Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CENTRALIZING GEOMETRY SERVICES FOR
THREE-DIMENSIONAL INTEGRATED CIRCUITS
TOPOGRAPHY SIMULATION

by

Robert Hsiung-Fu Wang

Memorandum No. UCB/ERL M95/102

15 December 1995

CENTRALIZING GEOMETRY SERVICES FOR
THREE-DIMENSIONAL INTEGRATED CIRCUITS
TOPOGRAPHY SIMULATION

Copyright © 1995

by
Robert Hsiung-Fu Wang

Memorandum No. UCB/ERL M95/102

15 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

Centralizing Geometry Services for Three-Dimensional
Integrated Circuits Topography Simulation

by
Robert Hsiung-Fu Wang
Doctor of Philosophy in
Engineering - Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Andrew R. Neureuther, Chair

This thesis initiates research in a new field of centralizing geometry services for 3D IC
topography simulation, and contributes organizational approaches, performance testing
methodology, and auxiliary data structures. The simulation system issues arc identified and
quantified through prototyping using the Berkeley Topography Utilities (BTU) system which
integrates SAMPLE-3D, SIMPL, and the IBM Geometry Engine. This system, which consists
of 41,000 lines of C++ code, organizes geometric utilities and services as Primitive, Auxiliary,
and Aggregate in a hierarchical server interface recommended for future TCAD systems.
Through use of Aggregate level operations, performance tests and simulation experiments can
be written in about 250 to 350 lines of C++ code. The system prototype is available for use

with other servers as a whole or in parts.

IC topography simulation typically requires advancing 10,000 surface facets through
300 time steps. Major topological changes can occur in the device profile, such as opening of
tunnels, and pinch off of voids. Geometry servers, such as solid modelers, offer the rigor to
cope with topological changes. On the other hand, the BTU system prototype shows that con-
siderable code augmentation (about 10,000 lines of C++) is necessary to translate between the

solid modeling viewpoint and the IC topography viewpoint.

2

To provide reasonable performance, four essential geometry server constructs are shown
to be necessary: 1) Explicit representation of connectivity information; 2) Facet sorting by
location for efficient surface collision detection; 3) Ray and facet sorting for efficient line-of-
sight tests; and 4) Localized deformation algorithms for incrementally moving faces. Stand-
ardized performance tests are specified vis-a-vis these constructs, and can reveal areas where
geometry server design tradeoffs interact poorly with simulation needs. For example, in simu-
lating boundary deformation, IBM Geometry Engine merge operations may repeatedly dupli-
cate unperturbed connectivity links for robustness. By assemblying 1,600 block staircases, it

can be shown that 10 seconds are required to merge 1 block or 40 blocks at a time.

A new data organization scheme called monotone decomposition is introduced to
increase the granularity of the geometry representation, and to focus the robustness and power
of geometry servers where they are most needed. Monotone decomposition groups large
numbers of locally connected facets with similar orientation. Using this method, it is
estimated that IBM Geometry Engine merge operations can simulate void formation in a

1,000 triangle surface in about 1 minute.

This thesis also introduces a new TCAD functionality called IC topography propagation
trace-back, which allows users to start with a faulty topographical feature, and trace back its
process flow and layout dependencies. Due to temporary masking layers, auxiliary data struc-
tures are needed to force the propagation of dependencies down to topographical features.
This thesis also recommends an improved approach to précess history tagging in which solid

model attribution services are extended to support trace-back.

el P i~

Professor Andrew R. Neureuther (Chair)

iii

ACKNOWLEDGEMENTS

First, I would like to thank Professor Neurcuther, who has patiently helped me make the
transition from an undergraduate student to a softwarc system specialist. His enthusiasm and
open-mindededness allowed me to build up my skills in computer science and numerical
analysis. Throughout my thesis research, he tried to teach me the art of clear technical presen-
tation. His re-phrasings somehow always said what I tried to say in 1/5 the length and 10x the

clarity. 1only hope that I had learned cnough of his skills to survive on my own.

Thanks are due to Professors Sequin and Scthian for reading this thesis. In reading
several thesis drafts, Professor Sequin helped me look at my research from a solid modeling
perspective. Professor Sethian exposed me to the rigor and vast potential of his level set
method. 1 would also like to thank Professors Oldham and Hald for serving on my qualifying

exam committee, and giving me valuablc advice during and after the cxam.

I had the good fortune of working with many bright past and present members of the
Berkeley TCAD group (in choronological order): Alex Wong, Ed Schekler, Derek Lee, John
Helmsen, and John Sefler. 1 am also very grateful for the opportunity to collaborate with
several outstanding undergraduate programmers (in chronological order): Andrej Gabara,
Calvin Cheng, Terence Chin, Ravi Gunturi, Rex Winterbottom, Clark Jen, and Owen ("Pope™)
Carmichael. They taught me more about programming and system administration than they
probably realize. They also perpctually renewed my confidence in the success and superiority

of Cal’s undergraduate cducation (modulo our football tcam).

This thesis would have been impossible without the help of many collcagues at IBM

Rescarch, especially those who actively participated in the TCAD Frameworks project (in

iv
alphabetical order by last name): Wally Dietrich, Michael Karasick, Derek Lieber, Lee Nack-
man, and V.T. Rajan. Special thanks are due to Dr. Karasick, who patiently introduced me to
solid modeling and object-oriented design, and actively participated as a thesis committee
member. Thanks are also due to those who worked on the 2D shock-tracking etching simula-
tion program (in alphabetical order by last name): Manoj Dalvie, Rida Farouki, Satoshi
Hamaguchi, and Vijay Srinivasan. I especially wish to thank Dr. Hamaguchi, who not only
explained the details of his numerical simulator, but also furthered my understanding of the
Japanese culture. Finally, I am gratcful to the IBM management for letting me use the IBM
Geometry Engine, and funding my cntire graduate education (in conjunction with the Califor-

nia MICRO Program and SEMATECH/SRC).

At IBM Yorktown, several good friends made my stays so enjoyable that 1 decided to
return after graduation. (Ironicially, many of them have left IBM since my previous stay.) 1
would like to thank Stacey Berlow, for not laughing too hard at all my strange adventurcs;
Goodwin Chin, for his innumecrous advice in the past few years; Charles Chu, for being my
fraternity big brother, even after graduation; Rich Ferguson, for sharing his experiences as a
former Andy student; Anil Kaul, for putting up with me for a whole year; and Ling-Yi and

Leslie Liu, for many delicious dinners and entertaining conversations.

1 would like to thank my immediate and extended families for their unrelenting support
throughout my education. This thesis is dedicated to them. Thanks are also due to Catherine,

who is the love of my lifc, and has patiently waited for me to begin our life together.

Last but not least, | thank our Heavenly Father. All through this incredible journey, He

gave me the assurance that He always believed in me.

Dedicated to
My parents, for bringing me to this world and to this country,
My sister Lily, for putting up with a pigheaded brother,
My cousin Eric, for putting up with a workaholic roommate,
My cousin Paula, for being my other sister,
My younger cousins, for reminding me what’s important in life,
My maternal uncles and aunts, for acting as surrogate parents,
My grandmother, for being my friend, and

God Almighty, who guiding all of our lives.

vi

Table of Contents

ACKNOWIEAZEIMENLSooecnieiriiiiriiririreniressieiss et sss s tas st srsnnssssass s sensessassssess iii

DEAICALIONS ...eveeeeireierirerieressesesssssseesesesesssssssssssesssssssstssarmssssassensassansssossssssessessessssnssesasssanss v

TADIE OF COMIENLSoeeeverrrirriieereraereesssesesassesmsesesscssssesersssessssssenssassasssasssessssessssessnsssasesanse vi

LSt OF FIGUIES ..ucvevecrueneececnsensisesesinisessassssssssssssssssssssssstsstsssssssssssssssenssssssssasssasnsssssssssas viii

CHAPTER 1 - INTRODUCTIONcooicirenreesnenssesisisnssesssmsssassassssssssssassssssassssssisasansassass 1
1.1 I MOBIVAHON overeeviveiierieenreresseresessrsesssssnsssssssssassssestssessssessssssssssssssaasassssssessssessssssansns 1
1.2 : DiSSEIAtiON OVEIVIEWcveverevirierenssessssssscnenrsemssesessesssnsnssassessssesasstssessssssssssessesns 5
RETCTEICES ...ooveenveeerirvensessereereeneesestesssssssenssessessessssenssssassesassssnsssessesnessass ssssssssssesessesses 8

CHAPTER 2 - GEOMETRY SUPPORT IN TCAD SYSTEMSoiniccninecienns 13
2.1 INEPOAUCHION .eeeeereiiveeierearereesaetesestesesesesiestsesessesesssssussssssensstesssssenssnesenssssssssssine 13
2.2 : Solid Boundary GEnerationeeeeemseeieesssesmsssssscessssesssssssssnsssssasssssssees 18
2.3 : DAta MAPPING ...ouveiecenierecncmscineiiteiss s s sasssss st sses st st 20
2.4 : Centralized GEOMEIIY SEIVICES ..c.ecivevercnriiiiiiernreneinin et seessesssssnsanssstsssessanens 21
RETCICIICES venveeveeneeeeteristeseseeseesessesassessesassessessssessestontsastestersassastassassssaessesossassssssisasenns 22

CHAPTER 3 - BERKELEY TOPOGRAPHY UTILITIES (BTU) .c.oveiiiereeccvencecnnne 27
3.1 INETOAUCHION «oeeecreiieiiireeeerevereeereenereesasssssaese s sasessesstsessnassanssanssessaass et msssesanssnss 27
3.2 1 BTU SyStem LAYCTS ...ccccveeermcnriiiniininssiessssstsisessessesssssstssstsssssssnssssanssnsasssess 29
3.4 : BTU System INEZTationcoceiviviriiriiemnierniissnisisisissessesesssissssssnsnssssissssnsnsnsssosss 35
3.5 : BTU Experimental AppliCAtONSccoceveireinterinsineicscsesininsisistensensasnenssesasnes 37
3.6 : BTU Simulation ApplCationsccoueeverivemnininensncinescstnessisiiininiesesnensnanes 46
3.7 1 CONCIUSIONS ..covirviirrirrineerreeenaesressrceneeseeasstessessesssssnesensanmestassaessassasensssassssnsssssss 49
RETEIEICES veveneeeeeeieeirreriresreeeesenaesaesessssseassaessssassssassessessessosnersessasssassssnsst st sassasssssessns 51

CHAPTER 4 - ESSENTIAL GEOMETRY SERVER CONSTRUCTS FOR EFFI-

CIENT IC TOPOGRAPHY SIMULATIONoocoviiiiniiriinnenisrensessssessssnssssasssssasesaessenes 53
4.1 : INTTOAUCHION .oovevereirirereneereesereresessesesssssesnesesersssssnssesnsssssessssasassassessssnessasssssassassnsse 53
4.2 : Overview and MOtIVAtIONSccccccviverrrseninsesiosecisissnisissssssnsessssssssssassesssessesnsansas 58
4.3 : EXPlCit CONNECHIVILY ..cervevircnirceetnistesisssensssssistsesessesesstsiasinenstsessssssssassrassssesss 65
4.4 ; Face-Face INtersection SOTHNGccovuvivcirmienireiinennssessesessesnessssssassnssnsasssessesnans 69
4.5 : Ray-Face INtersection SOTtNGcceevermeesmsenersenescenscnsuiseanisisissssn e nscecs 73
4.6 : Localized DefOrTAtionccceveenmicimnnricsenienssnnsmessssessssssssssssssisssssssnsssesass 75
4.7 : CONCIUSIONS .oovevierirrerererresesseresestsssseasssnssssesssnsesssssssssorssessasasssnsssesssssssssstssssssssases 78
RETETCIICES .eveeveeeeereereerresrenerrereesessestesssassassessessssssssonssessassesnessassassassassssstsss ssssssssaansnnsnases 81

CHAPTER 5 - IBM GEOMETRY ENGINE CONSTRUCTSccocviniieimiscsisiinccesinnn 84

5.1 INITOUCHION ooeeeeeeeeeeerreeersesseonsesecesssssssssessecsssessasssasssasssesssaessssssssssssnessanssnassasssssassons 84

5.2 : Explicit Connectivity: The Star-Edge Schema ..o,
5.3 : Face-Face Intersection Sorting: Bucket Sorting of Face Bounding Boxes
5.4 : CONCIUSIONSooveerererecierenresrisiessssssnsssssissesmssessnsssstessessessssnsensessesssssssssessassnssasnnnen
REFEIENCEScovreririiininncinniniiinsensicssessisecsnsstsnesaeras reetersreeneesteesnssntesetstsastsernasarsnanen
CHAPTER 6 - PERFORMANCE EVALUATION OF THE IBM GEOMETRY

6.1 2 INTOAUCHION ...ttt e escseseste e s s s se st asssbe s sana e ssssesas s snsans
6.2 : Standardized Performancc Testing in the BTU Systemcoooeiveevincenniccnnnn
6.3 : The Explicit CONNECHIVILY TECSEcccovmrinivrirmnieinersininssesssnssseseesennnsecssstsssnsssasns
6.4 : The Face-Face Intersection Sorting Testcooerviiormeinnineninnceesccenccneae
6.5 : The Ray-Face Intersection SOrting TStccocviveveninienninencnecsciiiiisninenens
6.6 : The Localized Deformation Testcccevuemcriiiiiirinrnnnnsaensssssssassssnesecsnsssssssnes
6.7 : CONCIUSIONS ..uevrrrereerrereeessirsesesssesscscssesssssesestssessasssssssassssssssssssessenssnsnsnssssassssss

RCTEIEIICES vvvoeuveeereeeeeeesseeeessesesssessssossssossssssssesssssesssssssnssnseesssaessssaassessasssessonsrssosnnnreerassaess

CHAPTER 7 - AUXILIARY DATA STRUCTURES FOR EFFICIENT USE OF
GEOMETRY SERVERS ...ttt s s e ssststsessassssssbesssnsasnsannas

7.1 INTOAUCHION ...ovieierenerrereceeseree e sesecessse s sesnansbensssbenssenssssasasassssnens sessessssnsenssn
7.2 : Data Organization Methods for Efficient Use of Geometry SCIVerscoceueee.
7.3 : 2D Monotonc Chains and Monotonc POlygOnSeeevienieiiecenennnnnsnnnnnnne
7.4 : 2D Monotone Decomposition AlZOrithmcc.coeeeriiiiniiinniiin
7.5 : 2D Isotropic Deposition EXPCIIMCNLcouiviriincireineenciiisitnne st
7.6 : 3D Monotone Decomposition AIZOTIthm ..o
7.7 : 3D Isotropic Deposition EXPCTIMENtcevieeiiieiiienrenenicitinienisssssssensnns
7.8 : 3D Source Visibility EXPEHMECNLcvvririiiiiniireineiininsinececsssesiisssssssseanes
7.9 : CONCIUSIONS .veveeeeiereeriiereeieseeestssensnensnissssissssssne s ssssssssnassssssossssssssosesssssssssssssassns
REFCICINCESvecveerrrrrenrerienieecsasseseesesssesesstsssstnssnsatassssesasnnassssassssnesnsessssss bssnssnnssnasanans

CHAPTER 8 - AUXILIARY DATA STRUCTURES FOR TOPOGRAPHY PRO-
PAGATION TRACE-BACK ..ottt snssnsnes st sssntnsns s e sesssnsassnns

8.1 1 INITOAUCHON .eeeeeeeececectcrteeceeneeetsesrec st esas s b e ase s ssssasn e s st snssns st suss st sansnnsss
8.2 : Topography Propagation Trace-Backcceveeciiiniiiciiiniiensisneseeenes
8.3 : Semantic Extensions of Solid Model Attribution SErvicescocoveveeeereneerrnncns
8.4 : 2.5D Volume-Based Process History Taggingccoeveveevieenenreenesnecscncnscscnnns
8.5 : 2.5D Volume-Based Topography Propagation Trace-Backccocveeniennnnccnc,
8.6 : Proposal for 3D Process Interaction TracKingeeecveeccssininecsemiineesesesnsssssins
8.7 1 COMCIUSIONS ..vovvrieeneeieeerireeiressestsesssasnsstssssssassessssnsssasesssnassssnesaonsesessessensassssnsans
REFETEIICES .urecvveerirereneeesesesteresassnsesssssssssesssassssssssssssssssasssssassessasessssssssssssssssssssessasesnssss
CHAPTER 9 - CONCLUSIONSoorerrreeciniincininiresssessssssssssesesssssessssssssessssssssesssssasases
0.1 : Summary Of FINAINGSccovvireeinriinnririnneseintsisssessssssisisssisninsesiassssnssssssssssscss
9.2 : Status and Furturc Directions for the BTU Systemcccoiiniiniiiivncnnsiiinnnnns
9.2 : Future Research in Centralizing GEometry SEIViCesoccvevererecsisesesaninsensnnnes

vii

91
94
96

106
112
119
128
134
136

140
143

184
187

viii

LIST OF FIGURES

Table 2.1a-c : Geometry Support in TCAD Systems.

Figure 3.1 : The Berkeley Topography Utilitics (BTU) system is a five-layer object-oriented
system for integrating general-purpose and special-purpose servers.

Table 3.1 : Primitive server interface dominates in terms of codes, Auxiliary server interface
dominates in terms of sophistication.

Figure 3.2 : File links enables geometry server developers to maintain software ownership
within the BTU system organization.

Figure 3.3 : IBM Geometry Engine solid structures generated by BTU simulation experi-
ments.

Figurc 3.4 : Monotone decomposition of 3D key hole trench.
Figure 3.5 : SIMPL process flow for the Metal Stringer Trace-Back Experiment.
Figure 3.6 : SIMPL layout and cross section for the Metal Stringer Trace-Back Experiment.

Figurc 3.7 : Shape of the metal stringer is dependent on the poly line litho-etch mask and pro-
cess scquence.

Table 4.1 : Server efficiency gained through essential gcometry server constructs.
Figure 4.1 : Use of Connectivity Services in surface diffusion and surface reaction simulation.

Figure 4.2 : Usc of Face-Face Intersection Services in surface collision detection and wafer
geometry update.

Figure 4.3 : Use of Ray-Face Intersection Services in material interface collision and source
visibility.

Figure 4.4 : In using conventional boolean set operations to merge facet swept volumes,
unperturbed connectivity links are repeatedly duplicated.

Figure 4.5 : Explicit connectivity links in the 2D winged-edge data structure.
Figure 4.6 : Explicit connectivity links in the 3D star-edge data structure.
Figure 4.7 : Partitioning strategies for spatial data structures.

Figure 4.8 : Boolean set operations for localized deformation.

Table 5.1 : IBM Geometry Enginc constructs.

ix
Figure 5.1 : Explicit connectivity links in the star-edge schema.

Figure 5.2 : Connectivity links in star-edge vertex V cannot be directly transferred to schema
vertex V.

Figure 5.3 : "Z" bucket sorting of face bounding boxes for computing face-face intersections.

Figure 6.1 : Cross sectional geometry dimensions and positions for planar stack and two-holes
initial structures.

Figure 6.2 : IBM Geometry Engine structures created by BTU standardized performance test-
ing utilities.

Figure 6.3 : Explicit Connectivity Test procedure.

Table 6.1 : Explicit Connectivity Test boundary meshing parameters.

Figure 6.4 : IBM Geometry Engine structures for Explicit Connectivity Test.

Figure 6.5 : Explicit Connectivity Test results.

Figure 6.6 : Face-Face Intersection Sorting Test procedure.

Table 6.2 : Face-Face Interscction Sorting Test initial boundary meshing parameters.
Figure 6.7 : IBM Geometry Engine structures for Face-Face Intersection Sorting Test.
Figure 6.8 : Face-Facc Interscction Sorting Test results.

Figure 6.9 : Ray-Face Interscction Sorting Test procedure.

Table 6.3 : Ray-Face Intersection Sorting Test initial boundary meshing parameters.
Figure 6.10 : IBM Geometry Engine structurcs for Ray-Face Intersection Sorting Test.
Figure 6.11 : Ray-Face Intersection Sorting Test - Part 1 results.

Figure 6.12 : Ray-Face Interscction Sorting Test - Part 2 results.

Figure 6.13 : Localized Deformation Test procedure.

Figure 6.14 : IBM Geometry Engine structures for Localized Deformation Test.
Figure 6.15 : Localized Deformation Test results.

Figure 7.1 : Bucket sorting data structurc initialization times from Ray-Face Intersection Sort-
ing - Part 2.

Figure 7.2 : Chain representing a 2D trench structure with small overhang and sloped

sidewalls.

Figure 7.3 : Monotone chain.

Figure 7.4 : Monotone polygon.

Figure 7.5 : Monotone line of a 2D dirccted facet.

Figure 7.6 : Monotone extension of 2D directed facets.

Figure 7.7 : 2D greedy monotone decomposition algorithm.

Figure 7.8 : Pseudo angles for computing unit disc section intersections.

Figure 7.9 : Greedy monotone decomposition may fail to include a feature’s local axis as a
monotone line, thereby asymetrically decomposing the feature.

Figure 7.10 : Isotropic deposition on 2D key hole trench - Shock trace advancement.
Figure 7.11 : Isotropic deposition on 2D key hole trench - Simulation objects.

Figure 7.12 : Isotropic deposition on 2D key hole trench - Merge CPU time comparison.
Figure 7.13 : Facet orientation classification for 3D monotone decomposition.

Figure 7.14 : "X Cut" monotone decomposition of spherical trench.

Figure 7.15 : "XZ Cut" monotone decomposition of spherical trench.

Figure 7.16 : 3D directed monotone decomposition algorithm.

Figure 7.17 : By pre-defining monotone planes, directed monotone decomposition axial sym-
metrically partitions fcatures.

Figure 7.18 : Isotropic deposition on 3D key hole trench - SAMPLE-3D advance.
Figure 7.19 : Isotropic deposition on 3D key hole trench - Monotone decomposition.
Figure 7.20 : Average CPU time per merge operation from Localized Deformation Test.

Table 7.1a : Isotropic deposition on 3D key hole trench - # of Merge calls and Memory con-
sumption with and without monotone decomposition.

Table 7.1b : Isotropic deposition on 3D key hole trench - Estimated total Merge CPU time
with and without monotone decomposition.

Figure 7.21 : Spherical trench source visibility - Qualitative shading based on source visibility
computed without monotone decomposition.

xi

Figure 7.22 : Spherical trench source visibility - Qualitative shading based on source visibility
computed with monotone decomposition.

Table 7.2a : Spherical trench source visibility - # of Line-of-sight tests and Memory consump-
tion with and without monotone decomposition.

Table 7.2b : Spherical trench source visibility - Total Line-of-sight test CPU time with and
without monotone decomposition.

Figure 8.1 : Types of questions that IC topography propagation trace-back should be capable
of answering.

Figure 8.2 : Self attribute propagation during boolean set operations.

Figure 8.3 : Semantic extensions design issuc 1) - Need to tag small grain components for
accurate dependencies propagation.

Figure 8.4 : Semantic extensions design issuc 3) - Need special-purpose attribute propagation
utilities for accuratc dependencies propagation.

Figure 8.5 : Direct processing dependencies.
Figure 8.6 : Masking layer dependencies.
Figure 8.7 : Non-planar underlayer dependencies.

Figurc 8.8 : Dependencies examined during topography propagation trace-back of metal
stringer.

Figure 8.9 : SIMPL process flow for the Two Spacer Trace-Back Experiment.
Figure 8.10 : SIMPL cross section and layout for the Two Spacer Trace-Back Experiment.
Figure 8.11 : Two-Spacer Experiment - The necd to tag interfaces!

Figure 8.12 : Process interaction tracking.

CHAPTER1
INTRODUCTION

1.1. MOTIVATION

Many research opportunties arise from the disparity between the popular vision of what
a process TCAD system should do, and the reality of available code, particularly with respect
to performancec issues in specific applications such as 3D IC topography simulation. The
popular vision is that users would experience scamless integration of TCAD tools for a
sequence of process steps [1]-[9], developers would be able to write new process simulators
with minimal coding cffort [8]-[11], and specialists in various computational sciences ranging
from computational geometry to computational fluid mechanics would provide robust and
efficient algorithms. While considcrable progress has been made on the integration front
through SWR prototyping and commercial systems devclopment, only limited experimenta-
tion has been carried out for centralizing gcometry services to support 3D simulation develop-
ment [1][3]{7)[8][12][13]. Since 3D geometric algorithms arc difficult and costly to develop,

the centralization of geometry services clearly warrants more careful consideration.

This thesis initiates research in a new ficld of centralizing geometry services for 3D IC
topography simulation, and makes contributions along several research fronts. The thesis
explores TCAD system organization for ccntralizing gcometry services. Issues involved in
the development, performance testing, and use of centralized geometry servers are investi-
gated. In many cases, the issucs arc identificd and quantificd through use of a prototype sys-

tem based on linking geometry servers through a hicrarchically organized interface.

2

Three-dimensional IC topography simulation poses many technical challenges for build-
ing centralized geometry servers. First, the variety of physical mechanisms which must be
modeled is quite large. These mechanisms include (but are not limited to): Surface reflection
(e.g.[14],[15]), Surface charging (e.g. [16]), Surface diffusion (e.g. [17],[18]), Surface reaction
(e.g. [19]), and, Profile evolution (e.g. 2D:[14][16][19]-[26]; 3D:[13][15][27]-[34]). To sup-
port these mechanisms, geometry server data siructures and algorithms need to be applicable

in many physical situations.

Secondly, simulation of 3D profile evolution creates many gcometric situations that seri-
ously challenge geometry server robustness. For example, a well-known nemesis for
geometry server robustness is the topological change as an advancing surface self-intersects
and leaves behind a sealed void. This occurs in simulating low pressure chemical vapor depo-
sition (LPCVD) over a decp trench with a narrow opcning. In this case, a robust geometry
server need to be able to represent this geometric situation, and break the sclf-intersecting sur-

face into a valid deposition front and the void boundary.

Finally, geometry server performance in 3D IC topography simulation is strongly depen-
dent on whether the server can exploit the special geometrical nature of IC topographies, and
IC etching and deposition processes. Simulated profile time-cvolution typically requires
10,000 surface faces to be advanced through about 300 time steps. To support efficient simu-
lation of profile evolution, geometry servers necd to implement spatial data structures to focus
on global topological changes, and localized deformation algorithms to incrementally change
facet positions and orientations. To efficiently compute surface visibility, geometry servers
should exploit the fact that large numbers of locally connected surface facets have similar
orientations, and that the surface undergoes incremental change between simulation time

steps.

3

Despite the large number of physical mechanisms, the geometrical effects of these
mechanisms can be conveniently modeled by initially implementing four geometric services:
1) Connectivity Services, 2) Face-Face Intersection Services, 3) Ray-Face Intersection Ser-
vices, and 4) Deformation Services. For a geometry server to be effective, it needs to robustly
and efficiently implement at least these four services. Achieving good performance in today’s
the state-of-the-art in geometry server technology is dominated by run time effects of provid-
ing these four services. As centralized geometry servers become more mature, new physical
mechanisms and performance requirements will likely drive the demand to centralize other

services.

This thesis considers three sources of centralized geometry services for 3D IC topogra-
phy simulation. First, therc arc computer graphics packages, which initially appear to be an
ideal source of general-purpose visibility services. However, most commercial computer
graphics packages implement screen-space algorithms, such as z-buffer algorithms, which
avoid linc-of-sight visibility tests by drawing over objects. On the other hand, object-space
computer graphics packages, such as radiosity methods, arc mostly research prototypes, and
arc often hard coded with overly simplistic physical models for light reflection. In short,
current computer graphics technology, which is onc of the possible sources of centralized
geometry services, is not readily applicable to IC topography simulation. (For a more

comprehensive survey on computer graphics principles, see [35].)

By comparison, boundary representation solid modelers arc a more promising source of
general-purpose geometry services. Solid modeling was first introduced to store and manipu-
late large mechanical assembly. Therefore, most commercial solid modelers can represent
and manipulate complex topologics inherent in 3D IC topographics, such as multiple material

volumes and voids. Solid modelers typically provide point location tests, for checking point

4

containment by material volumes, and boolean set operations, for detecting and resolving
solid object collisions. In using solid modelers in 3D IC topography simulation, the main con-
cerns are: 1) Stress on the geometric algorithms due to the large number of facets needed for
physical detail (i.e. moving from 100 to 10,000 facets); 2) The amount of time to perform cer-
tain tasks on the internal server constructs; and 3) The extensive coding required to develop
interface layers that map IC topography simulation geometrical operations to geometry ser-

vices.

A third source of geometry scrvices is surface-based 3D IC topography simulators.
Special-purpose geometry servers can be built by consolidating efficient simulation algo-
rithms for surface advancement, loop removal, and surface visibility. However, this approach
requircs working towards, rather than starting from, a common data representation. It also
attempts to retroactively install robustness, rather than implicitly inherit robustness from

general-purposc constructs.

Eventually, it is highly desirable to create a class of gencral-purpose geometry servers
that implement robust and efticient algorithms for boundary deformation and surface visibil-
ity. Toward this end, an ideal TCAD system organization would be one in which a continuum
of flexible choices could be made between robust general-purpose solid modeling operations,
and high performance special-purpose geometric algorithms. Such a system could be used to
investigate issues involved in the development, performance testing, and use of centralized

geometry servers for 3D IC topography simulation.

1.2. DISSERTATION OVERVIEW

This thesis begins in Chapter 2 with a survey of gcometry support functionality in 17
TCAD systems. The survey traces the history of three lcvels of geometry support, 1) Solid
boundary generation, 2) Data mapping, and 3) Centralized geometry services. It also shows
that centralization of gcometry services is a logical next step in the evolution of TCAD sys-
tems. In an unusual ordering, the rescarch presentation here begins in Chapter 3, with a dis-
cussion of a recommended hierarchical organizational structure, and the exploratory prototype

system used to conduct the investigation.

A hierarchical server interface based on input data granularity of geometrical operations
is recommended to manage the large number of geometric utilities and services introduced by
geometry servers. The purpose for hierarchically organizing geometric utilities and services is
to share codes that support data mapping, server extensions, and simulation experiments and
applications. The principal test vehicle for exploring TCAD organizational issues is then
introduced as the Berkeley Topography Utilities (BTU) system. The BTU system uses the
recommended hicrarchical interface approach to integratc Berkeley topography simulators
with the IBM Geometry Engine. It is a rather extensive object-oriented (C++) system that
both provides the hierarchical interface, and wraps the simulators and the IBM Geometry

Engine.

Chapter 4 links the performance of geometrical operations in 3D IC topography simula-
tion to four essential geometry server constructs. These constructs can be implemented using
conventional connectivity and spatial data structures, and special-purpose boolean set opera-
tions. It is shown that the implementation of these constructs constitutes a necessary but not

sufficient condition for efficient 3D IC topography simulation.

6

Since essential geometry server constructs are shown to be necessary for efficient 3D
simulation, they may be used to screen potential servers. In Chapter 5, the essential constructs
are used to examine performance aspects of a prototypical modem solid modeler, the IBM
Geometry Engine. This modeler provides extensive solid model connectivity services, and
robust boolean set operations. Several constructs which may lead to poor asymtotic perfor-

mance behavior in an otherwise efficiently implemented geometrical operation are identified.

Chapter 6 defines standardized performance tests, which are designed to mimic the stress
placed on geometry servers during 3D IC topography simulation. Since standardized perfor-
mance tests take into account the nature of geometrical operations, they are an indispensable
system tool for characterizing the run time consequences of theoretical performance bounds.
Standardized performance tests can screen out false performance bottlenecks often predicted
from simpler asymtotic performance cstimates. They can also reveal areas where geometry

server design tradeoffs intcract poorly with IC topography simulation needs.

Chapter 7 introduces monotone decomposition as an auxiliary data organization scheme
to provide large grain surface decomposition. In IC topography simulation, large numbers of
locally connected facets often have similar orientations. By bin sorting locally connected
facets with similar orientations, monotone decomposition can easily partition a simulated sur-
face into large grain monotone patches. Using monotonc decomposition, a surface advance
with global intra-surface collisions can be broken into a few well-behaved monotone patch
advances. This can efficiently focus the power and robustness of merge operations in solid

modelers to the intra-surface collisions where it is most nceded in IC topography simulation.

Chapter 8 introduces IC topography propagation trace-back as a new TCAD functional-

ity. This functionality allows users to start with a faulty topographical feature, and trace back

7

the process steps and layout masks that might have caused it. Duc to the presence of tem-
porary masking layers, such as resist layers, auxiliary data structures are needed to force the
propagation of process flow and layout dependencies do§vn to topographical features. Chapter
8 describes two auxiliary data structures that semantically extend solid model attribution ser-
vices to support IC topography propagation trace-back. Improvements on attributions propa-

gation features in solid modelers arc also recommended.

The summary in Chapter 9 gives an overview of what was investigated, the results, and a
perspective on their implications for IC topography simulation. Section 9.2 describes the
current status and features in the BTU system, and may be of interest to TCAD developers in
whole or in part. Future research in the development, performance testing, and use of central-

ized geometry servers for next generation 3D IC topography simulation is also suggested.

REFERENCES FOR CHAPTER 1

[1] G.M. Koppelman, M.A. Wesley, OYSTER: a study of integrated circuits as three-
dimensional structures. IBM Journal of Research and Development, March 1983, vol.27,

(no.2):149-63.

[2] D.C. Cole, E.M. Buturla, S.S. Furkay, K. Varahramyan, and others. The use of simulation
in semiconductor technology development. Solid-State Electronics, June 1990, vol.33,

(n0.6):591-623.

[3] P. Lamb, C. Hegarty, N. Hitschfeld, W. Fichtner, Generating solid models for VLSI pro-
cess and device simulation. Proceedings of 1992 IEEE Workshop on Numerical Modeling of
Processes and Devices for Integrated Circuits: NUPAD IV, Scattle, WA, USA, 31 May-1 June

1992. pp. 175-80.

[4] R.H. Wang, A. Gabara, A.R. Neureuther, BTU-Berkeley Topography Utilitics for linking
topography and impurity profile simulations. Proceedings of 1992 IEEE Workshop on
Numerical Modcling of Processes and Devices for Integrated Circuits: NUPAD 1V, Seattle,

WA, USA, 31 May-1 Junc 1992. pp. 225-30.

[5] D.M.H. Walker, C.S. Kellen, D.M. Svoboda, A.J. Strojwas, The CDB/HCDB semiconduc-
tor wafer representation server. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Feb. 1993, vol.12, (no.2):283-95.

[6] F. Fasching, W. Tuppa, S. Selberherr, VISTA-the data level. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Jan. 1994, vol. 13, (no.1):72-81.

9

[7] D. Yang, Mesh generation and information model for device simulation. Ph.D. Thesis,

Stanford University, June 1994.

[8] P. Lloyd, C.C. McAndrew, M.J. McLennan, S.R. Nassif, and others. Technology CAD at

AT&T. Microelectronics Journal, March 1995, vol.26, (no.2-3):79-97.

[9] Giles, M.D.; Boning, D.S.; Chin, G.R.; Dietrich, W.C., Jr.; and others. "Semiconductor
wafer representation for TCAD," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Jan. 1994, vol.13, (no.1):82-95.

[10] Z.H. Sahul, K.C. Wang, Z-K Hsiau, E.-W. McKenna, R.W. Dutton. Heterogeneous pro-

cess simulation tool integration. IEEE Transactions on Semicondutor Manufacturing.

