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Abstract

Iterative Methods for Formal Verification of Digital Systems

by

Felice Balarin

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

Complexity management is the key to applying formal verification methods to

real-life digital designs. Abstractions area powerful tool to manage complexity, but finding

a useful abstraction is a difficult task requiring significant designer's effort. In this work

I propose techniques for automatic abstraction for three classes of systems: networks of

communicating finite-state machines, real-time systems and arrays of identical components.

I show that ignoring communication in a network of finite-state machines can be

used to simplify the representation of the system. Ignoring communication can prove to be

too simplistic. In that case communication is selectively restored. The process is repeated

until a suitable abstraction is found. I show that the process terminates in finitely many
iterations.

We also develop a similar approach for real-time systems. All timing constraints

are initially relaxed, and if that abstraction is proven too simplistic, then someof them are

enforced. Again, the process is iterated. I consider twomodels of real-time systems: a basic

modelof real-timesystems,called timed automata and proposean extendedone called timed

automata with decrements (TAD's) that allows modeling some high-level features ofsystems

(e.g. interrupts) that can not be modeled accurately with timed automata. I show that the

proposed iterative process always terminatesfor timedautomata, while it maynot terminate

for arbitrary TAD's. I also show that this limitation is intrinsic, because the verification

problem is undecidable for TAD's. Finally, I will show how to select automatically a subset

of timing constraints necessary to verify a real-time system. Since typically only a small

fraction of timing constraints is relevant to any given property, eliminating the rest of the



constraints can improve the efficiency of the verification process dramatically.

Finally, for arrays of identical components I address the problem of finding an

abstraction which is independent of the actual number of components. Such an abstraction

can then be used to verifya whole class of arrays of different sizes. I show that the problem is

undecidable in general, and propose some search strategies that can find such an abstraction

in special cases.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

Verification is an important component of any design methodology. A design error

that is discovered late in the design process can significantly increase the cost of a project.

A design error discovered after a system is put in use is usually even costlier, either in the

form of expensive product recalls and customer dissatisfaction, or in the worst case, in form

of failure of life-critical systems such as flight controllers.

Presently, simulation is a prevailing method for verifying digital systems. But as

technology advances and systems become more complex, verification by simulation is be

coming increasingly insufficient. An illustrative example was reported by Chen, Yamazaki

and Fujita [CYF94]. A data-switching chip (assumed to be correct by the designers) was
exhibiting incorrect behavior, but only sporadically, and only after several seconds of oper

ation at 156MHz. Simulating such long input patterns is clearly very expensive, and the

probability of selecting one that exhibits faulty behavior is quite low. However, by using a
formal verification tool Chen et al. were able to identify the fault. The tool also generated
a short (50 cycles) input pattern that exhibits the fault.

In the future, simulation is likely to remain an important verification method,

but it is also likely that it will be more and more supplemented by formal verification

methods. Formal verification is particularly effective inearly design phases, when thesystem

is described at a high level of abstraction, hence is less complex then later refinements, and
must satisfy properties that are typically simple and easy to specify formally.

The phrase "formal verification" is broadly used to indicate any technique where

one, with a rigor of a mathematical proof, establishes ( ordisproves) a satisfaction relation

between a design and a specification. Formal verification paradigms vary with a choice of
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formalisms for the design and specification, and a choice of a satisfaction relation. The

basic tradeoff is between expressiveness and efficiency. On one side of the spectrum are
general theorem proving techniques which are very expressive, but are provably hard, and

can be only partially automated. On the other side are finite-state techniques that suffer

from somewhat limited expressiveness, but can be completely automated.

1.1 Automatic verification of finite-state systems

Two approaches to automatic verification of finite-state systems haveemerged in

the last decade: model checking based on temporal logics, and language containment based

on automata theory. In the model checking approach a system is verified if it represents a

model of a given formulain some temporal logic. Most of the logics proposed for specification

and verification of finite-state systems can be classified as either branching time or linear

time temporal logics (see [Eme90] for excellent survey). The precise formulation of the

model checking problem is somewhat different for each class.

Models of branching time temporal logics are trees, but their subformulas reason

about paths in a tree. Typically, a subformula may postulate that another formula holds in

every (or some,or the first, or the second, ...) state along a path. A formula is then closed

by existentially (or universally) quantifying over paths. In other words, a formula is true of

the tree rooted in a state, if the subformula is true on some (or all) paths from that state.

With every finite-state system we associate an infinite tree with the initial state as its root,

and children of every state being its possible next states. A system is verified, if a formula

is true of the associated tree. The first efficient automatic model checking procedure for

any temporal logic was given Clarke, Emerson and Sistla [CES86] for the branching time

logic CTL, which still remains the most widely used logic in verification. For example,

verification systems SMV [McM93], and HSIS [ABB+94] are based on it.

Formulas of linear time temporal logics reason about paths, and the system is veri

fied if the formula is true for all paths from the initial states. The use of linear time temporal

logics for specification and verification of finite-state systems dates back to late seventies

and early eighties when in a trailblazing contribution Pnueli and Manna [Pnu77, MP81]

use such a logic to specify many interesting properties of computer programs. Linear time

temporal logics are still an interesting research topic, but their inherent complexity [SC85]

has limited their use in practice.
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Linear temporal logics are closely related to another popular verification paradigm

known as language containment, pioneered among the others by Vardi and Wolper [VW86].

Here, systems are model as automata, and the language accepted by an automaton is as

sumed to be its behavior. In other words, the behavior of a finite state system is a set of

input-output sequences that can be observed from the outside. The verification problem is

to check whether every sequence in the language is acceptable, i.e. we need to check that

the language of a system is contained in the language consisting of all acceptable sequences.

That language is specified by another automaton, so the verification problem reduces to

checking language containment between two automata.

Model checking of linear temporal logics can be reduced to language contain

ment [VWS83, VW86]. First, we construct an automaton that accepts all the sequences

that satisfy the formula. Then, we check whether the language of that automaton contains

the language of the system.

1.2 Real-time systems

In all of the approaches mentioned so far time is modeled qualitatively. One can

check properties about the ordering of events, but not about exact times of occurrences.

However, for many systems (especially embedded real-time controllers) the precise quanti

tative timing constraints are essential.

The complexity of timing constraints rises with a level of abstraction at which a

system is described. At the gate level, assigning fixed delays to gates may be sufficient

to capture timing constraints. Then, simple longest path techniques can be used to verify

the system. At a higher level of abstraction, constraints are typically more complex. For

example, the speed by which a software task progresses might change in time depending on

the load of the system. Many formalisms that can capture complex timing constraints have

been proposed (e.g. see [Vyt91, dBHdRR91, AH92] for a compilation ofmany approaches),
but most are not suitable for automatic verification, because the associated verification

problems are undecidable. This is true even for somestraightforwardextensions of standard

finite-state models (e.g. [AL91]). The problem is that if real-valued time becomes a state

component, then the system is no longer finite-state, and the state space cannot be searched

exhaustively in finite time.

Alur and Dill [AD90, Dil89] have proposed timed automata as a model of real-time
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systems, and showed that they have a finite-state representation. They propose adding

timing information to automatathrough a real-valued variables called timers. Timers can

be used to bound elapsed time between any two transitions. Even though the (real) values
of timers are state components ofa timed automaton, Alur and Dill have shown that many
of these states are equivalent, and that in fact the number of equivalence classes is finite.

In a similar fashion, temporal logics can be extended with real-time operators, and

then the infinite-state model checking can be reduced to a finite stateone [ACD90, Alu91,

AH92]. Unfortunately, the number of equivalence classes in the Alur-Dill's construction

is exponential both in the number of timers, and in the sizes of time constants used in a

system (or property) specification.

1.3 Complexity management

Even though the verification of finite-state systems can be completely automated,

it is still not widely used in practice, mainly due to issues related to specification of correct

behavior, design methodology, and complexity of the associated algorithms.

Before using a formal verification tool, a user must first specify acceptable be

haviors (in case of language containment, the acceptable behaviors are represented by a

language, and in case of model checking, it is represented by a formula). In the worst case,

specifying acceptable behaviors is as hard and as error-prone as actually designing a sys

tem. Fortunately, specification is often much simpler than design for at least the following

reasons:

• It is often possible to express what a system must do (a specification) much more

concisely than howit is doing it (a design).

• Acceptable behaviors can usually be specified as a list of properties that a system

must satisfy. Even though properties are typically simple, designing a system that

satisfies all of them is not.

To reducethe possibilityof errors, the properties must not only be simple, but alsoexpressed

in a way that is natural to designers and consistent with other system documentation. Un

fortunately, neither finite-state automata, nor CTL formulas satisfy these conditions. A

promising approach to this problem is to develop translators that provides formal interpre-
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tation (in terms of automata or temporal logic formulas) of specification methods used by

designers, such as HDL annotations [NJK94, ALG+91, BBC+] or timing diagrams [SD93].

Another issue that has to be addressed before automatic formal verification is

widely accepted is the development of a verification based design methodology. This in

cludes engineering issues like providing a common design representation to be used by syn

thesis, simulation and verification tools, theoretical issues like identifying properties that

are preserved under a given set of synthesis operations, as well as organizational issues such

as deciding at which points in the design cycle simulation or verification tools should be

used to optimize the overall design process. Some of these issues have been addressed in the

literature [ABB+94, BBC+, Kur94], but many practical questions have yet to be resolved.

Last but not least, a formal verification method can be successful only only if

accompanied with elaborate complexity management techniques. At first glance, it might

seemthat complexity is not a significant issuebecause algorithms polynomial in the number

of states exist both for CTL model checking and for language containment. However the

problem is that in practice, systems to be verified are never specified by explicitly enumer

ating all states. Typically, they are specified as a composition of several components which

are specified either as software (a program in some language), or as hardware (combina

tional logic plus latches). In this case, the number of states can be exponential in the size of

the description, and in fact both CTLmodel checking and language containment of systems

consisting of interactingcomponents are PSPACE-complete [AB93]. This is the well known

state explosion problem. As we have seen, the problem is even more severe for real-time

systems, where adding precise timing information adds another layer of complexity to the

system.

Attacking the state explosion problem is the focus of a wide range of research.

Two approaches dominate: symbolic computation where one try to manipulate a large

number of states efficiently by representing sets of states symbolically (rather than by

enumeration), and simplification where one argues about the correctness ofcomplex systems

by verifying their simplified versions. Those two approaches are independent, and in fact

several researcher have proposed methods that combine both approaches.

By far the most widely used approach to symbolic computation is to represent sets

ofstates with their characteristic functions. Ifstatesareencoded withbinary variables, then

the characteristic function of a set is just a Boolean function, and is typically represented

by a binary decision diagram (BDD) [BRB90]. This approach is successful because in
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many practical cases large sets of states have quite small BDD representations, and thus

it is possible to manipulate sets of states that are too large to enumerate with existing

computing resources. BDD-based algorithms (and verification systems) are available both

for model checking [McM93] and language containment [ABB+94] The success of BDD-

based approaches have made them almost synonymous to symbolic computation. Still, not

all symbolic approaches are BDD-based. For example, in the verification of real-time and

hybrid systems, sets of linear inequalities are used to represent convex polyhedra bounded

by them [HNSY92, ACHH93].

Recent advancements in symbolic computation techniques have significantly in

creased the capabilities of automatic formal verification, but simplifications are still neces

sary to handle most real-life systems. We make a distinction between two kinds of simplifi

cations: exact and conservative. Exact simplifications (or reductions) preserveall aspects of

system behavior, therefore the original system is verified if and only if the simplified system

is. They can be applied to virtually any verification formalism, but it is often hard to find

an exact simplification of reasonable size.

On the other hand, conservative simplification ( or abstractions) preserve enough

behavior of a system to guarantee that the original system is verified */the simplified system

is. However, if the simplified system is not verified, the original system might or might not

satisfy the required property. Conservative approximations can often lead to much larger

savings than exact simplifications, but they exist only for some formalisms. In particular, if

the set of properties expressible in a formalism is closed under complementation (i.e. if for

every property P there exists a property P such that a system S satisfies P if and only if it

does not satisfy P), then every abstraction is also a reduction. To see this, assume towards

a contradiction that S' is an abstraction but not a reduction of a system 5, i.e. assume

that there exists a property P such that S satisfies P but S' does not. This implies that S'

satisfies P even though 5 does not, contradicting the assumption that S' is an abstraction

of 5.

Most of branching time temporal logics (including CTL) are closed under comple

mentation, hence they allow only exact simplification. However, if the logic is restricted

to universal path quantifiers (and of course no negation), then conservative simplifications

are possible. Roughly speaking, any system with more paths is an abstraction of the orig

inal system. For example, Griimberg and Long [GL91] have studied such a restriction of

CTL (called ACTL), and showed that one system is an abstraction of another, if so-called
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simulation relation holds between them.

The languagecontainment (hence also model checking of linear time temporal log

ics) clearly allows conservative approximations: an automaton is an abstraction if its lan

guage contains the language of the original system. But that means that checking whether

one system is an abstraction of the other is just another instance of the original verification

problem (and hence just as hard). Still, a careful use of abstractions can be beneficial.

For example, one might check abstractionsof (usually small) components, and deduce from

that an abstraction of the (usually large) complete system. These and other strategies for

simplification of communicating automata were studied by Kurshan [Kur90, Kur94].

The problem of checking automatically whether one system is an abstraction of

another has received a wide attention in the last decade, but generating abstractions is

currently mostly a manual task performed by users of verification systems. Since almost

all real-life systems require at least some abstractions, it follows that completely automatic

verification is not achieved even for finite-state systems.

A good abstraction must balance two (often conflicting) requirements:

• it must be simple enough so that a verification tool can handle it efficiently,

• it must preserve the behavior of the original system in many aspects, particularly

those that are relevant to the property to be verified.

To satisfy the first requirement a user (or an automatic method) must take into

account a measure of complexity that is reasonable for the underlying verification algo

rithm. Forexample, a number of reachable states may be a good measure of complexity for

algorithms based on explicit state enumeration, while communication complexity between

subsystems may be a better measure for BDD-based algorithms. Therefore, algorithm-

specific methods are likely to yield better results than general purpose ones.

To satisfy the second requirement a user must somehow capture the essenceof the

behavior of the system with respect to the property at hand. This is clearly not a task that

could ever be completely automated. The best we can hopefor is to develop some heuristic

approaches targeted at certain classes of systems.

Balancing these requirements is hard, even for an experienced designer with a

deep understanding of a system being verified. Most of the times, the first attempt does

not result in an abstraction that satisfies the property. In that case, a user have to analyze
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a failure report from a verification tool and decide whether the failure is inherent in the

original system, or a consequence of some over-simplification. If the latter applies, a user

needs to modify the current abstraction and try again until the final answer is reached.

Automating this process yields the following generic iterative abstraction algorithm:

INITIALIZE: Choose an initial abstraction.

VERIFY: If the the current abstraction of the system satisfies the property to be verified,

then return PASS, otherwise proceed with the next step.

ANALYZE: If a failure trace reported by a verification tool is a valid example of the

behavior of the original system, then return FAIL, otherwise proceed with the next

step.

MODIFY: Refine the current abstraction of the system such that it can no longer exhibit

the reported faulty behavior. Proceed with the VERIFY phase.

To make this approach useful, a careful choice of abstractions in the MODIFY

and INITIALIZE phase has to be made, and efficient failure analysis methods have to

be developed. For example, if an initial abstraction is too weak, the system might not be

simplified enough for a verification tool to handle. Also, if modifications are too small the

number of iterations may be large or even infinite. Finally, the failure analysis requires

checking whether a given trace is a valid behavior of the original system. In general, this

problem may be as hard as the original verification problem, but if a choice of abstraction

is restricted it may be significantly simpler.

1.4 Outline of this work

The language containment verification framework is introduced in details in chap

ter 2. We describe the approach both for automata on finite and infinite strings. Automata

on infinite strings are somewhat more expressive, so whenever possible we use them. How

ever, some of our results are valid only for automata on finite sequences. We develop all our

results for language containment, but basic ideas extend also to similar formalisms such as

ACTL model checking.

In chapter 3 we specialize the generic iterative abstraction algorithm of section 1.3

to the verification of communicating finite state machines. The basic idea is to abstract
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communication between components. Doing this typically increases the number of reachable

states, but reduces the BDD representation. Thus, the approach can be efficient only if

applied with BDD-based verification system.

Chapters 4-6 are dedicated to formal verification of real-time systems. First,

we introduce a model of real-time system in chapter 4. We base this model on timed

automata and extend it with some additional capabilities. Those extensions allow more

faithful modeling of systems, but make the verification problem undecidable in general.

Therefore, in chapter 4 we first focus on timed automata. We proposean iterative algorithm

for such systems, and show how user guidance can be used to improve efficiency. We deal

with the extended model later (in chapter 6).

A substantial example, formal verification of the PATHO real-time operating sys

tem is presented in chapter 5. We introduce several models of PATHO, and report experi

mental results using iterative abstraction algorithm both in automatic and guided modes. In

chapter 6, we present a more accurate model that cannot be modeled with timed automata

without the extensions we have proposed in chapter 4. To be able to verify such systems,

we extend the iterative algorithm of chapter 4. The result is a semi-decision procedure. It

always returns a correct result if it terminates, but in general it might not terminate.

In chapter 7 we propose an approach to abstraction of arrays of identical (untimed)

components. This approach is also iterative, but it is quite different from approaches in

chapters 3 and 4. In the latter approaches we maintain an abstraction of the system in

every iteration, while in the former, the simplification becomes conservative only in the last

iteration. We show that the problem is undecidable in general, hence there may not be the

last iteration, i.e. our procedure may not terminate.

Finally, in chapter 8 we summarize our results, and discuss possible future research

trends that could bring formal verification techniques closer to the design practice.
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Chapter 2

Formal Verification of Finite-State

Systems

Any formal approach to verification has three components: a formalism for de

scribing systems, a formalism for describing properties to be verified, and a notion of cor

rectness, i.e. a precisely defined relation that must hold between a system model and a

property model, for a system to be considered correct. We focus on the approach where

both the system and the property are modeled as finite-state automata. The notion of

correctness is that of language containment: a system is correct if its language is contained

in the language of the property. In this chapter we present both rigorous definitions and

the intuition behind these choices. But first we review the basic mathematical tools used

in this approach.

2.1 Sets, characteristic functions and BDD's

Let V = {xi, X2,..., xn} be some set of variables, where xt- takes values from some

set U{. The set of Boolean formulas over V is defined recursively as follows:

1. 1 and 0 are Boolean formulas,

2. x; = a is a Boolean formula for all x,- € V and all a € Ui,

3. if F and G are Boolean formulas, then so are also F * G (conjunction), F + G

(disjunction), and F (complementation).
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We interpret Boolean formulas as Boolean functions from U\ x ... x Un to {0,1}

as follows:

• l(ai,...,a„) = 1 for all (ai,...,a„)€ Ui x ...x Un,

• 0(a1,...,an) = 0forall (ai,...,an)€ 17i x ...x Un,

• (xj = a)(ai,...,an) = 1 if and only if a,- = a,

• (F)(ai,..., a„) = 1 if and only if F(aa,...,an) = 0,

• (F*G)(ai,...,an) = 1 if and only if F(ai,..., an) = 1 and G(ai,...,an) - 1,

• (F+G)(a!,...,an) = 1 if and only if F(ai,...,an) = 1 or G(ai,...,an) = 1.

If some total order < is defined on Ui, then we also allow x,- < a to be a Boolean

formula, and interpret it naturally by:

• (x, < a)(ai,..., an) = 1 if and only if a,- < a.

The support of some formula F (denoted by ^upp(F)) is the set of variables that

actually appear in F, i.e.:

supp(l) = supp(0) = 0 ,

supp(x{ = a) = supp(x{ <a) = {x,} ,

supp(F*G) = supp(F + G) = supp(F) Usupp(G) ,

supp(F) = supp(F) .

Note that to specify a Boolean function we need to specify (i) a Boolean formula,

and (ii) its domain, i.e. a set of variables V (which includes at least its support, but may

also include some additional variables), and the ranges of all variables in V. Often, we

specify only a formula, while a domain can be inferred from the context. In fact, this

feature significantly simplifies our notation, because we often interpret the same formula

over different domains. In particular, unless stated otherwise, we assume that some formulas

F and G are defined over supp(F) and supp(G) respectively, but when combined (in F *G
or F + G), we will assume that they are both defined over supp(F) Usupp(G).

Every Boolean function F : U\ x ... x Un -* {0,1} characterizes a set F C

Ui x ... x Un defined by:

F = {(a1,...,an)|F(a1,...,a„)=l} .
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We say that F is a characteristic function of F. Given some set F we use X( F) to denote

its characteristic function, and inversely, given some Boolean function F we use 5(F) to

denote the set it characterizes.

Let F and G be two Boolean formulas over the same domain. It is straightforward

to relate the operations on formulas to the operations on the sets they characterize:

5(F * G) = 5(F) n S(G) (conjunction means intersection),

5(F + G) = 5(F) U5(G) (disjunction means union),

5(F) = {s\ s £ 5(F)} (complementation means complementation).

Another useful interpretation of the conjunction applies when F and G have dis

joint support and we interpret F, G, and F * G as functions over their respective support.

In this case, conjunction corresponds to the Cartesian product, i.e.:

5(F * G) = 5(F) x 5(G) = {(s,q)\ s € 5(F), q € 5(G)} .

An important operation in manipulation of Boolean functions is existential quan

tification. Given some function F over variables V and some xt- € V, to "existentially

quantify xt- out ofF" means to compute a function over V - {x{}, denoted by 3xt-.F, and

defined naturally as follows:

1 if there exists a; € Ui such that:

(3xt-.F)(ai,...,at_i,at+i,...,a„) = ^ F(ai,...,a,_i,a;,at+i,...,an) = 1 ,
0 otherwise.

Finally, given someBoolean formula F and some variables x and y, weuse [F]Xh*y

to denote the formula obtained from F by replacing all occurrences of x in F with y.

Usually, the range of all the variables in systemsweconsider is finite.1 In that case,

Boolean functions are usually represented with binary decision diagrams (BDD's)[BRB90].

Details of BDD representation will not be of interest here, thus we will only list some

properties BDD's that are useful in analyzing complexity of our algorithms:

• a BDD representation is canonical, thus if implemented properly, comparing two func

tions for equivalence can be as simple as comparing two pointers,

1A notable exception are real-time systems introduced in chapter 4 which include real-valued variables,
but as we shall see BDD representation can be used even in this case.
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• representations of functions 1,0, and x; = a are small and do not depend on the

number of variables in V,

• the BDD size for F is the same as the size for F,

• the BDD size for F * G or F + G is in the worst case equal to the product of BDD

sizes for F and G,

• the size of the BDD for 3x,-. F can in the worst case be exponentially larger than the

size of the BDD for F, but the worst case is achieved only in degenerate cases, and in

most cases the BDD for 3x,-. F is smaller than the BDD for F,

• computing F is a constant time operation,

• the time needed to compute F * G, and F + G is proportional to the size of the result;

for 3xt-. F the size of the result is a lower bound.

In summary, checking for equivalences, constructing basic functions, and complementing is

cheap, but in the worst caseeven after small (polynomial) number of conjunctions, disjunc

tions, and quantifications, the BDD representation can grow (exponentially) large.

These properties illustrate difficulties in complexity analysis of BDD-based algo

rithms. Judging by worst case performance only, BDD's are not very useful, but in many

interesting cases the performance is much better than in the worst case. Also for many

operations, computation time is proportional to the space needed to store the data, thus

the size of the BDD representation is often the limiting factor.

2.2 Automata and languages

To model digital systems, we use finite state finite-state automata. These are finite

structure that can represent possibly infinite sets of sequences of inputs and outputs of a

system. There exists a wide body of knowledge concerning automata both on finite (e.g.

see [HU79]) and infinite sequences (e.g. [Tho90, Eme90]). Here, we present only fragments

of the developed theory that are relevant to our research results, and to the implementation

of an efficient verification tool based on language containment.
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o
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(i = 0)*(o = l)

Figure 2.1: A model of a buffer.
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2.2.1 Automata on finite strings

Let S denote some set of I/O values. An automaton A over finite strings of values

in S is a 4-tuple (5,1, T, F), where S is some set of states, I: S -* {0,1} is (a characteristic

function of) a set of initial states, T : S x S x 5 -*• {0,1} is (a characteristic function of) a

transition relation, and F : S -+• {0,1} is (a characteristic function of) a set of final states.

As a matter of convention, we assume that the formula T is defined over the

variables ps^ (representing the present state), ns^ (representing the next state), and a a

(representing the I/O values), where ps^ and ns^ range over 5, and a a ranges over E.

When no confusion can arise we will drop the subscripts.

We say that a sequence of states so, Si,..., sn is a runof a string o\ 02 . ••on € E* in

the automaton A = (5,1, T, F) if T(s,_i, Oi, st) = 1 for all t = 1,..., n. A run is initialized

if I(«o) = 1 (so is an initial state). A run is accepting if it is initialized and F(sn) = 1 (sn

is a final state). The languageof A (denoted by C(A)) is the set of all strings that have an

accepting run in A.

Consider for example a model of a one-bit buffer with an arbitrary delay shown in

Figure 2.1. As long as the input and the output values (represented by variables i and o,

respectively) are the same, the buffer remains in one of the stable states (00 or 11). When

the input value changes, the output changes only after the buffer spends some time in a

transient state (01 or 10). We complete the definition by stating that only stable states are

initial and that all state are final. An example of a string in the language of the buffer is
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> / (i =0)*(o =0)
(i = 0)*(o=l)

final

(i?£0) + (o^l)

Figure 2.2: An automaton for a safety property.

(0/0, 1/0,1/0, 1/1), which has an accepting run (00, 00,10,10, 11).

Automata on finite strings are sufficient to verify properties that can always be

disproved by a finite sequence of events (also called safety properties). Assume that we

want to verify that if the input and the output of the buffer are both zero, then the output

cannot change before the input, i.e. we want to show that the I/O value 0/0 can never be

followed by the value 0/1. To disprove this property, we need to show a finite string in the

language of the buffer that ends with the I/O value 0/0 followed by 0/1. Thus, to check

the property we:

1. construct an automaton that accepts exactly those strings that disprove the property;

such an automaton is shown in Figure 2.2,

2. check whether the languages of the automata in Figures 2.1 and 2.2 intersect.

Typically, the first step is performed manually, and the second step is done automatically

by a verification tool.

We say that an automaton A = (5,1, T, F) is complete if for every s € S and

every a € £ there exists at least one q € S such that T(s,a,q) = 1. If for every s € S and

every a € £ there exists at most one q € S such that T(s,<r,q) = 1, then we say that A

is deterministic. Note that notions of completeness and determinism depend only on the

transition relation, and thus are equally applicable to automata of infinite sequences.

It is easy to see that if A is complete, then every string in E* has a run in A. If

A is also deterministic, then such a run is unique. This property reduces the problem of

complementing the language to switching accepting and non-accepting runs. Thus, given

a deterministic and complete automaton A = (5,1, T, F), we can easily construct the

automaton (5,1, T, F) which accepts all strings not in C(A).
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The completeness is easily obtained. Given any automaton A we can construct a

complete automaton A' as follows:

• states of A' are those of A augmented by a special "deadn state @,

• initial and final states of A' are those of A,

• for all s, q € Sa and aU<7€E:s-^gisin the transition relation of A' if and only if

it is in the transition relation of A,

• for all s 6 Sa and all ct € £: s A @is in the transition relation of A1 if and only if

there does not exist q € Sa such that s A q is in the transition relation of A,

• @-^ @is in the transition relation of A1 for all o € E.

In other words, incomplete runs in A are completed in A' by moving to the dead state and

remaining there forever. It is easy to check that A' is deterministic if A is. It is also easy

to check that languages of A and A' are the same.

The second requirement for an easycomplementation (determinism) is not soeasily

obtained. In fact, examples are known where determinization and complementation must

incur an exponential blow-up.

2.2.2 Automata on infinite sequences

While there is only one widely accepted sort of automata on finite sequences,

several variants of automata on infinite sequences (distinguished mainly by their acceptance

conditions) have been used extensively both in theory and in practice. In our development

we use a version due to Streett [Str82], which we introduce next in detail. We will review

other kinds suggested for formal verification in section 2.3.

An automaton over infinite sequences of values in E is a 4-tuple (S, I, T, F), where

S, I, and T are as in finite case, and

F = {(L1,U1),(L3,U2),...,(LU1,U,F,)}

is some set of fairness constraints, where each fairness constraint (L,-,Ut), i = 1,..., \F\, is

a pair of (characteristic functions of) some subsets of states.

