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Abstract

Centralizing Geometry Services for Three-Dimensional
Integrated Circuits Topography Simulation

by

Robert Hsiung-Fu Wang

Doctor of Philosophy in

Engineering - Electrical Engineering and ComputerSciences

UniversityofCalifornia at Berkeley

Professor Andrew R. Neureuther, Chair

This thesis initiates research in a new field of centralizing geometry services for 3D IC

topography simulation, and contributes organizational approaches, performance testing

methodology, and auxiliary data structures. The simulation system issues arc identified and

quantified through prototyping using the Berkeley Topography Utilities (BTU) system which

integrates SAMPLE-3D, SIMPL, and the IBM Geometry Engine. This system, which consists

of 41,000 lines of C++ code, organizes geometric utilities and services as Primitive, Auxiliary,

and Aggregate in a hierarchical server interface recommended for future TCAD systems.

Through use ofAggregate level operations, performance tests and simulation experiments can

be written in about 250 to 350 lines of C++ code. The system prototype is available for use

with other servers as a whole or in parts.

IC topography simulation typically requires advancing 10,000 surface facets through

300 time steps. Major topological changes can occur in the device profile, such as opening of

tunnels, and pinch off of voids. Geometry servers, such as solid modelers, offer the rigor to

cope with topological changes. Onthe other hand, the BTU system prototype shows that con

siderable code augmentation (about 10,000 lines of C++) is necessary to translate between the

solid modeling viewpoint and the IC topography viewpoint.
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To provide reasonable performance, four essential geometry server constructs are shown

to be necessary: 1) Explicit representation of connectivity information; 2) Facet sorting by

location for efficient surface collision detection; 3) Ray and facet sorting for efficient line-of-

sight tests; and 4) Localized deformation algorithms for incrementally moving faces. Stand

ardized performance tests are specified vis-a-vis these constructs, and can reveal areas where

geometry server design tradeoffs interact poorly with simulation needs. For example, in simu

lating boundary deformation, IBM Geometry Engine merge operations may repeatedly dupli

cate unperturbed connectivity links for robustness. By assemblying 1,600 block staircases, it

can be shown that 10 seconds are required to merge 1 block or 40 blocks at a time.

A new data organization scheme called monotone decomposition is introduced to

increase the granularity of the geometry representation, and to focus the robustness and power

of geometry servers where they are most needed. Monotone decomposition groups large

numbers of locally connected facets with similar orientation. Using this method, it is

estimated that IBM Geometry Engine merge operations can simulate void formation in a

1,000 triangle surface in about 1 minute.

This thesis also introduces a new TCAD functionality called IC topography propagation

trace-back, which allows users to start with a faulty topographical feature, and trace back its

process flow and layout dependencies. Due to temporarymasking layers, auxiliary data struc

tures are needed to force the propagation of dependencies down to topographical features.

This thesis also recommends an improved approach to process history tagging in which solid

model attribution services are extended to support trace-back.

Professor Andrew R. Neureuther (Chair)
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CHAPTER 1

INTRODUCTION

1.1. MOTIVATION

Many research opportunties arise from the disparity between the popular vision ofwhat

a process TCAD system should do, and the reality ofavailable code, particularly with respect

to performance issues in specific applications such as 3D IC topography simulation. The

popular vision is that users would experience seamless integration of TCAD tools for a

sequence ofprocess steps [l]-[9], developers would be able to write new process simulators

with minimal coding effort [8]-[l 1], and specialists in various computational sciences ranging

from computational geometry to computational fluid mechanics would provide robust and

efficient algorithms. While considerable progress has been made on the integration front

through SWR prototyping and commercial systems development, only limited experimenta

tion has been carried out for centralizing geometry services tosupport 3D simulation develop

ment [1][3][7][8][12][13]. Since 3D geometric algorithms arc difficult and costly to develop,

the centralization ofgeometry services clearly warrants more careful consideration.

This thesis initiates research in a new field of centralizing geometry services for 3D IC

topography simulation, and makes contributions along several research fronts. The thesis

explores TCAD system organization for centralizing geometry services. Issues involved in

the development, performance testing, and use ofcentralized geometry servers are investi

gated. In many cases, the issues arc identified and quantified through use ofa prototype sys

tem based on linking geometry servers through a hierarchically organized interface.
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Three-dimensional IC topography simulation poses many technical challenges for build

ing centralized geometry servers. First, the variety of physical mechanisms which must be

modeled is quite large. These mechanisms include (but are not limited to): Surface reflection

(e.g.[14],[15]), Surface charging (e.g. [16]), Surface diffusion (e.g. [17],[18]), Surface reaction

(e.g. [19]), and, Profile evolution (e.g. 2D:[14][16][19]-[26]; 3D:[13][15][27]-[34]). To sup

port these mechanisms, geometry server data structures and algorithms need to be applicable

in many physical situations.

Secondly, simulation of 3D profile evolution creates many geometric situations that seri

ously challenge geometry server robustness. For example, a well-known nemesis for

geometry server robustness is the topological change as an advancing surface self-intersects

and leaves behind a sealed void. This occurs in simulating low pressure chemical vapordepo

sition (LPCVD) over a deep trench with a narrow opening. In this case, a robust geometry

server need to be able to represent this geometric situation, and break the self-intersecting sur

face into a valid deposition front andthe void boundary.

Finally, geometry server performance in 3D IC topography simulation is strongly depen

dent on whether the server can exploit the special geometrical nature of IC topographies, and

IC etching and deposition processes. Simulated profile time-evolution typically requires

10,000 surface faces to be advanced through about 300 time steps. To support efficient simu

lation of profile evolution, geometry servers need to implement spatial data structures to focus

on global topological changes, and localized deformation algorithms to incrementally change

facet positions and orientations. To efficiently compute surface visibility, geometry servers

should exploit the fact that large numbers of locally connected surface facets have similar

orientations, and that the surface undergoes incremental change between simulation time

steps.
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Despite the large number of physical mechanisms, the geometrical effects of these

mechanisms can be conveniently modeled by initially implementing four geometric services:

1) Connectivity Services, 2) Face-Face Intersection Services, 3) Ray-Face Intersection Ser

vices, and 4) Deformation Services. For ageometry server to beeffective, it needs to robustly

and efficiently implement at least these four services. Achieving good performance in today's

the state-of-the-art in geometry server technology is dominated by run time effects of provid

ing these four services. As centralized geometry servers become more mature, new physical

mechanisms and performance requirements will likely drive the demand to centralize other

services.

This thesis considers three sources of centralized geometry services for 3D IC topogra

phy simulation. First, there are computer graphics packages, which initially appear to be an

ideal source of general-purpose visibility services. However, most commercial computer

graphics packages implement screen-space algorithms, such as z-buffer algorithms, which

avoid line-of-sight visibility tests by drawing over objects. On the other hand, object-space

computer graphics packages, such as radiosity methods, are mostly research prototypes, and

arc often hard coded with overly simplistic physical models for light reflection. In short,

current computer graphics technology, which is one of the possible sources of centralized

geometry services, is not readily applicable to IC topography simulation. (For a more

comprehensive survey on computer graphics principles, see [35].)

By comparison, boundary representation solid modelers are amore promising source of

general-purpose geometry services. Solid modeling was first introduced to store and manipu

late large mechanical assembly. Therefore, most commercial solid modelers can represent

and manipulate complex topologies inherent in 3D IC topographies, such as multiple material

volumes and voids. Solid modelers typically provide point location tests, for checking point



4

containment by material volumes, and boolean set operations, for detecting and resolving

solid object collisions. In using solid modelers in 3D IC topography simulation, the main con

cerns are: 1) Stress on the geometric algorithms due to the large number of facets needed for

physical detail (i.e. moving from 100 to 10,000 facets); 2) The amount of time to perform cer

tain tasks on the internal server constructs; and 3) The extensive coding required to develop

interface layers that map IC topography simulation geometrical operations to geometry ser

vices.

A third source of geometry services is surface-based 3D IC topography simulators.

Special-purpose geometry servers can be built by consolidating efficient simulation algo

rithms for surface advancement, loop removal, and surface visibility. However, this approach

requires working towards, rather than starting from, a common data representation. It also

attempts to retroactively install robustness, rather than implicitly inherit robustness from

general-purpose constructs.

Eventually, it is highly desirable to create a class of general-purpose geometry servers

that implement robust and efficient algorithms for boundary deformation and surface visibil

ity. Toward this end, an ideal TCAD system organization would be one in which acontinuum

of flexible choices could be made between robust general-purpose solid modeling operations,

and high performance special-purpose geometric algorithms. Such asystem could be used to

investigate issues involved in the development, performance testing, and use of centralized

geometry servers for 3D IC topography simulation.



1.2. DISSERTATION OVERVIEW

This thesis begins in Chapter 2 with a survey ofgeometry support functionality in 17

TCAD systems. The survey traces the history of three levels ofgeometry support, 1) Solid

boundary generation, 2) Data mapping, and 3) Centralized geometry services. It also shows

that centralization of geometry services is a logical next step in the evolution of TCAD sys

tems. In an unusual ordering, the research presentation here begins in Chapter 3, with a dis

cussion of a recommended hierarchical organizational structure,and the exploratory prototype

system used to conduct the investigation.

A hierarchical server interface based on input data granularity of geometrical operations

is recommended to manage the large number ofgeometric utilities andservices introduced by

geometry servers. The purpose for hierarchically organizing geometric utilities and services is

to share codes that support data mapping, server exteasions, and simulation experiments and

applications. The principal test vehicle for exploring TCAD organizational issues is then

introduced as the Berkeley Topography Utilities (BTU) system. The BTU system uses the

recommended hierarchical interface approach to integrate Berkeley topography simulators

with the IBM Geometry Engine. It is a rather extensive object-oriented (C++) system that

both provides the hierarchical interface, and wraps the simulators and the IBM Geometry

Engine.

Chapter 4 links the performance ofgeometrical operations in 3D IC topography simula

tion to four essential geometry server constructs. These constructs canbe implemented using

conventional connectivity and spatial data structures, and special-purpose boolean set opera

tions. It is shown that the implementation of these constructs constitutes a necessary but not

sufficient condition for efficient 3D IC topography simulation.



6

Since essential geometry server constructs are shown to be necessary for efficient 3D

simulation, they maybe used to screen potential servers. In Chapter 5, the essential constructs

are used to examine performance aspects of a prototypical modem solid modeler, the IBM

Geometry Engine. This modeler provides extensive solid model connectivity services, and

robust boolean set operations. Several constructs which may lead to poor asymtotic perfor

mance behavior in an otherwise efficiently implemented geometrical operation are identified.

Chapter 6defines standardized performance tests, which are designed to mimic the stress

placed on geometry servers during 3D IC topography simulation. Since standardized perfor

mance tests take into account the nature of geometrical operations, they are an indispensable

system tool for characterizing the run time consequences oftheoretical performance bounds.

Standardized performance tests can screen out false performance bottlenecks often predicted

from simpler asymtotic performance estimates. They can also reveal areas where geometry

server design tradeoffs interact poorly with IC topography simulation needs.

Chapter 7 introduces monotone decomposition as an auxiliary data organization scheme

to provide large grain surface decomposition. In IC topography simulation, large numbers of

locally connected facets often have similar orientations. By bin sorting locally connected

facets with similar orientations, monotone decomposition can easily partition asimulated sur

face into large grain monotone patches. Using monotone decomposition, asurface advance

with global intra-surface collisions can be broken into a few well-behaved monotone patch

advances. This can efficiently focus the power and robusmess of merge operations in solid

modelers to the intra-surface collisions where it is most needed in IC topography simulation.

Chapter 8introduces IC topography propagation trace-back as anew TCAD functional

ity. This functionality allows users to start with afaulty topographical feature, and trace back
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the process steps and layout masks that might have caused it. Due to the presence of tem

porary masking layers, such as resist layers, auxiliary data structures are needed to force the

propagation ofprocess flow and layout dependencies down to topographical features. Chapter

8 describes two auxiliary data structures that semantically extend solid model attribution ser

vices to support IC topography propagation trace-back. Improvements on attributions propa

gation features in solid modelers are also recommended.

The summary in Chapter 9gives an overview ofwhat was investigated, the results, and a

perspective on their implications for IC topography simulation. Section 9.2 describes the

current status and features in the BTU system, and may be of interest toTCAD developers in

whole or in part. Future research in the development performance testing, and use ofcentral

ized geometry servers for next generation 3D IC topography simulation is also suggested.
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CHAPTER 2

GEOMETRY SUPPORT IN TCAD SYSTEMS

2.1. INTRODUCTION

This chapter surveys current TCAD systems with respect to three levels of geometry

support. As this chapter will show, current TCAD systems lack the kinds oforganizational

structures and centralized geometry services needed to implement efficient and semantically

rich 3D IC topography simulation. In general, due to significant technical difficulties involved

in developing robust and efficient 3D geometric utilities, TCAD systems may need to rely on

several centralized geometry servers to provide reliable 3D geometry support. Currently, few

TCAD systems which need these services provide organizational structures necessary to

efficiently intcroperate multiple geometry servers. Moreover, most centralized geometry

servers which provide these services are designed around classical principles limited to sup

porting the construction and manipulation ofstatic solid boundaries. These principles must be

extended to support frequent and incremental surface movement in IC topography simulation.

ATCAD system can potentially provide three levels ofcentralized geometry support for

different types of simulation applications. For electrical or mechanical simulation, a basic

TCAD system should enable device topography construction and solid boundary generation.

For integrated process flow simulation, a more advanced TCAD system can provide data

mapping between radically dissimilar geometric representations, such as surface meshes used

in IC topography simulation, and volume meshes used in IC dopant profile simulation.

Finally, for particular classes ofsimulation applications, the most advanced TCAD systems

can provide centralized geometry services to simplify physical model implementation. For

instance, for 3D IC topography simulation, a TCAD system could provide a set of
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sophisticated and efficiently integrated 3D geometric utilities for computing boundary defor

mation and surface visibility.

Tables 2.1a-c ([l]-[30][36]) list seventeen current TCAD systems, the system develop

ers, and the geometry support provided in these systems. These TCAD systems represent a

wide range of application areas and organizational structures. In terms of application areas,

these systems cover from dopant profile and topography simulation, to device simulation and

capacitance extraction. In terms of organizational structure, while some of the systems are

monolithic simulation programs, such as SAMPLE-3D [6], many others are TCAD systems

that integrate several tools, such as AT&T's Integrated TCAD system [1] and the committee-

designed SWR [36]. Amore comprehensive review ofcurrent TCAD system capabilities can

be found inananthology ofTCAD system review papers, such as [31].

This chapter critiques current TCAD systems in terms of these three geometry support

levels: 1) Solid Boundary Generation,, 2) Data Mapping, and 3) Centralized Geometry

Services. In Tables 2.1a-c, implemented geometry support levels are denoted by X's in the

appropriate columns. In each TCAD system, there arc two criteria that determine its geometry

support levels. The first criterion is the services that can be provided by the underlying

geometry server. The second criterion is how well TCAD tools can use these services. Based

on these criteria, it will be shown that centralized geometry servers currently lack the con

structs needed to support efficient 3D IC topography simulation. Moreover, this chapter

shows that current TCAD systems lack organizational structures needed to conveniently and

efficiently interoperate centralized geometry servers.
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2.2. SOLID BOUNDARY GENERATION

Solid modeling operations have long been used in TCAD systems to generate realistic

device boundaries for volume mesh generation and 3Ddevice simulation. In 1983, IBM first

developed the OYSTER [15] system, which creates 3D device topographies as input to FIEL-

DAY [33], afinite element device simulation program. OYSTER used the GDP [16][17] solid

modeler to create 3D IC topography components with rounded corners by sweeping out layout

mask openings and oxidation profiles rotationally and translationally. Using GDP's merge

operation (i.e. a boolean set operation), OYSTER stitched together theses topography com

ponents into a device structure. Similar techniques for device topography construction were

subsequently adopted and refined by researchers at ETH Zurich [12] to simulate CMOS and

bipolar devices using the Echidna [13] solid modeler, AT&T Allcntown [1] to simulate

SRAM cells using a BSP Tree [3] solid modeler, and Stanford [27] to simulate SRAM cells

using the ACIS [23] solid modeler.

TCAD systems have also used layout mask extrusion and solid geometry stitching to

generate 3D input structures for capacitance extraction and microelectromechanical (MEM)

simulation. In 1990, IBM reported the FOXI [19] system, which uses the IBM Geometry

Engine [19] to stitch solid primitives, such as boxes, cones, and spheres, into complex device

structures, such as a DRAM cell, as input to FIERCE [18], a finite element capacitance extrac

tion program. Shortly after, in 1992, MIT reported on its MEMCAD [25] system, which

includes a proprietary solid modeler [26] for constructing 3D MEM structures by layout mask

extrusion and boolean set operations.

Recent simulation studies have demonstrated the need forusing rigorous 3D ICtopogra

phy simulation to generate input structures for electrical analysis. For example, in [8], two
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pairs of polysilicon elbows were generated using layout mask extrusion and SAMPLE-3D

etching simulation. The authors compared mutual capacitance values calculated by

FASTCAP [35], MIT's fast multipole capacitance extraction program, on both the extruded

and SAMPLE-3D simulated 3D elbow structures. Due to geometrical differences such as etch

bias and sidewall curvatures, the mutual capacitance values of the two structures can differ by

as much as 30% [8].

With respect to most TCAD systems, solid boundary generation can be considered a

mature technology. The third column ofTables 2.1a-c summarizes the current status of sup

porting solid boundary generation in TCAD systems. As listed in these tables, 12 out of 17

TCAD systems are capable of performing 3D solid boundary generation. For a new TCAD

system, this wealth ofexperience suggests that solid boundary generation would be anatural

starting point forbuildingup 3D geometry support.
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2.3. DATA MAPPING

Successful 2D data mapping implementations [5][28] suggest that solid modelers will be

indispensable for integrating 3D surface-representation-based IC topography simulations. To

incorporate surface-representation-bascd topography simulation results, a stitch-back utility is

needed to add new layers to wafer geometry, orto clip the wafer geometry against etched sur

faces. In 2D, stitch-back involves only polygon and string intersections. Therefore, the 2D

stitch-back function can be easily developed from scratch. On the other hand, the 3D stitch-

back function requires robust and efficient solid and surface intersection computations.

Hence, itwould be best to implement this function by extending a 3D geometry server's solid

or surface intersection operations.

While supporting 3D data mapping may seem to be a worthwhile near term goal, the

significant cost associated with developing 3D computational algorithms suggests moving on

to more long term goals. In fact, the few TCAD systems that currently support limited 3D

data mapping have achieved this as a result ofcentralizing computational services. The fourth

column of Tables 2.1a-c summarizes thecurrent status of supporting 2D and3D datamapping

in TCAD systems. At present, only 2 out of 17 TCAD systems, AT&T's Integrated TCAD

System [1] and IBM's VATS [18] system, support limited 3D data mapping. In both cases,

3D data mapping is supported as the result ofcentralizing volume mesh services for 3D ther

mal processand devicesimulation programs.
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2.4. CENTRALIZED GEOMETRY SERVICES

As far back as the early 1980s, IBM had implicitly centralized 3D field services by shar

ing FORTRAN finite element simulation modules between FIELDAY [33], FEDSS [34], and

FIERCE [18]. In 1990, AT&T introduced the PROPHET [3] field server, which is the first

object-oriented implementation of centralized services for 2D and 3D PDE solution and

volume mesh generation. Since 1990, PROPHET C++ object classes have been succesfully

embedded in AT&T's Integrated TCAD System to implement production-line proven simula

tion models for 2D and 3D oxidation, dopant diffusion, and device characterization [1].

Recently, university researchers have followed with Florida's FLOODS/FLOOPS [14] sys

tem, and Stanford's Forest [28] system. However, these systems are designed to support

university research on cutting-edge physical models for 2D oxidation, dopant diffusion, and

device simulation.

Current TCAD systems that support centralized computation services primarily target

thermal process and device simulation, and contain organizational structures that do not

interopcrate servers. The fifth column ofTables 2.1a-c summarizes the current status ofsup

porting 2D and 3D centralized computational services for physical model development. As

listed inTables 2. la-c, 5 out of 17 systems centralize volume mesh services for2D or3D ther

mal process and device simulation, but only 3 out of 17 systems provide centralize geometry

services for 3D topography simulation. Morever, to avoid data mapping between geometri

cally dissimilar 3D data representations, most ofthese TCAD systems contain organizational

structures that restrict the numbers and the types of geometry servers. Since robust and

efficient 3D geometric algorithms are difficult to develop, an ideal TCAD system should

implement an organizational structure which more freely interoperates geometry servers.
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CHAPTER 3

BERKELEY TOPOGRAPHY UTILITIES

3.1. INTRODUCTION

An ideal TCAD system should offer a continuum of choices between general-purpose

services and special-purpose services for IC process and device simulation. This chapter

recommends a hierarchical server interface based on input data granularity of geometrical

operations to manage the large number of geometric utilities and services introduced by

geometry servers. The purpose for hierarchically organizing geometric utilities and services is

to share codes that support data mapping, server extensions, and simulation experiments and

applications. The principal test vehicle for exploring TCAD organizational issues is then

introduced as the Berkeley Topography Utilities (BTU) system [I]. The BTU system uses the

recommended hierarchical interface approach to integrate Berkeley topography simulators

with the IBM Geometry Engine. It is a rather extensive object-oriented (C++) system that

both provides the hierarchical interface, and wraps the simulators and the IBM Geometry

Engine.

The BTU system organizational structure consists offive layers which are believed to be

essential to future geometry service based TCAD systems. The five BTU system layers are:

1) Centralized Geometry Servers, 2) Primitive Server Interface, 3) Auxiliary Server

Interface, 4) Aggregate Server Interface, and 5) Simulation Support Utilities. The Cen

tralized Geometry Server layer currently supports both general-purpose servers, such as the

IBM Geometry Engine [2], and special-purpose servers, such as SAMPLE-3D [3] and SIMPL

System 6 [4]. Collectively, the Primitive, Auxiliary, Aggregate Server Interface layers are

known as BTU Hierarchical Interfaces. These three layers uniformly integrate and
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hierarchically organize geometry services under an object-oriented application procedural

interface. The Simulation Support Utilities layer complements geometry services with simu

lation specific utilities for simulation task management and visualization. Section 3.3

describes a system integration scheme that presents an integrated and hierarchically organized

geometry server interface, and maintains geometry server software boundaries.

Section 3.4 highlights BTU experimental applications that interoperate the IBM

Geometry Engine with Hamaguchi's 2D shock tracking topography simulation program [5],

SAMPLE-3D, and SIMPL. To demonstrate application development convenience and server

interoperability achieved through BTU Hierarchical Interfaces, Section 3.4 briefly describes

solid structures and surface meshes constructed by these tests and experiments. Similar tests

and experiments will be presented throughout Chapters 6, 7, and 8.

