) = �g:
if n = 0 then g 1
else

letregion �1 in
fac (n-1) (�x:g (x*n))@�1

end
in

fac 10 (�x:x*1)
end

The program defines the factorial function in “continuation passing style”. Consider the continuation parameter g and its (sim-
plified) type: int

�1
�! int. The effect variable �1 is quantified by the letrec construct and stands for the set of regions that

the continuation accesses when executed. At the recursive call to fac, a new instance of �1 is instantiated (made possible by
recursive polymorphism). The instantiation is the latent effect of the lambda expression �x, which includes �1 due to the call to
g. It also contains other regions, namely �1 holding the closure of �x. Since, the region bound to �1 is local to the body of fac,
the number of regions in the latent effect of the continuation grows at each iteration.

17

5.1.4 Abstract region environments with effect variables

Summary This subsection describes an abstraction of region environments that requires only a finite number of colors for any
program. This abstraction is the one used for constraint generation.

To keep the number of required colors finite, we choose an abstraction of region environments that models may-aliasing of
regions bound to effect variables w.r.t. other regions. For regions bound solely to region variables, the aliasing information is
perfect. In terms of colors this means that a color in the set bound to an effect variable denotes a set of regions (defined more
precisely below), whereas a color mapped solely by region variables denotes the single region bound by the same region variables
in the concrete region environment.

Colors for region variables inletregion-constructs are chosen according to the exact same rules described in Section 5.1.2:
the color for the new region variable is different from any colors already bound to region variables in the current region envi-
ronment. Consequently, the same finiteness argument applies, and aliasing between region variables is perfectly modelled by
the aliasing of colors. In order to define the refined r sat R relation, we assume that each dynamic region is annotated with a
color (written as subscript) chosen according to the same rule as in the abstraction. The consistency relation between abstract
and concrete region environments is defined by:

r sat R
def
� Dom(r) = Dom(R) ^

8(�; �0 2 Dom(r)) R(�) = R(�0) () r(�) = r(�0) ^

8(� 2Dom(r)) R(�) = color(r(�)) ^

8(� 2Dom(r)) R(�) = colors(r(�))

where color is a function from dynamic regions the their color annotation, and colors is the set extension of color. The first two
clauses are unchanged. The two new clauses require that the color annotation of dynamic regions correspond to the colors used
to abstract those dynamic regions.

The consistency relation between abstract and concrete region environments leads to the following definition of what a color
abstracts: (a formal statement can be found in Definition 6.6)

A state variable associated with a color c, program point p, and abstract region environmentR represents the state
of all regions zc colored by c (bound to region or effect variables) that may appear at program point p in a concrete
region environment abstracted by R.

A color may now abstract multiple regions as in the naive approach of Section 5.1.1. In contrast to the naive approach how-
ever, the structure of an abstract region environment states which colors abstract a single dynamic region, and which colors
potentially abstract more than one dynamic region. A color mapped solely by region variables (not contained in the mapping
of any effect variable) abstracts a single dynamic region. If a region variable maps to such a color, potential allocation or deal-
location constructs for that region variable can be modelled by the constraints. On the other hand, if a region variable maps to
a color that appears in any effect variable mappings, allocation/deallocation on that region variable cannot be expressed in the
constraints.

In order to find good program completions, we prefer to have as many potential allocation/deallocation choice points for a
program as possible. As spelled out in the previous paragraph, the sets of colors mapped by effect variables has an influence
on the potential choice points. The reminder of this subsection describes how to compute minimal color sets for effect variable
instantiations in abstract region environments.

Instantiations of effect variables to sets of colors are computed analogous to the sets of concrete regions described in Sec-
tion 5.1.3. Given a letrec-binding letrec f [~�; ~�:'] : : : in abstract region environment R0 and a region application f [~� 0; ~' 0]
in abstract region environmentR0, the abstract closure resulting from the region application contains a region environment that
is obtained by extending R0 with mappings for the region parameters (giving R1) and further extending R1 with mappings for
effect variables:

R1 = R0[�i R0(�0i)]

R2 = R1[�i Di]

The sets of colors Di are computed as a function of R1; 'i and R0; '0
i such that the set of colors for the arrow-effect �i:'i in

abstract region environmentR2 is equal to the set of colors of '0
i in abstract region environmentR0:

Di [R1('i) = R0('0
i) where R2(�i:'i) = R2(�i) [R2('i) = Di [R1('i)

As is the case for concrete regions, the equality is satisfied if Di lies within the following bounds:

R0('0
i)�R1('i) � Di � R0('0

i)

18

The lower bound is obviously the preferred choice for our instantiation, since it adds the minimal number of colors to effect
variable mappings. However, the abstract and concrete region environmentsR2; r2 after instantiation have to be consistent with
respect to the r2 sat R2 relation. Choosing the lower bound for Di and di does not result in consistent region environments as
shown by the following example (colors are letters a; b):

effect formal parameter �1:f�1; �2g
concrete region environment r1 = [�1 za; �2 z0b]
abstract region environment R1 = [�1 a; �2 b]
effect argument '0

1 = f�1; �2; �2g
concrete region environment r0 = [�1 za; �2 z0b; �2 fz

00
ag]

abstract region environment R0 = [�1 a; �2 b; �2 fag]

As before, region environments R1; r1 are obtained by extending R0; r0 captured at the letrec-definition, and R0; r0 are the
region environments at the region application. Using the lower bound for D1; d1 and assuming that za and z00a are distinct, we
obtain

R2 = R1[�1 fg]

r2 = r1[�1 fz
00
ag]

which clearly doesn’t satisfy r2 sat R2, even though r1 sat R1 and r0 sat R0. The color set of �1 in r2 is fag, whereas in R2

the set is empty.
Failing to include color a in the mapping because it is already bound to �1 is wrong because there are two distinct regions

with color a in the effect argument, whereas �1 binds only a single region. Whenever a region environment contains multiple
distinct regions with the same color, all but one of those regions must appear in mappings of effect variables. This observation
follows from theR(�) = R(�0) () r(�) = r(�0) clause in the definition of r sat R. Since we know which colors potentially
denote multiple regions, the sets Di; di can be computed as follows:

di = r0('0
i)� fr1(�) j � 2 'ig [

[
�2'0

i

r0(�)

Di = R0('0
i)� fR1(�) j � 2 'ig [

[
�2'0

i

R0(�)
(1)

By adding in all colors (resp. regions) bound to effect variables in '0
i, we guarantee that if there are multiple distinct regions

with the same color annotation in the effect argument, the instantiation retains this fact. The soundness of equation (1) is proven
in Section 6 in the [REGAPP] case.

5.1.5 Discussion

Computing effect variable instantiations during the extended closure analysis is expensive, since it may lead to a combinatorial
explosion of the number of distinct region environments.

A cheaper alternative is to infer a single mapping for every quantified effect variable appearing in the type derivation, inde-
pendent of its context. Such mappings can be found quite easily through a global system of subset constraints using equation (1)
at every instantiation. This cheaper approach computes for each effect variable, the union of instantiation maps over all contexts.
Such an approximation is still safe, but leads to fewer potential allocation/deallocation points.

Yet a third approach avoids computing effect variable instantiations altogether, by being more conservative. At applications
with potentially non-empty effect variable instantiations, all regions in the caller and callee can be constrained to be allocated
without matching up individual regions. Thus, whenever regions disappear from the region environment due to effect variables,
these regions are in the allocated state.

It turns out that it is easiest to prove the system correct with explicit effect variable instantiation. Section 6 shows that this
approach is sound. Section 7 discusses the approaches used in the actual implementation.

The reminder of Section 5 is organized as follows. The region-based closure analysis based on explicit effect variable instan-
tiations is given in Section 5.2. Section 5.3 describes the constraint generation rules. Finally, Section 5.4 contains the resolution
algorithm.

5.2 Definitions

This section introduces notation used in the region-based closure analysis and the constraint generation rules. We overload no-
tation for applying abstract region environments to region variables R(�), effect variables R(�), sets of both R('), and arrow-

19

...
[[�x:e : �]] R = fh�x:e:�;Rig

[[letrec f [~�; ~�:'](x)@ � = e1 in e2]] R = [[e2]] R
fh�x:e1:�; ~�; ~�:';Rig = [[f]] R

[[f [~�; ~'] @ �]] R = fh�x:e:�;R0[�0i R(�i); �
0
i Rj�('i)�R0j�('

0
i) [Rj�('i)]ig

where [[f]] R = fh�x:e:�; ~�0; ~�0:'0; R0ig

Figure 6: Changes to the region-based closure analysis (explicit effect variable instantiation).

effects R(�:'). The exact form should always be clear from context:

R(') = fc j 9� 2 ' s.t. R(�) = cg [
S

�2'R(�)

R(�:') = R(' [f�g)

Restricted domain and range functions separate region and effect variables. Domj�(R) is the set of region variables in the domain
of the region environment R, and Domj�(R) is the set of effect variables in the domain of R. The range functions are defined
analogously.

Domj�(R) = f� j � 2 Dom(R) ^ � 2 RegVarg
Domj�(R) = f� j � 2 Dom(R) ^ � 2 EffVarg
Rangej�(R) = fR(�) j � 2 Domj�(R)g
Rangej�(R) =

S
fR(�) j � 2 Domj�(R)g

We also make use of restricted mappings Rj�(') and Rj�(') to map only region or effect variables in ':

Rj�(') = fR(�) j � 2 (' \Domj�(R))g
Rj�(') =

S
fR(�) j � 2 (' \ Domj�(R))g

As motivated in Section 5.1, the region-based closure analysis needs to be extended to keep track of effect variables. Figure 6
shows the changes to the rules in Figure 5. Effect instantiation is explicit in the rules forletrec and region instantiation. Effect
variable instantiations are computed as described in Section 5.1.4. The types of lambda abstractions are included in the abstract
closures. This information is needed to produce constraints for applications. The letregion rule is unchanged, i.e. the color
bound to the newly introduced region variable is chosen to be different from all colors already bound to region variables, but
irrespective of the sets of colors bound to effect variables.

5.3 Constraint Generation

As motivated in Section 5.1, with each program point having effect set ', abstract region environmentR, and color c in R(')
is associated a state variable ranging over fU;A;Dg (unallocated, allocated, deallocated). State variables are grouped together
into state vectors S in

e;R, Sout
e;R, and Si

e;R associated with an expression e and region environment R. Vectors S in
e;R and Sout

e;R rep-
resent the state variables of the first (resp. last) program point of expression e, whereas vectors Si

e;R represent state variables
of internal program points of e (e.g. between two subexpressions e1 and e2 of e). We refer to state variables by indexing state
vectors with a color c, as in S in

e;R[c]. Constraints are placed on individual state variables in a state vector. The three kinds of
constraints introduced at the beginning of Section 5 are

t = A (Allocation constraint)

ht1; cp; t2ia
ht1; cp; t2id

(Choice constraints)

t1 = t2 (Equality constraint)

Constraint generation produces all constraints necessary to guarantee that regions are allocated when they are accessed. This
task involves placing allocation constraints wherever regions are read or written, as well as linking the in and out states of each
subexpression with the corresponding program points in the enclosing expression, and linking states between application con-
texts and function bodies. Choice constraints are introduced at possible allocation or deallocation points and link the region
states before and after the choice point.

20

A program point p is a possible allocation/deallocation point for a region variable �, if � appears in the effect set at that
program point and if in every abstract region environment R at p, the color bound to � does not appear in the effect variable
mappings of R. The former condition implies that regions do not change state if they don’t appear in the Tofte/Talpin effects.
The latter condition is made explicit in the constraint generation to ease the proof.

Potential allocation and deallocation points are indicated by the syntax alloc before � cp e and free before � cp e,
where cp is the boolean variable associated with the allocation (resp. deallocation) point. Prior to constraint generation, all poten-
tial alloc after, alloc before, free after, free before, free app expressions are added to the Tofte/Talpin
target program. We treat onlyalloc before and free after formally. The other constructs can be handled similarly. The
free app construct is a combination of an application and a deallocation.

The following paragraphs explain the constraint generation rules in Figure 7. Constraints are generated as a function of the
in and out state vectors of each expression e, the current abstract region environment R, and the effect set ' of e (inferred by
Tofte/Talpin effect inference). The rule for variables says that no regions are accessed and thus no constraints are needed.

In the abstraction rule, we place an allocation constraint on the region where the closure is written. No other regions are
accessed by this expression.

For region instantiation, we place an allocation constraint on the region holding the polymorphic closure and on the region
where the instantiated closure is written. No other regions are accessed.

The handling of let is straightforward. The relevant regions for e1 are connected between the entry points of e and the
intermediate program point between e1 and e2. Regions not relevant to e1 or which cannot change state are connected directly
from the entry of e to the intermediate program point. The reasoning for e2 is analogous.

In the rule for letrec, an allocation constraint is placed on the region where the polymorphic closure is written. The rel-
evant regions for e1 are connected between e’s input and output points.