We say that a sequence of states sq,s^, ... is a run of a sequence o\o<i... € E"

in the automaton A = (S,I,T,F) if T(«t-_i,fft-,at-) = 1 for all i > 1. Again, a run is
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initialized ii l(s0) = 1. Let inf(so, *i» •••) denote the set of states that occurinfinitely often

in so,s\,..., i.e. let:

inf(s0,si,...) = {s€ 5|Vn.3m > n.sm = s} .

We say that a run so,si,... satisfies a fairness constraint (L, U) if either:

• L(s) = 0 for all s € inf(so,si,...), or

• U(s) = 1 for some 5 € inf(so,S\,...).

A run if/air if it satisfies all fairness constraints in F. A run is accepting if it is initialized

and fair. As in the finite case, the language of A (denoted by £( A)) is the set of all sequences

that have an accepting run in A.

Both automata on finite and infinite strings can be used to verify safety properties,

but only automata on infinite strings can verify properties that cannot be disproved with

finite strings (also called liveness properties). For example, assume that we want to verify

that the output of the buffer always eventually follows the input, i.e. that whenever the

input 1 at some time in the future the output is also 1. To disprove that property we need

to show an infinite sequence in the behavior of the buffer where at some point the input is

1 and the output is 0 at all times thereafter. The automaton in Figure 2.3 accepts exactly

those sequences, because the fairness constraint require that the "unfair" state is visited

only finitely many times.

To interpret Figure 2.1 as an automaton on infinite sequences we need to augment

it with fairness constraints. A natural requirement is that the buffer cannot stay in the

transient states 01 and 10 forever. In other words, only runs that visit 00 or 11 infinitely

often are fair, i.e.:

F = {(l,(ps = 00)+ (ps=ll))} .

One can check that under these constraints the property in Figure 2.3 is satisfied.

2.3 Other approaches

In our approach the verification process consists of the following two steps:

1. the user constructs an automaton (say P) that accepts exactly those sequences that

disprove the property,
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(i * 1) + (o # 0) (o = 0)

\y (i=i)»(o=o)

(o*0)

F = {(^{unfair}, 0)}

Figure 2.3: An automaton for a liveness property.

2. a tool checks whether C(P) intersects the language of the system to be verified.

Here, we differ slightly from the traditional approach (e.g. [VW86, Kur90]) where:

1. the user specify an automaton (say P) that accepts exactly those strings representing

acceptable behavior, i.e. all strings that do not violate the property,

2. the tool check whether the language of the system (henceforth denoted by C(A)) is

contained in C(P).

In practice, the difference between two paradigms is mostly in interpretation, not

in computation. The language containment is typically checked by first constructing an

automaton P' that accepts sequences not in C(P), and then checking the emptiness of

C(A)r\£(P'). Constructing P' is a hard problem in general, but existing tools are restricted

to special cases where constructing P' requires only simple syntactic modification of P. We

will review three such approaches: one suggested by Vardi and Wolper [VW86], one by

Kurshan [Kur90] on which the verification tool COSPAN [HK88] is based, and finally one

by Hojati and Brayton [HB95] on which the tool HSIS [ABB+94] is based. In the following

we assume that all definitions form section 2.2.2 are still valid except that of a fair run.

2.3.1 COSPAN approach

An X-process [Kur90] is a 5-tuple (5,1, T, R, F), where S, I, T, are as in previous

definitions, R C S x S is some set oftransitions called recur edges, and F = {Z\,..., Z^}
is some set of subsets of states called cycle sets. A run so, s\,... is fair in an i-process if:

• none of the recur edges appear in s0,s\,... infinitely often, and
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• inf(so,si,...) is not contained in any of the cycle sets.

An X-automaton [Kur90] is syntactically the same as an X-process. However, a run is fair

in an //-automaton if:

• some recur edge appears in sq,si, ... infinitely often, or

• inf(so,si,...) is contained in someof the cycle sets.

Obviously, a run is fair in an X-process (5,1, T, R, F) if and only is it is not fair

in the X-automaton (S, I, T, R, F). Thus, if an X-automaton (5,1, T, R, F) is determin

istic and complete, then its language is the complement of the language of the X-process

(5,1, T, R, F).

Kurshan [Kur90] proposed to use X-processes to model systems and to use deter

ministic and complete X-automata to express properties. The language of the property is

then complemented at no cost, by interpreting the corresponding deterministic and com

plete X-automaton as an X-process. The verification problem is thus reduced to checking

language emptiness of the intersection of X-processes. This problem is essentially of the

samecomplexity as the language emptiness of the intersection of Street automata [CDK89].

We can embed the COSPAN approach into ours. More precisely, we show that for

any X-process A = (5,1, T, R, F) there exists a Street automaton A' with 2|5| states and

\F\ + 1 fairness constraints, that has the same language as A. We construct A' as follows:2

• the set of states of A' is S x {0,1},

• the set of initial states of A' is {(3,0) | I(s) = 1},

• for all s, q € S and all a € E: {s,x) ^* (q, y) is in in the transition relation of A' if

and only if T(s, a, q) = 1, x € {0,1} and:

= f 1 if (s,q)£R ,
\ 0 if (s,q)$R ,

• the set of fairness constraints of A' contains a constraint (X{(s, l)\s GS}, 0) and one

constraint of the form (1, X(Zi)) for every cycle set Zt- € F.

2This construction iseasily derived from the node-recurring transform of[Kur94].
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The idea is to create a copy of the transition relation on two levels (0 and 1). Every recur

edge leads to level 1 and every non-recur edge leads to level 0. Thus, some recur edge is

crossed infinitely often if and only if some node on level 1 is visited infinitely often. It is

easy to check that the languages of A and A' are the same.

2.3.2 HSIS approach

As we have seen, expressing recur edgesas Streett fairness constraints may require

doubling the state space. A more efficient alternative is to extended the language empti

ness algorithm for Streett automata to handle recur edges directly. Therefore, Hojati and

Brayton [HB95] suggested to use edge-Streett automata to model systems. An edge-Streett

automaton is a 5-tuple (5,1, T, R, F), where R is a set of recur edges, and F is a set of

Streett fairness constraints. A run is fair if it does not contain infinitely many recur edges,

and it satisfies all the Streett constraints (in the sense of section 2.2.2).

To specify properties, Hojati and Brayton propose deterministic and complete

edge-Rabin automata, which are dual to edge-Streett automata in the same sense as X-

automata are dual to X-processes.

Formally, an edge-Rabin automatonis a 5-tuple (S, I, T, R, F), where it is a set of

recur edges, and F is some set of Rabin fairness constraints, where each fairness constraint

(L,-,Ut), i = 1,..., \F\ is a pairof (characteristic functions of) subsets ofstates.

We say that a run so,si,... satisfies a Rabin fairness constraint (L, U) if:

• L(s) = 1 for some s € inf(s0,si,...), and

• U(s) = 0 for all s € inf(so,si,...).

A run is fair if it contains infinitely many recur edges or it satisfies some constraint in F.

It is easy to see that a run is fair in an edge-Streett automaton if and only if it is not fair

in the syntactically identical edge-Rabin automaton. Thus, complementing a deterministic

and complete edge-Rabin automaton into an edge-Streett automaton does not require any

computation.

2.3.3 Vardi-Wolper approach

A Buchi automaton [Biic60] is a 4-tuple (S, I, T, F), where jP is some subset of

states. A run s0,si,... is fair if inf(s0,si,...) intersects F. Vardi and Wolper [VW86]
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suggested to model a system as a Buchi automaton (say A), and to model a property as an

other Buchi automaton (say P) which accepts all sequences that are models of some linear

temporal logic formula <f>. Checking whether all computation paths in A are models of <f>

reduces to checking whether £(4) C C(P), which is then reduced to checking whether C(A)

intersects C(P'), where the Biichi automaton P' is constructed such that it accepts all se

quences satisfying -«j> (rather than complementing P directly). This construction may incur

an exponential blow-up, but that is considered acceptable because linear temporal logic is

a very succinct language for expressing properties (it can be shown that it is exponentially

more succinct than any kind of automata we consider here [SV89]). Any Buchi automaton

can be interpreted asa Streett automaton with a single fairness constraint (1, X(F)). Thus,

the approach by Vardi and Wolper can easily be embedded into our framework. Moreover,

verifying the emptiness of the intersection of languages of Biichi automata is essentially

of the same complexity as the language emptiness algorithm for Streett automata that we

present. Hence, nothing is lost by moving to the more general framework.

Vardi and Wolper were primarily interested in model checking of linear temporal

logic, so for their purposes Biichi automata suffice. However, Street automata are a better

choice for the specification of systems and properties in the language containment framework

because:

1. Deterministic Biichi automata are less expressive then non-deterministic Biichi and

deterministic or non-deterministic Street or Rabin automata or X-processes which are

all equally expressive and define the class of o?-regular languages.3

2. Even though non-deterministic Biichi automata are as expressive as Streett automata,

they are exponentially less succinct, i.e. for every n > 0 there exists a language

Cn which can be described by a Street automaton with 0(n) states, but cannot be

described by any Biichi automaton with less than 2n states [SV89].

In the rest of this work we will restrict our attention to the emptiness problem

for the intersection of languages of Streett automata. As we have shown, this problem is

general enough to include all language containment based verification approaches that have

been considered. It's important to notice that this generality comes at no extra cost: special

It is worth noting that deterministic /--automata are also less expressive than non-deterministic ones
which can express any w-regular language. However, every w-regular language can be expressed as the
intersection of languages of finitely manydeterministic L-automata[Kur90]. Thus, it is possible to check any
u/-regular property by finitely many containment checks of I-automata languages.
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cases that have been proposed are of the same complexity as the general problem. Since

no confusion can arise, we will use the term "automata (on infinite sequences)" to refer

to Streett automata as defined in section 2.2.2. For the survey of language containment

algorithms between different kinds ofautomata we refer the reader to [CDK89].

2.4 Operations on automata

2.4.1 Composition

In the previous section we have showed that the verification problem reduces to

checking the emptiness of the intersection of languages of two automata. To reduce it

further to the language emptiness check on a single automaton, we define the composition

® of automata with the language intersection property:

£(A®B) = C(A)n£(B) .

The composition operation is also used to represent systems of interactingcompo

nents. In this caseevery component is modeled as an automaton, and the whole system is

modeled as a composition of component automata.

If A = (SaiIaiTajFa) and B = (5b,Ib»Tb,Fb) are two automata on finite
strings, then their composition is defined by:

A®B = (SaxSb,Ia*Ib,Ta*Tb,Fa*Fb) .

Similarly, if A = (S^I^T^/U) and B ~ (SB^B^B,FB) are two automata on infinite
sequences, then their composition is defined by:

A ®B = (5,4 x 5b, Ia *Ib, T^ *Tb, Fa UFb) .

In either case the present and next state variables of the composition are vectors

(ps>i>PSb) and (ns^,nsB) and the composition has the same I/O variable as A and B.
In other words:

• states of A <g> B are pairs, with onecomponent being a state of A, and the other being
a state of B,

• a state of A <g> B is initial if both of its components are,
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• an edge (s, sf) A (q, q') is in the transition relation of A®B if s A q and s' ^* q' are

in the transition relations of A and B respectively,

• in finite case, a sate of A ® B is final if both of its components are,

• in infinite case, a run (sq,*o)i(5i»5i)» •••*s ^r ^ 5o>&i,... is fair in A, and s'0, s[,...

is fair in B.

Note, that due to our notation, we can easily interpret fairness constraints of A and B over

the state space of A® B. Thus, the fairness constraints of A ® B is a simple union of

constraints of A and B.

2.4.2 Union

It is useful to define a union © of automata that has the language union property:

£(A © B) = £(A) U£(B) .

In the definition of A © B, we assume both A and B are complete. As we have shown in

section 2.2.1 we can make this assumption without loss of generality.

If A = (SUjIyijT^F^i) and B = (5b,Ib»Tb,Fb) are two automata on finite

strings, then their union is defined by:

A®B = (SAxSB, Ia*1b, Ta*Tb, F>i + Fb) .

In other words, A © B is the same as A ® B except that a state of A © B is final if at least

one of its components is.

In this work, we use union only on the automata on finite strings, but for com

pleteness sake we also provide a definition for an infinite case: if A = (5>i,I>i,T>i,F>i) and

B = (5b»Ib?Tb, jFjb) are two automata on infinite sequences, then their union is defined

by:

A@B = (5>ix5B,Iyl*lB,Ti4*TB,F>i©B) ,

where:

Faqb = {(Im * Lb, U^ + UB)| (La,Va) € FA, (LB,VB) € FB] .

One can check that (in both finite and infinite cases) runs in A ©B are accepting

if one of their components is.
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2.4.3 Projection

Often, the I/O variable is a vector, some parts of which may be of interest as an

observable behavior, and some parts of which are used only for internal coordination. To

hide parts which are not of interest, we define the projection operation, both on languages

and on automata. Given some language £ C (Si x S2)*, a projection of £ on Si (denoted

by jCIeJ is defined by:

£|£i = {^n ••-0in e SJ| there exists (an,<T2i). •.(oin^n) € £ C (Si x S2)*} .

Similarly, in the infinite case the projection is defined by:

£|e! = {^11^12 •••GS^l there exists (au,G2i)(<ri2,022)... 6 £ C (Si x S2)w} .

On the other hand, given some automaton A = (5,I,T,F), with I/O vector

(^•1,^2) ranging over Si x S2, the projection ofAon Si is an automaton with I/O variable
a 1, defined by:

A\u = (5,I,3<t2.T,F) ,

and similarly in the infinite case:

(5,1, T, f)|El =(5,I,3<r2.T,JP) .

It is straightforward to check that (both in finite and infinite cases):

C(A\^) = (C(A))\Sl .

For example, a projection of the automaton in Figure 2.1 to the domain of variable

i is shown in Figure 2.4.

2.4.4 Quotient

Assume that an automaton A= (5,I,T,F) and a partition4 p= {Si,. .-,5^1} of
5 are given. The quotient of A with respect to p is defined by:

A/p = (p, X{Si II(s) = 1for some s € St}, TA/p, X{Si \F(s) = 1for some s € St}) ,

where:

TA/P = *{(Si, o,Sj) IT(5,o,q) = 1 for some s € Sf, q € Sj], .

4The set p= {5i,..., SM} C25 is a partition of 5 if 5 = (jjjj, 5,, and 5, nS, = 0for all »^ j.
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(i = i)

(i = i)

R ..(i = l)

Figure 2.4: An illustration of projection.

We think of states of Afp as abstract states obtainedby merging concrete states of

A. An abstract state is initial (final) if it contains concrete initial (final) states. If a enables

the transition between two concrete states, then it also enables the transitions between

abstract states containing them. Therefore, if so, s\,..., sn is an accepting run of a\... an

in A, we can easily construct a run So,Si,...,S„ of o\.. .an in Ajp, by choosing S; such
that Si € Si. It follows that:

£(A)C£(A/p) . (2.1)

We say that some S,- € p is reachable if some state s € 5,- is reachable from some

of the initial states in A. We say that S,- € p is stable with respect to the transition relation

T if for every I/O value a and all Sj € p:

3si <E Si. 3sj € Sj . T(Si,cr,Sj) = 1 =• V^J- 6 Si. 3«} € Sj . T(s'i, a,«J) = 1 . (2.2)

Finally, if every reachable St- € p is stable with respect to T, then we say so for p as well.

For example, in Figure 2.5 class S2 is stable (only states in Si are reachable from states in

S2, and all states in 52 can reach some state in Si), while class Si is not, because sn can

reach a state in Si (namely s22) while «22 cannot.

If So, Si,..., Sn is an accepting run ofa\.. .crn in Afp, and p is stable with respect

to T then we can construct a run sq,s\, ...,sn of o\...an in A:

1. choosing some initial state sq € So,
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Figure 2.5: An illustration of stability.

(i = 0) + (i = l) (i = 0) + (i=l)

(i = 0)

Figure 2.6: An illustration of the quotient construction.

2. choosing some s,- € Sj such that T(s,_i ,u, s,) = 1, for all i = 1,..., n.

The condition (2.2) guarantees that the choice above is always possible. Also, if p respects

final states (i.e. if for every Q € p either Q C S(F) or Q DS(F) = 0), then we know that

sn is a final state, and that so,S\,..., sn is indeed an accepting run of <ri...an in A. Thus,

if p is stable with respect to T and respects final states, then we can strengthen (2.1) to:

C(A) = C(Alf) (2.3)

For example, the quotient of the automaton in Figure 2.4 with respect to the

partition p = {{00, 10}, {11, 01}} is shown in Figure 2.6. The partition p is not stable, and

indeed (2.3) does not hold, as demonstrated by the string 010 which is in the language of

the quotient, but not in the language of the original automaton.

Every equivalence relation induces a partition of its domain. Given an equivalence

relation ~ on the state space of some automaton A = (S,I,T,F), we use A/^ to denote
the quotient of A with respect to the partition induced by ~.
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2.5 Traversing automata

The most basic operation of automata traversal is computing the set of successors

of a given set ofstates. For this purpose we define the post operator, which comes in binary

and ternary forms.

The ternary post operator takes as operands a characteristic function S (with

support {ps}) ofsome set ofstates, a transition relation T (with support {ps,a,ns}), and
an I/O value a, and returns a characteristic function ofthe set {g|T(s,a,q) - 1 for some s €

S(S)} (also with support {ps}). Formally, it is defined by:

post{S,T,a) = [3ps.3<7.(S*T*(<7 = a))]nsl^p8 .

In many cases, we are only interested whether there exists a transition between

two states, and do not care which I/O values enable that transition. For that analysis, we

first compute:

G = 3<r.T ,

where T is a transition relation of some automata. We say that G is the graph of the

automaton, because it can be interpreted as a graph with nodes being states, and an edge

between any two states s and q satisfying G(s,q) = 1. We can explore the graph using the

binary post operator defined by:

post(S,G) = [3ps. (S *GJlnsH-ps .

The operator post(S,G) computes the characteristic function of immediate suc

cessors of states in S. Usually, of more interest is the operator post* which computes the

characteristic function of states that can be reached in any (i.e. zero or more) number of

steps. It is defined recursively as follows:

Po^(S,G)h(S ifS(p<»t(S,G))CS(S),
{ post*(S + post(S, G), G) otherwise.

For example, in Figure 2.7 computing post* with {3} as an initial set, would return

{2,3,4,5}, with {2,3,4} as an intermediate result.

Operators, post and post* are used to traverse the graph forwards, in the direction

of the transitions. Their backwards duals are operators pre and pre* defined as follows:

pre(S,G) = 3ns.([S]p8^ns*G) ,
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Figure 2.7: A graph used to illustrate traversal operators.

pre.(S,G) =(S itS(pre(SlG))CS(.S),
[ pre*(S +pre(S, G), G) otherwise.

The operator pre computes a characteristic function of states that can reach some state in

S in exactly one transition step, and pre* computes a characteristic function of states that

can reach some state in S in zero or more steps. For example, in Figure 2.7 computing pre*

with {3} as an initial set, would return {1,2,3}, with {2,3} as an intermediate result.

To eliminate from some set all the states which cannot reach any cycle in that set

we use the cycle operator defined by:

{c,c/e(S,G)^S ifS(S)CS(pre(S,G)),
cycle(S *pre(S, G), G) otherwise.

In every recursive call, the first argument characterizes smaller and smaller sets. More

precisely S *pre(S, G) characterizes the set obtained from the set (characterized by) S by

removing from it all the state that do not have an immediate successor in S. Repeating

this process will eventually remove from S all the states that cannot reach any loop in S.

For example, in Figure 2.7 computing cycle with {1,2,3,4,5} as an initial set, would return

{1,2,3}, with {1,2,3,4} as an intermediate result.

2.5.1 Efficiency of traversal

Operators pre*, post*, and cycle are examples of fixed-point operators. Their

recursive definitions provide a straightforward way of implementing them. In that case, the

first arguments in the sequence of recursive calls characterize strictly increasing (in case

of pre* and post*) or strictly decreasing (in case of cycle) sequence of subsets of states.

Thus, the number of recursive calls is limited by the number of states, and if this number

is finite, the recursion will always terminate. This argument is often used to claim that

the straightforward implementations of pre*, post*, and cycle are of linear time complexity

in the number of state. This would be true if the operators pre, post, *, +, and C were
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of constant time complexity. But, in BDD based implementation each of these operation

require fixed number of BDD disjunctions, conjunctions and/or existential quantification

(set inclusion 5(F) C S(G) can be checked by checking the equivalence of F * G and G).

The size of a transition relation BDD (which has the largest support of all BDD's involved)

is limited by the square of the number of states, so the overall worst case complexity is

proportional to the cube of the number of states.

In practice, this bound is much too high for most systems of interest. For BDD

based techniques to yield any advantages over standard methods, the following two condi

tions must be met:

1. The number of nodes in the BDD's must be much smaller than the number of reachable

states. This conditionis often met for system consisting of components communicating

a limited amount of information (for detailed analysis see [McM93]).

2. The number of recursive calls must also be much smaller than the number of reachable

states. Fortunately, this condition is often met, because the number of recursive calls is

limited by the depth5 of the graph of the system, which is typically much smaller than

the number of reachable states. However, there is one notable exception: counters,

where computing the pre* and post* operators from any single state requires the

number of recursive calls which is equal to the number of reachable states. It is thus

not surprising that some researchers have devoted special attention to abstracting the

behavior of counters (e.g. [MPS92]).

2.6 Language emptiness algorithm

The basic steps in checking languageemptiness are the same both for automata on

finite and infinite sequences. They are outlined in Figure 2.8. First, we compute the graph

of the system (step 1), and a characteristic function of states reachable from the initial

states (step 2). Then, in step 3 we compute a characteristic function A of some subset of

states appearing in accepting runs. In the case of finite strings, the accept(R, G, F) simply

returns R * F, the characteristic function of final states reachable from the initial states. If

that set is empty, then so is the language, and verify returns NULL. Otherwise, it returns

5The depth of a graph is the length of maximum shortest path between any two states.
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function verify (A)

/* A = (5,1, T, F) - an automaton on finite strings, or */

/* A —(S, I, T, F) - an automaton on infinite sequences */

/* ps, ns,<r - the present, next and I/O variables of A */

step 1: G:=3<7.T;

step 2: R:=pos**(I,G);

step 3: A := accept(R, G, F or F);

step 4' if A = 0 then return NULL;

step 5: else return debug(A, I, G);

end

Figure 2.8: LE - language emptiness algorithm
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one path from some of the initial state to someof the final states. Such a path is computed

by the debug function.

For the infinite case, we present the accept function similar to the algorithm by

Hojati and Brayton [HB95], which in turn can be viewed as an implementation of a fixed

point formula by Emerson and Lei [EL86]. But first we need to introduce the notion of

a fair cycle. A cycle si —• $2 —• ••• -*• s„ -»• si is fair if for every fairness constraints

(L,U) € F either L(s,) = 0 for all i = 1,..., n,or U(st) = 1 for some i = 1,..., n. In other

words, a cycle is fair if the run generated by traversing the cycle indefinitely is fair.

The existence of a fair cycle that is reachable from some of the initial states is

obviously sufficient for the non-emptiness of the languageof some automaton. It is perhaps

less obvious that for finite-state automata it is also necessary. To see that, consider some

accepting run sq,s\,..., and a finite subsequence s„, sn+i,..., sm of that run satisfying the

following:

• Si 6 inf(so,si,...) for all i > n (this requirement is always satisfied for sufficiently

large n)

• sm+i = sn, and for every s € inf(sQ,s\,...) there exists at least one i € {n,..., m}

such that s = st- (if inf(so,s\,...) is finite, then for any n one can choose a sufficiently

large m that satisfies this requirement).
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function accept(R, G, F)

/* R - the characteristic function of reachable states */

/* G - the graph of the automaton */

/* F = {(Li,Ui),.. .,(L|f|,U|j?|} - fairness constraints */
step 1: Aux := R;

while TRUE

step 2: Fair = cycle(Aux, G);

step 3: forz = l,...,|F|

step 4' Fair := Fair*(17+ pre*(Vi *Fair, G));

end for

if Fair = Aux then

step 5: return Fair;

else

step 6: Aux = Fair;

end if

end while

end

Figure 2.9: Finding states appearing in fair cycles.

31

The sequence sn, sn+i ,...,sm, sm+i forms a loop which is fair and reachable from the initial

states (via Sq, s\, ..., sn). Thus, the searchforan infinite acceptingrun is reduced to a search

for a finite fair cycle reachable from some of the initial states.

The accept function for automata on infinite sequences is shown is Figure 2.9. At

all times it maintains a superset Fair of the set of reachable states that appear in some

fair cycle. Initially, Fair includes all the reachable states. In step 2 we remove from Fair

all states that cannot reach a cycle in it (and thus cannot participate in any fair cycle).

In step 4 we remove from Fair all states that are in «S(L,), and from which no states in

«S(Fair *U,) are reachable. Consider one such a state, say s. Since L,(s) = 1, the fair cycle

that includes s, must visit some state in «S(U»). But, all states reachable from s are either

not in S(Vi), or have been already eliminated as candidates for fair cycles, thus there can
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be no fair cycle including s. We iterate this process until we reach the fixed point, i.e. until

no more states can be removed from Fair. We claim that at this time Fair = 0 if and

only if the language of the automaton is empty. More precisely, we claim that if Fair is a

characteristic function returned by accept, then the following holds:

1. if some state s appears in some fair cycle reachable from the initial states, then

s € S(Fair),

2. if none of the cycles reachable from some state s are fair, then s £ «S(Fair).

Consider some fair reachable cycle. The states in that cycleare obviously reachable

(thus in initial Fair), and they cannot be deleted either in step 2 or step 4. Thus, the first

claim holds.

To see that the second claim holds, assume to the contrary that there exists a state

s in the final Fair, such that none of the cycles reachable from s are fair. Consider now the

graph of the system restricted to the states in final Fair, and in particular consider some

leaf strongly connected component (say L) of that graph reachable from s (since s is not

deleted in step 2, it must be possible to reach some cycle in Fair from s, thus also some

leaf strongly connected component). States in L can reach only other states in L and none

of the states in L are eliminated in step 4, thus for all t = 1,..., |jF|:

• either none of the states in L are in «S(Lt), or

• some states in L are in <S(Ut).

Thus, a cycle that visits all states in L is a fair cycle reachable from s, contradicting our

assumption that none of the cycles reachable from s are fair.

If the accept function returns a characteristicfunction ofsomenon-empty set, then

the debug function is executed, which selects one fair cycle from the set returned by accept,

and construct one path to that cycle from one of the initial states. The path and the cycle

form an accepting run, and thus are the proof that the language is not empty.

The number of passes through the while loop in Figure 2.9 is limited by the

number of states in «S(R), because the loop is repeated only if at least on state is eliminated

from Fair in step 2 or 4. Thus, the overallalgorithm runs in polynomial time in the number

of states.
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In this chapter we specialize the generic iterative algorithm of section 1.3 to net

works of communicating automata. Initially, we ignore all the communication between the

subsystems, and then iteratively and selectively restore it, if the current abstraction proves

to be too simplistic. We show that the procedure will terminate, and we formulate sev

eral open problems that could improve efficiency of the procedure. Finally, we present and

discuss some initial experimental results.

Although ideas similar to those presented here could easily be applied to any for

malism allowing conservative abstractions and any verification algorithm, the effectiveness

is dependent on the fact that inside the iteration loop we are using a BDD-based language-

containment tool. In particular, heuristic abstractions described in this chapter often result

in a system with more reachable states, but smaller BDD representations.

3.1 Abstractions

Weaddress the problem ofchecking the emptiness of the language ofan automaton

given as a composition:

A = A0®Ai®...®An, (3.1)

where Ai = (5,-,I,-,Tt-, Fi) are automata on infinite sequences with the present and next

state variables ps, and ns,-. Let Aq be a distinguished task automaton, and assume that the
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I/O variable a is actually a vector a = (ai,.. .,<rn). We think ofcr; as the output variable

of the i-th component.

Our goal is to avoid forming A. The challenge is to find an automaton B which is

small, satisfies:

£(A) C £(B) (3.2)

and yet close enough to A such that its language is empty if £(A) is.