Section 3.5 discusses the use of the BTU system organization as an infrastructure for

implementing 3D IC topography simulation application. Section 3.5 first analyzes SAMPLE-

3D source code distribution with respect to BTU system layers. This analysis assesses the

coding effort required to implement a3D simulation application based on a fully implemented

BTU system. Section 3.5 further discusses how the BTU system organization could enhance

the robustness and maintenance of 3D simulation applications.
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3.2. BTU SYSTEM LAYERS

The Berkeley Topography Utilities (BTU) system is an object-oriented (C++) five-

layer system that integrates general-purpose geometry servers, such as the IBM Geometry

Engine, with special-purpose geometry servers, such as SAMPLE-3D and SIMPL System 6.

This section introduces the five BTU system layers: 1) Centralized Geometry Servers, 2)

Primitive Server Interface, 3) Auxiliary Server Interface, 4) Aggregate Server Interface,

and 5) Simulation Support Utilities. Figure 3.1 illustrates BTU system layers and applica

tions. In Figure 3.1, BTU system layers are denoted using rectangular boxes, and BTU appli

cations are represented using bubbles.

As shown at the bottom of Figure 3.1, Centralized geometry servers, the main subject

of study in this thesis, lie at the foundation of the BTU system. Due to significant perfor

mance disparities between server types, the BTU system explicitly distinguishes general-

purpose servers, such as the IBM Geometry Engine, from special-purpose servers for IC

topography simulation, such as SAMPLE-3D and SIMPL System 6. General-purpose servers

can provide robust geometrical operations on solid boundary representations. On the other

hand, special-purpose servers can perform similar geometrical operations more efficiently by

representing and manipulating only surface elements. Eventually, these servers could con

verge into a new generation ofgeneral-purpose servers that may efficiently perform the kinds

of geometrical operations used in IC topography simulation.

As shown in the left of Figure 3.1, the BTU system divides the application procedural

interface to centralized geometry servers into three layers: The Primitive, Auxiliary, and

Aggregate Server Interfaces. Collectively, these interfaces are known as BTU Hierarchical

Interfaces. These three layers uniformly integrate and hierarchically organize geometry
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services under an object-oriented application procedural interface. Fundamental concepts in

object-oriented programming such as encapsulation, inheritance, and polymorphism, are

used in BTU Hierarchical Interfaces to wrap geometry server functionalities for TCAD appli

cations, and to facilitate the development and application of auxiliary data structures.

Detailed discussions onobject-oriented programming can be found in [6].

The Primitive Server Interface layer wraps small-grain geometry services, such as sur

face connectivity and boolean set operations. This layer contains geometry server

wrapper objects, or object classes that encapsulates geometry server data structures and

algorithms. Table 3.1 summarizes the object classes and the amount ofcode contained in the

three server interface layers. As shown in the bottom ofTable 3.1, Primitive Server Interface

objects include wrappers for surface connectivity, and utilities for polygon triangulation.

Other Primitive Server Interface objects include wrappers for CPU intensive geometrical

operations such as boolean set operations and line-of-sight visibility tests. In terms ofcode

size, the Primitive Server Interface layer dominates the BTU Hierarchical Interfaces prototype

at about 30,750 lines ofC++ code.

The Auxiliary Server Interface layer implements auxiliary data structures for efficient

use and semantics extension ofgeometry services. As shown in the middle ofTable 3.1, auxi

liary data structures currently supported in the BTU system include monotone decomposi

tion, process history tagging, and topography propagation trace-back. Detailed descrip

tions of these data structures will be given later in Chapters 7 and 8. To facilitate the imple

mentation and application of auxiliary data structures, such as monotone decomposition,

BTU Hierarchical Interfaces apply well-established object-oriented programming concepts.

As will be described in Chapter 7, monotone decomposition partitions a surface mesh into a

few large-grain monotone patches. In implementing monotone decomposition, inheritance
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was used to share codes between the MonotonePatch and SurfaceMesh object classes.

Inheritance was also used to share codes among a family of 3D monotone decomposition

methods. Polymorphism enabled aggregate geometric utilities, such as boundary deforma

tion, toperform the same geometric computations on monotone patches generated bydifferent

monotone decomposition methods. As a result, the MonotonePatch object class, two 3D

monotone decomposition methods, and geometric computations on 3D monotone decomposi

tion, were implemented in a total of 1,200 lines of C++ code.

The Aggregate Server Interface layer implements large grain geometrical operations,

such as boundary deformation and source visibility. An aggregate geometric utility can be

implemented by directly wrapping large-grain geometry services, such as SAMPLE-3D's

source visibility operation. Alternatively, an aggregate geometric utility can be implemented

by combining Auxiliary Server Interface objects, such as monotone decomposition, with

Primitive Server Interface objects, such as line-of-sight visibility tests.

As shown in the right top corner of Figure 3.1, Simulation support utilities are textual

and graphical utilities specific to IC topography simulation. Pre-processing simulation sup

port utilities, capture simulation input from the end user, and execute the simulation inner

loop. These utilties include graphical user-interface (GUI) utilities, input deck parsers, and

simulation task management utilities. Post-processing simulation support utilities include

computer graphics utilities for visualization ofIC topography simulation results, and geometr

ical analysis of thevisualized solids andsurfaces.

In terms of code size, the BTU system organization can provide excellent application

development leverage, although the cost ofadding geometry servers can be significant. Figure

3.1 compares the codes sizes of BTU applications versus BTU system layers. As will be
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discussed in Section 3.4, using BTU Hierarchical Interfaces, experimental applications can be

written in about 250to 350 lines ofC++ code. As will be analyzed in Section 3.5, usingutili

ties and services provided by a fully implemented BTU system, rigorous 3D IC topography

simulation applications could be written in about 2,000 lines ofC++ code. On the other hand,

as listed in the lower right corner of Figure 3.1, the BTU Hierarchical Interfaces prototype

currently contains about 41,000 lines of C++ code to interface 4 geometry servers. In other

words, adding ageometry server to the BTU system could require about 10,000 lines of C++

code.
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3.3. BTU SYSTEM INTEGRATION

The BTU system integration strategy aims at providing a convenient development

environment for both TCAD developers and geometry server developers. Tocomply with dif

ferent development responsibilities, the system integration strategy need to simultaneously

provide a convenient TCAD system organization and preserve well-established geometry

server software boundaries. Forexample, Figure 3.2 illustrates theBTU system directory tree.

As shown in the right of Figure 3.2, BTU Hierarchical Interfaces wraps disjoint geometry

server components, into an integrated conglomeration ofhierarchical interface objects. On the

otherhand, as shown in the left of Figure 3.2, geometry servers in the BTU system preserve

their individual software boundaries by maintaining separate directory trees.

In the BTU system directory tree, Unix file links are used to simultaneously provide a

convenient development environment and maintain geometry server software boundaries. In

Figure 3.2, file links are plotted as dashed arrows. As depicted in the bottom ofFigure 3.2,

files links go from hierarchical interface directories to geometry server directories. These

links are used to present geometry server wrapper objects as BTU Hierarchical Interface

objects. For example, as shown in the left ofFigure 3.2, the SAMPLE-3D directory may con

tain three SAMPLE-3D wrapper objects: Surface, Octree, and Source Visibility. Using file

links from the SAMPLE-3D sub-directories to the appropriate Interfaces sub-directories, a

TCAD application could include Surface as a Primitive Server Interface object, Octree as an

Auxiliary Server Inverface object, and Source Visibility as an Aggregate Server Interface

object.
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3.4. BTU EXPERIMENTAL APPLICATIONS

This section highlights epxerimental applications that demonstrate the application

development convenience and server interoperability achievable through the BTU system.

The experimental results to be presented in this section were obtained by interoperating the

IBM Geometry Engine with special-purpose geometry servers, such as Hamaguchi's 2D shock

tracking topography simulation program, SAMPLE-3D, and SIMPL. Using BTU Hierarchical

Interfaces, experimental applications to be described here were written in about 250 to 350

lines of C++code.

The first examples of BTU experimental applications are IBM Geometry Engine stand

ardized performance tests [7]. As will be described in Chapter 6, these tests characterized

the performance ofthe IBM Geometry Engine using geometrical operations in 3D IC topogra

phy simulation. BTU system provides geometric utilities to construct solid structures for IBM

Geometry Engine performance testing. The left of Figure 3.3 illustrates several solid struc

tures constructed by these utilities. The bottom left corner of Figure 3.3 depicts a two-holes

initial structure created using tiled planar layers, and two inverted cone sections. The top left

corner of Figure 3.3 depicts a triangulated vertical deposition volume generated from the top

surface of the two-holes initial structure. To the right of the vertical deposition volume is a

staircase that was constructed by merging cubes. This structure was used to chracterize the

performance of repeated boolean set operations.

Inthe 2.5D Isotropic Deposition Experiment, the BTU system was used to interoperate

the IBM Geometry Engine with Hamaguchi's 2D shock tracking topography simulation pro

gram. As will be described in Chapter 7, this experiment involved simulating a 0.3 um isotro

pic deposition on a 1um deep 2.5D key hole trench, with a 0.25 um opening at the top ofthe



38

trench. The right of Figure 3.3 depicts the resulting solid structure generated by this experi

ment In this figure, the front face of the solid structure shows the surfaces generated by the

2D shock tracking solver at three time steps leading up to time (T) = 1 second. At T = 1

second, the isotropic deposition created a void in the topography. This void is efficiently

detected and resolved using 2D monotone decomposition, and two IBM Geometry Engine

merge operations.

To enable the use of IBM Geometry Engine merge operations in simulating 3D boun

dary deformation, the BTU system implemented 3D monotone decomposition auxiliary data

structures. Monotone decomposition groups large numbers ofsimilar orientation facets, into a

few large grain monotone surface patches [1]. As will be demonstrated in Chapter 7, 3D

monotone decomposition was used to efficiently intemperate IBM Geometry Engine merge

operations with SAMPLE-3D surface advancement operations. Figure 3.4 illustrates a

monotone decomposition ofa 3D key hole trench surface with 896 triangles. The left of Fig

ure 3.4 shows the IBM Geometry Engine solid structure used to extract the key hole trench

surface. On the right of Figure 3.4, the key hole trench surfach is decomposed into 9 mono

tone patches. As will be discussed in Chapter 7, this decomposition can reduce the number of

IBM Geometry Engine merge operations from 895 down to 8.

To analyze the causes of topography propagation effects, the BTU system implemented

a (material) volume-based process history tagging auxiliary data structure for attaching and

propagating process flow and layout dependencies on IC topographical features. As will be

discussed in Chapter 8, a 2.5D process history tagging data structure was implemented to tag

SIMPL process step and layout mask id's on IBM Geometry Engine solid structures. Chapter

8 will also describe a new TCAD function known as topography propagation trace-back.

This function traverses process history tags, and reports the process flow and layout
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dependencies of IC topographical features.

In this section, the Metal Stringer Trace-Back Experiment is used to demonstrate

interoperation of the IBM Geometry Engine with SIMPL. This experiment began by using

SIMPL to simulate an IC topography thatcontains a metal stringer propagated from an under

lying polysilicon line. After each SIMPL topography process step, the resulting deformation

volume was extruded andupdated in the IBM Geometry Engine. Trace-backs were then per

formed on the metal stringer and the poly line.

The SIMPL process flow simulated by the Metal Stringer Trace-Back Experiment is

listed in Figure 3.5. Figure 3.6 shows the SIMPL layout and final cross section obtained from

this process flow simulation. As listed in Figure 3.5, the major sequences in this process flow

are: Poly 1 deposition and etching (thickness = 1 um, mask = POLY, Steps 1 through 7);

Oxide 1deposition (thickness = 1um, Step 8); Metal 1deposition and etch-back (thickness =

1 um, Steps 9 through 11).

As one would expect, topography propagation trace-back ofthe Metal 1stringer and the

Poly 1 line showed that the lithography and etching of Poly 1 line strongly influenced the

shape ofthe Metal 1 stringer. Figure 3.7 depicts the 3D topography simulated by the IBM

Geometry Engine, and compares the dependencies reported for the metal stringer (listed on

the right), and that for the poly line (listed on the left). From the reported dependencies, itcan

be seen that the Metal 1 stringer not only depended on the metal deposition and etch-back

(Steps 9 and 11), but also depended on the poly line deposition, lithography, and etching

(Steps 1,2,4, 6, and POLY mask).
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Metal Stringer Test
SIMPL Process Flow

LAYOUT FILE : stringer2.cif

SUBSTRATE TYPE:

CUT-LINE COORDINATES : xl = -1600, yl = -47
x2 = 1600, y2 = -47

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? POLY

THICKNESS OF THE MATERIAL (micro-meter) ? 1
VERT, SPIN-ON. ISO, ANISO or SAMPLE MENU (V.S.I.A, or M) ? V
DOPING (B, As, P, Sb or None) ? None
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? RST

THICKNESS OF THE MATERIAL (micro-meter) ? 1
VERT. SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, or M) ? S
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? EXPO

WHICH MASK ? POLY

INVERT THE MASK (yes or no) ? no
NAME OF MATERIAL TO BE EXPOSED ? RST

NAME OF THE EXPOSED RESIST ? ERST
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? ERST
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? ETCN

Etch Type-.Isotropic, or Iso with Directional (1 or 10) ? 10
File containing etch rates ? poly.etch.mod
Etch accuracy (0:worst to 10:best) ? 10
Timestep in seconds ? 11
Number of steps ? 1
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? ETCU
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? ETCH

WHICH LAYER DO YOU WANT TO ETCH ? RST
ETCH ALL (yes or no) ? yes
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

I Figure 3.5

42
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Metal Stringer Test
SIMPL Process Flow

(Continued)

IWHICH PROCESS ? DEPO
JNAME OF THE MATERIAL ? OXID
THICKNESS OF THE MATERIAL (micro-meter) ? 1
VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V,S,I,A, or M) ? I
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

!* o •
i

'WHICH PROCESS ? DEPO

INAME OF THE MATERIAL ? METL
'THICKNESS OF THE MATERIAL (micro-meter) ? 1
IVERT, SPIN-ON. ISO, ANISO or SAMPLE MENU (V.S.I.A. or M) ? I
JOO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

I* 10 *

!WHICH PROCESS ? ETCN '
iEtch Typeisotropic, or iso with Directional (1 or 10) ? 10
File containing etch rates ? metal.etch.mod
IEtch accuracy (0:worst to 10:best) ? 10
JTimestep in seconds ? 11
jNumber of steps ? 1
IDO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes
i
i

j« 11 *
|WHICH PROCESS ? ETCU
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

IWHICH PROCESS ? END

Figure 3.5
(Continued)
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Metal Stringer Test
Layout and Cross Section

(SIMPL System 6 Simulation)

44

Figure 3.6 RHW - UCB TCAD
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3.5. BTU SIMULATION APPLICATIONS

This section evaluates the effectiveness of the BTU system organization in implement

ing 3D IC topography simulation applications. The evaluation involves studying the source

code distribution and implementation history ofSAMPLE-3D. SAMPLE-3D is representative

ofstate-of-the-art 3D IC topography simulation programs. SAMPLE-3D implements physical

models for lithography, ion milling, plasma etching, metal evaporation, sputter deposition,

and chemical vapor deposition. It is also a good example of a special-purpose geometry

server that undergoes constant development. SAMPLE-3D physical models and geometric

algorithms have been used in other 3D IC topography simulation programs, such as

EVOLVE-3D [8] and VISTA's 3D cell-based etching and deposition program [9].

Using a fully implemented BTU system, 3D simulation applications could be written in

about 2,000 lines of C++ code. Figure 3.8 illustrates SAMPLE-3D source code distribution

with respect to BTU system layers. As shown in the left ofFigure 3.8, primitive, auxiliary,

and aggregate geometrical operations, such as line-of-sight visibility, octree, cell-

decomposition, and deloop, account for 73% of SAMPLE-3D source code. As shown in the

lower right corner ofFigure 3.8, simulation support utilitcs, such as simulation task manage

ment and visualization, take up another 22%. In other words, all but 1,800 lines (5%) of

SAMPLE-3D's 36,000 lines could be replaced by BTU system utilities and services. There

fore, conservatively, using a fully implemented BTU system, a 3D simulation application can

be implemented in about 2,000 lines ofC++ code.

Besides centralization ofgeometry services, the BTU system organization improves over

monolithic simulation programs, such as SAMPLE-3D, in terms of robusmess and ease of

maintenance. As suggested in the bottom of Figure 3.8, the robustness of special-purpose
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geometry operations, such as deloop, often require several (3) generations to perfect. The

resulting deloop operation is difficult to improve because it is fraught with duplicate and

extraneous code fragments. On the other hand, using the BTU system, simulation applications

canacquire robustness as theBTU system incorporate new and proven servers.

In terms of maintenance, simulation applications built using a special-purpose server

may undergo frequent code changes. This is because these applications are usually imple

mented using the server's internal data structures and algorithms. As a result, modifications in

the server lead to modifications in simulation applications. BTU simulation applications can

be easier to maintain because the applications interact with geometiy servers through

wrappers. Geometry server wrappers encapsulate the internal data structures and algorithms

of geometry servers, and only change when geometry servers change their external data

representations or functional behaviors. As a result, simulation applications built using

geometry serverwrappers aremore stable.
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3.6. CONCLUSIONS

This chapter recommended a hierarchical organizational structure for future TCAD sys

tems. The Berkeley Topography Utilities (BTU) system, which exemplifies this architec

ture, consists of: 1) Centralized Geometry Servers, 2) Primitive Server Interface, 3)Auxi

liary Server Interface, 4) Aggregate Server Interface, and 5) Simulation Support Utilities.

The BTU system hierarchically organized geometric utilities and services along their input

data granularity under Primitive, Auxiliary, and Aggregate Server Interfaces. These three

layers, known as BTU Hierarchical Interfaces, implement geometry server wrappers and

auxiliary data structures that address complex issues arising from the use of centralized

geometry services. Based on experience with the BTU Hierarchical Interfaces prototype,

adding ageometry server to the BTU system would require about 10,000 lines ofC++ code.

BTU Hierarchical Interfaces facilitate implementation and application of auxiliary data

structures by using fundamental concepts in object-oriented programming, such as inheri

tance and polymorphism. As an example, Section 3.2 considered the implementation ofthe

monotone decomposition auxiliary data structure. As will be discussed in Chapter 7, mono

tone decomposition partitions a surface mesh into a few large-grain monotone patches. In

implementing monotone decomposition, inheritance was used to share codes between the

SurfaceMesh and the MonotonePatch object classes. Inheritance was also used to share

code among a family of 3D monotone decomposition methods. Polymorphism enabled

aggregate geometric utilities, such as boundary deformation, to perform the same geometric

computations on monotone patches generated by different monotone decompostion methods.

As a result ofusing inheritance and polymorphism, the MonotonePatch object class, two 3D

monotone decomposition methods, and geometric computations on 3D monotone decomposi

tion, were implemented in a total of 1,200 lines ofC++ code.
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Section 3.3 described a BTU system integration strategy that created a convenient

development environment for both TCAD application developers and geometry server

developers. To preserve geometry server software boundaries, the BTU directory tree con

tains separate subtrees for geometry server objects and hierarchical interface objects. Unix file

links going from hierarchical interface directories to geometry server directories allow

geometry server objects to bepresented ashierarchical interface objects.

Section 3.4 highlighted BTU experimental applications that interoperated the IBM

Geometry Engine, a2D shock tracker, SAMPLE-3D, and SIMPL. Section 3.4 presented solid

structures and surface meshes constructed by these tests and experiments. These experimental

results demonstrated the kinds ofapplication development convenience and server interopera

bility achievable through BTU Hierarchical Interfaces. Using BTU Hierarchical Interfaces,

experimental applications can be written in about 250 to 350 lines ofC++ code.

Section 3.5 discussed the use of the BTU system organization to implement 3D IC

topography simulation applications. First, by bin sorting SAMPLE-3D modules (36,000 lines

ofCcode) with respect to BTU system layers, itwas shown that 95% ofSAMPLE-3D source

code could be classifed as BTU system utilies and services. The remaining 5%, or1,800 lines

ofCcode, implemented several rigorous physical models. Conservatively, this analysis sug

gested that, using geometric utilities and services provided by a fully implemented BTU sys

tem, a 3D simulation application could be written in about 2,000 lines ofC++ code. Morever,

the BTU system organization offers improved robustness through acquisition ofnew geometry

servers, and easeof maintenance through encapsulation of geometry servers.
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CHAPTER 4

ESSENTIAL GEOMETRY SERVER CONSTRUCTS FOR

EFFICIENT 3D IC TOPOGRAPHY SIMULATION

4.1. INTRODUCTION

This chapter shows that the performance of centralized geometiy servers, such as the

IBM Geometry Engine [1], is inherently linked to the support of essential geometry server

constructs. Fourconstructs arepresented: 1) Explicit Connectivity, 2) Face-Face Intersec

tion Sorting, 3) Ray-Face Intersection Sorting, and 4) Localized Deformation. Table 4.1

summarizes the relationship between essential constructs and server performance. The middle

columns of Table 4.1 list the server performance improvements gained through using these

constructs. The rightmost column of Table 4.1 lists general design issues that arise during

construct implementation. This chapter will describe geometric data structure and algorithm

examples that address these design issues for efficient 3D IC topography simulation.

Section 4.2 uses geometrical operations in 3D IC topography simulation to introduce

and motivate the four essential geometry server constructs. At every simulation time step,

Explicit Connectivity is needed to efficiently support tens of thousands of surface connnec-

tivity queries used to simulate surface diffusion and surface reaction. Face-Face Intersection

Sorting is needed to perform efficient surface collision detection and surface loop removal in

surface-based topography simulation. Ray-Face Intersection Sorting is needed to efficiently

support tens of thousands of point location tests used to detect material interface collision,

and millions of line-of-sight visibility tests used to determine surface visibility. Localized

Deformation is needed to avoid extraneous duplications of geometry components andconnec

tivity links during incremental boundary deformation.
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Section 4.3 discusses Explicit Connectivity. Explicit Connectivity directly links

between topologically connected geometry components to efficiently answer large numbers of

surface connectivity queries at each simulation time step. As shown in the top row of Table

4.1, without Explicit Connectivity, 0(N) time is required to answer each surface connectivity

query. This is because linear searches are needed to find all geometry components connected

to a query component. With Explicit Connectivity, all connected components ata vertex oran

edge can be found by traversing afew (typically less than 10) links, and each surface connec

tivity query can beanswered in 0(1) (constant) time.

For Explicit Connectivity, the key design issue is to choose the type ofgeometry com

ponent to store most of the connectivity links, and the kinds of connectivity links to be stored.