The color d in the letregion rule is chosen according to the same rules as in the region-based closure analysis. The
boolean variable ce encodes whether the newly created region starts and ends in the allocated state or whether it is allocated
and deallocated within e1. This irregularity arises due to our finite abstraction of regions. Equally colored regions in a region
environment must all be in the same state. The color for a new region at a letregion-construct is chosen to be different from
all colors bound to region variables, but irrespective of colors appearing in effect variable mappings. As a result, the new region
may be given a color that already appears in an effect variable mapping. In such a case, the new region cannot be start in theU
state and end in theD state, because the region in the effect variable mapping shares these states. The only consistent states in
that case are for the regions to be allocated.

The alloc before rule connects the states of regions bound to � between the input states of e and e1 with an allocation
triple. The state of all other regions cannot change. A key point is that allocation triples generated from the same potential
allocation point, but in different region environment contexts, share the same boolean variable. This setup guarantees that the
completion is valid in all contexts. Allocation/deallocation choice points for different region variables are sequentialized to
ensure that if two region variables are aliased (i.e. they map to the same color in the abstract region environment), at most one
allocation/deallocation point is chosen.

The application rule is the most difficult. The key idea is that at runtime, the regions in the arrow-effect (R('b)) of the
function expression e1, are the same as the regions in the effect of the closure (R0('

0
b)). Therefore, the states of regions in

R('b) prior to evaluation of the function body match the states of regions in R0('
0
b) on entry to the function (and similarly

on return). In the abstract region environments of the caller and callee, the colors of the effect of the call are equal, justifying
equality constraints between state variables at the call site and in the input vector of the function body (similarly on output). These
equality constraints model the flow of regions from the caller into the function body and back. All regions a function touches
appear in the function’s effect. It is thus sufficient to place the equality constraints only on state variables corresponding to colors
from R('b). Other regions in the caller’s context are not touched in the the function body; the function is state-polymorphic
in these regions. The set of possible closures in an application of a given region environment is computed by the region-based
closure analysis.

5.4 Constraint Resolution

In general, the constraint system has multiple solutions. For example, the state of a region after the last use is unspecified.
We may place the point of deallocation of such a region anywhere after its last use, but obviously we prefer the first possible
program point. The choice of where to allocate (or deallocate) a region affects the states of regions in other parts of the program.
Therefore, it is necessary to iterate solving constraints and choosing allocation/deallocation points based on the partial solution.

Recall Example 1.1. Consider �5 and the control flow path from the point p1, where the lambda abstraction is stored in
the region bound to �5, to the point p2, where it is retrieved to perform the application. Clearly the region bound to �5 must
be allocated both at p1 and p2. Because the language semantics forbid the region to change from the deallocated state to the
allocated state, we can conclude that on all control paths from p1 to p2, it must be allocated.

The constraints are simple first-order formulas for which resolution algorithms are well-known. There is, however, the issue
of deciding which solution to choose; clearly some completions are better than others. We illustrate our resolution algorithm

21

e = x R;; ! no constraints

e = �x:e1@� R;f�g ! S in
e;R[R(�)] = A

S in
e;R[R(�)] = Sout

e;R[R(�)]

e = f [~� 0; ~' 0]@�0 R;' ! S in
e;R[R(�

0)] = A

S in
e;R[R(�)] = A; where (�; �) is the type of f
8c 2 R('): S in

e;R[c] = Sout
e;R[c]

e = e1 e2 R;' ! Let '1; '2 be the effect sets of e1; e2
8(c 2R('1)) S

in
e;R[c] = S in

e1;R
[c] ^ Sout

e1;R
[c] = S1

eR[c]

8(c 2R(')�R('1) [Rj�(')) S
in
e;R[c] = S1

e;R[c]

8(c 2R('2)) S
1
e;R[c] = S in

e2;R
[c] ^ Sout

e2;R
[c] = S2

e;R

8(c 2R(')�R('2) [Rj�(')) S
1
e;R[c] = S2

e;R[c]

Let (�1
�:'b

��! �2; �) be the type of e1
S2
e;R[R(�)] = A

For all h�x:eb; R0i 2 [[e1]] R, with type �01
�0:'0

b

���! �02
8(c 2R('b)) S

2
e;R[c] = S in

eb;R0
[c] ^ Sout

eb;R0
[c] = Sout

e;R[c]

8(c 2R0j�('
0
b)) S

in
eb;R0

[c] = A

8(c 2R(')�R('b) [Rj�(')) S
2
e;R[c] = Sout

e;R[c]

e = let x = e1 in e2 R;' ! Let '1; '2 be the effect sets of e1; e2
8(c 2R('1)) S

in
e;R[c] = S in

e1;R
[c] ^ Sout

e1;R
[c] = S1

eR[c]

8(c 2R(')�R('1) [Rj�(')) S
in
e;R[c] = S1

e;R[c]

8(c 2R('2)) S
1
e;R[c] = S in

e2;R
[c] ^ Sout

e2;R
[c] = Sout

e;R

8(c 2R(')�R('2) [Rj�(')) S
1
e;R[c] = Sout

e;R[c]

e = letrec f [~�; ~�:'](x)@� = e1 in e2 R;' ! Let '2 be the effect set of e2
S in
e;R[R(�)] = A

8(c 2R('2)) S
in
e;R[c] = S in

e2;R
[c]

8(c 2R('2)) S
out
e2;R

[c] = Sout
e;R[c]

8(c 2R(')�R('2) [Rj�(')) S
in
e;R[c] = Sout

e;R[c]

e = letregion � in e1 R;' ! Let '2 be the effect set of e2
Let d = minimum color 62 Rangej�(R)
Let R1 = R[� d]
8c 2 R('):S in

e;R[c] = S in
e1;R1

[c]

8c 2 R('):Sout
e1;R1

[c] = Sout
e;R[c]

ce =) S in
e1;R1

[d] = U ^ Sout
e1;R1

[d] = D

:ce =) S in
e1;R1

[d] = A ^ Sout
e1;R1

[d] = A

e = alloc before � ce e1 R;' ! 8(c 2R(') s.t. c 6= R(�)) S in
e;R = S1

e;R

hS in
e;R[R(�)]; ce; S

1
e;R[R(�)]ia

8(c 2R('1)) S
1
e;R = S in

e1;R
^ Sout

e1;R
= Sout

e;R

8(c 2R(')�R('1) [Rj�(')) S
1
e;R = Sout

e;R

R(�) 2 Rj�(') =) ce = false

e = free after � ce e1 R;' ! 8(c 2R('1)) S
in
e;R = S in

e1;R
^ Sout

e1;R
= S1

e;R

8(c 2R(')�R('1) [Rj�(')) S
in
e;R = S1

e;R

8(c 2R(') s.t. c 6= R(�)) S1
e;R = Sout

e;R

hS1
e;R[R(�)]; ce; S

out
e;R[R(�)]id

R(�) 2 Rj�(') =) ce = false

Figure 7: Constraint generation rules.

22

�6 t6;1 t6;2 = A t6;3 t6;4

�5 t5;1 t5;2 t5;3 t5;4 = A t5;5 t5;6 = A t5;7 t5;8

�4 t4;1 t4;2 t4;3 = A t4;4 t4;5 t4;6 t4;7 = A t4;8

operation write write write write write read read write
value 2 3 x (a pair) �y 5 �y x pair

region �2 �6 �4 �5 �3 �5 �4 �1

Table 1: Example constraint resolution.

with an example.
Refer again to the example in Figure 1. Table 1 shows the state variables associated with �4; �5; �6. Assume that we have

added allocation triples between all consecutive program points for colors bound by �4—�6, with associated boolean variables
ci;j , meaning a possible allocation of �i just after state ti;j .

Table 1 contains explicit allocation constraints on states where regions are accessed. We must have t5;5 = A because it
lies on an execution path between two states where the region bound to �5 is allocated. The same holds for t4;4–6. We also
set all allocation choice points c6;2–4, c5;4–8, and c4;3–8 to false, because the regions must be allocated before these program
points are reached. At this point we have proven all facts derivable from the initial constraints—nothing forces other states to
be unallocated, allocated, or deallocated. We can now choose to set any boolean variable cp of an allocation triple ht1; cp; t2ia
to true, if the variable cp is not constrained. Among the possible choices, we are particularly interested in allocation points lying
on the border of an unconstrained state and an allocated state, i.e., allocation triples ht1; cp; t2ia where:

t1 is unconstrained^ t2 = A

By the definition of an allocation triple, choosing cp = true forces t1 = U . The state U is propagated to earlier program points,
since the region can be in no other state there. In the example, we choose c5;3 = true, set t5;3 = U , and propagateU backwards
through t5;2–1 to the letregion for �5. Similarly, we choose c6;1 = true and c4;2 = true.

For efficiency, our solver is optimistic and assumes that setting any choice variable to true results in a constraint system with
at least one solution. This assumption appears to be valid for all realistic programs, and allows us to avoid what appears to be a
combinatoric problem.

Our constraint solver consists of four components. The first component performs graph calculations to determine that some
choice variables must be false in any consistent solution, and sets them to false. The second component assigns values to all
variables for which the values can be computed entirely from local context. After all such variables have been found, the third
component of the algorithm chooses an unconstrained choice variable cp as above. In our experience, this process eventually
leads to a consistent solution of the constraints for almost all programs. The only exceptions we have found are carefully con-
structed counterexamples designed to force our solver into an inconsistent state (e.g. a region constrained to be both allocated
and deallocated). In such cases, the fourth component identifies the region which became inconsistent, and assign it the triv-
ial solution (i.e. choosing the earliest allocation inside the letregion, and the latest deallocation). In this way, the solver is
guaranteed to find a solution; in the worst case, it is identical to the original Tofte/Talpin target program.

5.4.1 Reformulation as graph problem

To facilitate an efficient solution, it is helpful to reformulate the constraint system as a graph problem. Several non-local graph
properties can be immediately computed. These properties correspond to sets of choice variables which cannot be true in any
consistent solution, so they are assigned a value of false.

The graph is constructed as follows: the nodes in the graph are state variables ti, and the directed edges in the graph are allo-
cation and deallocation triples ht1; ck; t2i, where the endpoints of the edge are t1 and t2. Each choice variable thus corresponds
to a set of edges. The graph is described formally as follows:

G = StateVar� E
E = StateVar� StateVar

TripMap = E
�n
�! Triple

Triple = StateVar�ChoiceVar� StateVar� fa; dg

A map M 2 TripMap always satisfies the property that M(t1; t2) = ht1; ck; t2ia or M(t1; t2) = ht1; ck; t2id for some k.
There is at most one choice variable for any pair of state variables, which ensures thatM is single-valued.

23

The graph does not encode equality constraints between state variables. In the implementation, equality constraints force
unification of the state variables before the constraints are translated into graph form.

We define the notion of a consistent labelling of the graph and show a mapping between consistent labellings and solutions
of the original constraints.

ELabelling = E
�n
�! Bool

NLabelling = StateVar
�n
�! fU;A;Dg

Labelling = ELabelling�NLabelling

We introduce a shorthand: any predicate containing the notation ht1; ck; t2ix must hold for both ht1; ck; t2ia and ht1; ck; t2id.

Definition 5.5 A labelling (EL;NL) of graph (N;E) with triple map M is consistent iff:

for all e s.t. M(e) = ht1; ck; t2ix ^ EL(e) = false; NL(t1) = NL(t2)
for all e s.t. M(e) = ht1; ck; t2ia ^ EL(e) = true; NL(t1) = U ^NL(t2) = A
for all e s.t. M(e) = ht1; ck; t2id ^ EL(e) = true; NL(t1) = A ^NL(t2) = D
for all e1; e2 s.t. M(e1) = ht1; ck; t2ix ^M(e2) = ht3; ck; t4ix; EL(e1) = EL(e2)

The last of these predicates states that all edges sharing a choice variable must be labelled the same. It implies that labelling
an edge and labelling a choice point are equivalent notions; we will use these terms interchangeably in the sequel. The remainder
of this section discusses each of the four components of the constraint solver in turn.

5.4.2 Graph properties

It is now possible to state the graph properties mentioned above. First, along a cycle, all edges must be labelled false. Second, if
any two edges along a path share a choice variable, then those edges must be labelled false. These properties encode non-local
information about the graph. Without this information, a solver based on strictly local information is likely to get stuck, and
possibly arrive at an inconsistent labelling.

To prove these properties, we order the labellings for each state variable as follows: U < A < D. From the definition of
consistent labelling, for any graph edge (t1; t2) we have NL(t1) � NL(t2).

Lemma 5.6 For any consistent labelling (EL;NL) of a graph, for all edges (t1; t2) in a cycle in the graph EL(t1; t2) = false.

Proof: The cycle induces a cycle of � relationships among the labellings state variables at the nodes. Therefore, these la-
bellings are equal. From the definition of consistent labelling, equality of endpoints of an edge implies a labelling of false for
the corresponding choice variable. �

Lemma 5.7 For any consistent labelling (EL;NL) of a graph, for any path that includes two edges sharing a choice variable,
the label for the edges is false.