One way of generating B that is likely to be1 smaller than A and satisfies (3.2) is

to compute the partial product <g>,€/ A; for some / C {0,..., n}. We say that automata in

I are active and others are ignored. An equivalent interpretation of this abstraction is that

we have replaced every automaton Aj, j &I with an automaton that has the same states

but unrestricted transition between any twostates (characteristic function of the transition

relation equals 1), all states designated as initial (characteristic function of initial states

equals 1) and no fairness constraints. The following lemma states that this is indeed the

conservative simplification.

Lemma 3.1 Let A0,..., An be automata and let I C {0,..., n}. Then:

C(®Ai)CC(®Ai).
t=o iei

n

Proof. £((g) Ai) =£((g) Ai) n£((g) A{) C£«g)A{). D
t=0 t'€/ tg/ i€/

The second kind of abstractions weuse is closely related to the languageemptiness

algorithm. Recall that step 1 of the LE algorithm calls for computing the graph of the

system, which in this case requires computing:

G=3<7.(f[T,). (3.3)
t=0

The following proposition provides for abstraction at the graph level.

Proposition 3.1 Let G be the graph of a system, and let a graph H be such that:

S(G) = {(s,q)\G(s,q)=l} C S(U) .

Then, the absence of a fair run in (the graph characterized by) H implies the absence of a
fair run in G.

aIn all examples where we tried this, it did result in a smaller BDD representation. However, it is not
true in the general case. In fact, it is very easy to construct degenerate examples where this is not the case.
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Proof. Since every edge in G appears also in H, so must also every run, and in

particular every fair run. D

The following result is a well known fact in Boolean theory, sowestate it herewith

out a proof. It offers a convenient way to compute an abstraction satisfying the condition

in Proposition 3.1.

Lemma 3.2 Let G be as defined by (3.3) and let:

Then, S(G) C 5(H).

H=n(3*.T,-). (3.4)
j=0

We can interpret this abstraction as ignoring the communication between subsys

tems, since we remove enabling conditions from transitions before checking whether they

can besimultaneously satisfied. The heuristic argument for computing (3.4) instead of(3.3)
is that all the intermediate results in (3.4) havefewer variables in its support than the inter

mediate result II?=oTi m (3.3). This is likely to reduce the size of the intermediate BDD's.

In fact the intermediate result n?=o Tiis °ften tne single largest BDD created throughout
the language containment algorithm.

The second heuristic argument follows from the well known fact that the BDD

size of the product of two Boolean functions is bounded from above by the product of the

sizes of BDD's representing each function, but if they have disjoint supports the bound can

be strengthened to the sum of the sizes of BDD's. This suggests that the BDD represent

ing (3.4) is likely to be smaller than the BDD representing (3.3), since intermediate results
(3cr. T,-) in (3.4) have disjoint support.

As is the case with other proposed abstractions, these heuristic arguments do not

hold in general, and counter-examples are easily constructed. However, our (admittedly
limited) experience supports them without exceptions.

It is interesting to note that both of these abstractions result in a graph with the

same number of nodes as the original one, but with more edges, therefore possibly more

reachable states. So, these abstractions are not at all suitable for a verification tool based

on explicit state enumeration, but they should result in a smaller BDD representation in

most cases.
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3.2 Algorithm

Figure 3.1 shows the iterative algorithm we propose for checking languageempti

nessof networks of communicating automata (henceforth CLE algorithm,for Compositional

Language Emptiness). It consists of the main function verify.comp which in turn calls the

function verify of section 2.6. We assume that the system to be verified consists of compo

nents Ai = (Si,Ii,Ti,Fi), for i —0,...,n, and that the failure trace returned by verify is

a vector r = (ro,..., rn), where each r,- = rtfir,t2... is an infinite sequence of states in $,-.

The following definitions are used in the CLE algorithm:

L/,fc = n3Pst-3ns»-(T»*(Ps* = r«,fc)*(nst = rtfjk+1)) , (3.5)
iei

E/>* = n(Ps* =r*'.fc)*(ns*' =r^+i) » (3-6)
»€/

£r = {cr€Ew|r is a run of o in (g) A{} , (3.7)
i£Act

where / is some subset of {0,.. .,n}. Intuitively, Ljt* is the characteristic function of I/O
values that enable the fc-th edge of the failure report. Ej,* is the characteristic function of

the fc-th edge of the failure report, restricted to components in J, and £r is set of all I/O

sequence for which r is a run in all active components.

If jC(®?=0^») is empty, then the function verify_comp returns NULL, otherwise

it returns a run of some sequence in jC(®?=0 Ai). In the following paragraphs we identify

in verify.cornp the four phases of the generic iterative abstraction algorithm of section 1.3,

and give the intuition behind the heuristics built in the CLE algorithm.

3.2.1 Initial abstraction

We build an initial abstraction in steps 1 and 2 of the CLE algorithm. Our choice

of the initial abstraction is based on the observation that many ofthe interesting properties

are expressed in terms of the output variables of only a few subsystems, and that for some

of the properties the behavior of some subsystems is irrelevant. Therefore, as an initial

abstraction, in step 2 of the CLE algorithm, we ignore all the subsystems that are not

in the Act set, i.e. all except Aq and those automata that have their output variables in

the support of the transition relation of A0. By choosing this initial abstraction and an

appropriate refinement step, we will never consider a subsystem that is irrelevant to the

property to be verified.
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function verify_comp (Ao,...,An)

/* Ai = (Si,Ii,Ti,Fi) - components of the system to be verified */
step 1: Act := {i\i = 0 or ai € supp(T0)};

step 2: B:=(S0x...xSn, JJ I,-, (3a. JJ T,-), (J Fft
i€Act ieAct i£Act

while TRUE do

if (r :=verify(B)) = NULL then

return NULL; /* the task is verified */

else if L/t* = 0 for some J C Act,k>l then

step 3:

step 4'

step 5:

step 6:

step 7:

B:=(SB,lB,TB*Ei,k,FB);

else if £r n £( (g) Ak) = 0for some New C Act then
k£New

step 8: C := (g) Ak',
k€Nevt

step 9: B := (SB, Ib * Ic, TB * (3<r. Tc), FB UFc);

step 10: Act := j4ct U New;

else

step ii: return r; /* the task is not verified */

end if

end while

end

Figure 3.1: CLE - compositional language emptiness algorithm

37
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3.2.2 Verification

Recall that the function verify of section 2.6 takes an automaton (say A) as input,

and it either returns a run of some sequence in £(A), or it returns NULL if £(A) is empty.

We stressthe importance for our algorithm of the failure report returned by verify.

If the task is not satisfied, then a "real" failure is always present, even in the first iteration.

However, verify might ignore that failure for many iterations, reporting instead "false"

failures. Unfortunately, there are no known heuristics (let alone exact procedures) which
would guide the tool in the search of a "real" failure.

3.2.3 Failure analysis

The exact task of the failure analysis step is determined by the failure report and

the types of abstraction used. As indicated previously, there are two abstractions used:

ignoring communications (step 9 of the CLE algorithm) and ignoring subsystems (step 2 of

the CLE algorithm). In ouralgorithm we first analyze the former in step 5, and then, if no

violations are found, we analyze the latter in step 7.

If communication between subsystems is ignored while making the product ma

chine, then the result is a graph with the same nodes and more edges than theexact graph.

Since initial states and fairness constraints are exact, one only needs to check thatevery edge

in the report is a "real" edge, i.e. that the enabling conditions of all the active component

edges can be simultaneously satisfied.

The function liAct,k is satisfied by exactly those a € E that enable the fc-th tran

sition of the failure report in all active automata. Thus, r is an accepting run of some

sequence in ®t€j4rf Ai, if andonly if for all k > 1: LAct,k £ 0. Note that only finitely many

initial Ar's need to be checked, because r is ultimately periodic.2

Once we find a A; such that IiAct,k = 0, we could terminate the failure analysis and

eliminate the failure by deleting the fc-th edge of the failure report from the current graph

of the system. However, we prefer to find a small subset J of Act such that L/,* = 0, for at
least two reasons:

1. If J is smaller than Act than Ej,* is likely to have a smaller BDD representation than

^Act,ki because it takes less BDD operations to construct it.

A sequence so,si,... is ultimately periodic if there exists integers n and p such that for all t > n:
Si+p = si. In other words, a run is ultimately periodic if it consists of a cycle and a path to that cycle.
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Mct.l

Figure 3.2: Construction of the X automaton.

2. The smaller J is, the larger is the set of edges E/,* characterizes. If we eliminate all

those edges at once, we can speed-up the convergence of the CLE algorithm.

We propose a two-step method of finding a suitable J. First, we evaluate L/,*

iteratively for increasing subsets of Act, starting with a singleton, adding one new element

in each iteration, and stopping as soon as L/,jt = 0. Say that this happens for some/' C Act.

Then, we try as J all two-element subsets of/'. If one of those evaluates L/,* to 0 we use it in

computing E/,*, otherwise we use J7. In principle, one could then try all triples, quadruples,

etc., but we conjecture that it would actually increase total running time.

If this phase of failure analysis reveals no over-simplifications, we move to the next

one in step 7 of the CLE algorithm. To check whether £r 0 £((&k€New Ak) = 0 we first

construct an automaton X such that £(X) = £T,and then execute ver\fy(X®((%)ieNew Ai))

for some candidate set New.

Assuming that the failure report r is of length / and has a period p (i.e. Vi. Vj >

/. nj = rt-,j-p), we define the automaton X by:

X = ({0,...,l-l},X{0},Tx,fl>)} ,

where Tx(k,o, m) = 1 if and only if JjAct,k+\(<*) —1» said:

jl-p if
m —{

[ k+ 1 ol
* = /-l

otherwise.

The construction of X is illustrated if Figure 3.2. Note that while constructing X, we can

re-use l>Act,k computed in step 5.

If a candidate New is chosen too big, the check in step 7 may be as complex as

the original problem. We propose the following heuristics to avoid this complexity:3

The choice of these heuristics was influenced by discussions with Robert Kurshan.
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1. first, try to find a single component Ai such that £(X) f\ £(Ai) = 0,

2. if that fails, order ignored components in a way that every component has at least

one variable in common support either with X or with some component preceding it,

3. compute cumulative product X ® A^®... adding one ignored component at a time

in the order chosen in the previous step,

4. repeat the previous step until one of the following conditions is satisfied:

(a) the language of the cumulative product becomes empty: in this case let New

contain indexes of all components in the cumulative product,

(b) the cumulative product contains all ignored components and its language is not

empty, in this case terminate with failure,

(c) the cumulative product is too big (i.e. occupied memory exceeds some given limit):

in this case let New contain indexes of all components in the cumulative product

(we defer eliminating the failure report until subsequent iterations).

3.2.4 Refinement

Depending on the results of failure analysis there are two different refinement

problems: deleting certain edges from the current graph (step 6) and including previously

ignored subsystems into the current abstraction (step 8-10 of the CLE algorithm).

Deleting edges in step 6 is justified by the following proposition:

Proposition 3.2 If I C Act is such that L/,* = 0, for some k, then:

a) E/tjfc characterizes some edges in the graph of the current abstraction,

b) none of the edges characterized byE/,* appear in the exact graph of the system.

Proof. The fc-th edge of the failure report must be both in the current graph of

the system and in «S(E/tjt), thus part a) holds. To show part b) assume by contradiction

that there exists an edge in the exact graph with components r,-,* —• r^k+i for all i 6 /.

Then, there must exist at least one a € £ such that T,(rttfc,<7,rt>jt+i) = 1 for all t € /,

which contradicts the assumption L/,* = 0. D



CHAPTER 3. NETWORKS OF COMMUNICATING AUTOMATA 41

The proof of part a) shows not only that E/,* intersects with the present graph of

the system, but also with the failure report. Therefore, the reported failure no longer exists

in the current abstraction after it is updated in step 6 of the CLE algorithm.

Proposition 3.2 shows that the criterion Lj,* = 0 is correct in the sense that

«S(E/ffc) never contains edges that are in the exact graph of the system. The following

proposition shows that it is also complete, in the sense that if no J and k satisfy L/t* = 0,

then the intersection of the languages of active automata is indeed not empty.

Proposition 3.3 IfLAct,k £ 0 for allk>0, then £(®l€j4ct Ai) ^ 0.

Proof. From L^* ^ 0 it follows that for every k > 0 there exists Ok € £ such

that T(rt-,fc,(7fc,r.-tjt+i) = 1 for every t € Act. Thus, rt- is a run of a = aQa\... G £w in Ai,

and r is an accepting run ofa in ®,€>ict Ai. D

The second refinement task occurs when we find a subset New of ignored compo

nents that eliminates the reported failure. In that case, weinclude New in the set of active

components, and update the current abstraction of the system, as indicated in steps 8-10.

A closer look at step 9 reveals that components in New are included in the current abstrac

tion, but communication is ignored between them and other active components. This way,

we only need to update the graph ofthe system from the previous iteration. Thus, we never

compute the full transition relation of the system. On the other hand, the reported failure

will not be eliminated in the updated system. This is important only in terms ofefficiency,
since the failure will eventually be eliminated in subsequent iterations, but their number

may belarge. To define a refinement step which retains some ofthe mentioned advantages,
but also eliminates the reported failure is another interesting open problem.

3.2.5 Correctness

In showing the correctness ofthe CLE algorithm we assume that the verify function
called in steps 3 and 7 is correct.

Proposition 3.4 The CLE algorithm is correct.

Proof. To show that the algorithm can not terminate with a false success we need

to show that at every point in the algorithm the description of the system is an abstraction

of the exact system. We show this by induction on the number of iteration:
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BASE CASE: By Lemma 3.1 initial B computed in step 2 is an abstraction of the exact

system.

INDUCTIVE STEP: As an inductive assumption, we postulate that before step 6 is ex

ecuted, the graph of the current abstraction contains the exact graph of the system,

and that before step 9 is executed, B is an abstraction of (&ieAct A%.

Now, by Proposition 3.2b and the inductive assumption the updated graph in step 6

contains the exact graph of the system, hence by Proposition 3.1 it is an abstraction.

Also, by Lemma 3.2, Proposition 3.1 and the inductive assumption the updated B

in step 9 is an abstraction of (S)i^ActuNew Ai, hence by Lemma 3.1 it is also an an

abstraction of the exact system.

To show that the algorithm can not terminate with a false failure we need to

show that a failure is reported only if a sequence is found that is in the language of all the

components Aq, .. .,An. Indeed, a failure is reported only if £r n £((2)i$Act Ai) ^ 0- Since

by definition £r C £((SfieAct Ai),tne claim follows. d

Proposition 3.5 The CLE algorithm terminates.

Proof. At each iteration we either execute step 6 or steps 8-10 or terminate. Steps

8-10 can not be executed more than n times, because every time it is executed the set Act

grows by at least one new element. By Proposition 3.2a, at least one edge is eliminated

from the graph of the current abstraction in step 6. Therefore, step 6 can also be executed

only finitely many times. D

The proof of the Proposition 3.5 has an unfortunate consequence that the number

of steps in the worst case is proportional to the possible number of edges in the exact graph,

which is exponential in the number of components.

3.3 Experimental results

We have tested our algorithm on two different properties of the well known Dining

Philosopher's problem. We have used the solution with an encyclopedia [KM89] to insure

that the system is deadlock and starvation free. All experiments were performed on a 400Mb

DEC MIPS 5000 workstation.
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Table 3.1: Results for the mutual exclusion property

philosophers 2,000 4,000 6,000 8,000 10,000 12,000 14,000
reachable states 10953 10ims 2Q2862 1Q3816 10477i 105<518 jn6595

CPU time [sec] 42.8 160.4 359.1 627.8 981.2 1346.6 1854.4
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The first property we have verified is that two neighboring philosophers will never

eat at the same time (mutual exclusion). More precisely we have verified this property for

the first two philosophers. The results are summarized in Table 1. We could not verify any

larger examples due to the memory limit. No comparison is given to the direct approach

since it can verify systems with at most several hundred philosophers. This property is local,

i.e. it depends only on the behavior of the first two philosophers. Thus, for any number of

philosophers the algorithm has verified the property in one iteration.

The other property wehave verified is that the first philosopher will not be hungry

forever (starvation). In this case results were not nearly as good as for the mutual exclusion

method. In fact, it performed worse than the direct method with the number of iterations

reaching hundreds for less than ten philosophers. Although this property is expressed in

terms of outputs of only one philosopher, it is not a local property. In fact, some aspects of

the behavior of all philosophers must be included to verify this property. Thus, a complete

exact graph waseventually computed and the effortof only the last iteration was the sameas

that of the direct approach. All the other iterations were basically an (expensive) overhead.

This indicates that this approach can be robust only if more sophisticated choices are made

on which communication to ignore initially and how to eliminate a failure trace.

3.4 Related work

Several approaches to (more or less) automatic abstraction of communicating

finite-state systems have been proposed. Many of these approaches can be seen as a two

phase process: first an equivalence relation is defined over states of the system, and then a

quotient with respect to that equivalence is computed.

In some cases the equivalence is given by a user [CGL92, GL93], and in others

it is computed such that it preserves certain classes of properties (typically fragments of

CTL). In particular, approaches are developed for preserving all CTL formulas [CLM89,
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BFH90], all ACTL formulas [DGG93], a single CTL formula [SCSVB92, ASSSV94], and a

single ACTL formula [DGG93]. Computing the quotient of a given system in the simplest

form requires traversal of the state space, and thus is as hard as verifying the system.

Therefore, in all of the approaches mentioned above procedures are defined that construct a

quotient without ever constructing the full system. In [BFH90] and [DGG93] the problem is

addressed by interleaving of the quotient and equivalence computation. Initially, a quotient

is constructed with respect to a very coarse equivalence (that does not necessarily have

any preservation properties). The equivalence and the quotient are then iteratively refined

until the preservation is achieved. In [CLM89, CGL92, SCSVB92, ASSSV94] the quotient is

built hierarchically: components are first abstracted, then composed, and then abstracted

again to simplify building of even larger blocks. Finally, in [GL93] an approximation of the

quotient is computed directly from the program text.

None of the approaches mentioned above can simplify any fairness constraints.

Aziz et al. [ASB+94] have defined an equivalence that includes fairness constraints, but

they did not provide an efficient algorithm for computing. Another problem is that ap

proaches [CLM89, BFH90, DGG93] compute actually reductions with respect to large sets

of properties, so they are not likely to yield significant simplification. For language contain

ment, reduction only needs to preserve the language (which is weaker than preserving even

only ACTL formulas), but unfortunately there are no efficient algorithms for language pre

serving minimization, and in many cases even the optimally reduced system with the same

language is still quite large. Better simplifications are to be expected from property-specific

approaches like ours and [SCSVB92, ASSSV94, DGG93].

A quite different approach was taken by Halbwachs [Hal93]. Rather than simpli

fying a system beforehand, the simplifications are made while computing reachable states.

Sets of states are computed symbolically, and instead of the exact set of reachable states, a

superset with smaller symbolic representation is computed. Since verifying safety properties

reduces to deciding reachability of a set of states (see chapter 4), the method is conserva

tive for such properties. In our knowledge, this and ours are the only approaches that

demonstrate that state minimization is not the only possible simplification objective.
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Chapter 4

Real-Time Systems

Classical formal models abstract quantitative time and retain only the ordering
of events (e.g. [CES86, Kur90]). However, for many systems it is essential to verify their
real-time behavior. It is not enough that an alarm sent by a smoke detector gets to a fire
station, it must get there in time.

Most of the recent developments in formal verification of real-time systems stem

from the work of Alur and Dill [Dil89, AD90]. They define timed automata, a model where

a finite state system is augmented with real-valued time measuring devices called timers,
and then show that the verification of such systems can be reduced to the verification of

"ordinary" (untimed) finite-state systems.

In this chapter we propose an iterative algorithm for verification of timed au

tomata. The algorithm can be used in a fully automatic mode, or in a guided mode where

user suggests an initial abstraction. We also introduce timed automata with decrements,

an extension of timed automata that allows timers to be decremented. This extension has

some practical applications as demonstrated by a model of a real-time operating system

presented in chapter 5. However, this option must be used cautiously, because it makes the

verification problem undecidable in general. To verify systems in the extended model, we
propose a semi-decision procedure in chapter 6.

4.1 Timed automata with decrement

Real-time behavior is modeled by adding time-measuring devices called timers to

the description of a finite-state systems. Timers can then beused to bound the elapsed time
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between transitions. Before we formally introduce the model, we introduce some notation

that enables us to treat uniformly bothstrictandnon-strict inequalities (e.g.: x < 3, y < 5).

4.1.1 Bounds, timing inequalities and timer valuations

The domain of bounds B is the union of the set of lower bounds LB and the set

of upper bounds UB, where:

UB = Zu{n~\neZ},

LB = ZU{n+\n€Z},

and Z is the set of integers. Expressions n~ (respectively n+) can be thought of as real

number infinitesimally smaller (larger) than n. The integer addition is naturally extended

to the bounds of the same type, by: n+m~ = n~ -f m = n~ +m~ = (n+m)~. Similarly, the

integer negation is naturallyextended to bounds by: —(n~) = (—rc)+, and —(n+) = (—n)~.

Also, the integer ordering is extended to B by: n~ < n < n+ < (n + 1)~. Finally, we

compare real numbers to bounds and say that x < n~ if x < n and x > n~ is x > n.

Let V —{xi,...,X|v|} denote some set of timer variables. The set of timing
inequalities W is the set of formulas of the form x < a, x>6orx-y<c, where x, y 6 V,

a,c € UB, and 6 € LB. Let 2* denote the set of all finite subsets of $.

A timer valuation r :V -* R assigns a real value to every timer variable. We say

that a timer valuation r satisfies a timing inequality x < a, if r(x) < a. Similarly, we say

that t satisfies x > a, if r(x) > o. Finally, r satisfies x —y < a if r(x) - r(y) < a.

In our model, timers can be modified in two ways: they can either be decremented

by some positive integer amount, or reset to zero. To represent these modifications, we

define the set of timer decrements (denoted by M) to be the set of non-negative integers

augmented with a special symbol 1 that indicates that a timer is to be reset.

4.1.2 Syntax

A timed automaton with decrement (TAD) is a 7-tuple (5,I,T,F, V,C,M) where

S, I, T, F are as in untimed case, and:

• V = {xi,..., X|v|} is a set of timer variables,

• C : S x S —* 2* is a timing constraint function, and



CHAPTER 4. REAL-TIME SYSTEMS 47

• M: S x S XV -+ Mis a, timer modifier function.

If M(s,g,x) € {-LjO} for all s, q 6 S, then we say that a TAD is a timed automaton.

Intuitively, a transition s —• q is enabled only at times where all inequalities in

C(s,q) are satisfied. If M(s,g,x) = _L, then the timer x is reset on 5 -> q. Otherwise, it is

decremented by "M.(s,q,x). When we draw TAD's we label an edge s —> q with x := 0, if

M(s, q,x) = 1. If M(s, q,x) = n > 0, we label s —• <j with x := x - n. If M(s, 9,x) = 0 we

omit the label.

4.1.3 Semantics

We provide semantics of timed automata in terms of timed sequences of I/O values

(0i»fa), (<*2, fa), •••, (vn,&n) where a,- 6 S is an I/O value, and £,- is a positive real number.

We think of Si as an elapsed time between two transitions, which in turn uniquely determine

timer valuations at every transition. Formally, given a TAD (5,1, T, F, V,C, M), with every

sequence of states so,si,...,sn and every sequence of positive real numbers 61,...,6n we

associate a sequence of timer valuations T\, t2, ..., rn defined as follows:

Ti(x) = S\ for all x € V ,

if M(d,-_i,*t-,x)= ± ,
r1+1(x) = _

:) - M(s,-_i, Si,x) + £t-+i otherwise,

for all i = 1,..., n - 1 and all x € V.

In case of the timed automata the second condition simplifies to:

j 6i+1 ifM(st-_i,st-,x)= 1 ,
r,+i(x) = <

\ rt(x) + ^i+i otherwise.

We say that a sequence of states so,S\,...,sn is an accepting run of a timed

sequence (^, tfi),(<r2, tf2), •••, (*n,6n) in a TAD (5,1,T, F, V, C,M) if:

1. so,si,...,sn is an accepting run of o\G2 • ♦ •<*n in an (untimed) automaton (S,I,T,F),

and

2. rt- satisfies all timing constraints in C(s,_i,«,-) for all t = 1,..., n, where rt- is the i-th

valuation in the sequence T\,r2... rn associated with 5q,«i,..., s„ and £1,..., tfn.

I 6i+1
1*M
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The language ofa TAD A (denoted by £(A)) is the set of all timed sequences that

have an accepting run in A. The untimed language of Ais a projection of£(A) to E, i.e.:

Untimed(£(A)) = {<7i.. .on\ there exists (auSi),.. .,(ai,Si) € £(A)} .

4.1.4 Issues in model selection

Notice that in the definition of an accepting run condition 1 does not depend on

timing, and condition 2 does not depend on I/O values <7i<72.. .an, but only on times. If

times Si,...,Sn satisfy condition 2, wesay that they are a consistent timing of so,si,..., sn.

We use this decoupling in our language emptiness algorithm, where we first relax all the

timing constraints, and then check whether a run reported by a verification tool admits a

consistent timing. To preserve this decoupling, we do not allow timing constraints C and

modifiers M to be functions of the I/O variable as well. This extension would allow for

different transitions between two states to be subject to different constraints.

Another extension we have considered (and decided against) is to allow timing

constraints to be arbitrary Boolean formulas over timing inequalities. This extension would

again violate the property that for every transition there exists a unique set of timing in

equalities which must all be satisfied. This property significantly simplifies a check whether

a run admits a consistent timing.

Our choices do not sacrifice the expressiveness of the model. It is always possible to

transform an automaton in the extended model (i.e. with I/O dependent timing constraints

which are arbitrary Boolean formulas), to an equivalent one in our model, at the expense

of some states being multiplied.

Another issue is finite versus infinite sequences. We develop our formalism for

automata on finite sequences, mostly for simplicity, but also to stress the fact (argued

also in [Pne92]) that infinite sequences are more important for untimed than for real-time

systems. The argument is that most liveness properties (e.g. uthe gate will not stay down

forever") are really just an abstraction of timed safety properties (e.g. uthe gate willnot stay

down for more than seven time units") and thus can be disproved by finite timed sequences.

Therefore, in a framework that allows precise timing information safety properties suffices

in most cases. Still, we discuss extensions of our algorithms to infinite sequences which are

necessary to verify (quite rare) timed liveness properties (e.g. uthe gate will eventually stay

down for at least three time units).
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4.1.5 Composition of TAD's

TAD's, like any other model, are not of much use unless a composition is defined

over its instances. Similar to the untimed case, the composition is well defined only if two

automata have the same I/O variable. Given two TAD's

A = (Sa,1a,Ta,Fa,Va,Ca,Ma) ,

B = (Sb,1b,Tb,Fb,Vb,Cb,Mb) ,

satisfying VA n Vb = 0, the composition of A and B is the TAD:

A®B = (SAx SB, Ia * 1b> Ta *TB, FA *FB, VA UVB, CA®B, MA®B) ,

where for all qA,sA € Sa, Qb,sb 6 Sb, and all x 6 Va U Vg:

^A®B((qA,qB), (SA,SB)) = CA(qA,SA)^CB(qB,SB) ,

MA(qA,SA,x) ifx€V>i ,
^•A®B((qA,qB), (sa,sb), x) = u

Mjg(gB,5B,x) ifx€Vfi.

It is not hard to show that a run is accepting in A ® B if it consists of an accepting run

in A and an accepting run in B. Therefore, the composition of TAD's has the language

intersection property:

£(A®B) = £(A)r\£(B) .

The verification paradigm of TAD's is similar to the untimed case. Wethink of the language

of a TAD as the set of all possible behaviors, and to prove (or disprove) that they are all

acceptable, we prove (or disprove) the language emptiness of the composition of the system

with a TAD whose language represents all unacceptable behaviors.

4.1.6 Example

In the railroad crossing example [ACD+92] shown in Figure 4.1, the system has

three components: the train, the gate, and the controller. The train approaches from

outside of the crossing. After at least two time units of approaching, the train will enter

the crossing, and then exit at most five time units from the beginning of the cycle.