As examples, Section 4.3 will describe the 2D winged-edge data structure and the 3D star-

edge data structure, which is a3D variant of thewinged-edge data structure supported by the

IBM Geometry Engine.

Section 4.4 discusses Face-Face Intersection Sorting. Face-Face Intersection Sorting

groups faces by spatial locality, such that face-face intersections are only computed between

faces within the same proximity. As shown in the second row ofTable 4.1, without Face-Face

Intersection Sorting, 0(N2) time is required to check for intersections between every face and

every other face. With Face-Face Intersection Sorting, each face is only checked for intersec

tion against the few faces close to it, and all surface self-intersections can be found in

0(NlogN) time for tree-based data structures, and 0(N 2) time for grid-based data structures.

For Face-Face Intersection Sorting, the key design issue is to choose a spatial data

structure for sorting faces, and the spatial data structure parameters (such as tree depths or

voxel sizes) mat optimize storage cost and intersection computation time. As examples,
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Section 4.4 will describe several 3D spatial data structures currently implemented in TCAD

applications, such asoctrees, cell-decomposition, BSP trees.

Sections 4.5 discusses Ray-Face Intersection Sorting. Ray-Face Intersection Sorting

groups faces by spatial locality, such that ray-face intersections are only computed between

faces which lie in the ray's proximity. As shown in the third row of Table 4.1, without Ray-

Face Intersection Sorting, 0(N) time is required to intersect a ray against every surface facet

or IC topography face. With Ray-Face Intersection Sorting, each ray is only checked for

intersection against the few faces close to it, and all ray-face intersections in the surface orthe

topography can be found in O(logN) time, for tree-based data structures, and 0(N 2) time, for

grid-based data structures.

ForRay-Face Intersection Sorting, the key design issues are the same as that of Face-

Face Intersection Sorting, plus the need to amortize the initialization costof spatial data struc

tures over large numbers of ray tests. Section 4.5 will discuss the adaptation of Face-Face

Intersection Sorting data structures to simultaneously support Ray-Face Intersection Sorting.

Section 4.6 discusses Localized Deformation. Localized Deformation provides robust

facet pushing to efficiently update facet positions and connectivity links of moving solid

boundaries in IC topography simulation. As shown in the bottom row of Table 4.1, without

Localized Deformation, worst case 0(N2logN) time might be used to update solid boundaries

at each simulation time step. This is because N facets could be trivially swept into triangular

prisms, and merged using N boolean setoperations. For robusmess, each boolean setopera

tion might duplicate unperturbed connectivity links to create intermediate versions of the

aggregate deformation volume. In this scenario, each boolean set operation might use

0(NX logNO time, where N\ is the number offaces in the intermediate volume. Summing N]
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from 1to N results in aworst case total merge time of0(N2logN). With Localized Deforma

tion, facet positions andconnectivity links canbe incrementally updated in 0(NlogN) time.

For Localized Deformation, the key design issue is to find robust and efficient heuris

tics for updating connectivity links after localized facet pushing. As examples, Section 4.6

will describe two special-purpose boolean set operations suitable for 3D IC topography

simulation. Surface-based boolean set operations, such as the deloop operation, can be

used to remove invalid surfaces after surface facet pushing. Localized boolean set opera

tions can be used to delimit and push small subsets ofsolid model faces, and establish con

nectivity links between subset faces. By using triangular prisms to delimit deformed faces,

this approach can avoid duplication ofunperturbed connectivity links. As aresult, each local

ized boolean set operation can be performed in 0(n log n) time, where n is the number ofsub

set faces (typically less than 10). This results in amore 0(N)-\\ke total merge time of 0(N *n

log n).
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4.2. MOTIVATION AND OVERVIEW

Geometrical operations in IC topography simulation can be implemented using a hand

ful of geometry services. For efficient 3D process and device simulation, TCAD researchers

have implemented special-purpose versions ofconnectivity data structures, such as triangular

surface meshes [2][3][4][11], and polygonal boundary representations [10], spatial data

structures, such as cell-decomposition [3][13], octrees [4][5][6], and BSP trees [7][8], and

surface advancement algorithms, such as recursive ray trace [2], facet motion

[3][10][11][12], cell removal [9][13], and level set methods [14][15]. This section groups

these data structures and algorithms as four essential geometry server constructs: 1)Expli

citConnectivity, 2) Face-Face Intersection Sorting, 3) Ray-Face Intersection Sorting, and

4) Localized Deformation. One might expect commercial solid modeling and computer

graphics packages to have implemented these constructs, and can make immediate impact on

3D IC topography simulation. However, as will be discussed in this section, most general-

purpose geometry servers, such as the IBM Geometiy Engine, typically do not implement

Localized Deformation, and therefore cannot efficiently support 3D moving surface simula

tion.

Explicit Connectivity is needed to efficiently support tens of thousands of surface

connnectivity queries used at every time step to simulate surface diffusion and surface reac

tion. Figure 4.1 illustrates use ofconnectivity services in surface diffusion and surface reac

tion simulation. Surface diffusion involves particle redistribution between neighboring sur

face vertices. As shown in the left of Figure 4.1, explicit representation of incident edges can

be used to efficiently find the connected vertex neighbors at each surface vertex. Depending

on the materials incident on a surface vertex, surface reaction creates equilibrium concentra

tions of visible particles and reacting species at the vertex. As shown in the right ofFigure
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4.1, explicit representation of incident faces and volumes can be used to efficiently find the

materials meeting at each surface vertex. Usually, a surface vertex has 3 to 6 incident edges

and facets, and 1to 3 incident volumes. Therefore, for N vertices, simulation of surface diffu

sion and surface reaction spawns O(N) connectivity queries. For a typical simulation with

10,000 surface vertices (N = 10,000), about 50,000 connectivity queries are invoked at each

time step.

Face-Face Intersection Sorting is needed to perform efficient surface collision detec

tion and surface loop removal after every few time steps of a surface-based IC topography

simulation. Figure 4.2 illustrates the use offace-face intersection services in surface collision

detection and wafer geometry update. As shown in the left of Figure 4.2, surface-based IC

topography simulators, such as SAMPLE-3D [2][3][4] and EVOLVE-3D [11], need geometri

cal utilities to detect and resolve global topological changes, such as void formation. After

simulating a topography process step, as shown in the middle and the right ofFigure 4.2, the

aggregate deformation volume need to be stitched onto the wafer geometry. Face-face inter

section services, such as deloop and glue, can be used to perform these tasks. Since surface

collisions can occur at any time during the simulation, face-face intersection services need to

be invoked after every few time steps. For a typical surface-based IC topography simulation,

this translates to about 300 face-face intersection service calls on a surface with 10,000 ver

tices.

Ray-Face Intersection Sorting is needed to efficiently support tens of thousands of

point location tests used at every time step to detect material interface collision, and millions

ofline-of-sight visibility tests used at every time step to compute surface visibility. Figure

4.3 illustrates the use of ray-face intersection services in material interface collision detection

and surface visibility computation. During each time step, a surface-base etching simulation
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needs to check if its etch front points had crossed over a material interface. As shown in the

left ofFigure 4.3, a point location test can be used to find the material volume that contains

an etch front point after its advancement. To track source particles incident on a surface dur

ing a simulation time step, the simulator needs to determine the source points that are visible

to each surface vertex. As shown in the right of Figure 4.3, a line-of-sight visibility test can

be used to determine if a source point is visible to a surface vertex. For a surface with N ver

tices and a source with S points, at each simulation time step, a total of0(N) point location

tests and 0(N*S) line-of-sight tests may be performed on the surface. For a typical simulation

with about 10,000 surface vertices (N = 10,000) and 500 source points (S = 500), about 10,000

point location tests and 5million line-of-sight visibility tests may be performed at each time

step.

Localized Deformation is needed to avoid extraneous duplications of geometry com

ponents and connectivity links during incremental boundary deformation. Figure 4.4 illus

trates the inefficiencies that can result from the lack of Localized Deformation. The left of

Figure 4.4 depicts how facets can be trivially swept into small deformation volumes, and the

order in which they can be merged into an aggregate deformation volume. The right ofFigure

4.4 illustrates how these small volumes can be merged using boolean set operations. For

robustness, conventional boolean set operations, such as the ones in the IBM Geometiy

Engine, establishes output solid connectivity links by duplicating input solid connectivity

links. For the case ofmerging Nsmall deformation volumes, conventional boolean set opera

tions may incur in 0(N2) extraneous duplications. As an example, the right of Figure 4.4

shows the number ofextraneous duplications for each facet deformation volume. As shown in

N2
Figure 4.4, the 8 merge operations (N = 8) would incur a total of35 (or about — 32)

extraneous duplications.
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43. EXPLICIT CONNECTIVITY

Explicit Connectivity directly links between topologically connected geometry com

ponents to efficiently answer large numbers ofsurface connectivity queries at each simulation

time step. Without Explicit Connectivity, each connectivity query would require 0(N) time to

complete. For example, to find all edges incident on avertex, every solid boundary or surface

edge would have to be checked for containment ofthe query vertex. It can be shown that a

solid or a surface with N vertices has 0(N) edges and 0(N) faces [16]. Therefore, without

Explicit Connectivity, 0(N) time would be required to find all edges incident on a vertex.

With Explicit Connectivity, each connectivity query can be answered in 0(1) (constant)

time. Acommon approach to implement an Explicit Connectivity data structure is to choose

one type ofgeometry component for storing aset ofconnectivity links that enables 0(1) time

connectivity queries. For example, Figure 4.5 depicts the connectivity links in the 2D

winged-edge [17] data structure. As illustrated in the left ofFigure 4.5, the winged-edge data

structure uses edges to store connectivity links to component vertices, incident faces, and con

nected edges. To facilitate connectivity queries, each vertex contains a back pointer to an

incident edge, and each face contains aback pointer to a component edge. As depicted in the

right ofFigure 4.5, through vertex VTs back pointer to edge El, VTs incident edges El, E2,

and E3, and incident faces Fl and F2, can be readily found by traversing El's connectivity

links. In other words, all edges and faces incident on a winged-edge vertex can be found in

0(1) time.

Since Baumgart's seminal work on the 2D winged-edge data structure in 1972, several

3D extensions, such as the star-edge [18] data structure, have been developed. The star-edge

data structure has been used to implement the IBM Geometry Engine. Figure 4.6 depicts the
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connectivity links in the 3D star-edgedata structure. As illustrated in the left of Figure 4.6,

the star-edge data structure uses vertices to store connectivity links to directed edges and

faces. In the star-edge data structure, each vertex contains several stars. A star is used to

refer to incident edges contained by the same face. For instance, as shown in the right of Fig

ure 4.6, vertex V groups its incident edges into three stars, and the star in face Fl has 4

directed edges.
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4.4. FACE-FACE INTERSECTION SORTING

Face-Face Intersection Sorting groups faces by spatial locality, such that face-face

intersections areonly computed between faces within the same proximity. Without Face-Face

Intersection Sorting, each surface facet ischecked for intersections against every other surface

facet. Consequently, 0(N2) intersection checks are required to find all facet-facet intersec

tions. On the other hand, in a typical topography simulation, each surface facet usually only

intersects a few other surface facets. Therefore, without face-face intersectionsorting, most of

the 0(N2) run time would be consumed by extraneous intersection calculations between far

apart surface facets.

With Face-Face Intersection Sorting, each face-face intersection operation can be per

il

formed in 0(N 2) to 0(NlogN) time. Implementing Face-Face Intersection Sorting involves

adapting spatial data tructure parameters such that most spatial partitions contain only a few

(less than 5) surface facets. Within each spatial partition, pair-wise face-face intersection

computations require 0(n2) time, where n is the number ofthe facets in each spatial partition.

Since only a few facets are present in each partition, face-face intersections over all spatial

partitions can be found in a running time dominated by the bigger of the two running times:

1) Preprocessing time used to sort faces into spatial partitions, and 2) Pair-wise intersection

timeused to visit eachspatial partition andcompute pair-wise intersections.

As examples, this section describes partitioning strategies for efficient 3D IC topography

simulation using three spatial data structures currently implemented in TCAD applications:

Cell decomposition, Octrees [19], and BSP trees [20]. Figure 4.7 [21] illustrates examples

of 2D polygons partitioned using these data structures. The left of Figure 4.7 shows the cell

decomposition data structure. This data structure uniformly divides the simulation space into
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rectilinear cells, and classifies each cell as air (empty), material (filled), or surface (partially

filled). Using the SAMPLE-3D cell decomposition data structure, Scheckler had imple-

mented a ceU deloop operation that can run in 0(N2) time [3]. To achieve this run time, the

cell segment length is set equal to the ideal segment length in the surface mesh. This setting

enables most cells to contain a few facets. Since SAMPLE-3D cellcontents are incrementally

updated during surface advancement, face-face intersection operation time is dominated by
2_

the time used to perform pair-wise intersections in 0(N2) cells.

The middle of Figure 4.7 illustrates the octree data structure. This data structure recur

sively partitions the simulated surface into octants that are empty, filled, or containing a few

facets. Using the SAMPLE-3D octree data structure, Helmsen had implemented an octree

deloop operation that can run in OfNlogN) time [4]. In [4], it was shown that an 1:1 ratio

between the octant (i.e. octree leaf) segment length and ideal facet segment length achieves

the O(NlogN) running time while minimizing the number ofoctree nodes. Using the octree

data structure, face-face intersection operation time is dominated by the preprocessing time

used to sort surface facets into the octree. Since each tree insertion requires O(logN) time,

0(NlogN) time is required to insert all O(N) facets into the octree.

The right ofFigure 4.7 depicts the BSP tree data structure. This data structure subdi

vides space by recursively splitting and inserting facets as in front ofor behind some initial

(root) facet. Using the polygon in the right ofFigure 4.7 as an example, BSP sorting begins

by selecting facet a as the initial (root) facet, and grouping the remaining facets as two sets of

facets: {b, c+f, d+g, e, h, i} and {j, k}. In this step, the facet that initially contains facets d,

g, and k is first split into two facets d+g and k. The sorting process is then recursively applied

to the two facet sets, with facet b as the initial (root) facet for the first set, and facet j as the
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initial (root) facet for the second set. Using this sorting strategy, each surface facet issplit and

inserted as a BSP tree node. The BSP tree leaves represent half-spaces that are either air

(empty) or material (filled).

An 0(NlogN) time BSP tree deloop operation can be implemented by inserting regular

ized surface facets into a BSP tree. Given a regularized mesh with N vertices and0(N) facets,

the BSP tree deloop operation can insert all facets into a balanced binary search tree ofheight

OOogN) in 0(NlogN) time. During tree insertion, each intersecting facet can be split into

facets that are on a valid orlooping surface. An 0(N) time traversal over all facets can beper

formed after tree insertion to remove looping surfaces.
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4.5. RAY-FACE INTERSECTION SORTING

Ray-Face Intersection Sorting groups faces by spatial locality, such that ray-face inter

sections are only computed between faces that lie in the ray's proximity. Without Ray-Face

Intersection Sorting, each ray must be checked for intersection against every surface facet.

Since a surface mesh with N verticeshas O(N) facets, O(N) intersectionchecks are required to

find all ray-face intersections. On the other hand, in a typical IC topography simulation, each

ray usually only intersects a few surface facets. Therefore, without Ray-Face Intersection

Sorting, most ofthe 0(N) run time would be consumed by extraneous intersection calculations

between the ray and far away facets.

With Ray-Face Intersection Sorting, each ray-face intersection operation can be per-

formed in 0(N2) to O(logN) time. The implementation of Ray-Face Intersection Sorting

involves adapting spatial data structure parameters such that most spatial partitions contain

only a few (less than 5) surface facets. In addition, there is a need to amortize spatial data

structure initialization cost over large numbers of ray tests.

For example, using the SAMPLE-3D cell decomposition data structure, Scheckler had

implemented a cell line-of-sight visibility test that can run in 0(N 2) time [3]. Again, to

achieve this run time, the cell segment length is set equal to the ideal segment length in the

surface mesh. Since SAMPLE-3D cell contents are incrementally updated during surface

advancement, and the same SAMPLE-3D cells are used to perform all ray tests within each

time step, ray-face intersection operation time is dominated by the time used to perform pair-

wise intersections in 0(N2) cells.
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In most general-purpose geometry servers, such as the IBM Geometry Engine, dynami

cally allocated spatial data structures are implemented to facilitate face-face intersection com

putations. To share spatial data structure initialization costs between ray-face intersection

operations and face-face intersection operations, itmay be advantageous for a geometry server

to implement both operations using the same spatial data structure. This data structure sharing

can be accomplished through two straightforward changes to the geometry server. These

server changes reflect differences in input data and frequencies between these two operations.

First, spatial data structures need to be adapted to intersect and store ray segments.

Many efficient algorithms exist to compute pair-wise ray-face intersections (e.g. see

SAMPLE-3D's algorithm for computing ray-triangle intersections [3]). For cell decomposi-

tions, a test ray need to be divided into about 0(N2) ray segments contained by various cells.

For octrees or BSP trees, a test ray can be efficiently represented using a pointer to the back

most facet or the frontmost facet hit by the ray.

Secondly, memory management of spatial data structures need to account for the dif

ferent lifetimes of surface facets andrays. Within each simulation time step, surface facets are

assumedto be immobile. Therefore, until the next surface advancement, the spatial sorting of

surface facets generated during boundary deformation can be stored as a persistent surface

facet database for repeated ray tests. On the other hand, ray position and direction changes

with every test. Since millions of tests are used at each time step, test rays need to be stored

as dynamicallyallocated ray segment lists.
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4.6. LOCALIZED DEFORMATION

Localized Deformation provides facet pushing to efficiently update facet positions and

connectivity links ofmoving solid boundaries in IC topography simulation. Without Local

ized Deformation, worst case 0(N2\ogN) time might be used to update solid boundaries at

each simulation time step. As discussed in Section 4.2, general-purpose geometry servers,

such as the IBM Geometry Engine, ensures solid validity during boolean set operations by

duplicating input solid geometry components and connectivity links. As a result, an IBM

Geometry Engine boolean set operation requires 0(DaDhlog(DaDb)) time, where Da and Db

are the number of face-edge incidences in input Solids A and B [18]. For the special case of

constructing an aggregate deformation volume, after half (i.e. —-r-*-) of the merge operations

have been performed, the number of face loops in the intermediate aggregate deformation

volume (Da orDb) becomes O(N). Consequently, for the remaining half (i.e. —-—) of the

merge operations, 0(N) geometry components and connectivity links are duplicated. This

results ina worst-case run time of()(N2\ogN).

With Localized Deformation, an aggregate deformation volume can be constructed in

about O(N) to 0(NlogN) time. Figure 4.8 illustrates two types of special-purpose boolean set

operations that can be used to support Localized Deformation: Surface-based boolean set

operations, and Localized boolean set operations. As depicted in the left and middle lof

Figure 4.8, surface-based boolean set operations, such as deloop, can play two important

roles in simulating solid boundary deformation. First, deloop can be used in the traditional

sense to remove extraneous loops after surface advancement. Secondly, as demonstrated by

Sefler in [22], deloop can be used to merge together the initial surface (Surface 1), the

delooped surfaces (Surfaces 2and 3), and the simulation boundaries (Surfaces 4 and 5) into an
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aggregate deformation volume. Since each deloop operation can be performed in 0(NlogN)

time, the aggregate deformation volume can be constructed in 0(NlogN) time.

Localized boolean setoperations [23] can avoid extraneous connectivity links duplica

tion by using the smaller input solid as a spatial filter for delimiting perturbed faces in the

larger input solid. As depicted in the right ofFigure 4.8, localized boolean set operation can

create new facets, and resolve facet-facet intersections within a spatial filter defined by the

facet sweep. This effectively prevents unperturbed faces in the intermediate aggregate defor

mation volume from participating in the operation. Mantyla showed that localized boolean

set operations run in 0(n log n) time, where n is the number of faces in the smaller input

solid [23]. For boundary deformation, the smaller argument is either atetrahedron (4 faces) or

a triangular prism (5 faces). Therefore, boundary deformation using repeated localized set

operations can run in a more 0(N)-\\ke 0(N*nlog n) time.
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4.7. CONCLUSIONS

This chapter showed that the performance ofgeometrical operations in 3D IC topogra

phy simulation are linked to four essential geometry server constructs. These constructs can

be implemented using conventional connectivity and spatial data structures, and special-

purpose boolean set operations. The implementation ofthese constructs constitutes a neces

sary but not sufficient condition for efficient 3D IC topography simulation. This fact was

demonstrated by comparing the theoretical performance of geometrical operations imple

mented with and without the constructs. Since the constructs were shown to be necessary for

efficient 3Dsimulation, they may be used to screen potential servers.

Section 4.3 described how Explicit Connectivity improves surface connectivity query

performance from O(N) time to 0(1) (constant) time per query. For Explicit Connectivity, the

key implementation principle is to choose a low topological order geometry component, such

as an edge or avertex, to store most of the connectivity links. In particular, connectivity links

are established from special geometry components toall oftheir adjacent components.

As an example, Section 4.3 introduced the 2D winged-edge data structure, which uses

edges to store connectivity links to component vertices, ajdacent edges, and incident faces.

To facilitate connectivity queries, each vertex or face contains a back pointer to an adjacent

edge. As another example, Section 4.3 described the 3D star-edge data structure, which was

implemented in the IBM Geometry Engine. The star-edge data structure uses vertices to

store connectivity links to incident edges and incident faces. At each vertex, incident edges

are organized into stars. Each star contains links to an incident face, and the incident edges

on that face.
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Section 4.4 described how Face-Face Intersection Sorting can improve the perfor-

mance of face-face intersection operations from 0(N2) time to 0(N2) time for grid-based

data structures, and 0(NlogN) time for tree-based data structures. In using 3D spatial data

structures to implement Face-Face Intersection Sorting, the key implementation principle is to

set the cell size or the tree depth, such that each spatial partition contains a few surface facets.

Apractical rule-of-thumb is to set the cell/octant segment length equal to the ideal facet seg

ment legnth. As discussed in Section 4.4, using this technique, SAMPLE-3D's cell deloop

_3_

can be performed in 0(N2) time, and SAMPLE-3D's octree deloop can be performed in

0(NlogN) time. Section 4.4 also briefly described the algorithm for an 0(NlogN) time BSP

tree deloop operation.

Section 4.5 described how Ray-Face Intersection Sorting can improve the performance

of point location tests or line-of-sight visibility tests from 0(N) time to 0(N2) time for

grid-based data structures, and O(logN) time for tree-based data structures. Similar to Face-

Face Intersection Sorting, in using 3D spatial data structures to implement Ray-Face Intersec

tion Sorting, the key implementation principle is to set the cell size or tree depth such that

each spatial partition contains a few surface facets. In addition, there is the need to amortize

spatial data structure initialization costs over large number ofray tests. As discussed in Sec

tion 4.5, using these techniques, SAMPLE-3D's cell line-of-sight visibility test can find all

ray-face intersections in 0(N2) time.