[11] Minchang Liang; Law, M.E. An object-orientcd approach to device simulation-
FLOODS. IEEE Transactions on Computer-Aided Design of Intcgrated Circuits and Systems,

Oct. 1994, vol.13, (no.10):1235-40.

[12] R.H. Wang, M.S. Karasick, and A.R. Ncureuther, Computational evaluation of three-
dimensional topography process simulation components, Proceedings of Intemational
Workshop on VLSI Process and Device Modeling (VPAD), Kyoto, Japan, May 1993, pp. 95-

96.

[13] S. Tazawa, F.A. Leon, G.D. Anderson, T. Abe, and others. 3-D topography simulation of
via holes using gencralized solid modeling. Proceedings of IEEE International Electron Dev-

ices Meeting, San Francisco, 13-16 Dec. 1992. p. 173-6.

[14] J.P. McVittie, J.C. Rey, A.J. Bariya, M.M. IslamRaja, and others. SPEEDIE: a profile

10
simulator for etching deposition. Proceedings of the SPIE - The International Society for Opti-

cal Engineering, 1991, vol.1392:126-38.

[15] Hung Liao, T.S. Cale, Three-dimensional simulation of an isolation trench refill process.

Thin Solid Films, 15 Dec. 1993, vol.236, (no.1-2).352-8.

[16] J.C. Arnold, H.H. Sawin, Charging of pattern features during plasma etching. Proceed-
ings of the Symposia on Patterning Science and Technology 11. Interconnection and Contact

Metallization for ULSI. Phoenix, AZ, USA, 13-17 Oct. 1991. p. 186-94.

[17] J. Pelka, K.P. Muller, H. Mader, Simulation of dry etch processes by COMPOSITE.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Feb. 1988,

vol.7, (no.2):154-9.

[18] Pelka, J. Three-dimensional simulation of ion-enhanced dry-etch processes. Microelec-

tronic Engincering, Sept. 1991, vol.14, (no.3-4):269-81.

[19] K. Harafuji, A. Misaka, H. Nakagawa, M. Kubota, and others. Profile predictions in dry-
ctching by a new surface reaction model. Proccedings of IEEE International Electron Devices

Meeting, San Francisco, CA, USA, 13-16 Dec. 1992. p. 169-72.

[20] W.G. Oldham, S.N. Nandgaonkar, A.R. Neureuther, M. O’Toole, M. A general simulator
for VLSI lithography and etching processes. I. Application to projection lithography. IEEE

Transactions on Electron Devices, April 1979, vol.ED-26, (n0.4):717-22.

[21] W.G. Oldham, A.R. Neureuther, J. L. Reynolds, S.N. Nandgaonkar, and others. A gen-

eral simulator for VLSI lithography and etching processes. 1. Application to deposition and

11
etching. 1EEE Transactions on Electron Devices, Aug. 1980, vol.ED-27, (no.8):1455-9.

[22] 1.V. Katardjiev, Simulation of surface cvolution during ion bombardment. Joumnal of

Vacuum Science & Technology A July-Aug. 1988, vol.6, (no.4):2434-42.

[23] D.S. Ross, lon etching: an application of the mathematical theory of hyperbolic conserva-

tion laws. Journal of the Electrochemical Society, May 1988, vol.135, (no.5):1235-40.

[24] Thurgate, T. Segment-bascd etch algorithm and modeling. 1EEE Transactions on
Computer-Aided Design of Intcgrated Circuits and Systems, Sept. 1991, vol.10, (n0.9):1101-

9.

[25] S. Hamaguchi, M. Dalvie, R.T. Farouki, S. Sethuraman, A shock-tracking algorithm for
surface evolution under reactive-ion etching. Journal of Applied Physics, 15 Oct. 1993,

vol.74, (n0.8):5172-84.

[26] D. Adalsteinsson, J.A. Sethian, A level sct approach to a unified model for etching, depo-
sition, and lithography. 1. Algorithms and two-dimensional simulations. Joumnal of Computa-

tional Physics, Aug. 1995, vol.120, (no.1):128-44.

[27] F. Jones, J. Paraszczak, RD3D (computer simulation of resist development in three

dimensions). 1EEE Transactions on Electron Devices, Dec. 1981, vol.ED-28, (no.12):1544-

52.

[28]) K.K.H. Toh, A.R. Neurcuther, E.W. Scheckler, Algorithms for simulation of three-
dimensional etching. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, May 1994, vol.13, (no.5):616-24.

12
[29] E.W. Scheckler, A.R. Neureuther, Models and algorithms for three-dimensional topogra-

phy simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Feb. 1994, vol.13, (n0.2):219-30.

[30] C.H. Sequin, Computer simulation of anisotropic crystal etching. Sensors and Actuators

A (Physical), Sept. 1992, vol.A34, (no.3):225-41.

[31] K. Brakke, The Surface Evolver. Experimental Mathematics, 1992, vol. 1, (no. 2):141-

165.

[32] E. Strasser, S. Selberherr, Algorithms and models for cellular based topography simula-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Sept.

1995, vol.14, (n0.9):1104-14.

[33] J.J. Helmsen, M. Yeung, D. Lee, A.R. Neureuther, SAMPLE-3D benchmarks including
high NA and thin film cffects. Proccedings of the SPIE - The International Socicty for Optical

Engineering, 1994, vol.2197:478-88.

[34] D. Adalstcinsson, J.A. Sethian, A level set approach to a unified model for etching, depo-
sition, and lithography. II. Three-dimensional simulations. To appear Journal of Computa-

tional Physics, 1995.

[35] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics: Principles

and Practice, 2nd Edition, Addison-Wesley Publishing Co., 1987.

13
CHAPTER 2

GEOMETRY SUPPORT IN TCAD SYSTEMS

2.1. INTRODUCTION

This chapter surveys current TCAD systems with respect to three levels of geometry
support. As this chapter will show, current TCAD systems lack the kinds of organizational
structures and centralized geometry scrvices needed to implement efficient and semantically
rich 3D IC topography simulation. In general, duc to significant technical difficulties involved
in developing robust and efficient 3D geometric utilities, TCAD systems may need to rely on
several centralized geometry scrvers to provide reliable 3D geometry support. Currently, few
TCAD systems which need these services provide organizational structures necessary to
cfficiently intcroperate multiple gcometry servers. Moreover, most centralized geometry
servers which provide these services are designed around classical principles limited to sup-
porting the construction and manipulation of static solid boundarics. Thesc principles must be

extended to support frequent and incremental surface movement in 1C topography simulation.

A TCAD system can potentially provide three levels of centralized geometry support for
different types of simulation applications. For clectrical or mechanical simulation, a basic
TCAD system should enable device topography construction and solid boundary generation.
For integrated process flow simulation, a more advanced TCAD system can provide data
mapping between radically dissimilar gecometric representations, such as surface meshes used
in IC topography simulation, and volume meshes used in IC dopant profile simulation.
Finally, for particular classes of simulation applications, the most advanced TCAD systems
can provide centralized geometry services to simplify physical model implementation. For

instance, for 3D IC topography simulation, a TCAD system could provide a set of

14

sophisticated and efficiently integrated 3D geometric utilities for computing boundary defor-

mation and surface visibility.

Tables 2.1a-c ([1]-[30][36]) list seventeen current TCAD systems, the system develop-
ers, and the gcometry support provided in these systems. These TCAD systems represent a
wide range of application arcas and organizational structures. In terms of application areas,
these systems cover from dopant profile and topography simulation, to device simulation and
capacitance extraction. In terms of organizational structurc, while some of the systems are
monolithic simulation programs, such as SAMPLE-3D [6], many others are TCAD systems
that integrate several tools, such as AT&T’s Integrated TCAD system [1] and the committee-
designed SWR [36]. A more comprehensive review of current TCAD system capabilities can

be found in an anthology of TCAD system review papers, such as [31].

This chapter critiques current TCAD systems in terms of thesc three geometry support
levels: 1) Solid Boundary Generation,, 2) Data Mapping, and 3) Centralized Geometry
Services. In Tables 2.1a-c, implemented geometry support levels are denoted by X’s in the
appropriate columns. In cach TCAD system, there arc two criteria that determine its geometry
support levels. The first criterion is the services that can be provided by the underlying
geometry server. The second criterion is how well TCAD tools can use these services. Based
on these criteria, it will be shown that centralized geometry servers currently lack the con-
structs needed to support efficient 3D IC topography simulation. Moreover, this chapter
shows that current TCAD systems lack organizational structures needed to conveniently and

efficiently interoperate centralized geometry servers.

15

[61] surduy

TREITTIETN

lor] A1 AopIeg
X ‘Is] n.Lg pIo on 6l dsodd
X X 18105 fopnaeg l9] ac
‘(] doopq N A1dINVS
A
X lsloxgee PSS vl 1S
[€] LAHdOUd [1] warsds
X X X ‘7] BPBPON LB LV avol
U] dSq pajeadau]
SuIpPpoON uonB[NWIS uoneuIS
[BAsAyd Mmopy ssdold [BA)NH SIAIS WIJISAS
J10] SDIAIS pIjeadanu] 10} J10J SoLIe AJ1)2Wod9) uoneziue3.IQ av)l
pazijeyud) Suiddejy vye@ -punog pijos

SWINSAS V)DL Ul 31oddng Andurodn

Table 2.1a

16

l6]] 2uiSuy [81] ADUALA
X A1jpuwoan N4l / [61] IXO4
X X X _wm:hmm wdl [81] SLVA
X [L1°91] daD ndlI [ST] 4ALSAO
X X epLIoL] JO Sd0O014 /
_ Ansramn [y1]l SA0O014
(ASI mou) [z1] sjoo,
X ledewpmwd ohng g1y voawo
il
X X il gan 11 \fe) doLIaTud
u,.__%mz uopeuIS uoneMuUIS
[BIISAYd MO SSdd0I] [BLINIY SIAIS wI)SAS
10} SNIAS PIeA3ANU] 10} 10} SaLIe A1JoW0dn) uonEzIUEs.IO av)l
pazienyud) Suiddep ejeq -punog pijos

SWISAS V)DL uI 310ddng A1)dur09s)

Table 2.1b

.

17

X lo€] A1dA BuwiA NL log] VILSIA
l62] 39S
X X A—dQH plojuers [87] 1sa104
[L2] 99e)103u]
X [€z] SIDV paojuels ONIIAVD
l97] szl
X Kaeyoradoag LIN aQvOWAN
X X IvZ] aMD LIN 77 aaid
‘Iez] SIDV +PI] —4AANNHL
X [17] ALL 1Pu] 0zl asva
SuIPPON uonegnuis uonenuwis
[BISAYJ MO]] S04 [BILN|F SIAIS WI)SAS
10J SIAIIS PpIjeIdNU] 10} 10} saLIe A1)dUW0d9) uonezIuEdIQ dv)dl
pazijennud) Suiddep ejeq -—punog pijos

SWIANSAS OV L ul yoddng A1)owodn

Table 2.1c

18
2.2. SOLID BOUNDARY GENERATION

Solid modeling operations have long been used in TCAD systems to generate realistic
device boundaries for volume mesh generation and 3D device simulation. In 1983, IBM first
developed the OYSTER [15] system, which crcates 3D device topographies as input to FIEL-
DAY [33], a finite element device simulation program. OYSTER used the GDP [16][17] solid
modeler to create 3D IC topography components with rounded comers by sweeping out layout
mask openings and oxidation profiles rotationally and translationally. Using GDP’s merge
operation (i.e. a boolcan sct operation), OYSTER stitched together theses topography com-
ponents into a device structurc. Similar techniques for device topography construction were
subsequently adopted and refined by rescarchers at ETH Zurich [12] to simulate CMOS and
bipolar devices using the Echidna [13] solid modeler, AT&T Allentown [1] to simulate
SRAM cells using a BSP Tree [3] solid modeler, and Stanford [27] to simulate SRAM cells

using the ACIS [23] solid modeler.

TCAD systems have also used layout mask extrusion and solid geometry stitching to
generate 3D input structurcs for capacitance extraction and microelectromechanical (MEM)
simulation. In 1990, IBM reported the FOXI [19] system, which uses the IBM Geometry
Engine [19] to stitch solid primitives, such as boxes, cones, and spheres, into complex device
structures, such as a DRAM cell, as input to FIERCE [18], a finite element capacitance extrac-
tion program. Shortly after, in 1992, MIT reported on its MEMCAD [25] system, which
includes a proprietary solid modeler [26] for constructing 3D MEM structures by layout mask

extrusion and boolean set opcrations.

Recent simulation studies have demonstrated the nced for using rigorous 3D IC topogra-

phy simulation to generate input structures for electrical analysis. For example, in [8], two

19

pairs of polysilicon elbows were gencrated using layout mask extrusion and SAMPLE-3D
ctching simulation. The authors compared mutual capacitance values calculated by
FASTCAP [35], MIT’s fast multipole capacitance extraction program, on both the extruded
and SAMPLE-3D simulated 3D elbow structures. Due to geometrical differences such as etch
bias and sidewall curvatures, the mutual capacitance values of the two structures can differ by

as much as 30% [8].

With respect to most TCAD systems, solid boundary generation can be considered a
mature tcchnology. The third column of Tables 2.1a-¢ summarizes the current status of sup-
porting solid boundary generation in TCAD systems. As listed in these tables, 12 out of 17
TCAD systems are capable of performing 3D solid boundary generation. For a new TCAD
system, this wealth of experience suggests that solid boundary generation would be a natural

starting point for building up 3D geometry support.

20
2.3. DATA MAPPING

Successful 2D data mapping implementations [5][28] suggest that solid modelers will be
indispensable for integrating 3D surface-representation-based IC topography simulations. To
incorporate surface-representation-based topography simulation results, a stitch-back utility is
needed to add new layers to wafer geometry, or to clip the wafer geometry against etched sur-
faces. In 2D, stitch-back involves only polygon and string intersections. Therefore, the 2D
stitch-back function can be easily developed from scratch. On the other hand, the 3D stitch-
back function requircs robust and efficient solid and surface intersection computations.
Hence, it would be best to implement this function by extending a 3D geometry server’s solid

or surface intersection opcrations.

While supporting 3D data mapping may seem to be a worthwhile ncar term goal, the
significant cost associated with developing 3D computational algorithms suggests moving on
to more long term goals. In fact, the few TCAD systems that currently support limited 3D
data mapping havc achieved this as a result of centralizing computational scrvices. The fourth
column of Tables 2.1a-c summarizes the current status of supporting 2D and 3D data mapping
in TCAD systems. At present, only 2 out of 17 TCAD systems, AT&T’s Integrated TCAD
System [1] and IBM’s VATS [18] system, support limited 3D data mapping. In both cases,
3D data mapping is supported as the result of centralizing volume mesh services for 3D ther-

mal process and device simulation programs.

21
2.4. CENTRALIZED GEOMETRY SERVICES

As far back as the carly 1980s, IBM had implicitly centralized 3D field services by shar-
ing FORTRAN finite element simulation modules betwcen FIELDAY [33), FEDSS [34], and
FIERCE [18]. In 1990, AT&T introduced the PROPHET (3] field server, which is the first
object-oriented implementation of centralized services for 2D and 3D PDE solution and
volume mesh generation. Since 1990, PROPHET C++ object classes have been succesfully
cmbedded in AT&T’s Integrated TCAD System to implement production-line proven simula-
tion models for 2D and 3D oxidation, dopant diffusion, and device characterization [1].
Recently, university researchers have followed with Florida’s FLOODS/FLOOPS [14] sys-
tem, and Stanford’s Forest [28] system. However, these systems are designed to support
university rescarch on cutting-edgc physical models for 2D oxidation, dopant diffusion, and

device simulation.

Current TCAD systems that support centralized computation services primarily target
thermal process and device simulation. and contain organizational structures that do not
interoperate servers. The fifth column of Tables 2.1a-c summarizes the current status of sup-
porting 2D and 3D centralized computational services for physical model development. As
listed in Tables 2.1a-c, 5 out of 17 systems centralize volume mesh services for 2D or 3D ther-
mal process and device simulation, but only 3 out of 17 systems provide centralize geometry
services for 3D topography simulation. Morever, to avoid data mapping between geometri-
cally dissimilar 3D data representations, most of these TCAD systems contain organizational
structures that restrict the numbers and the types of geometry servers. Since robust and
efficient 3D geometric algorithms are difficult to develop, an ideal TCAD system should

implement an organizational structure which more freely interoperates geometry scrvers.

22
REFERENCES FOR CHAPTER 2

[1] P. Lloyd, C.C. McAndrew, M.J. McLennan, S.R. Nassif, and others. Technology CAD at

AT&T. Microelectronics Journal, March 1995, vol.26, (no.2-3):79-97.

[2] B.F. Naylor, Interactive solid geometry via partitioning trees. Proceedings. Graphics Inter-

face ’92, Vancouver, BC, Canada, 11-15 May 1992. p. 11-18.

[3] Pinto, M.R.; Coughran, W.M., Jr.; Rafferty, C.S., Jr.; Smith, RK.; and others. Device
simulation for silicon ULSL. In: Computational Electronics: Semiconductor Transport and

Device Simulation. Edited by: K. Hess, ct al. Kluwer Academic Publishers, 1991. p. 3-13.

[4] D. Lee, Applying TCAD to Emerging Technologies, MS Thesis, UC Berkeley, UCB/ERL

M95/38, May 20 1995.

[5] R.H. Wang, A. Gabara, A.R. Neureuther, BTU-Berkeley Topography Utilities for linking
topography and impurity profile simulations. Procecdings of 1992 IEEE Workshop on
Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD IV, Seattle,

WA, USA, 31 May-1 June 1992. pp. 225-30.

[6] E.W. Scheckler, A.R. Neureuther, Models and algorithms for three-dimensional topogra-
phy simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Feb. 1994, vol.13, (no.2):219-30.

[7] J.J. Helmscn, E.W. Scheckler, A.R. Neureuther, C.H. Sequin, An efficient loop detection
and removal algorithm for 3D surface-based lithography simulation. Workshop on Numerical

Modeling of Processes and Devices for Integrated Circuits: NUPAD 1V, Seattle, WA, USA,

23
31 May-1 June 1992, p. 3-8.

(8] J. Sefler, 3D Surface Modeling Utilities for use in TCAD, MS Thesis, UC Berkeley,

October 28, 1995.

[9] A.S. Wong, D.M. Newmark, J.B. Rolfson, R.J. Whiting, and others. Investigating phase-
shifting mask layout issues using a CAD toolkit. IEEE International Electron Devices Meet-

ing 1991. Washington, DC, USA, 8-11 Dec. 1991, p 705-8.

[10] A.S. Wong, A.R. Neurcuther, The intertool profile interchange format: a technology CAD
environment approach (semiconductor technology). IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Sept. 1991, vol.10, (no.9):1 157-62.

[11] D.M.H. Walker, C.S. Kellen, D.M. Svoboda, A.J. Strojwas, The CDB/HCDB semicon-
ductor wafer representation server. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Feb. 1993, vol.12, (n0.2):283-95.

[12] P. Lamb, C. Hegarty, N. Hitschfeld, W. Fichter, Generating solid models for VLSI pro-
cess and device simulation. Proceedings of 1992 IEEE Workshop on Numerical Modcling of
Processes and Devices for Integrated Circuits: NUPAD IV, Seattle, WA, USA, 31 May-1 June

1992. pp. 175-80.

[13] A. Paoluzzi, M. Ramella, A. Santarclli, Boolean algebra over linear polyhedra. Com-

puter Aided Design, Oct. 1989, vol.21, (no.8):474-84.

[14] Minchang Liang; Law, M.E. An object-oricnted approach to device simulation-

FLOODS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

24
Oct. 1994, vol.13, (no.10):1235-40.

[15] G.M. Koppelman, M.A. Wesley, OYSTER: a study of integrated circuits as three-
dimensional structures. IBM Journal of Research and Development, March 1983, vol.27,

(no.2):149-63.

[16] M.A. Wesley, L.I. Licberman, M.A. Lavin, D.D. Grossman, and others. A geometric
modeling system for automated mechanical assembly. 1BM Joumnal of Research and Develop-

ment, Jan. 1980, vol.24, (no.1):64-74.

[17] R.N. Wolfe, M.A. Wesley, J.C. Kyle, Jr., F. Gracer, and others. Solid modeling for pro-

duction design. 1BM Joumal of Research and Development, May 1987, vol.31, (n0.3):277-95.

[18] D.C. Cole, E.M. Buturla, S.S. Furkay, K. Varahramyan, and others. The use of simula-
tion in semiconductor technology development. Solid-State Electronics, June 1990, vol.33,

(n0.6):591-623.

[19] M. Karasick, D. Lieber, "Schemata for Intcrrogating Solid Boundaries,” ACM Sympo-

sium on CAD and Foundations of Geometric Modeling, June 1991, pp. 15-25.

[20] J. Mar, K. Bhargavan, S.G. Duvall, R. Firestone, and others. EASE-an application-based
CAD system for process design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Nov. 1987, voL.CAD-6, (n0.6):1032-8.

[21] S.G. Duvall, An interchange format for process and device simulation. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, July 1988, vol.7,

(no.7):741-54.

25
[22] S. Tazawa, F.A. Leon, G.D. Anderson, T. Abe, and others. 3-D topography simulation of

via holes using generalized solid modeling. IEEE International Electron Devices Meeting

1992. Technical Digest. San Francisco, CA, USA, 13-16 Dec. 1992. p. 173-6.

[23] Spatial Technology Inc. 2425 55th Street, Bldg. A, Boulder, Colorado 80301-5704 USA,

Telephone 303-449-0649, Email info@spatial.com, WWW http://www.spatial.com/spatial.

[24] M. Mantyla, Introduction to solid modeling, Rockville, MD, USA: Computer Science

Press, 1988.

[25] S.D. Senturia, R.M. Harris, B.P. Johnson, S. Kim, and others. A computer-aided design
system for microclectromechanical systems (MEMCAD). Journal of Microelectromechanical

Systems, March 1992, vol.1, (no.1):3-13.

[26] R.M. Harris, F. Mascch, S.D. Senturia, Automatic generation of a 3-D solid model of a
microfabricated structure. IEEE Solid-Statc Sensor and Actuator Workshop. Technical Dig-

est. 1990. p. 36-41.

[27] D. Yang, Mesh gencration and information model for device simulation. Ph.D. Thesis,

Stanford University, Junc 1994.

[28] Z.H. Sahul, K.C. Wang, Z-K Hsiau, E.W. McKenna, R.W. Dutton, "Heterogeneous Pro-

cess Simulation Tool Integration,” IEEE Trans. on Semiconductor Mfg, to appear.

[29] L. Bishop, U. Ravaioli, P. Fu, D. Yergeau, Z. Sahul, D. Yang, R.W. Dutton, and R. Goos-
sens, HDF-VSet file format for visualization of mesh-based simulation data, Technical Report,

Stanford University, October 1992.

26
[30] F. Fasching, W. Tuppa, S. Selberherr, VISTA-the data level. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Jan. 1994, vol.13, (no.1):72-81.

[31] F. Fasching, S. Halama, S. Selberherr (Editors), Technology CAD Systems, Springer-

Verlag/Wien, 1993.

[33] E.M. Buturla, P.E. Cottrell, B.M. Grossman, K.A. Salsburg, Finite-clement analysis of
semiconductor devices: the FIELDAY program. IBM Journal of Research and Development,

July 1981, vol.25, (no.4):218-31.

[34] K.A. Salsburg, H.H. Hansen, FEDSS-finitc-clement diffusion-simulation system. IEEE

Transactions on Elcctron Devices, Sept. 1983, vol.ED-30, (n0.9):1004-11.

[35]) K. Nabors, J. White, FastCap: a multipole accelerated 3-D capacitance extraction pro-
gram. IEEE Transactions on Computer-Aided Design of Intcgrated Circuits and Systems,

Nov. 1991, vol. 10, (no.11):1447-59.

[36] M.D. Giles, D.S. Boning, G.R. Chin, W.C. Dictrich, Jr.; and others. Semiconductor
wafer representation for TCAD. 1EEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Jan. 1994, vol.13, (no.1):82-95.

27
CHAPTER 3

BERKELEY TOPOGRAPHY UTILITIES

3.1. INTRODUCTION

An ideal TCAD system should offer a continuum of choices between general-purpose
services and special-purpose services for IC process and device simulation. This chapter
recommends a hierarchical server interface based on input data granularity of geometrical
operations to manage the large number of geometric utilities and services introduced by
geometry servers. The purpose for hicrarchically organizing geometric utilities and services is
to share codes that support data mapping, server extensions, and simulation experiments and
applications. The principal test vehicle for exploring TCAD organizational issues is then
introduced as the Berkeley Topography Utilitics (BTU) system [1]. The BTU system uses the
recommended hierarchical interfacc approach to intcgrate Berkeley topography simulators
with the IBM Geometry Engine. It is a rather extensive object-oriented (C++) system that
both provides the hierarchical interface, and wraps the simulators and the IBM Geometry

Engine.

The BTU system organizational structure consists of five layers which are believed to be
essential to future geometry service based TCAD systems. The five BTU system layers are:
1) Centralized Geometry Servers, 2) Primitive Server Interface, 3) Auxiliary Server
Interface, 4) Aggregate Server Interface, and 5) Simulation Support Utilities. The Cen-
tralized Geometry Server layer currently supports both general-purpose servers, such as the
IBM Geometry Engine [2], and special-purpose servers, such as SAMPLE-3D [3] and SIMPL
System 6 [4]. Collectively, the Primitive, Auxiliary, Aggregate Server Interface layers are

known as BTU Hierarchical Interfaces. These three layers uniformly integrate and

28

hierarchically organize geometry services under an object-oriented application procedural
interface. The Simulation Support Utilities layer complements geometry services with simu-
lation specific utilities for simulation task management and visualization. Section 3.3
describes a system integration scheme that presents an integrated and hierarchically organized

geometry server interface, and maintains geometry server software boundaries.

Section 3.4 highlights BTU experimental applications that interoperate the IBM
Geometry Engine with Hamaguchi’s 2D shock tracking topography simulation program [5],
SAMPLE-3D, and SIMPL. To demonstrate application development convenience and server
interoperability achieved through BTU Hierarchical Interfaces, Section 3.4 briefly describes
solid structures and surface meshes constructed by these tests and experiments. Similar tests

and experiments will be presented throughout Chapters 6, 7, and 8.

Section 3.5 discusses the use of the BTU system organization as an infrastructure for
implementing 3D IC topography simulation application. Section 3.5 first analyzes SAMPLE-
3D source code distribution with respect to BTU system layers. This analysis assesses the
coding effort required to implement a 3D simulation application based on a fully implemented
BTU system. Section 3.5 further discusses how the BTU system organization could enhance

the robustness and maintenance of 3D simulation applications.

29
3.2. BTU SYSTEM LAYERS

The Berkeley Topography Utilities (BTU) system is an object-oriented (C++) five-
layer system that integrates general-purpose geometry servers, such as the IBM Geometry
Engine, with special-purpose geometry servers, such as SAMPLE-3D and SIMPL System 6.
This section introduces the five BTU system layers: 1) Centralized Geometry Servers, 2)
Primitive Server Interface, 3) Auxiliary Server Interface, 4) Aggregate Server Interface,
and 5) Simulation Support Utilities. Figure 3.1 illustrates BTU system layers and applica-
tions. In Figure 3.1, BTU system layers are denoted using rectangular boxes, and BTU appli-

cations are represented using bubbles.

As shown at the bottom of Figure 3.1, Centralized geometry servers, the main subject
of study in this thesis, lie at the foundation of the BTU system. Due to significant perfor-
mance disparities between server types, the BTU system cxplicitly distinguishes general-
purpose servers, such as the IBM Geometry Engine, from special-purpose servers for IC
topography simulation, such as SAMPLE-3D and SIMPL System 6. General-purpose servers
can provide robust geometrical operations on solid boundary representations. On the other
hand, special-purpose servers can perform similar gcometrical operations more efficiently by
representing and manipulating only surface elements. Eventually, these servers could con-
verge into a new generation of general-purpose servers that may efficiently perform the kinds

of geometrical operations used in IC topography simulation.

As shown in the lcft of Figure 3.1, the BTU system divides the application procedural
interface to centralized geometry servers into three layers: The Primitive, Auxiliary, and
Aggregate Server Interfaces. Collectively, these interfaces are known as BTU Hierarchical

Interfaces. These three layers uniformly integrate and hierarchically organize geometry

30

services under an object-oriented application procedural interface. Fundamental concepts in
object-oriented programming such as encapsulation, inheritance, and polymorphism, are
used in BTU Hierarchical Interfaces to wrap geometry sérver functionalities for TCAD appli-
cations, and to facilitate the development and application of auxiliary data structures.

Detailed discussions on object-oriented programming can be found in [6].

The Primitive Server Interface layer wraps small-grain geometry services, such as sur-
face connectivity and boolean set operations. This layer contains geometry server
wrapper objects, or object classes that encapsulates geometry server data structures and
algorithms. Table 3.1 summarizes the object classes and the amount of code contained in the
three server interface layers. As shown in the bottom of Table 3.1, Primitive Server Interface
objects include wrappers for surface connectivity, and utilities for polygon triangulation.
Other Primitive Server Interface objects include wrappers for CPU intensive geometrical
operations such as boolean set operations and line-of-sight visibility tests. In terms of code
size, the Primitive Server Interface layer dominates the BTU Hicrarchical Intcrfaces prototype

at about 30,750 lines of C++ codc.

The Auxiliary Server Interface layer implements auxiliary data structures for efficient
use and semantics extension of geometry services. As shown in the middie of Table 3.1, auxi-
liary data structures currently supported in the BTU system include monotone decomposi-
tion, process history tagging, and topography propagation trace-back. Detailed descrip-
tions of these data structures will be given later in Chapters 7 and 8. To facilitate the imple-
mentation and application of auxiliary data structurcs, such as monotone decomposition,
BTU Hierarchical Interfaces apply well-established object-oriented programming concepts.
As will be described in Chapter 7, monotone decomposition partitions a surface mesh into a

few large-grain monotone patches. In implementing monotone decomposition, inheritance

31

was used to share codes between the MonotonePatch and SurfaceMesh object classes.
Inheritance was also used to share codes among a family of 3D monotone decomposition
methods. Polymorphism enabled aggregate geometric utilities, such as boundary deforma-
tion, to perform the same geometric computations on monotone patches generated by different
monotone decomposition methods. As a result, the MonotonePatch object class, two 3D
monotone decomposition methods, and geometric computations on 3D monotone decomposi-

tion, were implemented in a total of 1,200 lines of C++ code.

The Aggregate Server Interface layer implements large grain geometrical operations,
such as boundary deformation and source visibility. An aggregate geometric utility can be
implemented by directly wrapping large-grain geometry services, such as SAMPLE-3D’s
source visibility opcration. Alternatively, an aggregate geometric utility can be implemented
by combining Auxiliary Server Interface objects, such as monotone decomposition, with

Primitive Server Interface objects, such as line-of-sight visibility tests.

As shown in the right top corner of Figure 3.1, Simulation support utilities are textual
and graphical utilities specific to 1C topography simulation. Pre-processing simulation sup-
port utilities, capture simulation input from the end user, and execute the simulation inner
loop. These utilties include graphical user-interface (GUI) utilities, input deck parsers, and
simulation task management utilities. Post-processing simulation support utilities include
computer graphics utilities for visualization of IC topography simulation results, and geometr-

ical analysis of the visualized solids and surfaces.

In terms of code size, the BTU system organization can provide excellent application
development leverage, although the cost of adding geometry servers can be significant. Figure

3.1 compares the codes sizes of BTU applications versus BTU system layers. As will be

32

discussed in Section 3.4, using BTU Hierarchical Interfaces, experimental applications can be
written in about 250 to 350 lines of C++ code. As will be analyzed in Section 3.5, using utili-
ties and services provided by a fully implemented BTU system, rigorous 3D IC topography
simulation applications could be written in about 2,000 lines of C++ code. On the other hand,
as listed in the lower right comer of Figure 3.1, the BTU Hierarchical Interfaces prototype
currently contains about 41,000 lines of C++ code to interface 4 geometry servers. In other
words, adding a geometry server to the BTU system could require about 10,000 lines of C++

code.

33

"saul] 000°0p~

$424425 A432u091) $42442S A412Ul021) LIAIRS
asoding —v1adg asoding —[p4auan) A1)2u1099)
feard4 L,

4 d "saul] 000°T¥
9JBJIAU] JIAJIS dANIWLI] :adfyojoad
9IBJI)U] JIAIIS AJBI[IXNY NeLINU]
90BJIIU] JIAIIS JEFIIGsY [edNyoaelH

nLd

saniBN

y10ddng
_ uoneWIS

(souy 0SZ~)

$)sa]
JdUBWLIONId]
JIARIS

(sauy 0gg~)
syudurrdx 3

\\\.Il..llll ydaduo)
‘ ~Jo-jooag
\\ AWO—:— 000 va /I Sd Arexny

/ suopedyddy

\ uopepnuys)
s, Aydeigodoy _-
""l“‘\

*SI9AIIS A1)aw0agd asodand—jerdads pue
ssodand—jerouasd Suneasaur 10J WISAS pajudLI0-)23[qo
‘1aker-aA1] € SI (N 1L9) saninn Aydeadodo], Adpaj1og

RHW - UCB TCAD

Figure 3.1

34

SdANIwLI] PILL dE

. o ‘uonpe[ndueld J, B INU]

o ++)J uodAjog ‘doams (¢ 19AI9§

HOSLOE <(yaprouuo)) 2deping IANIWILIJ

pue pjos @€ Pue (¢ —
joeg

. . _odea) pue SuisSe] JdelIduf

Sou .++U.m AJI0)SIH $S3d044 (T 1IAI9S

N0%6v ‘uopisodwodrdq Axeixny

dUO)OUOJAl € pPue az —

wegge masip sunos qg e} NI

soup b2 ‘uoneuLIOdq JOAIIS

HOEE'S (iepunog (¢ pue sz 9)e33133Y
AZIS AP0 sIssE[D 10[qQ 1A L))

RHW - UCB TCAD

‘uonyednsIydos Jo SULId) Ul SIPLUIWOP JIeLId)U] AIRI[IXNY
‘3ZIS IP0I JO SULID) UI SI)LUIWOP IIBJINU] ADIWLIJ

Table 3.1

35
3.3. BTU SYSTEM INTEGRATION

The BTU system integration strategy aims at providing a convenient development
environment for both TCAD developers and geometry server developers. To comply with dif-
ferent development responsibilities, the system integration strategy need to simultaneously
provide a convenient TCAD system organization and preserve well-established geometry
server software boundaries. For cxample, Figure 3.2 illustrates the BTU system directory tree.
As shown in the right of Figure 3.2, BTU Hierarchical Interfaces wraps disjoint geometry
server components, into an integrated conglomeration of hicrarchical interface objects. On the
other hand, as shown in the left of Figure 3.2, geometry servers in the BTU system preserve

their individual software boundaries by maintaining separate directory trees.