Exactly one time unit after the train approaches the controller commands the gate

to lower, and at most one time unit later the gate will close. Similarly, at most one time

unit after the train exits the crossing the controller commands the gate to raise, and at

-{
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train = out
train = app cont = raised

x < 5 train a£ app

ont = raiseA

train = app

y:=0

cont = raise gate = upA
< 1 cont^= raise1/ < 1 cont = n

O p.gate = upA
cont = /ou/erl

«:=0

cont = raise

V < * cont = /ott/er
y=l

cont = lowerA _
train = out

TT gate = rfou/n
z< 1

L2R
y:=0

LOWER

(/ate = up
l<z<2

ate = downA

cont = ratse

D2U
*:=0

DOWN

o oo o
cont = /ower cont = lower A Sate = doum gate — downA

y<i train ^ out «< 2 cont = /ou>er

CONTR. GATE

Figure 4.1: Railroad crossing example.

least one and at most two time units after that the gate will open. For simplicity, we only

consider the case when there is ample time between trains. Therefore, we require the train

to approach only if the gate is up.

Formally, common I/O variable of automata in Figure 4.1 is a vector with com

ponents train, cont and gate ranging over {app, in, out}, {lower, raise} and {up, down}

respectively.

Two properties to be verified are:1

safety: the gate is down whenever the train is in, and

liveness: the gate is never down for more than seven time units.

Figure 4.2 showsautomata whichaccept all timed sequences of I/O values that violate these

properties. A property is satisfied if the composition of the corresponding automaton with

the automata in Figure 4.1 has the empty language.

The names of these properties are not to be confused by general classifications of properties to safety
and liveness.
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tram jt tnV
gate = down

train = tnA

gate = up

SAFETY

always

o
final

oate = down

t<7gate = up

V / gate —down ^ J
always
t>7

gate = up

t<7

always

Q
final

LIVENESS
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Figure 4.2: Properties for the railroad crossing example.

4.2 Equivalent untimed automaton

In this section we show that the language emptiness problem is decidable for timed

automata. This result of Alur and Dill [AD90] enables automatic verification of real-time

systems. We present it in two steps. First, we provide an alternative semantics of TAD's,

by associating with each TAD A an untimed, infinite-state automaton A°°, such that £(A)

is equal to £(A°°). Then we show that in the case of timed automata we can define a finite

equivalence relation on states of A°° such that the quotient of A°° with respect to that

relation has the same language as A°°. Since that quotient is finite-state, we can check for

language emptiness.

4.2.1 Alternative semantics

The basic idea in constructing A°° is to expand explicitly the state of the system

with timer values. Also, we expand the set of I/O values, to make time between transitions

an explicit part of the language.

Formally, given a TAD A = (S, I, T, F, V, C,M) over the alphabet S, the compan

ion automaton A00 is defined as follows:

• the state space of A°° is 5 x R^, where R is the set of real numbers,

• a state (s,Xi,...,x\y\) is initial if l(s) = 1,and x\ = ... = x\V\ = 0,

• a state (s,x\,. ..,x\y\) is final if F(s) = 1,

• the alphabet of A°° is S x R+, where R+ is the set of positive reals,
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• a transition (s,xi,.. .,x\v\) —'-* (q,yi, ••-,y\v\)*s m tne transition relation of A°° if
all of the following holds:

1. T(s,<r,q)=l,

2. foralli = l,...,|V|:

..{ 0 if M(s,q,Xi) = A. ,

Xi + S - M(s, q,xt) otherwise,

3. Xi + S <c for all i, c such that (x,- < c) € C(s,q),

4. Xi + S >c for all i, c such that (x,- > c) € C(s,g),

5. Xi - Xj < c for all i, j, c such that (xt- - Xj < c) GC(s, g).

It is straightforward to show that the language of a TAD as defined in section 4.1.3

is the same as the language of the companion automata. It follows then easily, that the

language of the automaton j4°°|e is exactly the untimed language of A.

4.2.2 Equivalence of timer values

The states of the companionautomaton A°° of someTAD A = (5,1, T, F, V, C, M)

include real values of all the timers in the system. Alur and Dill [AD90] haveobserved that

many of these states are equivalent. We describe this equivalence as the intersection of

many coarser equivalence relations. More precisely, for any two states:

(s,au...,a|V|),(q,fa,...,6|V)) € S x R|v|

of A°° we define:

(s,a\,..., a\V\) ~s (q, fa,---, b\V\) if an only if s = q,

(s,ai,.. .,fl|v|) ~x,<c (q,fa, —-,b\v\) if an only if either both a,* < c and 6,- < c hold, or
neither holds,

(s,ai,..., C|v|) ~Xi-Xj<c (q, fa,---, b\v\) if an only ifeither both a,- -aj < c and 6,- —fa<c
hold, or neither holds,

(0,ai,...,a|v|)~(9f6i!--*!&|v|) if an only if:

1. (£,ai,...,a|y|)~s (<7,ti,...,6|V|), and
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2. («,a1,...,a|V|) ~x,<c (q,fa,-",h\v\) for every i = 1,...,|V|, and every bound
c e B satisfying -cmax <c< cmax, where cmax is the largest (by absolute value)

bound appearing in the system, and

3. (s,a!,...,a|V|) "xi-x^c (9,6i,...,6|V|) for every i,j = 1,...,|V|, i ^ j
every bound ce B satisfying -cmox < c < cmox.

and

Intuitively, equivalence classes of ~ preserve the untimed portion of the state

exactly, preserve the integer part of the value of timers (at least up to cmax), and also

preserve the differences between the timer values. This information allows us to infer the

ordering of fractional values of all timer values. This ordering is important because it

determines the order in which timer values cross the integer boundaries.

Let us restrict our attention to the case when A is a timed automaton. In this case,

values of timers are never negative, so we can restrict the state space of A°° accordingly.

Therefore, the partition induced by ~ is finite. Also, since ~s distinguishes every state in

S, the partition induced by ~ respects the final states of A°°. It is somewhat harder to see

that the partition induced by ~ is also stable with respect the transition relation of A°°\x.

Recall that the transition relation of A°° requires that the present state value of timers

increased by S satisfy all timing constraints and that the next value of a timer is either 0

or the present state value increased by S, depending on the value of the timer modifier. So,

we can break the transition into the following steps:

1. all timer values are increased by the same amount S > 0,

2. the untimed part makes a transition (say s —• q),

3. new values of timers must satisfy all timing constraint in C(s, q)

4. some timers are reset, as warranted by M.

It is easy to see that if two are states equivalent, steps 2, 3, and 4 will transform them to

new states that are also equivalent. But, it is also true that for any pair of equivalent states:

(s,oi,...,a|V|) ~ (5,61,..., 6|V|) ,

and any S > 0, there exists c > 0 such that:

(a,ai-M,...,a|v| + $)~(3,&i + £,...,6|V| + 0 • (4.1)
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If we start from (oi,..., a\y\) and grow S from 0 to its final value, we will cross boundaries

ofequivalence classes ofsome relation ~x,<c« That growing c from (6i,..., &jy|) will hit the
same classes in the same order follows from the fact that the partition induced by ~ refines

the partitions induced by ~X,-Xj<c for all interesting values of c. Therefore to get (4.1) it

is enough to choose c that crosses the same number of boundaries as S.

Let T°°|e denote the transition relation of j4°°|£. Using (4.1), for any transition:

((s,a1,...,a\V(),o,(q,c1,...,c\V\f} €r°°|E ,

and any state:

(s, fa,...,6|V|) ~ (s,ai,...,a|V|) ,

we can construct another transition:

((s,fa,...,b\V\),a,(q,di,...,d\V\f) €T°°|e ,

such that

(q,Ci,...,c\V\) ~ (q,di,...,d\V\) .

In other words, ~ is stable with respect to T°°|s, and the following holds:

Theorem 4.1 (Alur-Dill) Let A be a timed automaton and let A°°\x and~ be defined as

above. Then:

£((>100|E)/^) = Untimed(£(A)) .

The states of (A°°\z)/„ are often called regions, and (A°°\z)/„ itself is called
a region automaton. Theoretically, theorem 4.1 is important because it allows checking

language emptiness of timed automata to be done by checking language emptiness of finite-

state automata. Unfortunately, the theorem is not directly applicable in practice because

the number of regions is exponential not only in the number of timers, but also in size of

the constant cmax as well.

4.2.3 Extensions to TAD's

For TAD's in general the construction above breaks for two reason:

1. timers can have negative values, so ~ is not finite,
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2. ~ is not stable with respect to T°°|e, because different values of timers larger than

Cmax can be distinguished after decrementing.

However, we can modify the definition of ~ to be the intersection of ~s, with equivalence

relations ~X|<c and ~x.—x><c for all t, j = 1,..., |V| and allbounds c € B. In this case two
states are equivalent if:

1. they agree on untimed state components,

2. they agree on the integer part of the value of every timer, and for every timer the

fractional parts in both states is either equal or different from zero,

3. they agreeon the integer part of the difference of values of any twotimers (and again

the fractional parts of the difference in both states is either equal or different from

zero).

The decomposition of every transition into four steps is still valid except that in step 4 the

timers that are not reset could be decremented by some integer amount (depending on the

timer modifier). It can be shown, by the similar reasoning as before, that this modified ~

is stable with respect to T°°|s.

Unfortunately, the modified ~ is not finite. For any given problem there might

exist some lower and upper bounds, outside of which all timer values are equivalent, but

such constants do not always exist, as implied by the following result:

Theorem 4.2 The language emptiness problem for TAD's is undecidable.

Proof. By reduction of the halting problem for deterministic two-counter machines.2

Given a two-counter machine M with counters C\ and C2> we construct a TAD Am with a

single I/O value and three timers: x, y and z. The state space and initial states of Am are

those of M, and the unique final state of Am is the halt state of M. The transition relation

of Am is that of M, except for the following:

A deterministic two-counter machine is basically a finite-state automaton with a unique initial and final
state and augmented with two integer-valued counters. The form of the transition relation is restricted
such that from every state there are exactly four transitions with mutually disjoint enabling conditions,
corresponding to possible combinations of each counter being (or not) equal to zero. Also, every transition
specifies for each counter whether it is to be incremented or decremented by 1. Two-counter machines can
encode Turing machines and therefore their halting problem is undecidable. For more details, see [HU79,
chapters 7, 8].
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• timer x is reset on every transition, and a timing constraint x = 1 is placed on every

transition; this ensures that transitions will happen on integer times, starting at time

1,

• on transitions where C\ is decremented, we decrement y by 2, and on transitions

where Ci is decremented, we decrement z by 2,

• on transitions enabled by C\ = 0 (C\ ± 0), we place a timing constraint y = 1

(respectively y ^ 1) and similarly, on transitions enabled by C2 = 0 (C2 ^ 0), we

place a timing constraint z = 1 (respectively z ^ 1).

It is easy to see that on every transitions the values of y and z are equal to the values of

C\ and Ci incremented by 1. Therefore, Am simulates M and its language is not empty if

and only if M halts. D

4.3 Related work

For many systems, the region automaton is far too large to be traversed explicitly.

In section 4.4 we will propose an approach that can hopefully avoid building the full region

automaton for most of the systems. But first we review some other approaches in this

direction.

4.3.1 Successive approximation

Alur et al. [AIKY93] have suggested an approach which can be seen as an appli

cation of the generic iterative algorithm of section 1.3 to real-time systems. Initially, all

timing constraints are relaxed. Then, the verification is attempted. If successful, then the

system is verified. Otherwise, Alur et al. check whether the failure report admits a consis

tent timing. If it does, then it is a valid proof that the system does not satisfy the property

at hand. Otherwise, the following steps are performed to eliminate it:

1. Minimizing the number of timing constraints: In this step an exhaustive search

is performed to check whether there exists a subset of timing constraints that makes

the failure report timing inconsistent. The search is done in increasing order of the

size of the subset. The hope is that a small subset that suffices can be found. The

argument is made that if a small subset cannot be found, then the region automaton
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is far too large to implement, and thus the exhaustive search is not a bottleneck of

the algorithm.

2. Optimizing timing constants: In this step an attempt is made to relax the timing

constraints selected in the previous step (bylowering the lower bounds, and increasing

the upper bound) in a way that the failure report is still timinginconsistent, and all the

constants havea common factor (as largeas possible). Dividing all the constants with

their greatest common divider reduces the size of the region automaton. Generally,

this is a hard optimization problem, but by similar reasoning as above, it is not a

bottleneck of the algorithm.

3. Building the region automaton: In this step a full region automaton is built for a

subset of timers selected in step 1 with the optimized bounds from step 2.

This approach has been implemented asanextension oftheverification tool COSPAN [HK88].

4.3.2 Minimization

We have shown that the semantics of a timed automaton can be defined by an

infinite state companion automaton. Alur and Dill construct the region automaton, a

finite-state equivalent to the companion automaton, but that is not necessarily the small

est automaton equivalent to the companion automaton. In this section we survey several

algorithms that compute an (hopefully small) equivalent to the companion automaton.

Coarsest stable partition

In chapter 2 weshowed that if some partition p of the state space of an automaton

A is stable with respect to the transition relation of A and respects final states of A, then

the languages of A and A/D are the same.

In general, given an automaton Aandsome initial partitionp, thereexists a unique

coarsest refinement p' of p which is stable with respect to the transition relation of A. Two

algorithms have been proposed by Boujjani, Fernandez and Halbwachs [BFH90], and Lee
and Yannakakis [LY92] to compute Ap> given A and p. Both algorithms start with Atp
and then split some of its reachable, but unstable, states into more stable states. This

operation is repeated until all reachable states are stabilized. The algorithms differ in the

order of splitting and computing reachability information. The algorithms are given in
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terms of abstract operations post (for reachability), pre (for checking stability) and split
(for making classes more stable).

Alur et al. [ACD+92, ACH+92] and Yannakakis and Lee [YL93] have specialized

these algorithms to timed automata. Given a timed automaton (S,I,T,F,V,C,M), the

initial partition is chosen to bep= {{s} x RJV' | s € 5}, i.e. all untimed components ofthe
states are distinguished and all timer values are grouped in the same equivalence class. As

algorithm progresses, p is refined, and at all times the classes of the current partition are

represented by a single untimed state component and a convex set of timer values bounded

by hyperplanes of the form x = corx-y = c(x and y are timers, c is an integer). To

represent such convex sets Dill [Dil89] suggested difference bound matrices, square matrices

with |V| + 1 rows and columns and entries which are upper bounds. A vectorof timer values

(x\,..., 3|v|) belongs to the set of values represented by a matrix C if:

1. for all i,j = 1,.. .|V|: Xi - Xj < qj, where Cij is the entry in the i-th row and j-th
column of C,

2. for all i= 1,...|V|: x{ < ct,|V|+1,

3. for all j = 1,.. .|V|: -Xj < cm+lti.

Thepre, post, and split operations can bedefined ondifference bound matrices with 0(|F|2)

time complexity. Even though, many matrices represent the same set of timer values, every

matrix can be transformed to a canonical form in 0(\V\3) time. Oncein the canonical form,

the comparison of sets for inclusion and equality is simple (0(|V|2) time).

Surjective partitions

Another minimization procedure which preserves the language of an automaton

A = (5,I,T,F) is based on the notion of surjection which is dual to stability. Recall that

given some partition p= {Si,..., S\p\} ofthe state space, we say that some 5,- € p is stable

with respect to the transition relation T if for every I/O value a and all Sj € p:

3s{ € Si. 3sj € Sj. T(si, a,Sj) = 1 =* V* € S{.3sj € Sj. T(s{,a, Sj) = 1 .

Similarly, we say that 5,- € p is surjective with respect to T if for every I/O value a and all

Sj 6 />:

3s{ € Si. 3sj € Sj . T(si,a,Sj) = 1 =* Vsj € Sj . 3s,- 6 Si. T(s{,a,Sj) = 1 . (4.2)
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Also, we say that p is surjective with respect to T if every of its reachable elements is.

If p is surjective with respect T, and it respects initial states (i.e. for each Q € p
either Q C S(l) oiQfi S(I) = 0), then

£(A) = £(A,P) .

The proof is similar to one for stable partitions. The only difference is that given some

accepting run So, Si,..., Sn of abstract states, we construct an accepting run 5o,...,snof

concrete states backwards, starting from some sn 6 Sn DS(F).

A surjective partition p can be constructed on the fly, as shown in Figure 4.3.

Initially, p contains only classes containing initial states. After we explore all successors

from some element ofp, we mark it to make sureit is explored onlyonce. The function refine

can refine p in two ways: either some classes of states visited for the first time are added to

p, or some classes already inpare split such that after spHtting p respects post(Si, T, a). In
either case, the newly created classes are not marked even if a class being split is marked.

The algorithm returns a surjective partition of the reachable subset of the state space S.

function surjective (A,S)

/* A = (S, I, T, F) - an automaton */

/* S - a set of I/O values */

step 1: p:={{(5,0li;^0)}|IW =l};
|V| times

while there exist unmarked Si Gp do

step 2: mark 5,-;

forall I/O values a 6 £ do

step 3: p :=refine(p,post(Si,T,a));

end forall

end while

step 4' return />;

end

Figure 4.3: Generating a surjective partition.

Alur et al. [ACD+92] have implemented a variant of the algorithm in Figure 4.3
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that computes Ajp for some timed automaton. Again, every class of p is represented by a

single untimed component and by a difference bound matrix. A similar algorithm is also

implemented in another real-time extension of COSPAN by Courcoubetis et al. [CDCT93].

4.3.3 Other formalisms

Severalother models have been proposedfor real-time systems [dBHdRR91, Vyt91,

AH92]. Many of these formalisms have undecidable verification problems, and those that

are decidable use in some form the equivalence theorem of Alur and Dill. Thus it is not

surprising that even though the syntax of the models are quite different, the implementations

of the verification algorithms share the same techniques.

For example, Alur, Courcoubetis and Dill [ACD90] define timed computation tree

logic (TCTL), a temporal logic for specifying real-time properties. Models of TCTL are

timed graphs, which are finite-state structures similar to timed automata. They show that

one can check whether a given timed graph is a model of a TCTL formula by traversing

a finite-state structure similar to a region automaton. Henzinger et al. [HNSY92] show

how this structure can be traversed symbolically, using predicates on timers and state

variables to represent sets of states. That algorithm is implemented in the verification tool

KRONOS [NSY92]. In the implementation, untimed components of the state are explicitly

enumerated, and sets of values of timers are again represented by difference bound matrices.

It is not clear at this time whether this limitation is intrinsic, i.e. finding an representation

that combines an efficient symbolic representation of timer values (such as difference bound

matrices) with an efficient symbolic representation of untimed state components (such as

BDD's) is still an open problem.

Another approach is based on timed Petri nets [YSSC93, RM94]. The straightfor

ward implementation requires a traversal of (equivalents of) region automata, but in a more

careful implementation all the untimed states generated by different orderings of indepen

dent events are considered equivalent, and only a single representative is explored. Petri

nets are well suited for the approach, because they allow easy recognition of independent

events, but similar approaches could in principle be applied to other formalisms as well.
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4.4 Iterative verification of timed automata

In this section we present an iterative algorithm for language emptiness of timed

automata (henceforth TLE, for Timed Language Emptiness). The presented algorithm is

a specialization of the generic iterative abstraction algorithm of section 1.3. For simplicity,

we first focus on timed automata where all timing constraints are of the form x < cor

x > c. Later, in section 4.4.6 we extend the algorithm to include timing constraints of the

form x —y < c. The algorithm can also be extended into a semi-decision procedure for

language emptiness of arbitrary TAD's. That extension is given in chapter 6.

4.4.1 Overview

The TLE algorithm is shown in Figure 4.4. We start the verification process by

relaxing all the timing constraints in step 1. If the verification in step 2 succeeds, we have

verified the task. If the verification fails, verify returns run r of some sequence in £(A). If

r violates no timing constraints, the language of the original system is not empty and the

verification fails. We will show in section 4.4.2 that if the run does violate some timing

constraints, they can always be represented in form of a loop (L in Figure 4.4). In that

case, we modify A in a way that it still represents an abstraction of the region automaton,

but that the behavior causing violations in L is eliminated. We repeat this process until

the verification is terminated, either successfully or unsuccessfully.

The function verity-timed returns NULL if the language of timed automaton A is

empty, and otherwise it returns an accepting run of some sequence in the language. It calls

three auxiliary functions: verify of section 2.6, analyze, and modify. TLE algorithm does

not depend on a particular algorithm used in verify, as long as it generates a failure report

in the form of a run. Therefore, any advances in the verification of untimed systems can

immediately be incorporated into the TLE algorithm.

4.4.2 Failure analysis

Assume that the function verify in Figure 4.4 returns a run so,si,...,sn. We

want to check whether there exists some consistent timing Si,...,6n of that run. With

every transition Si -* s1+i we can associate some inequalities that a consistent timing

must satisfy. Consider for example, the following run of the railroad crossing model from
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function verify.timed (A)

/* A = (5,I,T,F, V,C,M) - a timed automaton */
step 1: i:=(5,I,T,F);

while TRUE do

step 2: if (r :=verify(i)) = NULL then return NULL;
step 3: if (L :=analyze(A, A,r)) = NULL then return r;

step 4- A :=modify(i4,L);

end while

end

Figure 4.4: TLE - timed language emptiness algorithm

Figure 4.1:
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, (4.3)

TRAIN : OUT APP APP IN

CONT.: RAISE —•> R2L —• LOWER —> LOWER

GATE: UP UP U2D
y n

U2D

*0 S\ $2

Among other constraints, a proper timing must satisfy:

fa < 1 ,

fc < 1 ,

£2 + *3 > 2 ,

«3

(4.4)

(4.5)

(4.6)

Inequality (4.4) must hold because si -> s2 is enabled only if y < 1, and y was reset on

so -+ si. Similarly, (4.6) must hold because s2 -»• 53 is enabled only if z > 2, and z was last

reset on so -*• «i, and so on. Not all inequalities that a consistent timing must satisfy are

listed above, but even these three do not have a solution, therefore the sequence (4.3) does

not admit a consistent timing.

Besides explicit constraints specified by timers, a consistent timing must also sat

isfy tfj > 0 (time is strictly increasing). To be able to treat these constraints as any other, we

assume (without loss of generality) that there exists a timer x € V, such that it is reset on
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every transition, and x > 0 is an enabling condition of every transition (i.e. M(s,q,x) = _L

and (x > 0) GC(s,q)) for all s, q € S).

One way to check whether a failure report violates any timing constraints is to

list all inequalities implied by it and check for feasibility. But, closer examination of these

inequalities shows that they are of special form, and that more efficient graph algorithms
can be applied.

Let A, = EJssi &j f°T ^ * = l,...,n be the time of the i-th transition given
that elapsed times between transitions are: Si,...,Sn. Also, define A0 = 0. Then, every

inequality implied by a failure report can be written in a form:

^i —^j < c ,

for some i,j € {0,...,n} and some bound c. It is well known (e.g. [Law76]) that such a
system of linear inequalities is feasible if and only if there are no negative weighted loops

in the graph constructed as follows:

• nodes of the graph are 0,..., n ,

• for every inequality A, - Aj < c add an edge from i to j weighted c.

Finding a negative weighted loop in a graph is a well understood problem for which a

polynomial algorithm exists [Tar83].

To analyze a failure report we build a graph similar to the one described above,

except that we assign to edges not only their weight, but also some additional information

to be used later in the failure elimination phase. The algorithm for building the graph

is shown in Figure 4.5. In step 1, we create one node for every transition in the failure

report, plus node 0. For every inequality x < c or x > c we first compute k, the index of

the transition where x was last reset (step 2). A constraint of the form x < c induces the

inequality A; - A* < c, therefore in step 4 we create an edge from i to k weighted c. A

constraint of the form x > c induces the inequality A* - A; < -c, and the corresponding

edge is created in step 5. Finally, in step 4 or 5 we label the newly created edge with the
timer in ^>, and with a characteristic function of some set of edges constrained by %(j. Note

that in Figure 4.5 we do not specify E exactly, we only require that it contains s,_i ->• st-.

Some of the edges characterized by E will be deleted from the current abstraction of the

system, if ip cannot be satisfied. The larger «S(E) we select, the more behaviors will be
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function graph(;4,60,..., sn)

/* A = (£,I,T,F,V,C,M) - a timed automaton */

/* so,..., sn - a failure trace in the abstraction A */

step 1: let G be a graph with nodes 0,..., n and no edges

for i = l,...,n do

for each V> € C(st_i,«,-) of the form x < c or x > c do

step 2; let &:= max{j < t|M(*j_i,*j,x) = 1 or j = 0};

/* k is the last place where x was reset */

step 3: choose E satisfying (st_i,5t) G set(E) C {(s,q)\if> € C(s,9)};

if V> is of the form x < c then

step 4' add to G an edge i -• k weighted c, and labeled x,E;

else /* ip is of the form x > c; */

step 5: add to G an edge k -*• i weighted -c, and labeled x, E;

end if

end for each

end for

return G;

end

Figure 4.5: Forming a graph for failure analysis.
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eliminated in every iteration, thus the algorithm will converge faster. On the other hand,

to keep the abstraction small, we want a representation of the function E to be as small as

possible. This freedom can be used to fine tune the algorithm.

For example, for the constraint x < 5 associated with the transition s2 —• S3 of the

failure trace (4.3) one possible choice of E is psrjt4JN = APP. This particular E represents

all edges in the product machine that have TRAIN component either APP -+ APP or

APP -*• IN. Another choice could be psy^/jv ^ OUT which completely characterizes

the set of edges constrained by x < 5.

In what follows, we will use a 5-tuple (i,j,c,x,E) to denote an edge from i to j,

weighted c, and labeled with x and E.
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Once a graph has been formed, we can invoke a standard algorithm for finding a

negative weighted loop (also called an over-constrained loop). The function analyze returns

such a loop, if one exists in the graph, otherwise it returns NULL. The over-constrained

loop is an input to the modify function that eliminates the failure trace. In doing so , it

uses a set of "auxiliary" automata called guard automata, which we introduce next.

4.4.3 Guard automata

Consider, for example, the safety property of the railroad crossing. When all the

timing constraints are relaxed, the property fails, and a possible failure trace is:

TRAIN :

CONT.:

GATE:

OUT APP ' IN

RAISE —> R2L —> R2L

UP UP UP

«0 «1 32

(4.7)

This sequence doesnot admit a consistent timing, as shown by the following over-constrained

loop:
X>2 y<i(50 -> Si) ^+ (5i -»- S2) • (So -»• Si), (4.8)

node l node 2 node l

We know that si -* 52 is enabled only if both x > 2 and y < 1 are satisfied, which implies

that it can be enabled only if x - y > 1. To eliminate this failure trace, we will keep track

of x —y by composing the current abstraction of the system with the guard automaton

(y —x < —1) that has two states: ugood" one corresponding to all valuations of x and y

satisfying x - y > 1, and the "bad" corresponding to valuations satisfying x - y < 1. In the

composition, we can safely eliminate transitions where Si —• s2 occurs while (y - x < -1)

is in the bad state, because they are subject to conflicting timing constraints.

The automaton (y-x < -1) cannot track the value ofx-y exactly because it can

access only incomplete information: it can observe the untimed state components to check

whether timers are reset or not, but it cannot know the exact time between transitions. This

incompleteness induces non-determinism: if different transition times can lead to different

states, a guard automaton can non-deterministically choose between the two. Note that

the use of word "choose" is somewhat misleading: the set of accepting runs will include

both choices. More precisely, the rules for building the transition relation of an automaton

(y - x < -1) are as follows:
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1. initially it is in the bad state and whenever both x and y are reset it must move there

(because x = y = 0 in these cases),

2. as long as neither x nor y are reset, it must not change the state (in this case both x

and y are incremented by the same real number, so x - y remains constant),

3. if one of the timers is reset and the other is not, then the automaton {y —x < —1)

can either change states or remain in the same state (non-determinism).

Composing the initial abstraction with the automaton (y —x < —1) and disabling

si —• 52 while it is in the bad state is enough to eliminate the failure trace (4.7), because

(y —x < -1) must move to the bad state when both x and y are reset on sq —• s\. In fact,

this action eliminates all the sequences that have a subsequence that satisfies the following:

• both x and y are reset on the first transition,

• the last transition is si —• $2,

• neither x nor y are reset in between.

Before we define guard automata formally, we need a bit of notation. Given some

timer x, we use Rx to denote the characteristic function of all edges on which x is reset,

i.e.:

Rx = X{(s,q)\M(s,q,x)= J_} .

For example, for timer x in Figure 4.1:

Rx = STRAIN = OUT) * (USTRAIN = APP) .

Formally, for any two timers x and y and any bound c > 0 let the guardautomaton

(x - y < c) be defined by:

(x - y < c) = ({good,bad}, X{good}, T(x_y<c), 1) ,

where:3

T<x-y<c> = Rx *Ry *(i>S(x-y<c) = ns(x-y<c)) +

Rx *Ry *(ns(X_y<c) = good) +

RX * Ry -f- RX * Ry .