Proof: By contradiction. Let (t1; t2) be the first edge, and (t3; t4) be the second (i.e. there is a path from t2 to t3. Without loss
of generality, let both edges map to allocation triples. Assume that the EL(t1; t2) = EL(t3; t4) = true. Then, NL(t2) = A
and NL(t3) = U , so NL(t2) > NL(t3). However, there is a path from t2 to t3, implying (due to the transitivity of �) that
t2 < t3, a contradiction. �

Our implementation detects cycles with a standard algorithm for finding strongly connected components. Cycles are re-
moved, leaving an acyclic digraph for the remainder of the algorithm. Our implementation performs a depth first search for
each choice variable to find edges on a path sharing a choice variable.

5.4.3 Local transformations

The next phase performs local transformations of the graph. This phase maintains a partial labelling of the graph. Each local
transformation refines the partial labelling to contain more information. This process repeats until no more such local trans-
formations are possible, at which point one of the remaining unconstrained choice points is labelled true. The choice phase
alternates with the local transformation phase until either the labelling is completed or becomes inconsistent.

The partial labelling assigns three possible values to each choice variable and six possible values to each state variable.
Choice variables can be true, false, or unknown. State variables can be one of fU;A;D;6D;6U; �g. Of these, 6D states that U and
A are still considered possible alternatives, 6U states that A and D are possible, and � means that the final labelling is as yet

24

�

@ �

6U6D

@ �@ �

U A D

Figure 8: Strict partial order on the restrictedness of state variables

unconstrained. These six values form a strict partial order, as shown in Figure 8. We write � <6U to indicate that � contains less
information about the final labelling than does 6U . The least upper bound xt y is defined as the least value which is greater than
both x and y.

The partial labelling is initialized as follows. All edges known from the graph properties to be false are labelled as such. All
other edges are labelled unknown. Any state variable constrained by a tj = A constraint is labelled A, otherwise �.

The local transformations are specified by the following table. For each triple of the form ht1; ck; t2ia, where ck is unknown,
the table specifies a refinement to the labelling for the state variables t1 and t2 and the choice variable ck. The row is NL(t1)
and the column is NL(t2). A blank or numerical table entry indicates that the labelling cannot be made more precise just from
local information. A “—” entry indicates that the partial labelling is inconsistent. Otherwise, the partial labelling is updated so
that NL maps t1 to the first symbol and t2 to the third, and EL maps all instances of ck to the third symbol (where t represents
true, f represents false, and ? represents that the choice variable will remain unknown).

NL(t1)

NL(t2)
U A D 6D 6U �

U UfU UtA — 2 UtA U? 6D
A — AfA — AfA AfA AfA
D — — DfD — DfD DfD
6D UfU 1 — 6D?A 6D? 6D
6U — AfA DfD AfA 6Uf 6U 6Uf 6U
� UfU 6D?A DfD 6D? 6D

Allocation triple: ht1; ck; t2ia

For a triple of the form ht1; ck; t2ia, where ck is true, if NL(t1) � U and NL(t2) � A, then the labelling is updated to so
that NL maps t1 to U and t2 to A. Otherwise, the partial labelling is inconsistent. Finally, for a triple of the form ht1; ck; t2ia,
where ck is false, the labelling is updated so that NL maps both t1 and t2 to their least upper bound if comparable, otherwise
the partial labelling is inconsistent.

The rules for deallocation triples are analogous. For each deallocation triple in which the choice variable is unknown, the
following table specifies the rewrite, as above.

NL(t1)

NL(t2)
U A D 6D 6U �

U UfU — — UfU — UfU
A — AfA AtD AfA 1 A? 6U
D — — DfD — DfD DfD
6D UfU AfA AtD 6Df 6D A? 6U
6U — AfA 2 AfA 6U? 6U
� UfU AfA 6U?D 6U? 6U 6Uf 6U

Deallocation triple: ht1; ck; t2id

Deallocation triples in which the choice variable is false are handled as allocation triples. Deallocation triples in which the
choice variable is true are handled similarly to allocation triples, except that the two state variables are assigned A and D rather
than U and A, respectively.

25

5.4.4 Resolving choice points

Ultimately, the process of local transformation either reaches a consistent solution, an inconsistency, or is simply unable to refine
the partial labelling based on local information. In the latter case, there are unresolved choice variables. Our algorithm chooses
one and sets it to true, and then propagates local transformations again.

There remains the question of which choice variable to select. In principle, any unknown choice variable can be chosen.
In practice, we want the choice to lead to a good annotation of the program, i.e. placing allocations as late as possible and
deallocations as early as possible. Thus, the choice points are prioritized and one with the highest priority is chosen. The priority
numbers are listed in the above tables, with 1 as the highest priority.

Priority 1 entries represent choice points “on the boundary”, i.e. those that connect a state variable constrained to A and
another one unconstrained. Labelling such a choice variable true corresponds to the latest possible allocation and the earliest
possible deallocation. Priority 2 entries represent choice points in connecting two state variables neither of which is constrained
to A. These choice points generally remain only when there is noA constraint on a path (e.g., in one branch of an if statement).
In these cases, selecting such a choice point will result in a completion in which the allocation of the region is immediately
followed by the corresponding deallocation.

5.4.5 Inconsistent labellings

It would be very nice if the system as presented above would always find a consistent labelling. However, we have been able
to construct contrived examples which lead the solver to an inconsistent partial labelling. To cope with this case, we simply fall
back to a more conservative solution for all choice variables associated with the region responsible for the inconsistency.

When an inconsistency is found, all choice and state variables that are affected by the inconsistency are assigned the most
conservative labelling. The set of affected variables is the transitive closure of all graph edges, reversed graph edges, and shared
choice variables. The most conservative labelling is defined as follows: set all affected choice variables to false, and all affected
state variables to A. Then, the constraint solver continues.

The termination argument for the overall algorithm is quite simple: each step decreases the number of partially labelled
variables. In the worst case, when an inconsistency is found for every region, eventually all variables would be assigned the
most conservative labelling.

6 Soundness

This section states and proves a soundness theorem for our system. The soundness theorem expresses that when a program com-
pletion corresponds to a solution of the associated constraint system, the evaluation of the annotated program does not deref-
erence dangling pointers. In particular, all accesses to regions are to allocated regions. The theorem is formulated as follows.
Assume that s; r; n ` e : ' ! a; s0, and assume that [[e]] R = V is the result of the region-based closure analysis for e, where
R abstracts the region environment r. Assume further that the regions in e’s effect ' mapped by r in store s are initially in the
states given by the solution of the state variables S in

e;R. The theorem shows that the evaluation of e leaves these regions in the
states specified by the the solution for Sout

e;R. To prove this theorem we introduce extra notation and definitions, an operational
semantics for the completion language that makes effect instantiation explicit, and definitions of relations between abstract and
concrete entities. We then present a few lemmas and the detailed proof.

6.1 Notation and Definitions

We generally use capital letters for abstract entities and lowercase letters for concrete entities, zc denotes a concrete region with
color c, s is a store, and S : StateVar! fU;A;Dg is a solution of the constraints. The function color maps a concrete region
zc to its associated color c, and the function colors maps sets of regions to sets of colors by taking the union of the pointwise
application of color. The function state maps the state of a region zc in a store s to fU;A;Dg:

state(s; zc) =

8<
:
U if s(zc) = unallocated
A if s(zc) = �o : : :
D if s(zc) = deallocated

As for abstract region environments, we overload notation for applying concrete region environments to region variables r(�),
effect variables r(�), sets of both r('), and arrow-effects r(�:'). The exact form should always be clear from context and the
operand kind (definitions for abstract region environments were given in Section 5.2):

r(') = fzc j 9� 2 ' s.t. r(�) = zcg [
S

�2' r(�)

r(�:') = r(' [f�g)

26

Special domain and range functions separate region and effect variables. Domj�(r) is the set of region variables in the domain
of the region environment r, and Domj�(r) is the set of effect variables in the domain of r. The range functions are defined
analogously.

Domj�(r) = f� j � 2 Dom(r) ^ � 2 RegVarg
Domj�(r) = f� j � 2 Dom(r) ^ � 2 EffVarg
Rangej�(r) = fr(�) j � 2 Domj�(r)g
Rangej�(r) =

S
fr(�) j � 2 Domj�(r)g

We also make use of restricted mappings rj�(') and rj�(') to map only region or effect variables in ':

rj�(') = fr(�) j � 2 (' \Domj�(r))g
rj�(') =

S
fr(�) j � 2 (' \ Domj�(r))g

6.2 Refined Operational Semantics

The soundness proof uses the following property of the Tofte and Talpin typing: for every expression e, all regions accessed
during evaluation of e are present in the current region environment. In other words, the evaluation of ewill not access a random
region that can’t be determined from the direct context of e. This property is intuitive for expressions without applications, since
regions are accessed only through region variables and therefore appear in the region environment. The property is less intuitive
when e contains applications, since a called function may access regions that e doesn’t directly use. However, the latent effect
set of the called function specifies region variables through which regions are accessed during the call, and this effect set is
part of e’s effect. Because latent effects can contain effect variables, not all regions accessed during evaluation of e are “region
variable”-bound. Some regions are “effect-variable”-bound in the environment of e.

In Section 5.1 we used the above-mentioned property implicitly to motivate the handling of quantified effect variables. In
the proof we use a corollary of the property, which expresses that at every application, the caller and the callee agree on the set
of regions that are potentially accessed during the call. In the presence of quantified region and effect variables, this property is
not syntactic, but it can be expressed by the following general lemma.

Lemma 6.1 Given the evaluation of an expression e in region environment r

s; r; n ` e : (�1
'
�! �2; �)! a; s0

with the resulting closure value

s0(a) = h�x:e0 : (�01
'0

�! �02; �
0); r0; n0i

then the set of regions accessed by calling this closure is known to the calling context:

r0('0) = r(')

For region polymorphic closures, the relation is r0('0) � r('). Region and effect instantiation reestablishes the equality. Thus
the equality always holds for ordinary closures.

Proof: By induction on the evaluation of the closed expression containing e (requires explicit type variable instantiation). �

As discussed above, Lemma 6.1 depends on effect variable instantiation, which is not needed in the standard operational seman-
tics for the completion language given in Figure 4. The extended operational semantics given in Figure 9 makes types and effects
explicit: in particular effect variable quantification and instantiation is explicit. Concrete region environments are extended with
mappings from effect variables to sets of regions. For simplicity, we assume that effect variables are only quantified at letrec
constructs, but not at let. Extending the proof tolet effect variable quantification for non-expansive let-expressions ([Tof90])
does not pose new technical difficulties, but the operational semantics must be modified in unintuitive ways. Note that the re-
finements presented here do not affect the way programs are executed. An implementation can be based solely on the original
operational semantics. The rules have the general form:

s; n; r ` e : �; '! a; s0

where s is the store prior to the evaluation of the expression e, n is the value environment, r the concrete region environment
containing region and effect variables, � and ' are the static Tofte and Talpin type and effect for e, a is the address of the result

27

of the evaluation, and s0 is the store after evaluating e. The domains used by the operational semantics are given below. Note
that region environments always map region variables to a single region, and effect variables to sets of regions.

Region = Int�Color

Lam = Var� e� �

RegionState = unallocated + deallocated +

(O�set
�n
�! Clos + RegClos)

Store = Region
�n
�! RegionState

Clos = Lam� Env�RegEnv

RegClos = Lam�RegionVar� � E�ectVar� � Env�RegEnv

Env = Var
�n
�! Region�O�set

RegEnv = RegionVar + E�ectVar
�n
�! Region + P(Region)

The following paragraphs describe and motivate the refinements to the rules of the operational semantics in Figure 9. Effect
variable instantiation is made explicit in the [REGAPP] rule. The instantiation vector ~' is found analogously to the region
variable instantiations by type and effect inference. Region polymorphic closures contain an extra vector of quantified effect
variables. This information is used in the [REGAPP] rule to extend the region environment of the instantiated closure. The
effect instantiation is computed as described in Section 5.1.3 and equation (1). The effect sets '0

i are obtained from the arrow-
effects (�0i:'

0
i) of the quantified effect variable �0i.

Closures include the type of the associated lambda abstraction, as is apparent from the [LETREC], [REGAPP], [ABS], and
[APP] rules. This information is used in the proof of the [APP] rule to reason about the syntactic type of the callee.

Concrete regions are subscripted with colors. Colors are chosen in the same manner as in the region-based closure analysis,
creating the necessary correspondence between concrete and abstract regions (see Definition 6.2).

The proof requires two distinct letregion constructs as shown in rules [LETREGION] and [LETREGION TT]. The first
construct (letregion) behaves exactly as described in Section 2, where the new region is initially unallocated and is deallo-
cated at the end. The second construct letregion tt has the same semantics as in [TT94], i.e. a region is initially allocated
but empty, and still allocated at the end. There are no free/alloc constructs for such regions. The reason for the second construct is
the finite nature of our color abstraction. Recall that in the region-based closure analysis, the color abstracting the new region in
a letregion construct is chosen to be different from all other “region variable”-bound colors (to correctly capture the aliasing
between region variables). However, we cannot choose the color to be distinct from colors bound by effect variables, because
this would potentially require an infinite number of distinct colors. The color for the new region may thus already be bound to an
effect variable. Our constraints track a single region state per color and region environment at each program point. We therefore
cannot require that the state of the freshly chosen region be unallocated, because it must be the same as the states of equally
colored regions mapped by effect variables. Note that we have chosen unification of states to happen directly at letregion
constructs. This choice is arbitrary and it is possible to delay the unification of the region states (e.g. until applications). Delay-
ing state unification may lead to slightly better annotations, but the current approach is preferred for purposes of readability and
simplicity in the proof. The solution to the constraints for a particular Tofte/Talpin target program determines the kind of each
letregion construct.