In the BTU system directory tree, Unix file links arc used to simultaneously provide a
convenient development environment and maintain geometry server software boundaries. In
Figure 3.2, filc links are plotted as dashed arrows. As depicted in the bottom of Figure 3.2,
files links go from hierarchical interface directorics to geometry server directories. These
links are used to present geometry server wrapper objects as BTU Hierarchical Interface
objects. For example, as shown in the lcft of Figure 3.2, the SAMPLE-3D directory may con-
tain three SAMPLE-3D wrapper objects: Surface, Octree, and Source Visibility. Using file
links from the SAMPLE-3D sub-directories to the appropriate Interfaces sub-directories, a
TCAD application could include Surface as a Primitive Server Interface object, Octree as an
Auxiliary Server Inverface object, and Source Visibility as an Aggregate Server Interface

object.

36

- - - - - - C
- I-Ilnl“llll ‘y\‘ \ -
f - oum — - - - ’ ’ ﬂ _

\ A} - \ \ z
, . c- aniqisty \ 2
\ uoneuLio}d \ d \ R ’

, uopeuopoq 'y womsodmosaq Y woysuuviaL 200
edaa88y »..l \ 200fung
BIIXNY dApIwILg A —
as-41dNrs
\ ouisug
MIIA Jadopadq mal, 4adojana(g e A.&MEON@
uopedddy 420425 L41oW020)
pue wIsAS dVI.L et

Figure 3.2

“UON)BZIUEB310 WA)SAS) L oY) WIyyMm digsIoumo d1em)jos
urgjurew 0} SI9doPAd(JIAIIS A1)OUWI0dS) SA[qeud sYul] Sofl]

37
3.4. BTU EXPERIMENTAL APPLICATIONS

This section highlights epxerimental applications that demonstrate the application
development convenience and server interoperability achievable through the BTU system.
The experimental results to be presented in this section were obtained by interoperating the
IBM Geometry Engine with special-purpose geometry servers, such as Hamaguchi’s 2D shock
tracking topography simulation program, SAMPLE-3D, and SIMPL. Using BTU Hierarchical
Interfaces, experimental applications to be described here were written in about 250 to 350

lines of C++ codec.

The first examples of BTU experimental applications are IBM Geometry Engine stand-
ardized performance tests [7]. As will be described in Chapter 6, these tests characterized
the performance of the IBM Geometry Engine using geometrical operations in 3D IC topogra-
phy simulation. BTU system provides geometric utilities to construct solid structures for IBM
Geometry Engine performance testing. The left of Figure 3.3 illustrates several solid struc-
tures constructed by these utilities. The bottom lcft comer of Figure 3.3 depicts a two-holes
initial structure created using tiled planar laycrs, and two inverted cone sections. The top left
corner of Figure 3.3 depicts a triangulated vertical deposition volume generated from the top
surface of the two-holes initial structure. To the right of the vertical deposition volume is a
staircase that was constructed by merging cubes. This structure was used to chracterize the

performance of repeated boolean set operations.

In the 2.5D Isotropic Deposition Experiment, the BTU system was used to interoperate
the IBM Geometry Engine with Hamaguchi’s 2D shock tracking topography simulation pro-
gram. As will be described in Chapter 7, this experiment involved simulating a 0.3 um isotro-

pic deposition on a 1 um deep 2.5D key hole trench, with a 0.25 um opening at the top of the

38
trench. The right of Figure 3.3 depicts the resulting solid structure generated by this experi-

ment. In this figure, the front face of the solid structure shows the surfaces generated by the
2D shock tracking solver at three time steps leading up to time (T) = 1 second. At T =1
second, the isotropic deposition created a void in the topography. This void is efficiently
detected and resolved using 2D monotone decomposition, and two IBM Geometry Engine

merge operations.

To enable the use of IBM Geometry Engine merge operations in simulating 3D boun-
dary deformation, the BTU system implemented 3D monotone decomposition auxiliary data
structures. Monotone decomposition groups large numbers of similar orientation facets, into a
few large grain monotone surface patches [1). As will be demonstrated in Chapter 7, 3D
monotone decomposition was used to efficiently interoperate IBM Geometry Engine merge
operations with SAMPLE-3D surface advancement operations. Figurc 3.4 illustrates a
monotone decomposition of a 3D key hole trench surface with 896 triangles. The left of Fig-
ure 3.4 shows the IBM Geometry Enginc solid structure used to extract the key hole trench
surface. On the right of Figure 3.4, the key hole trench surfach is decomposed into 9 mono-
tone patches. As will be discussed in Chapter 7, this decomposition can reduce the number of

IBM Geometry Engine merge operations from 895 down to 8.

To analyze the causes of topography propagation effects, the BTU system implemented
a (material) volume-based process history tagging auxiliary data structure for attaching and
propagating process flow and layout dependencies on IC topographical features. As will be
discussed in Chapter 8, a 2.5D process history tagging data structure was implemented to tag
SIMPL process step and layout mask id’s on IBM Geometry Engine solid structures. Chapter
8 will also describe a new TCAD function known as topography propagation trace-back.

This function traverses process history tags, and reports the process flow and layout

39
dependencies of IC topographical features.

In this section, the Metal Stringer Trace-Back. Experiment is used to demonstrate
interoperation of the IBM Geometry Engine with SIMPL. This experiment began by using
SIMPL to simulate an IC topography that contains a metal stringer propagated from an under-
lying polysilicon line. After each SIMPL topography process step, the resulting deformation
volume was extruded and updated in the IBM Geometry Engine. Trace-backs were then per-

formed on the metal stringer and the poly line.

The SIMPL process flow simulated by the Metal Stringer Trace-Back Experiment is
listed in Figure 3.5. Figure 3.6 shows the SIMPL layout and final cross section obtained from
this process flow simulation. As listed in Figure 3.5, the major sequences in this process flow
are: Poly 1 deposition and etching (thickness = 1 um, mask = POLY, Steps 1 through 7);
Oxide 1 deposition (thickness = 1 um, Step 8); Metal 1 deposition and etch-back (thickness =

1 um, Steps 9 through 11).

As one would expect, topography propagation tracc-back of the Metal 1 stringer and the
Poly 1 linc showed that the lithography and etching of Poly 1 line strongly influenced the
shape of the Metal 1 stringer. Figure 3.7 depicts the 3D topography simulated by the IBM
Geometry Engine, and compares the dependencies reported for the metal stringer (listed on
the right), and that for the poly line (listed on the left). From the reported dependencies, it can
be seen that the Metal 1 stringer not only depended on the metal deposition and etch-back
(Steps 9 and 11), but also depended on the poly line deposition, lithography, and etching

(Steps 1, 2, 4, 6, and POLY mask).

40

(10yemung / ++2 SoUI] 0SE~) §
uonye[nuig uonisoda(y

YOUd.L], SJOH A3 (ST

suonjedddy N L9g Aq pajetaudr)
S9.INJINIIS PI[OS dUISUS A1JPW030) NI

1S9, / ++D) saul| 0ST~)
SUI)S?], 9OUBULIOJIDJ

IIAIRS A1PPWOIN) (IE o,

RHW - UCB TCAD

Figure 3

41

(sayded 6)
SayajeJ aUO0JOUOJAI

NS F T

--------I--".'d.’d

\\LVivavaginp.. i i
NN EIZas ==

WAV I D, - =2
EE.:I-'..l.-lﬂﬂ..ml!lé/
WINOATIEA TR Y e mE A\,

N5

\

(S[3uBLL], 968)
YOUdL], IOH A9V (€

OURL], 3[0] A9 (¢ JO uonIsoduwodd(] IU0)OUOTA]

RHW - UCB TCAD

Figure 3.4

42

Metal Stringer Test
SIMPL Process Flow

2R R R R R R A RS R R RS SRR)

LAYOUT FILE : stringer2.cif

SUBSTRATE TYPE:

CUT-LINE COORDINATES : x1 = -1600, yl = -47
x2 = 1600, y2 = -47

AR AR PN TN R AN AR RS R R AR O AR AN R R AR AR R ARV NI R AR R PP AN NN PR R A RIS A RN R AN SR AGER IR ES
L2

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? POLY

THICKNESS OF THE MATERIAL (micro-meter) ? 1

VERT, SPIN-ON, 1SO, ANISO or SAMPLE MENU (V,S,I,A, or M) ?V
DOPING (B, As, P, Sb or None) ? None

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 2

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? RST

THICKNESS OF THE MATERIAL (micro-meter) ? 1

VERT., SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, or M) ? §
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 3

WHICH PROCESS ? EXPO

WHICH MASK ? POLY

INVERT THE MASK (yes or no) ? no

NAME OF MATERIAL TO BE EXPOSED ? RST

NAME OF THE EXPOSED RESIST ? ERST

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 4

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? ERST
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* § »

WHICH PROCESS ? ETCN

Etch Type:Isotropic, or Iso with Directional (1 or 10) ? 10
File containing etch rates ? poly.etch.mod

Etch accuracy (0:worst to 10:best) ? 10

Timestep in seconds ? 11

Number of steps ? 1

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 6 *

WHICH PROCESS ? ETCU
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

w7

WHICH PROCESS ? ETCH

WHICH LAYER DO YOU WANT TO ETCH ? RST

ETCH ALL (yes or no) ? yes

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

Figure 3.5

43

Metal Stringer Test
SIMPL Process Flow

(Continued)

= g *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? OXID

THICKNESS OF THE MATERIAL (micro-meter) ? 1

VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, or M) ? I
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 9 »
;WHICH PROCESS ? DEPO !
NAME OF THE MATERIAL ? METL

THICKNESS OF THE MATERIAL (micro-meter) ? 1

VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, Or M) 2 I
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

*« 30

WHICH PROCESS ? ETCN °

Etch Type:Isotropic, or Iso with Directional (1 or 10) ? 10
File containing etch rates ? metal.etch.mod

Etch accuracy (0:worst to 10:best) ? 10

Timestep in seconds ? 11

Number of steps ? 1

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

i' 11 »

WHICH PROCESS ? ETCU !
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes ‘

WHICH PROCESS ? END

Figure 3.5
(Continued)

=

S
O
ee
TS
5 &
o0 =
.mC
=

=
v
53
e
=

&

o

lation)

imu

(SIMPL System 6 S

2) FEIG/0L AdlaN

A AR A S

196

RHW - UCB TCAD

Figure 3.6

45

FARERRREL RN
AT10d

:puadaq seW wosed

(HOLd ‘9~ de3s sseooaq)
(OHLIT ‘¥ de@3s sssooig)
(odaa ‘z de3s sseooiad)
(odaa ‘1 deajs sseooad)
:puadeg ss@o0xg @ov4g
G'T) = [p]lseoTiaap aoed
ATOd = TeTasjel a2vd

FHEEEFEERERER RN

KX KKK KN NN KN N

A10d

:puadag seW 2ov4g

(odda ‘1 de3s ssenoiq)
(HOLd ‘9~ deas sssoo0iad)
(OHLIT ‘% deas sseoo0id)
(odda ‘'z de3s sseoo0ad)
(odaga ’g de3s sssoo0ay)

(HoLd ‘11 de3s sseooaqd)
(0dda ‘6 de3s ssenoad)
:puadsg ss820Id 20ov4d

65°T) = [0]lseoT3aeapn @deg

TLAW = [eTaajely aosed

AXRARERENRNRRNEY

-3oudnbas ssadoad pue yseur yoja—oyy| duij Ajod
1) uo JuIPadap SI IDFULL)S [eJaW AY) Jo ddeys

RHW - UCB TCAD

Figure 3.7

46
3.5. BTU SIMULATION APPLICATIONS

This section evaluates the effectiveness of the BTU system organization in implement-
ing 3D IC topography simulation applications. The evaluation involves studying the source
code distribution and implementation history of SAMPLE-3D. SAMPLE-3D is representative
of state-of-the-art 3D IC topography simulation programs. SAMPLE-3D implements physical
models for lithography, ion milling, plasma etching, metal evaporation, sputter deposition,
and chemical vapor deposition. It is also a good example of a special-purpose geometry
server that undergoes constant development. SAMPLE-3D physical models and geometric
algorithms have been used in other 3D IC topography simulation programs, such as

EVOLVE-3D [8] and VISTA’s 3D cell-based ctching and deposition program 9]

Using a fully implemented BTU system, 3D simulation applications could be written in
about 2,000 lines of C++ code. Figure 3.8 illustratcs SAMPLE-3D source code distribution
with respect to BTU system layers. As shown in the left of Figure 3.8, primitive, auxiliary,
and aggregate geometrical operations, such as line-of-sight visibility, octree, cell-
decomposition, and deloop, account for 73% of SAMPLE-3D source codc. As shown in the
lower right corner of Figure 3.8, simulation support utilites, such as simulation task manage-
ment and visualization, take up another 22%. In other words, all but 1,800 lines (5%) of
SAMPLE-3D’s 36,000 lines could be replaced by BTU system utilities and services. There-
fore, conservatively, using a fully implemented BTU system, a 3D simulation application can

be implemented in about 2,000 lines of C++ code.

Besides centralization of geometry services, the BTU system organization improves over
monolithic simulation programs, such as SAMPLE-3D, in terms of robustness and ease of

maintenance. As suggested in the bottom of Figure 3.8, the robustness of special-purpose

47

geometry operations, such as deloop, often require several (3) generations to perfect. The
resulting deloop operation is difficult to improve because it is fraught with duplicate and
extraneous code fragments. On the other hand, using the BTU system, simulation applications

can acquire robustness as the BTU system incorporate new and proven servers.

In terms of maintenance, simulation applications built using a special-purpose server
may undergo frequent code changes. This is because these applications are usually imple-
mented using the server’s internal data structures and algorithms. As a result, modifications in
the server lead to modifications in simulation applications. BTU simulation applications can
be easier to maintain becausc the applications interact with geometry servers through
wrappers. Geometry server wrappers encapsulate the internal data structures and algorithms
of geometry servers, and only change when geometry servers change their external data
representations or functional behaviors. As a result, simulation applications built using

geometry server wrappers are more stable.

48

"ANNQISIA

"JUIWASBURBIA] YSB L WSIS-JO-aUr] = %¢
‘uonezIfensiA saAnIULLJ SUIYSI = %61 SIINAIIS
‘doopp 21300 = €/ - E JANIWILIJ
E 'SME PuB Yo L) = €/I -
‘saapiuLg doop(q = %S
y10ddng S[I9D SAIAIIS
uonBNWIS ‘901300 E Axeipixny
llllllllllllll -
IIIII | *9jBASdUf Xn|j
J Sepoyy 1 | evanos aaisiA I SINAIIS
| o | ‘doojaQ %01
I I\olmwll H.mloslm\.mc.m* ! “ ‘QUBAPY Ae3I33Y
] I
(Seul 008°t) |
uoneuswadwy | SINI[I)() PUE SIIIAIIS
JSPOWN [BdISAyd | A1)aUI030) J[qRZI[BI)UI)
]

"SONI[IIN PUR SIDNAIIS WI)SAS) L Aq pIdejdax
3q ued (saur] 000°9€) AS-ATJINVS JO %06 12A0

RHW - UCB TCAD

Figure 3.8

49
3.6. CONCLUSIONS

This chapter recommended a hierarchical organizational structure for future TCAD sys-
tems. The Berkeley Topography Utilities (BTU) system, which cxemplifies this architec-
ture, consists of: 1) Centralized Geometry Servers, 2) Primitive Server Interface, 3) Auxi-
liary Server Interface, 4) Aggregate Server Interface, and S) Simulation Support Utilities.
The BTU system hierarchically organized geometric utilities and services along their input
data granularity under Primitive, Auxiliary, and Aggregate Server Interfaces. These three
layers, known as BTU Hierarchical Interfaces, implement geometry server wrappers and
auxiliary data structures that address complex issues arising from the use of centralized
geometry services. Based on experience with the BTU Hierarchical Interfaces prototype,

adding a geometry server to the BTU system would require about 10,000 lines of C++ code.

BTU Hierarchical Interfaces facilitate implementation and application of auxiliary data
structures by using fundamental concepts in object-oriented programming, such as inheri-
tance and polymorphism. As an example, Section 3.2 considered the implementation of the
monotone decomposition auxiliary data structure. As will be discussed in Chapter 7, mono-
tone decomposition partitions a surface mesh into a few large-grain monotone patches. In
implementing monotone decomposition, inheritance was used to share codes between the
SurfaceMesh and thc MonotonePatch object classes. Inheritance was also used to share
code among a family of 3D monotone decomposition methods. Polymorphism enabled
aggregate geometric utilitics, such as boundary deformation, to perform the same geometric
computations on monotone patches generated by different monotone decompostion methods.
As a result of using inheritance and polymorphism, the MonotonePatch object class, two 3D
monotone decomposition methods, and geometric computations on 3D monotone decomposi-

tion, were implemented in a total of 1,200 lines of C++ code.

50

Section 3.3 described a BTU system integration strategy that created a convenient
development environment for both TCAD application developers and geometry server
developers. To preserve geometry server software boundaries, the BTU directory tree con-
tains separate subtrees for geometry server objects and hierarchical interface objects. Unix file
links going from hierarchical interface directories to geometry server directories allow

geometry server objects to be presented as hierarchical interface objects.

Section 3.4 highlighted BTU experimental applications that interoperated the IBM
Geometry Engine, a 2D shock tracker, SAMPLE-3D, and SIMPL. Section 3.4 presented solid
structures and surface meshes constructed by these tests and experiments. These experimental
results demonstrated the kinds of application development convenience and server interopera-
bility achievable through BTU Hierarchical Interfaces. Using BTU Hierarchical Interfaces,

experimental applications can be written in about 250 to 350 lines of C++ code.

Section 3.5 discussed the use of the BTU system organization to implement 3D IC
topography simulation applications. First, by bin sorting SAMPLE-3D modules (36,000 lines
of C code) with respect to BTU system layers, it was shown that 95% of SAMPLE-3D source
code could be classifed as BTU system utilics and services. The remaining 5%, or 1,800 lines
of C code, implemented scveral rigorous physical models. Conservatively, this analysis sug-
gested that, using geometric utilities and services provided by a fully implemented BTU sys-
tem, a 3D simulation application could be written in about 2,000 lines of C++ code. Morever,
the BTU system organization offers improved robustness through acquisition of new geometry

servers, and ease of maintenance through encapsulation of geometry servers.

51
REFERENCES FOR CHAPTER 3

[1] R.H. Wang, and A.R. Neurcuther, Efficient and Innovative Use of Three-Dimensional
Geometry Services in IC Topography Simulation. International Symposium on VLSI Tech-

nology, Systems, and Applications (VLSI-TSA), Taipei, Taiwan, ROC, June 1995.

[2] M. Karasick, D. Lieber, "Schemata for Interrogating Solid Boundaries,” ACM Symposium

on CAD and Foundations of Geometric Modeling, June 1991, pp. 15-25.

[3] E.W. Scheckler, A.R. Neureuther, Models and algorithms for three-dimensional topogra-
phy simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Feb. 1994, vol.13, (no.2):219-30.

[4] D. Lee, Applying TCAD to Emerging Technologies, MS Thesis, UC Berkeley, UCB/ERL

M95/38, May 20 1995.

[5] S. Hamaguchi, M. Dalvie, R.T. Farouki, S. Sethuraman, A shock-tracking algorithm for
surface evolution under reactive-ion etching. Journal of Applied Physics, 15 Oct. 1993,

vol.74, (no.8):5172-84.

[6] G. Booch, Object-oriented analysis and design with applications. Redwood City, CA,

Benjamin/Cummings.

[7) R.H. Wang, M.S. Karasick, and A.R. Neureuther, Computational evaluation of three-
dimensional topography process simulation components. International Workshop on VLSI

Process and Device Modeling (VPAD), Kyoto, Japan, May 1993, pp. 95-96.

52

[8] Hung Liao, T.S. Cale, Threc-dimensional simulation of an isolation trench refill process.

Thin Solid Films, 15 Dec. 1993, vol.236, (no.1-2):352-8.

[9] E. Strasser, S. Selberherr, Algorithms and models for cellular based topography simula-
tion. 1EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Sept.

1995, vol.14, (n0.9):1104-14,

53
CHAPTER 4

ESSENTIAL GEOMETRY SERVER CONSTRUCTS FOR
EFFICIENT 3D IC TOPOGRAPHY SIMULATION

4.1. INTRODUCTION

This chapter shows that the performance of centralized geometry servers, such as the
IBM Geometry Enginc [1], is inherently linked to the support of essential geometry server
constructs. Four constructs are presented: 1) Explicit Connectivity, 2) Face-Face Intersec-
tion Sorting, 3) Ray-Face Intersection Sorting, and 4) Localized Deformation. Table 4.1
summarizes the relationship between essential constructs and server performance. The middle
columns of Table 4.1 list the server performance improvements gained through using these
constructs. The rightmost column of Table 4.1 lists gencral design issues that arise during
construct implementation. This chapter will describe geometric data structure and algorithm

examples that address these design issues for efficicnt 3D IC topography simulation.

Section 4.2 uses geometrical operations in 3D IC topography simulation to introduce
and motivate the four essential geometry server constructs. At every simulation time step,
Explicit Connectivity is needed to efficiently support tens of thousands of surface connnec-
tivity queries used to simulate surface diffusion and surface reaction. Face-Face Intersection
Sorting is needed to perform efficient surface collision detection and surface loop removal in
surface-based topography simulation. Ray-Face Intersection Sorting is needed to efficiently
support tens of thousands of point location tests used to detect material interface collision,
and millions of line-of-sight visibility tests used to determine surface visibility. Localized
Deformation is needed to avoid extraneous duplications of geometry components and connec-

tivity links during incremental boundary deformation.

54
Section 4.3 discusses Explicit Connectivity. Explicit Connectivity directly links

between topologically connected geometry components to efficiently answer large numbers of
surface connectivity queries at each simulation time step. As shown in the top row of Table
4.1, without Explicit Connectivity, O(N) time is required to answer each surface connectivity
query. This is because linear searches are needed to find all geometry components connected
to a query component. With Explicit Connectivity, all connected components at a vertex or an
edge can be found by traversing a few (typically less than 10) links, and each surface connec-

tivity query can be answered in O(/) (constant) time.

For Explicit Connectivity, the key design issue is to choose the type of geometry com-
ponent to store most of the connectivity links, and the kinds of connectivity links to be stored.
As examples, Section 4.3 will describe the 2D winged-edge data structure and the 3D star-
edge data structure, which is a 3D variant of thewinged-edge data structure supported by the

IBM Geometry Engine.

Section 4.4 discusses Face-Face Intersection Sorting. Face-Face Intersection Sorting
groups faces by spatial locality, such that face-face intersections are only computed between
faces within the same proximity. As shown in the sccond row of Table 4.1, without Face-Face
Intersection Sorting, O(N?) time is required to check for intersections between every face and
every other face. With Face-Face Intersection Sorting, each face is only checked for intersec-

tion against the few faces close to it, and all surface self-intersections can be found in

3
O(NlogN) time for tree-based data structures, and O(N ?) time for grid-based data structures.

For Face-Face Intersection Sorting, the key design issue is to choose a spatial data
structure for sorting faces, and the spatial data structure parameters (such as tree depths or

voxel sizes) that optimize storage cost and intersection computation time. As examples,

55

Section 4.4 will describe several 3D spatial data structures currently implemented in TCAD

applications, such as octrees, cell-decomposition, BSP trees.

Sections 4.5 discusses Ray-Face Intersection Sorting. Ray-Face Intersection Sorting
groups faces by spatial locality, such that ray-face intersections are only computed between
faces which lie in the ray’s proximity. As shown in the third row of Table 4.1, without Ray-
Face Intersection Sorting, O(N) time is required to intersect a ray against every surface facet
or IC topography face. With Ray-Face Intersection Sorting, each ray is only checked for

intersection against the few faces close to it, and all ray-face intersections in the surface or the

1
topography can be found in O(logN) time, for tree-based data structures, and O(N 2) time, for

grid-based data structures.

For Ray-Face Intersection Sorting, the key design issues are the same as that of Face-
Face Intersection Sorting, plus the need to amortize the initialization cost of spatial data struc-
tures over large numbers of ray tests. Section 4.5 will discuss the adaptation of Face-Face

Intersection Sorting data structures to simultaneously support Ray-Face Intersection Sorting.

Section 4.6 discusses Localized Deformation. Lacalized Deformation provides robust
facet pushing to efficiently update facct positions and connectivity links of moving solid
boundarics in IC topography simulation. As shown in the bottom row of Table 4.1, without
Localized Deformation, worst case O(N>logN) time might be used to update solid boundaries
at each simulation time step. This is because N facets could be trivially swept into triangular
prisms, and merged using N boolean set operations. For robustness, each boolean set opera-
tion might duplicate unperturbed connectivity links to create intermediate versions of the
aggregate deformation volume. In this scenario, each boolean set operation might use

O(NlogN,) time, where N is the number of faces in the intermediate volume. Summing N,

56
from 1 to N results in a worst case total merge time of O(N2logN). With Localized Deforma-

tion, facet positions and connectivity links can be incrementally updated in O(NlogN) time.

For Localized Deformation, the key design issue is to find robust and efficient heuris-
tics for updating connectivity links after localized facet pushing. As examples, Section 4.6
will describe two special-purpose boolean set operations suitable for 3D IC topography
simulation. Surface-based boolean set operations, such as the deloop operation, can be
used to remove invalid surfaces after surface facet pushing. Localized boolean set opera-
tions can be used to delimit and push small subsets of solid model faces, and establish con-
nectivity links between subset faces. By using triangular prisms to delimit deformed faces,
this approach can avoid duplication of unperturbed connectivity links. As a result, each local-
ized boolean set operation can be performed in O(n log n) time, where n is the number of sub-

set faces (typically less than 10). This results in a more O(N)-like total merge time of O(N * n

log n).

57

‘Apsngoa
$3998) SuSIXd
ysnd 0y Aypqv

*JS0J uonezijel
—}Iul AZIJIOW Y

{SunJaog deg
—308,] St dwes

*AZIS [PXOA
10 yydop dda],
‘adA) aanynays
B)ep [eneds

‘syjulj Jo sadA |,
sSyul] urejuod
0) Juduodwo)
INSS|

ugisa(q A9y

*uojBuLIOJOP
Aiepunoq 1d

aum (N3oIN)O

*389) Aea Jad

aun (S°0vN)O
10 (NSoDO

*U0I)29s1d)ul
adejans Jad
awn (S'TvN)O
10 (NB0IN)O

‘L1anb Jad
aup (1)O

JPNISUO) YIIM JINI)SUO)) O/M

IUBULIOJIdJ

"uoBuULIOjIp &&.,SS.K&@Q

Alepunoq Jod SZ11D90
awp (NojzyN)o ~ PoZIDI0]
fex sod 3uniosg
*389) Aed 19
21D (NO UO01)22SA2PU]
20D,]—ADY
"U0YIISIAUI 3u1y4o8

Jdejans Jod UO1I2SA2JU]
dun (ZvN)O 2OV J—ID]

*K19nb aad A1141102UUO0))
sawp (N)O nondxsy

INI)SUO
UeBULIOJJ9d)) J

SIONIISUO)) JIAIIS [BNUISSH
g3dnoay) paured AudnyJy J9AIIS

RHW - UCB TCAD

Table 4.1

S8
4.2. MOTIVATION AND OVERVIEW

Geometrical operations in IC topography simulation can be implemented using a hand-
ful of geometry services. For efficient 3D process and device simulation, TCAD researchers
have implemented special-purpose versions of connectivity data structures, such as triangular
surface meshes [2][3][4][11], and polygonal boundary representations [10], spatial data
structures, such as cell-decomposition [3][13], octrees [4][5][6], and BSP trees [7][8], and
surface advancement algorithms, such as recursive ray trace [2], facet motion
[3][10][11][12], cell removal [9][13], and level set methods [14][15]. This section groups
these data structures and algorithms as four essential geometry server constructs: 1) Expli-
cit Connectivity, 2) Face-Face Intersection Sorting, 3) Ray-Face Intersection Sorting, and
4) Localized Deformation. One might expect commercial solid modeling and computer
graphics packages to have implemented these constructs, and can make immediate impact on
3D IC topography simulation. However, as will be discussed in this section, most general-
purpose geometry servers, such as the IBM Geometry Engine, typically do not implement
Localized Deformation, and therefore cannot efficiently support 3D moving surface simula-

tion.

Explicit Connectivity is needed to efficiently support tens of thousands of surface
connnectivity queries used at every time step to simulate surface diffusion and surface reac-
tion. Figure 4.1 illustrates use of connectivity services in surface diffusion and surface reac-
tion simulation. Surface diffusion involves particle redistribution between neighboring sur-
face vertices. As shown in the left of Figure 4.1, explicit representation of incident edges can
be used to efficiently find the connected vertex neighbors at each surface vertex. Depending
on the materials incident on a surface vertex, surface reaction creates equilibrium concentra-

tions of visible particles and reacting species at the vertex. As shown in the right of F igure

59

4.1, explicit representation of incident faces and volumes can be used to efficiently find the
materials meeting at each surface vertex. Usually, a surface vertex has 3 to 6 incident edges
and facets, and 1 to 3 incident volumes. Therefore, for N vertices, simulation of surface diffu-
sion and surface reaction spawns O(N) connectivity queries. For a typical simulation with
10,000 surface vertices (N = 10,000), about 50,000 connectivity queries are invoked at each

time step.

Face-Face Intersection Sorting is needed to perform efficient surface collision detec-
tion and surface loop removal after every few time steps of a surface-based IC topography
simulation. Figure 4.2 illustrates the use of face-face intersection services in surface collision
detection and wafer geometry update. As shown in the left of Figure 4.2, surface-based IC
topography simulators, such as SAMPLE-3D [2][3][4] and EVOLVE-3D [11], need geometri-
cal utilities to detect and resolve global topological changes, such as void formation. After
simulating a topography process step, as shown in the middle and the right of Figure 4.2, the
aggregate deformation volume nced to be stitched onto the wafer geometry. Face-face inter-
section services, such as deloop and glue, can be used to perform these tasks. Since surface
collisions can occur at any time during the simulation, face-face intersection services need to
be invoked after every few time steps. For a typical surface-based IC topography simulation,
this translates to about 300 face-face intersection service calls on a surface with 10,000 ver-

tices.

Ray-Face Intersection Sorting is needed to efficiently support tens of thousands of
point location tests used at every time step to detect material interface collision, and millions
of line-of-sight visibility tests used at every time step to compute surface visibility. Figure
4.3 illustrates the use of ray-face intersection services in material interface collision detection

and surface visibility computation. During each time step, a surface-base etching simulation

60

needs to check if its etch front points had crossed over a material interface. As shown in the
left of Figure 4.3, a point location test can be used to find the material volume that contains
an etch front point after its advancement. To track source particles incident on a surface dur-
ing a simulation time step, the simulator needs to determine the source points that are visible
to each surface vertex. As shown in the right of Figure 4.3, a line-of-sight visibility test can
be used to determine if a source point is visible to a surface vertex. For a surface with N ver-
tices and a source with S points, at each simulation time step, a total of O(N) point location
tests and O(N*S) line-of-sight tests may be performed on the surface. For a typical simulation
with about 10,000 surface vertices (N = 10,000) and 500 source points (S = 500), about 10,000
point location tests and 5 million line-of-sight visibility tests may be performed at each time

step.

Localized Deformation is necded to avoid extraneous duplications of geometry com-
ponents and connectivity links during incremental boundary deformation. Figure 4.4 illus-
trates the incfficiencies that can result from the lack of Localized Deformation. The left of
Figure 4.4 depicts how facets can be trivially swept into small deformation volumes, and the
order in which they can be merged into an aggregate deformation volume. The right of Figure
4.4 illustrates how these small volumes can be merged using boolean set operations. For
robustness, conventional boolean set operations, such as the ones in the IBM Geometry
Engine, establishes output solid connectivity links by duplicating input solid connectivity
links. For the case of merging N small deformation volumes, conventional boolean set opera-
tions may incur in O(N?) extraneous duplications. As an example, the right of Figure 4.4

shows the number of extraneous duplications for each facet deformation volume. As shown in

2

Figure 4.4, the 8 merge operations (N = 8) would incur a total of 35 (or about -];— = 32)

extraneous duplications.

61

J dwnjoA

A X3)I9A

" A X9119A JE 3u1}ddW Sjeridjewl
PUL} 0] PIsSn dJ8 SAWN[OA ISAY [,

7 ‘] SOWINJ0 A JUIPIdUL pUly 0) pPasn
aq ued {74 ‘1A} sddej judprouy

UO0NIBIY dIeJING

|
|
|
|

IA PA

6. %

\J

9A SA

* A X91J9A JE S.I0qY3I9U X3JI9A
P23322UU0d pulj 0) PIasn 3q ued

{9 ‘1 } S98pa yuaplouj

uoISnJJI(J ddeJIng

uone[NWIS UOI}IEBIY deJINg pue uoIsnyji(ddeJing
Ul SIIAIIS AJAIJIUUO)) JO 3S()

?
J

RHW - UCB TCAD

Figure 4.1

62

wssERESEuED

) (1] Q-.-—U (1] w:mm:

SUIYIINS dWNJOA e
uoneuLIojoq

Jjepd) A1)PUWOIN) I3JBAA pPUE

01)J3)3(] UOISI[[0D
3J8JING Ul SIIAIIS UON)IISINU D8 -8] JO 3s()

RHW - UCB TCAD

sdde
suipifo)

-, dooja,, suisn
UO01}I3)3(] UOISI[[0D
JdejIng—enuy

Figure 4.2

63

* A XLIIA 10

apIx
S JUI0 32.1n0§ R
23S), UEd A10d
A X3LIIA
SIS0y

ISAL AMIQISIA "8
y3iIs—jo-aury S
Jo uonesda.I3sy

uonenduwo)
AMIQISIA 32In0S

ERLAREITI|
IPIXO-AJ0d 1240
Passoad (d‘A) Ay <-

- IPIXQ
apisut s1 § Juiod

*deJINUL Y -A[0d
JE SI A XJ)IIA

1S3], UOBIO0| Jutog
JO uone3133y

uo0139333(J UOISI[[0))
39BJINU] [RLIdIBIAl

A)IQISIA 92IN0S PUR UOISI[[0)) IIBJINU] [CLIdIBIA
Ul SIIIAIIS UOI)IISIIU] B J—ARY JO 3s)

RHW - UCB TCAD

Figure 4.3

64

A7
£ b\ § HAG €
i S A i :
0 r 4 W_ 9 (¢ &
'PIAOWDL UIDq 2ADY
Sjuow3as payso(y 8 L [[

‘suoyvondn(y 1141102 : _
—uu0") puv Lgowoan 40p40 23101 = X

SNOUDIXT JO # = X

*3WIN[0A UO)BULIOJIP

*SOUINJOA UOI)RULIOJIP
J99%] Jeul) SUISIITA]

39o8] Jno surddomg

‘pajeddnp Appajeadaa dae syul| AJIAIIUUOD
paqanjiadun ‘sownjoA jdoms 3a3ej 331Ul 0)
suone1ado)os ued[00([RUOIIUIAUOD SUISN U]

RHW - UCB TCAD

Figure 4.4

65
4.3. EXPLICIT CONNECTIVITY

Explicit Connectivity directly links between topologically connected geometry com-
ponents to efficiently answer large numbers of surface connectivity queries at each simulation
time step. Without Explicit Connectivity, each connectivity query would require O(N) time to
complete. For example, to find all edges incident on a vertex, every solid boundary or surface
edge would have to be checked for containment of the query vertex. It can be shown that a
solid or a surface with N vertices has O(N) edges and O(N) faces [16]. Therefore, without

Explicit Connectivity, O(N) time would be required to find all edges incident on a vertex.