A formula F = G is an abbreviation for F * G + F * G.
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The first line corresponds to the requirement that x - y cannot change unless either x or y

arereset. The second line indicates that when both x and y arereset, the guard automaton

must move to the state that contains the valuation (0,0). Finally, the third line indicate

that the next state can be arbitrary if one of the timers is reset and the other one is not.4

When c is a negative upper bound, the definition changes slightly, as shown in

Figure 4.6. It is also useful to extend the definition for the case x = y and c < 0 as follows:

A(x-x<c) = ({bad}, 1,1,1) .

SOL
good

x-y < c

Rx + Ry Rx^Ry

bad

x-y > c

r5
Rx*Ry

a)c> 0

Rx*Ry

£2
good

x -y < c

Rx *Ry Rx + Ry

bad

x-y > c

ZJ

b)c<0

Figure 4.6: Guard automata.

Note that guard automata are the same for all positive bounds. They will be

distinguished only later, in the failure elimination phase, when we compose the current

abstraction of the system with some guard automata, and then eliminate some transitions

from the composition. Which transitions can or cannot be safely eliminated depends on

the constant c. It might seem redundant to have in the abstraction of the system several

components with identical transition relations. But, since the transition relation is non-

deterministic and the automata are independent, not all of the components are always

in the same state in every run. In fact, after some transitions are eliminated from the

Based on the reseting information, it is possible to a define less non-deterministic transition relation. For
example, if c > 0, and x is reset and y is not, then the next state must be good. However, the conservative
assumption that the next state could also be bad does not affect our algorithm and provides for a simpler
presentation.
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composition, it might be the case that two guard automata have to be in different states in

all accepting runs.

We think of states of guard automata as abstractions of states of the companion

automaton A°° of some timed automaton A - (5,I,T,F, V,C,M). To make this relation

precise, let V be the set that contains variables ps, ns, a (the state and I/O variables

of A), and the state variables pS(Xj_x.<c\ and ns(Xj_Xj<c) of all guard automata, and
let the abstraction function <f> that maps every every transition t = (s,Xi,...,xtv\) -^-*
(q> Vii• ••»V\v\) of A°° to an assignment of variables in Vbe defined as follows:

<t>(t)(cr) = o ,

<f>(t)(ps) = s ,

<l>(t)(ns) = q ,

m(ps,Xi.x<c)) = igood **'-«'*«.
3 bad if Xi —Xj > c ,

Ci-Xj<c)) — \

(Xi-XjXc)) = <
.,.,, v . good if y{ -yj<c ,

<Kt)(**(Xt-Xj<c)) = {
bad if yi - yj > c .

If E is some formulaover variables in V, then we use E(<f>(t)) to denote the value obtained

by:

1. applying <f> to t to obtain the assignment for variables in supp(E), and then

2. evaluating £ with that assignment.

The transition relation of guard automata contains abstractions of all the transi

tions in A°°, as claimed by the following proposition:

Proposition 4.1 Let t = (s,xi,...,x\v\) —'-> (q,yi,>",y\v\) be some transition of the
companion automaton A°° and let ({&ad,0ood},I(x._x.<c),T(X|._x.<c),l) be some guard
automaton. Then:

1- T(x,.-Xi<c>(#<)) = 1,

2. ifxi = xj = 0, then I<x,._Xj<c>(<K0) = 1-

Proof. If i = j then the proposition follows trivially because initial states and

transitions relations are 1 in that case.
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Recall that if i ^ j, then I(Xj_Xj<c) = (ps{x._x <c) = init), where init is good if
c > 0 and 6arf if c < 0. In this case, part 2 follows because Xi = a?j = 0 implies that:

i/jW s . . I 9°od if c > 0 = Xi - xj ,
<P(*)(PS(xi-Xi<c)) = *™< = 1

y bad if c < 0 = Xi —Xj .

Also recall that if i ^ j:

T<Xl_x,<c) = Rx, *RXi *(pS(X|_Xi<c> = ns(x,-xJ<c)) +

Rx< *Rx, *(ns(X|._Xi<c) = init) +

Rx, *Rx, + Rx, *Rx, •

According to the definition of the companion automaton, to prove part 1, we need to

consider the following cases:

Case 1: M(s,<f,xt) = M(s,q,x.j) = 0 and xt- - Xj = yt- - yj. The claim follows because
in this case:

Rx,.(<«<)) = Rx,(*,<?) = HocjWW) = R*>(*»«) = o ,

and:

w(P*<x,.-x,«>)=m^{Xi.x,<c))=(rf if*-Xi mVi -**<'
( bad if Xi - Xj = y,- - yj > c ,

implying that:

(Rx~ *Rx7 *(pS(Xi-x,<c) =ns(X|_x><c))) (4>(t)) =1.

Case 2: M(s,q,*i) = M(s,q,x.j) = J_ and yt- = yj = 0. The claim follows because in
this case:

Rxi(<Kt)) = RXi(5,g) = RXjW)) = Rx>,<f) = l ,

and:

i/.w n . . I 9°°d if c > 0 = v.-- t/j ,^*)(n»<xi-xi<c>) =^it ={ * " * *" '
[ 6ad if c < 0 = y,- - yj .

implying that:

(Rx. *RXj *(ns{Xi._Xj.<c) =init)) (<f>(t)) =1.
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Case 3: M(s,q,Xi) = 0 and M(s,q,Xj) = 1. The claim follows because:

(Rx, *Rx^MO) = R*(s,q) *Rx,(s,q) = 1

in this case.

Case 4: M(s, q,xt) = ± and M(s, q,Xj) = 0. The claim follows because:

(Rx, *RXi)W0) = *>Xi(s,q) *RXj(s,q) = 1

in this case.

•

Note that the converse of Proposition 4.1 does not hold: some transitions of guard

automata are not abstractions of any transitions in A°°. We have chosen this particular

definition of guard automata because it is the simplest one that satisfies our purposes, but

our approach would not change if the definition is replaced with one with less transitions

which still satisfies Proposition4.1. Actually, an interesting trade-off could be explored here.

Composing a system with a more restrictive guard automata eliminates more behavior, and

thus can lead to fewer iterations. On the other hand, more restrictive automata would have

to be more complex (in terms of BDD size), thus the complexity of every iterations could

be increased.

4.4.4 Failure elimination

In this section we describe the modify function used in the verification procedure

in Figure 4.4. The inputs to modify are the current abstraction of the system A and an

over-constrained loop L, and it returns a modified abstraction of the system, in which the

failure report that has induced L is no longer a run.

The modify function is shown in Figure 4.7. We start by selecting any two adjacent

edges (i,k, w,x,E) and (k,j,v,y,H) of the over-constrained loop induced by constraints

x > —w, and y < v (i.e. one backwardand one forward pointing edge). Then, we construct

a guard automaton (y - x < w + v) (step 1), and compose it with the current abstraction of

the system (step 2). Recall that transitions characterized by E are constrained by x > -it;,

and that transitions characterized by H are constrained by y < v. Thus, transitions in

their intersection cannot occur ify-x> w + v, i.e. if (y - x < w -f v) is in the bad state.
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function modify(X,A)

/* L - an over-constrained loop */

/* A - an abstraction of the system to be verified */

while there are edges (i,k,w,x,E), (k,j,v,y,H) in L s.t. k> i,j do

step 1: Ak '= (y - x < w + v);
step 2:

step 3:

A:=A®Ak;

A := (SA, 1A, TA * (psAk = bad) *E *H, F^);

step 4' remove from X edges (i, k,w,x, E) and (k,j, v,y,H) and node k;

step 5: if i < j then add to L an edge (i, j, w+ v,x, (nsyifc = good) *Rj, *R^);
step 6: else if j < i then add to Xan edge (i, j, w+ v,y, (nsAk = good) *Kx *R^);
step 7: else /* i = j */ return A;

end while

end function

Figure 4.7: Failure elimination procedure for timed automata.

Therefore, in step 3 we delete corresponding transitions from the current abstraction. Recall

that by step 3 in Figure 4.5, both E and H must contain the A:-the transition of the failure

report, therefore the failure trace cannot be completed if (y - x < w+ v) is in the bad state

after k — 1 transitions.

At this point we do not have as yet precise information whether (y —x < w + v)
is in the good or bad after k - 1 transitions of the failure report. However, we do know

that that it cannot change states unless either x or y are reset. Therefore, we focus to

the nearest previous transition in the failure trace where either x or y were reset, i.e. to

transitions i or j, whichever is larger.

If j > i (i.e. y wasmost recently reset), we use the fact the y - x < w + v implies

that -x < w+v when y is reset. We want (y-x < w+v) to track the truth of y-x < w+v

as close as possible, therefore in step 5 we assert that transitions characterized by (ns^ =

good) can occur concurrently with the j-th transition of the failure trace (actually with any

transition characterized by Ry and Rx) onlyif -x < w+v. In other words, the action in step

5 follows from the observation that the failure trace can be completed only if -x < w + v
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at the j-th. transition. We enforce this observation in step 3 of some later iteration by

eliminating from the abstraction (under suitable conditions given by H in that iteration)

the transitions characterized by (ps^ = bad) *(ns^ = good) *Ry* R^. This effectively

"connects" Aj and Ak, and ensures that if Aj is in the bad state after j —1 transitions of

the failure trace (and conditions specified by H are met), then Ak must be in the bad state

after k - 1 transitions. Informally, in step 5 we propagate the constraints backwards and

in step 3 we connect guard automata so that bad states are propagated forwards. Step 6

is based on similar analysis in case j < i. Note that even though for some x and y and

all c > 0 (or c < 0) all guard automata have initially the same transition relation, some

of their transitions are (conditionally) disabled in step 3. Which transitions can be safely

disabled under which conditions (without disabling abstract images ofaccepting runs in the

companion automaton), depends on the actual value of c.

We iterate this process until there are no more edges in the loop (step 7). Since

X is over-constrained not all of the generated constraints can be satisfied, and at least one

Ak will be in the bad state, disabling the fc-th transition and eliminating the failure trace.

For example, consider the failure trace (4.3), and the following over-constrained

loop induced by it:

-*? (S2 - ,3) »<i (Sl _> S2) m {So _> Sl). (4.9)
node 3 node 2 node l

The edges in the loopare: (1,3, -2,x,E), (3,2, l",z,H), and (2,1, l,y,D), where «S(E*H)

must contain s2 —• S3 and S(D) must contain si —> s2.

In the first pass through the while loop, A is composed with j43 = (z-x<-1)

(steps 1 and 2), the transitions characterized by:

(P8A3 = bad) *E *H (4.10)

are disabled (step 3), and a constraint x > 1 is placed on si —»• 52 (step 5). More precisely,

an edge:

(1, 2, -1~, x, (ns^ = good) *RZ*RX~)

is added to X. In the second and final pass through the while loop, the current abstraction

is composed with A2 = (y - x < 0), and transitions characterized by:

(Psi42 = bad) *D * (tisaz = good) *R2 *R^ (4.11)
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are disabled.

Now, sq -> si —• s2 -»• S3 is eliminated because:

1. A2 must move to the bad state when both y and x are reset on so —• *i , thus

2- (Ps>i2 = bad), D, TLZ, and R^ are all satisfied at node 2 (si -*• s2), so by (4.11)
si -*• s2 can occur only if ns^ = bad, but then

3. (ps^ = bad), E and H would all be satisfied at s2 -> S3, therefore by (4.10) 52 —• &3
cannot occur, since it is disabled under these conditions.

Incidentally, the safety property of the railroad crossing can be verified in three

iterations of the verify.timed algorithm. Two iterations include calls to the modify function

with the over-constrained loops (4.8) and (4.9) and the third includes a call to modify with

the over-constrained loop induced by the failure trace:

TRAIN : OUT APP IN

CONT.: RAISE —• R2L —• LOWER

GATE: UP
• V

UP U2D

SQ *1 «2

This trace is eliminated by composing A with A2 = (y-x < -1), and disabling the

transition si -* s2 while A2 is in the bad state. Note that this is the same guard automaton

as one used in eliminating the over-constrained loop (4.8). Hence, it can be reused. We use

a hash table to detect if a guard automaton already exists.

It might happen that in step 1 x is the same timer as y. This can happen only in

the last iteration (because x = y implies i = .;), thus w+ v < 0 must hold (because w+ v in

the last iteration is the total weight of the loop). Therefore, (psAk = bad) is a tautology (by
definition in section 4.4.3), and all transitions characterized by E*H are disabled in step 3.

This is indeed warranted by timing constraints, because E is constrained by x > —w, and

H is constrained by x < v which obviously is not consistent with w + v < 0.

4.4.5 Correctness

To show the correctness of the TLE algorithm we need to show that the function

verify.timed:



CHAPTER 4. REAL-TIME SYSTEMS 74

1. returns NULL only if the language of the timed automaton A is empty (no false

positives),

2. returns a run r only if it is truly a run of somesequence in C(A) (no false negatives),

3. terminates in a finite number of steps.

We develop this result through a series of lemmas. In developing the proof we assume that

the verify and analyze functions are correct, because for these two functions we just apply

algorithms developed elsewhere.

Assumption 4.1 The verify function returns NULL ifC(A) is empty, otherwise it returns

a run of some string in C(A).

Assumption 4.2 The analyze function returns NULL if the failure trace r violates no

timing constraints, otherwise it returns a negative weighted cycle in a graph induced by r.

To establish that TLE cannot produce a false positive result, we need the following

lemma:

Lemma 4.1 Let (a,b,w,Xi,E) be some edge in the over-constrained loop at some point of

the TLE algorithm, let t = (s,xi,...,x\y\) —'-*• (<?,yi,...,y|V|) be some transition of the
companion automaton A°°, and let <f> be the abstraction function as defined in section 4.4.3.

The following holds:

1. ifa> b, then E(<f>(t)) = 1 only if Xi + 6 < w,

2. ifa< b, then E(<f>(t)) = 1 only if Xi + 6 > -w,

Proof.

Case a > 6. If this case, the edge could have been created either in step 4 of the algorithm

in Figure 4.5 or in step 6 of the algorithm in Figure 4.7. From step 3 in Figure 4.5 it

follows that if E is created in step 4, then E(<£(t)) = "E(s,q) is 1 only if x,- < w is in

C(s, q), and therefore x,- + 6 < w must hold, by condition 3 for the transition relation

in the definition of the companion automaton.

If (a, b,w, Xi, E) is created in step 6 in Figure 4.7, then E is of the form:

R^ *Rx, *(ns(Xi_Xi<«/) = good) .
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By the definition, (Rx.)(<£(<)) = RXi(s,q) is 1 if and only if M(s,q,Xi) = 0, and

similarly (RXj)(<f>(t)) = KXj(s,q) is 1if and only ifM(s,q,Xi) = JL. Therefore, yj = 0
and yt- = a?,- + 6 must hold, by condition 2 for the transition relation in the definition

ofthe companion automaton. On the other hand, (ns(Xj_x.<w) = good)(<f>(t)) is 1if
and only if y,- - yj < w. Substituting yj = 0 and yi = a,- + 6 completes the proofin

this case.

Case a > 6. If this case, the edge could have been created either in step 5 of the algorithm

in Figure4.5 or in step 5 of the algorithm in Figure4.7. From step 3 of the algorithm

in Figure 4.5it follows that if E is created in step 5 of that algorithm, then E(<f>(t)) =

E(s,g) is 1 only if x; > -w is in C(s,q), and therefore Xi + 6 > -w must hold, by

condition 4 for the transition relation in the definition of the companion automaton.

If (a, b, w,Xi, E) is created in step 5 of the algorithm in Figure 4.7, then E is of the

form:

Rxi *Rx, *(ns^.x^u,) = good) .

By the same argument as in case a > b, yj = 0, y,- = Xi + 6, and yj - yi < w must
hold, thus a simple substitution completes the proof.

Theorem 4.3 If verified.timed returns NULL, then the language of the timed automaton

A is empty.

Proof. Given the Assumption 4.1, it suffices to show that if:

so

21,0

More precisely, we need to show:

si

3l,l

\ / Sk \

\ x\v\,o I \ *im / V*mjt /

is an accepting run in A°° ofsome timed sequence (crly 6i),..., (<t*, Sk), then the assignments

4>(h),..., <f>(tk) induce an accepting run in the abstractionA, where tm is the m-th transition

in the failure trace, i.e. for all m = 1,..., k:

*m - l*m-l>Zl,m-lf"fZ|V|lm-lJ • (Sm,Xl,m,•••, X\V\,m) •



CHAPTER 4. REAL-TIME SYSTEMS 76

Claim 1: <f>(ti) satisfies the characteristic function of the initial states of A.

Claim 2: the assignments to next state variables in <f>(tk) satisfies the characteristic func

tion of the final states of A.

Claim 3: <f>(tm) satisfies the transition relation of A for all m = 1,..., k.

To show Claim 1, observe that at any point of the TLE algorithm, the characteristic

function of initial states of A is a conjunction of:

• the characteristic function I of initial states of A (by step 1 in Figure 4.4), and

• the characteristicfunctions of initial states of someguard automata (by steps 1 and 2

in Figure 4.7).

Now, I(<f>(ti)) = I(s0) must be 1 by the definition of initial states of the companion au

tomaton, and by the same definition xi,o = ... = E|v|,o = 0. Therefore by Proposition 4.1,

Ig(<A(*i)) 1S I f°T anv guard automaton G (QED Claim 1).

To show Claim 2, observe that at any point of the TLE algorithm, the characteristic

function of final states of A is equal to the characteristic function F of final states of A.

Therefore, ([F]ps_n8)(0(Jjfc)) = F(sjfc) must be 1 by the definition of final states of the

companion automaton (QED Claim 2).

To show Claim 3 observe that at any point of the TLE algorithm, the transition

relation of A is a conjunction of:

• the transition relation T of A (by step 1 in Figure 4.4), and

• the transition relations of some guard automata (by steps 1 and 2 in Figure 4.7), and

• expressions of the form: (ps^x._x<u,+t,) = bad) *E *H where E and H are labels of
some edges (a, b, w,Xj, E) and (6,c,i>,x,-,H) satisfying a < b and b > c (by step 3 in

Figure 4.7).

Therefore, we need to show that for all m = 1,..., k:

Claim 3.1: T(<j>(tm)) = 1,

Claim 3.2: Tc(<A(<m)) = 1 for any guard automaton G,
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Claim 3.3: if (a,b,w,Xj,E) and (6,c,v,Xj,H) are two edges in the over-constrained loop

satisfying a < b and b > c, then:

((Ps(x,-xJ<u,+v) =bad) *E*H) (<l>(tm)) =0.

Claim 3.1 holds because T(<f>(tm)) = T(sm-i,<rm,sm) must be 1 by condition 1

for the transition relation in the definition of the companion automaton.

Claim 3.2 holds by Proposition 4.1.

To show Claim 3.3, we apply Lemma 4.1 obtain:

*Wm)) = 1 o^y if *i,m-i + 6 > -w , (4.12)

K(<t>(tm)) = 1 only if xitTn-i + 6 < v , (4.13)

If i = j, then it must be that a = c, thus w + v is the total weight of the loop

and must be negative. It follows that v < -w, and therefore (by (4.12) and (4.13)) either
E(<£(*m)) or H(<f>(tm)) must be 0.

If i ^ j, then (by definition of phi):

(Ps(x,-xJ<«,+v) = bad)((f>(tm)) = 1 only if xitm^ - xjtm-i >w + v. (4.14)

Since enabling conditions in (4.12)-(4.14) cannot all be satisfied, it follows that at least one

of the three conjuncts must evaluate to 0 (QED Claim 3.3). D

By Assumptions 4.1 and 4.2, the TLE algorithm can never return a false negative

results. To show that it always terminates we will:

• show that the modify function indeed eliminates a run that has induced an over-

constrained loop, implying that the abstraction of the system changes in every itera

tion,

• show that all the changes of the abstraction of the system comes from a finite set,

implying that there can be only finitely many iterations.

First, we introduce the notion of a peak node. A node k is said to be peak if

its immediate neighbors in the over-constrained loop that is input to modify (say t and j)
satisfy i < k and j < k. Note that we refer to as peak nodes only only those nodes that

satisfy i < k and j < k at the beginning of modify, even though through the process of node

elimination every node eventually satisfies i < k and j < k. In other words, peak nodes are
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those that could be selected in the first pass through the while loop of modify. Also, in the

rest of the section we will assume that so,«i,..., sn is a failure report that has induced the

over-constrained loop which is the input to modify. The basic mechanism for elimination is

provided by the following lemma.

Lemma 4.2 If k is a peak node and Ak (generated in step 1 of modify) is in the bad state,

then the transition Sk-i —• Sk is disabled.

Proof. From step 3 of modify it follows that Ak being in the bad state implies that

all transitions in «S(E * H) are disabled, and (sk, s/k-i) € S(E * H) by step 3 in Figure 4.5.
D

Therefore, to eliminate the failure trace it is enough that Ak for some peak node k

is in the bad state when the rest of the system has gone through the sequence so,si,..., Sk-i.

The following two lemmas show that this is always the case. Loosely speaking, Lemma 4.3

asserts that there is always a bad state at the beginning of the loop, and Lemma 4.4 asserts

that bad states are propagated forwards, and therefore must reach a peak node.

Lemma 4.3 If Ak is the automaton generated in the last pass through the while loop of

modify, then Ak must be in the bad state after the initial A has gone through the sequence

of states so,si,...,Sk-i.

Proof. The total weight of the loop remains constant (i.e. negative) throughout

the modify function, because if twoedgesweightedw and v are removed, a new edge weighted

w + v is always added. Therefore, in the last pass through the while loop w + v < 0 must

hold and Ak = (y - x < w + v) must move to the bad state when both x and y are reset

at node i = ,; (Figure 4.6b). Furthermore, since neither x nor y are reset on any transition

between Si-i -*• st- and Sk-i -*• Sk, Ak must remain in the bad state during that time. •

Lemma 4.4 Let Ak be an automaton generated in step 1 of modify for some non-peak node

k. If Ak is in the bad state after the initial A has gone through the sequence of states

so,si,. ..,Sk-i, then there exists m> k such that Am is in the bad state after the initial A

has gone through the sequence of states «o•••8k-i •• •sm-i •

Proof. Since k is not a peak node, it can become a candidate for elimination only

after a new edge has been created between k and some lesser-numbered node in steps 5

or 6 of modify. Such an edge must be labeled with some timer (say x), and an expression
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of the form (nsAm = good) * Ry * Rx where m > k is some node eliminated before A:.

The other edge incident with k may also be generated by elimination of some other node

m' > k (in which case it must labeled with some timer x' and an expression of the form

(nsAm, = good) * Ry» * Rx/, or it might be an original edge of the loop in which case

it must labeled with x' and some E which contains at least Sk-i —• s*. Thus, when we

eliminate node k, step 3 will require that none of the transitions in the modified A satisfy

an expression which is either of the form:

(PsAk = bad) *(n8Am = good) *Ry *Rx* *E , (4.15)

or of the form:

(P8Ak —bad) *(nsAm = good) *Ry *Rx *(ns^, = good) *Ry* *Rx» . (4.16)

Assume that the expression is of the form (4.15). Then, at Sk-i -*• Sk, (ps>ifc = bad) is

satisfied by the assumption of the theorem, E is satisfied by the definition, and Ry *R~^ is

satisfied because the over-constrained loop indicates that y is reset on Sk-i —*• Sk and x is

not. Thus, ns,4m = good cannot be satisfied, and hence Am must move to the bad state on

Sk-l -*• Sk.

Similarly, if the expression is of the form (4.16), at Sk-i -* Sk (nsAm = good) *

(nsyim/ = good) cannot be satisfied, so either Am or Ami must move to the bad state.

Without loss of generality, assume it is Am.

So far, we have shown that Am must move to the bad state on Sk-i —• $*• Since

neither x nor y are reset between Sk-i —• Sk and sm_i —• sm, Am must remain in the bad

state during that time, and the proof is complete. D

Theorem 4.4 In the modified A returned by the modify function there can be no run whose

projection on S is so,si,...,sn.

Proof. It follows by induction (using Lemma 4.3 as a base case, and Lemma 4.4

as an inductive step) that for every k in the over-constrained loop either:

1. there exist some peak node i < k such that A,- is in the bad state after the initial A

has gone through so,.. .,3,-1, or

2. there exist some node m > k such that Am is in the bad state after the initial A has

gone through sq, ..., «m_i.
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Applying the above to the last node in the loop, we conclude that there always exist some

peak node A: suchthat Akis in the bad state afterthe initial A hasgonethrough so,•••, sjt—1,

therefore (by Lemma 4.2) the transition Sk-i -*• Sk is disabled, and the run cannot be

completed. D

To complete the proof of correctness, we show that only finitely many guard au

tomata can be generated throughout the TLE algorithm. To simplify the proof, we make

an additional requirement on analyze. We say that a portion of the loop from some node j

to some node t > j (denoted by j ~> t) is a shortcut if it consists of edges:

(i) -> (i +1) - U + 2) -... - (i-1) -> (t) ,

and every edge in that portion is weighted 0". We say that an over-constrained loop is

minimal if for any two nodes t > j in the loop, either the total weight of i ~> j is positive,

or j ^-* i is a shortcut.

For example, the loop l-»2-»4-t3->lin Figure 4.8 is over-constrained

but not minimal, because of the loop 1 —* 2 —• 3 —• 1 which is both over-constrained and

minimal.

-l

Figure 4.8: Minimality of a loop.

Assumption 4.3 If the failure trace violates some timing constraints, then the analyze

function returns a minimal over-constrained loop induced by it.

Recall that we assume that there exists a timer x such that x > 0 is an enabling

condition of every transition, and that it is reset on every transition (to acknowledge that

time is strictly increasing). Such a timer induces an edge (i) -*• (t + 1) weighted 0" for

every i. Thus, we can always make any over-constrained loop minimal, by repeating the

following for all i = 2,..., n and all j = 1,..., i - 1:

• if the total weight of i *v* j is not positive, then replace j ~^ i with a shortcut.
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This assumption simplifies, but is not crucial to our algorithm. Without it, it

would be possible that a failure report is eliminated even before all nodes are processed in

function modify. To avoid extra checks, we shift a burden of finding a minimal loop to the

analyze function.

Lemma 4.5 Let cmax be some bound satisfying:

•f • Cmax is larger or equal than anyother bound appearing in any timing inequality in the

system,

2. Cmax = cmax + 0+ (i.e. cmax is of the form n+).

Then, the following is true for every edge (i,j,w,x,E) of an over-constrained loop through
out the modify function:

-Cmax <w<0 ifi<j, (4.17)

0 < w < cmax ifi > j and j ^* i is not a shortcut. (4.18)

-Cmax < w < Cmax ifi > j and j -^ i is a shortcut. (4-19)

Proof. By induction on the number of the passes through the while loop modify.

Initially, (4.17)-(4.19) are satisfied by steps 4 and 5 of graph function in Figure 4.5. Now,

assume that (4.17)-(4.19) hold before a new edge is generated in steps 5 or 6 of modify, i.e.

assume that w and v satisfy either:

-cmax <w <0 and 0 < r < cmax ,

or

w = 0~ and -cmox < v < cmox and j ~> %is a shortcut.

In either case, the weight of the new edge satisfies:

- Cmax <W+V< Cmax • (4.20)

Furthermore, by the minimality Assumption 4.3, if i > j, then either w+ v > 0, or j ^ t is

a shortcut, because w+ v is a total weight of i ^ j. Similarly, if i < j, then w+ v < 0. To

see this assume towards contradiction that w+ v > 0. In that case i 'v* j is not a shortcut,

because all shortcuts have total weight 0~. Furthermore, the total weight of j -^ i has to

be negative (to make the total weight of the loop negative) contradicting the minimality
Assumption 4.3. •
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Corollary 4.1 In step 1 of the modify function, the bound w+ v always satisfies (4.20).

Theorem 4.5 The TLE algorithm terminates with the correct answer in a finite number

of steps.

Proof. Theorem 4.3 states the the TLE algorithm cannot terminate with the false

positive result, and by Assumptions 4.1 and 4.2 it cannot terminate with false negative

results. By Theorem 4.4 each timing-violating failure report will be eliminated by modify.

To eliminate a failure trace either at least one new guard automaton has to be generated

in step 1, or some edges have to be eliminated from the current abstraction in step 3. But,

by Corollary 4.1 only finitely many different guard automata are generated, so after the

last one has been generated the number of edges in A must be reduced in every iteration,

therefore there can only be finitely many iterations. •

The proof of Theorem 4.5 suggests that in the worst case there might be as many

iterations as edges in the composition of the initial abstraction with all the guard automata.