Our proof does not attempt to make the reuse of regions formally safe. The proof requires letregion constructs to use
fresh regions. This is arguably a weakness with respect to the Tofte/Talpin system, where the reuse of regions is provably safe
[TT93]. However, we prove that once a region is deallocated, no more reads or writes to the memory held by that region are
made.

6.3 Relations between abstract and concrete entities

The following paragraphs define relations between abstract and concrete entities that are used throughout the proof.

Definition 6.2 A concrete region environment r and an abstract region environmentR match (written r sat R), if they have the
same domain and aliasing structure, and the color annotation of concrete regions corresponds to the colors in the abstract region
environment.

r sat R
def
�

Dom(R) = Dom(r) ^
R(�) = R(�0) () r(�) = r(�0) ^
R(�) = color(r(�)) ^
R(�) = colors(r(�))

28

n(x) = a

s; n; r ` x : �; ; ! a; s
[VAR]

n(f) = a

s(a) = h�x:e : �0; ~� 0; ~�0:'0; n0; r0i where �0 = (� 0; �0)
n0 = n0[f a]
a1 = (r(�); o) o 62 Dom(s(r(�)))
r0 = r0[~�

0 r(~�)]
r00 = r0[�0i (rj�('i)� r0j�('

0
i)) [rj�('i)]

s1 = s[a1 h�x:e : �
0; n0; r00i]

s; n; r ` f [~�; ~'] @ � : �; f�; �0g ! a1; s1

[REGAPP]

a = (r(�); o) o 62 Dom(s(r(�)))
s; n; r ` �x:e@ � : �; f�g ! a; s[a h�x:e : �; n; ri]

[ABS]

s; n; r ` e1 : �1; '1 ! a1; s1 where �1 = (�2
'a

�! �; �)
s1; n; r ` e2 : �2; '2 ! a2; s2

s2(a1) = h�x:e : �
0
1; n0; r0i where �01 = (�02

'l

�! �0; �0)
s2; n0[x a2]; r0 ` e : �

0; 'l ! a3; s3
s; n; r ` e1 e2 : �; '1 ['2 ['a [f�g ! a3; s3

[APP]

a1 = (r(�); o) o 62 Dom(s(r(�)))
n0 = n[f a1]
s1 = s[a1 h�x:e1 : �1; ~�; ~�:'; n; ri] where �1 is the type of �x:e1
s1; n

0; r ` e2 : �2; '2 ! a; s2
s; n; r ` letrec f [~�; ~�:'](x)@ � = e1 in e2 : �2; '2 [f�g ! a; s0

[LETREC]

zd fresh d = minimum color not in color(Rangej�(r))
s0 = s[zd unallocated]
s0; n; r[� zd] ` e : �; ' [f�g ! a1; s1
s1(zd) = deallocated

s; n; r ` letregion � in e : �; '! a1; s1jDom(s)

[LETREGION]

zd fresh d = minimum color not in color(Rangej�(r))
s0 = s[zd fg]
s0; n; r[� zd] ` e : �; ' [f�g ! a1; s1
s1(zd) is allocated
s; n; r ` letregion tt � in e : �; '! a1; s1jDom(s)

[LETREGION TT]

r(�) = zc s(zc) = unallocated
s0 = s[zc fg]
s0; n; r ` e : �; '! a1; s1

s; n; r ` alloc before � e : �; ' [f�g ! a1; s1

[ALLOCBEFORE]

s; n; r ` e : �; '! a1; s1
r(�) = zc s1(zc) is allocated
s2 = s1[zc deallocated]

s; n; r ` free after � e : �; ' [f�g ! a1; s2

[FREEAFTER]

Figure 9: Refined Operational Semantics.

29

Definition 6.3 A store s and address a match a set of abstract values V (written s; a sat V), if V contains an abstraction of the
concrete value stored at addressa in s, and the environment of the concrete closure matches the region-based closure analysis [[�]]
(defined below).

s; a sat V
def
�

a = (o; zc)
zc 2 Dom(s) ^ state(s; zc) = A =)

s(a) = h�x:e; r0; n0i ^
9h�x:e; R0i 2V s.t.

s; r0; n0 sat [[�]] R0

Definition 6.4 A store s, concrete region environment r, and concrete value environment n match an abstract region environ-
mentR and the region-based closure analysis (written s; r; n sat [[�]]R), if the abstract and concrete region environments match,
and if for every variable x in the concrete environment, [[x]] R0 contains an abstraction of the concrete value.

s; r; n sat [[�]] R
def
�

r sat R ^
8(x 2Dom(n)) 9R0 s.t.

(RjDom(R0) = R0 ^ s; n(x) sat [[x]] R0)

Definition 6.5 A store s and a concrete region zc with color c match a state variable Se;R[c] (written s; zc sat Se;R[c]), if the
state of the region zc in the store s corresponds to the solution for Se;R[c].

s; zc sat Se;R[c]
def
�

zc 2 Dom(s) =) state(s; zc) = S(Se;R[c])

Definition 6.6 Finally, a state s and concrete region environment r match an abstract region environmentR, state vector Se;R,
and effect set ' (written s; r sat R;Se;R; '), if r and R match, the states of all regions in ' match the solution of the constraints
for Se;R, and if the color of a region is bound to an effect variable in ', then the region is in the allocated state.

s; r sat R;Se;R; '
def
�

' � Dom(R) ^
r sat R ^
8(zc 2 r(')) s; zc sat Se;R[color(zc)]
8(c 2Rj�(')) S(Se;R[c]) = A

6.4 Soundness Theorem

The proof of our soundness theorem is aided by several lemmas presented below. Lemma 6.7 expresses that a set of abstract
values matching a concrete value can be augmented without changing the relation.

Lemma 6.7 s; a sat V ^ V � V 0 =) s; a sat V 0

Proof: Follows from the definition of s; a sat V . �

A store s can be extended with regions and/or offsets without affecting the validity of the environment abstraction. This fact is
expressed by Lemma 6.8.

Lemma 6.8 If s; r; n sat [[�]] R and s0 is a region and/or offset extension of s, then s0; r; n sat [[�]] R.

Proof: Store extensions cannot recapture dangling references because new regions are always chosen to be fresh.�

A region may change from the unallocated state to the allocated state, or from the allocated to the deallocated state without
affecting the validity of the environment abstraction. This fact is expressed by Lemma 6.9.

Lemma 6.9 If state(s; z) = U and s; r; n sat [[�]] R then s[z fg]; r; n sat [[�]] R. Similarly, if state(s; z) = A and
s; r; n sat [[�]] R then s[z deallocated]; r; n sat [[�]] R.

30

Proof: Allocation of a region cannot recapture dangling references, because the region has never before been in the allocated
state and regions are not reused. �

The next Lemma (6.10) is used in the proof to establish the relation between the store and the constraints after an inductive step
on a subexpression.

Lemma 6.10 Given the following relations and constraints
(1) s; r sat R;S1

e;R; '

(2) s0; r sat R;S2
e;R; '1

(3) '1 � '

(4) Dom(s) = Dom(s0)
(5) 8(zc 2 Dom(s)) s.t. zc 62 r('1) state(s; zc) = state(s0; zc)
(6) 8(c 2 (R(') �R('1)) [Rj�(')) S

1
e;R[c] = S2

e;R[c]

we conclude
s0; r sat R;S2

e;R; '

Proof:
(7) ' � Dom(R) by 1
(8) r sat R by 1
(9) 8(zc 2 r(')) s; zc sat S1

e;R[c] by 1

(10) 8(zc 2 r('1)) s
0; zc sat S2

e;R[c] by 2

(11) 8(c 2Rj�(')) S(S
1
e;R[c]) = A by 1,def. 6.6

(12) 8(c 2Rj�(')) S(S
2
e;R[c]) = A by 11,6

To show: 8(zc 2 r(')) s0; zc sat S2
e;R[c].

(13) c 2 (R(')�R('1)) =) zc 62 r('1) by 3,8
(14) 8(zc 2 r(') � r('1)) c 2 (R(') �R('1)) =) s0; zc sat S2

e;R[c] by 5,13,6,9

(15) let zc 2 r(') � r('1) s.t. c 62 (R(') �R('1))

(16) c 2 R('1) by 15
(17) 9z0c 2 r('1) s.t. z0c 6= zc by 16,15
(18) zc 2 rj�(') _ z0c 2 rj�(') by 17,8,3
(19) c 2 Rj�(') by 18,8
(20) state(s; z0c) = state(s0; z0c) by 10,1,6,19
(21) state(s; z0c) = state(s; zc) by 1
(22) state(s0; zc) = state(s0; z0c) by 20,21,15,5
(23) s0; zc sat S2

e;R[c] by 22,10

(24) 8(zc 2 r(') � r('1)) c 62 (R(') �R('1)) =) s0; zc sat S2
e;R[c] by 15,23

The result follows from 10,14,24, and 12. �

The soundness of our analysis is stated by Theorem 6.11, which says that if the evaluation of an expression ek results in an
address a and a new store s0, then the value stored at a in s0 is correctly modeled by the abstract closure analysis. Furthermore,
the states of regions in store s0 is as predicted by the solution of the constraints.

Theorem 6.11 Assume that S is the solution to the constraints for a closed expression e, of which ek is a subexpression. Given
the result of the region-based closure analysis [[�]] and the following premises,

(1) s; r; n ` ek : �; '! a; s0

(2) s; r; n sat [[�]] R

(3) s; r sat R;S in
ek;R

; '

we conclude
s0; a sat [[ek]] R

s0; r sat R;Sout
ek;R

; '

Proof: The proof is by induction on the structure of ek. Note that
(4) r sat R by 2
(5) ' � Dom(R) by 3

31

There are 9 cases. We prove each one in turn.

Case 1 The operational semantics rule for [VAR] is
(6) s; r; n ` x : �; '! n(x); s

where ' = ;

By the definition of the region-based closure analysis and the constraint generation, we have
(7) [[x]] R =

S
f[[x]] R0 j RjDom(R0) = R0g

Therefore
(8) 9R0 s.t. RjDom(R0) = R0 ^ s; n(x) sat [[x]] R0 by 2
(9) [[x]] R0 � [[x]] R by 7
(10) s; n(x) sat [[x]] R by 8,9,Lemma 6.7
(11) s; r sat R;Sout

ek;R
; ; by def 6.6

The result for [VAR] follows from 10 and 11. �

Case 2 The operational semantics rule for [ABS] is
(12) s; r; n ` �x:e@� : �; '! a; s0

where a = (r(�); o) and ' = f�g

(13) s0 = s[a h�x:e : �; r; ni]

By the definition of the region-based closure analysis and the constraint generation, we have
(14) [[�x:e : �]] R = fh�x:e : �;Rig

(15) S in
ek;R

[R(�)] = A

(16) S in
ek;R

[R(�)] = Sout
ek;R

[R(�)]

Therefore
(17) state(s; r(�)) = A by 3,12,15
(18) s0; r sat R;Sout

ek;R
; ' by 3,13,12,16

(19) s0; a sat [[�x:e : �]] R by 2,12,14
The result for [ABS] follows from 18 and 19.