Section 4.5 also described a two-step server modification for adapting Face-Face Inter

section Sorting data structures to simultaneously support Ray-Face Intersection Sorting.

The goal of this server modification is to share spatial data structure initialization cost
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between face-face and ray-face intersection operations. The two-step modification involves:

1)Creating geometric utilities to subdivide rays into ray segments, and intersect raysegments

with faces; 2) Making the Face-Face Intersection Sorting data structure a part of the per

sistent geometry server data. Most geometry servers dynamically allocate 3D spatial data

structures during boolean set operations. Therefore, Step 2) may represent a significant

change in geometry server memory management.

Section 4.6 described how Localized Deformation can improve the performance of

boundary deformation from 0(N2logN) time to 0(NlogN) time or0(N *n log n) time, where

n is the number of faces in a facet swept deformation volume. Section 4.6 described two types

of special-purpose boolean set operations that exploits spatial and temporal locality in IC

topography simulation to avoid extraneous duplications ofgeometry components and connec

tivity links. The first approach involved pushing surface facets, and using surface-based

boolean set operations, such as deloop operations, to construct a valid aggregate deformation

volume. As an example, Section 4.6 discussed how SAMPLE-3D's solid extraction opera

tion uses deloop to generatesolids in 0(NlogN) time.

The second approach involved using localized boolean set operations. Localized

boolean set operations use triangular deformation prisms as spatial filters. Within the spatial

filter, the operation can push a subset of solid model faces, and update connectivity links

between these faces. Section 4.6 discussed Mantyla's implementation. Mantyla showed that

the performance ofa localized boolean set operation can be made to depend only on n. As a

result, boundary deformation using repeated localized boolean set operations can be per

formed in a more 0tfv>like 0(N * n log n) time.
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CHAPTERS

IBM GEOMETRY ENGINE CONSTRUCTS

5.1. INTRODUCTION

The IBM Geometry Engine [1] as a modern solid modeler is a prime candidate to be

used to support IC topography simulation. However, even in this modeler not all of the

geometry server constructs essential to IC topography simulation are implemented. This

chapter describes IBM Geometry Engine constructs, and discusses how they might degrade

3D simulation performance. The IBM Geometry Engine provides Explicit Connectivity and

Face-Face Intersection Sorting, but lacks Ray-Face Intersection Sorting and Localized Defor

mation. Table 5.1 summarizes IBM Geometry Engine constructs. In Table 5.1, the constructs

supported by the IBM Geometry Engine are listed in the leftmost column, and the correspond

ing data structures are listed in the middle column. The rightmost column ofTable 5.1 lists

the connectivity query performance , and the face-face intersection operation operation that

can be achieved through the useof IBM Geometry Engine constructs.

Developed at IBM Research during the early 1990's, the IBM Geometry Engine was pri

marily designed as an Explicit Connectivity geometry server that could replace the GDP solid

modeler [3][4]. When GDP was used in the early 1980's to simulate 3D device structures in

the OYSTER [5] system, its inability to explicitly represent material interfaces became a

major barrier towards rigorous IC topography simulation. As shown in the first row of Table

5.1, the IBM Geometry Engine improves over the GDP solid modeler by providing Explicit

Connectivity through two data structures: The star-edge data structure and the star-edge

schema [1]. As previously described in Chapter 4, the star-edge data structure is a3D exten

sion of the 2D winged-edge data structure. With respect to IBM Geometry Engine data
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organization, the star-edge data structure stores geometry components and connectivity links

internal to the server, andcannot bedirectly accessed by application programs.

Section 5.2 describes the star-edge schema for accessing IBM Geometry Engine

geometry components and connectivity links. Based on connectivity services requested by the

application program, the star-edge schema selectively extracts server geometry components

and connectivity links. The extracted components and links are then tranformed by the star-

edge schema into a format that hides the connectivity links in the star-edge data structure.

Since server data may be updated at each simulation time step, the frequent transfer of

geometry components and connectivity links from the star-edge data structure to the star-

edge schema may degrade 3D simulation performance. In Section 5.2, the efficiency ofthis

data transfer will be studied with respect to the connectivity service requirements of 3D IC

topographysimulation.

Section 5.3 describes the bucket sorting of face bounding boxes data structure for sup

porting Face-Face Intersection Sorting in the IBM Geometry Engine. Conventionally, 3D

Face-Face Intersection Sorting has been implemented using spatial data structures that sort

faces into 3D spatial partitions, such as octrees or BSP trees. The IBM Geometry Engine

uses aspatial data structure that sorts face bounding boxes into buckets along the principal (*-,

y-, and z-) axes, or ID spatial partitions. As shown in the second row ofTable 5.1, in general,

the IBM Geometry Engine can use this data structure to find all face-face intersections in

empirical 0(N) time [2]. In Section 5.3, the efficiency of the bucket sorting of face bound

ing boxes data structure will be studied for the special case ofdeformation volume stitch-back

after an etching or deposition process step.
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5.2. EXPLICIT CONNECTIVITY: THE STAR-EDGE SCHEMA

The star-edge schema provides a convenient interface for accessing IBM Geometry

Engine geometry components and connectivity links by hiding the connectivity links in the

underlying star-edge data structure. Figure 5.1 illustrates the geometry components and con

nectivity links in the star-edge schema. In Figure 5.1, italicized objects are iterators, or

objects that iterates through the elements ofa linked list, and returns apointer to the traversed

element during each iteration. As shown in Figure 5.1, connectivity links in the underlying

star-edge data structure are transformed into a generic set of iterators:

VolumesOJSolid(Vertex\Edge\Face), FacesOJSolid(Vertex\Edge), and EdgesOJSolid(Vertex).

For example, to obtain the edges incident on schema vertex V, the EdgesOfSolid(V) object is

activated. This generic interface completely hides the internal data organization of the star-

edge data structure.

Based on connectivity services requested by the application program, the star-edge

schema can selectively extract a topological subset of server geometry components and con

nectivity links. In some cases, the star-edge schema might split its copy of the underlying

star-edge edges and faces to reduce the topological complexity of the schema solid model.

Figure 5.2 illustrates the extraction ofa simplified star-edge schema 2D solid model, from a

topologically complex star-edge structure 3D solid model. As shown in Figure 5.2, the

schema splits the hour-glass polygonal face F in the 3D solid model, into two triangular faces

Fl and F2 in the 2D subset.

Due to topological subset selection and simplification, connectivity links in the star-

edge data structure cannot be directly transferred to the star-edge schema. As an example,

Figure 5.2 shows how these features prevents the direct transfer ofconnectivity links from
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star-edge vertex V to star-edge schema vertex V. In the 3Dsolid model, the star-edge ver

tex V has an incident edge that goes along the +y direction, and an incident face F that is in

the shape of an hour-glass. Due to topological subset selection, the +y direction edge has no

corresponding schema edge. Since the schema had split its copy of face F, face F has no

directly corresponding schema face.

Instead of directly transferring star-edge connectivity links, the star-edge schema

establishes connectivity links between schema geometry components through a two-step pro

cedure. First, for each selected star-edge vertex, all of its incident star-edge edges and faces

are found by traversing vertex stars. Then, for each star-edge component incident on the

selected vertex, a linearsearch is carried out on the appropriate star-edge schema component

list to identify the star-edge schema equivalent(s). In the special case of3D IC topography

simulation, all star-edge vertices, edges, and faces need to be represented in the star-edge

schema. Therefore, for 3D IC topography simulation, the initialization of schema connec

tivity links may require {Nschema vertices }* {3 to 6 incident edges and faces }* {0(N)

time per linear search on schema component list ofsize O(N)} =0(N2) time.
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5.3. FACE-FACE INTERSECTION SORTING: BUCKET SORTING OF FACE

BOUNDING BOXES

Through the use of the bucket sorting of face bounding boxes data structure, the IBM

Geometry Engine supports an efficient expected O(N) time face-face intersection operation.

In the left of Figure 5.3, two overlapping solids, Solid A and Solid B, are being merged by

boolean set operations. The bucket sorting data structure sorts solid faces into ID buckets

along the principal z-axis. As shown in the right ofFigure 5.3, each bucket contains faces

whose bounding boxes are partially or completely extended into the bucket. In general, to

achieve expected 0(N) time performance, buckets need to be created along a random direc

tion, and projected onto the principal axes. Alternatively, the IBM Geometry Engine creates

buckets along the principal axis with the greatestextent.

The right ofFigure 5.3 illustrates how the bucket sorting data structure effectively helps

the IBM Geometry Engine avoid extraneous face-face intersections. First, the IBM Geometry

Engine checks for overlaps between face bounding boxes. Pairwise face intersections are then

computed only between faces with overlapping bounding boxes. For the bucket shown in the

right ofFigure 5.3, 9 face bounding box intersection checks would be performed. Since these

checks would not find any bounding box overlap, there would be no need to compute pairwise

face intersections in this bucket.

For the special case ofdeformation volume stitch back in IC topography simulation, the

bucket sorting data structure might result in 0(N2) face bounding box intersection checks.

When an aggregate deformation volume is stitched onto a wafer geometry after a deposition

process, the wafer top surface is intersected against itself. Due to the predominantly planar

nature ofIC topographies, many ofthe 0(N) surface facets may be co-planar, and parallel to
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the xy-plane. Therefore, the z-axis bucket located near the wafer top surface may contain up

to 0(N) co-planar faces. As a result, for this bucket, the IBM Geometry Engine may invoke

0(N2) face bounding box intersection checks.
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5.4. CONCLUSIONS

This chapter described the essential geometry server constructs implemented in the

IBM Geometry Engine. Asdiscussed in Section 5.1, the IBM Geometry Engine supports two

out of the four essential constructs. The IBM Geometry Engine implemented two Explicit

connectivity data structures. The star-edge data structure stores connectivity information

inside the IBM Geometry Engine. The star-edge schema provides read-only access to server

connectivity information. The IBM Geometry Engine also implemented an unconventional

Face-Face Intersection Sorting data structure that sorts face bounding boxes into ID spatial

partitions. The IBM Geometry Engine does not support Ray-Face Intersection Sorting and

Localized Deformation.

At each time step of a 3D IC topography simulation, Section 5.2 showed that the IBM

Geometry Engine requires 0(N2) time to transfer connectivity links from the star-edge data

structure to the star-edge schema. Through the star-edge schema, application programs can

request a subset of the server components, and simplify the topology of the subset com

ponents, such as subdividing an hour-glass face into two triangular faces. Since the star-edge

schema may contain a modified subset of the server components, schema components that

corresond to server connectivity links have to be found using linear searches through schema

components lists. For 3D IC topography simulation, a topography with Nvertices has 0(N)

edges and faces. Therefore, the star-edge schema contains several lists of 0(N) vertices,

edges, and faces. For each schema vertex, the IBM Geometry Engine needs 0(N) time to

establish its connectivity links. Overall, connectivity links are transferred in 0(N2) time.

For typical IC topographies with about 10,000 facets, the efficiency gained in perform

ing schema connectivity queries might be swamped over by the 0(N2) time needed to
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establish schema connectivity links. As discussed in Chapter 4, a typical IC topography simu

lation time step may involve up to O(N) connectivity queries. Since each star-edge schema

connectivity query requires only 0(1) (constant) time, all connectivity queries can be

efficiently performed in 0(N) time. In Chapter 6, as a part of IBM Geometry Engine stand

ardized performance tests, the run times ofstar-edge schema connectivity links initializa

tion and connectivity queries will becompared onplanar topographies.

For the special case ofdeformation volume stitch back in IC topography simulation, the

bucket sorting of face bounding boxes data structure might result in 0(N2) face bounding

box intersection checks. When an aggregate deformation volume is stitched onto a wafer

geometry after a deposition process, the wafer top surface is intersected against itself. Due to

the predominantly planar nature ofIC topographies, many ofthe 0(N) surface facets may be

co-planar, and parallel to the xy-plane. Therefore, the z-axis bucket located near the wafer top

surface may contain up to O(N) co-planar faces. As a result, for this bucket, the IBM

Geometry Engine may invoke 0(N2) face bounding box intersection checks. In Chapter 6, as

a part of IBM Geometry Engine standardized performance tests, the run time performance

impact ofthis topography simulation induced inefficiency will be characterized using vertical

deposition onplanar and non-planar 3Dtopographies.
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CHAPTER 6

PERFORMANCE EVALUATION OF

THE IBM GEOMETRY ENGINE

6.1. INTRODUCTION

This chapter introduces standardized performance tests as a system tool for evaluating

and guiding the use ofcentralized geometry servers in 3D IC topography simulation. Stand

ardized performance tests are representative test cases of geometrical operations used in IC

topography simulation. These tests are based on the need for essential geometry server con

structs. The tests attempt to measure the effectivenss of implemented constructs, and charac

terize the performance impact ofmissing constructs. Performance test results, such as those in

this chapter, can give insights to the design ofauxiliary data structures which can compensate

for ineffective or missing constructs.

Standardized performance tests provide a means for automatically tracking the progress

in general-purpose servers for 3D IC topography simulation. Section 6.2 describes the BTU

systems tools that were used to conduct IBM Geometry Engine [1] standardized performance

tests. As will be shown in this chapter, considerable coding is necessary to interface the

Geometry Engine for IC topography simulation. The IBM Geometry Engine standardized

performance tests are designed to evaluate the effectiveness of IBM Geometry Engine con

structs, and characterize the performance impact ofnot supporting Ray-Face Intersection Sort

ing and Localized Deformation. Apreliminary version of these tests have been published in

[2]. All test results reported in this chapter were obtained on an IBM RS/6000 Model 530

workstation with 32 MB RAM.
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Section 6.3 describes the Explicit Connectivity Test. To evaluate the efficiency of

IBM Geometry Engine's star-edge schema, this test uses breadth first traversal ofsurface ver

tices to supply representative surface connectivity queries. Breadth first traversal involves

recursively using the connectivity between a traversed vertex and its adjacent edges and feces

to find connected vertex neighbors for continuing the traversal. Therefore, this traversal effec

tively exercises useful schema connectivity links. This test measures the CPU times used to

perform breadth first traversal ofall surface vertices on 3D planar topographies with 70 feces

to 500 faces. As recommended in Chapter 5, the Explicit Connectivity Test also assesses the

performance impact of the 0(N2) time required to initialize schema connectivity links. In

Section 6.3, the CPU times ofschema connectivity queries are compared with that ofschema

connectivity links initialization.

Section 6.4 describes the Face-Face Intersection Sorting Test. To demonstrate the

efficiency gained through IBM Geometry Engine's bucket sorting of face bounding boxes

data structure, boolean set operations are used to glue 3D IC topographies with their vertical

deposition volumes. In this test, the CPU times used to compute solid intersection curves are

measured for 3D topographies with 100 surface triangles to 1,000 surface triangles. As

recommended in Chapter 5, the Face-Face Intersection Sorting Test also characterizes the

performance impact ofusing 0(N2) face bounding box intersection computations to compute

face-face intersections between planar topographies and their vertical deposition volumes. In

Section 6.4, this performance impact is assessed by comparing the CPU times used to com

pute solid intersection curves on planar versus non-planar topographies.

Section 6.5 describes the Ray-Face Intersection Sorting Test. The first part of the

Ray-Face Intersection Sorting Test evaluates the performance impact of not supporting

Ray-Face Intersection Sorting in the IBM Geometry Engine. In this part of the test, material
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interface collision detection is emulated byapplying point location tests to points ona verti

cal etch front. In the IBM Geometry Engine, the point location test is implemented by shoot

ing out a ray from a query point towards the -x-direction, and using ray-face intersections to

identify the vertex, edge, face, or volume that contains the query point. To characterize the

performance impact ofchecking for intersections between aray and 0(N) faces, average CPU

times are measured for IBM Geometry Engine point location tests on 3D planar and non-

planar topographies with 300to3,000 faces.

The second part of the Ray-Face Intersection Sorting Test demonstrates the perfor

mance improvement that could be gained by using the bucket sorting of face bounding

boxes data structure to support Ray-Face Intersection Sorting. Another purpose ofthis part of

the test is to introduce geometrical operation transformation as a data organization method

to compensate for the lack ofRay-Face Intersection Sorting. In this part ofthe test, boolean

set operations between sliver tetrahedra and 3D IC topographies, replace point location tests

on etch front points. Each sliver tetrahedron consists of an apex located near the center ofthe

topography, and a vertical triangular base located to the left of the topography. For com

parison with CPU times on IBM Geometry Engine point location tests (Part 1), CPU times

are measured for solid intersection curve computations between a sliver tetrahedron, and 3D

planar and non-planar topographies with 300 to 3,000 faces.

Section 6.6 describes the Localized Deformation Test. The first part of the Localized

Deformation Test demonstrates the performance impact of not supporting Localized Defor

mation in the IBM Geometry Engine. In this part ofthe test, boundary deformation using tri

angular prisms is emulated by staircase construction from cubes. In the context ofboundary

deformation, a cube is computationally equivalent to a triangular prism generated by a tri

angular facet sweep. Just as merging each triangular prism introduces localized changes to the
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intermediate aggregate deformation volume, merging each cube introduces localized changes

to the intermediate staircase. To assess the performance impact of repeatedly copying over

unaffected facets and connectivity links in intermediate staircases, CPU times are measured

for merging 100,400,900, and 1600 1um x 1um x 1um cubes into staircases.

The second part of the Localized Deformation Test demonstrates how boolean set

operations can be efficiently used to simulate boundary deformation by increasing input data

granularity. Another purpose of this part of the test is to introduce large grain surface

decomposition as adata organization method to compensate for the lack ofLocalized Defor

mation. In this part ofthe test, boundary deformation using large grain deformation volumes

is emulated by staircase construction from >/N-cube strips. Since each cube strip has "W

cubes, the number of merge operations is reduced by >ffVx. This in turn reduces by -fifx the

number ofduplications ofunperturbed facets and connectivity links. To demonstrate the per

formance improvement that could be gained by increasing input data granularity, CPU times

are measured for merging 10 10-cube strips, 20 20-cube strips, 30 30-cube strips, and 40 40-

cube strips into staircases.
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6.2. STANDARDIZED PERFORMANCE TESTING IN THE BTU SYSTEM

This section introduces theBTU system utilities forconstructing andmanipulating these

structures. In implementing standardized performance tests, it is shown that the demand of IC

topography simulation requires considerable augmentation of the standard interfaces to

general-purpose geometry servers. About 10,000 lines of C++ code are likely necessary to

perform relatively basic geometrical operations in 3D IC topography simulation with any

solid modeling package. For example, about 12,000 lines ofC++ code are required to inter

face the IBM Geometry Engine for performance testing. Out of these 12,000 lines, a

significant part performs mundane geometry construction and data mapping tasks, such as

constructing tiled initial topographies, extracting surface faces, triangulating polygonal faces,

and constructingvertical deformation volumes.

Three out of the four IBM Geometry Engine standardized performance tests use the

planar stack and two-holes initial structures. Figure 6.1 plots a 2D cross section ofthe two-

holes structure at y = 0. This figure depicts the dimensions and positions of the planar stack

and two-holes structures to be used in the Explicit Connectivity Test, the Face-Face Inter

section Sorting Test, and the Ray-Face Intersection Sorting Test. As shown in Figure 6.1,

each initial structure consists of two layers: A2 um thick silicon substrate, and a 0.6 um thick

oxide layer. Each layer has a length of6 um along the x direction, and a length of4 um along

the>- direction (not shown). The silicon substrate is centered at (0,0,1), and the oxide layer is

centered at (0,0,2.3). (The exception is in the Face-Face Intersection Sorting Test, which

uses a 6 um thick substrate.) The holes in the two-holes structure are cut using two inverted

cone stubs. Each cone stub has a top radius of 1 um, a bottom radius of 0.6 um, and a height

of 0.6 um. The cone stubs are centered at (-1.5,0,2.3), and (1.5,0,2.3).
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The BTU system provides several utilities for constructing the planar stack and two-

holes initial structures, and vertically depositing various material layers on these structures.

First, there is the initial structure construction utility. This utility creates planar stack and

two-holes solid structures using the following boundary meshing parameters: 1) NX = the

number ofdivisions per micron along the jc direction ofa layer, 2) NY = the number ofdivi

sions per micron along theydirection ofa layer, 3) NTheta = the number ofangular divisions

in a cone stub, 4) NSlices = the number ofvertical divisions ina cone stub, and 5) NHoles =

the number of holes in the oxide layer. The upper left cornerof Figure 6.2 illustrates a two-

holes initial structure created by the initial structure construction utility using NX = 2, NY

= 2, NTheta = 16, NSlices = 4, and NHoles = 2.

The surface mesh extraction utility extracts the surface faces of an IBM Geometry

Engine solid model, and creates a surface mesh by triangulating each surface face. As an

example, the lower left corner ofFigure 6.2 depicts the triangular surface mesh extracted from

the two-holes initial structure by the surface mesh extraction utility. To ease the sub-task of

race triangulation, the IBM Geometry Engine's face simplification facility was disabled.

Face simplification removes shared edges between adjacent co-planar faces, and may create

polygons that have holes (i.e. non-simply-connected polygons). Disabling the face

simplification facility can help maintain a finely meshed solid model that contains only

simply-connected polygonal faces. As a result, surface faces can be easily triangulated by

connecting face vertices.

The vertical deformation volume construction utility creates a vertical deformation

volume by extruding an initial surface mesh along the z direction. In the BTU system, the

mesh extrusion is implmented by copying the initial surface mesh to a moving surface mesh,

uniformly increasing or decreasing the z components of the moving mesh vertices, and
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stitching the initial mesh and the moving mesh along their boundaries. As an example, the

upper right comer ofFigure 6.2 shows the 0.7 um polysilicon layer created from the two-holes

initial surface mesh by the vertical deformation volume construction utility.

The vertical deformation volume stitch-back utility selects the boolean set operations

used to update the 3D wafer geometry after a vertical etching or deposition. For etching

update, the utility invokes the subtraction operation. For deposition update, the utility

invokes either the merge operation, if the same material as the top layer material was depo

sited, or the glue operation, if a different material was deposited. As an example, the lower

right corner of Figure 6.2 displays the two-holes structure after the vertical deformation

volume stitch-back utility had updated the vertical deposition of the polysilicon layer.

In Figure 6.2, the number offaces or triangles is shown for each solid model orsurface

mesh. Using the same initial structure boundary meshing parameters, the number offaces or

triangles may vary slightly for other TCAD systems or geometry servers. There are two

sources for such discrepancies. First, the initial structure construction utility does not

specify how rectangular layer boundaries are tiled. For example, in the BTU system, a rec

tangular layer's v direction divisions are created by extruding a rectangle parallel to the xz-

plane. Consequently, as shown in the upper left corner ofFigure 6.2, there are NY rectangular

panels on each ofthe layer boundaries at x= xmin, x= xmax, and z = zmin. Other TCAD

systems may easily choose to create one large rectangle in place of NY rectangular panels.