In that case, the final abstraction of the system is equivalent to the region automaton.

It follows that the iterative approach has no advantages in the worst case. We argue

that determining the worst case number of iterations precisely has little practical value.

With existing computing resources and in a reasonable time one can expect to perform at

most several hundreds of iterations. That is definitely much less than the worst case even

for very simple systems. Thus, a successful completion can almost never be guaranteed.

Nevertheless, in many casesfewer than a hundred iterations is sufficient to verify the system.

We believe that the TLE algorithm has two important properties that makes it suitable for

verification in practice:

1. It is independent of the underlying untimed language containment algorithm. Any

advances in the verification of untimed systems can immediately be incorporated

in it. In particular, the TLE algorithm can be implemented on top of BDD-based

techniques, which are receiving significant attention as a tool to manage complexity

of finite-state systems.

2. The complexity of every iteration does not depend on the sizes of time constants.

Thus, any change in time constants that does not change the untimed language of

the system (including, but not limited to multiplying all time constants in the system

by the same number) will not change the execution time of the algorithm. Of course,
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if a change in time constants induces a change in the behavior, then the number of

iterations can change.

4.4.6 Extension to x —y < c constraints

To extend our approach to constraints of the form x —y < c, only the analyze

function in the verify.timed algorithm needs to be changed. The rules for building a graph

in the failure analysis phase are augmented such that for every i = 1,..., n and for every

timing constraint x - y < c in C(s,_i,st):

1. Add an edge (m,&,c,x,0) to the graph, where A; (respectively m) is the last node

before i on which the timer x (y) was reset, i.e.:

k = max{j < i\j = 0 or M(sj-i,sj,x) = J.} ,

m = max{j <i\j = OoiM(sj-i,Sj,y)= ±} .

2. If the edge (m,A:,c,x,0) appears in the over-constrained loop, then before calling the

modify function it must be replaced with edges (i,A:,c,x,E) and (m,i, 0,y,E), where

E is a characteristic function of some set of transitions enabled by x - y < c that

includes at least the transition (s,_i,st), i.e.:

(si-i,Si) e S(E) C {(s,q)\(x-y< c) € C(s,q)} .

Using (m, k, c,x, 0) in the failure analysis phase is justified because the requirement

x - y < c induces the inequality:

^m - ^k < c .

If k < m, we must ensure in the failure elimination phase that transitions satisfying E are
enabled only if x < c when y is reset at node m. Similarly, if m < k we must ensure that

transitions satisfying E are enabled only if y > -c when x is reset at node k. We achieve

this be replacing (m, k,c,x,0) with (i,k,c,x,E) and (m, i,0,y, E). We do this replacement

in a manner that preserves the simplicity of the loop: if node i already appears in the over-

constrained loop, then these two edges are connected to a distinct copyof node i. Thus, we

always create a new peak node in the loop. Eliminating this node in modify indeed has the
desired effect:
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1. A is composed with A,- = (x —y < c), and transitions satisfying (ps^ = bad) *E are

disabled,

2. edges of the loop incident to i are replaced with either

(m, k, c, x, (nsAi = good) * Rx * Ry)

in case k < m, or in case m < k with:

(m, &, c, y, (ns,4,. = $©od) *Rx *IQ .

One can check that proofs of all theorems in section 4.4.5 are valid even with this

extension. Thus even with constraints of the form x —y < c, the verified.timed function will

terminate with the correct result in finitely many steps.

4.4.7 Extension to infinite sequences

When infinite sequences are considered, the failure report and the corresponding

graph are infinite. The key in overcoming this obstacle is the fact that if every prefix of

some (infinite) run of a timed automaton can be consistently timed, then so can the whole

run. In other words, if a run cannot be timed, then neither can some of its finite prefixes,

and thus there exists a finite over-constrained loop that indicates the inconsistency. Thus,

we can apply a standard algorithm to an ever increasing (finite) graph, adding one node

at a time, in natural order. If an over-constrained loop exists, it will be found in a finite

number of steps. Alur et al. [AIKY93] have showed that if a prefix of some bounded length

(wherethat bound depends on the numberof timing constraints) can be consistently timed,

then so can the infinite run obtained by repeating a portion of the prefix infinitely often.

Therefore, if an over-constrained loop does not exist, we can terminate the search after a

bounded number of steps, and conclude that the language of a timed automaton is not

empty.

When considering infinite sequences, the attention is usually restricted to those on

which time diverges, i.e. only finitely many transitions happen in any finite interval of time.

To eliminate sequences with convergent time, a fairness constraint must be added for every

timer x requiring that any transitions with an enabling condition of the form x < c can be

traversed infinitely often, only if some transition on which x is reset is traversed infinitely

often.
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4.5 Guided verification

In this section we describe how user guidance can increase the efficiency of the

TLE algorithm. Usually, the designer knows which timing constraints are critical for a

particular property. Not relaxing these constraints initially can dramatically reduce the

number of iterations. Therefore, in the verification system HSIS [ABB+94, BBC+] which
includes the implementation of the TLE algorithm we provide an option to the user of

"hinting" which timing constraints not to ignore initially. This may increase the size of the

initial abstraction, soone must be careful not to list too many constraints. Ideally, the user

would list exactly those constraints that are necessary to prove the property at hand. In

that case, the algorithm would terminate in a single iteration.

To specify a hint one needs to specify:

1. a timing constraint of the form x > -w,

2. a characteristic function E of some set of transitions constrained by x > -w,

3. a timing constraint of the form y < v, and

4. a characteristic function H of some set of transitions constrained by y < v.

Given such a hint, HSIS first checks its validity: it checks whether in theoriginal description
of the system all transitions characterized by E were indeed enabled only if x > -w, and

all transitions characterized by H were indeed enabled only if y < v. If the hint is valid,

HSIS composes the current abstraction with the guard automaton A = {y—x < w+ v),
and then eliminates all the transitions characterized by (ps^ = bad) *E *H.

For example, consider the safety property of the railroad crossing example in Fig
ure 4.1. It is satisfied because:

• the train will enter the crossing at least two time units after it approaches (x > 2),
and

• the gate will be down in less than two time units after the train approaches: one time

unit for the controller to issue the command (y = 1), and less than one unit for the

gate to close after that (z < 1),
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This reasoning can be converted into three hints. The first hint can be denoted

by:

(psr/M/iV = APP) * (nsxRAiN = IN) => x > 2 ,

(P*GATE = U2D) =» Z < 1 ,

indicating that TRAIN can move from APP to IN only if x > 2, and that z < 1 must

hold as long as GATE is in the state U2D. The constraints x > 2 and z < 1 cannot be

satisfied simultaneously if x - z < 1. Therefore, HSIS composes the initial abstraction of

the system with (z - x < —1), and then eliminates all transitions characterized by:

(Ps<z-x<-i) = bad) *(psTA4/N = APP) *(ustrain = IN) *(psGATE = U2D) .

Similarly, given a hint:

(ps(z-x<-i) = good) => x > 1 ,

(P8cont = R2L) => y < 1 >

HSIS composes the current abstraction with (y-x < 0), and then eliminates all transitions

characterized by:

(Ps<y-x<o) = bad) *(ps<z_x<_!) = good) *(psCOArr = R2L) .

Finally, given a hint:

(PSTRAIN = APP) * (STRAIN = IN) => X > 1 ,

(pscont = R2L) => y < 1 ,

HSIS does not generate any new automata ((y —x < 0) is already a component of the

current abstraction), it only eliminates transitions characterized by:

(Ps(y-x<o = bad) * (psr/L4/N = APP) *(nsTRAlN = IN) *(psCOnt = &2L) •

The result is an abstraction of the system in which none of the reachable states satisfy:

(P*TRAIN = IN) * ((PSGATE = UP) + (psGATE = U2D)) .

It is easy to check that this implies that the safety property is satisfied.
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Note that instead of the first implication in the final hint, we could have used a
stronger implication:

(P8TRAIN = APP) * (liSTRAIN = IN) =}• X > 2 ,

but this would require HSIS to generate anew guard automaton (y - x <-1). Thus, by
using the weaker implication we were able to guide HSIS to build an abstraction with fewer
states.

A careful reader will notice that the modifications of the initial abstraction induced

by hints are identical to the modifications done in the failure elimination phase ofthe TLE
algorithm. Thus, a designer can use hints to eliminate all potential timing violations,
and ensure that the verification terminates in one iteration. However, usually this is too
big a burden. In our experience, it is most productive to generate hints interactively,
i.e. a designer takes over the failure analysis phase of the TLE algorithm. Often, only
a few iterations are needed in the interactive mode to generate a complete set of hints,
while in the fully automatic mode even tens ofiterations may not be enough to verify the
system. Consequently, the experimental results in section 4.7 show that using hints enables
verification ofmuch larger systems. This suggests, that ofpotentially many timing violations
in a failure trace, auser with an understanding ofthe intended behavior ofthe system can
usually recognize violations essential to that behavior and give appropriate hints. On the
other hand HSIS will report the first violation it finds, which is apparently not always the
best choice.

4.6 Comparison of approaches

There are two distinct sources of complexity in verification of timed automata:

1. Systems usually consist of several interacting components, and the number of reach
able states ofthe whole system is typically exponential in the number ofcomponents.
Of course, this state explosion problems is not restricted to real-time systems, and
has been a subject ofa wide range ofresearch. The state-of-the-art approach to this
problem is to use BDD's to traverse the state space implicitly.

2. As shown in chapter 4, the number of states of the region automaton is proportional
to the absolute value ofevery time constant. This is particularly problematic for stiff
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real-time systems, i.e. systems consisting of components operating at widely different

speeds. Most embedded systems can be classified as stiff real-time systems. For

example, in an automotive system the engine revolution data may be collected several

thousands times per second, while the cabin temperature may be checked only once

every ten seconds. Even when time constants in the environment do not vary so

widely, most embedded systems contain both (typically slow) software and (typically

fast) hardware components.

Implementations of both minimization and TCTL model checking algorithms de

scribed in the previous sections have a common state space representation: all reachable

untimed state components are enumerated explicitly, and difference bound matrices are

used to represent timer values. Thus, they are expected to be fairly insensitive to stiffness5,

but quite limited in the number of untimed states. The approaches based on timed Petri

nets hold some promise of alleviating this problem, but at the moment too few experimental

results are available to make any judgements.

The successive approximation approach of section 4.3.1 is compatible with both

explicit and implicit state enumeration techniques, thus it is possible to incorporate the

best available techniques to deal with the untimed state explosion problem. However, since

it requires building a full region automaton (for a subset of timers), it is very sensitive to

stiffness. Even the optimization of time constants does not address the stiffness problem: if

the ratiosof time constantsarelarge, dividing them with the greatest common denominator

will leave at least some of them large.

Compared to the TLE algorithm, successive approximation (SA for short) repre

sents a different trade-off between the number of iterations and the complexity of modifi

cation. Generating a full region automaton (even for a subset of constraints) as done in

SA is much more complex and adds much more information about timing than the failure

elimination procedure in Figure 4.7. Thus the TLE algorithm is expected to prove (or dis

prove) the property to be verified on a much smaller abstraction. On the other hand, since

more information is used in every iteration, the SA algorithm could require fewer iterations.

Unfortunately, no experimental results are available for SA to confirm these expectations.

An approach somewhat between the successive approximation and the TLE al

gorithm was suggested by Balarin and Sangiovanni-Vincentelli [BSV93]. This approach

6This expectation issupported by some experimental results [NSY92]
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Table 4.1: Results for the timed automata algorithm

example
no hints with hints

iter. reach, st. time hints iter. reach, st. time

csma 5 120 3.25 1 48 1.25

fddi-1 2 15 0.85 1 15 0.65

fddi-s 22 95 21.85 6 29 0.85

fis3 14 826 26.45 6 830 0.85

fis4

fis5

29 42,998 1,141.85 12

20

44,545
6*106

6.75

168.45space out
belt space out 5 299 0.85

fact

cross-s

space out 58

3

3 8*107
11

84.75

0.354 16 0.65

cross-1 13 78 3.65 11 17 0.45
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follows basically the failure elimination algorithm in Figure 4.7, but instead of explicitly

eliminating inconsistent behavior in step 3, guard automata are coordinated with the rest of

the system through auxiliary I/O variables, which indicate timer values approximately, up

to the closest integer. Since the number of values of these variables obviously depends on

the sizes of the constants in the system, this approach still suffers from the stiffness problem,

as shown experimentally in next section. We will refer to this approach as preTLE, because

the TLE algorithm was developed as a successor to this approach.

Finally, the TLE approach can be combined with implicit state enumeration tech

niques, and the complexity of every iteration does not depend on time constants. Thus, it

addresses both untimed state explosion and stiffness problems.

4.7 Experimental results

We haveapplied TLE algorithm (with andwithout hints) to the following examples

of timed automata:

• a model of the CSMA/CD protocol [NSY92] consisting of two stations and a channel;

we haveverified that a collision on the channel is always detected within a given time

frame,

• a model of the FDDI token ring protocol [CDCT93] consisting of three stations; we

have verified that every station transmits infinitely often (labeled by fddi-1 in Ta

ble 4.1), and that there is an upper bound on time between two consecutive receptions
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of a token by a station (labeled fddi-s),

• a model of the Fischer's mutual exclusion protocol consisting of three, four or five

processes (labeled fis3, fis4, and fis5 in Table 4.1),

• a modelof a seat-belt alarm controller [CGH+93] (labeled belt); wehave verified that

the alarm is never on for more than twenty time units,

• a model of an automated factory [PV94] consisting of a production line, a service

station, two boxes, and two robots that move boxes between the service station and

the line; we have verified that robots will always pick up a box before it reaches the

end of the line,

• both safety (labeled cross-s) and liveness (labeled cross-1) properties of the railroad

crossing example from Figure 4.1.

Experimental results are summarized in Table 4.1. All experiments were performed on a

DEC MIPS 5000 workstation with 440Mb of physical memory.

The value of hints is obviousfrom Table 4.1. Without them, only smaller examples

can be verified. In all but one example (fact), we have developed a complete set of hints,

and with hints only one iteration was necessary. In these cases, the hints constitute the

proof of correctness, and we are using our tool to check, rather than construct a proof.

The automated factory examples illustrates how automatic verification can complement

hints. After several tries, we were able to develop a set of hints that enforces most of the

timing constraints necessary to verify the property. Automatic verification then filled-in

the remaining gaps.

The number of reachable states reported in Table 4.1 refers to the abstraction of

the system in the last iteration. One way of evaluating the effectiveness of our algorithm is

to comparethe sizes of automatically createdabstraction (in no-hintscolumn) with the sizes

of hand generated ones (hints column) which we believe are close to optimal. In most of

the cases the TLE algorithm was quite successful in abstracting the behavior of the system,

except for the seat belt example, where a small abstraction could be generated by hand,

but the TLE algorithm could not find an abstraction that can fit in 440Mb of memory. We

traced this problem to to the componentof that example that represents a very fast counter.

The key to successful hand abstraction was the observation that the counter interacts with
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Table 4.2: Sensitivity to stiffness

cycle 5 100 200 500 1,000 2,000
preTLE
TLE

1.85 2.95 4.55 145

0.65 0.65 0.65 0.65

455

0.65

1625

0.65

Table 4.3: Comparison of results

example TLE (no hints) TLE ( hints) KRONOS min. sur. min. stable

csma 3.25 1.25 455 NA NA

fis3 26.45 0.8s NA 25 85

fis4 1,141.85 6.75 NA 455 1925

cross-s 0.65 0.35 0.65 15 65

cross-1 3.65 0.45 1.45 NA NA
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the rest of the system only occasionally, and for short period of times. The TLE algorithm,

however, was often finding the counter involved in timing violations, even though these

violations were not significant, because at these points there was no interaction with the

rest of the system. This suggests that more sophisticated failure analysis schemes need to

combine timing constraints and communication patterns between system components.

To test sensitivity to stiffness we have compared the preTLE and TLE approaches

on the safetyproperty of the railroad crossing (cross-s) example in Figure4.1 with different

values of the train cycle time (instead of the original value 5). We havechosen this example

because the untimed behavior of the systemis independent of this time constant. The results

are shown in Table 4.2. The time in the preTLE approach grows more than linearly with

the cycle time, while with the TLE approach the time stays constant. These experiments

were performed without hints.

In Table 4.3 we compare the results for TLE algorithm with the results from the

tool KRONOS [Yov92], and the results obtained by minimization approaches (using both

surjective and stable partitions) presented by Alur et al. [ACD+92].

Compared to other available results TLE algorithm is comparable without hints

and always better with hints. That is not surprising because the hints rely on the knowledge

(and the effort) of the user, while other approaches are completely automatic. The user's

effort is hard to quantify, but in our experience "three hints per hour" seems to be a good

rule of thumb. It seems that the TLE algorithm (being fully implicit) has a capacity to deal

with larger untimed state spaces (e.g. fis5 and fact), but to use that capacity efficiently,

user intervention is often crucial. Without it, the extra capacity is often lost on enforcing
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timing constraints that areirrelevant to the property to be verified. Hints enforce the timing

constraints using the same mechanism as the TLE algorithm, but they are driven by a user

instead of an automatic failure analysis. Therefore, developing more sophisticated failure

reporting and analysis schemes should narrow the performance gap between automatic and

guided version of the TLE algorithm. Nevertheless, we believe that the TLE algorithm is

uniquely suited for verification of embedded real-time systems because it addresses both

sources of complexity of such systems:

• because it is fully implicit it can deal with large untimed sate spaces,

• because the complexity of every iteration is independent of time constants, it can be

used effectively for stiff systems.

In practice, designs are often annotated with some additional information explain

ing the intended behavior. In principle, this information could be used to generate hints.

The problem is that this information is typically in the form of informal notesor timing dia

grams. Developing formalisms for this information and usingit for the automatic generation

of hints represents an interesting open problem.
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Chapter 5

Real-Time Operating System

To compare and test formal verification tools there is a need for a well-documented

set of benchmarks. The lack of such examples is particularly evident for real-time systems

where only a handful of formal models have been published and verified. In the following

two chapters, wepresent severalmodels of a real-time operating system for an automatically

controlled vehicle. We believe that these models are good candidates to be included in such

a set, because:

• it comes from a real-life system,

• it is easily scalable in the size of the state space, in the level of details that the model

provides, and in the complexity of the properties to be verified,

• time constants vary by more than an order of magnitude, thus it is a stiff systems,

• it is representative of many verification problems for embedded systems: typically

embedded systems have to react in time to external stimuli and that is captured by

formal models of PATHO.

In this chapter we use timed automata as a model, and describe how to verify that

the operating system using the TLE algorithm in automatic and interactive modes. In the

next chapter, we present a model that uses timer decrements. An extension of the TLE

algorithm that could be used to verify such systems is also presented.
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5.1 PATHO operating system

PATHO real-time operating system [Pet93] is an example of an embedded system.

It is intended for the automatic control of a vehicle [Var93]. To preserve vehicle safety,

PATHO must manage a collection of subroutines, called tasks, such that they meet strict

real-time requirements imposed by the environment. There are three different types of tasks:

background tasks, control tasks, and event tasks. Background tasks have low priority, and

they need to run only when the CPU is free. Control tasks need to run at a fixed period, e.g.

a clock or a control calculation. These tasks have very high priorities and hard time limits.

The third type are event tasks. These tasks respond to hardware interrupts generated by

the environment. These interrupts can come from a radio communications channel, saying

that it has a packet of information, from a sensor on the engine of the car, saying that it

has some measurement information, or other devices. Whatever the source, the interrupt

needs to be serviced in a timely manner. Interrupts arrive randomly, but for every task

there is a lower bound on elapsed time between two interrupts.

When the PATHO system is initialized, all tasks are created from subroutines

written by the user. These tasks, depending on their type, are then placed in various

queues. The control tasks are placed in a waiting queue and their individual clocks are set

to their time-out values. While running, PATHO decrements these clocks continuously until

they expire. This indicates that those tasks are ready to run. At that time the ready tasks

are placed on the ready-to-run queue and their clocks are reset to their time-out values.

Once they have finished they are placed back on the waiting queue. Event tasks also start

off on a waiting queue. Each event task is associated with a particular interrupt line. When

that interrupt occurs, the event task is taken offof the waiting queue and put on the ready-

to-run queue by a special routine called an Interrupt Service Routine (ISR). The tasks on

the ready-to-run queue are serviced according to pre-defined priorities, with no preemption.

After the task finishes, it is put back on the waiting queue. A simple way to view the

process of running an event task is that the ISR simply tells the PATHO scheduler that the

task needs to run and the scheduler takes care of running it. Finally, the background tasks

are placed in the background queue. PATHO will try to run one of these tasks whenever

no other tasks are ready to run.
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Task Name Function Priority Period Run Time
Long. Cntrl
Lat. Cntrl

Opt. Pos.
Safety
Calibration

Control longitudinal position
Control lateral position
Optical triangulation of position
Periodic safety check of car
Periodic calibration of car

Table 5.1: Control tasks.

50m5

50ms

50ms

Is

605

200/45
10/45
1/45

200/45
200/45

Task Name Function Priority Lower Bound Run Time

Radio Platoon communications 2 20m5 10/45
InfraRed Car to car communications 3 207715 10/45
Radar Radar position measurement 5 207715 200/45
Sonar Sonar position measurement 6 67715 15/45
User User interface 8 1007715 20/45
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Table 5.2: Hardware interrupt tasks.

5.1.1 A typical PATHO system

Consider an example where PATHO controls every aspect of the vehicle: the

steering, the speed, the spacing between adjacent cars, etc. As a result there are many

pieces of hardware that are needed and many different control tasks. Control tasks are

fisted in Table 5.1, while event tasks are listed in Table 5.2. In both cases functions that

they perform, their relative priority ( with 0 being the highest priority ), and the maximum

time they can take are all shown.

Reason to wait Wait time

Jump to an ISR and back
Switch from one task to another

2/45
100/45

Table 5.3: Wait times in PATHO.

There are two different delay times associated with the overhead of PATHO. One

is the task switching time, that takes about 100/45. Another delay that should be modeled

is the time that it takes to jump to an ISR and back. As shown in Table 5.3, this delay is

typically much smaller than either task switching time or tasks running times.



CHAPTER 5. REAL-TIME OPERATING SYSTEM 96

5.2 Modeling PATHO with timed automata

As usual, the models of PATHO capture only some of its features. Other features

were left out either because they are not expressible in the selected formalism or because

they require too complex a model. In all models presented in this chapter, the following
features of PATHO were abstracted:

Message passing PATHO allows the various tasks to pass messages to each other using

system resources called pipes. Each time there is a system call to send or receive

a message there is a possibility that a task will get blocked until the transaction is

complete. We model this by adding some estimated overhead to tasks running times.

Mutual exclusion of resources It is possible for a few different tasks to share the same

resource (e.g. a printer, memory, etc.). Thus a task might be blocked for a while if

another task uses a resource. Similarly to message passing, we model mutual exclusion

by increasing running times.

Extensive user interface code The form of the user interface for PATHO has not been

decided upon. It could be running on the samemachine as the other control algorithms

or it could be running on a separate machine over a network. The real-time charac

teristics of these two different interfaces are unknown. Therefore a generic interrupt

driven task is substituted in its place.

Data logging Data logging is simply the process of storing the state variables either in

memory, to a disk drive, or to another machine across the network. This aspect of

the PATH project has not been implemented yet and therefore, like the user interface,

the real-time characteristics are unknown.

Background tasks Background tasks were left out because they have lower priority and

do not influence the behavior of control and event task.

Message passing and mutual exclusion can be modeled precisely within a frame

work of integrator systems [ACHH93], where it is possible to stop, for a while, a timer

that measures the run time of a task. Unfortunately, verification of integrator systems is

undecidable in general.
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In this section we present two models of PATHO based on timed automata. The

first is the most natural formalization of the informal description in section 5.1, but not very

efficient for verification. The second one is an equivalent model optimized for verification.

The main features of PATHO represented in our models are:

• external interrupts and internal time-outs,

• control and event tasks,

• queue of tasks waiting to run and priority scheduling,

• PATHO overhead time.

In all models control and event tasks are treated in the same way, except that event tasks

are driven by external hardware interrupts while the control tasks are scheduled by the

internal control task timers. Also, the task switching time is modeled by increasing the
task running times.

In the rest of this section we present models of a sample PATHO system with n

tasks labeled: 0,1,...,n - 1. We assume that labels correspond to the priorities of the

tasks, with 0 being the highest priority. We use rt- to denote the running time of task i.

If iis a control task, it has to become ready to run periodically, with period p,. If i is an

event task, we denote by pt- a lower bound on time between the occurrence of two successive

interrupts of task i.

The property we want to prove is that all tasks are executed in a timely manner.

More precisely, we want to show that:

• if an interrupt occurs, then the corresponding event tasks will be executed before

another interrupt of the same kind occurs,

• when control task i becomes ready to run it will be executed before pt- time units

expire.

This property is naturally expressed as a conjunction of n sub-properties, one for each task.

We use Propi to denote these sub-properties. It should be intuitively clear that although
their specification is the same, Prop.'s are not all equally hard to prove (at least for human

reasoning). The easiest one is Propo corresponding to the task with highest priority. When

interrupt 0 occurs the corresponding task will execute as soon as the currently running task
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(if there is any) completes. So, Prop0 is satisfied if r0+ rt- < po for all i > 0. Lower priority

tasks can be delayed longer, and more complicated reasoning is necessary to prove that the

corresponding properties hold.

5.2.1 A simple model

In our first attempt to model PATHO interrupts, time-outs, tasks and scheduler

are all modeled separately. In this case, the I/O variable is a vector :

(s,eo,t0,ei,ti,...,en_i,tn_i) ,

where:

• e,- taking values in {0,1} is associated with an interrupt (if i is an event task) or

a time-out (if i is a control task). If i is an event task, then e,- = 1 indicates the

occurrence of the interrupt. Similarly, if t is a control task, e,- = 1 indicates that p,

time units have elapsed.

• tt- taking values in {idle,pend,run,done} is associated with the task i. If the task is

in the waiting queue, then t,- = idle; if it is in the ready-to-run queue, then t,- = pend;

if it is running, then tt- = run; finally, when it is transferred from the ready-to-run to

the waiting queue, then tj = done.

• s taking value in {0,1,.. .,n - l,n} is associated with the scheduler. If s = i, then

task i can start running; if s = n either some task is running, or there are no tasks

ready to run.

The set of timers is V = {xo,yo».. -,xn_i,yn_i}, where the timer y,- measures the execution

time of task i, and the timer xt measures the elapsed time between two interrupts or time

outs corresponding to task i.

A simple model of a periodic time-out is shown in Figure 5.1. It has two states,

any one of which can be initial. Exactly every pf- time units there will be a change of states,

and only at that time, e,- = 1. At all other times (i.e. in self-loops) e, = 0. The model of

an interrupt is similar; one only needs to remove timing conditions from self-loops and to

replace timing conditions x,- = p,- with x,- > p,-.

A simple model of a task is also shown in Figure 5.1. The task starts in the idle

state and remain there until e,- = 1. If s = i when that happens, it moves to the run state.
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e, = 0

Xi < Pi

£2

TIME-OUT

e, = l
x» = Pi

Xi :=0

ei = l
Xi = Pi

Xi := 0

e, = 0

Xi < Pi

ti = idleA TASK
et = to t,- = idleA

C~J ei = lAs =
^^ y» := o

t, = idleA
e* = 1 A s ^ i

t,- = run

Vi < n

ti = pend A s = i

Vi := 0

tf = pend A s ^ »

Figure 5.1: Simple models of a time-out and a task.

Otherwise, it moves to thepend state,and remains there until s = i. Once in the run state,
the task will remain there for exactly r; time units.

The scheduler is modeled as a one-state machine that computes the value of vari
able s as follows:

[ min({n} U{i|tt=
if t,- = run for some i

= pendVe,- = 1}) otherwise

In this case the property Propi can be described by:

It is always the case that (e,- = l)=»(t,- = idle).

It is straightforward to define a two-state automaton which is initially in the "good" state

and remains there as long as either e, = 0 or t, = idle. If that is not the case, it moves to

the ubad" state and remains there forever. The verification problem is then to show that

the bad state is not reachable.