Case 3 The operational semantics rule for [LETREGION] is
(20) zd0 fresh (to avoid recapture of dangling references)
(21) d0 = minimum color 62 colors(Rangej�(r))
(22) r1 = r[� zd0]

(23) s0 = s[zd0 unallocated]
(24) s0; r1; n ` e1 : �; ' [f�g ! a1; s1

(25) s; r; n ` letregion � in e1 : �; '! a1; s1jDom(s)

By the definition of the region-based closure analysis and the constraint generation, we have
(26) d = minimum color 62 Rangej�(R)
(27) R1 = R[� d]

(28) [[letregion � in e1]] R = [[e1]] R1

(29) 8c 2 R('):S in
ek ;R

[c] = S in
e1;R1

[c]

(30) 8c 2 R('):Sout
e1;R1

[c] = Sout
ek;R

[c]

(31) ck =) S in
e1;R1

[d] = U ^ Sout
e1;R1

[d] = D

(32) :ck =) S in
e1;R1

[d] = A ^ Sout
e1;R1

[d] = A

The choice variable ck associated with the letregion construct expresses the kind of letregion chosen by the constraint solver:
ck) letregion, and:ck) letregion tt. The outline of the proof for [LETREGION] is as follows: Let'1 = '[f�g.
We first show that

s0; r1; n sat [[�]] R1

s0; r1 sat R1; S
in
e1;R1

; '1

By induction, using s0; r1; n ` e1 : �; '1 ! a1; s1, we derive
s1; a1 sat [[e1]] R1

s1; r1 sat R1; S
out
e1;R1

; '1

32

We then show that
s1jDom(s); a1 sat [[letregion � in e1]] R

s1jDom(s); r sat R;Sout
ek;R

; '

and the result follows immediately.
(33) d = d0 by 4,21,26
(34) r1 sat R1 by 33,4,27,22
(35) s0; r; n sat [[�]] R by 2,23,Lemma 6.8
(36) s0; r1; n sat [[�]] R1 by 35,34,27
(37) ' [f�g � Dom(R[� d]) by 5
(38) S(S in

e1;R1
[d]) = U ^ S(Sout

e1;R1
[d]) = D by 31,letreg. choice

(39) s0; zd sat S in
e1;R1

[d] by 33,23,38

Now we establish that there are no regions with color d in region environmentR.
(40) Assume 9z0c 2 rj�(') s.t. c = d

(41) d 2 Rj�(') by 40,4
(42) S(S in

ek ;R
[d]) = A by 41,3,def. 6.6

(43) S(S in
e1;R1

[d]) = A by 42,29

(44) 6 9z0c 2 rj�(') s.t. c = d by 40,43,38,contrad.
(45) s0; r1 sat R1; S

in
e1;R1

; ' by 3,23,44,21

(46) s0; r1 sat R1; S
in
e1;R1

; '1 by 34,37,45,39

(47) s1; a1 sat [[e1]] R1 by 24,36,46,induct
(48) s1; r1 sat R1; S

out
e1;R1

; '1 by 24,36,46,induct
It remains to be shown that the abstract value of the letregion construct abstracts the result, and that the store is in the state

specified by the constraints.
(49) s1; a1 sat [[letregion � in e1]] R by 47,28
(50) Dom(s1)�Dom(s) = fzdg by 23,33
(51) s1jDom(s); a1 sat [[letregion � in e1]] R by 49,50,T&T typing
(52) s1; r sat R;Sout

e1;R1
; ' by 48,' � '1,22,27

(53) s1jDom(s); r sat R;Sout
ek;R

; ' by 52,30
The result for [LETREGION] follows from 51 and 53.

Case 4 The operational semantics rule for [LETREGION TT] is
(54) zd0 fresh (to avoid recapture of dangling references)
(55) d0 = minimum color 62 colors(Rangej�(r))
(56) r1 = r[� zd0]

(57) s0 = s[zd0 fg]

(58) s0; r1; n ` e1 : �; ' [f�g ! a1; s1

(59) s; r; n ` letregion tt � in e1 : �; '! a1; s1jDom(s)

By the definition of the region-based closure analysis and the constraint generation, we have
(60) d = minimum color 62 Rangej�(R)
(61) R1 = R[� d]

(62) [[letregion � in e1]] R = [[e1]] R1

(63) 8c 2 R('):S in
ek ;R

[c] = S in
e1;R1

[c]

(64) 8c 2 R('):Sout
e1;R1

[c] = Sout
ek;R

[c]

(65) ck =) S in
e1;R1

[d] = U ^ Sout
e1;R1

[d] = D

(66) :ck =) S in
e1;R1

[d] = A ^ Sout
e1;R1

[d] = A

The choice variable ck associated with the letregion construct again expresses the kind of letregion chosen by the constraint
solver: ck) letregion, and:ck) letregion tt. The proof for [LETREGION TT] is very similar to [LETREGION],

33

except for the state of region zd0 : Let '1 = ' [f�g.
(67) d = d0 by 4,55,60
(68) r1 sat R1 by 67,4,56,61
(69) s0; r; n sat [[�]] R by 2,57,Lemma 6.8
(70) s0; r1; n sat [[�]] R1 by 69,68,61
(71) ' [f�g � Dom(R[� d]) by 5
(72) S in

e1;R1
[d] = A ^ Sout

e1;R1
[d] = A by 66,letreg. choice

(73) s0; zd sat S in
e1;R1

[d] by 67,57,72
Now we do the inductive step on e1.

(74) s0; r sat R;S in
e1;R1

; ' by 3,63,57

(75) s0; r1 sat R1; S
in
e1;R1

; '1 by 74,73

(76) s1; a1 sat [[e1]] R1 by 59,70,75,induct.
(77) s1; r1 sat R1; S

out
e1;R1

; '1 by 59,70,75,induct.
It remains to be shown that the abstract value matches the concrete value and that the store satisfies the constraints.

(78) s1; a1 sat [[letregion tt � in e1]] R by 76,62
(79) Dom(s1)�Dom(s) = fzdg by 57,67
(80) s1jDom(s); a1 sat [[letregion tt � in e1]] R by 78,79,T&T typing
(81) s1; r sat R;Sout

e1;R1
; ' by 77,' � '1,56,61

(82) s1jDom(s); r sat R;Sout
ek;R

; ' by 81,64
The result for [LETREGION TT] follows from 80 and 82.

Case 5 The operational semantics rule for [APP] is
(83) s; r; n ` e1 : �1; '1 ! a1; s1 where �1 = (�2

'b

�! �; �)

(84) s1; r; n ` e2 : �2; '2 ! a2; s2

(85) s2(a1) = h�x:eb : �
0
1; n0; r0i where �01 = (�02

'0

b

�! �0; �0)

(86) s2; r0; n0[x a2] ` eb : �
0; '0

b ! a3; s3

(87) s; r; n ` e1 e2 : �; '! a3; s3 where ' = '1 ['2 ['b [f�g

By the definition of the region-based closure analysis and the constraint generation, we have
(88) For each h�x:eb : �01; R0i 2 [[e1]] R

(89) [[eb]] R0 � [[e1 e2]] R

(90) [[e2]] R � [[x]] R0

(91) A = R('b) = R0('
0
b)

(92) 8(c 2R('1)) S
in
ek;R

[c] = S in
e1;R

[c] ^ Sout
e1;R

[c] = S1
ek
R[c]

(93) 8(c 2R(')�R('1) [Rj�(')) S
in
ek;R

[c] = S1
ek;R

[c]

(94) 8(c 2R('2)) S
1
ek;R

[c] = S in
e2;R

[c] ^ Sout
e2;R

[c] = S2
ek;R

(95) 8(c 2R(')�R('2) [Rj�(')) S
1
ek;R

[c] = S2
ek;R

[c]

(96) 8(c 2A) S2
ek;R

[c] = S in
eb;R0

[c] ^ Sout
eb;R0

[c] = Sout
ek;R

[c]

(97) 8(c 2R0j�('
0
b)) S

in
eb;R0

[c] = A

(98) 8(c 2R(')�A [Rj�(')) S
2
ek;R

[c] = Sout
ek;R

[c]

(99) S2
ek;R

[R(�)] = A

The proof for [APP] proceeds as follows: We use induction and Lemma 6.10 on expressions e1 and e2 to establish the state
relation prior to evaluating the function body eb. Then the state relation and the environment abstraction is established in the
context of eb and its abstract region environmentR0. Finally, the state relation after evaluating eb is mapped back to the calling

34

context ek.
(100) '1 � ' by 87
(101) s; r sat R;S in

e1;R
; '1 by 3,92,100

(102) s1; a1 sat [[e1]] R by 83,2,101,induct
(103) s1; r sat R;Sout

e1;R
; '1 by 83,2,101,induct

(104) s1; r sat R;S1
ek;R

; ' by 3,103,100,92,
93,Lemma 6.10

(105) s1; r; n sat [[�]] R by 2,83,Lemmas 6.8, 6.9
Now similarly for e2.

(106) '2 � ' by 87
(107) s1; r sat R;S in

e2;R
; '2 by 104,94,106

(108) s2; a2 sat [[e2]] R by 84,105,107,induct
(109) s2; r sat R;Sout

e2;R
; '2 by 84,105,107,induct

(110) s2; r sat R;S2
ek;R

; ' by 104,109,106,94,
95,Lemma 6.10

In order to do the inductive step on eb, we show
s2; r0; n0[x a2] sat [[�]] R0

s2; r0 sat R0; S
in
eb;R0

; '0
b

(111) state(s2; r(�)) = A by 110,99
(112) h�x:eb : �

0
1; R0i 2 [[e1]] R by 85,102,111

(113) r0 sat R0 by 102,112
(114) s2; r0; n0 sat [[�]] R0 by 102,Lemmas 6.8,6.9
(115) s2; r0; n0[x a2] sat [[�]] R0 by 108,90,114

(116) 'b � ' by 87
(117) r('b) = r0('

0
b) by 83,85,Lemma 6.1

(118) R('b) = R0('
0
b) by 117,4,113

(119) 8(zc 2 r('b)) s2; zc sat S2
ek;R

[c] by 110,def. 6.6,116

(120) 8(zc 2 r0('
0
b)) s2; zc sat S in

eb;R0
[c] by 119,117,118,91,96

(121) 8(c 2R0j�('
0
b)) S(S

in
eb;R0

[c]) = A by 97

(122) s2; r0 sat R0; S
in
eb;R0

; '0
b by 113,120,121

Using induction on eb, we obtain:
(123) s3; a3 sat [[eb]] R0 by 86,115,122,induct
(124) s3; r0 sat R0; S

out
eb;R0

; '0
b by 86,115,122,induct

(125) s3; a3 sat [[e1 e2]] R by 123,89, Lemma 6.7
It remains to be shown that s3; r sat R;Sout

ek;R
; '.

(126) 8(zc 2 r0('
0
b)) s3; zc sat Sout

eb;R0
[c] by 124,def 6.6

(127) 8(zc 2 r('b)) s3; zc sat Sout
ek;R

[c] by 126,117,118,96

(128) s3; r sat R;Sout
ek;R

; 'b by 127,110,98

(129) s3; r sat R;Sout
ek;R

; ' by 110,128,116,117,
86,98,Lemma 6.10

The result for [APP] follows from 125 and 129.

Case 6 The operational semantics rule for [LETREC] is
(130) a1 = (r(�); o) o 62 Dom(s(r(�)))
(131) n0 = n[f a1]

(132) s1 = s[a1 h�x:e1 : �1; ~�; ~�:'; n; ri] where �1 is the type of �x:e1
(133) s1; r; n

0 ` e2 : �2; '2 ! a2; s2

(134) s; r; n ` letrec f [~�; ~�:'](x)@� = e1 in e2 : �2; '! a2; s2
where ' = '2 [f�g

35

By the definition of the region-based closure analysis and the constraint generation, we have
(135) [[letrec f [~�; ~�:'](x)@� = e1 in e2]] R = [[e2]] R

(136) h�x:e1 : �
0; ~�; ~�:';Ri = [[f]] R

(137) S in
ek;R

[R(�)] = A

(138) 8(c 2R('2)) S
in
ek;R

[c] = S in
e2;R

[c]

(139) 8(c 2R('2)) S
out
e2;R

[c] = Sout
ek;R

[c]

(140) 8(c 2R(')�R('2) [Rj�(')) S
in
ek;R

[c] = Sout
ek;R

[c]

We first prove that the region for the polymorphic closure is allocated.
(141) � 2 ' by 134
(142) state(s; r(�)) = A by 3,137,141

Now we establish the environment relation for n0 and use an inductive step on e2.
(143) s1; r; n sat [[�]] R by 2,132,Lemma 6.8
(144) s1; a1 sat [[f]] R by 143,136,132
(145) s1; r; n

0
sat [[�]] R by 143,144,131

(146) s1; r sat R;S in
ek;R

; ' by 3,132

(147) '2 � ' by 134
(148) s1; r sat R;S in

e2;R
; '2 by 146,138,134

(149) s2; a2 sat [[e2]] R by 133,145,148,induct
(150) s2; r sat R;Sout

e2;R
; '2 by 133,145,148,induct

(151) s2; a2 sat [[letrec f [~�; ~�:'] : : :]] R by 149,135
(152) s2; r sat R;Sout

ek;R
; '2 by 150,139

(153) s2; r sat R;Sout
ek;R

; ' by 146,152,147,133,
140,Lemma 6.10

The result for [LETREC] follows from 151 and 153.