With Explicit Connectivity, each connectivity query can be answered in O(1) (constant)
time. A common approach to implement an Explicit Connectivity data structure is to choose
one type of geometry component for storing a set of connectivity links that enables O(/) time
connectivity queries. For cxample, Figure 4.5 depicts the connectivity links in the 2D
winged-edge [17] data structure. As illustrated in the left of Figure 4.5, the winged-edge data
structurc uses edges to store connectivity links to component vertices, incident faces, and con-
nected edges. To facilitatc connectivity querics, each vertex contains a back pointer to an
incident edge, and each face contains a back pointer to a component edge. As depicted in the
right of Figure 4.5, through vertex V1’s back pointer to edge El, V1’s incident edges E1l, E2,
and E3, and incident faces F1 and F2, can be readily found by traversing E1’s connectivity
links. In other words, all edges and faces incident on a winged-edge vertex can be found in

O(l) time.

Since Baumgart’s seminal work on the 2D winged-edge data structure in 1972, several
3D extensions, such as the star-edge [18] data structure, have been developed. The star-edge

data structure has been used to implement the IBM Geometry Engine. Figure 4.6 depicts the

66
connectivity links in the 3D star-edge data structure. As illustrated in the left of Figure 4.6,

the star-edge data structure uses vertices to store connectivity links to directed edges and
faces. In the star-edge data structure, each vertex contains several stars. A star is used to
refer to incident edges contained by the same face. For instance, as shown in the right of Fig-
ure 4.6, vertex V groups its incident edges into three stars, and the star in face F1 has 4

directed edges.

67

1H 93pd
A3pH-PpaduIp

"1d 03 saajuiod yoeq dAey
e 24 ‘14 ‘SH ‘vd €

‘Td ‘TA ‘T A ‘uonippe uj
'sidjutod g sey [a3pH

l06A310,1] wo.a) 3ang1q

/

uondds ISP
$50.1D *
/ _ “
I
I
X9).19A

*98p9 Juduoduwod 10
JuIPIdUI U0 Auo 03 Jutod
)orq sey d98J A0 XA
‘syUI| AJADIIUUOD

3y} JO Jsou d.10)s 93P

21N3oNI)S BIe(2SPH—PISUIA (T
ul syur'| Ayapdduuo) ydrdxy

RHW -UCB TCAD

| Figure 4.5

|
L

68

A X9LIOA

dp-1eIS =

"SIBPI PIMIP
SBY | 3d8,| U0 | Je)S
"SAB)S € SBY A X9LIDA

[ggoIseARY]| WO dan31 g

JUWN|OA<—> |[9S

S A1) I 90¢]
Pa333a1p
p1jos =—=X09].I0 A dqoj
1e)g
*SAB)S BIA SyUI|
AJA1}IIUUOD 3pa 3P
Iy} Jo)sow —uQH—Q@th

9.103S SAINIIA

06 12ga1T pue YdIseae)]| wo.ay 31n314

31Nn)dNI)S vl I3pH—Ie)S
Y ur sYUI'T A)1apdduuoe)) yIdxy

RHW -UCB TCAD

Figure 4.6

69
4.4. FACE-FACE INTERSECTION SORTING

Face-Face Intersection Sorting groups faces by spatial locality, such that face-face
intersections are only computed between faces within the same proximity. Without Face-Face
Intersection Sorting, each surface facet is checked for intersections against every other surface
facet. Consequently, O(N?) intersection checks are required to find all facet-facet intersec-
tions. On the other hand, in a typical topography simulation, each surface facet usually only
intersects a few other surface facets. Therefore, without face-face intersection sorting, most of
the O(N?) run time would be consumed by extraneous intersection calculations between far

apart surface facets.

With Face-Face Intersection Sorting, each face-face intersection operation can be per-

3
formed in O(N 2) to O(NlogN) time. Implementing Face-Face Intersection Sorting involves

adapting spatial data tructure parameters such that most spatial partitions contain only a few
(less than 5) surface facets. Within each spatial partition, pair-wise face-face intersection
computations require O(n>) time, where n is the number of the facets in each spatial partition.
Since only a few facets are present in each partition, face-face intersections over all spatial
partitions can be found in a running time dominated by the bigger of the two running times:
1) Preprocessing time used to sort faces into spatial partitions, and 2) Pair-wise intersection

time used to visit each spatial partition and compute pair-wisc intersections.

As examples, this section describes partitioning strategies for efficient 3D IC topography
simulation using three spatial data structures currently implemented in TCAD applications:
Cell decomposition, Octrees [19], and BSP trees [20). Figure 4.7 [21] illustrates examples
of 2D polygons partitioned using these data structures. The left of Figure 4.7 shows the cell

decomposition data structure. This data structure uniformly divides the simulation space into

70

rectilinear cells, and classifies each cell as air (empty), material (filled), or surface (partially

filled). Using the SAMPLE-3D cell decomposition data structure, Scheckler had imple-

3
mented a cell deloop operation that can run in O(N 2) time [3]. To achieve this run time, the

cell segment length is set equal to the ideal segment length in the surface mesh. This setting
enables most cells to contain a few faccts. Since SAMPLE-3D cell contents are incrementally

updated during surface advancement, face-face intersection operation time is dominated by
3

the time used to perform pair-wise intersections in O(N 2) cells.

The middle of Figure 4.7 illustrates the octree data structure. This data structure recur-
sively partitions the simulated surface into octants that are empty, filled, or containing a few
facets. Using the SAMPLE-3D octree data structure, Helmsen had implemented an octree
deloop operation that can run in O(NlogN) time [4]. In [4], it was shown that an 1:1 ratio
between the octant (i.e. octree leaf) segment length and ideal facet segment length achieves
the O(NlogN) running time while minimizing the number of octree nodes. Using the octree
data structure, face-face intersection operation time is dominated by the preprocessing time
used to sort surface facets into the octree. Since each tree insertion requires O(logN) time,

O(NlogN) time is required to insert all O(N) facets into the octree.

The right of Figure 4.7 depicts the BSP tree data structure. This data structure subdi-
vides space by recursively splitting and inserting facets as in front of or behind some initial
(root) facet. Using the polygon in the right of Figure 4.7 as an example, BSP sorting begins
by selecting facet a as the initial (root) facet, and grouping the remaining facets as two sets of
facets: { b, c+f, d+g, e, h,i } and {j, k}. In this step, the facet that initially contains facets d,
g, and k is first split into two facets d+g and k. The sorting process is then recursively applied

to the two facet sets, with facet b as the initial (root) facet for the first set, and facet j as the

71

initial (root) facet for the second set. Using this sorting strategy, each surface facet is split and
inserted as a BSP tree node. The BSP tree leaves represent half-spaces that are either air

(empty) or material (filled).

An O(NlogN) time BSP tree deloop operation can be implemented by inserting regular-
ized surface facets into a BSP tree. Given a regularized mesh with N vertices and O(N) facets,
the BSP tree deloop operation can insert all facets into a balanced binary search tree of height
O(logN) in O(NlogN) time. During tree insertion, each intersecting facet can be split into
facets that are on a valid or looping surface. An O(N) time traversal over all facets can be per-

formed after tree inscrtion to remove looping surfaces.

72

"33p? uE SUIBIUOD

IPOU 3313 YIBy "Jed| R4

& sa1dnddo ([er1djeul 10 J1e)
3deds [je [pun SuLIIPIO JUO.L)
—0})-)d€q Ul pajios pue ‘yds
‘pajtasul 3ae sIZPI ‘q ul

N1 4S5S4

*'SISPI M3 ©

*$228)/SITPI MIJ B .10 0.19Z 10 0.13Z UIEIU0D UEI [[II I8

sulejuod yuedonueipenb yoed mun ‘uonn[osa. Y3y APuddyyns 104
syuejdo/sjueapenb oyur pauonnaed

A[2AISINI st ddeds uonenuug ‘pauonn.aed

Ajuriojrun st deds uonenuig

211920 /ddnpend) uonisodwod([PD

0642104 wo.ay saang1q

sa.Im)Inng vye(eneds J10j sargajea)§ suruonnae

RHW -UCB TCAD

73
4.5. RAY-FACE INTERSECTION SORTING

Ray-Face Intersection Sorting groups faces by spatial locality, such that ray-face inter-
sections are only computed between faces that lic in the ray’s proximity. Without Ray-Face
Intersection Sorting, each ray must be checked for intersection against every surface facet.
Since a surface mesh with N vertices has O(N) facets, O(N) intersection checks are required to
find all ray-face intersections. On the other hand, in a typical IC topography simulation, each
ray usually only intersects a few surface facets. Therefore, without Ray-Face Intersection
Sorting, most of the O(N) run time would be consumed by extraneous intersection calculations

between the ray and far away facets.

With Ray-Face Intersection Sorting, cach ray-face intersection operation can be per-

1
formed in O(N %) to O(logN) time. The implementation of Ray-Face Intersection Sorting

involves adapting spatial data structure parameters such that most spatial partitions contain
only a few (less than 5) surface facets. In addition, there is a need to amortize spatial data

structure initialization cost over large numbers of ray tests.

For example, using the SAMPLE-3D cell decomposition data structure, Scheckler had

1
implemented a cell line-of-sight visibility test that can run in O(N 2) time [3]). Again, to

achieve this run time, the cell segment length is sct equal to the ideal segment length in the
surface mesh. Since SAMPLE-3D cell contents are incrementally updated during surface
advancement, and the same SAMPLE-3D cells are used to perform all ray tests within each

time step, ray-face intersection operation time is dominated by the time used to perform pair-

1
wise intersections in O(N 2) cells.

74

In most general-purpose geometry servers, such as the IBM Geometry Engine, dynami-
cally allocated spatial data structures are implemented to facilitate face-face intersection com-
putations. To share spatial data structure initialization costs between ray-face intersection
operations and face-face intersection operations, it may be advantageous for a geometry server
to implement both operations using the same spatial data structure. This data structure sharing
can be accomplished through two straightforward changes to the geometry server. These

server changes reflect differences in input data and frequencies between these two operations.

First, spatial data structures need to be adapted to intersect and store ray segments.
Many efficient algorithms exist to compute pair-wise ray-face intersections (e.g. see

SAMPLE-3D’s algorithm for computing ray-trianglc intersections [3]). For cell decomposi-

tions, a test ray need to be divided into about O(N ?) ray segments contained by various cells.
For octrees or BSP trees, a test ray can be efficiently represented using a pointer to the back-

most facet or the frontmost facet hit by the ray.

Secondly, memory management of spatial data structures need to account for the dif-
ferent lifetimes of surface facets and rays. Within each simulation time step, surface facets are
assumed to be immobile. Therefore, until the next surface advancement, the spatial sorting of
surface facets generated during boundary deformation can be stored as a persistent surface
facet database for repeated ray tests. On the other hand, ray position and direction changes
with every test. Since millions of tests are used at each time step, test rays need to be stored

as dynamically allocated ray segment lists.

75
4.6. LOCALIZED DEFORMATION

Localized Deformation provides facet pushing to cfficiently update facet positions and
connectivity links of moving solid boundaries in IC topography simulation. Without Local-
ized Deformation, worst case O(N*logN) time might be used to update solid boundaries at
each simulation time step. As discussed in Section 4.2, general-purpose geometry SErvers,
such as the IBM Geometry Engine, ensures solid validity during boolean set operations by
duplicating input solid geometry components and connectivity links. As a result, an IBM
Geometry Engine boolean set operation requires O(D,Dylog (D,Dy)) time, where D, and D,

are the number of face-edge incidences in input Solids 4 and B [18]. For the special case of

oN)
2

constructing an aggregate deformation volume, after half (i.e.) of the merge operations

have been performed, the number of face loops in the intermediate aggregate deformation
.. . O(N)
volume (D, or D,) becomes O(N). Consequently, for the remaining half (i.e. —3—) of the

merge operations, O(N) geometry components and connectivity links are duplicated. This

results in a worst-case run time of O(N*logN).

With Localized Deformation, an aggregate deformation volume can be constructed in
about O(N) to O(NlogN) time. Figure 4.8 illustrates two types of special-purpose boolean set
operations that can be used to support Localized Deformation: Surface-based boolean set
operations, and Localized boolean set operations. As depicted in the left and middle lof
Figure 4.8, surface-based boolean set operations, such as deloop, can play two important
roles in simulating solid boundary deformation. First, deloop can be used in the traditional
sense to remove extraneous loops after surface advancement. Secondly, as demonstrated by
Sefler in [22], deloop can be used to merge together the initial surface (Surface 1), the

delooped surfaces (Surfaces 2 and 3), and the simulation boundaries (Surfaces 4 and 5) into an

76

aggregate deformation volume. Since each deloop operation can be performed in O(NlogN)

time, the aggregate deformation volume can be constructed in O(NlogN) time.

Localized boolean set operations [23] can avoid extraneous connectivity links duplica-
tion by using the smaller input solid as a spatial filter for delimiting perturbed faces in the
larger input solid. As depicted in the right of Figure 4.8, localized boolean set operation can
create new facets, and resolve facet-facet intersections within a spatial filter defined by the
facet sweep. This effectively prevents unperturbed faces in the intermediate aggregate defor-
mation volume from participating in the operation. Mantyla showed that localized boolean
set operations run in O(n log n) time, where n is the number of faces in the smaller input
solid [23]. For boundary deformation, the smaller argument is either a tetrahedron (4 faces) or
a triangular prism (5 faces). Therefore, boundary deformation using repeated localized set

operations can run in a more O(N)-like O(N * n log n) time.

77

*SIWIPRP UIYIIM SUOI)IIS
—JI3)ul A0S pue ‘YY)
ysnd s)a0e} mau eda)

suonerddQ 39S
uBd[00g PIZI[BIO]

UONBULIOJI(] PazI[ed07] 10] suonerdd(39§ uedjooq

sdey
suipio)
) NS,

7 ddelang

.wo_.:w—v:-on jusuddueApe

PIjos eIXY

(doojaq) suonerdd(39S
uedjooy paseg—adeling

ddelins wouj sdoog
SNOJURB.IJXI JAOUWIDY

RHW - UCB TCAD

Figure 4.8

78
4.7. CONCLUSIONS

This chapter showed that the performance of geometrical operations in 3D IC topogra-
phy simulation are linked to four essential geometry server constructs. These constructs can
be implemented using conventional connectivity and spatial data structures, and special-
purpose boolean set operations. The implementation of these constructs constitutes a neces-
sary but not sufficient condition for efficient 3D IC topography simulation. This fact was
demonstrated by comparing the theoretical performance of geometrical operations imple-
mented with and without the constructs. Since the constructs were shown to be necessary for

efficient 3D simulation, they may be used to screen potential servers.

Section 4.3 described how Explicit Connectivity improves surface connectivity query
performance from O(N) time to O(1) (constant) time per query. For Explicit Connectivity, the
key implementation principle is to choose a low topological order gcometry component, such
as an edge or a vertex, to store most of the connectivity links. In particular, connectivity links

are established from special geometry components to all of their adjacent components.

As an example, Section 4.3 introduced the 2D winged-edge data structure, which uses
edges to store connectivity links to component vertices, ajdacent edges, and incident faces.
To facilitate connectivity queries, each vertex or face contains a back pointer to an adjacent
edge. As another example, Section 4.3 described the 3D star-edge data structure, which was
implemented in the IBM Geometry Engine. The star-edge data structure uses vertices to
store connectivity links to incident edges and incident faces. At each vertex, incident edges
are organized into stars. Each star contains links to an incident face, and the incident edges

on that face.

79

Section 4.4 described how Face-Face Intersection Sorting can improve the perfor-

3
mance of face-face intersection operations from O(N?) time to O(N 2) time for grid-based

data structures, and O(NlogN) time for tree-based data structures. In using 3D spatial data
structures to implement Face-Face Intersection Sorting, the key implementation principle is to
set the cell size or the tree depth, such that each spatial partition contains a few surface facets.
A practical rule-of-thumb is to set the cell/octant segment length equal to the ideal facet seg-

ment legnth. As discussed in Section 4.4, using this technique, SAMPLE-3D’s cell deloop

3
can be performed in O(N ?) time, and SAMPLE-3D’s octree deloop can be performed in

O(NlogN) time. Section 4.4 also briefly described the algorithm for an O(NlogN) time BSP

tree deloop operation.

Section 4.5 described how Ray-Face Intersection Sorting can improve the performance

1
of point lecation tests or line-of-sight visibility tests from O(N) time to O(N 2) time for

grid-based data structures, and O(logN) time for tree-based data structures. Similar to Face-
Face Intersection Sorting, in using 3D spatial data structures to implement Ray-Face Intersec-
tion Sorting, the key implementation principle is to set the cell size or tree depth such that
each spatial partition contains a few surface facets. In addition, there is the need to amortize
spatial data structure initialization costs over large number of ray tests. As discussed in Sec-

tion 4.5, using these techniques, SAMPLE-3D’s cell line-of-sight visibility test can find all

1
ray-face intersections in O(N 2) time.

Section 4.5 also described a two-step server modification for adapting Face-Face Inter-
section Sorting data structures to simultaneously support Ray-Face Intersection Sorting.

The goal of this server modification is to sharc spatial data structure initialization cost

80

between face-face and ray-face intersection operations. The two-step modification involves:
1) Creating geometric utilities to subdivide rays into ray segments, and intersect ray segments
with faces; 2) Making the Face-Face Intersection Sorting data structure a part of the per-
sistent geometry server data. Most geometry servers dynamically allocate 3D spatial data
structures during boolean set operations. Therefore, Step 2) may represent a significant

change in geometry server memory management.

Section 4.6 described how Localized Deformation can improve the performance of
boundary deformation from O(N2logN) time to O(NlogN) time or O(N * n log n) time, where
n is the number of faces in a facet swept deformation volume. Section 4.6 described two types
of special-purpose boolean set operations that exploits spatial and temporal locality in IC
topography simulation to avoid extraneous duplications of geometry components and connec-
tivity links. The first approach involved pushing surface facets, and using surface-based
boolean set operations, such as deloop operations, to construct a valid aggregate deformation
volume. As an example, Section 4.6 discussed how SAMPLE-3D’s solid extraction opera-

tion uses deloop to generate solids in O(NlogN) time.

The second approach involved using localized boolean set operations. Localized
boolean set operations use triangular deformation prisms as spatial filters. Within the spatial
filter, the operation can push a subsct of solid model faces, and update connectivity links
between these faces. Section 4.6 discussed Mantyla’s implementation. Mantyla showed that
the performance of a localized boolean set operation can be made to depend only on n. Asa
result, boundary deformation using repeated localized boolean set operations can be per-

formed in a more O(N)-like O(N * n log n) time.

81
REFERENCES FOR CHAPTER 4

[1] M. Karasick, D. Lieber, "Schemata for Interrogating Solid Boundaries,” ACM Symposium

on CAD and Foundations of Geometric Modcling, June 1991, pp. 15-25.

[2] KK.H. Toh, AR. Neureuther, EW. Scheckler, Algorithms for simulation of three-
dimensional etching. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, May 1994, vol.13, (no.5):616-24.

[3] E.W. Scheckler, A.R. Neureuther, Modcls and algorithms for three-dimensional topogra-
phy simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Feb. 1994, vol.13, (no.2):219-30.

(4] J.J. Helmsen, A comparison of three-dimensional photolithography simulators. Ph.D.

Thesis, UC Berkeley, UCB/ERL M95/25, 1995.

[5] P. Conti, N. Hitschfeld, W. Fichtner, Omega -an octree-based mixed element grid allocator
for the simulation of complex 3-D device structures. 1EEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Oct. 1991, vol.10, (n0.10):1231-41.

[6] D. Yang, Mesh generation and information model for device simulation. Ph.D. Thesis,

Stanford University, June 1994.

[7] P. Lloyd, C.C. McAndrew, M.J. McLennan, S.R. Nassif, and others. Technology CAD at

AT&T. Microelectronics Journal, March 1995, vol.26, (no.2-3):79-97.

[8] B.F. Naylor, Interactive solid geometry via partitioning trees. Proceedings. Graphics Inter-

face '92, Vancouver, BC, Canada, 11-15 May 1992. p. 11-18.

82

[9] F. Jones, J. Paraszczak, RD3D (computer simulation of resist development in three dimen-

sions). IEEE Transactions on Electron Devices, Dec. 1981, vol.ED-28, (no.12):1544-52.

[10] C.H. Sequin, Computer simulation of anisotropic crystal etching. Sensors and Actuators

A (Physical), Sept. 1992, vol.A34, (no.3):225-41..

[11] Hung Liao, T.S. Cale, Three-dimensional simulation of an isolation trench refill process.

Thin Solid Films, 15 Dec. 1993, vol.236, (no.1-2):352-8.

[12] S. Tazawa, F.A. Leon, G.D. Anderson, T. Abe, and others. 3-D topography simulation of
via holes using generalized solid modeling. Proceedings of IEEE International Electron Dev-

ices Meeting, San Francisco, 13-16 Dec. 1992. p. 173-6.

[13] E. Strasser, S. Selberherr, Algorithms and models for cellular based topography simula-
tion. 1EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Sept.

1995, vol.14, (n0.9):1104-14.

[14] D. Adalsteinsson, J.A. Sethian, A level sct approach to a unified model for etching, depo-
sition, and lithography. 1I. Three-dimensional simulations. To appear Joumal of Computa-

tional Physics, 1995.

[15] J.A. Sethian, Theory, algorithms, and applications of level set methods of propagating

interfaces. To appear Acta Numerica, 1995.
[16] H. Edelsbrunner, Algorithms in combinatorial geometry, Springer-Verlag, Berlin, 1987.

[17] B.G. Baumgart, Geometric modeling for computer vision. Ph.D. Thesis, Stanford Univer-

sity, 1974.

83
[18] M.S. Karasick, On the representation and maniuplation of rigid solids. Ph.D. Thesis,

McGill University (also Cornell University TR 89-976), 1989.

[19] H. Samet, Applications of spatial data structures. Addison-Wesley Publishing Co., 1990.

(Note: Survey of octree algorithms and applications.)

[20] B. Naylor, Binary space partitioning trees as an alternative representation of polytopes.

Computer Aided Design, May 1990, vol.22, (no.4):250-2.

[21] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics: Principles

and Practice, 2nd Ed., Addison-Wesley Publishing Co., 1987.

[22] J. Sefler, 3D Surface Modeling Utilities for use in TCAD, MS Thesis, UC Berkeley,

October 28, 1995.

[23] M. Mantyla, Introduction to solid modeling. Rockville, MD, USA: Computer Science

Press, 1988.

84
CHAPTERSS

IBM GEOMETRY ENGINE CONSTRUCTS

5.1. INTRODUCTION

The IBM Geometry Engine [1] as a modern solid modeler is a prime candidate to be
used to support IC topography simulation. However, even in this modeler not all of the
geometry server constructs essential to IC topography simulation are implemented. This
chapter describes IBM Geometry Engine constructs, and discusses how they might degrade
3D simulation performance. The IBM Geometry Engine provides Explicit Connectivity and
Face-Face Intersection Sorting, but lacks Ray-Face Intersection Sorting and Localized Defor-
mation. Table 5.1 summarizes IBM Geometry Engine constructs. In Table 5.1, the constructs
supported by the IBM Geometry Engine are listed in the leftmost column, and the correspond-
ing data structures are listed in the middle column. The rightmost column of Table 5.1 lists
the connectivity query performance , and the face-face intersection operation operation that

can be achieved through the usc of IBM Geometry Engine constructs.

Developed at IBM Research during the early 1990’s, the IBM Geometry Engine was pri-
marily designed as an Explicit Connectivity geometry scrver that could replace the GDP solid
modeler [3][4]. When GDP was used in the early 1980’s to simulate 3D device structures in
the OYSTER [5] system, its inability to explicitly represent material interfaces became a
major barrier towards rigorous IC topography simulation. As shown in the first row of Table
5.1, the IBM Geometry Engine improves over the GDP solid modeler by providing Explicit
Connectivity through two data structures: The star-edge data structure and the star-edge
schema [1]. As previously described in Chapter 4, the star-edge data structure is a 3D exten-

sion of the 2D winged-edge data structure. With respect to IBM Geometry Engine data

85

organization, the star-edge data structure stores geometry components and connectivity links

internal to the server, and cannot be directly accessed by application programs.

Section 5.2 describes the star-edge schema for accessing IBM Geometry Engine
geometry components and connectivity links. Based on connectivity services requested by the
application program, the star-edge schema selectively extracts server geometry components
and connectivity links. The extracted components and links are then tranformed by the star-
edge schema into a format that hides the connectivity links in the star-edge data structure.
Since server data may be updated at each simulation time step, the frequent transfer of
geometry components and conncctivity links from the star-edge data structure to the star-
edge schema may degrade 3D simulation performance. In Section 5.2, the efficiency of this
data transfer will be studied with respect to the connectivity service requircments of 3D IC

topography simulation.

Section 5.3 describes the bucket sorting of face bounding boxes data structure for sup-
porting Face-Face Intersection Sorting in the IBM Geometry Engine. Conventionally, 3D
Face-Face Intersection Sorting has been implemented using spatial data structures that sort
faces into 3D spatial partitions, such as octrees or BSP trees. The IBM Geometry Engine
uses a spatial data structure that sorts face bounding boxes into buckets along the principal (x-,
y-, and z-) axes, or 1D spatial partitions. As shown in the second row of Table 5.1, in general,
the IBM Geometry Engine can use this data structure to find all face-face intersections in
empirical O(N) time [2]. In Section 5.3, the efficiency of the bucket sorting of face bound-
ing boxes data structure will be studied for the special case of deformation volume stitch-back

after an etching or deposition process step.

86

‘uo1)9s.1ajul

(€S uonIas)
o___.__._uemhvoh s9x0g suipunog 3de |
Aqredradurd Jo 3unJog 1xang (A1)
-L1anb aad (T°s uond9s) (€'v uondag)
aum (1)O BUWRYIS AIN)NIS eIeq
. a3pA-1eIS 28pH-18IS
JINISUO)) YIM
oo—.wEWew_._om SunpLIos|y pue
pajioday $3IN)ONAS vleq

3u11iog
UO11O2SL2JU]
20D —ID,]

RHW - UCB TCAD

A1141392UU0))
pondxsy

JONISU0)

$1ONIISUO)) dWIsU A1Jow0dn) NI

Table 5.1

87
5.2. EXPLICIT CONNECTIVITY: THE STAR-EDGE SCHEMA

The star-edge schema provides a convenient interface for accessing IBM Geometry
Engine geometry components and connectivity links by hiding the connectivity links in the
underlying star-edge data structure. Figure 5.1 illustrates the geometry components and con-
nectivity links in the star-edge schema. In Figure 5.1, italicized objects are iterators, or
objects that iterates through the elements of a linked list, and returns a pointer to the traversed
element during each iteration. As shown in Figure 5.1, connectivity links in the underlying
star-edge data structurc are transformed into a generic set of iterators:
VolumesOfSolid(Vertex|Edge|Face), FacesOfSolid(Vertex|Edge), and EdgesOfSolid(Vertex).
For example, to obtain the edges incident on schema vertex V, the EdgesOfSolid(V) object is
activated. This generic interface completely hides the internal data organization of the star-

edge data structure.

Based on connectivity services requested by the application program, the star-edge
schema can selectively extract a topological subset of server geometry components and con-
nectivity links. In some cases, the star-edge schema might split its copy of the underlying
star-edge edges and faces to reducc the topological complexity of the schema solid model.
Figure 5.2 illustrates the extraction of a simplified star-edge schema 2D solid model, from a
topologically complex star-edge structure 3D solid model. As shown in Figure 5.2, the
schema splits the hour-glass polygonal face F in the 3D solid model, into two triangular faces

F1 and F2 in the 2D subset.

Due to topological subset selection and simplification, connectivity links in the star-
edge data structure cannot be directly transferred to the star-edge schema. As an example,

Figure 5.2 shows how these features prevents the direct transfer of connectivity links from

88
star-edge vertex V to star-edge schema vertex V. In the 3D solid model, the star-edge ver-

tex V has an incident edge that goes along the +y direction, and an incident face F that is in
the shape of an hour-glass. Due to topological subset selection, the +y direction edge has no
corresponding schema edge. Since the schema had split its copy of face F, face F has no

directly corresponding schema face.

Instead of directly transferring star-edge connectivity links, the star-edge schema
establishes connectivity links between schema geometry components through a two-step pro-
cedure. First, for each selected star-edge vertex, all of its incident star-edge edges and faces
are found by traversing vertex stars. Then, for each star-edge component incident on the
selected vertex, a linear search is carried out on the appropriate star-edge schema component
list to identify the star-edge schema equivalent(s). In the special case of 3D IC topography
simulation, all star-edge vertices, edges, and faces need to be represented in the star-edge
schema. Therefore, for 3D IC topography simulation, the initialization of schema connec-
tivity links may require { N schema vertices } * { 3 to 6 incident edges and faces }* { ON)

time per linear search on schema component list of size O(N) } = O(N?) time.

89

PUOSIOSIINNAI/| et XIVII At 10O

\E@%&E —t- 3 3Pt d00T/OS5I3pT ‘A UO
» JUIPIOUI SISPI [SUINJdI
plIos $d007.i5ul] =———epz007] (A X39119A)PI0SJOSI3PT —
/) \ “pIj0S 3Y) ul SaSpa [[®
PHOSIOSIID] et IV S [19YSJOSP9D suanjd1 OPIOSIOSISPH —
&R&h.&:&/ ‘ ssojdwrexy
PUOSJOSIUNIO | eI WM O A e [[PY 'S

‘S 23p—18)S Sul|pun
3Y3 ul syuI] AJIADRUUOD IPIY
[06 49Ga1'T pue Yoiseae)] wodj 3.1n31g] s10)e.19)1 Juduodwod £1)ou0dn

BUIOYDS 33PH—I8)S
Y ul SUI'T ANApdIUUO) IIAXH

RHW - UCB TCAD

Figure 5.1

q 9
ISp—IelS
74 ey
5 BUIYIS
A X9219 - A X929 A
owwm_\.agkm\ BUIDYDIS
A e RESLE
BUIYDS
[°POJAl PIIOS
2anpPNNS Bleq 13sqn§ [PPOIAl PI[OS
ISPH—-IvIS BUIDYOS 3p—18)S

“J] 998] I3pH-1EIS

03 suipuodsa.i0d s3de}
BUIAYIS 0M]) 1B I9Y)
‘Sumnds 2984 03 anQ

-aged ayj ojul 3ui0s
a8pa vwdyds urpod
—$3.1.10J 0U SI .13}
‘U013II3S 19sqns
[eaigojodo |, 03 an(

06 1221 pue Ydiseae)] wo.dj pajdepe dan3ij|

*A X9)19 A BUIAYIS 0} PILIJSUBI) A[JIIIP dq
JOUUBI A XI)IIA ISP —IBIS Ul SHUI'] AJANIIUUO))

RHW - UCB TCAD |

Figure 5.2

91
5.3. FACE-FACE INTERSECTION SORTING: BUCKET SORTING OF FACE

BOUNDING BOXES

Through the use of the bucket sorting of face bounding boxes data structure, the IBM
Geometry Engine supports an efficient expected O(N) time face-face intersection operation.
In the left of Figure 5.3, two overlapping solids, Solid 4 and Solid B, are being merged by
boolean set operations. The bucket sorting data structure sorts solid faces into 1D buckets
along the principal z-axis. As shown in the right of Figure 5.3, each bucket contains faces
whose bounding boxes are partially or completcly extended into the bucket. In general, to
achieve expected O(N) time performance, buckets need to be created along a random direc-
tion, and projected onto the principal axes. Altematively, the IBM Geometry Engine creates

buckets along the principal axis with the greatest extent.

The right of Figure 5.3 illustrates how the bucket sorting data structure effectively helps
the IBM Geometry Engine avoid extraneous face-facc intersections. First, the IBM Geometry
Engine checks for overlaps between face bounding boxes. Pairwise face intersections are then
computed only between faces with overlapping bounding boxes. For the bucket shown in the
right of Figure 5.3, 9 face bounding box intersection checks would be performed. Since these
checks would not find any bounding box overlap, there would be no need to compute pairwise

face intersections in this bucket.

For the special case of deformation volume stitch back in IC topography simulation, the
bucket sorting data structure might result in O(N?) face bounding box intersection checks.
When an aggregate deformation volume is stitched onto a wafer geometry after a deposition
process, the wafer top surface is intersected against itself. Due to the predominantly planar

nature of IC topographies, many of the O(N) surface facets may be co-planar, and parallel to

92

the xy-plane. Therefore, the z-axis bucket located near the wafer top surface may contain up
to O(N) co-planar faces. As a result, for this bucket, the IBM Geometry Engine may invoke

O(N?) face bounding box intersection checks.

93

*$9J8J 3I3S.Id)Ul
asimared 0) padu ON <-
‘dej1aA0 x0qq ON

¢

J \)

A
7+ 7+

*de[13A0 x0qq ON <~
*SHIIYD UOI)IISINUI X0 g spyInyg 2.
Sulpunog ey G=€X € unedJewdp suorsiAlq

SUOI)I3SINU] e,]k sunnduo)
10] saxog Suipunog e Jo sun.Jos jyong ,,Z..

RHW - UCB TCAD

Figure 5.3

94
5.4. CONCLUSIONS

This chapter described the essential geometry server constructs implemented in the
IBM Geometry Engine. As discussed in Section 5.1, the IBM Geometry Engine supports two
out of the four essential constructs. The IBM Geometry Engine implemented two Explicit
connectivity data structures. The star-edge data structure stores connectivity information
inside the IBM Geometry Engine. The star-edge schema provides read-only access to server
connectivity information. The IBM Geometry Engine also implemented an unconventional
Face-Face Intersection Sorting data structure that sorts face bounding boxes into 1D spatial
partitions. The IBM Geometry Engine does not support Ray-Face Intersection Sorting and

Localized Deformation.

At each time step of a 3D IC topography simulation, Section 5.2 showed that the IBM
Geometry Engine requires O(N?) time to transfer conncctivity links from the star-edge data
structure to the star-edge schema. Through the star-edge schema, application programs can
request a subset of the server components, and simplify the topology of the subset com-
ponents, such as subdividing an hour-glass face into two triangular faces. Since the star-edge
schema may contain a modified subset of the scrver components, schema components that
corresond to server connectivity links have to be found using linear searches through schema
components lists. For 3D IC topography simulation, a topography with N vertices has O(N)
edges and faces. Therefore, the star-edge schema contains several lists of O(N) vertices,
edges, and faces. For each schema vertex, the IBM Geometry Engine needs O(N) time to

establish its connectivity links. Overall, connectivity links are transferred in O(N 2) time.

For typical IC topographies with about 10,000 facets, the efficiency gained in perform-

ing schema connectivity queries might be swamped over by the O(N?) time needed to

95
establish schema connectivity links. As discussed in Chapter 4, a typical IC topography simu-

lation time step may involve up to O(N) connectivity queries. Since each star-edge schema
connectivity query requires only O(/) (constant) time, all connectivity queries can be
efficiently performed in O(N) time. In Chapter 6, as a part of IBM Geometry Engine stand-
ardized performance tests, the run times of star-edge schema connectivity links initializa-

tion and connectivity queries will be compared on planar topographies.