5.2.2 An optimized model

The model describe in the previous sectioncan be optimized to reduce the number

of states and I/O values. The optimized model is shown1 in Figure 5.2. In this case, the

Again, Figure 5.2 is valid only for control tasks. To model event task, remove the timing constraints
Xi < pi, and replace constraints x, = p, with x, > pi.
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t,- = idle ti = request As, ti = run
Xi < Pi Xi = pi y{ < n

X, = Pi

x,:=0 \Pend
ti = request A §,• "'JT V"

t,* = pend A s,-

x, < Pi - r,-

i-l

y,:=o

n-1

ti = pend A s,-

x, < Pi - n

yi:=0

tt- = dead

Xi > pi - r,

Si = /\(tj = idle) A f\ (tj # run)
j=0 j=t+l

Figure 5.2: An optimized model of a task.

100

t,- = dead

I/O variable is a vector (to,.. .,t„_i), where each t,- takes values in:

{idle, request, pend, run,done, dead} .

Values idle, pend, run and done have the same intuitive meaning as before. The value

request corresponds to the occurrence of a time-out (or an interrupt, in case of event

tasks). The value dead corresponds to the case when a task is not finished on time.

The main differences compared to the simple model are:

1. Models of a task and the corresponding time-out are merged. To model a time-out

the process in Figure 5.2 issues a request if it is in state idle and the value of the

timer x, is pt-. If the system behaves correctly this will be repeated periodically, every

Pi time units. However, if the process cannot make it on time back to the idle state,

it moves to the dead state and remains there forever. The automaton moves from the

pend state to the dead state whenever there is not enough time for the task to finish

before xt- reaches p,-.

Another approach is to monitor xt- = pt- in the pend and the run state, and move

to the dead state if it becomes true before the automaton moves to the idle state.

However, the approach we have taken proved to be more efficient for verification.
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2. There is no separate module for the scheduler. Instead, its functionality is distributed

to models of tasks. The task will move to the run state only if expression s,-, defined

in Figure 5.2, is satisfied. It is easy to check that that condition exactly expresses the

PATHO scheduling policy.

To verify property Propi one only needs to check whether the dead state is reach

able in the i-th process. Although the model in Figures 5.1 and 5.2 do not have the same

languages, they are equivalent in a sense that properties Propi are all satisfied in 5.1 if and

only if they are satisfied in 5.2.

5.3 Experimental results and discussion

In this section we present experimental results obtained using HSIS. All results

are obtained for the model consisting of n event tasks like those described in section 5.2.2,

with pi = 205 and r, = Is for all i = l,...,n - 1. These numbers were obtained from

Tables 5.1 and 5.2 by taking the smallest period or lower bound (6ms) and the largest run
time (200/zs + lOO^s for task switching) andscaling. We have experimented with two values
of n: 4 and 10.

Under these assumptions, Propi (stating that the dead state is not reachable in

process i) is satisfied, because the execution of the i-th task can be delayed at most i + 1

seconds (up to one second if some task is running when i makes a request, and up to i
seconds for higher priority tasks that could be pending). That is less than pt- - rt- = 19s

even for i = n - 1 = 9 (the task with the lowest priority).

This reasoning can be converted intohints. One group ofhints ensures that higher
priority tasks do not occur too often. More precisely, the hint:

(psj = idle) *(nsj ^ idle) =» Xj > 20

(ps,- = pend) * (ns; = pend) =>> xt- < 19

disallows two consecutive service requests for task j to occur while the task i is continuously
pending. If we generate one such hint for every task j with a higher priority than i, we will

ensure that task i can be delayed by task j at most twice: once if j is already pending when
i requests a service, and j can require service at most one more time while i is pending.

The second group of hints ensures that task i does not move to the dead state

too soon. Even though this condition can be expressed using standard hints introduced in
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section 4.5, for reasons of efficiency we have developed a new type of hint for this purpose.

An example of this type of hint is:

(ps3 = pend)* (ns3 = dead) => x3 > 19

(ps0 = run) =$• y0 < 1

(psj = run) => yi < 1

(ps2 = run) =» y2 < 1 .

The first line must satisfy the same requirements as the lower bound implication of a

standard hint. There can be more than one upper bound implication, which must satisfy

an additional constraint: the left-hand side must be a predicate on present state variables

only. Again, an implication is valid if all the transitions satisfying the predicate on the

left-hand side are conditioned with the lower bound inequality on the right-hand side.

Given the hint above, HSIS will compose the initial abstraction of the system

with the automaton H shown in Figure 5.3. Basically, H measures time by counting the

occurrences of:

Cz = (Ry0 + Ryj + Ry2 ) •

Since Ry< is satisfied only when the i-th task starts running, and since no task can run for

more than one time unit, it follows that as long as:

Co = (ps0 = run) + (psj = run) + (ps2 = run)

holds, no more than one time unit can elapse between two occurrences of C3. Therefore, H

will not allow the transition (ps3 = pend) *(ns3 = dead) to occur unless Cz occurs at least

nineteen times since the reset of x3. Of course, if at any time Co stops holding, we loose

track of time, and must allow (ps3 = pend)* (ns3 = dead) to occur.

In general, this type of hint is represented by:

E =* x0 > c0

(psj = vali) =>• xi < ci

(ps2 = val2) =$• x2 < c2

(psjt = valk) => xjt < ck ,
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Co = (ps0 = run) + (psj = run) + (ps2 = run)

Ci = Co* (Ryo + Ry, + Ry2) * (ps3 = pend) *(ns3 = dead)

C2 = Co * (Ryo + Rya + Ry2)* (ps3 = pend) * (ns3 = dead)

Figure 5.3: An automaton implied by a hint.

where E is a characteristic function of some set of transitions, psx,... ,psfc are (not neces

sarily distinct) present state variables, x0,.. .,x* are (not necessarily distinct) timers, and

Co,..., Ck are bounds. Given such a hint, HSIS composes the current abstraction of the

system with an automaton which we call H. The state space of H is {0,1,..., n} where n

is the largest integer satisfying n * c, < c0 for all i = 1,..., k. All states of H are final, and

0 is a unique initial state. Let the if-then-else operator ite(a, b, c) be an abbreviation for

a * b+ a * c. Then, the transition relation of H is given by:

where:

(ps* =0) *ite( RXo, ns// =1, ns// =0) + £(ps// =0*N« >
t=0

N,- = ite( Ei=i(psj = valj),
E*ite( £*=i RXj, ns// = (i+ 1) mod n, ns// = i),
itc(RXo, ns// = 1, ns// = 0)

)•

Experimental results are summarized in Table 5.4. All times are in CPU seconds

on DEC MIPS 5000 workstation with 440Mb of memory. The number of states reported

in the table is the size of the abstraction in the last iteration. Where indicated, to verify

Propi we have used one hint of the form:

(Psi = pend) * (ns; = dead) Xi > 19
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n = 4 n = 4 71=10

property (with hints) (no hints) (with hints)
time states time states time states

Propo 0.45 216 0.9 654 1.1* 3*105
Propi 0.45 242 2.7 2*103 1.3s 3*105
Prop2
Propz
Prop4

0.55

1.1s

564

1292

1379 8*106 2.4s

5.3s

16.5s

6*105

106
3*106

space out

Props 65.3s 6*106
Props not defined 281s 107
Prop7 2,413s 6*107
Props
Props

15,252s 108
space out

Table 5.4: Experimental results.

(ps0 = run)

(Psi-i = run)

(Pst+i = run)

yo<i

y»-i < 1

y,+i < i
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(psn = run) => yn < 1

(where n is 4 or 10), and for every j < i we have added a hint:

(psj = idle) *(nsj ^ idle) =» Xj > 20

(pst- = pend) * (ns,- = pend) =$> x,- < 19 .

Given these i+1 hints, HSIS verifies Propi in one iteration. Without hints, tens of iterations

were necessary. For n = 10 we report only results with hints, because without hints only

Propo can be verified. Other properties violate the memory limit.

In our experience, finding right hints has been an iterative process. Initial hints

were not sufficient, and better hints were discovered after analyzing the failure report.

Thus, we were following the same basic steps as the automatic procedure, but apparently

our manual failure analysis was much more effective than the automatic one.

The second observation is that even with hints, we have to deal with the state

explosion problem. Increasing the size of the system from four to ten tasks, increases the



CHAPTER 5. REAL-TIME OPERATING SYSTEM 105

number of reachable states by three orders of magnitude. Fortunately, the run times do

not increase proportionally. But, verifying property Propi requires approximately twice

as many states and four times as much time as verifying Propi-i. So, there still exists

a fundamental problem of an exponential increase. There are many theoretical results

(e.g. [Alu91]) suggesting that this complexity is inherent. Nevertheless recent advances

have made possible the verification of examples that were previously intractable. We can

only hope that this trend will continue.
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Chapter 6

Verification of TAD's

In this chapter, we first present of model of PATHO that uses timer decrements,

and then use this example to introduce an extension of the TLE algorithm to arbitrary

TAD's. The basic structure of the TLE algorithm shown in Figure 4.4 remains the same

even in this case. Also, since at all times the abstraction of the system A is just an ordinary

(not timed) automaton, the verify function remains unchanged. Thus, we focus on extended

versions of analyze and modify functions which are capable of dealing with arbitrary TAD's,

and discuss the effect of these extensions to the proof of correctness. It is important to

notice that these are indeed only generalizations of the TLE algorithm, i.e. for the special

case of timed automata the algorithm presented in this chapter reduces exactly to TLE.

6.1 A model of PATHO with decrements

Both models PATHO presented in chapter 5 ignored the time taken by the ISR. In

this section we present a model of PATHO that takes this effect into account. Assume that

ISR requires A time units. There are two ways to model the effect of ISR to the execution

of a task [MV94]:

1. whenever ISR is executed, the value of a timer measuring running time of task (i.e.

yi in Figure 5.2) is "frozen" for A time units,

2. whenever ISR is executed, the value of yt- is decremented by A, but y,- continues to

increase.

In both approaches it takes the same time for yt- to reach r,-.
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n-l

U= run A/\ tj ^ request
y, <r,Ax/-y, < p< - r,-

x — __________

t, =idle (~^ ti =done
^)t:y» =r«Axi <pt- V

VQ

JLA iy, := y, - A

id7e t,- = request A sf- ^N

t,- = regues* A s,-
x« > p.
x, := 0

ti = pend A s,-
Xi < Pi - Ti

y, := 0

ti = dead
7 5 x, >pi - r,

t,- =~p£ndAs,-
x,- < pi - rt

i-l n-l

s,- = /\(tj = idle) A /\ (tj ± run)
i=o i=<+i

ti = run A Y t; = request
i=o

yt- < r,- A x,- - yi < pi - rt

t,' = dead
Yi < r,- A X,- - y, > p,- - r,-

Figure 6.1: A model of PATHO that includes ISR.
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The model of PATHO that includes the effect of ISR is shown in Figure 6.1. It

shares the I/O variables and the basic structure of the optimized model in Figure 5.2. The

difference is that the run state has been split into runi and run^ states. Whenever ISR

is executed (i.e. whenever t,- = request for some i) the process switches run states and

decrements the timer yt- by A. As long as the process is in one of the run states, rt- - yt-

represents the minimum time before the task completes, and pi—Xi represent the time after

which the next interrupt can occur. Whenever the former becomes larger than the latter,

Propi can be violated and the process moves to the dead state. The verification problem is

again to check whether some process can reach the dead state.

6.2 Failure analysis

Consider the failure report:

idU—• runi —• run-i —• (lead , (6.1)
s0 S\ $2 s3

of the automaton in Figure 6.1. Since the timer yt- is reset on the transition so —• Si and

decremented on si -> S2, the valueof yt- on s2 -* S3 is A3-Ai -A. Therefore, the constraint

(yi < u) € C(s2, S3) induces the inequality:

A3 - Aj < n + A .

In the constraint graph this inequality needs to be represented by an edge from 3 to 1

weighted r,- + A. The graph function in Figure 4.5 would generate an edge from 3 to 1

weighted r,- instead, which is wrong. The correct constraint graph for a failure report

s0,..., s„ of an arbitrary TAD can be built by applying one of the following rules for every

i = 1,..., n and every ij> € C(s,_i, s,):

Rule 1: This rule apply if V> is of the form x < c. Let k be the index of the last transition

before the i-th one on which x was reset, i.e.:

k = max{j < i\j = 0 or M(sj_i,Sj,x) = ±} . (6.2)

In this case, we add to the graph an edge from i to k weighted:

t-i

c+ Y, M(sp_!,sp,x) , (6.3)
P=*+i
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and label it with x and E, where E is some function satisfying:

(Si.i,Si) € S(E) C {(s,q)\^e C(s,q)} . (6.4)

Rule 2: This rule apply if ty is of the form x > c. Let k and E be as defined by (6.2)

and (6.4). In this case we add to the graph an edge from k to i weighted:

i-l

-c- Y M(sp_i,Sp,x) , (6.5)
P=k+1

and label it with x and E.

Rule 3: This rule apply if ij) is of the form x - y < c. Let k and E be as defined by (6.2)

and (6.4), and let m be the index of the last transition before the i-th one on which

y was reset, i.e.:

m = max{j < i\j = 0 or M(sj-i,Sj,y) = 1} . (6.6)

In this case, we add an edge from mtofc weighted:

i-l t-l

c+ Y M(sp_!,Sp,x)- Y M(sp_i,Sp,y) , (6.7)
p=k+l p=m+l

and label it with x and E.

In the failure analysis phase, an edge (i, j, c, x, E) indicates that a consistent timing

must satisfy:

A,- —Aj < c .

However, in the failure elimination phase the same edge indicates that transitions in «S(E)

cannot occur unless either i > j and x < c is satisfied, or i < j and x > —c is satisfied.

To account for this difference in interpretation, we will change the weight of all edges in

the over-constrained loop before the failure elimination. If an edge is generated by Rule 1

above we change its weight from (6.3) to c. For example, the edge 1 -+ 3 induced by the

inequality (yt- < rt) € C(s2,S3) would have the weight r,- + A during the search for an

over-constrained loop, and the weight rt- in the failure elimination phase. Similarly, we will

change the the weight of edges generated by Rule 2 from (6.5) to -c.

Finally, we will replace any edge of the over-constrained loop generated by rule 3

with two edges: one from m to i weighted 0 and labeled y, E, and one from i to k weighted
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£2
good

x —y < c

Hoc*Ry

£2
good

x- y < c

110

Rx + Ry + Gx,y (Rx#Ry) +Gy,x (Rx/Ry) +Gx>3 Hoc + Ry 4-Gy,x

bad

x-y >c

1-5
Rx*%

a)c>0

bad

x-y > c

^J

b)c<0

Figure 6.2: Guard automata for arbitrary TAD's.

c and labeled x, E. Again, we do this in a manner that preserves the simplicity of the loop:

if node i already appears in the over-constrained loop, then these two edges are connected

to a distinct copy of node i. Thus, this modification creates a new peak node. When that

node is eliminated in the modify function, the automaton (x —y < c) is generated, and

transitions in 5(E) (including s,_i -»• st) are disabled in its bad state.

6.3 Guard automata

The definition of guard automata in section 4.4.3 does not represent an abstraction

of an arbitrary TAD. The problem is that a guard automaton (x-y < c) can change states

only if one of the timers is reset, while in a TAD the truth of x - y < c can also be

changed by decrementing x and y by a different amount. The generalized definition of

guard automata is shown in Figure 6.2, where expression GX|y denotes the characteristic

function of transition on which x is decremented more than y is, i.e.:

Gx,y = X{(s, q) | M(s, q,x) ± 1, M(s, q,y) ± X, M(s, q,x) > M(s, q,y)} .

It is easy to check that for the special case of timed automata (i.e. Gx,y = 0), the automata

in Figure 6.2 are equivalent to those in Figure 4.6.
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6.4 Failure elimination

The modify function for arbitrary TAD's is shown shown in Figure 6.3. First four

steps are identical to the first four steps of the timed automata version of modify shown

in Figure 4.7. In step 5 we compute the index of the last transition where Ak could have

moved to the good state, that is the larger of i and j, or the index of the last transition

where x has been decremented more than y. In case of timed automata, m is always equal

to the larger of i and j, thus steps 7 and 8 are never executed. Also, steps 9-11 are the

same as steps 5-7 of the timed automata algorithm in Figure 4.7.

Let us now consider the effect of steps 7 and 8 on the example of the failure

report (6.1) with p,- = 4, r,- = 2 and A = 1. In this case, we can find a single-edge

over-constrained loop (1) -*• (1) weighted -1, induced by inequality yt- - xt- < -2 in

C(rw7i2> dead). Therefore, before the failure elimination, we replace that edge with edges

(0)3Ei_t?(3)and(3)y^2(0).
In the first pass through the while loop, A is composed with A3 = (yt- - xt- < -2)

(step 2) and the transition run<i -*• dead is disabled when A3 is in the bad state (step 3).

In step 5, m is chosen to be 2, and then the loop modified in steps 6-8. The modification

reflects the fact that y,- - x, < -2 can hold at run2 -* dead, only if y, —Xj < -1 holds

before y,- is decremented by 1 on runi -*• run2- Therefore, we create a new peak node 2,

elimination of which will generate A2 = (yi-x,- < -1). This will happen in the second (and

final) pass through the while loop. Also, in the second pass the transitions characterized

by:

(ps^ = 6arf)*(ns^3 = good)*X{(s,q)\M(s,q,Xi) = 0, M(s,q,y{) = 1} (6.8)

will be eliminated from the current A (step 3). Now, A2 must move to the bad state when

both xt- and y» are reset on idle —• runi, thus by (6.8) A3 must move to the bad state on

runi —*• rtzn2, so run2 —*• dead is disabled, and the whole failure trace is eliminated.

6.5 Correctness

The proofs of Theorems 4.3 and 4.4 carry over directly to the extended TLE

algorithm in Figure 6.3. Therefore, weconcludethat the extended TLE algorithm can never

terminate with the wrong answer. However, Lemma 4.5, and consequently Theorem 4.5 do
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function modify(G, A,sq,..., sn)

/* G - an over-constrained loop */

/* A - an abstraction of the system to be verified */

/* so,..., s„ - a failure report */

while there are edges (i,k, w,x,E), (k,j,v,y,H) in G s.t. k > i,j do

step 1: Ak := (y - x < w + v);

step 2:

step 3:

A:= A®Ak;

A := (SA, IA, TA * (pAk = bad) *E *H, F^);
step 4' remove from G edges (i,k,w,x,E) and (fc,j,t;,y,H) and node k;

step 5: m := max{p < k \p = i or p = j or GX(y(sp_i,Sp) = 1};

step 6: E := *{(s,c7)| M(s,g,x) = M(sm_!,sm,x),

M(s,g,y)= M(sm_i,sm,y)};

if m > i and m > j then

step 7: add to G an edge (i, m, w + M(sm_i,sm,x), x, (ns^ = good) *E);

step 8: add to G an edge (m, j ,v- M(sm_!,sm,y), y, (ns^ = good) *E);

else ifi<j = m then

step 9: add to G an edge (i, m, w+ v + M(sm_i,sm,x), x, (ns^ = ^oorf) * E);

else if j < i = m then

step 10. add to G an edge (m, j, w + v - M(sm_!,sm,y), y, (ns^ = ^oorf) * E);

else /* i = j = m */

step 11. return A;

end if

end while

end function

Figure 6.3: Failure elimination for timed automata with decrement.
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x := x - 2 y := y - 2

Figure 6.4: An automaton for which the extended TLE algorithm does not terminate.

not hold, thus the extended TLE algorithm may not terminate. This is not surprising

because the termination would contradict the undecidability result of Theorem 4.2.

Figure 6.4 shows an example of a TAD for which the extended TLE algorithm

does not terminate. If we let state 4 be the unique final state, then the language is empty,

because every run from 1 to 4 has the form:

(l)-(2)-»(2)..—(2)-.(2)-(8)-(3)--»(3)-»(8)-(4),

times times

so the difference between x and y on (3) —• (4) is 2 * (j —i) —1 and can never be zero.

However, there is no finite constant beyond which all the values of x - y are equivalent,

and thus not all the runs can be eliminated with any finite set of guard automata.

The example in Figure 6.4 shows that extended TLE algorithm may not terminate

when the language of a TAD is empty. Under some mild assumptions on the failure reports

returned by the verify function, we can show that the extended TLE algorithm will always

terminate if the language of a TAD is not empty. For example, it is not too hard to guarantee

that the verify function always returns the shortest failure report [HBK93]. If that is the

case, we can claim that the true accepting run will eventually be returned by verify, because

there are only finitely many shorter runs, so they can all be eliminated in finitely many

iterations of the TLE algorithm.

For the model of PATHO in Figure 6.1 we can argue about bounds on values of

yt- as follows:

• yj can be decremented only while y < 1, and it is never compared to any larger

constant, thus all values of y beyond 1 are equivalent,

• if the number of tasks is n and n < 20, then the value of y,- can never be smaller than
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-o
y:=0

x >0 y = 1

x := x - 2 y := 0

Figure 6.5: An automaton with no infinite sequences admitting consistent timing.

-(n-l), because in time interval of 20 time units yj can be decremented at most

(n —1) times.

Since we can establish a lower and an upper bound on the values of y,- of interest, we can

generate a finite stable partition.

6.6 Extensions to infinite sequences

In the case of timed automata, extension to infinite sequences was relatively

straightforward, because an infinite run of a timed automaton can be properly timed if

and only if all of its finite prefixes can. Using this fact, we could analyze infinite failure

traces by analyzing their finite prefixes, and we could represent every timing violation by a

finite over-constrained loop.

This property does not hold for arbitrary TAD's, as demonstrated by the example

in Figure 6.5 (assume there are no fairness constraints). The first transition 1 —• 2 can

occur at any time, but thereafter the transitions 2 —• 2 occur regularly, one time unit apart

(ensured by timer y). In other words, the value of x can initially be arbitrarily large, but

after that it will be decreased by one on every transition. For every finite prefix, it is

possible to select large enough initial value of x such that x > 0 is satisfied throughout the

sequence. However, x > 0 must eventually be violated, thus an infinite run does not admit

a consistent timing. This is an example of a timing violation that cannot be represented by

an over-constrained loop, and thus cannot be eliminated with guard automata. In general,

the behavior which is not acceptable, but whose finite prefixes are all acceptable has to

be eliminated by fairness constraints. In our example, the constraint that state 2 cannot

occur infinitely often would suffice. Formulating general rules for elimination of this type



CHAPTER 6. VERIFICATION OF TAD'S 115

of timing violations is still an open problem.

6.7 Experimental results

We have tested an implementation of the extended TLE algorithm on the example

consisting of three TAD's like those in Figure 6.1, with a choice of parameters pt- = 20s,

rt- = A = Is. Experiments were performed on the same machine as the rest of results in

this work (DEC MIPS 5000 workstation, 440Mb of memory).

It takes 16s of CPU time to verify that the interrupt of the task with the highest

priority will never be missed. For the task with the middle priority it takes 54s, and for the

lowest priority task the program did not terminate after more than twelve hours of CPU

time. This indicates that even for simple systems, the verification problem is hard and

further advancements are necessary to make the verification practical. One approach could

be extending guided verification to arbitrary TAD's.
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Chapter 7

Arrays of Identical Components

In this chapter we study network invariants, abstractions of systems consisting of

arbitrary many identical components. In particular, we study a case when an instance of

some fixed size serves as an invariant. We show that the existence of such an invariant is

undecidable, present a sem-decision procedure that will find it, if one exists, and finally

give some conditions under which such an invariant does not exist. These conditions can be

checked in finite time, and if satisfied, they can be used in further searches for an invariant.

7.1 Introduction

It is often the case that parts of large systems are generated by replicating the same

basic cell. Ideally, an abstraction of such a system should not depend on the actual number

of components. Such an abstraction is called a network invariant. Once an invariant of

manageable size is found it allows:

• a verification of a large system with a fixed number of components; and at the same

time also

• a verification of the entire class of systems with the same structure but with different

number of components.

This is of particular interest for distributed systems where algorithms (e.g. mutual exclu

sion) are usually designed to be correct for systems of any number of concurrent processes,

therefore the algorithms are not verified until instances of all sizes are.
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We address a problem of finding an invariant automatically. Intuitively, an invari

ant of a class of systems is a finite-state system that can exhibit any behavior that some

system in the class can, and possibly some additional behaviors. Thus, in formal verification

by language containment, an invariant is a conservative simplification: if an abstraction is

verified, so is every system in the class, but not vice versa. A tight invariant is an exact

abstraction in a sense that again if it is verified, so is every system in the class, but if a

tight invariant is not verified, than there must exist at least one system in the class which

exhibits undesirable behavior. Thus, a tight invariant must exhibit exactly those behaviors

that are exhibited by systems in the class.

Finding a tight invariant is easy if a finite invariant exists, i.e. if there exists a

finite subclass such that any behavior exhibited by any system in the class is also exhibited

by some system in the subclass. The main result of this chapter is the test that can show

that a finite invariant does not exist. The test is constructive in a sense that if successful,

it identifies a set of behaviors that cannot be "covered" by any finite subclass, but must be

exhibited by a tight invariant. Once identified, such a behavior can be added to the behavior

of some finite subclass to possibly generate a tight (but not finite) invariant. Unfortunately,

we can not hope for a general algorithm that identifies all such sets of behaviors, because

the existence of a finite invariant is undecidable (see Theorem 7.1).

7.2 Iterative systems

To develop our results we have to restrict somewhat the class of systems we con

sider. In particular, we consider only networks of chain structure, i.e. every component can

communicate only with its left and right neighbors. We also assume that a state of the ba

sic cell is fully observable (see Fig. 7.1). Also, we consider only automata on finite strings.

Thus, using our approach only safety properties can be verified. These restrictions still

enable us to model many regular hardware arrays, such as stacks, FIFO buffers, counters

and multi-processor busses. Other examples that fit into our framework are a token passing

mutual exclusion protocol [WL90] and the ever-so-popular Dining Philosophers Problem

(e.g. [KM89]).

To define an array of identical components, we first define a generic cell as a

quadruple (S,I,T,F), where S is some non-empty set of states. J (initial states) and F

(final states) are subsets of S, and a transition relation is given by T C S2 x S2 x S2.
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Figure 7.1: An open network Nn.

Instances of a generic cell differ by the choice of variables used to represent characteristic

functions of I, F, and T. Instances that are connected together share some components of

the I/O vectors. More precisely, the i-the instance ofa cell (S,I,T,F) is an automaton:

d = (S,X(I),X(T),X(F)) , (7.1)

with the present and next state variables ps,- and ns; and a vector I/O variable:

(pst-i, nsi_!,ps,-, ns,-, ps,+1, ns,+1) ,

all components ofwhich range over 5. Note that ps,- and ns,- are not only the state variables,

but also I/O variables because they can be used by the other automata for coordination.

To eliminate possible ambiguities induced by variable renaming, we require that
in (7.1):

supp(X(T)) = {ps,_1,ns1_1,ps,-,nst-,ps,+1,nst+1} ,

and

((si,s2),(s3,s4),(s5,s6)) €T

if and only if X(T) is satisfied by the assignment:

ps,-_! = si , ns,_i = s2 ,

ps,- = s3 , ns,- = s4 ,

ps,+1 = s5 , ns,+i = s6 .

Occasionally, we will omit the subscript of a cell if it is implied by the context.
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psi ns,-
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PS,_T* Si ^ «5 *~ PSt+l

Figure 7.2: A basic cell.

Intuitively, I/O values of an instance consist of three parts: ps,_! and ns,_i are

the present and the next state of the left neighbor, ps,- and ns; are the present and the next

state of the instance itself, and finally ps,+1 and ns,+i are the present and the next state

of the right neighbor, as shown in Fig. 7.2.

To formalize connecting cells into larger units we define concatenation "•". Con

catenation is similar to automata composition except that the automaton A • B is well

defined only if the I/O variable of A is a vector:

(ps,--j,ns,-_j,...,pst-,ns,-,ps,-+1,ns,+i) for some j € {0,1,. ..,i} ,

and the I/O variable of B is a vector:

(ps,-, ns,-, ps,-+1, ns,+i,..., ps,+Jk, ns,+fc) for some k > 0 .

The I/O variable of A •B is then:

(Psi-j, ns,_j,... psi+Jfc, ns,+jk) ,

and it is defined by:

A- B = (SAx SB,lA*IBiTA*TB,FA*FB) . (7.2)

Given a cell withinstances C_, C2,... and an automatonE (called an environment)

with the vector I/O variable (ps0,nso, psl5 nsi) a network of length n is defined by:

Nn = E-Ci-C2'...'Cn .