Case 7 The operational semantics rule for [REGAPP] is
(154) n(f) = a

(155) s(a) = h�x:e1 : �
0; ~� 0; ~�0:'0; n0; r0i where �0 = (� 0; �0)

(156) n0 = n0[f a]

(157) r0 = r0[�
0
i r(�i)] where �0i = ~� 0[i], �i = ~�[i]

(158) r00 = r0[�0i (rj�('i)� r0j�('
0
i)) [rj�('i)] where �0i = ~� 0[i], 'i = ~'[i]

(159) s1 = s[a1 h�x:e1 : �
0; n0; r00i]

(160) s; r; n ` f [~�; ~']@� : �; '! a1; s1 where ' = f�; �0g

By the definition of the region-based closure analysis and the constraint generation, we have
(161) fh�x:e1 : �

0; ~� 0; ~�0:'0; R0ig = [[f]] R

(162) R0 = R0[�
0
i R(�i)]

(163) R00 = R0[�0i (Rj�('i)�R0j�('
0
i)) [Rj�('i)]

(164) [[f [~�; ~']@�]] R = fh�x:e1 : �
0; R00ig

(165) S in
ek;R

[R(�)] = A

(166) S in
ek;R

[R(�0)] = A

(167) 8(c 2R(')) S in
ek;R

[c] = Sout
ek;R

[c]

36

The main point in this case is to establish the relations r00 sat R00 and s1; r00; n0 sat [[�]] R00. Note that the effect sets '0
i are

part of the arrow-effect �0i:'
0
i associated with the quantified effect variable �0i in the type � 0. We have:

(168) r0 sat R0 by 2,155,161
(169) state(s; r(�0)) = A by 3,166
(170) state(s; r(�)) = A by 3,165
(171) r00jDom(r0) = r0 = rjDom(r0) by 157,158,letrec
(172) R00jDom(R0) = R0 = RjDom(R0) by 162,163,letrec
(173) f�01; : : : ; �

0
ng \ Domj�(r0) = ; by 171

(174) f�01; : : : ; �
0
ng [Domj�(r0) = Domj�(r00) by 157,158

(175) f�01; : : : ; �
0
mg \ Domj�(r0) = ; by 171

(176) f�01; : : : ; �
0
mg [Domj�(r0) = Domj�(r00) by 157,158

(177) 8(i 2f1; : : : ; ng) r00(�0i) = r(�i) by 157,158
(178) 8(i 2f1; : : : ; ng) R00(�0i) = R(�i) by 162,163

We first prove 8(�; �0 2Domj�(R00)) R00(�) = R00(�0) () r00(�) = r00(�0).
(179) 8(�; �0 2 Domj�(R0)) R

00(�) = R00(�0) () r00(�) = r00(�0) by 171,172,173,168
(180) 8(i; j 2 f1; : : : ; ng) R00(�0i) = R00(�0j) () R(�i) = R(�j) by 178

(181) 8(i; j 2 f1; : : : ; ng) R00(�0i) = R00(�0j) () r(�i) = r(�j) by 180,4

(182) 8(i; j 2 f1; : : : ; ng) R00(�0i) = R00(�0j) () r00(�0i) = r00(�0j) by 181,177
179 and 182 leave us with the case

8(� 2Domj�(R0)) 8(i 2 f1; : : : ; ng) R
00(�) = R00(�0i) () r00(�) = r00(�0i)

(183) Let � 2 Domj�(R0); i 2 f1; : : : ; ng

(184) Case =): Assume R00(�) = R00(�0i) = c

(185) R(�) = c by 183,184,172
(186) R(�i) = c by 183,184,178
(187) r(�) = r(�i) by 185,186,4
(188) r00(�) = r00(�0i) by 187,183,171,177
(189) R00(�) = R00(�0i) =) r00(�) = r00(�0i) by 184,188

(190) Case(=: Assume r00(�) = r00(�0i) = zc

(191) r(�) = zc by 183,171,190
(192) r(�i) = zc by 183,177,190
(193) R(�) = R(�i) by 191,192,4
(194) R00(�) = R00(�0i) by 193,183,172,178
(195) r00(�) = r00(�0i) =) R00(�) = R00(�0i) by 190,194
(196) 8(� 2Domj�(R0)) 8(i 2 f1; : : : ; ng) R

00(�) = R00(�0i) () r00(�) = r00(�0i) by 183,195
(197) 8(�; �0 2 Domj�(R00)) R00(�) = R00(�0) () r00(�) = r00(�0) by 174,179,182,196

Now we prove 8(� 2Domj�(R00)) R00(�) = color(r00(�)).
(198) 8(� 2Domj�(R0)) R

00(�) = color(r00(�)) by 171,172,168
(199) 8(i 2f1; : : : ; ng) R00(�0i) = color(r00(�0i)) by 177,178,4
(200) 8(� 2Domj�(R00)) R00(�) = color(r00(�)) by 198,199,174

To establish r00 sat R00, it remains to be shown that 8(� 2Domj�(R00)) R00(�) = colors(r00(�)).
(201) 8(� 2Domj�(R0)) R

00(�) = colors(r00(�)) by 171,172,168
(202) Let i 2 f1; : : : ;mg
(203) Assume c 2 R00(�0i)

(204) c 2 (Rj�('i)�R0j�('
0
i)) [Rj�('i) by 203,202,163

(205) Case 1: c 2 Rj�('i) ^ c 62 R0j�('
0
i)

(206) 9zc 2 rj�('i) s.t. color(zc) = c by 4,205
(207) 6 9zc 2 r

0j�('
0
i) s.t. color(zc) = c by 200,205,158,163

(208) 9zc 2 (rj�('i)� r0j�('
0
i) [rj�('i)) s.t. color(zc) = c by 206,207

37

(209) Case 2: c 2 Rj�('i)
(210) 9zc 2 rj�('i) s.t. color(zc) = c by 4,209
(211) c 2 R00(�0i) =) c 2 colors(r00(�0i)) by 203,208,210

(212) Assume c 2 colors(r00(�0i))
(213) 9zc 2 rj�('i)� r0j�('

0
i) [rj�('i) s.t. color(zc) = c by 212,158

(214) Case 1: zc 2 rj�('i) ^ zc 62 r
0j�('

0
i)

(215) c 2 Rj�('i) by 214, 4
(216) c 62 R0j�('

0
i) by 200,214,163,158

(217) c 2 Rj�('i)�R0j�('
0
i) by 215,216

(218) c 2 R00(�0i) by 217,163

(219) Case 2: zc 2 rj�('i)
(220) c 2 Rj�('i) by 219,4
(221) c 2 R00(�0i) by 220,163
(222) c 2 colors(r00(�0i)) =) c 2 R00(�0i) by 212,218,221
(223) 8(i 2f1; : : : ;mg) R00(�0i) = colors(r00(�0i)) by 202,211,222
(224) 8(� 2Domj�(R00)) R00(�) = colors(r00(�)) by 201,223,176

It follows that
(225) r00 sat R00 by 197,200,224

We now show s1; r
00; n0 sat [[�]] R00 and the result for [REGAPP] follows easily.

(226) s; n(f) sat [[f]] R by 2
(227) s; r0; n0 sat [[�]] R0 by 171
(228) s1; r0; n0 sat [[�]] R0 by 227,159, Lemma 6.8
(229) s1; r

00; n0 sat [[�]] R00 by 228,225,171,172,def 6.4
(230) s1; a sat [[f]] R by 154,226,159
(231) s1; r

00; n0 sat [[�]] R00 by 229,230,156
(232) s1; a1 sat [[f [~�; ~']@�]] R by 159,164,231
(233) s1; r sat R;Sout

ek;R
; ' by 3,167

The result for [REGAPP] follows from 232 and 233.

Case 8 The operational semantics rule for [FREE AFTER] is
(234) s; n; r ` e1 : �1; '1 ! a1; s1

(235) r(�) = zc

(236) state(s1; zc) = A

(237) s2 = s1[zc deallocated]
(238) s; n; r ` free after � e1 : �1; '! a1; s2 where ' = '1 [f�g

By the definition of the constraint generation and obvious extension of the region-based closure analysis, we have
(239) [[free after � e1]] R = [[e1]] R

(240) 8(c 2R('1)) S
in
ek;R

= S in
e1;R
^ Sout

e1;R
= S1

ek;R

(241) 8(c 2R(')�R('1) [Rj�(')) S
in
ek;R

= S1
ek;R

(242) 8(c 2R(') s.t. c 6= R(�)) S1
ek;R

= Sout
ek;R

(243) hS1
ek;R

[R(�)]; ck; S
out
ek;R

[R(�)]id

(244) R(�) 2 Rj�(') =) ck = false
Note that ck = true since the free after construct actually appears in the completion. We therefore have:

(245) ck = true
(246) R(�) 62 Rj�(') by 244,245
(247) S(S1

ek;R
[R(�)]) = A by 243,245,def 5.2

(248) S(Sout
ek;R

[R(�)]) = D by 243,245,def 5.2

38

We first do the inductive step and then establish the new store relation.
(249) s; r sat R;S in

e1;R
; '1 by 3,240,238

(250) s1; a1 sat [[e1]] R by 234,2,249,induct
(251) s1; r sat R;Sout

e1;R
; '1 by 234,2,249,induct

(252) s1; a1 sat [[free after � e1]] R by 250,239
(253) s1; r sat R;S1

ek;R
; '1 by 251,240

(254) s1; r sat R;S1
ek;R

; ' by 3,253,238,234,
241,Lemma 6.10

(255) state(s1; r(�)) = A by 247,254
(256) s2; r(�) sat Sout

ek;R
[R(�)] by 237,248

(257) 8(zc 2 r(') s.t. color(zc) 6= R(�)) s2; zc sat Sout
ek;R

[color(zc)] by 254,242

(258) 6 9z0c 2 r(') s.t. z0c 6= r(�) ^ color(z0c) = R(�) by 4,246
(259) 8(zc 2 r(')) s2; zc sat Sout

ek;R
[color(zc)]

(260) 257; 258; 256

(261) 8(c 2Rj�(')) S(S
out
ek;R

[c]) = A by 254,242,246

(262) s2; r sat R;Sout
ek;R

; ' by 238,4,259,261

The result for [FREE AFTER] follows from 252 and 262.

Case 9 The operational semantics rule for [ALLOC BEFORE] is
(263) r(�) = zc

(264) state(s; zc) = U

(265) s0 = s[zc fg]

(266) s0; n; r ` e1 : �1; '1 ! a1; s1

(267) s; n; r ` alloc before � e1 : �1; '! a1; s1
where ' = '1 [f�g

By the definition of the constraint generation and obvious extension of the region-based closure analysis, we have
(268) [[alloc before � e1]] R = [[e1]] R

(269) 8(c 2R(') s.t. c 6= R(�)) S in
ek;R

= S1
ek;R

(270) hS in
ek;R

[R(�)]; ck; S
1
ek;R

[R(�)]ia

(271) 8(c 2R('1)) S
1
ek;R

= S in
e1;R
^ Sout

e1;R
= Sout

ek;R

(272) 8(c 2R(')�R('1) [Rj�(')) S
1
ek;R

= Sout
ek;R

(273) R(�) 2 Rj�(') =) ck = false
Note that ck = true since the alloc before construct actually appears in the completion. We therefore have:

(274) ck = true
(275) R(�) 62 Rj�(') by 273,274
(276) S(S in

ek;R
[R(�)]) = U by 270,274,def 5.1

(277) S(S1
ek;R

[R(�)]) = A by 270,274,def 5.1
We first establish the new store relation.

(278) state(s; r(�)) = U by 3,276
(279) s0; r(�) sat S1

ek;R
[R(�)] by 265,263,277

(280) 8(zc 2 r(') s.t. color(zc) 6= R(�)) s0; zc sat S1
ek;R

[color(zc)] by 3,269

(281) 6 9z0c 2 r(') s.t. z0c 6= r(�) ^ color(z0c) = R(�) by 4,275
(282) 8(zc 2 r(')) s0; zc sat S1

ek;R
[color(zc)] by 279,280,281

(283) 8(c 2Rj�(')) S(S
1
ek;R

[c]) = A by 3,269,275

(284) s0; r sat R;S1
ek;R

; ' by 267,4,282,283

39

Now we can do the inductive step.
(285) s0; r; n sat [[�]] R by 2,Lemma 6.9
(286) s0; r sat R;S in

e1;R
; '1 by 284,271,267

(287) s1; a1 sat [[e1]] R by 266,285,286,induct
(288) s1; r sat R;Sout

e1;R
; '1 by 266,285,286,induct

(289) s1; a1 sat [[alloc before � e1]] R by 287,268
(290) s1; r sat R;Sout

ek;R
; '1 by 288,271

(291) s1; r sat R;Sout
ek;R

; ' by 284,290,267,266,
272,Lemma 6.10

The result for [ALLOC BEFORE] follows from 289 and 291.

7 Implementation and Experiments

We have implemented our algorithm in Standard ML [MTH90]. Our system is built on top of an implementation of the system
described in [TT93, TT94], generously provided to us by Mads Tofte. The implementation is extended with numbers, pairs,
lists, and conditionals, so that non-trivial programs can be tested. For each source program, we first use the Tofte/Talpin system
to region annotate the program. We then compute the extended closure analysis (Section 4). The next step adds allocation and
deallocation choice points and generates the allocation constraints (Section 5). The constraints are solved and the solution is
used to complete the source program, transforming selected choice points into allocation/deallocation operations, and removing
the rest. The implementation is roughly 5,500 lines plus the roughly 8,500 lines of code in the Tofte/Taplin base implementation.

Our annotations are orthogonal to the storage mode analysis mentioned in [TT94] and described in more detail in [Tof94]
and in Section 2.6. Thus, the target programs contain both storage mode annotations and the allocation annotations described in
this paper. On the other hand, our analysis subsumes the optimization described in Appendix B of [TT94], so that optimization
is disabled in our system. Summary performance measures are in Table 2. All of the examples we have tried are analyzed in a
matter of seconds by our system on a standard workstation.

The target programs were run on an instrumented interpreter, also written in Standard ML/NJ. In addition to the data above,
we also gather complete memory traces, which we present as graphs depicting memory usage over time.

While we have tested our system on many programs, neither the size of our benchmarks nor the size of our benchmark suite
is large enough to draw meaningful statistical conclusions. Instead, we present representative examples of three typical patterns
of behavior we have identified.