Secondly, boolean set operation implementations tend to vary greatly in how they compute

solid intersection curves, and split existing faces from these curves. Therefore, especially in

the construction of two-holes initial structures, wherecone stubs are subtracted from rectangu

lar layers, different geometry servers may create different numbers offaces near the holes.
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63. THE EXPLICIT CONNECTIVITY TEST

The Explicit Connectivity Test evaluates the efficiency of IBM Geometry Engine's

star-edge schema. In this test, breadth first traversal ofsurface vertices is used to provide

representative surface connectivity queries. Breadth first traversal involves recursively using

the connectivity between atraversed vertex and its adjacent edges and faces to find connected

vertex neighbors for continuing the traversal. Therefore, this traversal effectively exercises

useful schema connectivity links. As suggested in Chapter 5, the Explicit Connectivity Test

also assesses the performance impact ofthe 0(N2) time required to initialize schema connec

tivity links. This is done by comparing the CPU times ofschema connectivity queries with

that of schema connectivity links initialization.

The procedure ofthe Explicit Connectivity Test is listed in Figure 6.3. Step 1creates a

planar stack initial structure. This step invokes the initial structure construction utility

described in Section 6.2, with the boundary meshing parameters listed in Table 6.1. In Table

6.1, the leftmost column lists the number of solid faces in the planar stack initial structures

used in this test, and the other columns list the corresponding boundary meshing parameters.

Step 2records the CPU time required to initialize star-edge schema connectivity links. Steps

3 finds an initial surface vertex for the breadth first traversal. Steps 4 through 6 describes a

breadth first traversal implemented using star-edge schema connectivity queries. Step 7

records the CPU time required tocomplete the breadth first traversal.

As shown in Table 6.1, the Explicit Connectivity Test was conducted on planar stack

initial structures with 72 to 496 faces. Figure 6.4 depicts an example of the IBM Geometry

Engine solid structures created for this test. The left of Figure 6.4 plots the wireframe model

ofa planar stack initial structure with 72 faces. The right ofFigure 6.4 shows the surface
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vertices reported during thebreadth first traversal.

Results of the Explicit Connectivity Test confirmed that the IBM Geometry Engine's

star-edge schema connectivity links can be efficiently used to find connected vertex neigh

bors in0(1) (constant) time. On the lower curve, Figure 6.5 plots the CPU times used toper

form breadth first traversals, versus the number of solid faces. In Figure 6.5, CPU times are

plotted along the^-axis, and the number ofsolid faces are plotted along the *-axis. As shown

in Figure 6.5, breadth first traversal ofsurface vertices required only O(N) time. For IBM

Geometry Engine solids with 70 faces to 500 faces, went from about 0.5 seconds to about 5

seconds. In a solid with N faces, there are O(N) surface vertices. Therefore, test results

confirmed that ateach surface vertex, only 0(1) constant time isused to find the small number

ofconnected vertex neighbors.

For 3D IC topography simulation, Explicit Connectivity Test results suggested that the

efficiency gained in using the star-edge schema may be negated by the cost of initializing

schema connectivity links. On the upper curve, Figure 6.5 plots the CPU times used to initial

ize schema connectivity links, versus the number ofsolid faces. As shown in Figure 6.5, ini

tialization ofschema connectivity links required 0(N2) time. For planar topographies with 70

faces to 500 faces, test results showed that initialization of schema connectivity links went

from about 2 seconds to about 100 seconds. These results also showed that initialization of

schema connectivity links was from 4x to 20x more expensive than breadth first traversal of

surface vertices.



Explicit Connectivity Test

Procedure:

1. Create a planar stack initial
structure (see Table 6.1).

2. Record the CPU time required to
initialize schema connectivity links.

3. Find and mark the surface vertex
whose (x,y) are nearest to (x center,
y center) of stack structure.

4. Find all surface faces incident on
this surface vertex.

5. For each incident surface face,
find all connected vertex neighbors.

6. For each unvisited
vertex neighbor,
Repeat Steps 4 to 6.

7. Record the CPU time used
in breadth first traversal.
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Figure 6.3 rhw-ucbtcad
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Explicit Connectivity Test
Explicit connectivity exists in
the start-edge schema. -> Breadth
first traversal in O(N) time.

Initializing schema connectivity links
requires 0(NA2) time, and at least lOx
the CPU times for breadth first traversal

CPU Seconds {IBM RS/6000 Model 530,32 MB RAM }

Ill
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6.4. THE FACE-FACE INTERSECTION SORTING TEST

The Face-Face Intersection Sorting Test demonstrates the efficiency gained through

IBM Geometry Engine's bucket sorting of face bounding boxes data structure. This test

uses boolean set operations to glue 3D IC topographies with their vertical deposition volumes.

In this test, face-face intersections are computed between the IC topographies and their verti

cal deposition volumes. An important feature ofthe test is that it introduces 1) 0(N) deposi

tion volume triangles that lie exactly on initial surface faces, and 2) 0(N) deposition volume

triangles that lie away from initial surface faces. As suggested in Chapter 5, the Face-Face

Intersection Sorting Test also characterizes the performance impact of using 0(N2) face

bounding box intersection computations to compute face-face intersections between planar

topographies and their vertical deposition volumes. This is done by comparing the CPU times

used to compute solid intersection curves on planar versus non-planar topographies.

The procedure of the Face-Face Intersection Sorting Test is listed in Figure 6.6. Step

1constructs a planar stack or two-holes initial structure with a 6 um thick silicon substrate.

This choice of substrate thickness forces thecreation of face bounding boxes along thez-axis.

This step invokes the initial structure construction utility described in Section 6.2, with the

boundary meshing parameters listed in Table 6.2. Table 6.2 lists the parameters for the planar

stack initial structures in the top five rows, and those for the two-holes initial structures in the

bottom four rows. In Table 6.2, the leftmost column lists the number of surface triangles

spawned by the initial structures, and the other columns list the corresponding boundary

meshing parameters. Step 2creates a0.7 um polysilicon vertical deposition volume using the

vertical deformation volume construction utility described in Section 6.2. Step 3 stitches

the vertical deposition volume onto the initial structure using the vertical deformation

volume stitch-back utility described in Section 6.2. Step 4 records the CPU time for the
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sub-taskof computing the solid intersection curve.

As shown in Table 6.2, the Face-Face Intersection Sorting Test was conducted on

planar stack initial structures that spawned 96 to 1,200 surface triangles, and two-holes initial

structures that spawned 112 to 1,136 surface triangles. Figure 6.7 depicts examples ofthe ini

tial structures and their vertical deposition volumes. The left of Figure 6.7 illustrates a planar

stack initial structure that spawned 192 surface triangles. The right of Figure 6.7 illustrates a

two-holes initial structure that spawned320 surfacetriangles.

Results of the Face-Face Intersection Sorting Test confirmed that the IBM Geometry

Engine's bucket sorting of face bounding boxes data structure can be efficiently used to

compute all face-face intersections between IC topographies and their vertical deposition

volumes in expected O(N) time. On the dashed curve, Figure 6.8 plots the CPU times used to

compute solid intersection curves between two-holes initial structures and their vertical depo

sition volumes, versus the number of surface triangles in the structures. In Figure 6.8, CPU

times are plotted along the v-axis, and the number ofsurface triangles are plotted along the x-

axis. For non-planar topographies with 100 to 1,000 surface triangles, CPU times used by

solid intersection computation went from about 15 CPU seconds toabout 125 CPU seconds.

For 3D IC topography simulation, Face-Face Intersection Sorting Test results showed

that there is minimal performance degradation due to the invocation of0(N2) face bounding

box intersection computations in the planar topography case. On the solid curve, Figure 6.8

plots the CPU times used to compute solid intersection curves between planar stack initial

structures and their vertical deposition volumes, versus the number of surface triangles in the

structures. Compared to the non-planar topography case, test results for the planar topography

case showed about 30% performance degradation in solid intersection computation time. For
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planar topographies with 100 to 1,000 surface triangles, CPU times used bysolid intersection

computation went from about 12 CPU seconds toabout 150 CPU seconds.



Face-Face Intersection Sorting Test

Procedure:

1. Create a planar stack or two-holes
initial structure (see Table 6.2).

2. Create a 0.7 um vertical deposition
volume of the initial structure.

3. Stitch the 0.7 um vertical deposition
volume to the initial structure.

4. Record the CPU time required to
compute solid intersection curves
between the initial structure and
its vertical deposition volume.
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Figure 6.6 rhw-ucbtcap
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Face-Face Intersection Sorting Test
Face-Face Intersection Sorting using
the bucket sorting data structure. -> Solid
intersection curve computed in O(N) time.

Issuing 0(NA2) face bounding box
intersection calls results in about
30% performance degradation.

CPU Seconds {IBM RS/6000, Model 530, 32 MB RAM }
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Figure 6.8 RHW - UCB TCAD
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6.5. THE RAY-FACE INTERSECTION SORTING TEST

The Ray-Face Intersection Sorting Test has two parts. The first part(Part A)evaluates

the performance impact ofnot supporting Ray-Face Intersection Sorting in the IBM Geometry

Engine. In this part of the test, material interace collision detection is emulated by applying

point location tests to points on avertical etch front. In the IBM Geometry Engine, the point

location test is implemented by shooting out a ray from a query point towards the -x direc

tion, and using ray-face intersections to identify the vertex, edge, face, orvolume that contains

the query point. The point location test terminates as soon as it obtains a sufficient number

ofray-face intersections to determine the containing geometry component. In other words, the

point location test does not necessarily find all the faces hit by the ray.

The second part (Part B) of the Ray-Face Intersection Sorting Test demonstrates the

performance improvement that could be gained by using the bucket sorting of face bounding

boxes data structure to support Ray-Face Intersection Sorting. Another purpose ofthis part of

the test is to introduce geometrical operation transformation as a data organization method

to compensate for the lack ofRay-Face Intersection Sorting. In this part ofthe test, boolean

set operations between sliver teterahedra and 3D topographies, replace point location tests

on etch front points. Each sliver tetrahedron consists ofan apex located near the center ofthe

topography, and avertical triangular base located to the left ofthe topography.

The procedure ofthe Ray-Face Intersection Sorting Test is listed in Figure 6.9. Step 1

constructs a planar stack ortwo-holes initial structure. This step invokes the initial structure

construction utility described in Section 6.2, with the initial boundary meshing parameters

listed in Table 6.3. Table 6.3 lists the initial parameters for planar stack vertically deposited

structures in the top four rows, and those for two-holes vertically deposited structures in the
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bottom four rows. In Table 6.3, the leftmost column lists thenumber of faces in the vertically

deposited structures (i.e. solid structures produced by Step 2and 3), and the other columns list

the corresponding initial boundary meshing parameters. Steps 2and 3 in this test are identical

to Steps 2and 3 in the Face-Face Intersection Sorting Test described in Section 6.3.

The remaining procedure for the first part (Part A) of the Ray-Face Intersection Sort

ing Test is listed in the upper portion ofFigure 6.9. Steps 4a creates aset offake etch points

at -0.1 below current surface vertices. In Step 4a, one fake etch point is created for each sur

face vertex. For each fake etch point, Step 5a finds, the vertex, edge, face, orvolume that con

tains it. Step 6a records the total CPU time used to locate all points. Step 7a calculates the

average CPU time by dividing the total CPU time by the number offake etch points.

The remaining procedure for the second part (Part B) of the Ray-Face Intersection

Sorting Test is listed in the lower portion ofFigure 6.9. Step 4b creates a sliver tetrahedron

with an apex at (0,0, ztop - 0.1) (i.e. a representative fake etch point), and a small triangular

base atx= xmin - 0.1. Step 5b intersects the initial structure with this sliver tetrahedron. Step

6b records the CPU times used to compute the solid intersection curve, and perform the sub-

task of bucket sorting face bounding boxes. As shown in Figure 6.9, this procedure imple

ments a geometrical operation transformation by replacing a point location test with a

boolean set operation.

As shown in Table 6.3, the Ray-Face Intersection Sorting Test was conducted on

planar stack vertically deposited structures with 340 faces to 2,164 faces, and two-holes verti

cally deposited structures with 312 faces to 2,876 faces. Figure 6.10 depicts examples of

these structures, and the sliver tetrahedra they intersected with. The left ofFigure 6.10 shows

aplanar stack vertically deposited structure with 604 faces. The right ofFigure 6.10 shows a
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two-holes vertically deposited structure with 860 faces.

Results from the first part of the the Ray-Face Intersection Sorting Test confirmed

that, due to the lack of Ray-Face Intersection Sorting, IBM Geometry Engine point location

test runs in 0(N) time. Onthedashed curve, Figure 6.11 plots theaverage CPU times used by

each point location test on two-holes vertically deposited structures. In Figure 6.11, CPU

times are plotted along the y-axis, and the number ofsolid faces are plotted along the *-axis.

For two-holes deposited structures with 300 faces to 3,000 faces, average CPU times for each

point location testwent from about 0.1 second to about 1second.

As further confirmation, point location tests were also performed on planar stack verti

cally deposited structures with comparable numbers ofsolid faces. On the solid curve, Figure

6.11 plots the average CPU times on the planar stack deposited structures. For planar stack

deposited structures with 350 faces to 2,100 faces, average CPU times went from about 0.11

seconds to about 0.60 seconds. As shown in Figure 6.11, average CPU times per point loca

tion test for planar stack deposited structures were consistently about 30% less than those for

two-holes deposited structures. This is because each ray would only need to hit one face to

determine the volume that contains the point.

Results from the second part of the the Ray-Face Intersection Sorting Test showed

that the bucket sorting of face bounding box data structure can be used to find ray-face inter

sections in strongly sublinear time for both non-planar or planar topographies. Moreover, by

bucket sorting topographies with at least 2,000 faces, CPU times per sliver intersection can be

at least lOx less than CPU times per point location test. On the dashed curve, Figure 6.12

plots the CPU times per sliver intersection on two-holes deposited structures. On the solid

curve, Figure 6.12 plots the CPU times per sliver intersection on planar stack deposited
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structures. In Figure 6.12, CPU times are plotted along they-axis, and the number ofsolid

faces are plotted along the x-axis. For a two-holes deposited structure with about 2,000 faces,

CPU time per sliver intersection was about 0.08 seconds, while CPU time per point location

test was about 0.8 seconds. For a planar stack deposited structure with about 2,000 faces,

CPU time per sliver intersection was about 0.03 seconds, while CPU time per point location

test was about 0.6 seconds.
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Ray-Face Intersection Sorting Test j
Procedure:
1. Create a planar stack or two-holes

initial structure (see Table 6.3).

2 and 3. Same as Steps 2 and 3 in the Face-
Face Intersection Sorting Test.

A: Use Ray-Face Intersection.
4a. Create points at -0.1 um below

current surface vertices (i.e. one
point for each vertex).

5a. For each fake etch point,
find the vertex, edge, face, or
material volume that contains
it (i.e. use ray shooting).

6a. Record the total CPU time
used to locate all points.

7a. Divide total CPU time by
number of points (varies).

B: Use Face-Face Intersection
with Slivers.

4b. Create a sliver tetrahedron with
(0,0, ztop - 0.1), (xmin - 0.1,0.1, -0.1),
(xmin - 0.1,0, -0.2), (xmin - 0.1, -0.1, -0.1).

5b. Intersect initial structure
with sliver tetrahedron.

6b. Record the CPU time used to
compute solid intersection, and
the sub-task of bucket sorting
face bounding boxes.

Figure 6.9 rhw - ucb tcad
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Ray-Face Intersection Sorting Test - 1
IBM Geometry Engine does not have
Ray-Face Intersection Sorting. ->
Point location test is O(N) time.

Point location test terminates as soon
as containing component is found. ->
Time grows as 5x from 200 to 2,000 faces,
and planar case is faster (i.e.fewer hits).

CPU Seconds
Per Point IBM RS/6000, Model 530,32 MB RAM }

126

Figure 6.11

500 1,000
# of Solid Faces

2,000

RHW - UCB TCAD



Ray-Face Intersection Sorting Test - 2
{ Note: Does not include preprocessing time! }

Replace ray-face intersections with face-
face intersections. -> Gain at least lOx CPU
time reduction per point for 2,000+ faces.

"Point location" faster in planar case
due to fewer face-face intersections.

CPU Seconds
Per Sliver

0.1

0.08

IBM RS/6000, Model 530, 32 MB RAM }

127

0.06

Intersect sliver
tetrahedron with
two-holes structure.

0.05

0.04

0.03

0.025

0.02

Intersect sliver
tetrahedron with
planar structure.

500

Figure 6.12

1,000
# of Solid Faces

2,000

RHW - UCB TCAD
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6.6. THE LOCALIZED DEFORMATION TEST

The Localized Deformation Test consists of two parts. The firstpart (Part A) demon

strates the performance impact ofnot supporting Localized Deformation in the IBM Geometry

Engine. In this part of the test, boundary deformation using triangular prisms is emulated by

staircaseconstruction from cubes. In the contextof boundary deformation, a cube is computa

tionally equivalent to a triangular prism generated by a triangular facet sweep. Just as merg

ing each triangular prism introduces localized changes to the intermediate aggregate deforma

tion volume, merging each cube introduces localized changes to the intermediate staircase.

The second part of the Localized Deformation Test demonstrates how boolean set

operations can be efficiently used to simulate boundary deformation by increasing input data

granularity. Another purpose of this part of the test is to introduce large grain surface

decomposition as a data organization method to compensate for the lack ofLocalized Defor

mation. In this part ofthe test, boundary deformation using large grain deformation volumes

is emulated by staircase construction from >/N-cube strips. Since each cube strip has vN

cubes, the number of merge operations is reduced by >fiVx. This in turn reduces by >/JVx the

number of duplications of unperturbed facets andconnectivity links.

The procedure for the first part (Part A) ofthe Localized Deformation Test is listed in

the upper portion ofFigure 6.13. Step la creates a 1um x 1um x 1um cube with 6 square

tiles. For N iterations, Steps 2a and 3acopy the cube, and translate it by the vector (i, j, 0.5 *

i), where i and j counts from 1to V/V. For each cube, the vector translation introduces an

intra-level overlap along the +x direction, and an inter-level overlap parallel to the xz-plane.

Step 4a records the total CPU time used by the merge operation to construct the staircase.
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The procedure for the second part (Part B) ofthe Localized Deformation Test is listed

in the lower portion of Figure 6.13. Step lb creates a1um x "JN um x 1um cube strip with

^N tiles along the +y direction. For ^lN iterations, Step 2b copies the Vw cube strip, and

translates it by the vector (0,0.5 *i, i), where icounts from 1to ^In. For each -Jn cube strip,

the vector translation introduces an inter-level overlap parallel to the xy-plane. Step 3b

records the total CPU time used bythe merge operation toconstruct thestaircase.

The Localized Deformation Test was conducted for staircases with 100, 400, 900, and

1600 cubes. Figure 6.14 illustrates examples of staircases constructed using cubes and >fiv

cube strips. The left of Figure 6.14 depicts a staircase created by merging 100 cubes. The

right ofFigure 6.14 depicts an equivalent staircase created by merging 10 10-cube strips.

Results from the first part ofthe Localized Deformation Test confirmed that, due to the

1 T
lack of Localized Deformation, staircases can be merged in worst case -r*0(N~logN) time.

On the upper curve, Figure 6.15 plots the total CPU times used by IBM Geometry Engine

merge operation to construct staircases with 100 to 1,600 cubes. In Figure 6.15, CPU times

are plotted along the v-axis, and numbers ofstaircase cubes are plotted along the x-axis. For

staircases with 100 to 1,600 cubes, total CPU time used by the merge operation went from

about 120 seconds to about 20,000 seconds. In other words, a 16x increase in total number of

staircase cubes translated to a 167x increase in total CPU time. More importantly, this result

confirmed that brute force application of IBM Geometry Engine boolean set operations is

clearly not a practical method for simulating boundary deformation.

Results from the second part ofthe Localized Deformation Test showed that increasing

input data granularity led to a more 0(N)-\\ke growth in total CPU time used by IBM

Geometry Engine merge operation. On the lower curve, Figure 6.15 plots the CPU time the
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total CPU times used by IBM Geometry Engine merge operation to construct staircases from

10 10-cube strips to 40 40-cube strips. Asshown in Figure 6.15, the CPU time for merging 10

10-cube strips (N = 100) was about 15 seconds, while the CPU time for merging 40 40-cube

strips (N = 1600) was about 500 seconds. Here, a 16x increase in total number of staircase

cubes only resulted in a33x increase in total CPU time. More importantly, for staircases with

comparable numbers ofcubes, increasing input data granularity by *JNx consistently resulted

in -JFlx reduction in total CPU time. For example, the CPU time for merging 1,600 cubes was

about 20,000 seconds, while the CPU time for merging 40 40-cube stripes was about 500

seconds.



Localized Deformation Test

Procedure:

A: Staircase from N Cubes.

la. Create a 1 um x 1 um x 1 um
cube with 6 tiles.

2a. For i = 1 to sqrt(N),

3a. Forj = l tosqrt(N),
Copy cube and
translate by (i, j, 0.5 * i).

4a. Record the total CPU time
used by merge operations
to construct staircase.

B: Staircase from sqrt (N)
sqrt (N)-cube strips.

lb. Create a 1 um x sqrt(N) um x 1 um
cube strip with sqrt(N) tiles along
the +y direction.

2b. For i = 1 to sqrt(N)
Copy sqrt(N)-cube strip and
translate by (0,0.5 * i, i).

3b. Record the total CPU time
used by merge operations
to construct staircase.

131

Figure 6.13 rhw -ucbtcad
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Localized Deformation Test

IBM Geometry Engine does not have
Localized Deformation. -> Worst case
total merge time (granularity = 1 cube)
proportional to 0.5 * (NA2).

Total CPU time reduction factor =
# of Operations reduction factor
due to increased granularity.

CPU Seconds

20,000

10,000

{IBM RS/6000, Model 530,32 MB RAM }

sqrt(N) jvierge Calls.
1,000

133

100

Figure 6.15

200 500

# of Cubes RHW - UCB TCAD
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6.7. CONCLUSIONS

This chapter described standardized performance tests on the IBM Geometry Engine.

These tests were designed tomimic the stress placed on geometry servers during 3D IC topog

raphy simulation. The tests invoke geometrical operations on IC topographies at typical lev

els ofphysical detail and operation frequency. In other words, standardized performance tests

can beused toevaluate the suitability ofgeometry servers for 3D IC topography simulation.