For the special case of deformation volume stitch back in IC topography simulation, the
bucket sorting of face bounding boxes data structure might result in O(N?) face bounding
box intersection checks. When an aggregate deformation volume is stitched onto a wafer
geometry after a deposition process, the wafer top surface is intersected against itself. Due to
the predominantly planar nature of IC topographies, many of the O(N) surface facets may be
co-planar, and parallel to the xy-plane. Therefore, the z-axis bucket located near the wafer top
surface may contain up to O(N) co-planar faces. As a result, for this bucket, the IBM
Geometry Engine may invoke O(N?) face bounding box intcrsection checks. In Chapter 6, as
a part of IBM Geometry Engine standardized performance tests, the run 4time performance
impact of this topography simulation induced incfficiency will be characterized using vertical

deposition on planar and non-planar 3D topographics.

96
REFERENCES FOR CHAPTER 5

[1] M. Karasick, D. Lieber, "Schemata for Interrogating Solid Boundaries," ACM Symposium

on CAD and Foundations of Geometric Modeling, June 1991, pp. 15-25.

[2] M.S. Karasick, On the representation and maniuplation of rigid solids. Ph.D. Thesis,

McGill University (also Cornell University TR 89-976), 1989.

[3] M.A. Wesley, L.I. Lieberman, M.A. Lavin, D.D. Grossman, and others. A geometric
modeling system for automated mechanical assembly. 1BM Journal of Research and Develop-

ment, Jan. 1980, vol.24, (no.1):64-74.

[4] R.N. Wolfe, M.A. Wesley, J.C. Kyle, Jr., F. Gracer, and others. Solid modeling for pro-

duction design. IBM Journal of Research and Development, May 1987, vol.31, (n0.3):277-95.

[5] G.M. Koppelman, M.A. Wesley, OYSTER: a study of integrated circuits as three-
dimensional structures. IBM Journal of Research and Development, March 1983, vol.27,

(no.2):149-63.

97
CHAPTER 6

PERFORMANCE EVALUATION OF
THE 1BM GEOMETRY ENGINE

6.1. INTRODUCTION

This chapter introduces standardized performance tests as a system tool for evaluating
and guiding the use of centralized geometry servers in 3D 1C topography simulation. Stand-
ardized performance tests are representative test cases of geometrical operations used in IC
topography simulation. These tests are based on the need for essential geometry server con-
structs. The tests attempt to measure the effectivenss of implemented constructs, and charac-
terize the performance impact of missing constructs. Performance test results, such as those in
this chapter, can give insights to the design of auxiliary data structures which can compensate

for ineffective or missing constructs.

Standardized performance tests provide a means for automatically tracking the progress
in general-purpose servers for 3D IC topography simulation. Section 6.2 describes the BTU
systems tools that were used to conduct IBM Geometry Engine [1] standardized performance
tests. As will be shown in this chapter, considerable coding is necessary to interface the
Geometry Engine for IC topography simulation. The IBM Geometry Engine standardized
performance tests are designed to evaluate the effectiveness of IBM Geometry Engine con-
structs, and characterize the performance impact of not supporting Ray-Face Intersection Sort-
ing and Localized Deformation. A preliminary version of these tests have been published in
[2). All test results reported in this chapter were obtained on an IBM RS/6000 Model 530

workstation with 32 MB RAM.

98
Section 6.3 describes. the Explicit Connecitivity Test. To evaluate the efficiency of

IBM Geometry Engine’s star-edge schema, this test uses breadth first traversal of surface ver-
tices to supply representative surface connectivity queries. Breadth first traversal involves
recursively using the connectivity between a traversed vertex and its adjacent edges and faces
to find connected vertex neighbors for continuing the traversal. Therefore, this traversal effec-
tively exercises useful schema connectivity links. This test measures the CPU times used to
perform breadth first traversal of all surface vertices on 3D planar topographies with 70 faces
to 500 faces. As recommended in Chapter S, the Explicit Connectivity Test also assesses the
performance impact of the O(N?) time required to initialize schema connectivity links. In
Section 6.3, the CPU times of schema connectivity queries are compared with that of schema

connectivity links initialization.

Section 6.4 describes the Face-Face Intersection Sorting Test. To demonstrate the
efficiency gained through IBM Geometry Engine’s bucket sorting of face bounding boxes
data structure, boolean set operations are used to glue 3D IC topographies with their vertical
deposition volumes. In this test, the CPU times used to compute solid intersection curves are
measured for 3D topographics with 100 surface triangles to 1,000 surface triangles. As
recommended in Chapter 5, the Face-Face Intersection Sorting Test also characterizes the
performance impact of using O(N ?) face bounding box intersection computations to compute
face-face intersections between planar topographies and their vertical deposition volumes. In
Section 6.4, this performance impact is assessed by comparing the CPU times used to com-

pute solid intersection curves on planar versus non-planar topographies.

Section 6.5 describes the Ray-Face Intersection Sorting Test. The first part of the
Ray-Face Intersection Sorting Test evaluates the performance impact of not supporting

Ray-Face Intersection Sorting in the IBM Geometry Engine. In this part of the test, material

99

interface collision detection is emulated by applying point location tests to points on a verti-
cal etch front. In the IBM Geometry Engine, the point location test is implemented by shoot-
ing out a ray from a query point towards the -x-direction, and using ray-face intersections to
identify the vertex, edge, face, or volume that contains the query point. To characterize the
performance impact of checking for intersections between a ray and O(N) faces, average CPU
times are measured for IBM Geometry Engine point location tests on 3D planar and non-

planar topographies with 300 to 3,000 faces.

The second part of the Ray-Face Intersection Sorting Test demonstrates the perfor-
mance improvement that could be gained by using the bucket sorting of face bounding
boxes data structure to support Ray-Face Intersection Sorting. Another purpose of this part of
the test is to introduce geometrical operation transformation as a data organization method
to compensate for the lack of Ray-Face Intersection Sorting. In this part of the test, boolean
set operations between sliver tetrahedra and 3D IC topographies, replace point location tests
on etch front points. Each sliver tetrahedron consists of an apex located near the center of the
topography, and a vertical triangular base located to the left of the topography. For com-
parison with CPU times on IBM Geometry Engine point location tests (Part 1), CPU times
are measured for solid intersection curve computations between a sliver tetrahedron, and 3D

planar and non-planar topographies with 300 to 3,000 faces.

Section 6.6 describes the Localized Deformation Test. The first part of the Localized
Deformation Test demonstrates the performance impact of not supporting Localized Defor-
mation in the IBM Geometry Engine. In this part of the test, boundary deformation using tri-
angular prisms is emulated by staircase construction from cubes. In the context of boundary
deformation, a cube is computationally equivalent to a triangular prism generated by a tri-

angular facet sweep. Just as merging each triangular prism introduces localized changes to the

100

intermediate aggregate deformation volume, merging each cube introduces localized changes
to the intermediate staircase. To assess the performance impact of repeatedly copying over
unaffected facets and connectivity links in intermediate staircases, CPU times are measured

for merging 100, 400, 900, and 1600 1 um x 1 um x 1 um cubes into staircases.

The second part of the Localized Deformation Test demonstrates how boolean set
operations can be efficiently used to simulate boundary deformation by increasing input data
granularity. Another purpose of this part of the test is to introduce large grain surface
decomposition as a data organization method to compensate for the lack of Localized Defor-
mation. In this part of the test, boundary deformation using large grain deformation volumes
is emulated by staircase construction from VN -cube strips. Since each cube strip has W
cubes, the number of merge operations is reduced by VNx. This in tumn reduces by VNx the
number of duplications of unperturbed facets and connectivity links. To demonstrate the per-
formance improvement that could be gained by increasing input data granularity, CPU times
arc measured for merging 10 10-cube strips, 20 20-cube strips, 30 30-cube strips, and 40 40-

cube strips into staircases.

101
6.2. STANDARDIZED PERFORMANCE TESTING IN THE BTU SYSTEM

This section introduces the BTU system utilities for constructing and manipulating these
structures. In implementing standardized performance tests, it is shown that the demand of 1C
topography simulation requires considerable augmentation of the standard interfaces to
general-purpose geometry servers. About 10,000 lincs of C++ code are likely necessary to
perform relatively basic geometrical operations in 3D IC topography simulation with any
solid modeling package. For example, about 12,000 lines of C++ code are required to inter-
face the IBM Geometry Engine for performance testing. Out of these 12,000 lines, a
significant part performs mundane geometry construction and data mapping tasks, such as
constructing tiled initial topographies, extracting surface faces, triangulating polygonal faces,

and constructing vertical deformation volumes.

Three out of the four IBM Geometry Engine standardized performance tests use the
planar stack and two-holes initial structures. Figure 6.1 plots a 2D cross section of the two-
holes structure at y = 0. This figurc depicts the dimensions and positions of the planar stack
and two-holes structures to be used in the Explicit Connectivity Test, thc Face-Face Inter-
section Sorting Test, and thc Ray-Face Intersection Sorting Test. As shown in Figure 6.1,
each initial structure consists of two layer;: A 2 um thick silicon substrate, and a 0.6 um thick
oxide layer. Each layer has a length of 6 um along the x direction, and a length of 4 um along
the y direction (not shown). The silicon substrate is centered at (0,0,1), and the oxide layer is
centered at (0,0,2.3). (The exception is in the Face-Face Intersection Sorting Test, which
uses a 6 um thick substrate.) The holes in the two-holes structure are cut using two inverted
cone stubs. Each cone stub has a top radius of 1 um, a bottom radius of 0.6 um, and a height

of 0.6 um. The cone stubs are centered at (1.5, 0, 2.3), and (1.5, 0, 2.3).

102

The BTU system provides several utilities for constructing the planar stack and two-
holes initial structures, and vertically depositing various material layers on these structures.
First, there is the initial structure construction utility. This utility creates planar stack and
two-holes solid structures using the following boundary meshing parameters: 1) NX = the
number of divisions per micron along the x direction of a layer, 2) NY = the number of divi-
sions per micron along the y direction of a layer, 3) NTheta = the number of angular divisions
in a cone stub, 4) NSlices = the number of vertical divisions in a cone stub. and 5) NHoles =
the number of holes in the oxide layer. The upper left corner of Figure 6.2 illustrates a two-
holes initial structure created by the initial structure construction utility using NX = 2, NY

=2, NTheta = 16, NSlices = 4, and NHoles = 2.

The surface mesh extraction utility cxtracts the surface faces of an IBM Geometry
Enginc solid model, and creates a surface mesh by triangulating each surface face. As an
example, the lower left comer of Figure 6.2 depicts the triangular surface mesh extracted from
the two-holes initial structure by the surface mesh extraction utility. To ease the sub-task of
face triangulation, the IBM Geometry Enginc’s face simplification facility was disabled.
Face simplification removes shared edges between adjacent co-planar faces, and may create
polygons that have holes (i.e. non-simply-connected polygons). Disabling the face
simplification facility can help maintain a finely meshed solid model that contains only
simply-connected polygonal faces. As a result, surface faces can be easily triangulated by

connecting face vertices.

The vertical deformation volume construction utility creates a vertical deformation
volume by extruding an initial surface mesh along the z direction. In the BTU system, the
mesh extrusion is implmented by copying the initial surface mesh to a moving surface mesh,

uniformly increasing or decreasing the z components of the moving mesh vertices, and

103

stitching the initial mesh and the moving mesh along their boundaries. As an example, the
upper right comer of Figure 6.2 shows the 0.7 um polysilicon layer created from the two-holes

initial surface mesh by the vertical deformation volume construction utility.

The vertical deformation volume stitch-back utility selects the boolean set operations
used to update the 3D wafer geometry after a vertical etching or deposition. For etching
update, the utility invokes the subtraction operation. For deposition update, the utility
invokes either the merge operation, if the same material as the top layer material was depo-
sited, or the glue operation, if a different material was deposited. As an example, the lower
right corner of Figure 6.2 displays the two-holes structure after the vertical deformation

volume stitch-back utility had updated the vertical deposition of the polysilicon layer.

In Figure 6.2, the number of faces or triangles is shown for each solid model or surface
mesh. Using the same initial structure boundary meshing parameters, the number of faces or
triangles may vary slightly for other TCAD systems or geometry servers. There are two
sources for such discrepancics. First, the initial structure construction utility does not
specify how rectangular layer boundaries are tiled. For example, in the BTU system, a rec-
tangular layer’s y dircction divisions are created by extruding a rectangle parallel to the xz-
plane. Consequently, as shown in the upper left comer of Figure 6.2, there are NY rectangular
panels on each of the layer boundaries at x = xmin, x = xmax, and z = zmin. Other TCAD
systems may easily choose to create one large rectangle in place of NY rectangular panels.
Secondly, boolean set operation implementations tend to vary greatly in how they compute
solid intersection curves, and split existing faces from these curves. Therefore, especially in
the construction of two-holes initial structures, where cone stubs are subtracted from rectangu-

lar layers, different geometry servers may create different numbers of faces near the holes.

104

0°¢

X o | X gl-=X 0re-=X

[
<
—

S

djeaysqns W
uodI[IS |

wn 9°Q = upury |

| . _ o —
REYN g (| | i 0e=12
PO | “ 97="2
_ =
wn §°| _w Xxeunyj i

7+

0 = A 18 INJONIS SIOH—-O0M [, JO UON)IIS SSOID)

§3.INJONI)S [RNIU] SIOH—OM I, pue Yoe)S Jeue[d
J10] SUON)ISOJ PU® SUOISUIWI(] AIJIUI0IT) [BUONIIG SSOI))

RHW - UCB TCAD

Figure 6.1

105

(saoe 80€°T) (Sa|3ueLL],
uonisoda(q de)Ing pps)
193j€ 21NN J0B}JINg
SI[OH—-OM], : SI[O—0M [,

' (s90e, $9TT) (saoey
JUIN[OA § P1[oS 08¢€)
uonisoda(1038 [enIu]
‘1A Wn £ SA[OH—-0M [,

SIM)I[I}() SUIISI |, OUBULIOJIDJ pPaziprepue)S NI
Ag pajead)) SAINPINI)S dUISUF AI)U0dT) JAGI

- UCB TCAD

RHW

2

Figure 6

106
6.3. THE EXPLICIT CONNECTIVITY TEST

The Explicit Connectivity Test evaluates the efficiency of IBM Geometry Engine’s
star-edge schema. In this test, breadth first traversal of surface vertices is used to provide
representative surface connectivity queries. Breadth first traversal involves recursively using
the connectivity between a traversed vertex and its adjacent edges and faces to find connected
vertex neighbors for continuing the traversal. Therefore, this traversal effectively exercises
useful schema connectivity links. As suggested in Chapter 5, the Explicit Connectivity Test
also assesses the performance impact of the O(N 2) time required to initialize schema connec-
tivity links. This is done by comparing the CPU times of schema connectivity queries with

that of schema connectivity links initialization.

The procedure of the Explicit Connectivity Test is listed in Figure 6.3. Step 1 creates a
planar stack initial structure. This step invokes the initial structure construction utility
described in Section 6.2, with the boundary meshing parameters listed in Table 6.1. In Table
6.1, the leftmost column lists the number of solid faces in the planar stack initial structures
used in this test, and the other columns list the corresponding boundary meshing parameters.
Step 2 records the CPU time required to initialize star-edge schema connectivity link§. Steps
3 finds an initial surface vertex for the breadth first traversal. Steps 4 through 6 describes a
breadth first traversal implemented using star-edge schema connectivity queries. Step 7

records the CPU time required to complete the breadth first traversal.

As shown in Table 6.1, the Explicit Connectivity Test was conducted on planar stack
initial structures with 72 to 496 faces. Figure 6.4 depicts an example of the IBM Geometry
Engine solid structures created for this test. The left of Figure 6.4 plots the wireframe model

of a planar stack initial structure with 72 faces. The right of Figure 6.4 shows the surface

107

vertices reported during the breadth first traversal.

Results of the Explicit Connectivity Test confirmed that the IBM Geometry Engine’s
star-edge schema connectivity links can be efficiently used to find connected vertex neigh-
bors in O(1) (constant) time. On the lower curve, Figure 6.5 plots the CPU times used to per-
form breadth first traversals, versus the number of solid faces. In Figure 6.5, CPU times are
plotted along the y-axis, and the number of solid faces are plotted along the x-axis. As shown
in Figure 6.5, breadth first traversal of surface vertices required only O(N) time. For IBM
Geometry Engine solids with 70 faces to 500 faces, went from about 0.5 seconds to about 5
seconds. In a solid with N faces, there are O(N) surface vertices. Therefore, test results
confirmed that at each surface vertex, only O(/) constant time is used to find the small number

of connected vertex neighbors.

For 3D IC topography simulation, Explicit Connectivity Test results suggested that the
efficiency gained in using the star-edge schema may be negated by the cost of initializing
schema connectivity links. On the upper curve, Figure 6.5 plots the CPU times used to initial-
ize schema connectivity links, versus the number of solid faces. As shown in Figure 6.5, ini-
tialization of schema connectivity links required O(N>) time. For planar topographies with 70
faces to 500 faces, test results showed that initialization of schema connectivity links went
from about 2 seconds to about 100 seconds. These results also showed that initialization of
schema connectivity links was from 4x to 20x more expensive than breadth first traversal of

surface vertices.

108

Figure 6.3

Explicit Connectivity Test

Procedure:
1. Create a planar stack initial
structure (see Table 6.1).

2. Record the CPU time required to
initialize schema connectivity links.

3. Find and mark the surface vertex
whose (x,y) are nearest to (x center,
y center) of stack structure.

4. Find all surface faces incident on
this surface vertex.

5. For each incident surface face,

find all connected vertex neighbors.

6. For each unvisited
vertex neighbor,
Repeat Steps 4 to 6.

7. Record the CPU time used
in breadth first traversal.

RHW - UCB TCAD

109

¢ t 96V
(4 (4 9¢7
| I L

(AN) wn Jad (XN) win Jod (N) saaej
sadeds A Jo # sadeds X Jo # pllos Jo #

‘uopisody(q [BINIIA ON
‘uonen3uelLl |, dejing oN
7 = SJdAe] Jo #
wn p = PHIUIT X ‘wn 9 = PIUIT X

sIdjouieaeJ SUIYSIJ\ Alepunog
IS3L, AyApdUUO)) IOIAXH

RHW - UCB TCAD

Table 6.1

110

SIOMII A PISIAABI],
)M 3w Jeue[d

(s0eq TL)
oS Jeue|q

1S9], A3A1)UUO)) IIAXH
J0J S2INJINI)S UISUY AIJUIOIN)

RHW -UCB TCAD

Figure 6.4

111

Explicit Connectivity Test

Explicit connectivity exists in
the start—edge schema. —> Breadth
first traversal in O(N) time.

Initializing schema connectivity links
requires O(N/2) time, and at least 10x
the CPU times for breadth first traversal.

CPU Seconds {I1BM RS/6000 Model 530, 32 MB RAM }
100 N

0.5 — __Breadth first traversal
of all surface vertices. '

70 100 150 200 300 500

of Solid Faces
Figure 6.5 RHW - UCB TCAD

112
6.4. THE FACE-FACE INTERSECTION SORTING TEST

The Face-Face Intersection Sorting Test demonstrates the efficiency gained through
IBM Geometry Engine’s bucket sorting of face bounding boxes data structure. This test
uses boolean set operations to glue 3D IC topographies with their vertical deposition volumes.
In this test, face-face intersections are computed between the IC topographies and their verti-
cal deposition volumes. An important feature of the test is that it introduces 1) O(N) deposi-
tion volume triangles that lic exactly on initial surface faces, and 2) O(N) deposition volume
triangles that lic away from initial surface faces. As suggested in Chapter 5, the Face-Face
Intersection Sorting Test also characterizes the performance impact of using O(N?) face
bounding box intersection computations to compute face-face intersections between planar
topographies and their vertical deposition volumes. This is done by comparing the CPU times

used to compute solid intersection curves on planar versus non-planar topographies.

The procedure of the Face-Face Intersection Sorting Test is listed in Figure 6.6. Step
1 constructs a planar stack or two-holes initial structure with a 6 um thick silicon substrate.
This choice of substrate thickness forces the creation of face bounding boxes along the z-axis.
This step invokes the initial structure construction utility described in Section 6.2, with the
boundary meshing parameters listed in Table 6.2. Table 6.2 lists the parameters for the planar
stack initial structures in the top five rows, and those for the two-holes initial structures in the
bottom four rows. In Table 6.2, the leftmost column lists the number of surface triangles
spawned by the initial structures, and the other columns list the corresponding boundary
meshing parameters. Step 2 creates a 0.7 um polysilicon vertical deposition volume using the
vertical deformation volume construction utility described in Section 6.2. Step 3 stitches
the vertical deposition volume onto the initial structure using the vertical deformation

volume stitch-back utility described in Section 6.2. Step 4 records the CPU time for the

113

sub-task of computing the solid intersection curve.

As shown in Table 6.2, the Face-Face Intersection Sorting Test was conducted on
planar stack initial structures that spawned 96 to 1,200 surface triangles, and two-holes initial
structures that spawned 112 to 1,136 surface triangles. Figure 6.7 depicts examples of the ini-
tial structures and their vertical deposition volumes. The left of Figure 6.7 illustrates a planar
stack initial structure that spawned 192 surface triangles. The right of Figure 6.7 illustrates a

two-holes initial structure that spawned 320 surface triangles.

Results of the Face-Face Intersection Sorting Test confirmed that the IBM Geometry
Engine’s bucket sorting of face bounding boxes data structure can be efficiently uscd to
compute all face-face intersections between IC topographies and their vertical deposition
volumes in expected O(N) time. On the dashed curve, Figure 6.8 plots the CPU times used to
compute solid intersection curves between two-holes initial structures and their vertical depo-
sition volumes, versus the number of surface triangles in the structures. In Figure 6.8, CPU
times are plotted along the y-axis, and the number of surface triangles are plotted along the x-
axis. For non-planar topographies with 100 to 1,000 surface triangles, CPU times used by

solid intersection computation went from about 15 CPU seconds to about 125 CPU seconds.

For 3D IC topography simulation, Face-Face Intersection Sorting Test results showed
that there is minimal performance degradation due to the invocation of O(N?) face bounding
box intersection computations in the planar topography case. On the solid curve, Figure 6.8
plots the CPU times used to compute solid intersection curves between planar stack initial
structures and their vertical deposition volumes, versus the number of surface triangles in the
structures. Compared to the non-planar topography case, test results for the planar topography

case showed about 30% performance degradation in solid intersection computation time. For

114

planar topographies with 100 to 1,000 surface triangles, CPU times used by solid intersection

computation went from about 12 CPU seconds to about 150 CPU seconds.

115

Face—Face Intersection Sorting Test

Procedure:

1. Create a planar stack or two—holes
initial structure (see Table 6.2).

2. Create a 0.7 um vertical deposition
volume of the initial structure.

3. Stitch the 0.7 um vertical deposition
volume to the initial structure.

4. Record the CPU time required to
compute solid intersection curves
between the initial structure and
its vertical deposition volume.

Figure 6.6 RHW - UCB TCAD

116

14 91 14 14 O€T‘1

€ 4 € € 99

4 8 z 4 07

I p z I 1
(s32MISN) mw_u.,w% S S 00T
SOUSIO# gm3uyjoy ¥ p 89L
€ € €y

4 4 61

4 I 96

(AN)umJad (XN)wnaad (N) s9jsuerd],
sodedg A jJo# sdedg X o # ddeang Jo #

7 = SI9ART JO # ‘W 9 = JeAISqNS 7 ‘win = YI3ua] A ‘win 9 = YI3ud| X
sJajoure.aed w-_——wez Jdejiang jeniuy
JS9L, w-mtcw UO01)IISANU] D8 -3de

RHW - UCB TCAD

Table 6.2

117

L L
B MdmmWTAﬂl

% ,.ﬁ |
_.Irl...mv%m IWD@%“

E
WA
A IR

(sosurLL], ddeyIng (7€)
JUINJO A UONBULIOJI(]
+ 2IN)INI)S SO —O0M [,

1S9 |, SUII0S UOI)IISIUY B -8
10J $3.1N3INJ1)S dUISU AIJOU0IN)

RHW - UCB TCAD

(sopsueri], ddeyIns 761)
UWINJ0 A UONBULIOJI(]
+ 21N3oNa)S Yoe)s Jeue|d

Figure 6.7

Figure 6.8

Face—Face Intersection Sorting Test

Face—Face Intersection Sorting using
the bucket sorting data structure. —> Solid
intersection curve computed in O(N) time.

Issuing O(N/2) face bounding box
intersection calls results in about
30% performance degradation.

CPU Seconds {1BM RS/6000, Model 530, 32 MB RAM }

| |
200 _Intersect |
w/ planar
50 . | deformation/ _
| volume. ®
| | o
100 g
70
50 & 4 B
Intersect |rw/
| | 'two—holes
30 | ‘deformation
'volume. |
20k ’ .

| i
100 200 500 1,000

of Surface Triangles

i, |
RHWMGEJIOAD |

119
6.5. THE RAY-FACE INTERSECTION SORTING TEST

The Ray-Face Intersection Sorting Test has two parts. The first part (Part A) evaluates
the performance impact of not supporting Ray-Face Intersection Sorting in the IBM Geometry
Engine. In this part of the test, material interace collision detection is emulated by applying
point location tests to points on a vertical etch front. In the IBM Geometry Engine, the point
location test is implemented by shooting out a ray from a query point towards the -x direc-
tion, and using ray-face intersections to identify the vertex, edge, face, or volume that contains
the query point. The point location test terminates as soon as it obtains a sufficient number
of ray-face intersections to determine the containing geometry component. In other words, the

point location test does not necessarily find all the faces hit by the ray.

The second part (Part B) of the Ray-Face Intersection Sorting Test demonstrates the
performance improvement that could be gained by using the bucket sorting of face bounding
boxes data structure to support Ray-Face Intersection Sorting. Another purpose of this part of
the test is to introduce geometrical operation transformation as a data organization method
to compensate for the lack of Ray-Face Intersection Sorting. In this part of the test, boolean
set operations between sliver teterahedra and 3D topographies, replace point location tests
on etch front points. Each sliver tetrahedron consists of an apex located near the center of the

topography, and a vertical triangular base located to the left of the topography.

The procedure of the Ray-Face Intersection Sorting Test is listed in Figure 6.9. Step 1
constructs a planar stack or two-holes initial structure. This step invokes the initial structure
construction utility described in Section 6.2, with the initial boundary meshing parameters
listed in Table 6.3. Table 6.3 lists the initial parameters for planar stack vertically deposited

structures in the top four rows, and those for two-holes vertically deposited structures in the

120

bottom four rows. In Table 6.3, the leftmost column lists the number of faces in the vertically
deposited structures (i.e. solid structures produced by Step 2 and 3), and the other columns list
the corresponding initial boundary meshing parameters. Steps 2 and 3 in this test are identical

to Steps 2 and 3 in the Face-Face Intersection Sorting Test described in Section 6.3.

The remaining procedure for the first part (Part A) of the Ray-Face Intersection Sort-
ing Test is listed in the upper portion of Figure 6.9. Steps 4a creates a set of fake etch points
at -0.1 below current surface vertices. In Step 4a, one fake etch point is created for each sur-
face vertex. For each fake etch point, Step 5a finds, the vertex, edge, face, or volume that con-
tains it. Step 6a records the total CPU time used to locate all points. Step 7a calculates the

average CPU time by dividing the total CPU time by the number of fake etch points.

The remaining procedure for the second part (Part B) of the Ray-Face Intersection
Sorting Test is listed in the lower portion of Figure 6.9. Step 4b creates a sliver tetrahedron
with an apex at (0,0, ztop - 0.1) (i.c. a representative fake etch point), and a small triangular
base at x = xmin - 0.1. Step b intersects the initial structure with this sliver tetrahedron. Step
6b records the CPU times used to compute the solid intersection curve, and perform the sub-
task of bucket sorting face bounding boxes. As shown in Figure 6.9, this procedure imple-
ments a geometrical operation transformation by replacing a point location test with a

boolean set operation.

As shown in Table 6.3, the Ray-Face Intersection Sorting Test was conducted on
planar stack vertically deposited structures with 340 faces to 2,164 faces, and two-holes verti-
cally deposited structures with 312 faces to 2,876 faces. Figure 6.10 depicts examples of
these structures, and the sliver tetrahedra they intersected with. The left of Figure 6.10 shows

a planar stack vertically deposited structure with 604 faces. The right of Figure 6.10 shows a

121
two-holes vertically deposited structure with 860 faces.

Results from the first part of the the Ray-Face Intersection Sorting Test confirmed
that, due to the lack of Ray-Face Intersection Sorting, IBM Geometry Engine point location
test runs in O(N) time. On the dashed curve, Figure 6.11 plots the average CPU times used by
each point location test on two-holes vertically deposited structures. In Figure 6.11, CPU
times are plotted along the y-axis, and the number of solid faces are plotted along the X-axis.
For two-holes deposited structures with 300 faces to 3,000 faces, average CPU times for each

point location test went from about 0.1 second to about 1 second.

As further confirmation, point location tests werc also performed on planar stack verti-
cally deposited structures with comparable numbers of solid faces. On the solid curve, Figure
6.11 plots the average CPU times on the planar stack deposited structures. For planar stack
deposited structures with 350 faces to 2,100 faces, average CPU times went from about 0.11
seconds to about 0.60 seconds. As shown in Figure 6.11, average CPU times per point loca-
tion test for planar stack deposited structures were consistently about 30% less than those for
two-holes deposited structures. This is because each ray would only need to hit one face to

determine the volume that contains the point.

Results from the second part of the the Ray-Face Intersection Sorting Test showed
that the bucket sorting of face bounding box data structure can be used to find ray-face inter-
sections in strongly sublinear time for both non-planar or planar topographies. Moreover, by
bucket sorting topographies with at least 2,000 faces, CPU times per sliver intersection can be
at Ieast 10x less than CPU times per point location test. On the dashed curve, Figure 6.12
plots the CPU times per sliver intersection on two-holes deposited structures. On the solid

curve, Figure 6.12 plots the CPU times per sliver intcrsection on planar stack deposited

122
structures. In Figure 6.12, CPU times are plotted along the y-axis, and the number of solid

faces are plotted along the x-axis. For a two-holes deposited structure with about 2,000 faces,
CPU time per sliver intersection was about 0.08 seconds, while CPU time per point location
test was about 0.8 seconds. For a planar stack deposited structure with about 2,000 faces,
CPU time per sliver intersection was about 0.03 seconds, while CPU time per point location

test was about 0.6 seconds.

123

Ray-Face Intersection Sorting Test

Procedure:

1. Create a planar stack or two—holes
initial structure (see Table 6.3).

2 and 3. Same as Steps 2 and 3 in the Face-
Face Intersection Sorting Test.

A: Use Ray—Face Intersection.

4a. Create points at —0.1 um below
current surface vertices (i.e. one
point for each vertex).

5a. For each fake etch point,
find the vertex, edge, face, or
material volume that contains
it (i.e. use ray shooting).

6a. Record the total CPU time
used to locate all points.

7a. Divide total CPU time by
number of points (varies).

B: Use Face—Face Intersection
with Slivers.

4b. Create a sliver tetrahedron with
(0,0, ztop — 0.1), (xmin - 0.1, 0.1, —0.1),
(xmin - 0.1, 0, —0.2), (xmin - 0.1, =0.1, —0.1).

5b. Intersect initial structure
with sliver tetrahedron.

6b. Record the CPU time used to
compute solid intersection, and
the sub—task of bucket sorting
face bounding boxes.

Figure 6.9 ~ RHW - UCB TCAD

-

124

y 91 14 y 9L8°C
¢ 4| ¢ ¢ vTLY
(4 8 (4 (4 098
I 14 I I (4 1%
(SP1ISN) M._w.u.w.w_%ﬂw 14 14 P91°T
SMSIO# JenSuyjos € € P9T‘1
(4 4 09
4 I ore

(AN) wn gad (XN) wn Jad (N) pHos

sdedg X Jo# sddedg X Jo # .c“oum%www

(uonisoda(q [BIIIA) € = S13Ae JO #
wn § = §ISud A ‘wn 9 = Ysud] X

sId)oureag g sSurysdjA Alepunog fenmuj
1S9, SUI}IOS UOI)IISINU] e J—ABY

RHW - UCB TCAD

Table 6.3

125

wsud Aex “aip , x—,, +

(sade] ()98) JIa4e[A[od
pajsodap A win §°() /M
21NJONI)S SA[OH—-OM T,

wsiad Lex “aip , x—,, +
(sa0e] $(9) J3Ae| Ajod
pajisodap A win g*() /M

2INJONIS Yor)S Jeue[]

1S3], SUI)10S UOIJIISINU] de J—ArY
10J S2.IN)ONI)S UISUF AIJIUI0IL)

RHW - UCB

Figure 6.10

126

_———

M= o e

Ray—-Face Intersection Sorting Test — 1

IBM Geometry Engine does not have
Ray-Face Intersection Sorting. —>
Point location test is O(N) time.

Point location test terminates as soon
as containing component is found. —>
Time grows as 5x from 200 to 2,000 faces, |
and planar case is faster (i.e.fewer hits). |

CPU Seconds

Per Point { IBM RS/6000, Model 530, 32 MB RAM }
1.0 —— ~ Locate j , /.
point in j e
two—holes R
0T _ struetwre. | A |
0.5
0.4 =
| point in
0-3 BRI EE e .]) SN AN ; 77777 A‘p'lgnar” ey B
structure.
02 -——) Y
’
17
015 — 2 o) =
’
. |

500 1,000 2,000
Figure 6.11 # of Solid Faces

RHW - UCB TCAD |

127

Ray—-Face Intersection Sorting Test — 2

{ Note: Does not include preprocessing time! }

Replace ray—face intersections with face—
face intersections. —> Gain at least 10x CPU
time reduction per point for 2,000+ faces.

"Point location" faster in planar case
due to fewer face—face intersections.

CPU Seconds { IBM RS/6000, Model 530, 32 MB RAM }
Per Sliver

0.1 J : |- :
| i @
| ,/

0.08 T

| - 1
,l . Intersect sliver

0.06 i _ tetrahedron with

| ~ two—holes structure.

0.05 S |

| | |
| ! |
| | |

0.03 r#lnt-exse-é;t sliver —— ﬂf ‘

tetrahedron with

0.025 planar structure.

0.02 @ —

[|
500 1,000 2,000

Figure 6.12 # of Solid Faces gy yeprcap

128
6.6. THE LOCALIZED DEFORMATION TEST

The Localized Deformation Test consists of two parts. The first part (Part A) demon-
strates the performance impact of not supporting Localized Deformation in the IBM Geometry
Engine. In this part of the test, boundary deformation using triangular prisms is emulated by
staircase construction from cubes. In the context of boundary deformation, a cube is computa-
tionally equivalent to a triangular prism generated by a triangular facet sweep. Just as merg-
ing each triangular prism introduces localized changes to the intermediate aggregate deforma-

tion volume, merging each cube introduces localized changes to the intcrmediate staircase.

The second part of the Localized Deformation Test demonstrates how boolean set
operations can be efficiently used to simulate boundary deformation by increasing input data
granularity. Another purpose of this part of the test is to introduce large grain surface
decomposition as a data organization method to compensate for the lack of Localized Defor-
mation. In this part of the test, boundary deformation using large grain deformation volumes
is emulated by staircasc construction from VN -cube strips. Since each cube strip has W
cubes, the number of merge operations is reduced by VNx. This in tumn reduces by VNx the

number of duplications of unperturbed facets and connectivity links.