A number of programs show asymptotic improvement over the Tofte/Talpin system. One example given in their paper (due
to Appel [App92]), has O(n2) space complexity. Our completion of this program exhibits O(n) space complexity (Figure 10).
In this program, our analysis is able to deallocate a recursive function’s parameter before function evaluation completes. Because
the Tofte/Talpin system enforces a stack discipline, it cannot reclaim function parameters that become “dead” part way through
the activation of a function. Another example, a straightforward tail-recursive factorial function, has a similar pattern. The
improvement in this case is from O(n) to O(1) space complexity.

Another typical pattern is that our system has the same asymptotic space complexity as Tofte/Talpin, but with a constant
factor improvement. Representative examples include Quicksort, Samsort, Fibonacci, and Randlist. The memory usage graphs
are shown in Figures 11, 12, 14, and 15, respectively. The measurements for the graphs were made using smaller inputs than
the experiments in Table 2; smaller problem sizes yield more readable graphs.

The Quicksort graph (Figure 11) has a curious feature: at times the memory usage drops below the amount needed to store
the list! Our measurements count only heap memory usage. The evaluation stack is not counted, a measurement methodology
consistent with [TT94]. Quicksort is not unusual in the behavior of using the evaluation stack to store values that would seem
to belong in the heap. The program recursively traverses its input list, stores the contents on the evaluation stack, frees the list
cells when it reaches the end, and builds up the output list upon return.

In the third class of programs our system has nearly the same memory behavior as Tofte/Talpin (e.g., the factorial function).
This case arises most often when the Tofte/Talpin annotation is either already the best possible or very conservative. Conserva-
tive annotations distinguish few regions. Because values in regions must be deallocated together, having fewer regions results
in coarser annotations. Of course, the memory behavior of a program annotated using our algorithm is never worse than that of
the same program annotated using the Tofte/Talpin algorithm.

Results for a larger suite of programs are presented in Table 3. The source code for all of these programs may be found at
http://kiwi.cs.berkeley.edu/˜nogc/examples/.

40

Appel(100) Quicksort(500) Fibonacci(6) Randlist(25) Fac(10)
A-F-L T-T A-F-L T-T A-F-L T-T A-F-L T-T A-F-L T-T

(1) 208 1111 112 1520 15 20 12 90 25 25
(2) 81915 81915 45694 45694 190 190 289 289 66 66
(3) 101814 101814 65266 65266 190 190 363 363 66 66
(4) 306 20709 2509 8078 10 14 85 161 14 14
(5) 1 1 1502 1502 1 1 77 77 1 1

(1) Maximum number of regions allocated (unit: 1 region)
(2) Total number of region allocations
(3) Total number of value allocations
(4) Maximum number of storable values held (unit: 1 sv)
(5) Number of values stored in the final memory (unit: 1 sv)

Table 2: Summary of results.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

M
em

or
y

si
ze

, i
n

va
lu

es

Time

Appel

Tofte/Talpin, max = 279
A-F-L, max = 36

Figure 10: Memory usage in Appel example [App92]
(n = 10).

41

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000 3500 4000

M
em

or
y

si
ze

, i
n

va
lu

es

Time

quick

Tofte/Talpin, max = 603
A-F-L, max = 259

Figure 11: Memory usage in Quicksort example
(sort 50 element list of random integers).

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

M
em

or
y

si
ze

, i
n

va
lu

es

Time

samsort

Tofte/Talpin, max = 334
A-F-L, max = 239

Figure 12: Memory usage in Samsort example
(smooth applicative mergesort 20 element list of random integers).

42

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

M
em

or
y

si
ze

, i
n

va
lu

es

Time

fac4

Tofte/Talpin, max = 27
A-F-L, max = 7

Figure 13: Memory usage in Fac4 example
(tail-recursive factorial of 10).

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200

M
em

or
y

si
ze

, i
n

va
lu

es

Time

fibonacci

Tofte/Talpin, max = 14
A-F-L, max = 10

Figure 14: Memory usage in Fibonacci example
(recursive fibonacci of 6).

43

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

M
em

or
y

si
ze

, i
n

va
lu

es

Time

randlist

Tofte/Talpin, max = 161
A-F-L, max = 85

Figure 15: Memory usage in Randlist example
(generate 25 element list of random integers).

max max max max region value
program total total final regions regions values values ratio ratio

name regions values regions (T-T) (A-F-L) (T-T) (A-F-L) T-T/A-F-L T-T/A-F-L
Appel 1005 1194 1 121 28 279 36 4.32 7.75

alias 9 11 4 7 5 7 4 1.40 1.75
append 19 27 11 6 6 12 11 1.00 1.09

big 52633 70163 1753 779 271 5018 2259 2.87 2.22
copy 16 33 10 10 10 19 13 1.00 1.46

count 48 77 11 7 4 34 32 1.75 1.06
crunch 347 684 31 42 12 377 47 3.50 8.02

downfrom 2115 3912 901 13 10 1807 1805 1.30 1.00
fac1 66 66 1 25 25 14 14 1.00 1.00

fibonacci 190 190 1 20 15 14 10 1.33 1.40
map 73 121 32 11 9 56 55 1.22 1.02

mergesort2 35519 46056 752 777 264 1767 1291 2.94 1.37
quick 19606 27334 752 770 75 4012 1259 10.27 3.19

randlist 289 363 77 90 12 161 85 7.50 1.89
relax 42727 73124 301 618 19 30913 409 32.53 75.58

samsort 819 1112 186 91 20 334 239 4.55 1.40

Table 3: Summary of results for larger suite.

44

7.1 Constraints

The current implementation handles quantified effect variables slightly differently than described in Section 5.1.5, for simplicity
of implementation. The implementation does not explicitly represent effect variables in the region environments. Instead, it
categorizes all effect variables into one of three classes: unquantified, quantified monotonic, and quantified antimonotonic. The
class is determined by first finding the point in the program where the effect variable was quantified, and then inspecting the type
quantified at that point. If there is no such point, it is unquantified. If there is such a point, and the effect variable does not appear
in an anti-monotonic position in the type, then it is quantified monotonic. If the variable does appear in an antimonotonic position
in the type, then it is quantified antimonotonic. The classification of effect variables is a syntactic property of the program; no
analysis is required, which was the primary motivation for this approach.

At an application point, we examine the arrow effect for both the function subexpression in the application (i.e. the “caller
effect” ') and at the abstraction where the closure was generated (i.e. the “callee effect”'0). If any of the effect variables in the
caller or callee effect are quantified antimonotonic, then all region variables in both effects are constrained to be A, in both the
application and the abstraction.

If none of these effect variables are quantified antimonotonic, then we conjecture that the set of colors obtained by applying
the caller’s region environment (i.e. R) to the caller effect is a superset of the corresponding set of colors obtained by applying
the callee’s region environment R0 to the callee effect. In other words, we conjecture that:

R(') � R0('0)

All the colors in R(') nR0('0) are constrained to A as well.
We can only conjecture that this implementation is sound. Certainly, it works for all the examples we have tried. We plan

to replace it with the global effect flow analysis described in Section 5.1.5. We expect the newer analysis to be more precise as
well as better grounded theoretically, with a minimal increase in execution time. It is likely that implementing the full system
in which abstract region environments map both region variables and effect variables would lead to an exponential blowup in
the number of states generated in the region-based closure analysis.

Also, we have not yet implemented the phase of the constraint solver which deals with inconsistent partial labellings. In
practice, we find that only highly contrived counterexamples lead to inconsistent partial labellings. For all other programs we
tried, the constraint solver found a solution. Also, in all of these cases, there was no additional improvement to the solution that
was apparent.

7.2 Comparison with storage mode analysis

Both our system and the storage mode analysis (Section 2.6) performed by the base Tofte/Talpin system are designed to improve
memory utilization. It is instructive to compare the two.

First, the two optimizations are orthogonal. Storage mode analysis “resets” the region at various times during its lifetime.
Our system allocates the region at some point (hopefully the latest possible) before the dynamic lifetime, and frees it at some
point (hopefully the earliest) after the dynamic lifetime. The two optimizations do not interfere with each other. All of our
measurements were peformed with storage mode analysis enabled.

It has been our experience that sometimes the storage mode annotation is effective by itself, sometimes our analysis is ef-
fective even without the storage mode annotation, and sometimes it is possible to fool both analyses. We illustrate this point
by comparing the effectiveness of the two approaches in performing tail call optimization of variants of an iterative factorial
function.

The first variant is successfully optimized by the storage mode analysis:

Example 7.1

letrec fac1 (p) =
let n = snd p in

let acc = fst p in
if n = 0

then p
else fac1(n * acc, n - 1)

end
end

in fac1(1, 10)

45

letregion r101
in
letrec

fac1[r102,r103,r104] (p:(((int,r102)*(int,r103)),r104)) attop r101 =
let n:(int,r103) = snd p
in let acc:(int,r102) = fst p

in letregion r105
in
if letregion r106 in (n=(0 attop r106)) attop r105 end
then p
else
letregion r107
in
fac1[sat r102, sat r103, sat r104] attop r107
(((n*acc) sat r102,
letregion r108 in (n-(1 attop r108)) sat r103 end
) sat r104
)

end
end

end
end

) at r101
in letregion r109,r110

in
fst

letregion r111
in
fac1[atbot r0, atbot r109, atbot r110] attop r111
(((1 attop r0),(10 attop r109)) attop r110)

end
end

end
end

Figure 16: Translation of fac1 example.

46

The translation of this program is shown in Figure 16. Because p appears in the then branch, the input and output regions
of the function are unified. In the translation of this program, the definition of fac1 quantifies three region variables: one region
holds both the input and output n, another holds both the input and output acc, and the third holds the pair.

It turns out that in this case, the storage mode analysis is able to determine that all three stores in the else branch can be
done with an atbot annotation, meaning that they are reset to size one on each iteration.

If the order of the two arguments were reversed as in Example 7.2, then the store of the new value of n is forced to an attop
annotation, because the n � acc computation follows the n� 1 computation, so that the old value of n is still live. Thus, storage
grows linearly with the number of iterations.

Example 7.2

letrec fac2 (p) =
let n = fst p in

let acc = snd p in
if n = 0

then p
else fac2(n - 1,n * acc)

end
end

in fac2(10, 1)

Unfortunately, our system cannot improve Example 7.2 because the input and output regions of fac2 are unified. Each of
these regions is live during the entire fac2 computation; there is no opportunity to free them earlier.

In our experience with the full system, we have found that separating regions as much as possible often improves results.
With storage mode analysis alone, however, separating regions often makes things worse. Consider, for example, changing
Example 7.1 so that the then branch performs a copy of p:

Example 7.3

letrec fac3 (p) =
let n = snd p in

let acc = fst p in
if n = 0

then (n + 0, acc + 0)
else fac1(n * acc, n - 1)

end
end

in fac1(1, 10)

In general, separating regions improves the accuracy of the region inference algorithm, but in this case it also eliminates the
opportunity for storage mode analysis to optimize the tail call. In Example 7.3, fac3 uses separate regions to store the inputs and
the outputs. It also makes use of recursive region polymorphism, so that the arguments to the recursive call are in another set of
regions.

Now, the argument regions become dead as soon as the new arguments for the recursive call are built. However, there is no
way for storage mode analysis to exploit this fact; it can only optimize when there is a store to a region. In fac3, there is no store
to the regions containing the argument.

Our analysis, on the other hand, easily discovers that the argument regions become dead before the recursive call, and in-
serts deallocation annotations immediately after the last use of each argument value. Thus, it successfully optimizes the tail call
recursion, allowing fac3 to run in constant space.

The ability of our system to optimize the tail recursion of Example 7.3 survives switching the order of the arguments.
This example illustrates a number of points. First, it shows that our system is incomparable to storage mode analysis; neither

optimization subsumes the other. Second, it shows that it is capable of making the overall optimization quality less sensitive to
small program changes. At least in this example, it makes the dictum “separate regions where possible” much more useful.
With storage mode annotation alone, this dictum is problematical, because sometimes it inhibits another optimization that was
working better when the regions were unified.

It is difficult to generalize the experience with the factorial program, but the idioms are common enough that the effect should
be significant.

47

letrec f = fn x =>
if x = 1 then 41 else
if x = 2 then 82 else
if x = 3 then 123 else
if x = 4 then 164 else
if x = 5 then 205 else
if x = 6 then 246 else
if x = 7 then 30 else
if x = 8 then 71 else
if x = 9 then 112 else
if x = 10 then 153 else
0

in
f 5

end

Figure 17: Source of scale10 example.

7.3 Remote experimentation

Our system is accessible for remote experimentation through the World Wide Web at:

http://kiwi.cs.berkeley.edu/˜nogc

The Web server allows experimenters to enter arbitrary programs, then reports the annotation performed, and also generates
graphs similar to Figures 10-15.

7.4 Performance

This section describes some measurements of the performance of our system, in particular its scaling behavior. Table 4 presents
the measurements. For each program, the following information is given:

� Number of textual lines of code.

� Number of (expression, region environment) pairs generated in the extended closure analysis.