In implementing standardized performance tests, it was shown in Section 6.2 that the

demand of IC topography simulation required considerable augmentation of the standard

interfaces to general-purpose geometry servers. About 10,000 lines of C++ code are likely

necessary to perform relatively basic geometrical operations in 3D IC topography simulation

with any solid modeling package. For example, about 12,000 lines ofC++ code were required

to interface the IBM Geometry Engine for performance testing. Out of these 12,000 lines, a

significant part performs mundane geometry construction and data mapping tasks, such as

constructing tiled initial topographies, extracting surface faces, triangulating polygonal faces,

and constructing vertical deformation volumes.

Since standardized performance tests take into account the nature ofgeometrical opera

tions, they are an indispensable system tool for characterizing the run time consequences of

theoretical performance bounds. Standardized performance tests can screen out false perfor

mance bottlenecks often predicted from simpler asymtotic performance estimates. For exam

ple, in the IBM Geometry Engine, computing solid intersection curves between a planar

topography and its vertical deposition volume results in a bucket with 0(N) triangles, and

0(N2) face bounding box intersection checks. At first glance, for the special case ofupdating

planar topographies, computing solid intersection curves appears to require 0(N2) time.



135

However, performance test results in Section 6.4 showed the run time of solid intersection

curve computation still grows as O(N) for planar topographies with 100 to 1,000 surface trian

gles. In fact, the 0(N2) face bounding box intersection checks incurred in the planar case only

cause about 30%run time performance degradation compared to the non-planar case.

Standardized performance tests can also reveal areas where geometry server design

tradeoffs interact poorly with IC topography simulation needs. For robusmess, most general-

purpose boolean set operations create output solids by duplicating geometry components and

connectivity links in the input solids. In Section 6.6, bymeans ofasimple assembly ofblocks

into a staircase, it is possible to show that, for 1,600 cubes, an IBM Geometry Engine merge

operation requires on the average about 10 seconds, regardless ofwhether the merge is asin

gle block or a set of40 cubes.
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CHAPTER 7

AUXILIARY DATA STRUCTURES FOR

EFFICIENT USE OF GEOMETRY SERVERS

7.1. INTRODUCTION

This chapter introduces monotone decomposition, which was first published in [1][2],

as an auxiliary data organization scheme to provide large grain surface decomposition for

efficiently using geometry servers, such as the IBM Geometry Engine [3] and SAMPLE-3D

[4]. In IC topography simulation, large numbers oflocally connected facets often have similar

orientations. By bin sorting locally connected facets with similar orientations, monotone

decomposition can easily partition a simulated surface into large grain monotone patches.

Using monotone decomposition, a surface advance with can be broken into a few well-

behaved monotone patch advances, possibly with global inter-patch collisions. This can

efficiently focus the power and robustness ofmerge operations in solid modelers to where it is

most needed in IC topography simulation.

Section 7.2 reviews the feasibility of implementing these data organization methods as

auxiliary data structures. As Section 7.2 will show, while geometrical operation transforma

tion may require significant changes in geometry server internal data organization, large grain

surface decomposition can be implemented independent ofgeometry server data representa

tions. As an example of large grain surface decomposition, Section 7.2 introduces monotone

decomposition as an effective decomposition scheme for IC topography simulation. Mono

tone decomposition groups locally connected facets which have similar facet orientations into

largegrain monotone patches.
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Section 7.3 reviews some theoretical background for2Dmonotone decomposition. His

torically, the implementation of 2D monotone decomposition can be viewed as a simple

extension of several classical concepts in 2D computational geometry, such as monotone

chains and monotone polygons [5].

Two types ofmonotone decomposition are discussed. The first type, which is described

in Sections 7.4 and 7.5, is Greedy monotone decomposition. Greedy monotone decomposi

tion heuristically minimizes the number ofgeometrical operations, but may asymmetrically

decompose axial symmetric IC topographical features, such as trenches. The 2D greedy

monotone decomposition algorithm incrementally extends monotone chains going left to right

along the top surface. The algorithm terminates a monotone chain when it reaches a surface

facet that cannot monotonically extendthecurrent chain.

Section 7.5 describes the 2.5D Isotropic Deposition Experiment for evaluating greedy

monotone decomposition. The test involves using IBM Geometry Engine merge operations

to compute 2.5D boundary deformation ofa2D key hole trench. This test measures the reduc

tion in number ofmerge operations and total CPU time due to the use of2D greedy monotone

decomposition.

The second type ofmonotone decomposition, which is described in Sections 7.6 through

7.8, is Directed monotone decomposition. By predefining monotone planes, Directed mono

tone decomposition can axially symmetrically decompose IC topographical features. The 3D

directed monotone decomposition algorithm implicitly chooses monotone planes that partition

facet orientations symmetrically about the local z-axes ofIC topographical features. Section

7.6 shows that 3D directed monotone decomposition can use these facet orientation partitions

to decompose complex topographical features into afew axial symmetric monotone patches.



139

Sections 7.7and 7.8 describe two simulation experiments for evaluating directed mono

tone decomposition. Section 7.7 describes the 3D Isotropic Deposition Experiment. This

test is the full 3D equivalent of the 2.5D Isotropic Deposition Experiment. The test shows

that directed monotone decomposition makes it feasible to use IBM Geometry Engine merge

operations in 3D boundary deformation.

Section 7.8 describes the 3D Source Visibility Experiment. This test shows how

directed monotone decomposition can be used to reduce the number ofSAMPLE-3D line-of-

sight visibility tests in computing 3D source visibility. It also demonstrates the need for

accurate and efficient special-purpose shading interpolation algorithms that exploit facet spa

tial locality and orientation similarity inherent in monotone patches.



140

7.2. DATA ORGANIZATION METHODS FOR EFFICIENT USE OF GEOMETRY

SERVERS

This section discusses the feasibility of implementing dataorganization methods as aux

iliary data structures that improve the efficiency in using the IBM Geometry Engine. In

Chapter 6, two data organization methods were introduced to compensate for missing con

structs in the IBM Geometry Engine. The first method was geometrical operation transforma

tion. This method involved replacing geometrical operations that were implemented without

essential geometry server constructs, with similar operations that were implemented with

essential constructs. The second method was large grain surface decomposition. This method

increased input data granularity to reduce the number ofCPU intensive primitive geometrical

operations used to perform aggregate geometrical operations.

While geometrical operation transformation was previously shown to be effective at

circumventing inefficient geometrical operations, implementing it as an auxiliary data struc

ture may require significant changes in the internal geometry server data organization. In Sec

tion 6.5, IBM Geometry Engine point location tests, which had not been implemented with

ray-face intersection sorting, were efficiently replaced by boolean set operations, which

had been implemented with face-face intersection sorting. Implementing this geometrical

operation transformation involves eliminating costly re-initializations ofthe basket sorting of

face bounding boxes data structure during each boolean set operation. Figure 7.1 plots the

run times for data structure initialization on the slivers and topographies used in the second

part ofthe Ray-Face Intersection Sorting Test. As shown in Figure 7.1, data structure ini

tialization times grew linearly as 0(N), and were comparable to the CPU times used by point

location tests. To eliminate this inefficiency, the IBM Geometry Engine would need to be

changed to make the bucket sorting data structure apart ofthe persistent server data.
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On the other hand, large grain surface decomposition is an effective data organization

method that can be efficiently implemented independent of geometry server data representa

tions. Section 6.6 demonstrated the effectiveness of large grain surface decomposition to

improve the efficiency in using IBM Geometry Engine merge operations for boundary defor

mation. By increasing the input data granularity by VWx, the staircase construction utility can

reduce the number of IBM Geometry Engine merge operations and total CPU times by Wx.

For any geometry server, large grain surface decomposition can be implemented using basic

surface traversals to partition the simulated surface into large grain patches. These patches

can be stored asauxiliary flags on geometry server data, or an alternative representation of the

simulated surface.

This chapter describes monotone decomposition as an effective large grain surface

decomposition auxiliary data structure for IC topography simulation. Monotone decomposi

tion groups locally connected and similarly oriented facets into monotone patches. Due to the

nature of IC processing technology, a typical simulated surface is a mostly planar surface that

undergoes gradual and structured changes in facet positions and orientations. Therefore, at

each time step, it should always be possible to decompose complex topographies into a few

monotone patches. As the remainder ofthis chapter will demonstrate, efficient and innovative

monotone decomposition algorithms can be implemented by combining basic surface traver

sals with fundamental computational geometry concepts.



Bucket Sorting DS Initialization Times:
Ray-Face Intersection Sorting Test -2

Bucket Sorting DS initialization is O(N) time,
and comparable to using point location tests.

In the IBM Geometry Engine, initialization
is performed for each boolean set operation.

CPU Seconds
Per Sliver

IBM RS/6000, Model 530, 32 MB RAM }

JBox ^nd sort faces in
sliver tetrahedron +
planar structure.
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1.0

0.8

0.6

0.5

0.4

0.3

0.25

0.2

0.15

Box and sort faces in
sliveiLtetraJiedron_+_
two-holes structure.

Figure 7.1

500 1,000

# of Solid Faces

2,000

RHW - UCB TCAD
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7.3. 2D MONOTONE CHAINS AND MONOTONE POLYGONS

This section formally defines classical computational geometry concepts, such as mono

tone chains and monotone polygons, which are relevant to implementing and using 2D mono

tone decomposition. Simply put, a monotone chain is an ordered sequence of locally con

nected facets that have similar orientations with respect to a straight line. A monotone

polygon is asimple polygon which can be split into two chains that are monotone with respect

to the same line. In the next two sections, these concepts will provide the necessary theoreti

cal background for understanding the 2D greedy monotone decomposition algorithm and its

application in efficiently using IBM Geometry Engine merge operations for 2.5D boundary

deformation.

In 2D surface-based IC topography simulation, a chain is typically used to represent the

topography top surface. Achain is an ordered sequence ofvertices and directed facets. Fig

ure 7.2 depicts achain Cwith vertices {VI,..., V10} and directed facets {Fl =(V1,V2),..., F9

= (V9,V10)}. In this case, the chain C represents a symmetric trench top surface with slight

overhangs and sloped sidewalls. As shown in Figure 7.2, Fi is a directed facet in the sense

that, when Fi is traversed as Vi, Vi+1, air(i.e. outside) lies on Fi's left, and bounded material

(i.e. inside) lies on Fi's right.

As defined by Preparata and Shamos [5], a monotone chain is a special type of chain

with the following property:

A chain C ={VI,..., Vn} is monotone with respect to a line L if any line orthogonal

to L intersects C at exactly one point (Definition 7.1)
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This definition is illustrated inFigure 7.3, using a monotone chain C= {VI,...,V5}, and

its orthogonal projections on line L = {L(V1), ... L(V5)}. As shown in Figure 7.3, this

definition offers no straightforward algorithm for decomposing an arbitrary chain into mono

tone chains.

On the other hand, the monotone chain definition does lead to the following useful pro

perty:

If chain C with vertices {VI,..., Vn} is monotone with respect to line L, then the

orthogonal projections {L(V1),..., L(Vn)} of the vertices ofC on L are ordered as

L(V1),..., L(Vn). (Property 7.1)

As will be shown in Section 7.4, this property can be used to find all lines on which a

directed facet or an arbitrary chain can be monotonically projected. By being able to quickly

find all such lines for a directed facet or an arbitrary chain, directed facets can be incremen

tally extended into monotone chains.

Formally, a monotone polygon isdefined as follows [5]:

A simple polygon is said to be monotone if its boundary can be decomposed into

twochains monotone with respect to thesame straight line. (Definition 7.2)

This definition is illustrated in Figure 7.4, using a monotone polygon P, that consists of

two monotone chains, CI and C2. Specifically, both CI and C2 are monotone with respect to

the same line L. As Figure 7.4 suggests, surface advancement on a monotone chain usually

creates another monotone chain. These two chains can be easily stitched into a monotone

polygon, and used as input to boolean set operations.



e

a n H n •

C
h

a
in

re
pr

es
en

ti
ng

a
2D

tr
en

ch
st

ru
ct

u
re

w
it

h
sm

a
ll

o
ve

rh
a

n
g

a
n

d
sl

op
ed

si
de

w
al

ls
.

T
h

e
ch

ai
n

C
=

{V
I,

..
.,

V
10

}
ha

s
10

d
ir

ec
te

d
fa

ce
ts

{F
l,

..
.,

F
9}

,w
h

er
e

F
i-

(V
i,

V
i+

1)
.

♦
i

O
u

tw
a

rd
P

oi
nt

in
g

♦
U

ni
t

N
or

m
al

I
I

m
-.

w
ti

.—
••

-
*

—
'

'&
M

V3
V

8

I
v

V
10

F
9

v

4

V
6

*
>'

*'!
<>

'.:'
?>

:&
*

wJ
Lm

m
m

m
m

m
m

m
m

m
Bk

F
i

is
a

d
ir

e
c
te

d
fa

ce
t

in
th

a
t

w
h

e
n

F
i

is
tr

a
v
e
rs

e
d

a
s

V
i,

V
i+

1,
F

i's
ou

tw
ar

d
po

in
ti

ng
no

rm
al

po
in

ts
to

it
s

le
ft

(i
.e

.a
ir

li
es

on
F

i's
le

ft
an

d
m

at
er

ia
ll

ie
s

on
F

i's
ri

gh
t)

.



3 cf3
"

c 73 S I G O 0
3 H O >

M
o

n
o

to
n

e
C

h
a

in
[P

re
pa

ra
ta

a
n

d
S

h
a

m
o

s,
19

85
]

A
ch

ai
n

C
=

{V
I,

..
.,

V
n

}
is

sa
id

to
b

e
m

o
n

o
to

n
e

w
it

h
re

sp
ec

t
to

a
st

ra
ig

ht
li

ne
L

if
a

li
ne

or
th

og
on

al
to

L
in

te
rs

ec
ts

C
in

ex
ac

tl
y

o
n

e
po

in
t.

U
S

*

O
rt

ho
go

na
l

pr
oj

ec
ti

on
s

{L
(V

1)
,.

..
,

L
(V

n)
}

o
ft

h
e

ve
rt

ic
es

o
fC

o
n

L
a

re
o

rd
er

ed
as

{L
(V

1
),

..
.,

L
(V

n
)}

.
4

t



3 Qf
S"

e -
J

. 4*
>

X I G o 0
9

H o >

M
o

n
o

to
n

e
P

o
ly

g
o

n
[P

re
pa

ra
ta

a
n

d
S

h
a

m
o

s,
19

85
]

A
si

m
pl

e
po

ly
go

n
is

sa
id

to
b

e
m

o
n

o
to

n
e

if
it

s
b

o
u

n
d

a
ry

ca
n

b
e

d
ec

o
m

p
o

se
d

in
to

tw
o

ch
ai

ns
m

o
n

o
to

n
e

w
it

h
re

sp
ec

t
to

th
e

sa
m

e
st

ra
ig

h
t

li
ne

.

E
xa

m
pl

e:
M

on
ot

on
e

po
ly

go
n

P
ca

n
b

e
de

co
m

po
se

d
in

to
ch

ai
ns

C
I

a
n

d
C

2.
B

y
in

sp
ec

ti
on

,
b

o
th

ch
ai

ns
a

re
m

o
n

o
to

n
e

w
it

h
re

sp
ec

t
to

th
e

st
ra

ig
h

tl
in

e
L

.

-
4



148

7.4. 2D GREEDY MONOTONE DECOMPOSITION

The 2D greedy monotone decomposition algorithm is a heuristic that attempts to

minimize the number of monotone chains. Going from left to right of the top surface, the

algorithm incrementally extends monotone chains by including each surface facet in a mono

tone chain. The current monotone chain terminates if it reaches the right end of the top sur

face, or when it encounters a surface facet that cannot monotonically extend the chain. By

maximally extending each monotone chain, the algorithm exploits localized facet orientation

similarities inherent in IC topographies, and heuristically minimizes the number of monotone

chains.

For each facet, the algorithm first computes all of its monotone lines, or all lines on

which the facet can be monotonically projected. Computationally, directed facet Fi is mono

tone with respect to line L, ifFi has a positive dot product with L. This concept is illustrated

in Figure 7.5 using a horizontal directed facet Fl. In Figure 7.5, Fl has a positive dot product

w.r.t. line LI, and a negative dot product w.r.t. line LI. Correspondingly, Figure 7.5 shows

Fi's vertices to be monotonically projected on line LI, but not on line L2. Forcomputing

greedy monotone decompositions, all monotone lines ofa directed facet Fi can be efficiently

represented using two vectors. This is because the normal directions ofall ofFi's monotone

lines form a halfunit disc section. This section is centered around Fi's normal, and delimited

by the two vectors orthogonal to Fi.

After computing the monotone lines ofa directed facet, the algorithm tries to include the

facet in a monotone extension. A monotone extension is a growing sequence of directed

facets {Fi, ..., Fj}, i < j, that share at least one monotone line. Figure 7.6 depicts the expan

sion of a monotone extension E as it absorbs directed facets Fl through F3. As shown in
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Figure 7.6, all monotone lines of a monotone extension E can also be compactly represented

as unit disc sections delimited by two vectors. Computationally, the currentmonotone exten

sion E can be expanded, if an overlap exists between the unit disc sections representing E's

monotone lines and the next facet Fi+l's monotone lines. If E is extended by Fi+1, the over

lap thenrepresents the monotone lines of the expanded E.

The 2D greedy monotone decomposition algorithm is listed in Figure 7.7. As shown in

Figure 7.7, the algorithm involves visiting each directed facet Fi on the top surface (Steps 1

and 2), computing Fi's monotone lines (Step 3), and determining whether Fi extends exten

sion E(Steps 4 through 8). In anutshell, the algorithm involves computing N times the inter

section between the two unit disc sections representing E's monotone lines and Fi's monotone

lines. (Step 6). Therefore, if this intersection can be efficiently computed, the algorithm can

partition an arbitrary chain in 0(N) time.

The intersection of unit disc sections can be computed without expensive trignometric

conversions by using the concept of pseudo angles. As described in Karasick's thesis [12],

the pseudo angle ofa facet normal (Nx, Nz) is:

If (M <0) then PscudoAnglc =3 +Nx\ else PscudoAnglc = 1- Nx\ (7.1)

The pseudo angle formula continuously maps facet orientations from 0 to 360 degrees, into

scalar values from 0 to 4. Figure 7.8 illustrates the pseudo angles for some selected facet nor

mals. To compute the intersection between two unit disc sections, the delimiting vectors of

the sections are first converted to fourpseudo angles. Pseudo angles of opposing sections are

pairwise compared to check for section overlaps.
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An undesirable feature of greedy monotone decomposition is that it tends to decompose

symmetric IC topography features asymmetrically. As will be discussed in Sections 7.7 and

7.8, monotone patch symmetry may be used to simplify the implementation of special-

purpose 3D geometric computations for boundary deformation and surface visibility. As an

example of this anomaly, Figure 7.9 illustrates the greedy monotone decomposition of the

trench surface previously shown in Figure 7.2. In going from left to right, the algorithm inad-

verdently excludes the trench's local 2-axis as amonotone line. As aresult, the first monotone

extension terminates at the lower rightcomer of the trench.
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2D Greedy Monotone
Decomposition

1. Initialize E, the current monotone extension,
to nil. Initialize De, the unit disc section repre
senting E's monotone lines, to full unit disc.

2. For each directed facet Fi,

3. Compute Dfi, the unit disc section
representing Fi's monotone lines.

4. If E is nil,
Include Fi as the initial facet of E.
Set De to Dfi.
Go to Step 2.

5. Else /* Monotone extension in progress. */

6. Set De_test = De intersect Dfi.

7. If De_test is nil /* Can't monotone extend. */
Report E as a monotone string.
Re-initialize E and De (as in Step 1).
Include Fi as the initial facet of E.
Set De to Dfi.
Go to Step 2.

8. Else /* Monotone extend E */
Include Fi as next facet of E.
Set De to De_test.
Go to Step 2.

Figure 7.7 RHW ~UCB TCAD
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7.5. THE 2.5D ISOTROPIC DEPOSITION EXPERIMENT

The 2.5D Isotropic Deposition Experiment was designed to evaluate 2D greedy mono

tone decomposition. In the previous section, it was shown that greedy monotone decomposi

tion heuristically attempts to minimize the number of monotone chains. This in turn allows

aggregate geometrical operations, such as boundary deformation, to invoke aminimal number

ofCPU intensive primitive geometrical operations, such as boolean set operations. On the

other hand, in going from left to right of the top surface, the algorithm may asymmetrically

partition symmetric IC topographical features, such as trenches. As ademonstration of these

algorithmic properties, the 2.5D Isotropic Deposition Experiment uses IBM Geometry

Engine (3D) boolean set operations to resolve global intra-surface collisions inherent in the

use of 2D surface-based IC topography simulators.

In the 2.5D Isotropic Deposition Experiment, Hamaguchi's 2D shock tracking solver

[7] was used to simulate a0.3 um isotropic deposition on a1um deep 2D key hole trench with

a 0.25 um opening at the top ofthe trench. Figure 7.10 plots snapshots of the simulation

result at time (T) =0,1,2, and 3seconds. (Note that the scales ofthe x-axis and the 2-axis are

not 1:1.) As shown in Figure 7.10, at T= 1second, the isotropic deposition created avoid in

the topography. This example showed that the shock tracking simulator could numerically

detect and remove local loops near concave corners at the bottom ofthe trench. In this sense,

it is more sophisticated than conventional surface-based IC topography simulators, such as

SAMPLE [8][9], SPEEDIE [10], and several other corner and facet pushing programs [11]-

[14]. However, the simulator still could not detect global loops at the top of the trench. More

importantly, the failure to remove global loops led to inaccurate simulation of the size and

shapeof the resulting void.
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In the 2.5D Isotropic Deposition Experiment, 2D greedy monotone decomposition was

usedto minimize the number of IBM Geometry Engine merge operations usedto resolve glo

bal collisions. Figure 7.11 illustrates how monotone decomposition can be used to sweep a

surface along its shock traces, and into a few monotone polygons. First, as shown on the left

ofFigure 7.11, shock traces are computed on the surface. Then, as depicted in the middle of

Figure 7.11, the surface is partitioned into two monotone chains, and the chains are swept

along shock traces into two monotone polygons. Finally, as shown on the right ofFigure

7.11, the monotone polygons are extruded into volumes and merged by the IBM Geometry

Engine into an aggregate deformation volume. As discussed at the end of Section 7.4, greedy

monotone decomposition asymmetrically partitioned the 2D key hole trench at the lower right

corner of the trench.

To demonstrate the performance improvement gained from using monotone decomposi

tion, the trench surface was separately swept into triangles and qudrilaterals, and into mono

tone polygons. The number of operations and total CPU times used by the IBM Geometry

Engine to merge these polygons were compared. Figure 7.12 depicts the polygons swept from

the trench surface, and the corresponding CPU times used by IBM Geometry Engine merge

operations running on an IBM RS/6000 Model 530 workstation with a32 MB RAM. Without

monotone decomposition, as shown on the left of Figure 7.12, 48 operations and a total of

22.42 seconds were used to merge triangular and quadrilateral prisms. With monotone

decomposition, as shown on the right of Figure 7.12, 2operations and atotal of 1.04 seconds

were used to merge monotone polygonal prisms. Although the average CPU time was slightly

higher for merging large grain monotone polygonal prisms (0.52 seconds versus 0.47

seconds), the reduction in number of operations (24x) led to asimilar magnitude reduction in

total CPU time (22x).