The procedure for the first part (Part A) of the Localized Deformation Test is listed in
the upper portion of Figure 6.13. Step lacreatesa | um x 1 um x 1 um cube with 6 square
tiles. For N iterations, Steps 2a and 3a copy the cube, and translate it by the vector (i, j, 0.5 *
i), where i and j counts from 1 to VN. For each cubc, the vector translation introduces an
intra-level overlap along the +x direction, and an inter-level overlap parallel to the xz-plane.

Step 4a records the total CPU time used by the merge operation to construct the staircase.

129
The procedure for the second part (Part B) of the Localized Deformation Test is listed

in the lower portion of Figure 6.13. Step 1b creates a 1 um x VN um x 1 um cube strip with
VN tiles along the +y direction. For VN iterations, Step 2b copies the VN cube strip, and
translates it by the vector (0, 0.5 * i, i), where i counts from 1 to VN. For each VN cubse strip,
the vector translation introduces an inter-level overlap parallel to the xy-plane. Step 3b

records the total CPU time used by the merge operation to construct the staircase.

The Localized Deformation Test was conducted for staircases with 100, 400, 500, and
1600 cubes. Figure 6.14 illustrates examples of staircases constructed using cubes and YW
cube strips. The left of Figure 6.14 depicts a staircase created by merging 100 cubes. The

right of Figure 6.14 depicts an equivalent staircase creatcd by merging 10 10-cube strips.

Results from the first part of the Localized Deformation Test confirmed that, due to the
lack of Localized Deformation, staircases can be merged in worst case %x()(NzlogN) time.

On the upper curve, Figure 6.15 plots the total CPU times used by IBM Geometry Engine
merge operation to construct staircases with 100 to 1,600 cubes. In Figure 6.15, CPU times
are plotted along the y-axis, and numbers of staircase cubes arc plotted along the x-axis. For
staircases with 100 to 1,600 cubes, total CPU time used by the merge opcration went from
about 120 seconds to about 20,000 seconds. In other words, a 16x increase in total number of
staircase cubes translated to a 167x increase in total CPU time. More importantly, this result
confirmed that brute force application of IBM Geometry Engine boolean set operations is

clearly not a practical method for simulating boundary deformation.

Results from the second part of the Localized Deformation Test showed that increasing
input data granularity led to a more O(N)-like growth in total CPU time used by IBM

Geometry Engine merge operation. On the lower curve, Figure 6.15 plots the CPU time the

130

total CPU times used by IBM Geometry Engine merge operation to construct staircases from
10 10-cube strips to 40 40-cube strips. As shown in Figure 6.15, the CPU time for merging 10
10-cube strips (N = 100) was about 15 seconds, while the CPU time for merging 40 40-cube
strips (N = 1600) was about 500 seconds. Here, a 16x increase in total number of staircase
cubes only resulted in a 33x increase in total CPU time. More importantly, for staircases with
comparable numbers of cubes, increasing input data granularity by VNx consistently resulted
in VN x reduction in total CPU time. For example, the CPU time for merging 1,600 cubes was
about 20,000 seconds, while the CPU time for merging 40 40-cube stripes was about 500

seconds.

131

Figure 6.13

Localized Deformation Test

Procedure:

A: Staircase from N Cubes.

1a.Createalumx 1 umx 1 um
cube with 6 tiles.

2a. For i =1 to sqrt(N),

3a. For j=1 to sqrt(N),
Copy cube and
translate by (i, j, 0.5 * i).

4a. Record the total CPU time
used by merge operations
to construct staircase.

B: Staircase from sqrt (N)
sqrt (N)—cube strips.

1b. Createa 1 um x sqrt¢(N) um x 1 um

cube strip with sqrt(N) tiles along
the +y direction.

2b. For i =1 to sqrt(N)
Copy sqrt(N)—cube strip and
translate by (0, 0.5 * i, i).

3b. Record the total CPU time
used by merge operations
to construct staircase.

RHW - UCB TCAD

132

soqn)) (T Jo sqejS 01 mw.ﬂwz saqn) (001 owhoz

1S9], UOIJBULIOJI(] PIZI[ed0]
10J S2.INJONI}S JUISUY AJI)JIUI0IN)

RHW - UCB TCAD

Figure 6.14

133

Localized Deformation Test

IBM Geometry Engine does not have
Localized Deformation. —> Worst case
total merge time (granularity = 1 cube)
proportional to 0.5 * (N/2).

Total CPU time reduction factor =
of Operations reduction factor
due to increased granularity.

CPU Seconds { IBM RS/6000, Model 530, 32 MB RAM }

20,000
10,000

N Merge Calls.

3,000

20

10

100 200 500 1,000

Figure 6

15 # of Cubes RHW - UCB TCAD

134
6.7. CONCLUSIONS

This chapter described standardized performance tests on the IBM Geometry Engine.
These tests were designed to mimic the stress placed on geometry servers during 3D IC topog-
raphy simulation. The tests invoke geometrical operations on IC topographies at typical lev-
els of physical detail and operation frequency. In other words, standardized performance tests

can be used to evaluate the suitability of geometry servers for 3D IC topography simulation.

In implementing standardized performance tests, it was shown in Section 6.2 that the
demand of IC topography simulation required considerable augmentation of the standard
interfaces to general-purpose geometry servers. About 10,000 lines of C++ code are likely
necessary to perform relatively basic geometrical operations in 3D IC topography simulation
with any solid modeling package. For cxample, about 12,000 lines of C++ code were required
to interface the IBM Geometry Engine for performance testing. Out of these 12,000 lines, a
significant part performs mundane geometry construction and data mapping tasks, such as
constructing tiled ir;iﬁal topographies, extracting surface faces, triangulating polygonal faces,

and constructing vertical deformation volumes.

Since standardized performance tests take into account the nature of geometrical opera-
tions, they are an indispensable system tool for characterizing the run time consequences of
theoretical performance bounds. Standardized performance tests can screen out false perfor-
mance bottlenecks often predicted from simpler asymtotic performance estimates. For exam-
ple, in the IBM Geometry Engine, computing solid intersection curves between a planar
topography and its vertical deposition volume results in a bucket with O(N) triangles, and
O(N?) face bounding box intersection checks. At first glance, for the special case of updating

planar topographies, computing solid intersection curves appears to require O(N?) time.

135

However, performance test results in Section 6.4 showed the run time of solid intersection
curve computation still grows as O(N) for planar topographies with 100 to 1,000 surface trian-
gles. In fact, the O(N?) face bounding box intersection checks incurred in the planar case only

cause about 30% run time performance degradation compared to the non-planar case.

Standardized performance tests can also reveal areas where geometry server design
tradeoffs interact poorly with IC topography simulation needs. For robustness, most general-
purpose boolean set operations create output solids by duplicating geometry components and
connectivity links in the input solids. In Section 6.6, by means of a simple assembly of blocks
into a staircase, it is possible to show that, for 1,600 cubes, an IBM Geometry Engine merge
operation requires on the average about 10 seconds, regardless of whether the merge is a sin-

gle block or a set of 40 cubes.

136
REFERENCES FOR CHAPTER 6

[1] M. Karasick, D. Lieber, Schemata for interrogating solid boundaries. ACM Symposium

on CAD and Foundations of Geometric Modeling, June 1991, pp. 15-25.

[2] R.H. Wang, M.S. Karasick, and A.R. Neureuther, Computational evaluation of three-
dimensional topography process simulation components. International Workshop on VLSI
Process and Device Modeling (VPAD), Kyoto, Japan, May 1993, pp. 95-96. Robert VPAD

reference.

137
CHAPTER 7

AUXILIARY DATA STRUCTURES FOR
EFFICIENT USE OF GEOMETRY SERVERS

7.1. INTRODUCTION

This chapter introduces monotone decomposition, which was first published in [1][2],
as an auxiliary data organization scheme to provide large grain surface decomposition for
efficiently using geometry servers, such as the IBM Geometry Enginc [3] and SAMPLE-3D
[4]. In IC topography simulation, large numbers of locally connected facets often have similar
orientations. By bin sorting locally connected facets with similar orientations, monotone
decomposition can easily partition a simulated surfacc into large grain monotone patches.
Using monotone decomposition, a surfacc advance with can be broken into a few well-
behaved monotone patch advances, possibly with global inter-patch collisions. This can
efficiently focus the power and robustness of merge operations in solid modelers to where it is

most needed in IC topography simulation.

Section 7.2 reviews the feasibility of implementing these data organization methods as
auxiliary data structures. As Section 7.2 will show, while gcometrical operation transforma-
tion may require significant changes in geometry server internal data organization, large grain
surface decomposition can be implemented independent of geometry server data representa-
tions. As an example of large grain surface decomposition, Section 7.2 introduces monotone
decomposition as an effective decomposition scheme for IC topography simulation. Mono-
tone decomposition groups locally connected facets which have similar facet orientations into

large grain monotone patches.

138

Section 7.3 reviews some theoretical background for 2D monotone decomposition. His-
torically, the implementation of 2D monotone decomposition can be viewed as a simple
extension of several classical concepts in 2D computational geometry, such as monotone

chains and monotone polygons [5].

Two types of monotone decomposition are discussed. The first type, which is described
in Sections 7.4 and 7.5, is Greedy monotone decomposition. Greedy monotone decomposi-
tion heuristically minimizes the number of geometrical operations, but may asymmetrically
decompose axial symmetric IC topographical features, such as trenches. The 2D greedy
monotone decomposition algorithm incrementally extends monotone chains going left to right
along the top surface. The algorithm terminates a monotone chain when it reaches a surface

facet that cannot monotonically extend the current chain.

Section 7.5 describes the 2.5D Isotropic Deposition Experiment for evaluating greedy
monotone decomposition. The test involves using IBM Geometry Engine merge operations
to compute 2.5D boundary deformation of a 2D key hole trench. This test measures the reduc-
tion in number of merge opcrations and total CPU time duc to the use of 2D greedy monotone

decomposition.

The second type of monotone decomposition, which is described in Sections 7.6 through
7.8, is Directed monotone decomposition. By predefining monotone planes, Directed mono-
tone decomposition can axially symmetrically decompose IC topographical features. The 3D
directed monotone decomposition algorithm implicitly chooses monotone planes that partition
facet orientations symmetrically about the local z-axes of IC topographical features. Section
7.6 shows that 3D directed monotone decomposition can use these facet orientation partitions

to decompose complex topographical features into a few axial symmetric monotone patches.

139

Sections 7.7 and 7.8 describe two simulation experiments for evaluating directed mono-
tone decomposition. Section 7.7 describes the 3D Isotropic Deposition Experiment. This
test is the full 3D equivalent of the 2.5D Isotropic Deposition Experiment. The test shows
that directed monotone decomposition makes it feasible to use IBM Geometry Engine merge

operations in 3D boundary deformation.

Section 7.8 describes the 3D Source Visibility Experiment. This test shows how
directed monotone decomposition can be used to reduce the number of SAMPLE-3D line-of-
sight visibility tests in computing 3D source visibility. It also demonstrates the need for
accurate and efficicnt special-purpose shading interpolation algorithms that exploit facet spa-

tial locality and orientation similarity inherent in monotone patches.

140
7.2. DATA ORGANIZATION METHODS FOR EFFICIENT USE OF GEOMETRY

SERVERS

This section discusses the feasibility of implementing data organization methods as aux-
iliary data structures that improve the efficiency in using the IBM Geometry Engine. In
Chapter 6, two data organization methods were introduced to compensate for missing con-
structs in the IBM Geometry Engine. The first method was geometrical operation transforma-
tion. This method involved replacing geometrical operations that were implemented without
essential geometry server constructs, with similar operations that were implemented with
essential constructs. The second method was large grain surface decomposition. This method
increased input data granularity to reduce the number of CPU intensive primitive geometrical

operations used to perform aggregate geometrical operations.

While geometrical operation transformation was previously shown to be effective at
circumventing inefficient geometrical operations, implementing it as an auxiliary data struc-
ture may require significant changes in the internal geometry server data organization. In Sec-
tion 6.5, IBM Geometry Enginc point location tests, which had not been implemented with
ray-face intersection sorting, were cfficiently replaced by boolean set operations, which
had been implemented with face-face intersection sorting. Implementing this geometrical
operation transformation involves eliminating costly re-initializations of the basket sorting of
face bounding boxes data structure during each boolean set operation. Figure 7.1 plots the
run times for data structure initialization on the slivers and topographies used in the second
part of the Ray-Face Intersection Sorting Test. As shown in Figure 7.1, data structure ini-
tialization times grew linearly as O(N), and were comparable to the CPU times used by point
location tests. To eliminate this inefficiency, the IBM Geometry Engine would need to be

changed to make the bucket sorting data structure a part of the persistent server data.

141

On the other hand, large grain surface decomposition is an effective data organization
method that can be efficiently implemented independent of geometry server data representa-
tions. Section 6.6 demonstrated the effectiveness of large grain surface decomposition to
improve the efficiency in using IBM Geometry Engine merge operations for boundary defor-
mation. By increasing the input data granularity by VN x, the staircase construction utility can
reduce the number of IBM Geometry Engine merge operations and total CPU times by Wx.
For any geometry server, large grain surface decomposition can be implemented using basic
surface traversals to partition the simulated surface into large grain patches. These patches
can be stored as auxiliary flags on geometry server data, or an alternative representation of the

simulated surface.

This chapter describes monotone decomposition as an effective large grain surface
decomposition auxiliary data structure for IC topography simulation. Monotone decomposi-
tion groups locally connected and similarly oriented facets into monotone patches. Due to the
nature of IC processing technology, a typical simulated surface is a mostly planar surface that
undergoes gradual and structured changes in facet positions and orientations. Therefore, at
each time step, it should alwéys be possible to decomposc complex topographies into a few
monotone patches. As the remainder of this chapter will demonstrate, efficient and innovative
monotone decomposition algorithms can be implemented by combining basic surface traver-

sals with fundamental computational geometry concepts.

 Bucket Sorting DS Initialization Times:
Ray-Face Intersection Sorting Test —2

Bucket Sorting DS initialization is O(N) time,
and comparable to using point location tests.

In the IBM Geometry Engine, initialization
is performed for each boolean set operation.

CPU Seconds
Per Sliver

{ IBM RS/6000, Model 530, 32 MB RAM }

1.0 .__430;;&amhsortfzu;eiSJ'.x:’_-_.w%i —
| sliver tetrahedron + Vs
0.8 . planar structure. [T
| : |/
| ’
06 ———
| |
0.5 e B} = £ ot ol
0.4 g
0.3 ',
0.25 - | TR . _
Box and sort faces in
02 - sliver tetrahedron +
i two—holes structure.
0.15 o CRL TR e
/
= \
500 1,000 2,000

|
. Figure 7.1

of Solid Fa(_:es RHW - UCB TCAD |

143
7.3. 2D MONOTONE CHAINS AND MONOTONE POLYGONS

This section formally defines classical computational geometry concepts, such as mono-
tone chains and monotone polygons, which are relevant to implementing and using 2D mono-
tone decomposition. Simply put, a monotone chain is an ordered sequence of locally con-
nected facets that have similar orientations with respect to a straight line. A monotone
polygon is a simple polygon which can be split into two chains that are monotone with respect
to the same line. In the next two sections, these concepts will provide the necessary theoreti-
cal background for understanding the 2D greedy monotone decomposition algorithm and its
application in efficiently using IBM Geomctry Engine merge operations for 2.5D boundary

deformation.

in 2D surface-based IC topography simulation, a chain is typically used to represent the
topography top surface. A chain is an ordered sequence of vertices and directed facets. Fig-
ure 7.2 depicts a chain C with vertices {V1, ..., V10} and dirccted facets {F1=(V1,V2), ..., F9
= (V9,V10)}. In this case, the chain C represents a symmetric trench top surface with slight
overhangs and sloped sidewalls. As shown in Figure 7.2, Fi is a directed facet in the sense
that, when Fi is traversed as Vi, Vi+1, air (i.c. outside) lies on Fi’s left, and bounded material

(i.e. inside) lies on Fi’s right.

As defined by Preparata and Shamos [5], a monotone chain is a special type of chain

with the following property:

A chain C = {V1, ..., Vn} is monotone with respect to a line L if any line orthogonal

to L intersects C at exactly one point. (Definition 7.1)

144

This definition is illustrated in Figure 7.3, using a monotone chain C = {V1, ..., V5}, and
its orthogonal projections on line L = {L(V1), ... L(V5)}. As shown in Figure 7.3, this
definition offers no straightforward algorithm for decomposing an arbitrary chain into mono-

tone chains.

On the other hand, the monotone chain definition does lead to the following useful pro-

perty:

If chain C with vertices {V1, ..., Vn} is monotone with respect to line L, then the
orthogonal projections {L(V1), ..., L(Vn)} of the vertices of C on L are ordered as

L(V1), ..., L(Vn). (Property 7.1)

As will be shown in Section 7.4, this property can be used to find all lines on which a
directed facet or an arbitrary chain can be monotonically projected. By being able to quickly
find all such lines for a directed facet or an arbitrary chain, directed faccts can be incremen-

tally extended into monotone chains.

Formally, a monotone polygon is defincd as follows [5]:

A simple polygon is said to be monotone if its boundary can be decomposed into

two chains monotone with respect to the same straight line. (Definition 7.2)

This definition is illustrated in Figure 7.4, using a monotone polygon P, that consists of
two monotone chains, C1 and C2. Specifically, both C1 and C2 are monotone with respect to
the same line L. As Figure 7.4 suggests, surface advancement on a monotone chain usually
creates another monotone chain. These two chains can be easily stitched into a monotone

polygon, and used as input to boolean set operations.

145

*(WY31a 5,1 uo A [BLId)BUI PUE I S.1] UO SIN] 418 *3'])
3J9[$31 03 syulod [euriou suppuiod paemino s 1y ‘T+IA ‘IA
SE PISIIARI) SI [)] UYAM JBY) Ul J908) PIjda.uIp © SI 1

[euLIoN U 4 _

Suyuiod preminQ

‘(I+1A “IA) = L 219ym ‘{6 “ ‘1d}
$3998J P33P 0T Sty {0IA “ ‘IA} = D uleyd 3y L,

‘S[[emapis padojs pue SuBYJIIA0 [[RUWS YIM
31N)INI)S YIUdI) (7 & sunudsdadax urey)

«

RHW - UCB TCAD

Figure 7.2

146

“{(UA)T " “(TA)T1} Se pa.ap.ao a.ae T uo D) Jo SINIA
a3 Jo {(uA)T “ “(1A) T} suonddfoad euosoypiQ

‘juiod duo
Apaexa ul D) $393s133ul T 0) [BU030Y).10 dul| © JI T dul| JYS1e)s ©
03 393dsaJ Y)im duojououl 3q 03 pres st {UAp “ ‘fA} =D ureyd y

IS861 ‘sowmeys pue ejeiedas]
uIey)) dU0)OuoA

RHW - UCB TCAD

. Figure 7.3

147

*r] auij JySrea)s 3y) 0)
193dsaJ y3Im duojououl e sureyd
yjoq ‘uondadsul Ag 7D pue [D
sureyd ojui pasoduroddp 3q ued

d uogA<jod suojouoyy :djdwexy

dui| JyS1ea)s dures

3y} 03 303dsaa yjim duojououl
sureyd om) ojui pascdwodap aq
ued Alepunoq sj J1 duojouowt
3q 03 pies s1 uogAjod sjdus y

-
\\

ISg61 ‘soweys pue eyeaedasd|
UOSA[0J JUO)OUOJA]

RHW - UCB TCAD

Figure 7.4

148
7.4. 2D GREEDY MONOTONE DECOMPOSITION

The 2D greedy monotone decomposition algorithm is a heuristic that attempts to
minimize the number of monotone chains. Going from left to right of the top surface, the
algorithm incrementally extends monotone chains by including each surface facet in a mono-
tone chain. The current monotone chain terminates if it reaches the right end of the top sur-
face, or when it encounters a surface facet that cannot monotonically extend the chain. By
maximally extending cach monotone chain, the algorithm exploits localized facet orientation
similarities inherent in IC topographies, and heuristically minimizes the number of monotone

chains.

For each facet, the algorithm first computes all of its monotone lines, or all lines on
which the facet can be monotonically projected. Computationally, directed facet Fi is mono-
tone with respect to line L, if Fi has a positive dot product with L. This concept is illustrated
in Figure 7.5 using a horizontal directed facet F1. In Figure 7.5, F1 has a positive dot product
w.r.t. line L1, and a negativc dot product w.r.t. line L1. Correspondingly, Figure 7.5 shows
F1’s vertices to be monotonically projected on linc L1, but not on line L2. For computing
greedy monotone decompositions, all monotone lines of a directed facet Fi can be efficiently
represented using two vectors. This is becausc the normal directions of all of Fi’s m'onotone
lines form a half unit disc section. This section is centered around Fi’s normal, and delimited

by the two vectors orthogonal to Fi.

After computing the monotone lines of a directed facet, the algorithm tries to include the
facet in a monotone extension. A monotone extension is a growing sequence of directed
facets {Fi, ..., Fj}, i < j, that share at least one monotone line. Figure 7.6 depicts the expan-

sion of a monotone extension E as it absorbs directed faccts F1 through F3. As shown in

149

Figure 7.6, all monotone lines of a monotone extension E can also be compactly represented
as unit disc sections delimited by two vectors. Computationally, the current monotone exten-
sion E can be expanded, if an overlap exists between the unit disc sections representing E’s
monotone lines and the next facet Fi+1’s monotone lines. If E is extended by Fi+1, the over-

lap then represents the monotone lines of the expanded E.

The 2D greedy monotone decomposition algorithm is listed in Figure 7.7. As shown in
Figure 7.7, the algorithm involves visiting each directed facet Fi on the top surface (Steps 1
and 2), computing Fi’s monotone lines (Step 3), and determining whether Fi extends exten-
sion E (Steps 4 through 8). In a nutshell, the algorithm involves computing N times the inter-
section between the two unit disc sections representing E’s monotone lines and Fi’s monotone
lines. (Step 6). Therefore, if this intersection can be efficiently computed, the algorithm can

partition an arbitrary chain in O(N) time.

The intersection of unit disc sections can be computed without expensive trignometric
conversions by using the concept of pseudo angles. As described in Karasick’s thesis [12],

the pseudo angle of a facet normal (N,, N,) is:

If (N. < 0) then PscudoAngle = 3 + N,; clsc PscudoAngle = 1 - N,; (7.1)

The pseudo angle formula continuously maps facet orientations from 0 to 360 degrees, into
scalar values from 0 to 4. Figure 7.8 illustrates the pscudo angles for some selected facet nor-
mals. To compute the intersection between two unit disc sections, the delimiting vectors of
the sections are first converted to four pseudo angles. Pseudo angles of opposing sections are

pairwise compared to check for section overlaps.

150

An undesirable feature of greedy monotone decomposition is that it tends to decompose
symmetric IC topography features asymmetrically. As will be discussed in Sections 7.7 and
7.8, monotone patch symmetry may be used to simplify the implementation of special-
purpose 3D geometric computations for boundary deformation and surface visibility. As an
example of this anomaly, Figure 7.9 illustrates the greedy monotone decomposition of the
trench surféce previously shown in Figure 7.2. In going from left to right, the algorithm inad-
verdently excludes the trench’s local z-axis as a monotone line. As a result, the first monotone

extension terminates at the lower right comer of the trench.

151

‘(T4+1A)T ‘(IA)T Se pasJaAed) aq ued 7 dul|
JUOJOUOW U0 [+IA 1A JO suondafoad jeuodoyliQ

RHW - UCB TCAD

y (TATT 7q a1 .
\ o] "
)X @11 oSN
TNT1 - \ e v\
g LK N
14
I o—®
A " IA
\
aul] SuUO0)OUOJA] & Jou 7] [T 2ul'] dUOjOUoA

1 yam yonpo.d jop danisod e sey 1 Ji 1] 30¢)
Pa3392.1p Jo aul| duojouow € si T dujf ‘Ajjeuoneindwo)

3998,] P3IAII((JT © JO UI'] JUO)JOUOIA]

Figure 7.5

152

*PIPNIUI AL SUOIIBIUILIO JUIIIPJIP YIIM $)I0e] S
P3JILIISUOD 10U SIWOIIG UOLIIS ISIP Jun S,

(2N 1A

*3UI] dUO)OUOUI JUO ISBI] J& dIeYsS
yoym “f > 131aym “{ff “ ‘Lg} $1908) PP
JO0 2oudnbas Fuimo.I3 € S1 J uoISuI)Xd IU0JOUOIA

§)998,] P3jIII((JZ JO SUOISUI)X JUO)OUOJA

RHW - UCB TCAD

Figure 7.6

153

2D Greedy Monotone
Decomposition

1. Initialize E, the current monotone extension,
to nil. Initialize De, the unit disc section repre—
senting E’s monotone lines, to full unit disc.

2. For each directed facet Fi,

3. Compute Dfi, the unit disc section
representing Fi’s monotone lines.

4. IfEisnil,
Include Fi as the initial facet of E.
Set De to Dfi.
Go to Step 2.

5. Else /* Monotone extension in progress. */
6. Set De_test = De intersect Dfi.

7. If De_test is nil /* Can’t monotone extend. */
Report E as a monotone string.
Re—initialize E and De (as in Step 1).
Include Fi as the initial facet of E.

Set De to Dfi.
Go to Step 2.

8. Else /* Monotone extend E */
Include Fi as next facet of E.
Set De to De_test.
Go to Step 2.

Figure 7.7 RHW - UCB TCAD

154

Angle =3, QQ m
Normal = (0, -1) <, -
i >
—~ 2
) =
non
e —
) m X +
M »
= - -
(4
“
0.
NS
P 7+
3> 9, 3> /e | |
%, (1 °0) = [ewION
1 ‘] = 9duy

‘(x — | = 9|buy) asje (x + £ =jbuy) usyl (0> 2) Ji
SUOI)IISINUJ U0I)IAS ISI(I
() supnduio)) 10jJ SISUY OpnISY

Figure 7.8

155

(1ded ayy
ojul = A+)
X+
A+ 1D
2 £
*3.1n)edJ 3y} asoduwrodap A[edLn)ouIuAse

AQ313Y) ‘QUI] JU0JOUOW € SE SIXB—Z [8IO] S, d1N)eJJ ©

- apnpoul 0} [1e] Aeuwl uonIsodurodd(q IU0JOUOA] APIIIDH)

RHW - UCB TCAD

Figure 7.9

156
7.5. THE 2.5D ISOTROPIC DEPOSITION EXPERIMENT

The 2.5D Isotropic Deposition Experiment was designed to evaluate 2D greedy mono-
tone decomposition. In the previous section, it was shown that greedy monotone decomposi-
tion heuristically attempts to minimize the number of monotone chains. This in turn allows
aggregate geometrical operations, such as boundary deformation, to invoke a minimal number
of CPU intensive primitive geometrical operations, such as boolean set operations. On the
other hand, in going from left to right of the top surface, the algorithm may asymmetrically
partition symmetric IC topographical features, such as trenches. As a demonstration of these
algorithmic properties, the 2.5D Isotropic Deposition Experiment uses IBM Geometry
Engine (3D) boolean set operations to resolve global intra-surface collisions inherent in the

use of 2D surface-based IC topography simulators.

In the 2.5D Isotropic Deposition Experiment, Hamaguchi’s 2D shock tracking solver
[7] was used to simulate a 0.3 um isotropic deposition on a 1 um deep 2D key hole trench with
a 0.25 um opening at the top of the trench. Figure 7.10 plots snapshots of the simulation
result at time (T) =0, 1, 2, and 3 seconds. (Note that the scales of the x-axis and the z-axis are
not 1:1.) As shown in Figure 7.10, at T = 1 second, the isotropic deposition created a void in
the topography. This examplc showed that the shock tracking simulator could numerically
detect and remove local loops near concave coners at the bottom of the treﬂch. In thig sense,
it is more sophisticated than conventional surface-based IC topography simulators, such as
SAMPLE [8][9], SPEEDIE [10], and several other corner and facet pushing programs [11]-
[14]. However, the simulator still could not detect global loops at the top of the trench. More
importantly, the failure to remove global loops led to inaccurate simulation of the size and

shape of the resulting void.

157

In the 2.5D Isotropic Deposition Experiment, 2D greedy monotone decomposition was
used to minimize the number of IBM Geometry Engine merge operations used to resolve glo-
bal collisions. Figure 7.11 illustrates how monotone decomposition can be used to sweep a
surface along its shock traces, and into a few monotone polygons. First, as shown on the left
of Figure 7.11, shock traces are computed on the surface. Then, as depicted in the middle of
Figure 7.11, the surface is partitioned into two monotone chains, and the chains are swept
along shock traces into two monotonc polygons. Finally, as shown on the right of Figure
7.11, the monotone polygons are extruded into volumes and merged by the IBM Geometry
Engine into an aggregate deformation volume. As discussed at the end of Section 7.4, greedy
monotone decomposition asymmetrically partitioned the 2D key hole trench at the lower right

corner of the trench.

To demonstrate the performance improvement gained from using monotone decomposi-
tion, the trench surfacc was separately swept into triangles and qudrilaterals, and into mono-
tone polygons. The number of operations and total CPU times used by the IBM Geometry
Engine to merge these polygons were compared. Figure 7.12 depicts the polygons swept from
the trench surface, and the corresponding CPU times used by IBM Geometry Engine merge
operations running on an IBM RS/6000 Model 530 workstation with a 32 MB RAM. Without
monotone decomposition, as shown on the left of Figure 7.12, 48 operations and a total of
2242 seconds were used to merge triangular and quadrilateral prisms. With monotone
decomposition, as shown on the right of Figure 7.12, 2 operations and a total of 1.04 seconds
were used to merge monotone polygonal prisms. Although the average CPU time was slightly
higher for merging large grain monotone polygonal prisms (0.52 seconds versus 0.47
seconds), the reduction in number of operations (24x) led to a similar magnitude reduction in

total CPU time (22x).

158

Isotropic Deposition on 2D Key Hole
Trench — Shock Trace Advancement

* Local loops may be removed numerically,
but not global loops.

* Global loops should be resolved immediately
to simulate accurately void size and shape.

Z |um]

-
il

020 -

- =
o
S =N W

-0.00

-020 -

—-0.40

-0.60

—0.80

-1.00
-1.00 -0.50 0.00 0.50 1.00

Figure 7.10 RHW - UCB TCAD

159

RHW - UCB TCAD

JWN[OA UOIBULIOJPP(SUOSA[0J dUOJOUOJA| SIIBIL-YI0YS

s199(q(Q uonEMuUIS

Youd.], 9[0H £33 (7 uo uonisoda(d1do.josy

Figure 7.11

160

*SPU0d3s $(°T = [BIOL *SPU023s TH°7Z = [BIOL

*SISIIJA] pue sdaams "S9SI9JA] pue sdoams
urey) dUOJOUOJA T 190 Qb

{ INVY 9N € ‘0€S PPOIAL 0009/SY AT }
uosLieduio)) awi], NdD 981N

YOUd.LL, 3]0 A9Y] (JZ uo uonisoda(y dstdo.ajosy

RHW - UCB TCAD

Figure 7.12

161
7.6. 3D DIRECTED MONOTONE DECOMPOSITION

By predefining monotone planes, the 3D directed monotone decomposition algorithm
can axially symmetrically decompose IC topographical features. The algorithm implicitly
chooses monotone planes that partition facet orientations symmetrically about the local z-axes
of topographical features. Using facet orientation partitions, the algorithm first classifies each
facet as left-pointing, right-pointing, or horizontal, as well as upward-pointing,
downward-pointing, or vertical. A breadth first traversal is then used to group locally con-
nected facets that have the same orientation classifications. Like the 2D greedy monotone
decomposition algorithm, the 3D directed monotone decomposition algorithm also exploits
localized facet orientation similarities in IC topographies. By using breadth first traversal to
group facets, the algorithm implicitly partitions the simulated surface by topographical

features as well as facet orientations.

The 3D directed monotone decomposition algorithm currently creates facet orientation
partitions along the local yz- and xy-planes of IC topographical features. Figure 7.13 plots the
facet orientation partitions used by the algorithm. In Figure 7.13, a facet normal is denoted by
(Nx, Ny, N;). As shown in Figure 7.13, the yz-plane partitions facct orientations into five bins
as left-pointing (N, < 0), front-pointing) (N, == 0 and N, < 0), right-pointing (N, > 0),
(back-pointing) (N, == 0 and N, > 0), and horizontal (not shown) {(N, == 0 and N, = 0)
and (N, != 0)}. The yz-plane further partitions facet orientations into three sub-bins as
upward-pointing (N, > 0), downward-pointing (N, < 0), and vertical (not shown) {(N, ==
0) and (N, != 0 or N, !=0)}. This main advantage of this straightforward partitioning scheme

is that facets can be efficiently classified by examining the signs of facet normal components.

162

Using these facet orientation bins, two directed monotone decomposition algorithms
have been implemented: X-cut monotone decomposition, and Xz-cut monotone decomposi-
tion. The x-cut monotone decomposition algorithm looks mainly at the x-component (N;) of
the facet normal. The algorithm classifies facets using one of three categories: 1) Left-
pointing or front-pointing, 2) Right-pointing or back-pointing, and 3) Horizontal. Figure
7.14 illustrates a x-cut monotone decomposition of a spherical trench surface with 380 trian-
gles. The left of Figure 7.14 shows the IBM Geometry Engine solid model used to extract the
spherical trench surface. On the right of Figure 7.14, the spherical trench surface is decom-
posed into 6 monotone patches using x-cut monotone decomposition. As shown in Figure
7.14, spherical trench surfaces are excellent examples for testing directed monotone decompo-
sition because the surface is symmetric about its local z-axis, and contains a wide range of

facet orientations.

The xz-cut monotone decomposition algorithm looks at both the x-component (N,) and
z-component (N;) of the facet normal. The algorithm classifies facets using one of eight
categories: 1a) Left-and-upward-pointing, 1b) Left-and-downward-pointing, 1c)
Vertical-and-Left-pointing, 2a) Right-and-upward-pointing, 2b) Right-and-downward-
pointing, 2¢) Vertical-and-Right-pointing, 3a) Horizontal-and-upward-pointing, and 3b)
Horizontal-and-downward-pointing. Figure 7.15 illustrates a xz-cut monotone decomposi-
tion of the same spherical trench surface with 380 triangles. The left of Figure 7.15 again dep-
icts the spherical trench solid model. On the right of Figure 7.15, the spherical trench surface
is decomposed into 10 monotone patches using xz-cut monotone decomposition. As
expected, increasing the number of facet orientation groups resulted in a few more monotone

patches.

163

The 3D directed monotone decomposition algorithm is listed in Figure 7.16. As shown
in Figure 7.16, the algorithm decomposes an arbitrary surface using two traversals of all sur-
face facets. Each surface traversal was designed to support any facet orientation partitioning
scheme. The first traversal (Steps 1 and 2), walks through the facet list, and classifies each
facet according to its orientation. Steps 3 through 6 then perform the breadth first traversal
that groups similiarly oriented triangles into monotone patches. Since the algorithm involves

only floating point and integer comparisons, it runs efficiently in O(N) time.

Despite using coarse facet orientation partitions, directed monotone decomposition can
decompose complex topographies by topographical features as well as facet orientations. Fig-
ure 7.17 illustrates a x-cut monotone decomposition of a periodic spherical trench surface with
1,488 triangles. The left of Figure 7.17 shows the IBM Geometry Engine solid model used to
extract the periodic spherical trench surface. On the right of Figure 7.17, the periodic spheri-
cal trench surface is decomposed into 8 monotone patches using x-cut monotone decomposi-
tion. As expected, the directed monotone decomposition algorithm can axially symmetrically

partition individual trenches in the periodic structure.