� Number of constraints generated.

� Number of state variables.

� Number of choice variables.

� Time (in seconds) performing closure analysis.

� Time (in seconds) generating the constraints.

� Time (in seconds) solving the constraints.

� Total time spent (sum of the previous three plus housekeeping).

Overall, we find that our algorithm scales similarly to the Tofte/Talpin system. The implementations of both Tofte/Talpin
system and our extensions are prototypes, containing numerous possibilities for improvement.

The programs scale1, scale10, and scale100 are synthetic programs designed to characterize the scaling behavior of our
system. The source for scale10 is shown in Figure 17; the other two programs are defined similarly, varying the number of lines
of code. This example exercises a performance problem in our implementation: it generates constraints for more regions than
needed (in particular, all letregion-bound variables in scope within the current abstraction). Thus, the number of constraints
generated is quadratic in the size of the program. A more faithful implementation of the constraint generation process described
in Section 5.3 would yield a linear increase in the number of constraints for this program.

The worst case time complexity of the analysis is exponential. One simple attempt to elicit exponential scaling was unsuc-
cessful because of arbitrary limits imposed by the prototype implementation of the Tofte/Talpin region inference algorithm.

48

One factor contributing to the complexity of our analysis is its interprocedural nature. The completion of a function depends
on the context in which it is used. A straightforward intraprocedural version of our analysis would give very poor results, since
a function would never be able to free or allocate an argument or result region without knowing whether its caller needed it to
remain allocated.

A substantial amount of time is spent in the constraint solver, which is partly explained by the fact that the constraint gen-
eration and solution process is currently memory-bound. We feel that switching to an incremental solver (i.e. interleaving the
processes of refining the partial solution and generating constraints) would improve both the speed and the amount of memory
required.

All measurements were performed on a DEC AXP 3000/300 with 64MB of main memory, using SML/NJ 1.07.8. Times
reported are user times according to the checkCPUTimer system function.

number of number of time in time time
program number number number of state choice closure generating solving total

name of lines of nodes constraints variables variables analysis constraints constraints time
Appel 20 397 2393 2075 363 0.22 0.28 1.01 1.51

alias 23 40 95 49 75 0.01 0.01 0.02 0.05
append 26 113 329 226 96 0.01 0.01 0.01 0.03

copy 7 48 243 182 104 0.02 0.03 0.06 0.11
count 12 33 163 122 116 0.01 0.02 0.03 0.06

crunch 24 214 1770 1282 498 0.16 0.18 0.65 0.99
downfrom 11 107 679 479 247 0.06 0.06 0.18 0.30

fac1 10 38 152 112 107 0.01 0.02 0.03 0.06
fac2 10 38 150 110 107 0.01 0.02 0.03 0.06
fac3 10 118 546 437 137 0.06 0.06 0.17 0.29

fibonacci 10 166 991 824 144 0.09 0.11 0.41 0.61
map 13 101 628 425 224 0.05 0.06 0.17 0.28

mergesort2 100 2975 22682 19052 1546 3.08 3.65 22.47 29.22
quick 91 2772 16714 13081 917 8.00 2.46 11.81 22.29

randlist 32 165 873 645 236 0.11 0.10 0.25 0.46
relax 44 720 4700 3688 605 0.51 0.55 2.19 3.26

samsort 83 1030 8415 5664 1975 2.14 1.01 4.65 7.83
scale1 6 16 59 42 42 0.01 0.01 0.01 0.03

scale10 15 79 671 492 546 0.06 0.07 0.21 0.35
scale100 105 709 37976 31722 32316 5.27 23.11 39.59 68.25

Table 4: Summary of performance measurements.

8 Related Work

This section describes some of the relevant related work.
We have presented our system as an alternative to garbage collection. We would like to avoid some of the well known

problems of garbage collection, including the large heap requirements, pauses (hence unsuitable for real-time or interactive ap-
plications), and interoperability. These problems have also been addressed by trying to improve garbage collection.

The problem of a large heap requirement is a consequence of stop and copy collectors [FY69]. In their simplest form, these
collectors work by allocating all new storage in a contiguous space, i.e. by incrementing an allocation pointer. When the space
is exhausted, all the live (i.e. reachable from the roots) data is copied into another space. Obviously, the memory requirement
is at least twice as large as the reachable data. However, if the memory were exactly twice the size of the reachable data, then
garbage collection would be required for every allocation. Garbage overhead decreases with as the ratio increases. A typical
value for the ratio is five.

Generational garbage collection [LH83] significantly reduces the average time per garbage collection, but does not change
the fundamental time/space tradeoff. The key idea of generational garbage collection is to separate objects by their lifetime;
short-lived objects are treated separately from long-lived ones. Modern generational garbage collectors [App90] exhibit good
overall performance, often with an overhead of under 40% (including the overhead of maintaing garbage collector invariants,
and reasonable cache performance [DTM94]. However, it retains many of the problems mentioned above: pauses, memory
consumption, and interoperability.

49

There are a number of techniques for reducing or eliminating the garbage collection pauses, including the incremental mark-
sweep collector of Dijkstra et al [DLM+78] and the incremental copying collector of Baker [Bak78]. The latter technique relies
on some additional computation (called a read barrier) for read operations. On modern architectures, it is generally agreed that
the cost of a read barrier is prohibitive. Another efficiency problem is that, unlike in a traditional stop-and-copy collector, the
older reachable data is interleaved with newly allocated data, reducing the locality of the data, thus making the cache performance
worse.

Another approach to avoiding pauses is for the program to maintain a log of changes to memory, which is consumed by a
collector thread (i.e. process sharing the same address space) [NO93]. This approach reduces the pauses, but does not eliminate
them altogether. Also, the technique does not address the problems of memory usage or interoperability.

Conservative garbage collection [BW88] does address the interoperability issue. With this type of collector (based on mark
and sweep rather than copying), the compiler need maintain no invariants for the garbage collector. Without any such invariants,
the collector is not capable of precisely distinguishing between pointers and non-pointers. Rather, a conservative approximation
is used, which may classify some non-pointers as pointers thereby forcing some garbage to be retained. All pointers are identified
as pointers, which is required for correctness.

All of the techniques described so far are fully dynamic; they do not rely on any information about the individual program
(with the possible exception of the knowledge that certain invariants are maintained). In the remainder of this section, we will
discuss static analysis techniques which attempt to improve the memory behavior of programs.

One class of static analyses detects when a particular value is no longer reachable, and return it immediately to the free list. In
a mark and sweep collecter, this can be valuable in delaying garbage collection, and thus reducing garbage collection overhead.
In a copying garbage collector, there is no explicit free list. However, if the explicit deallocation is paired with a subsequent
allocation (of a compatible number of bytes), the two operations can be merged into a reuse, avoiding the overhead of both the
deallocation and the allocation. One example of this analysis is the reference count analysis of Hudak [Hud86], implemented in
the Russel compiler by Hederman [Hed88]. In Hederman’s implementation, the reference count analysis associates an abstract
reference count with each program point and variable. When such a reference count passes from one to zero, the value bound
to the variable may be deallocated.

The result of this optimization is to reduce the frequency of garbage collections. Garbage collection itself, with its attendant
problems, is still required.

There are a number of other analyses that have the same goal, to identify some of the values which are no longer live, in-
cluding sharing analysis [HJ90], which determines that some storage cells are not shared, so that when the last reference to the
cell disappears it can be immediately reclaimed. All other cells are subject to garbage collection.

Another promising avenue is linear logic [Gir87]. Expressions with linear types are guaranteed to have only one reference to
each value. If it is possible to infer that a function is linear, then other optimizations may be possible. Lafont proposed interaction
nets [Laf90] as language design based on linear logic. Lafont claims that interaction nets can be implemented without garbage
collection.

Ruggieri and Murtagh [RM88] proposed an analysis with the aim of eliminating garbage collection altogether. In their anal-
ysis, all heap-allocated data is divided into a stack of sub-heaps, one for each procedure activation record. When the procedure
exits, all of the data in the associated activation record is deallocated. This runtime layout differs from a traditional stack in that
allocations can be performed in any of the sub-heaps, not just the one at the top of the stack.

The most closely related work to ours is of course the Tofte/Talpin region inference [TT94], which is described in detail in
Section 2.

9 Discussion and Conclusions

It remains an open question whether our system is a practical approach to memory management. The complexity of the region-
based closure analysis is worst-case exponential time. In practice, we have found it to be of comparable complexity to the
Tofte/Talpin system, but we do not as yet have enough experience to judge whether this holds in general. The constraint gener-
ation and constraint solving portions of our analysis both run in low-order polynomial time. A separate issue is that the global
nature of our analysis presents serious problems for separate compilation, which we leave as future work. Finally, we have found
that static memory allocation is very sensitive to the form of the program. Often, a small change to the program, such as copying
one value, makes a dramatic difference in the quality of the completion. Thus, for this approach to memory management to be
practical, feedback to programmers about the nature of the completion will be important.

Our system does do a good job of finding very fine-grain, and often surprising, memory management strategies. Removing
the stack allocation restriction in the Tofte/Talpin system allows regions to be freed early and allocated late. The result is that
programs often require significantly less memory (in some cases
(n) less or better) than when annotated using the Tofte/Talpin
system alone.

50

References

[App90] Andrew Appel. A runtime system. Lisp and Symbolic Computation, 3(4):343–380, November 1990.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[Bak78] Henry Baker. List processing in real time on a serial computer. Communications of the ACM, 21(4):280–294, April
1978.

[BW88] Hans-J. Boehm and Mark Weiser. Garbage collection in an uncooperative enviroment. Software Practice and
Experience, 18(9):214–221, September 1988.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction of approximation of fixpoints. In Proc. of the 4th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 238–252, January 1977.

[Deu90] Alain Deutsch. On determining lifetime and aliasing of dynamically allocated data in higher-order functional spec-
ifications. In Proc. of the 17th Annual ACM Symposium on Principles of Programming Languages, pages 157–168,
January 1990.

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Steffens. On-the-fly garbage collection:
An exercise in cooperation. Communications of the ACM, 21(11):966–975, November 1978.

[DM82] L. Damas and Robin Milner. Principal type schemes for functinoal programs. In Proc. of the 9th Annual ACM
Symposium on Principles of Programming Languages, pages 207–212, January 1982.

[DTM94] Amer Diwan, David Tarditi, and Eliot Moss. Memory subsystem performance of programs using copying garbage
collection. In Proc. of the 21st Annual ACM Symposium on Principles of Programming Languages, pages 1–14,
January 1994.

[Fra91] P. Fradet. Syntactic detection of single-threading using continuations. In Functional Programming Languages and
Computer Architecture, 5th ACM Conference (LNCS 523), pages 241–258, August 1991.

[FY69] Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for virtual-memory computer systems.
Communications of the ACM, 12(11):611–612, November 1969.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Hed88] Lucy Hederman. Compile time garbage collection using reference count analysis. Master’s thesis, Rice University,
Department of Computer Science, 1988.

[Hen92] Fritz Henglein. Global tagging optimization by type inference. In Proc. of the 1992 ACM Conference on Lisp and
Functional Programming, pages 205–215, July 1992.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming Languages and
Systems, 15(2), April 1993.

[HJ90] Geoff W. Hamilton and Simon B. Jones. Compile-time garbage collection by necessity analysis. In Proc. of the
1990 Glasgow Workshop on Functional Programming, pages 66–70, August 1990.

[Hud86] Paul Hudak. A sematic model of reference counting and its abstraction. In ACM Symposium on LISP and Functional
Languages, pages 351–363, January 1986.

[Laf90] Yves Lafont. Interaction nets. In Proc. of the 17th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 95–108, January 1990.

[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes of objects. Communications
of the ACM, 26(6):419–429, June 1983.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, 1990.

[NO93] Scott Nettles and James O’Toole. Real-time replication garbage collection. In Proc. SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages 217–226, June 1993.

51

[PS92] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference. Information Processing Letters,
43(4):175–180, September 1992.

[RM88] Cristina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynamically allocated objects. In Proc. of the 15th
Annual ACM Symposium on Principles of Programming Languages, pages 285–293, January 1988.

[Sch85] D.A. Schmidt. Detecting global variables in denotational specifications. ACM Transactions on Programming Lan-
guages and Systems, 5(2):299–310, April 1985.

[Ses92] Peter Sestoft. Analysis and Efficient Implementation of Functional Programs. PhD dissertation, University of
Copenhagen, Department of Computer Science, 1992.

[Shi88] Olin Shivers. Control flow analysis in Scheme. In Proc. SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 164–174, June 1988.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region, and effect inference. Journal of Functional
Programming, 2(3), 1992.

[Tof90] Mads Tofte. Type inference for polymorphic references. Information and Computation, 89(1), November 1990.

[Tof94] Mads Tofte. Storage mode analysis. Personal communication, October 1994.

[TT93] Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation in polymorphically typed languages. Technical
Report 93/15, Department of Computer Science, University of Copenhagen, July 1993.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value �-calculus using a stack of regions.
In Proc. of the 21st Annual ACM Symposium on Principles of Programming Languages, pages 188–201, January
1994.

52