Isotropic Deposition on 2D Key Hole
Trench - Shock Trace Advancement

* Local loops may be removed numerically,
but not global loops.

* Global loops should be resolved immediately
to simulate accurately void size and shape.
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7.6. 3D DIRECTED MONOTONE DECOMPOSITION

By predefining monotone planes, the 3D directed monotone decomposition algorithm

can axially symmetrically decompose IC topographical features. The algorithm implicitly

chooses monotone planes that partition facet orientations symmetrically about the local z-axes

oftopographical features. Using facet orientation partitions, the algorithm first classifies each

facet as left-pointing, right-pointing, or horizontal, as well as upward-pointing,

downward-pointing, or vertical. Abreadth first traversal is then used to group locally con

nected facets that have the same orientation classifications. Like the 2D greedy monotone

decomposition algorithm, the 3D directed monotone decomposition algorithm also exploits

localized facet orientation similarities in IC topographies. By using breadth first traversal to

group facets, the algorithm implicitly partitions the simulated surface by topographical

features as well as facet orientations.

The 3D directed monotone decomposition algorithm currently creates facet orientation

partitions along the local yz- and ^-planes of IC topographical features. Figure 7.13 plots the

facet orientation partitions used by the algorithm. In Figure 7.13, afacet normal is denoted by

(Nx, Nv, Nz). As shown in Figure 7.13, thejyz-plane partitions facet orientations into five bins

as left-pointing (Nx < 0), front-pointing) (Nx == 0 and Nv < 0), right-pointing (Nx > 0),

(back-pointing) (Nx == 0 and Ny >0), and horizontal (not shown) {(Nx = 0and Ny = 0)

and (Nz != 0)}. The yz-plane further partitions facet orientations into three sub-bins as

upward-pointing (N2 >0), downward-pointing (N2 <0), and vertical (not shown) {(Nz ==

0) and (Nx != 0otNv != 0)}. This main advantage of this straightforward partitioning scheme

is that facets can beefficiently classified by examining the signs offacet normal components.
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Using these facet orientation bins, two directed monotone decomposition algorithms

have been implemented: *-cut monotone decomposition, and Az-cut monotone decomposi

tion. The x-cut monotone decomposition algorithm looks mainly at the ^-component (Nx) of

the facet normal. The algorithm classifies facets using one of three categories: 1) Left-

pointing or front-pointing, 2) Right-pointing or back-pointing, and 3) Horizontal. Figure

7.14 illustrates a x-cut monotone decomposition ofa spherical trench surface with 380 trian

gles. The left ofFigure 7.14 shows the IBM Geometry Engine solid model used to extract the

spherical trench surface. On the right ofFigure 7.14, the spherical trench surface is decom

posed into 6 monotone patches using x-cut monotone decomposition. As shown in Figure

7.14, spherical trench surfaces are excellent examples for testing directed monotone decompo

sition because the surface is symmetric about its local z-axis, and contains a wide range of

facet orientations.

The xz-cut monotone decomposition algorithm looks atboth the x-component (Nx) and

z-component (Nz) of the facet normal. The algorithm classifies facets using one of eight

categories: la) Left-and-upward-pointing, lb) Left-and-downward-pointing, lc)

Vertical-and-Left-pointing, 2a) Right-and-upward-pointing, 2b) Right-and-downward-

pointing, 2c) Vertical-and-Right-pointing, 3a) Horizontal-and-upward-pointing, and 3b)

Horizontal-and-downward-pointing. Figure 7.15 illustrates a xz-cut monotone decomposi

tion ofthe same spherical trench surface with 380 triangles. The left ofFigure 7.15 again dep

icts the spherical trench solid model. On the right ofFigure 7.15, the spherical trench surface

is decomposed into 10 monotone patches using xz-cut monotone decomposition. As

expected, increasing the number offacet orientation groups resulted in a few more monotone

patches.
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The 3D directed monotone decomposition algorithm is listed in Figure 7.16. As shown

in Figure 7.16, the algorithm decomposes an arbitrary surface using two traversals of all sur

face facets. Each surface traversal was designed to support any facet orientation partitioning

scheme. The first traversal (Steps 1 and 2), walks through the facet list, and classifies each

facet according to its orientation. Steps 3 through 6 then perform the breadth first traversal

that groups similiarly oriented triangles into monotone patches. Since the algorithm involves

only floating point and integer comparisons, it runs efficiently in0(N) time.

Despite using coarse facet orientation partitions, directed monotone decomposition can

decompose complex topographies by topographical features as well as facet orientations. Fig

ure 7.17 illustrates ax-cut monotone decomposition of a periodic spherical trench surface with

1,488 triangles. The left ofFigure 7.17 shows the IBM Geometry Engine solid model used to

extract the periodic spherical trench surface. On the right of Figure 7.17, the periodic spheri

cal trench surface is decomposed into 8 monotone patches using x-cut monotone decomposi

tion. Asexpected, the directed monotone decomposition algorithm can axially symmetrically

partition individual trenches in theperiodic structure.
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3D Directed Monotone
Decomposition

1. For each surface mesh triangle T with
outward pointing normal (Nx, Ny, Nz),

2a. ("X Cut" Decomposition)
Classify T as Left_or_Front Pointing,
Right_or_Back Pointing, and Horizontal
by looking mainly at sign of Nx's.

2b. ("XZ Cut" Decomposition)
Add also Up Pointing, Down Pointing,
and Vertical sub-cases to each case in

X Cut" Decomposition as appropriate.if

3. For each surface mesh triangle T with
traversal marker,

4. If T is not traversed,

5. Starting at T, recursively traverse and
mark unmarked triangle neighbors with
the same classification.

6. Create monotone patch from
traversed triangles.
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Figure 7.16 rhw-ucbtcad
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7.7. THE 3D ISOTROPIC DEPOSITION EXPERIMENT

The 3D Isotropic Deposition Experiment is the mil 3D equivalent of the 2.5D Isotro

pic Deposition Experiment. The test was designed to show that directed monotone decom

position makes it feasible to use IBM Geometry Engine merge operations in 3D boundary

deformation. In 2D, since surfaces contain relatively small numbers (about 100) of facets,

monotone decomposition was helpful but not essential in enabling the use of the IBM

Geometry Engine. In 3D, a simulated surface typically contains 1,000 to 10,000 facets. As

shown by the Localized Deformation Test in Section 6.6, it is impractical to invoke such

large numbers ofIBM Geometry Engine merge operations to simulate boundary deformation

at each time step. Therefore, for 3D boundary deformation, large grain surface decomposition

methods, such as monotone decomposition, are essential to the use of the IBM Geometry

Engine. Furthermore, to simplify the extraction ofmonotone deformation volumes, directed

monotone decomposition isneeded to partition surfaces axially symmetrically.

The 3D Isotropic Deposition Experiment demonstates the need for directed monotone

decomposition using SAMPLE-3D as a 3D surface-based IC topography simulator. In this

test, SAMPLE-3D was used to simulate a 0.6 um isotropic deposition ona 2 um deep 3D key

hole trench with a 1 um opening at the top of the trench. Simulations were carried out on

trench surfaces with 452 and 896 triangles. Figure 7.18 plots the initial and final surfaces at T

= 6 seconds for 896 triangles. As shown in Figure 7.18, the deposition created a void that was

shaped like an inverted cone. In this simulation, loops occurred at the bottom as well as at the

top ofthe trench. As depicted in Figure 7.18, the extraneous loops at the bottom ofthe trench

were caused by facet motions from the trench sidewalls and the trench bottom, and formed an

inverted donut.
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In the 3D Isotropic Deposition Experiment, directed monotone decomposition was

used to reduce the number of IBM Geometry Engine merge operations used to resolve global

collisions. Figure 7.19 illustrates how monotone decomposition was used to sweep the simu

lated surface along its vertex deformation vectors, and into a few monotone volumes. The left

ofFigure 7.19 shows the IBM Geometry Engine solid model used to extract the 3D key hole

trench surface. On the right ofFigure 7.19, the key hole trench surface is decomposed into 9

monotone patches, and these patches were swept into 9new patches along vertex deformation

vectors. As shown in Figure 7.19, a sophisticated solid extraction operation isneeded here to

preserve the void and eliminate extraneous loops. Geometric utilities that perform this func

tionality are currently being developed for capacitance extraction from SAMPLE-3D simu

lated surfaces [15].

To demonstrate the performance improvement that could be gained from using directed

monotone decomposition, average CPU times for merging a triangular prism or a monotone

deformation volume were calculated by dividing the CPU times obtained from the Localized

Deformation Test by their corresponding number ofmerge operations. Figure 7.20 plots the

average CPU times per merge operation for constructing staircases with 100 to 1600 cubes.

In Figure 7.20, average CPU times were calculated for input data granularities of1cube and

V/V cubes. As shown in Figure 7.20, for 450 cubes, each merge operation takes about 3

seconds for both granularities. For 900 cubes, each merge operation takes about 6seconds for

both granularities.

Using these average CPU times, the use ofthe IBM Geometry Engine to merge triangu

lar prisms versus monotone deformation volumes were compared in terms ofnumbers of

merge operations and estimated total CPU times. Tables 7.lab summarize this performance

comparison. Table 7.1a lists the reduction in numbers of merge operations, and the increase
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in memory consumption. Table 7.1b lists the corresponding reduction in total CPU times

used by IBM Geometry Engine merge operations, and CPU times used to monotonicially

decompose surfaces. For a 3D key hole trench with 896 triangles, the number of merge

operations was reduced from 895 down to 8. Correspondingly, total CPU time would be

reduced from about 5,370 seconds to about 48 seconds. Therefore, with monotone decompo

sition, the IBM Geometry Engine could efficiently merge a 1,000 facet aggregate deformation

volume in about 1 minute of CPU time.
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Avg CPU Time per Merge Operation:
Localized Deformation Test

AverageCPU time per merge operation:
* About 3 seconds for 450 cube case.
* About 6 seconds for 900 cube case.

CPU Seconds {IBM RS/6000, Model 530,32 MB RAM }

per Merge

10

F Merj;e Calls.

7 4-

sqrt(F] MergeTrails.
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7.8. THE 3D SOURCE VISIBILITY EXPERIMENT

The 3D Source Visibility Experiment was designed to demonstrate how directed

monotone decomposition can improve the efficiency in using SAMPLE-3D line-of-sight visi

bility tests to compute surface visibility. In a typical 3D IC topography simulation, a surface

mesh contains about 1,000 to 10,000 vertices, and a hemispherical source is represented by

about 100 to 500 points. If source visibility is rigorously calculated using line-of-sight visi

bility tests at every surface vertex, a typical simulation may use millions of tests. Directed

monotone decomposition can increase the data granularity of surface visibility computation

from surface vertices to monotone patches. For each monotone patch, line-of-sight visibility

tests can be first applied at a few representative monotone patch vertices. These rigorously

computed source visibilities are then interpolated over each monotone patch.

The 3D Source Visibility Experiment explored the use ofdirected monotone decompo

sition to improve the efficiency ofusing line-of-sight visibility tests in SAMPLE-3D source

visibility computation. Using a hemispherical source with 45x10 points, SAMPLE-3D first

computed the source visibility of spherical trench surfaces with 380 and 904 triangles without

using monotone decomopsition. In other words, source visibility was rigorously computed

using line-of-sight visibility tests at every surface vertex. Figure 7.21 plots the qualitative

results for 380 triangles. In Figure 7.21, darker triangle shading indicates more limited source

visibility. As expected, source visibility is most restricted at the bottom of the spherical

trench surface.

In the 3D Source Visibility Experiment, directed monotone decomposition was used to

reduce the number ofline-of-sight visibility tests in SAMPLE-3D source visibility computa

tion. For each monotone patch, the test involved: 1) Selecting a few representative monotone
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patch vertices, 2) Rigorously computing the source visibilities at the selected vertices by

applying SAMPLE-3D line-of-sight visibility tests, and 3) Interpolating the source visibilities

over the monotone patch. In this test, monotone patch vertices nearest to the center and

bounding box corners of the monotone patch were selected for rigorous source visibility cal

culation. Since the goal of this test was to characterize the performance improvement gained

from reducing the number of SAMPLE-3D line-of-sight visibility tests, monotone patch

source visibility was assumed to be constant, and was equal to the average ofthe rigorously

computed source visibilities.

Figure 7.22 plots the source visibility ofthe 380-triangle spherical trench surface com

puted using monotone decompostion. From this plot, it is clear that the constant interpolation

ofrigorously computed source visibilities significantly over-estimated the source visibility at

the bottom of the trench. To make better use of monotone decomposition, special-purpose

algorithms are needed to accurately and efficiently interpolate monotone patch source visibil

ity. Development ofthese algorithms would involve customizing shading interpolation algo

rithms from computer graphics, such as the ones described in [16], for the special case ofsym

metric monotone patches. To efficiently interpolate monotone patch source visibility, these

algorithms should exploit facet orientation similarity within each patch, as well as spatial

coherence between patches from thesame topographical feature.

The use of SAMPLE-3D line-of-sight visibility tests to compute source visibility

without versus with monotone decomposition were compared interms ofnumbers of tests and

total CPU times. Tables 2ab summarize this performance comparison. Table 7.2a lists the

reduction in numbers of line-of-sight visibility tests, and the increase in memory consump

tion. Table 7.2b lists the corresponding reduction in total CPU times used by SAMPLE-3D

line-of-sight visibility tests, and CPU times used to monotonically decompose surfaces. For
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a 3D spherical trench surface with 904 triangles, the number ofline-of-sight visibility tests

was reduced from 75,554 down to 8,176. Correspondingly, total CPU time was reduced from

9.30 seconds down to 1.34 seconds. Theoretically, with monotone decomposition, the number

of line-of-sight visibility tests can reduce from 0(N*S), where S is the number of source

points, to 0(M*v*S), where Mis the number ofmonotone patches and v is the number of

monotone patch vertices. Since each surface vertex can issue between 45 to 450 line-of-sight

visibility tests to calculate its source visibility, further reduction in the number of line-of-

sight visibility tests will depend on the ability to minimize the number ofmonotone patch

vertices selected for rigorous source visibility calculations.
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7.9. CONCLUSIONS

Monotone decomposition was introduced in this chapter asan auxiliary data organiza

tion scheme for large grain surface decomposition. In IC topography simulation, large

numbers of locally connected facets often have similar orientations. By bin sorting locally

connected facets with similar orientations, monotone decomposition can easily partition a

simulated surface into large grain monotone patches. Using monotone decomposition, a sur

face advance with global intra-surface collisions can be broken into a few well-behaved

monotone patch advances. Void formations are transformed into overlaps between monotone

deformation volumes. In other words, monotone decomposition efficiently focuses the robust

ness and power ofmerge operations where it is most needed.

Two types of monotone decomposition algorithms were described in this chapter:

Greedy monotone decomposition and Directed monotone decomposition. The 2D greedy

monotone decomposition algorithm incrementally groups each surface facet into a monotone

chain in 0(N) time. Amonotone chain is terminated when the algorithm encounters a surface

facet that fails to monotonically extend the chain. By locally maximizing the number ofsur

face facets in each monotone chain, greedy monotone decomposition attempts to minimize the

number ofmonotone chains. However, by not including the local z-axes of IC topographical

features, the algorithm also tends to asymmetrically decompose axial symmetric features.

The 2.5D Isotropic Deposition Experiment demonstrated the advantages and limita

tions of greedy monotone decomposition. For a 2D key hole trench with 48 facets, greedy

monotone decomposition reduced the number of IBM Geometry Engine merge operations

from 48 down to 2, and the total CPU time used by these operations from 22.42 seconds down

to 1.04 seconds. However, as shown in Section 7.5, greedy monotone decomposition
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asymmetrically partitioned thesurface at the lower right corner of the key hole trench.

To symmetrically decompose 3D IC topographical features, the 3D directed monotone

decomposition algorithm supported two schemes for partitioning facet orientations symmetri

cally about the local z-axes of IC topographical features. According to the sign of the facet

normal ^-component, the x-cut monotone decomposition algorithm classifies each facet as

one of three categories: Left-pointing, Right-pointing, and Horizontal. Based onthe signs

of the facet normal x- and z-components, the xz-cut monotone decomposition algorithm

classifies each facet as one of eight categories by further identifying each facet as Upward-

pointing, Downward-pointing, or Vertical. Despite using coarse partitions offacet orienta

tions, the 3D directed monotone decomposition algorithm can symmetrically decompose indi

vidual features ina complex topography, such asperiodic spherical trenches.

The 3D Isotropic Deposition Experiment demonstrated the need for large grain surface

decomposition methods, such as directed monotone decomposition, in 3D boundary deforma

tion. The estimated CPU time reduction showed thatmonotone decomposition makes it feasi

ble to use IBM Geometry Engine merge operations in 3D boundary deformation. For a 3D

key hole trench with 896 triangles, the number ofmerge operations was reduced from 895

down to 8. Correspondingly, using CPU time data from the Localized Deformation Test in

Section 6.6, the total CPU time used by IBM Geometry Engine merge operations was

estimated to be reduced from about 5,370 seconds downto about 48 seconds.

The 3D Source Visibility Experiment demonstrated the use of directed monotone

decomposition to reduce the number ofline-of-sight visibility tests in SAMPLE-3D source

visibility computation. In addition, the test pointed out the need for special-purpose shading

interpolation algorithms that exploit the facet locality and orientation similarities inherent in
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monotone patches. For ahemispherical source with 450 points, and aspherical trench surface

with 904 triangles, the number ofSAMPLE-3D Une-of-sight visibility tests was reduced from

75,554 down to 8,176. Correspondingly, the total CPU time used by SAMPLE-3D Une-of-

sight visibility tests was reduced from 9.30 seconds down to 1.34 seconds. Since each sur

face vertex can issue between 45 to 450 Une-of-sight visbiUty tests to calculate its source

visibility, further reductions in the number of tests will depend on the ability to minimize the

number ofmonotone patch vertices selected for rigorous source visibility calculation.
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CHAPTER 8

AUXILIARY DATA STRUCTURES FOR

IC TOPOGRAPHY PROPAGATION TRACE-BACK

8.1. INTRODUCTION

Topography propagation plays adominant role in determing the shapes and dimensions

ofIC topographical features. From the viewpoint ofprocess integration, topography propaga

tion is the result ofcomplex interactions between process steps and layout masks. Section 8.2

introduces IC topography propagation trace-back as anew TCAD functionality that allows

users to start with a faulty topographical feature, and trace back the process steps or layout

masks that might have caused it. Since process flow and layout dependencies may be attached

to temporary masking layers, such as resist layers, topography propagation trace-back requires

the support of auxiliary data structures that propagate dependencies down to topographical

features. This chapter introduces two auxiliary data structures for supporting topography pro

pagation trace-back. The first is process history tagging, which has been prototyped using the

IBM Geometry Engine [1] and SIMPL System 6[2]. The second is process interaction track

ing, which is being proposed for implementation in next generation 3D geometry servers.

Auxiliary data structures for IC topography propagation trace-back can be implemented

by semantically extending soUd model attribution services to relate geometry components to

process steps and layout masks. Section 8.3 discusses tradeoffs and issues involved in design

ing these semantic extensions. The key tradeoff in the design of semantic extensions for

topography propagation trace-back is the maintenance of accurate process flow and lay

out dependencies on geometry components at a minimal storage cost. Three design issues

arise from addresing this tradeoff. First, there is the need to determine the largest granularity
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oftagged geometry components which yields accurate dependencies propagation. To minim

ize storage cost, a compact representation ofcomponent dependencies need to be defined.

Finally, process specific dependencies propagation utilities have to be implemented to com

pensate for incomplete geometry server attribute propagation.

To study these design issues, this chapter describes two examples of semantic exten

sions: Process history tagging and Process interaction tracking. Process history tagging isa

straightforward extension ofsolid model attribution services which involves directly tagging

geometry components with process flow and layout dependencies. In a 3D IC topography,

topographical features can be represented as volumes, which have large component granular

ity. Therefore, it may be feasible to use volume tagging as a storage efficient method for

maintaining accurate dependency information. To study volume tagging, Section 8.4

describes a 2.5D process history tagging data structure which has been implemented using the

IBM Geometry Engine [3]. As compact representations for process flow and layout depen

dencies, the data structure uses SIMPL System 6 [4] process step and layout mask id'sassolid

model tags. For implementation using IBM Geometry Engine attribute propagation, the data

structure includes rules to force additional dependencies propagation after SIMPL lithography,

etching, and deposition simulation.

While volume-based process history tagging can minimize storage cost, the coarse

granularity inherent in volume tagging may cause the attachment offalse dependencies. To

evaluate process history tagging, Section 8.5 introduces topography propagation trace-

back. Topography propagation trace-back walks through the tags on each IBM Geometry

Engine volume, and reports the SIMPL process steps and layout masks which influenced the

volume's creation. In Section 8.5, topography propagation trace-back is demonstrated using

the Two Spacer Trace-Back Experiment, which simulates acomplex topography containing
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spacerscut fromtwoseparately deposited layers.

For next generation 3D geometry servers, Section 8.6 proposes Process interaction

tracking as an accurate and storage efficient auxiliary data structure for IC topography propa

gation trace-back. The power ofprocess interaction tracking derives from recognizing pro

cess interaction as acompact representation ofprocess flow and layout dependencies, as well

as an unambiguous criterion for partitioning geometry components. With minor modifications

to its boolean set operations, a geometry server can incrementally compile a tree (or list) of

process interactions, and bin sort geometry components according to the process interactions

which created them. Process interaction tracking can be efficiently implemented as a table of

process flow and layout dependencies indexed by process interactions, and a set oftags that

link each geometry component to the underlying process interaction tree. By traversing tags

in the process interaction tracking auxiliary data structure, any geometry component can

readily use its creating process interaction to look up the associated process flow and layout

dependencies.
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8.2. IC TOPOGRAPHY PROPAGATION TRACE-BACK

IC topography propagation trace-back is a new TCAD functionality which enables IC

technologists to start with a faulty topographical feature, and trace back the process steps or

layout masks that might have caused it Figure 8.1 depicts two examples of topography pro

pagation effects, and the types ofquestions that topography propagation trace-back should be

capable ofanswering. In the first example, shown on the left ofFigure 8.1, a metal stringer

was created as a result of topography propagation from the polysilicon line. In this basic

example, a topography propagation trace-back should be capable ofshowing that the shape of

the metal stringer is dependent on the process steps and layout masks which patterned the

polysilicon line, and coated the line with dielectric material.