If the behavior of the environment is unrestricted, i.e. if C(E) = (S4)* we say that the

network is open. Otherwise, we say that the network is left-closed. We consider only open

and left-closed networks, but the results are easily dualized for right-closed networks.
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To compose networks into larger ones, only "peripheral" components of their lan

guages need to be considered (see Fig. 7.1). Therefore, weintroduce a notion of an observable

part, first for elements of 52n+4:

0((si,S2,...,S2n+4)) = (si,S2,S3,S4,S2n+l,S2n+2,52n+3,S2n+4) ,

and then, we extend the notion naturally to strings sis2 .. .sjt € (52n+4)* by:

0(sis2 ...«*) = 0(si)0(s2).. .0(sk) ,

and languages C C (S2n+4)* by:

0(C) = {x\x = 0(y) for some y 6 £} .

For simplicity, we write Cn instead of 0(C(Nn)).

Given an automaton, we will denote with 0(A) an automaton satisfying:

C(0(A)) = 0(C(A)) .

It is easy to see that 0(C(A)) is just a projection of the language of A to its peripheral

parts. It follows from the presentation in section 2.4.3 that 0(A) can always be constructed.

An iterative system {Nn\n > 1} is the class of all networks of different length

generated by the same cell and environment. If {Nn\n > 1} is an iterative system, and if

Coo = UnLi £n? then an invariant is anyfinite-state automaton A that satisfies C(A) D Coo-

If C(A) = £oo, we say that A is a tight invariant. If in addition C(A) = US_=i ^n *°r some

n* < oo, we say that A is &finite invariant.

Obviously, a tight invariant exists if and only if Coo is regular. One may try to find

a "tightest regular invariant", i.e. an invariant that is not tight, but that has the language

that is containedin the languagesof all other invariants. Unfortunately, if Coo is not regular,

such an invariant does not exist. To see this assume that A is such an invariant. Let x be

some string in C(A) —Coo (since C(A) is regular and £«> is not, such a string always exists).

Let A' be such that C(A') = C(A) - {x}. Now, A' is an invariant and C(A) %C(A'),
contradicting the assumption that A is the tightest regular invariant.

7.3 Examples

The following three examples illustrate three possible cases: when a finite invariant

exists (Example 7.1), when a tight invariant exists, but a finite one does not (Example 7.2),
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and finally when a tight invariant does not exist (Example 7.3). All three examples are

abstractions of buffers with different disciplines of passing a token. In all three cases cells

are initially in the idle state. The state token indicates that a particular cell holds a token.

In Examples 1 and 2, a cell moves to a special dead state once it has delivered a token. In

all examples, all states are final and all systems are open.

Example 7.1 In this example a cell can hold a token for any (possibly infinite) number of

steps before delivering it to its neighbor. A cell can deliver only one token. More precisely

the transition relation of the i-th cell is defined by:

T = ps,- = idle * ns,- = idle * (psj.j ^ token + ns,_i ^ dead)

+ ps,- = idle * ns,- = token * ps^.j = token * ns,_i = dead

+ ps,- = token * ns,- = token

+ psf = token * ns,- = dead

+ ps,- = dead * ns,- = dead

In this case, a finite invariant exists. In fact, it is achieved for n* = 3. For n > 3,

a language Cn can be described by the languages of the leftmost and the rightmost cell and

the following additional constraint:

"If the rightmost cell ever moves from idle to token it will happen at least n —2
steps after the leftmost cell leaves the token state."

Clearly, £3 (strictly) contains all £„'s, n > 3.

Example 7.2 In this example a cell holds a token for exactly one step. Again, once it

delivers a single token, a cell will move to the dead state. The transition relation of the

basic cell is:

T = ps,- = idle * ns,- = idle * ps,_! = idle

+ ps,- = idle * ns,- = token * ps,-.! = token

+ ps, = token * ns,- = dead * ps,-.! = dead

+ ps, = dead * ns,- = dead * ps,_j = dead

In this case a finite invariant does not exist. All strings in Cn (n > 2) that are

long enough must satisfy the following constraint:

"The rightmost cell moves idle to token exactly n-2 step after the leftmost cell
leaves the token state."
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Obviously, for all n > 3 there are some strings in Cn+i which are not in Cn. However, a

tight invariant exists, and it is similar to the one in the previous example, except that the

peripheral cells are restricted to remain in the token state for one step only.

Example 7.3 This example is similar to the previous one, except that once a cell delivers

a token it will move back to the idle state and become ready to accept a new token.

T = ps,- = idle * nsj = idle * ps,_i ^ token

•f psj = idle * ns,- = token * ps,-.! = token

+ ps,- = token * ns,- = idle

In this case £<» is not regular, so a tight invariant cannot exist. Indeed, £<» must

include Ci and all strings for which there exists k > 0 such that the rightmost cell moves

from idle to token exactly k steps after the leftmost cell leaves the token state. Notice that

for any given string k must be constant. It is straightforward to show that such a language

is not regular.

However, if we include in the description of the system an environment which

allows at most one token in the system, a tight invariant exists and is similar to the one in

Example 2.

7.4 Computing a finite invariant

7.4.1 Decidability and existence

First, we describe a particular iterative system that we use for proving the key

result of this section. For an arbitrary (one-way tape, deterministic) Turing machine TM

with an empty tape, let the iterative system IS(TM) be generated by the cell whose in

stances are composition of two finite-state components (TAPE and CNTRL) described

below.

The states of the component denoted by TAPE are in 1-1 correspondence to the

tape alphabet of TM. The initial state is blank. The state of the TAPE component of the

i-th instance is at all times equal to the value of the i-th letter on the tape.

The component CNTRL is a copy of the finite-state control of TM augmented by

two special states L and R. Intuitively, the i-th instance of CNTRL is associated with the

i-th tape position. It is in the L state if the TM's head is at some position to the left, and
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it in the R state if the head is somewhere to the right. If CNTRL is any other state, we

say that the cell is active. The initial state of CNTRL is L. While in it, a cell waits until

its left neighbor is active and have to move the head to the right. At that point, CNTRL

moves to appropriate state of TM's control, possibly changing the state of TAPE and after

that moves to L or R depending on whether a head has to be moved left or right. Similarly

to X, in state R an instance monitor its right neighbor.

An environment E of IS(TM) is almost identical to the basic cell, except:

• it does not have an L state, hence it does not monitor its left neighbor,

• the component CNTRL must be modified to halt whenever TM's control calls for

move to the left,

• the initial state of CNTRL must be equal to the initial state of TM's control.

It should be clear from the description that IS(TM) is left-closed and that it simulates

TM. In particular, the following result holds:

Lemma 7.1 A left-closed iterative system IS(TM) has afinite invariant if and only ifTM
uses finite memory.

Proof. Assume that TM uses at most M tape symbols. Then Cn is the same for

all n > M. Hence, an automaton with the language UjLV £- is a finite invariant. On the
other hand, if TM uses infinitely many tape locations for all n there must be a stringin Cn
not in Ck for any k < n, because cell n must be activated for the first time at least one step

after the Ar-th cell is. D

Theorem 7.1 The existence of a finite invariant for a left-closed iterative system is unde
cidable.

Proof. It is undecidable whether an arbitrary one-way tape, deterministic Turing

machine with empty tape uses finite memory, and by Lemma 7.1 that problem is reducible

to deciding the existence of a finite invariant for a left-closed iterative system. D

At present, it is not clear whether this proof can be extended to open systems. In

fact, this result is similar to Theorem 4.3 in [WL90] and Theorem 4 in [Hen61]. In all cases,

the proofs substantially rely on the ability to distinguish one cell in the network: in our

case, it is the environment, in [WL90] the first cell isexplicitly distinguished, and in [Hen61]
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one cell is distinguished by different boundary condition. Therefore, the decidability of the

existence of a finite invariant for open systems is still an open problem.

Theorem 7.2 Let {Nn = E •Ci •... •Cn\n > 1} be an iterative system, and let A be some
automaton satisfying:

Ci C C(A) , (7.3)

0(C(A-C)) C C(A) , (7.4)

Then A is an invariant of {Nn\n > 1}.

Proof. We prove by induction that Cn C C(A) for all n > 1. The base case

(n = 1) holds by (7.3). It is straightforward to show that concatenation and projection are

monotone with respect to language containment, thus the inductive assumption:

Cn = C(0(Nn)) C C(A) ,

implies:

Cn+i = 0(C(0(Nn) •C) C 0(C(A •C)) .

Applying (7.4) to the relation above completes the proof. D

If an automaton satisfies (7.3) and (7.4) we say that it is an inductive invariant.

Both Kurshan and McMillan [KM89] and Wolper and Lovinfosse [WL90] require, by defi

nition, for an invariant to be inductive. We have adopted a broader definition, motivated

by the application to language containment. Still, Theorem 7.2 provides the only finite

procedure known to us, for verifying that a given automaton with non-trivial language is

indeed an invariant.

Note that Theorem 7.2 provides only one way implication: it is quite possible

that an automaton is an invariant, but not an inductive one. In fact, Wolper and Lovin

fosse [WL90] have shown that there exists an iterative system {Nn\n > 1} andan automaton

P such that P is an invariant of {Nn\n > 1}, but there does not exist an inductive invariant

of {Nn\n > 1} whose language is contained in C(P). Fortunately, a finite invariant is also

an inductive one, as shown by the following theorem.

Theorem 7.3 A finite invariant of an iterative system {Nn = E-Ci •.. .-Cn\n > 1} exists
if and only if there exists n* < oo such that:

£»*+i _U^- (7-5)
n=l
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function finiteJnvariant (E,C)

1* E,C - an environment and a basic cell of an iterative array */

step 1: let A be such that C(A) = C\;

for n = 2, to oo

step 2: if 0(C(A •Cn)) C C(A) then return A;

step 3: modify A such that C(Anew) = £(AoW) U0(C(Aold •C„));

end for

end
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Figure 7.3: A semi-decision procedure for finding a finite invariant.

If (7.5) holds, then an automaton A satisfying C(A) = Un=i^n w on inwariairt o/{iVn|n >

!}•

Proof. The "only if" part is obvious. It is also straightforward to show that

0(C(A •C)) = U^l".1 £n, thus we have:

n* n* n'

£»•+. C |J £n <=> |J £n+1 C |J £n <=> 0(£(A•C)) CC(A) .
n=l n=2 n=l

From the definition of A, £i C C(A) follows trivially, so by Theorem 7.2 A is an invariant.

D

This immediately gives us the semi-decision procedure shown in Figure 7.3. If the

procedure terminates, it will return a finite invariant. However, if a finite invariant does

not exist, the procedure will not terminate.

7.4.2 Proving non-existence of a finite invariant

In this section, we show a sufficient condition for non-existence of a finite invariant.

The condition can be checked algorithmically, and, if satisfied, it provides useful information

on sets of strings that every invariant must include in its language.

Our results hold for a generic open iterative system induced by a cell (5, J, T, F).

Unless stated otherwise, we assume that s is some string in (52n)*. We use | • | to denote

the length of a string. To refer to parts of a string we use the naming scheme detailed in
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Figure 7.4: A naming scheme for parts of a string.
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Fig. 7.4. We call a pair s-t!/ = (sly,s%y) a transition. If s, t and u are transitions, for
simplicity we write (s,t,u) € T instead of:

{{8\32Ut\t*),{u\u2))eT .

The reader might find it useful to visualize claims in this section, as suggested

in Figure 7.5. It shows a symbolic representation of a string s € (S2n)*, with n = 6 and

\s\ = 6. Each transition is represented by an arrow. Conditions for s to be in C(Nn-2) can
be restated in terms of this symbolic representation as follows:

1. in every row (except the top and the bottom one) any two neighboring transitions

must be consecutive, i.e.:

4,»=«i+i^forall* = l,...,|«|-l> y=2,...,n-l ; (7.6)

we represent this constraint symbolically by a rectangle like the one marked C in

Figure 7.5,

2. present-state components of all transitions in the first column (except the top and the

bottom one) must be initial:

s}t_G/foralla; =2,...,n-l , (7.7)
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Figure 7.5: A symbolic representation of a string

3. in every column, any three neighboring transitions must satisfy transition relation T:

(sx,y-i,5x,y,5x,y+i)€rforall a: = l,...,|s|,y=2,...,n-1 ; (7.8)

we represent this constraint symbolically by a rectangle like the one marked T in

Figure 7.5,

4. next-state components of all transitions in the last column (except the top and the

bottom one) must be final:

s[5|)_€JFforall:r =2,...,n-l , (7.9)

An n-row string corresponds to the network JVn_2; the first and the last row do not corre

spond to states of any cell in the network. Therefore, they have to satisfy only transition

requirements imposed by the first and the last cell in the networks (i.e. by the cells corre

sponding to the second and next-to-last row of the string).

To show non-existence of a finite invariant, we search for a sequence of strings:

xi,x2,... satisfying 0(x,) € Ci, but 0(x,) £ Cj for any j < i. We will show that in certain

cases these relations can be established in a finite number of steps. We consider only a

special case when x,+i is obtained by extending x,- in a certain regular fashion. If that is

the case we write x,+i = a(x;). Next, we define precisely the extension operator a.

Given strings s <E (S2n)* and t e (S2n+2)* such that \t\ = |s|+ 1 we say that
t = aik(s) if the following holds:
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Figure 7.6: Strings satisfying t = a3t3(s).

1. t obtained from s by adding one row and one column of transitions, i.e.

tx,y = «x,y for all x = l,...,|s|, y = l,...,n ,
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(7.10)

2. the observable part of t is the same as the observable part of s, except that the i'th

column is repeated twice, i.e.:

0(tx) =
0(sx) for all x = 1,...,* ,

0(sx-i) for all x = t+ 1,...,|*| ,
(7.11)

3. the last column of t is the same as the last column of s, except that the fc'th row is

repeated twice, i.e.:

I*U =j S|5|t_ for all x = 1,...,k ,

s\s\,x-i for all x = A: + 1,..., n + 1 .
(7.12)

Figure 7.6 shows an example of such a pair of strings. Full thin lines connect

transition that must be equal to satisfy conditions 2 and 3 above. All of these equalities

can be satisfied only if s satisfy certain constraints, required by the following proposition.

Proposition 7.1 A string a,jfc(s) exists if and only if all of the following hold:
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CI: s-,„ = s-,n_i, for allx=l,...,i,

C2: sx+ifTl = 3Xt„_i, for all x = i,..., \s\ - 1,

C3: s-,i = s,-,i, s-,2 = s,-,2, /or a// x = i,..., \s\.

Uoiik(s) exists, then it is unique.

Henceforth, we will assume that all extensions have common i and k, so without

ambiguity we write a(s) for a,jk(s). Also, we use the following abbreviation for any j > 0:

a}(s) = a(a(.. .a(s)...)) .
> ^ /

j times

Under some mild assumptions, a(s) inherits some interesting properties of s, as

stated by the following lemma.

Lemma 7.2 If s € C(Nn-2), and s satisfies:

C4: s,t„_i = s,-+i,„_i,

C5: S|s))fc = S|5j>fc+1 = S|s|)jk+2,

then t = a(s) satisfies:

tl,y = tl+i,yforallx = l,...,\s\-l,y = 2,...,n, (7.13)

t\,x € Iforallx = 2,...,n, (7.14)

|̂iX 6 F/ora//x = 2,...,n , (7.15)

(<x,y-i,<x,y,<x,y+i) € T for allx = 1,...,|t|,y = 2,...,n- 1 . (7.16)

Proof.

(7.13) follows from (7.10), (7.12), C4, and (7.6);

(7.14) follows from (7.10), (7.12), and (7.7);

(7.15) follows from (7.11), and (7.9);

(7.16) follows from (7.10), (7.11), C5, and (7.8).

D
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From this point on, we do assume properties C4 and C5. We make this assumption

without loss of generality because they are always satisfied by a2(s), which also satisfies

all other restriction on s mentioned in this section. Equalities imposed by C4 and C5, are

shown with thin dotted line in Figure 7.6.

The part of our strategy is to find a sequenceof strings xi, X2,... satisfying x,- 6 Ci.

The following lemma describes a case when all of these relations are satisfied if one of them

is.

Lemma 7.3 Let s satisfy C1-C5, and let t = a(s). If:

C6: (t»,»-i,**,»,««,«+_) e T for all x = 1,..., \t\,

C7: <|t|-i,x = *|t|,x f°r allx = 2,...,n}

then:

seC(Nn.2) => t€C(Nn.i), (7.17)

s € C(Nn.2) => oj(s) e C(Nn-2+j) for all j > 0 . (7.18)

Proof. Conditions (7.13)-(7.16), C6 and C7 are exactly the conditions for t €

C(Nn-i) to be satisfied. Thus, (7.17) holds. If s satisfies C6 and C7 so doesa(s). Therefore,

we can repeatedly apply (7.17) to get (7.18). D

Figure 7.7 illustrates the requirements imposed by C6 and C7.

The second part of our strategy is to find a sequence of strings xi,X2,... that

Xj £ d for any j < i. In Lemma 7.4 we establish a condition which enables us to prove

this relation in a finite number of steps.

Lemma 7.4 Let s satisfy C1-C5, and let t = a(s). If:

C8: s-|Tl_i is the unique element of the set

{(tt1,^2) | there exist v,w,z such that (v,*-,-^-1,-2)) € T and (w,tx+itn,(u2,z)) € T}

for all x = 1,..., \s\, and

C9: there exists a sequence of transition un,..., 1*4, u$ such that un = ty|,n> and ux (for all
x = n —1,...,3) is the unique element of the set:

{v I there exists w such that (w,ux+i,v) 6 T} ,
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then:

Figure 7.7: An illustration of Lemma 7.3.

0(t) € £„_i =• 0(s) e £„_2 ,

0(s)#Cn-2 => O(QJ(s))<tCn-2+jforallj>0
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•>.•••

(7.19)

(7.20)

Proof. Assume 0(t) G£„_i, let string t' be such that V€ C(Nn-i) and 0(*') =

0(t). Also, let s' be the stringobtained byremoving from t' the last row and the last column.

It follows from C8 that the next-to-last row of s' is exactly equal to the next-to-last row

ofs. Since C1-C3 also hold, we have that O(s') = O(s). We claim that s' € C(Nn-2) and
thus O(s) 6 Cn-2-

That s' satisfies conditions analog to (7.6), (7.7), and (7.8) follows directly from

t' €C(Nn-i). It follows from C9 that tf^x = ux for all x= n,.. .,3, so t' € C(Nn_i) also
implies ulx €F, for all x= 3,.. .,n. It follows from C2 that s[yj ^ = t'^n = un, so we
can again apply C9 to obtain (sjs,( J1 = ul+1 € F, for all x = n- 1,..., 2.

It is easy to check that a(s) satisfies C8 and C9 if s does. Therefore, we can

repeatedly apply (7.19) to get (7.20). D

Figure 7.8 illustrates the chain of reasoning in Lemma 7.4. Values of the transition

in row 5 (from the bottom) are implied from transitions in row 6 by C8. Transitions in the
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Figure 7.8: An illustration of Lemma 7.4.

last column are implied by C9, and they must also appear in column 6 by C2.

A reader will notice that the condition C9 is used only to establish termination.

H all the states of the basic cell are final, Lemma 7.4 holds even if C9 is not satisfied.

We are now ready to postulate sufficient conditions for the non-existence of a finite

invariant.

Theorem 7.4 If s is such that it satisfies C1-C9 as well as:
CIO: s € C(Nn-2) ,
Cll: 0(ai(s)) i £„_2, for all j > 0 ,
C12: 0(aJ(s)) $ Cm, for all j > 0, m = l,...,n- 3 ,

then:

a) a finite invariant does not exist,

b) Coo 2 {0(a*(s))\j > 0}.

Proof. From CIO and Lemma 7.3 we have:

0(^(5)) € £„-2+; for all j > 0 . (7.21)

We can rewrite Cll as 0(aj~m(s)) 0 £n_2 for all j > 0, 0 < m < j, and combine it with
Lemma 7.4 to get:

0(a'(s)) = 0(am(a'-m(s))) I £n_2+m for all j > 0, 0 < m < j . (7.22)
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0(si)

0(si) ^ 0(s2)% ^M jw^Q(^i Q(3M-lk °(5kl)
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®
final

Figure 7.9: An automaton accepting the language {0(ajfc(s))|j > 0}.

Thus, for every j > 0 there exists a string (specifically 0(a*(s))) in Cn-2+j (by (7.21)),

which is not in Cm for any m < n - 2 + j (by C12 and (7.22)), so a finite invariant cannot

exist. Also, part b) follows from (7.21). D

Given a string s, it is straightforward to check whether conditions C1-C10 are

satisfied for a,-*. It is also straightforward to define an automaton accepting {0(ajfc(s))|j >

0} (see Figure 7.9), thus Cll and C12 can be checked by a language containment tool.

Consider Example 7.2 in section 7.3 and the following string1 in £3:

idle —• token

token —• dead

s = idle idle token dead —* dead

dead —• dead

dead —*• dead

We can easily check that C1-C12 are all satisfied for a2,i, and conclude that a finite

invariant does not exist and that Coo 2 (Ci U£2 U{0(cJ21(s))|j > 0}).
We can combine the search for a finite invariant with the search for a string sat

isfying C1-C12 as shown in Figure 7.10. If the procedure tight.invariant terminates it will

generate a tight (but possibly not finite) invariant A. Unfortunately, we can not claim that

the procedure will terminate even if a tight invariant exists. It might be more productive

to apply this procedure interactively, i.e. to let the user choose a string and then execute

other steps automatically.

7.5 Related work and discussion

Although iterative systems have been studied for a long time [Hen61], only re

cently there has been a significant interest in the formal verification of such systems. Apt

*We omit writing sliV for x < 4, and assume that s2x>y = si+1<y.

idle idle idle

idle idle idle

idle idle token

idle token dead

token dead dead
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function tight-invariant (C)

/* C = (S,I,T,F)- a basic cell of an open iterative array */

step 1: let A be such that C(A) = C\\

for n = 2, to oo

step 2: if 0(C(A •Cn)) C C(A) then return A;

step 3: modify A such that C(Anew) = £(AoW) U0(C(Aold •C„));

/* assume all strings in (J (S2n)* are enumerated: S2, s3,... */
n=3

step 4' if sn satisfies C1-C12 for some a then

step 5: modify A such that C(Anew) = £(AoW) U{0(a>(s))\j > 0};

end if

end for

end

Figure 7.10: A procedure for finding a tight invariant.
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and Kozen [AK86] have shown that in general the verification of iterative systems is unde

cidable, so researchers have focused on defining restrictive settings which can be completely

automated, or defining more general approaches which depend on user interaction.

Browne, Clarke and Grumberg [BCG89], and Shtadler and Grumberg [SG90] have

studied conditions under which the satisfaction of formulas of certain temporal logics is

independent of the size of the system. In [SG90] the conditions seem to be quite restrictive,

while in [BCG89] the conditions cannot in general be checked automatically. Wolper and

Lovinfosse [WL90] have studied formal verification of iterative systemsgenerated by inter

connecting identical processes in certain regular fashion. They also present some decidability

results for related problems. Kurshan and McMillan [KM89] present slightly more general

results which can be applied both to process algebra and automata-based approaches. In

both cases, automatic tools are used only to verify that a finite state-system suggested by

the user is indeed an invariant. Kurshan and McMillan have hinted that it might be a good

idea to check whether a system of some fixed size serves as an invariant. This idea was

further developed by Rho and Somenzi [RS92, RS93], who have studied different network

topologies and presented several sufficient conditions for the existence of such an invariant.
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Our approach builds on results in [KM89, WL90] in a sense that it provides auto

matic support for generating invariants for a larger class of systems than in [RS92, RS93].

This work can be naturally extended in several ways. From the theoretical point of view,

the decidability of existence of a finite invariant for open iterative systems needs to be stud

ied. From the practical point of view, it would be useful to generalize the conditions for

non-existence. This can be done by analyzing sequences of strings where not only a single

element, but a whole substring is repeated many times. It is also possible to construct cases

wherethe non-existence can be proved by analyzing a sequence of sets of string, rather then

just a sequence of strings. Finally, in order to verify liveness properties, these results need

to be extended to the automata on infinite sequences.
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Chapter 8

Conclusions and future work

In this work we have presented several approaches to automatic abstraction of

both finite-state and real-time systems. Common to all approaches is that a useful ab

straction is obtained only after several iterations. In every iterations we modify an existing

simplification to overcome its shortcomings. The power of a particular algorithm depends

on the sophistication of this modification as well as in choosing an initial simplifications.

Overall, the proposed techniques have shown some encouraging experimental re

sults, but they still leave a lot to be desired in term of efficiency, the size of systems they

can handle, and particularly robustness. We have showed that user guidance can be used

to avoid some of these problems. The down side is that the benefits of formal verification

might be offset by the cost of time and effort a designer needs to invest in the verification

process. It has been argued many times that only fully automatic verification has a chance

of being widely accepted in the design community. We believe that a methodology that

falls somewhat short of this ideal still has a chance of being accepted, provided it satisfies

the following:

• Users must have a choice of the amount of interaction they want to invest (and re

ceive appropriate efficiency improvements in return). In particular, fully automatic

verification must be available for simple systems.

• Additional information that users supply must be an argument on why the system is

believed to be correct, and it must be as much as possible independent of the verifi

cation tool. It is reasonable to expect of designers to provide reasoning behind their

design. It is not reasonable to expect them to understand intricacies of a verification
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algorithm.

We believe that iterative approaches similar to ours can be very effective, partic

ularly at a high level of abstraction. At a lower level one has to deal with thousands, if not

millions of transitions, and it is often hard to decide which are or are not essential for a

given property. This may be easier to guess at a higher level where one deals with fewer,

but more complex objects as counters, tokens, integers, buffers, or pipelines, to name a few.

This naturally leads to application-specific methods, as high-level objects and typical prop

erties are quite different for different application areas, for example microprocessors and

communication protocols. We are already witnessing some contributions in this directions

(e.g. [BD94, Bea93, HMAF94, MPS92]), andwe can only expect this trend to grow stronger

in the future.

There are many other possible approaches to increase the practical value of formal

verification. Let us just shortly describe two possibilities that have received virtually no

attention in the research community.

The first possibility follows directly from the fact that in practice formal verifi

cation is used as a debugging tool. Its real value is in finding bugs. The positive answer

certainly increases the level of confidence in the design, but it is by no means the proof

that a system will operate correctly, because too many thing can go wrong: the model may

not reflect the behavior of the system accurately enough, the set of properties to be verified

may not describe all the requirements on the system, and last but not least a verification

tool might be faulty. As Vardi [Var94] summed it nicely: "Verification is successful only if

it fails". From this point of view, conservative simplifications produce an additional burden

of verifying that a reported bug is due to original system and not due to over-simplification.

Of more practical value would be their dual, which we call liberal simplifications. Liberal

simplification preserve the behavior of the original system insofar that if the simplification

violates the property, so thus the original system. But, if a liberal simplification is verified,

the original system may or may not satisfy the property. The theory of liberal simplifications

could probably be derived easily by mirroring the theory of conservative simplifications, but

heuristics for finding tractable hberal simplification that are still able to discover some bugs

are presently completely unexplored.

Ideally, one could combine Hberal and conservative approaches to obtained a se

quence of increasingly better approximations of the behavior of a system. Information
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obtained by a conservative approximation (e.g. a superset of reachable states) could then

be used to simplify a hberal approximation, and vise versa.

The secondimportant practical problem verifyingthat the properties to be verified

indeed describe desired behavior. In a strict sensethis problem cannot be solved because one

can only prove relations between two formal specification, thus at some point the "desired

behavior" needs to be formalized through an error-prone informal process that cannot be

verified. But some "sanity checks" on a set of properties can be defined. For example, if a

propertyis a validity (i.e. true of everysystem) it obviously does not specify anything useful.

To take this a step further, if a satisfaction of set of properties does not change even when

the system is significantly changed, that might be an indication that the behavior is not

precisely specified. This is similar to the notion of fault coverage in hardware testing. The

fault coverage of a given set of test vectors is roughly a percentage of the design that cannot

be changed without changing the response to those test vectors. To define a reasonable

notion of a "fault coverage" for a set formally specified properties, and to find efficient

algorithms of computing it is another completely unexplored research area that is deemed

important in the design community.

In conclusion, formal verification promises to be a valuable design tool. There are

still a lot of obstacles to its wide acceptance, but there is little doubt in our mind that those

problems will be solved, and that formal verification will exit its niche and become a part of

mainstream design methodologies. We hope that research presented in this work is a step

toward this bright future.
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