164

"Downward-Pointing"

(Nz<0)

A (0> AN ‘0 =XN)
..M——_u:_en—lﬁ—:v.—ﬁ—:
g _k
Es 2 H
- A D = A=
L M\ S5
5 =
& e,
(0 < AN ‘0 =XN)

wounulod-yoeg, y (0 <2N)
Lounuiog-paemdn,,

uonIsodwodd([du0jOUOA] PARIJ A€
J0] SUONBIYISSB]) UONBIUILI() 13I8]

RHW - UCB TCAD

Figure 7.13

165

(s9y7ed 9)
SaYI)eJ SUOJOUOIA

NS 2NN

A W ! Tt Ve

MVA,‘ ey,

A

(sej3uelLy, 08€)
youad], [edraydg

youda], [edrsayds jo uonisodurodd(q auojouo|y ,Ind X,,

RHW - UCB TCAD

Figure 7.14

166

(sayored 01)
S9YIJeJ SUO)OUOJA

NN TTTFFHY

F 4.‘.lllll.y.z'

Eililu‘.wm‘ B \Y
N YA NSNS AN
NV \ A I TTNPES. K7 \TRRINSTY a AN
AN\ OISR A ‘4 \Y
RSN

RN
W = Z a0

NS S 2l
rM'AH“‘».

A
\

(se[sueLL], 08E)
youad], fedansaydg

youal], [edoraydg jJo uonisoduiodd(auojouoy ,In) ZX,,

RHW - UCB TCAD

Figure 7.15

167

3D Directed Monotone
Decomposition

1. For each surface mesh triangle T with
outward pointing normal (Nx, Ny, Nz),

2a. ("X Cut" Decomposition)
Classify T as Left_or_Front Pointing,
Right_or_Back Pointing, and Horizontal
by looking mainly at sign of Nx’s.

2b. ("XZ Cut" Decomposition)
Add also Up Pointing, Down Pointing,
and Vertical sub—cases to each case in
"X Cut" Decomposition as appropriate.

3. For each surface mesh triangle T with
traversal marker,

4. If T is not traversed,
5. Starting at T, recursively traverse and

mark unmarked triangle neighbors with
the same classification.

6. Create monotone patch from
traversed triangles.

Figure 7.16 RHW - UCB TCAD

168

lly partitions features.

otone planes, Directed Monotone
ica

ial symmetr

1011 axia

t

By predefining mon
ecomposi

D

=
03
=
~
®
N

Monotone Patches
(8 Patches)

Periodic Spherical Trench

(1,488 Triangles)

y |

N |

RHW - UCB TCAD

169
7.7. THE 3D ISOTROPIC DEPOSITION EXPERIMENT

The 3D Isotropic Deposition Experiment is the full 3D equivalent of the 2.5D Isotro-
pic Deposition Experiment. The test was designed to show that directed monotone decom-
position makes it feasible to use IBM Geometry Engine merge operations in 3D boundary
deformation. In 2D, since surfaces contain relatively small numbers (about 100) of facets,
monotone decomposition was helpful but not essential in enabling the use of the IBM
Geometry Engine. In 3D, a simulated surface typically contains 1,000 to 10,000 facets. As
shown by the Localized Deformation Test in Section 6.6, it is impractical to invoke such
large numbers of IBM Geometry Engine merge operations to simulate boundary deformation
at each time step. Therefore, for 3D boundary deformation, large grain surface decomposition
methods, such as monotone decomposition, are essential to the use of the IBM Geometry
Engine. Furthermore, to simplify the extraction of monotone deformation volumes, directed

monotone decomposition is needed to partition surfaces axially symmetrically.

The 3D Isotropic Deposition Experiment demonstates the need for directed monotone
decomposition using SAMPLE-3D as a 3D surface-based IC topography simulator. In this
test, SAMPLE-3D was used to simulate a 0.6 um isotropic deposition on a 2 um deep 3D key
hole trench with a 1 um opening at the top of the trench. Simulations were carried out on
trench surfaces with 452 and 896 triangles. Figure 7.18 plots the initial and final surfaces at T
= 6 seconds for 896 triangles. As shown in Figure 7.18, the deposition created a void that was
shaped like an inverted cone. In this simulation, loops occurred at the bottom as well as at the
top of the trench. As depicted in Figure 7.18, the extraneous loops at the bottom of the trench
were caused by facet motions from the trench sidewalls and the trench bottom, and formed an

inverted donut.

170

In the 3D Isotropic Deposition Experiment, directed monotone decomposition was
used to reduce the number of IBM Geometry Engine merge operations used to resolve global
collisions. Figure 7.19 illustrates how monotone decomposition was used to sweep the simu-
lated surface along its vertex deformation vectors, and into a few monotone volumes. The left
of Figure 7.19 shows the IBM Geometry Engine solid model used to extract the 3D key hole
trench surface. On the right of Figure 7.19, the key hole trench surface is decomposed into 9
monotone 'patches, and these patches were swept into 9 new patches along vertex deformation
vectors. As shown in Figure 7.19, a sophisticated solid extraction operation is needed here to
preserve the void and eliminate extraneous loops. Geometric utilities that perform this func-
tionality are currently being developed for capacitance extraction from SAMPLE-3D simu-

lated surfaces [15].

To demonstrate the performance improvement that could be gained from using directed
monotone decomposition, average CPU times for merging a triangular prism or a monotone
deformation volume were calculated by dividing the CPU times obtained from the Localized
Deformation Test by their corresponding number of merge operations. Figure 7.20 plots the
average CPU times per merge operation for constructing staircases with 100 to 1600 cubes.
In Figure 7.20, average CPU times were calculated for input data granularities of 1 cube and
VN cubes. As shown in Figure 7.20, for 450 cubes, each merge operation takes about 3
seconds for both granularities. For 900 cubes, each merge operation takes about 6 seconds for

both granularities.

Using these average CPU times, the use of the IBM Geometry Engine to merge triangu-
lar prisms versus monotone deformation volumes were compared in terms of numbers of
merge operations and estimated total CPU times. Tables 7.1ab summarize this performance

comparison. Table 7.1a lists the reduction in numbers of merge operations, and the increase

171

in memory consumption. Table 7.1b lists the corresponding reduction in total CPU times
used by IBM Geometry Engine merge operations, and CPU times used to monotonicially
decompose surfaces. For a 3D key hole trench with 896 triangles, the number of merge
operations was reduced from 895 down to 8. Correspondingly, total CPU time would be
reduced from about 5,370 seconds to about 48 seconds. Therefore, with monotone decompo-
sition, the IBM Geometry Engine could efficiently merge a 1,000 facet aggregate deformation

volume in about 1 minute of CPU time.

172

‘\!\ \ﬁ‘

="
24tt

(896 Triangles)

I~

"A;""‘.?‘%

‘}1.*,_..' ""’.v Y

} IR
b I

\

by -_‘.‘h\i.;‘.‘-r '.:
V. | "

~
A
|,$
iy

< o

Isotropic Deposition - SAMPLE-3D Advance

Figure 7.18

; I v
/ff’fj.rl’I/‘fl’l,’]’l/lf’r]’f,,A

[wn] Z

™ -t
I

RHW - UCB TCAD

173

Initial + Advanced
Monotone Surfaces

SAVRY RN\ Y

AV RTAW'|

Isotropic Deposition — Monotone Decomposition
(896 Triangles)

Refined 3D Key
Hole Trench

Figure 7.19 RHW - UCB TCAD

174

Avg CPU Time per Merge Operation:
Localized Deformation Test

Average CPU time per merge operation:
* About 3 seconds for 450 cube case.
* About 6 seconds for 900 cube case.

CPU Seconds {1BM RS/6000, Model 530, 32 MB RAM }
per Merge

100 200 500 1,000

Figure 7.20 F =# of Cubes RHW - UCB TCAD

175

a1 969‘y a4 761°9 968
a1 9LY'T g TSE°€ (44
sd[gueLL],
JUOJOUOJA] ON QUOJOUOW UMM 1o joquiny

uosrieduwo) uondwnsuo)) AIOWIA]

568 8 968
ISY 8 (4% 4
sojdueLL],
JUOJOUOIA ON JUOJOUOIA YA JOo JaquinN

uosrieduwio)) syfe) 9319\l JO #

{ WV 9N 7€ ‘0€S PPOIA “0009/SU N4l }

uonisodwodd(] JUCJOUOJA] O/M PUE YIIM

YOoudd], JoH AdY] uo uonisoda(ddoxyosy

RHW - UCB TCAD

Table 7.1a

176

238 OLE’S 98 8y NS 6T°L1 968

938 €SE°T 98 p¢ RS €0°9 (49 4
(payewnysy) (parewnsy) ‘dwoddq sdjdueLl],
JUOJOUOJAl ON SUOJOUOJAl YA 3UOJOUOJAI Jo JdquinyN

uosrieduwo) dwiLy, NdD

{ WV 9N € ‘0€S IPPOIA “0009/SY 41 }

uonisoduiodd(] JUO)OUOIA] O/M pUB PPIM
YOoudd], [0H A3y uo uonisoda dndoxyosy

RHW - UCB TCAD

Table 7.1b

177
7.8. THE 3D SOURCE VISIBILITY EXPERIMENT

The 3D Source Visibility Experiment was designed to demonstrate how directed
monotone decomposition can improve the efficiency in using SAMPLE-3D line-of-sight visi-
bility tests to compute surface visibility. In a typical 3D IC topography simulation, a surface
mesh contains about 1,000 to 10,000 vertices, and a hemispherical source is represented by
about 100 to 500 points. If source visibility is rigorously calculated using line-of-sight visi-
bility tests at every surface vertex, a typical simulation may use millions of tests. Directed
monotone decomposition can increase the data granularity of surface visibility computation
from surface vertices to monotone patches. For each monotone patch, line-of-sight visibility
tests can be first applied at a few representative monotone patch vertices. These rigorously

computed source visibilities are then interpolated over each monotone patch.

The 3D Source Visibility Experiment explored the use of directed monotone decompo-
sition to improve the efficiency of using line-of-sight visibility tests in SAMPLE-3D source
visibility computation. Using a hemispherical source with 45x10 points, SAMPLE-3D first
computed the source visibility of spherical trench surfaces with 380 and 904 triangles without
using monotone decomopsition. In other words, source visibility was rigorously computed
using line-of-sight visibility tests at every surface vertex. Figure 7.21 plots the qualitative
results for 380 triangles. In Figure 7.21, darker triangle shading indicates more limited source
visibility. As expected, source visibility is most restricted at the bottom of the spherical

trench surface.

In the 3D Source Visibility Experiment, directed monotone decomposition was used to
reduce the number of line-of-sight visibility tests in SAMPLE-3D source visibility computa-

tion. For each monotone patch, the test involved: 1) Selecting a few representative monotone

178

patch vertices, 2) Rigorously computing the source visibilities at the selected vertices by
applying SAMPLE-3D line-of-sight visibility tests, and 3) Interpolating the source visibilities
over the monotone patch. In this test, monotone patch vertices nearest to the center and
bounding box corners of the monotone patch were selected for rigorous source visibility cal-
culation. Since the goal of this test was to characterize the performance improvement gained
from reducing the number of SAMPLE-3D line-of-sight visibility tests, monotone patch
source visibility was assumed to be constant, and was equal to the average of the rigorously

computed source visibilities.

Figure 7.22 plots the source visibility of the 380-triangle spherical trench surface com-
puted using monotone decompostion. From this plot, it is clear that the constant interpolation
of rigorously computed source visibilities significantly over-estimated the source visibility at
the bottom of the trench. To make better use of monotone decomposition, special-purpose
algorithms are needed to accurately and efficiently interpolate monotone patch source visibil-
ity. Development of these algorithms would involve customizing shading interpolation algo-
rithms from computer graphics, such as the ones described in [16], for the special case of sym-
metric monotone patches. To efficiently interpolate monotone patch source visibility, these
algorithms should exploit facet orientation similarity within each patch, as well as spatial

coherence between patches from the same topographical feature.

The use of SAMPLE-3D line-of-sight visibility tests to compute source visibility
without versus with monotone decomposition were compared in terms of numbers of tests and
total CPU times. Tables 2ab summarize this performance comparison. Table 7.2a lists the
reduction in numbers of line-of-sight visibility tests, and the increase in memory consump-
tion. Table 7.2b lists the corresponding reduction in total CPU times used by SAMPLE-3D

line-of-sight visibility tests, and CPU times used to monotonically decompose surfaces. For

179
a 3D spherical trench surface with 904 triangles, the number of line-of-sight visibility tests

was reduced from 75,554 down to 8,176. Correspondingly, total CPU time was reduced from
9.30 seconds down to 1.34 seconds. Theoretically, with monotone decomposition, the number
of line-of-sight visibility tests can reduce from O(N*S), where S is the number of source
points, to O(M*v*S), where M is the number of monotone patches and v is the number of
monotone patch vertices. Since each surface vertex can issue between 45 to 450 line-of-sight
visibility tests to calculate its source visibility, further reduction in the number of line-of-
sight visibility tests will depend on the ability to minimize the number of monotone patch

vertices selected for rigorous source visibility calculations.

180

i

= e v VAR
) S S G AN

WA S

—

(s9[3uBLL], 0SE)
A)101U0JOUOJA] 0/M paynduio))
AYIQISIA 921N0S YoUudL], [edL1ayds

RHW - UCB TCAD

Figure 7.21

181

B =i

= &N = A &

2L RS S
s =SSO

(sa[3uelL], 08€)
A3101U0J0UOIA YA pIInduro)
AJIQISIA 32.1N0S YOoudL], [ed11oyds

RHW - UCB TCAD

Figure 7.22

182

a1 7LOL a1 7s€°8 06
a1 7L9‘S 1 yrT9 08¢
sdjsueLL],
JUOJOUOJA] ON JdUOJOUOJA YIAA JO JIqUINN

uosrieduio) uondwnsuo)) AIOWIIA]

pSSSL 9LI‘S ¥06
pTTET LOS L 08¢
SojSuBLL],
QUOJOUOJN ON SUOJOUON WM 14 jaquiny]

uosriedurio)) sype) 3891, 3YsIS—Jo—aul| JO #

{ INVY dIA Z€ ‘0€S IPPOIA ‘0009/SYd A1 }

uonIsoduwod3(J JU0JOUOJA] 0/M PUEB [PIM
ANIGISIA 92aN0§ Youdl |, [edrydg sunnduwo)

- UCB TCAD

RHW

i Table 7.2a

183

98 0€°6 98 el 98 8L°T1 06

39S L0°E WS T'1 I98 ¢€8°C 08¢
JUOJOUOIA ON dUOIOUOJA Yl ‘dwosaq sajsueLLL
I ON WM Suojouopy jo Joquiny

uosriedwo) dwiLy NdD

{ INVYH 9N Z€ ‘0€S 1PPOIAl ‘0009/Sd NI }

uonISodur0d3(J JU0)OUOJA] O/M pU®B YIIM
ANIQISIA 921N0S YOud.a [, [8dr1aydg Sunpnduwo))

RHW - UCB TCAD

Table 7.2b

184
7.9. CONCLUSIONS

Monotone decomposition was introduced in this chapter as an auxiliary data organiza-
tion scheme for large grain surface decomposition. In IC topography simulation, large
numbers of locally connected facets often have similar orientations. By bin sorting locally
connected facets with similar orientations, monotone decomposition can easily partition a
simulated surface into large grain monotone patches. Using monotone decomposition, a sur-
face advance with global intra-surface collisions can be broken into a few well-behaved
monotone patch advances. Void formations are transformed into overlaps between monotone
deformation volumes. In other words, monotone decomposition efficiently focuses the robust-

ness and power of merge operations where it is most needed.

Two types of monotone decomposition algorithms were described in this chapter:
Greedy monotone decomposition and Directed monotone decomposition. The 2D greedy
monotone decomposition algorithm incrementally groups each surface facet into a monotone
chain in O(N) time. A monotone chain is terminated when the algorithm encounters a surface
facet that fails to monotonically extend the chain. By locally maximizing the number of sur-
face facets in each monotone chain, greedy monotonc decomposition attempts to minimize the
number of monotone chains. However, by not including the local z-axes of I1C topographical

features, the algorithm also tends to asymmetrically decompose axial symmetric features.

The 2.5D Isotropic Deposition Experiment demonstrated the advantages and limita-
tions of greedy monotone decomposition. For a 2D key hole trench with 48 facets, greedy
monotone decomposition reduced the number of IBM Geometry Engine merge operations
from 48 down to 2, and the total CPU time used by thesc operations from 22.42 seconds down

to 1.04 seconds. However, as shown in Section 7.5, greedy monotone decomposition

185
asymmetrically partitioned the surface at the lower right comer of the key hole trench.

To symmetrically decompose 3D IC topographical features, the 3D directed monotone
decomposition algorithm supported two schemes for partitioning facet orientations symmetri-
cally about the local z-axes of IC topographical features. According to the sign of the facet
normal x-component, the x-cut monotone decomposition algorithm classifies each facet as
one of three categories: Left-pointing, Right-pointing, and Horizontal. Based on the signs
of the facet normal x- and z-components, the xz-cut monotone decomposition algorithm
classifies each facet as one of eight categories by further identifying each facet as Upward-
pointing, Downward-pointing, or Vertical. Despite using coarse partitions of facet orienta-
tions, the 3D directed monotone decomposition algorithm can symmetrically decompose indi-

vidual features in a complex topography, such as periodic spherical trenches.

The 3D Isotropic Deposition Experiment demonstrated the need for large grain surface
decomposition methods, such as directed monotone decomposition, in 3D boundary deforma-
tion. The estimated CPU time reduction showed that monotone decomposition makes it feasi-
ble to use IBM Geometry Engine merge operations in 3D boundary deformation. For a 3D
key hole trench with 896 triangles, the number of merge opcrations was reduced from 895
down to 8. Correspondingly, using CPU time data from the Localized Deformation Test in
Section 6.6, the total CPU time used by IBM Geometry Engine merge operations was

estimated to be reduced from about 5,370 seconds down to about 48 seconds.

The 3D Source Visibility Experiment demonstrated the use of directed monotone
decomposition to reduce the number of line-of-sight visibility tests in SAMPLE-3D source
visibility computation. In addition, the test pointed out the need for special-purpose shading

interpolation algorithms that exploit the facet locality and orientation similarities inherent in

186

monotone patches. For a hemispherical source with 450 points, and a spherical trench surface
with 904 triangles, the number of SAMPLE-3D line-of-sight visibility tests was reduced from
75,554 down to 8,176. Correspondingly, the total CPU time used by SAMPLE-3D line-of-
sight visibility tests was reduced from 9.30 seconds down to 1.34 seconds. Since each sur-
face vertex can issue between 45 to 450 line-of-sight visbility tests to calculate its source
visibility, further reductions in the number of tests will depend on the ability to minimize the

number of monotone patch vertices selected for rigorous source visibility calculation.

187
REFERENCES FOR CHAPTER 7

[1] R.H. Wang, M.S. Karasick, and A.R. Neureuther, Computational evaluation of three-
dimensional topography process simulation components. International Workshop on VLSI

Process and Device Modeling (VPAD), Kyoto, Japan, May 1993, pp. 95-96.

[2] R.H. Wang, and A.R. Neureuther, Efficient and innovative use of three-dimensional
geometry services in IC topography simulation. International Symposium on VLSI Technol-

ogy, Systems, and Applications (VLSI-TSA), Taipei, Taiwan, ROC, June 1995.

[3] M. Karasick, D. Lieber, Schemata for interrogating solid boundaries. ACM Symposium

on CAD and Foundations of Geometric Modeling, Junc 1991, pp. 15-25.

[4] E.W. Scheckler, A.R. Neureuther, Models and algorithms for three-dimensional topogra-
phy simulation with SAMPLE-3D. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Feb. 1994, vol.13, (n0.2):219-30.

(5] Preparata and Shamos, Computational Geometry: An Introduction. Springer-Verlag, New

York, 1985.

[6] M.S. Karasick, On the representation and maniuplation of rigid solids. Ph.D. Thesis,

McGill University (also Comell University TR 89-976), 1989.

[7] S. Hamaguchi, M. Dalvie, R.T. Farouki, S. Sethuraman, A shock-tracking algorithm for
surface evolution under reactive-ion etching. Journal of Applied Physics, 15 Oct. 1993,

vol.74, (no.8):5172-84.

188
[8] W.G. Oldham, S.N. Nandgaonkar, A.R. Neureuther, M. O’Toole, M. A general simulator

for VLSI lithography and etching processes. I. Application to projection lithography. IEEE

Transactions on Electron Devices, April 1979, vol.ED-26, (n0.4):717-22.

[9] W.G. Oldham, A.R. Neureuther, J. L. Reynolds, S.N. Nandgaonkar, and others. A general
simulator for VLSI lithography and etching processes. II. Application to deposition and etch-

ing. IEEE Transactions on Electron Devices, Aug. 1980, vol.ED-27, (no.8):1455-9.

[10] J.P. McVittie, J.C. Rey, A.J. Bariya, M.M. IslamRaja, and others. SPEEDIE: a profile
simulator for etching deposition. Proceedings of the SPIE - The International Society for Opt-

ical Engineering, 1991, vol.1392:126-38.

[11] Thurgate, T. Segment-based etch algorithm and modeling. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Sept. 1991, vol.10, (no.9):1101-

9.

[12] C.H. Sequin, Computer simulation of anisotropic crystal etching. Sensors and Actuators

A (Physical), Sept. 1992, vol.A34, (no.3):225-41.

[13] 1.V. Katardjiev, Simulation of surface evolution during ion bombardment. Journal of

Vacuum Science & Technology A July-Aug. 1988, vol.6, (no.4):2434-42.

[14] D.S. Ross, lon etching: an application of the mathematical theory of hyperbolic conserva-

tion laws. Journal of the Electrochemical Society, May 1988, vol.135, (no.5):1235-40.

[15] J. Sefler, 3D Surface Modeling Utilities for use in TCAD, MS Thesis, UC Berkeley,

October 28, 1995.

189
[16] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics: Principles

and Practice, 2nd Ed., Addison-Wesley Publishing Co., 1987.

190
CHAPTER 8

AUXILIARY DATA STRUCTURES FOR
IC TOPOGRAPHY PROPAGATION TRACE-BACK

8.1. INTRODUCTION

Topography propagation plays a dominant role in determing the shapes and dimensions
of IC topographical features. From the viewpoint of process integration, topography propaga-
tion is the result of complex interactions between process steps and layout masks. Section 8.2
introduces IC topography propagation trace-back as a new TCAD functionality that allows
users to start with a faulty topographical feature, and trace back the process steps or layout
masks that might have caused it. Since process flow and layout dependencies may be attached
to temporary masking layers, such as resist layers, topography propagation trace-back requires
the support of auxiliary data structures that propagate dependencics down to topographical
features. This chapter introduces two auxiliary data structures for supporting topography pro-
pagation trace-back. The first is process history tagging, which has been prototyped using the
IBM Geometry Engine [1] and SIMPL System 6 [2]. The second is process interaction track-

ing, which is being proposed for implementation in next generation 3D geometry servers.

Auxiliary data structures for IC topography propagation trace-back can be implemented
by semantically extending solid model attribution services to relate geometry components to
process steps and layout masks. Section 8.3 discusses tradeoffs and issues involved in design-
ing these semantic extensions. The key tradeoff in the design of semantic extensions for
topography propagation trace-back is the maintenance of accurate process flow and lay-
out dependencies on geometry components at a minimal storage cost. Three design issues

arise from addresing this tradeoff. First, there is the need to determine the largest granularity

191

of tagged geometry components which yields accurate dependencies propagation. To minim-
ize storage cost, a compact representation of component dependencies need to be defined.
Finally, process specific dependencies propagation utilities have to be implemented to com-

pensate for incomplete geometry server attribute propagation.

To study these design issues, this chapter describes two examples of semantic exten-
sions: Process history tagging and Process interaction tracking. Process history tagging is a
straightforward extension of solid model attribution services which involves directly tagging
geometry components with process flow and layout dependencies. In a 3D IC topography,
topographical features can be represented as volumes, which have large component granular-
ity. Therefore, it may be feasible to usc volume tagging as a storage efficient method for
maintaining accurate dependency information. To study volume tagging, Section 8.4
describes a 2.5D process history tagging data structure which has been implemented using the
IBM Geometry Engine [3]. As compact representations for process flow and layout depen-
dencies, the data structure uses SIMPL System 6 [4] process step and layout mask id’s as solid
model tags. For implementation using IBM Geometry Engine attribute propagation, the data
structure includes rules to force additional dependencies propagation after SIMPL lithography,

etching, and deposition simulation.

While volume-based process history tagging can minimize storage cost, the coarse
granularity inherent in volume tagging may cause the attachment of false dependencies. To
evaluate process history tagging, Section 8.5 introduces topography propagation trace-
back. Topography propagation trace-back walks through the tags on each IBM Geometry
Engine volume, and reports the SIMPL process steps and layout masks which influenced the
volume’s creation. In Section 8.5, topography propagation trace-back is demonstrated using

the Two Spacer Trace-Back Experiment, which simulates a complex topography containing

192

spacers cut from two separately deposited layers.

For next generation 3D geometry servers, Section 8.6 proposes Process interaction
tracking as an accurate and storage efficient auxiliary data structure for IC topography propa-
gation trace-back. The power of process interaction tracking derives from recognizing pro-
cess interaction as a compact representation of process flow and layout dependencies, as well
és an unambiguous criterion for partitioning geometry components. With minor modifications
to its boolean set operations, a geometry server can incrementally compile a tree (or list) of
process interactions, and bin sort geometry components according to the process interactions
which created them. Process interaction tracking can be efficiently implemented as a table of
process flow and layout dependencies indexed by process interactions, and a set of tags that
link each geometry component to the underlying process interaction tree. By traversing tags
in the process interaction tracking auxiliary data structure, any geometry component can
readily use its creating process interaction to look up the associated process flow and layout

dependencies.

193
8.2. IC TOPOGRAPHY PROPAGATION TRACE-BACK

IC topography propagation trace-back is a new TCAD functionality which enables IC
technologists to start with a faulty topographical feature, and trace back the process steps or
layout masks that might have caused it. Figure 8.1 depicts two examples of topography pro-
pagation effects, and the types of questions that topography propagation trace-back should be
capable of answering. In the first example, shown on the left of Figure 8.1, a metal stringer
was created as a result of topography propagation from the polysilicon line. In this basic
example, a topography propagation trace-back should be capable of showing that the shape of
the metal stringer is dependent on the process steps and layout masks which patterned the

polysilicon line, and coated the line with dielectric material.

The second example, illustrated on the right of Figurc 8.1, shows a complex I1C topogra-
phy which contains two spacer materials. In the right of Figure 8.1, the first spacer (Spacer 1)
material is denoted by horizontal line patterns, and the sccond spacer (Spacer 2) material is
denoted by checkered line patterns. In this example, Spacer 1 material was created by a sim-
ple etch-back process that used the polysilicon line as an etch stop. Spacer 2 material con-
tains four features, two of which are the result of topography propagation from Spacer 1
material. In this case, a topography propagation trace-back should show that the stringer and
the rightmost (compound) spacer in the Spacer 2 material are the results of topography propa-
gation from Spacer 1 material. On the other hand, the trace-back should show that the left-
most spacer and the upper spacer in the Spacer 2 material were only influenced by an etch-

back process that used the oxide layer as an etch stop.

To facilitate IC topography propagation trace-back, auxiliary data structures are needed

to link geometry components back to the process steps and layout masks which created them.

194

Previous work on coupling geometry to process flow and layout showed that such auxiliary
data structures would represent an important evolutionary step in this new research area. For
example, Berkeley’s SIMPL-DIX system [3] provides a Hunch facility, which simulates and
highlights device topographies near areas which contain layout design rule violations. The
Hunch facility can be used to verify whether a layout design rule violation leads to a fatal
electrical fault on the device topography. However, it does not allow users to trace back

faulty topographical features.

As another example, in MIT’s MEMCAD system [4] and ETH Zurich’s ISE TCAD sys-
tem [5], a partial process history is generated along with wafer geometry components. The
process history includes parameters of additive process steps, such as the type of deposition
(e.g. thermal oxidation versus oxide CVD). In these systems, this information is used to auto-
mate the generation of material properties for electromechanical or device simulation. How-
ever, since it does not record the effects of subtractive process steps, such as lithography and

etching, this process history cannot sufficiently support topography propagation trace-back.

Auxiliary data structures for IC topography propagation trace-back can be implemented
by semantically extending geometry servers to leave imprints of process steps or layout masks
on geometry components. General-purpose geometry Servers provide solid model attribu-
tion services, which can be used to define process flow and layout dependencies as solid
model attributes. Services are also provided to attach and propagate these attributes onto
geometry components during boolean set operations. Consequently, process flow and layout
dependencies of geometry components can be incrementally maintained as the IC topography
evolves. In the next section, issues which arise from the semantic extension of solid model

atttribution services will be discuss in more detail.

195

J134Ae]
uodIfIs JKe
IAe| HONLS
PIXO
9jeD) J4e]
19he Ajod
= A1od - BETN
T
A ot | o
[BLIdIB Al [BLIdIBIA] JI3ULIS
-N oﬁeuﬂgw.- -,— hmu.ﬂgmp- -—ﬂuoz [1]
JeLew | 13deds,, wo.y ,JI3ULIS [ejow JYy) Jo adeys
uonesedoad Aydeidodo) jo ynsaa ay) aJe 3Y) PadudN[jul Jey) SHseu JnoAe|
[eLIdjeW ,,7 J3dedS,, JO S.INIBdJ YOIYAA pue sdajs ssad0ad ay3 dae JBYAp

-‘SurIomsue Jo dpqeded aq p[noys ydeq—ade)
uonededooad Aydeidodoy D1 yey) suonsanb yo sadAJ,

|
[

RHW - UCB TCAD

Figure 8.1

196
8.3. SEMANTIC EXTENSIONS OF SOLID MODEL ATTRIBUTION SERVICES

Solid model attribution services are convenient facilities originally provided by
general-purpose geometry servers, such as the IBM Geometry Engine, to attach and propagate
mechanical design attributes on solid models. Figure 8.2 illustrates the application of solid
model attribution services to two overlapping solids: Solid 4 and Solid B. Basic solid model
attribution services include attribute definition and attribute tagging. Most geometry
servers, such as the IBM Geometry Engine, support the definition of the following attribute
types: Character strings, integers, floating point numbers, and object pointers (i.e. memory
addresses). To efficiently attach defined attributes, geometry components can maintain tag
lists, or lists of pointers to defined attributes. For example, Figure 8.2 shows that Solid 4 and

Solid B initially store their defined attributes as volume tag lists: A's tags and B''s tags.

During boolean set operations, thc IBM Geometry Engine and similar geometry servers
perform a solid model attribution service known as self attribute propagation. Self attribute
propagation tags geometry components of the resulting solid according to the input solids
which spawned the components. As examples, Figure 8.2 illustrates self attribute propagation
for two boolean set operations. In the case of subtraction, the volume of Solid 4-B contains
only 4 s tags, while the faces spawned by the solid intersection contain both 4'’s tags and B's
tags. In the case of inset, either 4 s fags or B's tags are propagated onto the volumes of Solid
A+B which are outside of the solid intersection. On the other hand, both 4 's tags and B's tags

are propagated onto the volume spawned by the solid intersection.

In designing semantic extension of solid model attribution services for 1C topogra-
phy propagation trace-back, the key tradeoff is the maintenance of accurate process flow

and layout dependencies on geometry components at a minimal storage cost. Several

197
issues arise from addressing this design tradeoff: 1) Determining the largest granularity of

tagged geometry components which yields accurate dependencies propagation. 2) Defining a
compact representation of process flow and layout dependencies which minimizes storage
cost. 3) Building process specific dependencies propagation utilities to compensate for

insufficient server attribute propagation.

For accurate maintenance of process flow and layout dependencies, it may be neces-
sary to tag small grain components, such as faces in 3D and edges in 2D. Certain IC topo-
graphical features, such as trenches and voids, are represented by empty spaces. Since boun-
dary representation (B-Rep) volumes cannot be used to represent empty spaces, volume
tagging cannot be used to maintain the dependencies necessary for topography propagation
trace-back of trenches and voids. Figure 8.3 depicts this scenario for a silicon trench etched
using an oxide mask. As shown in Figure 8.3, while the oxide mask’s dependencies can be
attached to its volumes, the silicon trench’s dependencies must be attached to its bounding

faces.

Another problem with volume tagging is the coarse granularity of tagged geometry com-
ponents may lead to attachment of false dependencies. When dependencies propagation is
confined to 3D volumes or 2D faces, all topographical features cut from the deposited layer
will contain the dependencies attached on the deposited layer. However, as will be demon-
strated in Section 8.5, some of these features may actually sit on top of the flat portions of the
underlying topography. Therefore, in this case, the coarse component granularity of volume
tagging has led to a contradicting situation, in which component dependencies suggest that

topography propagation has influenced the shape of features sitting on planar surfaces.

198

On the other hand, the practical minimum granularity of tagged geometry com-
ponents is limited by the storage efficiency of process flow and layout dependencies
representations. For example, at first glance, process step and layout mask id’s seem to be
logical choices for compact representations of process flow and layout dependencies. How-
ever, since these id’s need to be explicitly tagged at each geometry component, process step
and layout mask id’s are not a storage efficient dependencies representations. In a typical IC
process technology, a process flow may have about 100 process steps, and a layout may have
about 20 mask levels. Therefore, each geometry component can potentially contain about 120
solid model tags. In a typical 3D IC topography, there may be about 10,000 vertices, edges,
or faces. Hence, if process step and layout mask id’s are used as dependencies representation
for small grain geometry component tagging, 1,200,000 solid model tags may need to be
stored. Assuming each tag is implemented as a bit mask, a total of 1.2x 10° bits / 8 bits/byte =

167 Kbytes are required to store the solid model tags.

If process step and layout mask id’s are chosen as dependencies representations, volume
tagging would be the only practical method for semantically extending solid model attribution
services. In a simulated IC topography, the number of topographical features is typically
fewer than 20. Assuming each volume contains 120 solid model tags, this translates to a total
of 2,400 solid model tags. Therefore, the storage cost would only be 2400 bits / 8 bits/byte =
0.3 Kbytes. Consequently, despite its obvious shortcomings in terms of attribute propagation
accuracy, volume tagging is further evaluated in Section 8.4 as a practial semantic extension

of solid model attribution services.

Finally, to compensate for incomplete self attribute propagation in general-purpose
geometry servers, special-purpose utilities are needed to force propagation of deforma-

tion volume dependencies. As an example that requires forced dependencies propagation,

199
Figure 8.4 depicts the geometry update after a silicon trench etching step. Some general-

purpose geometry servers, such as the IBM Geometry Engine, do not propagate volume tags
onto faces during subtraction. Therefore, as shown in the left of Figure 8.4, a special-purpose
utility may be needed to force a propagation of etching volume dependencies before substrac-
tion. As a result of this work around, the right of Figure 8.4 shows that volume-based self
attribute propagation can then be used to maintain accurate dependencies during etching

geometry update.

200

a+V rTSN 8-V
sde] s g \ sdelsd j
S~ _U
L {5
Ie \\.......(/\\\ .
\ SSELSY \
~ &

-

3 ‘parroddns
SGBLSH (s3ey s.v SABM[E JON se] sV
= U] payse(
m -.ﬁ@@ﬁﬂ.- V \M— :HQ-WH—Q:@ aa <

suonerdd(33§ uvdjooyg
suLinp uonesedo.ad NLVY JI2S

RHW - UCB TCAD

| Figure 8.2

201

spuadaqg
days yny

‘spuadap
ysew 4y

‘spuadap
ysew Yoy

*S908] JUIpUNO(uo pasgse) aq
ysnuwi spuadap s3p -ddeds Aydwd
Aq pajuasaadad s1 youaua) uodIfIS

*3UWIN|OA U0 paurgjurew 3q
ued spuadap s J19Ae] IPIXQO

‘uonesedoad sarouapuadap Ije.Indde 10J
sjuduodurod ureis fjewss ge) 0) padN (] anss|

RHW - UCB TCAD

Figure 8.3

202

spuadaq
das yny

‘spuadap
Nsew Yoy

e
am

spuada(q

I’ spuadag iy
da)s yng (

..ua._sm_ﬁ.ll
b =~ ll_wlu Ilﬂ\ w-m”.”—OGU—UIV
B J

ool ST
S

‘Aujnn esodind—[eroads
Aq paaso) uonebedo.id

‘uonjededoad soroudpuadop dje.andde 10J sanIHn
uonededoad anqripe ssodand—perdads paaN (€ anss|

RHW - UCB TCAD

Figure 8.4

203
8.4. 2.5D VOLUME-BASED PROCESS HISTORY TAGGING

The 2.5D volume-based process history tagging data structure was first introduced as
part of this thesis work in [6]. This data structure implements volume tagging by semanti-
cally extending IBM Geometry Engine solid model attribution services. The data structure
uses SIMPL System 6 process step and layout mask id’s as representations of process flow and
layout dependencies. The data structure implementation involves two types of process
specific utilities for maintaining accurate dependencies on IC topographical features (i.e.
volumes in 3D and faces in 2D). These utilities are straightforward semantic extensions of the
IBM Geometry Engine. First, a tag conversion utility is implemented to convert process
specific attributes into deformation volume tags. Secondly, for process steps which cut into
the inital topography, separate depedencies propagation utilities pass deformation volume

tags down to the modified geometry components.

To streamline the conversion and propagation of deformation volume tags, process flow
and layout dependencies have been grouped into the following types: 1) Direct processing
dependencies, 2) Masking layer dependencies during subtractive process simulation, and 3)
Non-planar underlayer dependencies during additive process simulation. The following para-
graphs describe tag conversion and propagation rules for the three dependencies types. In par-
ticular, surface and material interface planarity is identified as an important filter for extrane-
ous dependencies. To automate dependencies tracking during each simulation time step, these
rules have been incorporated into BTU’s geometry update utilities for lithography, etching,

and deposition.

Direct processing dependencies identify the process steps and layout masks directly

responsible for the creation or deformation of an IC topographical feature. Lithography is a

204

process step that introduces only direct processing dependencies. Figure 8.5 illustrates tag
conversion and propagation rules for direct processing dependencies generated by the lithog-
raphy process. In Figure 8.5, the wafer states before and after the lithography update are
shown on the left and right of the figure. As shown in Figure 8.5, deformation volume tags
include the lithography process step id, and the applied layout mask id. Since IBM Geometry
Engine only supports self attribute propagation, the lithography update utility is responsible

for propagating deformation volume tags onto the resist layer before subtraction.

Masking layer dependencies record the process steps and layout masks that created or
deformed the masking layer used in an etching step. Figure 8.6 illustrates tag conversion and
propagation rules for masking layer dependencies generated by the etching process. In Figure
8.6, the wafer states before and after the etching update are shown on the left and right of the
figure. As shown in Figure 8.6, deformation volume tags consist of the etch process step id,
and masking layer tags. To identify masking layers, the etching update utility first partitions
the wafer top surface into portions bounding various layers. Each top surface portion is
checked for slope changes. Layers with top surface portions that exhibit slope changes
exceeding a specified tolerance value are identified as masking layers. Since IBM Geometry
Engine subtraction operation is also used in this case, the etching update utility is responsible

for propagating deformation volume tags onto the etched layer before subtraction.

Non-planar underlayer dependencies account for the process steps and layout masks
that created non-planar layers in the IC topography prior to a deposition step. Figure 8.7 illus-
trates tag conversion and propagation rules for non-planar underlayer dependencies generated
by the deposition process. In Figure 8.7, the wafer states before and after the deposition
update are shown on the left and right of the figure. As shown in Figure 8.7, deformation

volume tags consist of the deposition process step id, and non-planar underlayer pointers. To

205

identify non-planar underlayers, a procedure identical to the one for finding masking layers
can be used. Unlike masking layer dependencies, non-planar underlayer dependencies can be
succinctly represented by underlayer pointers. This is because underlayers, such as polysili-
con lines, are usually buried by subsequent processing, whereas masking layers, such as resist

layers, are removed immediately after lithography-etching sequences.

206

RETN 4 |
uodIis

JdAe|
Ajod

134e]
18159y

epdn | epdn
oy PPV oIy 210J9d
‘sardudpuadop Suissddo.ad 3d2.a1p Ajuo
saanpo.jul jey) ssadoad e s1 Aydeadoy)ry

sardUIPuIda(q SuIsSII0AJ I

RHW - UCB TCAD

Figure 8.5

207

BETN s | J4e]
uodIS uodIs
1a4e] BETN: |
Alod Ajod
REYN g |

1519y

1adv] Ajod
[BAOWIY ISISAY pue Sunysou st suiysy pue
ajepd) sSuiydnyg PPV A24D] 15159y arepd) Yoy d10J9g

*J9AR] SunjSew 9Y) WoJj pIjLIYul sse)
pue dajs 3uIyd3d YY) 0] IJUIIYAI ©
)0 IpN[dUl S38) JWN|OA UOHBULIOJIP SUIYIID Y L,

sorouapuada(q 194w SUDSBIA

RHW - UCB TCAD

Figure 8.6

208

JAe]
uodIfiS
I3Ae]
Aj0d
REYN: g |
«IAeT Ajog,, IPIXO o~
1 reueid st
skequoomps
dAd upupjd—uou
L1948 PIXQ,, S1 LNA.E‘N .\Q od
ajepdn aepdn
oda(q oYV oda(3.10Jod

*1dAe] Jeug|d—uou 3y) 0) IUAIJAI €&
Aq pajuasaadaa aae sauapuadap JaAepdpun Jeug[d-uoN

S UIPUAdI(] JIARLIdPU[) JBUB[J-UON

RHW - UCB TCAD

Figure 8.7

209
8.5. 2.5D VOLUME-BASED TOPOGRAPHY PROPAGATION TRACE-BACK

To evaluate the usefulness of process history tagging, the 2.5D volume-based topogra-
phy propagation track-back data structure was first introduced as part of this thesis work in
[6]. Topography propagation trace-back can expose deeply buried process flow and layout
dependencies by tracing through process step id’s, layout mask id’s, and underlayer pointers
attached to IC topographical features (i.e. volumes in 3D and faces in 2D). In Section 3.5, the
simulation and trace-back of a metal stringer structure was described as an example of BTU
simulation experiments. To illustrate the topography propagation trace-back functionality,
Figure 8.8 lists the order in which the dependencies of the metal stringer are uncovered as "1"
through "4", where "1" represents the first tag found. After tracing through two underlayer
pointers (tags "2" and "3" in Figure 8.8), the trace-back function identifies the dependence of

the metal stringer on lithography and etching of the polysilicon line.

As discussed in Section 8.3, the coarse component granularity associated with volume
tagging can result in the attachment of false dependencies. This anomalous situation will be
demonstrated here using results from the Two Spacer Trace-Back Experiment. This test
began by using SIMPL to simulate a complex IC topography which contained spacers cut
from two separately deposited layers. After each SIMPL topography process step, the result-
ing deformation volume was extruded and updated in the IBM Geometry Engine using the
BTU geometry update utilities described in Section 8.4. Trace-backs were then performed on
the features cut from the second deposited layer. As will be discussed below, the reported
dependencies show that some of these features were erroneously tagged as strongly dependent

on topography propagation.

210
The SIMPL process flow simulated by the Two Spacer Trace-Back Experiment is

listed in Figure 8.9. Figure 8.10 shows the SIMPL layout and final cross section obtained
from this process flow simulation. As listed in Figure 8.9, the major sequences in this process
flow are: Gate Oxide layer deposition (thickness = 0.1 um, Step 1); Poly 1 layer deposition
and etching (thickness = 0.4 um, mask = POLY, Steps 2 through 4); Spacer 1 material depo-
sition and etch-back (thickness = 0.2 um, Steps 5 through 7); Poly 2 layer deposition and
etching (thickness = 0.4 um, mask = PLY2, Steps 8 through 10); Spacer 2 material deposi-
tion and etch-b;c\ck (thickness = 0.2 um, Steps 11 through 13); and Metallization (thickness

= 0.4 um PSG and metal, mask = M1, Steps 14 through 19).

Topography propagation trace back of features in the Spacer 2 material showed that
volume tagging caused the attachment of extraneous dependencies on the lower left spacer
and the upper right spacer. Figure 8.11 depicts the 3D topography simulated by the IBM
Geometry Engine, and compares the dependencies reported for the upper right spacer (listed
on the left), and the lower right spacer (listed on the right). As suggested in Figure 8.11, all
features in the Spacer 2 material contained identical dependencies. This is because the
Spacer 2 material was initially tagged as dependent on the Spacer 1 material after deposition.
After Spacer 2 material etching, the etching update utility propagated all Spacer 2 material
dependencies onto all etched features. In fact, in the Spacer 2 material, only the stringer and
the lower right spacer truly resulted from topography propagation. Since the lower left spacer
and the upper right spacer are situated atop flat portions of the Gate Oxide layer and Spacer 1
material, they should only contain dependencies on Spacer 2 material deposition and etch

process steps, and perhaps the Poly 2 line edges (e.g. the PLY2 mask).

211

€

.Jo4eT] Ajog,,
I8 j0oO]

N N

Rttt nini

N

14

.v

RETA g |
uodIIs

14e]
A1od

REYN A |
IPIXO

)b

sduanbag uonezij[eIdA Aq payIENy
§$930.1d AAD APIXQ Aq paydeny
$$330.14 YN Ajod Aq paydeny

)SIS?Y PAYSY W0} PAjLIdYu]

uoneRULIO)d(] Alepunog Surinp pagse |,
sauIpuada(YSEJAl PUE $S320.14 ,,198uLnS,,

J9pIQ SupeL], JRAe =«

*I9SULI)S e} JO Yoeg—adea |, uonegedoay
Aydeigodo J, surinp pouruexd sanuapudda(q

oe n,H

RHW - UCB TCAD

Figure 8.8

£

Two Spacer Test
SIMPL Process Flow

iit'.""t'tt'ttt.0'tQQ.!'t.t.t"ttttl"tt.'..t'tt'tt‘l.aﬁtt.".t"ﬁt'.t.t".".
LAYOUT FILE : stringer2.cif

SUBSTRATE TYPE:
CUT-LINE COORDINATES : x1 = -1600, yl = -47
x2 = 1600, y2 = -47

e AR AR R AN AR R AR AR R RN R S SR O N AR A SR AR IR R ARG RN R ARG SR AR AEE NN AN RN RN AR R R RGN AT ARRS
*] *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? OXID

THICKNESS OF THE MATERIAL (micro-meter) ? 0.1

VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (v,S8,1,A, or M) 2 V
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

« 3

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? POLY

THICKNESS OF THE MATERIAL (micro-meter) ? 0.4

VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, or M) ? V
‘DOPING (B, As, P, Sb or None) ? None

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 3

WHICH PROCESS ? EXPO

WHICH MASK ? POLY

INVERT THE MASK (yes or no) ? no

NAME OF MATERIAL TO BE EXPOSED ? POLY

NAME OF THE EXPOSED RESIST ? ERST

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 4 *

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? ERST
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* §

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? NTRD

THICKNESS OF THE MATERIAL (micro-meter) ? 0.2

VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, oTr M) ? I
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* g *

WHICH PROCESS ? ETCN

Etch Type:Isotropic, or Iso with Directional {1 or 10) ? 10
File containing etch rates ? ntrd.etch.mod

Etch accuracy (0:worst to 10:best) ? 10

Timestep in seconds ? 1

Number of steps ? 4

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 7 *

WHICH PROCESS ? ETCU

Figure 8.9

212

]

213

]

Two Spacer Test
SIMPL Process Flow

(Continued)

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes
E' a *

IWHICH PROCESS ? DEPO

iNAME OF THE MATERIAL ? PLY2

! THICKNESS OF THE MATERIAL (micro-meter) ? 0.4

.VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V,5,I,A, or M) ? I
{DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* g ¢

"WHICH PROCESS ? EXPO

{WHICH MASK ? PLY2

: INVERT THE MASK (yes or no) ? no
INAME OF MATERIAL TO BE EXPOSED ? PLY2 |
{NAME OF THE EXPOSED RESIST ? ERST :
/DO YOU WANT TO DRAW THE CROSS SECTION (ves or no) ? yes

;\' 10 »

{WHICH PROCESS ? DEVL
]NAMB OF THE LAYER TO BE DEVELOPED ? ERST
!DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

;. 11 »

) .
‘WHICH PROCESS ? DEPO !
{NAME OF THE MATERIAL ? NTD2 '
| THICKNESS OF THE MATERIAL (micro-meter) ? 0.2

|VERT, SPIN-ON, 1S0, ANISO or SAMPLE MENU (V,S,I,A, or M) ? I
'DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

(v 12

WHICH PROCESS ? ETCN

Etch Type:Isotropic, or Iso with Directional (1 or 10) ? 10
|File containing etch rates ? ntrd.etch.mod

iBtch accuracy (0:worst to 10:best) ? 10

Timestep in seconds ? 1

Number of steps ? 5

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 13 »

WHICH PROCESS ? ETCU !
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? END

. Figure 8.9 .
(Continued)

214

Two Spacer Test
Layout and Cross Section

(SIMPL System 6 Simulation)

L~
'y
e

Y o
—

.m.

©
S
-

~Berkeley 10/5/9:

SIMPL-DIX 4.2 1 UC

Figure 8.10 RHW - UCB TCAD

215

P LT

ATT0d

CA1d

:puadesq 3seW aoed
(OHLIT 'p dejs sseadoad)
(odaa ‘gz deas ssesooagd)
(OHLIT ‘01 d=3s ssadeag)
(odda ‘g de3s sseooad)
(HoLd ‘L~ de3s sseoo0ad)
(odga ‘g de3s ssaooad)
(odaa ‘1 dea3s sssooag)
(Ho@Ld ‘€1 de3s ssadoiag)

(odaa ‘T1 de3s sseoooad)
:pusdag sseooad =oed

'L9°9) = [0]sedT3aap adedq
ZAILN = TeTasjel a2e4g

e e e e e ol e e i ot el o8

(OHLIT ‘¥ de3s” ssado0id)
(odda ‘z deas sseooad)
(OHLIT ‘01 deas sseonoid).
(odaa ‘g de3s sseooxd)
(HoLd ‘L~ de3s sseooad)
(oddaa ‘g de3s ssenoaqd) -
(odaa ‘1 deas sseooad)
(HOId ‘€1 deas sse201d)
(odga ‘11 deas ssenoid)

05°%) = [0]s®dT3I8A ®d®4g

FARERERERRR R R AN
.WQOQ

ZA1d

"ﬁﬂmﬁwﬂ sepn soeq

:puadag sse201d 20vJg

CAILN = TeTasjen =0vq IF5F

T

sjsewt X 1Od uo puadap jou pinoys 13deds g LN 3y3t1 12dd
-sonuapuadap ysewr 199.110) sey J3deds Z@.LN 1YSLI J19M0]

1S90RJIAU] Se], 0) PN — IS9], 190edS oM,

RHW - UCB TCAD

Figure 8.11

216
8.6. PROPOSAL FOR 3D PROCESS INTERACTION TRACKING

With respect to volume-based process history tagging, this section introduces process
interaction tracking as a more accurate and storage efficient data structure for supporting IC
topography propagation trace-back. Process interaction refers to a series of boolean set
operations applied to an IC topography and an associated series of deformation volumes. Fig-
ure 8.12 illustrates the basic concepts behind process interaction tracking. As shown on the
left of Figure 8.12, the geometry server maintains a tree (or list) of process interactions that
can be observed in the current geometry. Since each boolean set operation is associated with a
deformation volume, such as Solid 4, B, or C, a process interaction compactly represents a
complete set of process flow and layout dependencies. As suggested by the arrows in Figure
8.12, each topography face is either the result of topography initialization, or can be traced
back to a unique process interaction. Therefore, the tree of process interactions unambigu-

ously partition geometry components.

By linking each geometry component to its creating process interaction, process interac-
tion tracking separates accurate dependencies propagation on geometry components, from
efficient storage of process flow and layout dependencies. Process interaction tracking is
accurate because there is no need to implement process specific rules for additional attribute
tagging or propagation. To support process interaction tracking, geometry servers need to be
modified to incrementally update, after each boolean set operation, the process interaction tree
(or list) and geometry component process interaction classifications. On the other hand, as a
result of this software modification, geometry component process flow and layout dependen-
cies can be automatically updated without additional (and presumably extraneous) attribute

tagging or propagation.

217

Process interaction tracking also avoids the redundant storage of process step and layout
mask id’s on geometry components. From process flow and layout, a process interaction
tracking auxiliary data structure can convert process interaction tree (or list) elements into a
look-up table of interacting process steps and layout masks. For each geometry component,
the auxiliary data structure can store a tag that links the geometry component to its creating
process interaction. By traversing tags in the process interaction tracking auxiliary data struc-
ture, any geometry component can readily use its creating process interaction to look up the

associated process flow and layout dependencies.

218

+ € plos
Aq InD

"UOIJIBIIIU] SSIV0A]
Aq pauonn.aed Ajsnongiqueun
aq ued syuduoduw0d A132W035)

‘UOI)IB.IINU] $SAI0.1J Aq pajudsdadau Apdedumod
3q ued sauIpudap Jnoke| pue MO[$SI0.1d

SUD]OLI], UO}IBINU] SSII0L]

RHW - UCB TCAD

Figure 8.12

219
8.7. CONCLUSIONS

This chapter introduced a new TCAD functionality called IC topography propagation
trace-back. This functionality enables IC technologists to start with a faulty topographical
feature, and trace back the process steps and layout masks that might have caused it. Since
process flow and layout dependencies may be attached to temporary masking layers, auxiliary
data structures are needed to propagate dependencies down to topographical features. As a
means of implementing auxiliary data structures for 1C topography propagation trace-back.

Section 8.2 suggested semantic extensions of solid model attribution services.

Section 8.3 explored issues in designing semantic extensions of solid model attribution
services for IC topography propagation trace-back. For accurate maintenance of process flow
and layout dependencies, it may be necessary to tag small geometry components, such as
faces in 3D and edges in 2D. On the other hand, the practical minimum granularity of tagged
geometry components is limited by the storage efficiency of process flow and layout depen-
dencies representations. Finally, to compensate for self attribute propagation in general-
purpose geometry servers, special-purpose utilities are needed to force propagation of defor-

mation volume dependencies.

To further study volume tagging, Section 8.4 described a 2.5D process history tagging
data structure. The data structure tagged IBM Geometry Engine volumes with SIMPL process
step and layout mask id’s. As discussed in Section 8.4, the primary advantage of volume-
based process history tagging is its simplicity. The implementation of the 2.5D process his-
tory tagging data structure mainly involved building two auxiliary utilities which were
straightforward wrappings of IBM Geometry Engine solid model attribution services. First, a

tag conversion utility was developed to convert SIMPL process step and layout mask id’s

220
into IBM Geometry Engine solid model tags. Next, separate dependencies propagation utili-

ties were developed to propagate tags onto IBM Geometry Engine volumes after SIMPL

lithography, etching, and deposition simulations.

Due to the coarse granularity inherent in volume tagging, volume-based process history
tagging frequently attaches false dependencies. This anomaly was demonstrated in Section
8.5 using topography propagation trace-back and the Two Spacer Trace-Back Experi-
ment. The Two Spacer Trace-Back Experiment involved the simulation of a complex IC
topography which contained spacers cut from two separately deposited layers. In this test, the
layout masks were arranged such that some of the spacers cut from the second deposited layer
rested on flat surfaces, and did not depend on process steps and layout masks previous to the
second spacer etching sequence. However, due to the coarse granularity of volume tagging,
the dependencies on the second deposited layer were propagated onto all spacers cut from it.
As a result, trace-backs of the spacers resting on flat surfaces erroneously reported dependen-

cies previous to the second spacer etching sequence.

With respect to volume-based process history tagging, Section 8.6 proposed process
interaction tracking as a more accurate and storage efficient auxiliary data structure for next
generation 3D geometry servers. By linking each geometry component to its creating process
interaction, process interaction tracking separates accurate dependencies propagation on
geometry components, from efficient storage of process flow and layout dependencies. Pro-
cess interaction tracking is accurate because there is no need to implement process specific
rules for additional atiribute tagging or propagation. Instead, geometry servers are modified to
automatically update the process interaction list (or tree) and geometry component dependen-
cies. Process interaction tracking is storage efficient because process flow and layout masks

dependencies are efficiently encoded by a single flag at each component. By traversing tags in

221
the process interaction tracking auxiliary data structure, any geometry component can readily

use its creating process interaction to look up the associated process flow and layout depen-
dencies. Assuming each flag consumes a bit mask, 10,000 component flags only require about
10,000 / 8 = 1.25 Kbytes to store, which is two orders of magnitude less than the 167 Kbytes

that could be used by small grain process history tagging.

222
REFERENCES FOR CHAPTER 8

[1] M. Karasick, D. Lieber, Schemata for interrogating solid boundaries. ACM Symposium

on CAD and Foundations of Geometric Modeling, June 1991, pp. 15-25.

[2] D. Lee, Applying TCAD to Emerging Technologies, MS Thesis, UC Berkeley, UCB/ERL

M95/38, May 20 1995.

[3] H.C. Wu, A.S. Wong, Y.L. Koh, E.W. Scheckler, and others. Simulated profiles from the
layout- design interface in X (SIMPL-DIX). International Electron Devices Meeting. Techni-

cal Digest. San Francisco, CA, USA, 11-14 Dec. 1988. p. 328-31.

[4] S.D. Senturia, R.M. Harris, B.P. Johnson, S. Kim, and others. A computer-aided design
system for microelectromechanical systems (MEMCAD). Journal of Microelectromechanical

Systems, March 1992, vol.1, (no.1):3-13.

[5] P. Lamb, C. Hegarty, N. Hitschfeld, W. Fichtner, Generating solid models for VLSI pro-
cess and device simulation. Proceedings of 1992 IEEE Workshop on Numerical Modeling of
Processes and Devices for Integrated Circuits: NUPAD 1V, Seattle, WA, USA, 31 May-1 June

1992. pp. 175-80.

[6] R.H. Wang, and A.R. Neureuther, Efficient and innovative use of three-dimensional
geometry services in IC topography simulation. International Symposium on VLSI Technol-

ogy, Systems, and Applications (VLSI-TSA), Taipei, Taiwan, ROC, June 1995.

223
CHAPTER Y

CONCLUSIONS

9.1. SUMMARY OF FINDINGS

This thesis explores TCAD system organization for centralizing geometry services.
Issues involved in the development, performance testing, and use of centralized geometry
servers are investigated for 3D IC topography simulation. In many case, the issues have been
identified and quantified through use of a prototype system based on linking SAMPLE-3D,
SIMPL, and the IBM Geometry Engine as geometry servers through a hierarchically organ-
ized interface in the Berkeley Topography Utilities (BTU) system. The BTU geometry server
interface consists of 41,000 lines of C++ code, and organizes geometric utilities and geometry

services according to their input data granularity as Primitive, Auxiliary, and Aggregate.

This thesis initiates research in a new field of centralizing geometry services for 3D IC
topography simulation, and makes contributions along several research fronts. First, this
thesis links the performance of geometrical operations in 3D IC topography simulation to four
essential geometry server constructs. These constructs can be implemented using conven-
tional connectivity and spatial data structures, and special-purpose boolean set operations.
The implementation of these constructs constitutes a necessary but not sufficient condition for
efficient 3D IC topography simulation. This fact is demonstrated by comparing the theoretical
performance of geometrical operations implemented with and without the constructs. Since
the constructs are shown to be necessary for efficient 3D simulation, they may be used to

screen potential servers.

224
Another contribution of this thesis is the definition of standardized performance tests.

These tests are designed to mimic the stress placed on geometry servers during 3D IC topogra-
phy simulation. The tests invoke geometrical operations on 1C topographies at typical levels
of physical detail and operation frequency. In other words, standardized performance tests

can be used to evaluate the suitability of geometry servers for 3D IC topography simulation.

In implementing standardized performance tests, it is shown that the demand of IC
topography simulation requires considerable augmentation of the standard interfaces to
general-purpose geometry servers. About 10,000 lines of C++ code are likely necessary to
perform relatively basic geometrical operations in 3D IC topography simulation with any
solid modeling package. For example, about 12,000 lines of C++ code are required to inter-
face the IBM Geometry Engine for performance testing. Out of these 12,000 lines, a
significant part performs mundane geometry construction and data mapping tasks, such as
constructing tiled initial topographies, extracting surface faces, triangulating polygonal faces,

and constructing vertical deformation volumes.

To manage the large number of geometric utilities and services introduced by geometry
servers, this thesis recommends a hierarchical server interface based on input data granularity
of geometrical operations. The purpose for hierarchically organizing geometric utilities and
services is to share codes that support data mapping, server extensions, and simulation experi-
ments and applications. Near the bottom are small grain Primitive Utilities and Services,
which include data mapping utilities, such as polygonal face triangulation, and CPU-intensive
computation services, such as boolean set operations. In the middle are Auxiliary Data Struc-
tures that partition surfaces into patches to improve the efficiency in using CPU intensive ser-
vices, and tag solids to support IC topography design. Near the top are Aggregate Utilities

and Services, which perform high level geometrical operations, such as boundary deformation

225

and source visibility. Using Aggregate operations, performance tests and simulation experi-

ments can be written in about 250 to 350 lines of C++ code.

The principal test vehicle for exploring TCAD organizational issues in this thesis is the
Berkeley Topography Utilities (BTU) system. The BTU system uses a hierarchical interface
approach to integrate existing topography simulators and general-purpose geometry Servers.
At the bottom, the system integrates SAMPLE-3D, SIMPL, and the IBM Geometry Engine as
Centralized Geometry Servers under a hierarchical server interface. When supplemented with
Simulation Support Utilities for task management and visualization, it is estimated that the
complete BTU system (Centralized Geometry Servers, Hierarchical Server Interface, and
Simulation Support Utilities) can be used to implement rigorous simulation applications in
about 2,000 lines of C++ code. The BTU system software along with SAMPLE-3D and
SIMPL are currently available to the TCAD community. However, BTU performance testing
utilities and auxiliary data structures are currently implemented only on the IBM Geometry
Engine. A section that follows will discuss how these utilities and data structures can be

adapted for use with other boundary representation solid modelers.

Since standardized performance tests take into account the nature of geometrical opera-
tions, they are an indispensable system tool for characterizing the run time consequences of
theoretical performance bounds. Standardized performance tests can screen out false perfor-
mance bottlenecks often predicted from simpler asymtotic performance estimates. For exam-
ple, in the IBM Geometry Engine, computing solid intersection curves between a planar
topography and its vertical deposition volume results in a bucket with O(N) triangles, and
O(N?) face bounding box intersection checks. At first glance, for the special case of updating
planar topographies, computing solid intersection curves appears to require O(N?) time.

However, performance test results show the run time of solid intersection curve computation

226
still grows as O(N) for planar topographies with 100 to 1,000 surface triangles. In fact, the

O(N?) face bounding box intersection checks incurred in the planar case cause only 30% run

time performance degradation compared to the non-planar case.

Standardized performance tests can also reveal areas where geometry server design
tradeoffs interact poorly with IC topography simulation needs. For robustness, most general-
purpose boolean set operations create output solids by duplicating geometry components and
connectivity links in the input solids. By means of a simple assembly of blocks into a stair-
case, it is possible to show that, for 1,600 cubes, an IBM Geometry Engine merge operation
requires on the average about 10 seconds, regardless of whether the merge is a single block or

a set of 40 cubes.

Monotone decomposition is introduced in this thesis as an auxiliary data organization
scheme for large graiﬁ surface decomposition. In IC topography simulation, large numbers of
locally connected facets often have similar orientations. By bin sorting locally connected
facets with similar orientations, monotone decomposition can easily partition a simulated sur-
face into large grain monotone patches. Using monotone decomposition, a surface advance
with global intra-surface collisions can be broken into a few well-behaved monotone patch
advances. Void formations are transformed into overlaps between monotone deformation
volumes. In other words, monotone decomposition efficiently focuses the power of merge
operations where it is most needed. For example, using monotone decomposition, it is
estimated that IBM Geometry Engine merge operations can efficiently resolve void formation

in a 1,000 triangle key hole trench surface in about 1 minute.

Finally, this thesis introduces IC topography propagation trace-back as a new TCAD

functionality. This functionality allows users to start with a faulty topographical feature, and

227
trace back the process steps and layout masks that might have caused it. Due to the presence

of temporary masking layers, such as resist layers, auxiliary data structures are needed to force
the propagation of process flow and layout dependencies down to topographical features.
These auxiliary data structures can be implemented by semantically extending solid model

attribution services.

The key issue in designing semantic extensions is to maintain accurate process flow and
layout dependencies, and minimize storage cost of dependencies. This thesis shows that pro-
cess history tagging, or tagging solid models directly with process step and layout mask id’s,
is not storage efficient, and limits tagging to only material volumes. As an alternative, this
thesis proposes process interaction tracking. For each geometry component, this auxiliary
data structure uses a single attribute (e.g. an integer flag), to record the combination of
boolean set operations which created the component. Using process interaction tracking, pro-
cess flow and layout dependencies are compactly represented by a single flag that is automati-

cally updated by each boolean set operation.

228
9.2. STATUS AND FUTURE DIRECTIONS FOR THE BTU SYSTEM

The BTU system is currently implemented as a BTU directory tree with two major sets
of sub-directories. One set of sub-directories are the Server directories that contain Berkeley
simulators and wrappers (about 60,000 lines of C code), and IBM servers and simulators
(about 50,000 lines of C++ code). The other set of sub-directories are the Interface directories
that include standardized performance tests (about 12,000 lines of C++ code), and hierarchical
interface utilities (about 41,000 lines of C++ code, including 10,000 lines that duplicate code

in standardized performance tests).

Research opportunities exist in proving out the BTU system organization on rigorous
physical models. This would require implementing a complete Simulation Support Utilities
layer. The easiest way to accomplish this is to wrap SAMPLE-3D’s input deck parser and
simulation task manager. At present, the SAMPLE-3D wrapper and hierarchical interface
utilities already wrap SAMPLE-3D’s visualization utilities, such as pdraw plot generation,
and geometric computation services, such as surface advancement, deloop, and line-of-sight

visibility.

The Berkeley part of the Server directories, and the Interface directories are currently
available for inspection and use by other TCAD developers. Due to difficulties in obtaining
the IBM Geometry Engine, this thesis recommends adapting BTU standardized performance
tests and auxiliary data structures to work with commercially available solid modelers, such as
ACIS and Echidna. To facilitate this adaptation, the following paragraphs summarize IBM

Geometry Engine services and utilities used by the BTU system.

The IBM Geometry Engine provides BTU with a handful of solid modeling services that

229
are commonly found in commercial solid modelers. The IBM Geometry Engine provides

BTU with solid geometry primitives, such as spheres and tetrahedra. It also has a piecemeal
solid construction interface for adding geometry components one at a time, and invoking the
server to establish connectivity links. For standardized performance tests and boundary defor-
mation, BTU uses three IBM Geometry Engine operations: 1) Solid boundary connectivity
queries, 2) Point location tests, and 3) Boolean set operations. For topography propagation
trace-back, BTU uses IBM Geometry Enginc’s attribution mechanism to tag geometry com-
ponents with name-value pairs. For example, a geometry component that depends on the Poly

1 mask may be tagged with the ("LayoutDepend", “Poly 1") attribute.

To facilitate application development, the IBM Geometry Engine provides three sets of
C++ object classes which are used throughout the BTU system: 1) Memory manager classes,
2) Linked list template classes, and 3) SWR Geometry Server Procedural Interace classes.
The first two class sets can be easily re-implemented and re-deployed in the BTU system by a
capable C++ programmer in about one person month. The SWR Geometry Server PI classes
would require a knowledgeable C++ programmer to replace SWR Geometry Server calls with

equivalent operations in the new server.

For use with other solid modelers, the most useful BTU software are the standardized
performance tests, the auxiliary data structures, and the simulation experiments. The stand-
ardized performance tests can be conducted stand-alone by replacing SWR Geometry Server
calls with equivalent new server operations. The auxiliary data structures and simulation
experiments require integrating the new server with SAMPLE-3D and SIMPL. This can be

accomplished by replacing SWR Geometry Server calls used in hierarchical interface utilities.

230
9.3. FUTURE RESEARCH IN CENTRALIZING GEOMETRY SERVICES

This thesis explored many fronts in centralizing geometry services. However, there are
still many interesting issues and research directions that can be pursued. One interesting
research direction is to implement an efficient moving surface geometry server based on the
four essential geometry server constructs described in this thesis. This server would be useful
both in terms of academic and industrial research. From an academic viewpoint, an efficient
3D moving surface geometry server could be used to uncover other essential constructs. From
an industry viewpoint, an efficient 3D moving surface geometry server could immediately

become a testbed for deploying physical models for 3D etching and deposition.

It is hoped that the standardized performance tests and auxiliary data structures will be
applied to guide the development of other geometry servers, such as ACIS, Echidna, and
AT&T’s BSP tree solid modeler. The methodology for geometry server performance testing
and auxiliary data structure design forwarded by this thesis is generally applicable to boundary
representation solid modelers. In spirit, this methodology should perhaps also be applied to

the evaluation of 3D field servers, such as PROPHET.

Another research direction is to further study the role of monotone decomposition in
computing source and intra-surface visibility. In this thesis, monotone decomposition is
shown to be an enabling auxiliary data structure for the real time use of IBM Geometry
Engine merge operations in 3D boundary deformation. On the other hand, since visibility is a
physical phenomenon that simultaneously depends on spatial locality and facet orientation, it
seems logical that monotone decomposition may lead to even greater performance improve-

ment in using line-of-sight visibility tests to compute source and intra-surface visibility.

231

Finally, it would be of interest to implement process interaction tracking for IC topogra-
phy propagation trace-back, and compare this data structure with small grain process history
tagging. Implementing process interaction tracking requires extensive modifications in the
geometry server to keep track of different combinations of boolean set operations present in
the solid model. As computer memories become cheaper, the improved storage efficiency
gained through process interaction tracking may be offset by the complexity in its implemen-
tation. Therefore, it would be an interesting experiment to implement process interaction
tracking in a geometry server, and compare its accuracy and storage cost to process history

tagging on small grain components.

	Copyright notice 1995
	ERL-95-102