The second example, illustrated on the right ofFigure 8.1, shows a complex IC topogra

phy which contains two spacer materials. In the right ofFigure 8.1, the first spacer (Spacer 1)

material is denoted by horizontal line patterns, and the second spacer (Spacer 2) material is

denoted by checkered line patterns. In this example, Spacer 1 material was created by a sim

ple etch-back process that used the polysilicon line as an etch stop. Spacer 2 material con

tains four features, two of which are the result of topography propagation from Spacer 1

material. In this case, a topography propagation trace-back should show that the stringer and

the rightmost (compound) spacer in the Spacer 2 material are the results of topography propa

gation from Spacer 1 material. On the other hand, the trace-back should show that the left

most spacer and the upper spacer in the Spacer 2 material were only influenced by an etch-

back process thatusedthe oxide layer as an etch stop.

To facilitate IC topography propagation trace-back, auxiliary data structures are needed

to link geometry components back to the process steps and layout masks which created them.
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Previous work on coupling geometry to process flow and layout showed that such auxiliary

data structures would represent an important evolutionary step in this new research area. For

example, Berkeley's SIMPL-DDC system [3] provides a Hunch facility, which simulates and

highlights device topographies near areas which contain layout design rule violations. The

Hunch facility can be used to verify whether a layout design rule violation leads to a fatal

electrical fault on the device topography. However, it does not allow users to trace back

faulty topographical features.

As another example, in MIT's MEMCAD system [4] and ETH Zurich's ISE TCAD sys

tem [5], a partial process history is generated along with wafer geometry components. The

process history includes parameters ofadditive process steps, such as the type ofdeposition

(e.g. thermal oxidation versus oxide CVD). In these systems, this information is used to auto

mate the generation ofmaterial properties for electromechanical or device simulation. How

ever, since it does not record the effects ofsubtractive process steps, such as lithography and

etching, this process history cannot sufficiently support topography propagation trace-back.

Auxiliary data structures for IC topography propagation trace-back can be implemented

by semantically extending geometry servers to leave imprints ofprocess steps or layout masks

on geometry components. General-purpose geometry servers provide soUd model attribu

tion services, which can be used to define process flow and layout dependencies as solid

model attributes. Services are also provided to attach and propagate these attributes onto

geometry components during boolean set operations. Consequently, process flow and layout

dependencies of geometry components can be incrementally maintained as the IC topography

evolves. In the next section, issues which arise from the semantic extension of solid model

atttribution services will be discuss in more detail.
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8.3. SEMANTIC EXTENSIONS OF SOLID MODEL ATTRIBUTION SERVICES

Solid model attribution services are convenient facilities originally provided by

general-purpose geometry servers, such as the IBM Geometry Engine, to attach and propagate

mechanical design attributes on solid models. Figure 8.2 illustrates the application of solid

model attribution services to two overlapping solids: Solid Aand Solid B. Basic solid model

attribution services include attribute definition and attribute tagging. Most geometry

servers, such as the IBM Geometry Engine, support the definition of the following attribute

types: Character strings, integers, floating point numbers, and object pointers (i.e. memory

addresses). To efficiently attach defined attributes, geometry components can maintain tag

lists, or lists ofpointers to defined attributes. For example, Figure 8.2 shows that Solid Aand

Solid Binitially store their defined attributes as volume tag lists: A's tags and B's tags.

During boolean set operations, the IBM Geometry Engine and similar geometry servers

perform asolid model attribution service known as self attribute propagation. Self attribute

propagation tags geometry components of the resulting solid according to the input solids

which spawned the components. As examples, Figure 8.2 illustrates self attribute propagation

for two boolean set operations. In the case ofsubtraction, the volume ofSolid A-B contains

only A's tags, while the faces spawned by the solid intersection contain both A's tags and B's

tags. In the case of inset, either A's tags or B's tags are propagated onto the volumes ofSolid

A+B which are outside of the solid intersection. On the other hand, both A's tags and B's tags

are propagated onto the volume spawned by the solid intersection.

In designing semantic extension ofsolid model attribution services for IC topogra

phy propagation trace-back, the key tradeoff is the maintenance of accurate process flow

and layout dependencies on geometry components at a minimal storage cost Several
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issues arise from addressing this design tradeoff: 1) Determining the largest granularity of

tagged geometry components which yields accurate dependencies propagation. 2) Defining a

compact representation of process flow and layout dependencies which minimizes storage

cost. 3) Building process specific dependencies propagation utilities to compensate for

insufficient server attribute propagation.

For accurate maintenance of process flow andlayout dependencies, it may be neces

sary to tag small grain components, such as faces in 3D and edges in 2D. Certain IC topo

graphical features, such as trenches and voids, are represented by empty spaces. Since boun

dary representation (B-Rep) volumes cannot be used to represent empty spaces, volume

tagging cannot be used to maintain the dependencies necessary for topography propagation

trace-back oftrenches and voids. Figure 8.3 depicts this scenario for a silicon trench etched

using an oxide mask. As shown in Figure 8.3, while the oxide mask's dependencies can be

attached to its volumes, the silicon trench's dependencies must be attached to its bounding

faces.

Another problem with volume tagging is the coarse granularity oftagged geometry com

ponents may lead to attachment of false dependencies. When dependencies propagation is

confined to 3D volumes or 2D faces, all topographical features cut from the deposited layer

will contain the dependencies attached on the deposited layer. However, as will be demon

strated in Section 8.5, some of these features may actually sit on top of the flat portions of the

underlying topography. Therefore, in this case, the coarse component granularity of volume

tagging has led to acontradicting situation, in which component dependencies suggest that

topography propagation has influenced the shape of features sitting on planar surfaces.
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On the other hand, the practical minimum granularity of tagged geometry com

ponents is limited by the storage efficiency of process flow and layout dependencies

representations. For example, at first glance, process step and layout mask id's seem to be

logical choices for compact representations of process flow and layout dependencies. How

ever, since these id's need to be explicitly tagged at each geometry component, process step

and layout mask id's are not a storage efficient dependencies representations. In a typical IC

process technology, aprocess flow may have about 100 process steps, and a layout may have

about 20 mask levels. Therefore, each geometry component can potentially contain about 120

solid model tags. In a typical 3D IC topography, there may be about 10,000 vertices, edges,

orfaces. Hence, ifprocess step and layout mask id's are used as dependencies representation

for small grain geometry component tagging, 1,200,000 solid model tags may need to be

stored. Assuming each tag is implemented as abit mask, a total of1.2* 106 bits / 8bits/byte =

167 Kbytes are required to store the solid model tags.

If process step and layout mask id's are chosen as dependencies representations, volume

tagging would be the only practical method for semantically extending solid model attribution

services. In a simulated IC topography, the number of topographical features is typically

fewer than 20. Assuming each volume contains 120 solid model tags, this translates to a total

of 2,400 solid model tags. Therefore, thestorage costwould only be 2400 bits / 8 bits/byte =

0.3 Kbytes. Consequently, despite itsobvious shortcomings in terms of attribute propagation

accuracy, volume tagging is further evaluated in Section 8.4 as a practial semantic extension

of solid model attribution services.

Finally, to compensate for incomplete self attribute propagation in general-purpose

geometry servers, special-purpose utilities are needed to force propagation of deforma

tion volume dependencies. As an example that requires forced dependencies propagation,
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Figure 8.4 depicts the geometry update after a silicon trench etching step. Some general-

purpose geometry servers, such as the IBM Geometry Engine, do not propagate volume tags

onto faces during subtraction. Therefore, as shown in the leftof Figure 8.4, a special-purpose

utility may be needed to force a propagation of etching volume dependencies before substrac-

tion. As a result of this work around, the right of Figure 8.4 shows that volume-based self

attribute propagation can then be used to maintain accurate dependencies during etching

geometry update.
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8.4. 2.5D VOLUME-BASED PROCESS HISTORY TAGGING

The 2.5D volume-based process history tagging data structure was first introduced as

part ofthis thesis work in [6]. This data structure implements volume tagging by semanti

cally extending IBM Geometry Engine solid model attribution services. The data structure

uses SIMPL System 6process step and layout mask id's as representations ofprocess flow and

layout dependencies. The data structure implementation involves two types of process

specific utilities for maintaining accurate dependencies on IC topographical features (i.e.

volumes in3D and faces in 2D). These utilities are straightforward semantic extensions of the

IBM Geometry Engine. First, a tag conversion utility is implemented to convert process

specific attributes into deformation volume tags. Secondly, for process steps which cut into

the inital topography, separate depedencies propagation utilities pass deformation volume

tags down to the modified geometry components.

To streamline the conversion and propagation ofdeformation volume tags, process flow

and layout dependencies have been grouped into the following types: 1) Direct processing

dependencies, 2) Masking layer dependencies during subtractive process simulation, and 3)

Non-planar underlayer dependencies during additive process simulation. The following para

graphs describe tag conversion and propagation rules for the three dependencies types. In par

ticular, surface and material interface planarity is identified as an important filter for extrane

ous dependencies. To automate dependencies tracking during each simulation time step, these

rules have been incorporated into BTU's geometry update utilities for lithography, etching,

and deposition.

Direct processing dependencies identify the process steps and layout masks directly

responsible for the creation or deformation of an IC topographical feature. Lithography is a
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process step that introduces only direct processing dependencies. Figure 8.5 illustrates tag

conversion and propagation rules for direct processing dependencies generated by the lithog

raphy process. In Figure 8.5, the wafer states before and after the lithography update are

shown on the left and right of the figure. As shown in Figure 8.5, deformation volume tags

include the lithography process step id, and the applied layout mask id. Since IBM Geometry

Engine only supports self attribute propagation, the lithography update utility is responsible

for propagating deformation volume tags onto the resist layer before subtraction.

Masking layer dependencies record the process steps and layout masks that created or

deformed the masking layer used in an etching step. Figure 8.6 illustrates tag conversion and

propagation rules for masking layer dependencies generated by the etching process. In Figure

8.6, the wafer states before and after the etching update are shown on the left and right ofthe

figure. As shown in Figure 8.6, deformation volume tags consist of the etch process step id,

and masking layer tags. To identify masking layers, the etching update utility first partitions

the wafer top surface into portions bounding various layers. Each top surface portion is

checked for slope changes. Layers with top surface portions that exhibit slope changes

exceeding a specified tolerance value are identified as masking layers. Since IBM Geometry

Engine subtraction operation is also used in this case, the etching update utility is responsible

for propagating deformation volume tags onto the etched layer before subtraction.

Non-planar underlayer dependencies account for the process steps and layout masks

that created non-planar layers in the IC topography prior to adeposition step. Figure 8.7 illus

trates tag conversion and propagation rules for non-planar underlayer dependencies generated

by the deposition process. In Figure 8.7, the wafer states before and after the deposition

update are shown on the left and right of the figure. As shown in Figure 8.7, deformation

volume tags consist ofthe deposition process step id, and non-planar underlayer pointers. To



205

identify non-planar underlayers, aprocedure identical to the one for finding masking layers

can be used. Unlike masking layer dependencies, non-planar underlayer dependencies can be

succinctly represented by underlayer pointers. This is because underlayers, such as polysili

con lines, are usually buried by subsequent processing, whereas masking layers, such as resist

layers, areremoved immediately after lithography-etching sequences.
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8.5. 2.5D VOLUME-BASED TOPOGRAPHY PROPAGATION TRACE-BACK

To evaluate the usefulness ofprocess history tagging, the 2.5D volume-based topogra

phy propagation track-back data structure was first introduced as part ofthis thesis work in

[6]. Topography propagation trace-back can expose deeply buried process flow and layout

dependencies by tracing through process step id's, layout mask id's, and underlayer pointers

attached to IC topographical features (i.e. volumes in 3D and faces in 2D). In Section 3.5, the

simulation and trace-back of a metal stringer structure was described as an example of BTU

simulation experiments. To illustrate the topography propagation trace-back functionality,

Figure 8.8 lists the order in which the dependencies ofthe metal stringer are uncovered as "1"

through "4", where "1" represents the first tag found. After tracing through two underlayer

pointers (tags "2" and "3" in Figure 8.8), the trace-back function identifies the dependence of

the metal stringer onlithography and etching of the polysilicon line.

As discussed in Section 8.3, the coarse component granularity associated with volume

tagging can result in the attachment offalse dependencies. This anomalous situation will be

demonstrated here using results from the Two Spacer Trace-Back Experiment. This test

began by using SIMPL to simulate a complex IC topography which contained spacers cut

from two separately deposited layers. After each SIMPL topography process step, the result

ing deformation volume was extruded and updated in the IBM Geometry Engine using the

BTU geometry update utilities described in Section 8.4. Trace-backs were then performed on

the features cut from the second deposited layer. As will be discussed below, the reported

dependencies show that some ofthese features were erroneously tagged as strongly dependent

on topography propagation.
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The SIMPL process flow simulated by the Two Spacer Trace-Back Experiment is

listed in Figure 8.9. Figure 8.10 shows the SIMPL layout and final cross section obtained

from this process flow simulation. As listed in Figure 8.9, the major sequences in this process

flow are: Gate Oxide layer deposition (thickness = 0.1 um, Step 1); Poly 1 layer deposition

and etching (thickness =0.4 um, mask =POLY, Steps 2through 4); Spacer 1material depo

sition and etch-back (thickness = 0.2 um, Steps 5 through 7 ); Poly 2 layer deposition and

etching (thickness =0.4 um, mask =PLY2, Steps 8through 10 ); Spacer 2material deposi

tion and etch-back (thickness = 0.2 um, Steps 11 through 13 ); and Metallization (thickness

= 0.4 um PSG andmetal, mask= Ml, Steps 14through 19).

Topography propagation trace back of features in the Spacer 2 material showed that

volume tagging caused the attachment of extraneous dependencies on the lower left spacer

and the upper right spacer. Figure 8.11 depicts the 3D topography simulated by the IBM

Geometry Engine, and compares the dependencies reported for the upper right spacer (listed

on the left), and the lower right spacer (listed on the right). As suggested in Figure 8.11, all

features in the Spacer 2 material contained identical dependencies. This is because the

Spacer 2material was initially tagged as dependent on the Spacer 1material after deposition.

After Spacer 2material etching, the etching update utility propagated all Spacer 2material

dependencies onto all etched features. In fact, in the Spacer 2material, only the stringer and

the lower right spacer truly resulted from topography propagation. Since the lower left spacer

and the upper right spacer are situated atop flat portions of the Gate Oxide layer and Spacer 1

material, they should only contain dependencies on Spacer 2 material deposition and etch

process steps, and perhaps the Poly 2line edges (e.g. the PLY2 mask).
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Two Spacer Test
SIMPL Process Flow

LAYOUT FILE : stringer2.cif

SUBSTRATE TYPE:

CUT-LINE COORDINATES : Xl = -1600, yl = -47
x2 = 1600, y2 = -47

• 1 •

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? OXID

THICKNESS OF THE MATERIAL (micro-meter) ? 0.1
VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V.S.I.A, or M) ? V
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 2 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? POLY
THICKNESS OF THE MATERIAL (micro-meter) ? 0.4
VERT, SPIN-ON, ISO. ANISO or SAMPLE MENU (V.S.I.A, or M) ? V
•DOPING (B, As, P, Sb or None) ? None
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? EXPO

WHICH MASK ? POLY

INVERT THE MASK (yes or no) ? no
NAME OF MATERIAL TO BE EXPOSED ? POLY
NAME OF THE EXPOSED RESIST ? ERST
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 4 *

WHICH PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? ERST
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? NTRD
THICKNESS OF THE MATERIAL (micro-meter) ? 0.2
VERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V.S.I.A, or M) ? I
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? ETCN
Etch Type:Isotropic, or Iso with Directional (1 or 10) ? 10
File containing etch rates ? ntrd.etch.mod
Etch accuracy (0:worst to 10:best) ? 10
Timestep in seconds ? 1
Number of steps ? 4
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 7 *

WHICH PROCESS ? ETCU

Figure 8-9
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Two Spacer Test
SIMPL Process Flow

(Continued)

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) 7 yes

;* 8 *

•WHICH PROCESS ? DEPO

INAME OF THE MATERIAL ? PLY2
!THICKNESS OF THE MATERIAL (micro-meter) ? 0.4
•VERT, SPIN-ON, ISO. ANISO or SAMPLE MENU (V.S.I.A, or M) ? I
jDO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? EXPO

|WHICH MASK ? PLY2
:INVERT THE MASK (yes or no) ? no
INAME OF MATERIAL TO BE EXPOSED ? PLY2
iNAME OF THE EXPOSED RESIST ? ERST
IDO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

!* 10 *

:WHICH PROCESS ? DEVL

INAME OF THE LAYER TO BE DEVELOPED ? ERST
|DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

;* ii *

'WHICH PROCESS ? DEPO

•NAME OF THE MATERIAL ? NTD2
,THICKNESS OF THE MATERIAL (micro-meter) ? 0.2
JVERT, SPIN-ON, ISO, ANISO or SAMPLE MENU (V.S.I.A. or M) ? I
'DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

,* 12 *

!WHICH PROCESS ? BTCN
JEtch Type:Isotropic, or Iso with Directional (1 or 10) ? 10
IFile containing etch rates ? ntrd.etch.mod
;Etch accuracy (0:worst to 10:best) ? 10
|Timestep in seconds ? 1
INumber of steps ? 5
IDO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

!• 13 *

WHICH PROCESS ? ETCU
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

Figure 8.9
(Continued)
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Two Spacer Test
Layout and Cross Section

(SIMPL System 6 Simulation)
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Figure 8.10 RHW - UCB TCAD
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8.6. PROPOSAL FOR 3D PROCESS INTERACTION TRACKING

With respect to volume-based process history tagging, this section introduces process

interaction tracking as a more accurate and storage efficient data structure for supporting IC

topography propagation trace-back. Process interaction refers to a series of boolean set

operations applied to an IC topography and an associated series ofdeformation volumes. Fig

ure 8.12 illustrates the basic concepts behind process interaction tracking. As shown on the

left ofFigure 8.12, the geometry server maintains a tree (or list) of process interactions that

can be observed in the current geometry. Since each boolean set operation is associated with a

deformation volume, such as Solid A, B, or C, a process interaction compactly represents a

complete set of process flow and layout dependencies. As suggested by the arrows in Figure

8.12, each topography face is either the result of topography initialization, or can be traced

back to a unique process interaction. Therefore, the tree of process interactions unambigu

ously partition geometry components.

By linking each geometry component to its creating process interaction, process interac

tion tracking separates accurate dependencies propagation on geometry components, from

efficient storage ofprocess flow and layout dependencies. Process interaction tracking is

accurate because there is no need to implement process specific rules for additional attribute

tagging or propagation. To support process interaction tracking, geometry servers need to be

modified to incrementally update, after each boolean set operation, the process interaction tree

(or list) and geometry component process interaction classifications. On the other hand, as a

result of this software modification, geometry component process flow and layout dependen

cies can be automatically updated without additional (and presumably extraneous) attribute

tagging or propagation.
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Process interaction tracking also avoids the redundant storage of process step and layout

mask id's on geometry components. From process flow and layout, a process interaction

tracking auxiliary data structure can convert process interaction tree (or list) elements into a

look-up table of interacting process steps and layout masks. For each geometry component,

the auxiliary data structure can store atag that links the geometry component to its creating

process interaction. By traversing tags in the process interaction tracking auxiliary data struc

ture, any geometry component can readily use its creating process interaction to look up the

associated process flow and layout dependencies.
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8.7. CONCLUSIONS

This chapterintroduced a new TCAD functionality called IC topography propagation

trace-back. This functionality enables IC technologists to start with a faulty topographical

feature, and trace back the process steps and layout masks that might have caused it. Since

process flow and layout dependencies may be attached to temporary masking layers, auxiliary

data structures are needed to propagate dependencies down to topographical features. As a

means of implementing auxiliary data structures for IC topography propagation trace-back.

Section 8.2 suggested semantic extensions ofsolid model attribution services.

Section 8.3 explored issues in designing semantic extensions ofsolid model attribution

services for IC topography propagation trace-back. For accurate maintenance ofprocess flow

and layout dependencies, it may be necessary to tag small geometry components, such as

faces in 3D and edges in 2D. On the other hand, the practical minimum granularity oftagged

geometry components is limited by the storage efficiency of process flow and layout depen

dencies representations. Finally, to compensate for self attribute propagation in general-

purpose geometry servers, special-purpose utilities are needed to force propagation of defor

mation volume dependencies.

To further study volume tagging, Section 8.4 described a2.5D process history tagging

data structure. The data structure tagged IBM Geometry Engine volumes with SIMPL process

step and layout mask id's. As discussed in Section 8.4, the primary advantage of volume-

based process history tagging is its simplicity. The implementation of the 2.5D process his

tory tagging data structure mainly involved building two auxiliary utilities which were

straightforward wrappings of IBM Geometry Engine solid model attribution services. First, a

tag conversion utility was developed to convert SIMPL process step and layout mask id's
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into IBM Geometry Engine solid model tags. Next, separate dependencies propagation utili

ties were developed to propagate tags onto IBM Geometry Engine volumes after SIMPL

lithography, etching, and deposition simulations.

Due to the coarse granularity inherent in volume tagging, volume-based process history

tagging frequently attaches false dependencies. This anomaly was demonstrated in Section

8.5 using topography propagation trace-back and the Two Spacer Trace-Back Experi

ment. The Two Spacer Trace-Back Experiment involved the simulation ofa complex IC

topography which contained spacers cut from two separately deposited layers. In this test, the

layout masks were arranged such that some ofthe spacers cut from the second deposited layer

rested on flat surfaces, and did not depend on process steps and layout masks previous to the

second spacer etching sequence. However, due to the coarse granularity ofvolume tagging,

the dependencies on the second deposited layer were propagated onto all spacers cut from it

As a result, trace-backs of the spacers resting on flat surfaces erroneously reported dependen

cies previous to the secondspacer etching sequence.

With respect to volume-based process history tagging, Section 8.6 proposed process

interaction tracking asa more accurate and storage efficient auxiliary data structure for next

generation 3D geometry servers. By linking each geometry component to its creating process

interaction, process interaction tracking separates accurate dependencies propagation on

geometry components, from efficient storage ofprocess flow and layout dependencies. Pro

cess interaction tracking is accurate because there is no need to implement process specific

rules for additional attribute tagging orpropagation. Instead, geometry servers are modified to

automatically update the process interaction list (or tree) and geometry component dependen

cies. Process interaction tracking is storage efficient because process flow and layout masks

dependencies are efficiently encoded by asingle flag ateach component. By traversing tags in
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the process interaction tracking auxiliary data structure, any geometry component can readily

use its creating process interaction to look up the associated process flow and layout depen

dencies. Assuming each flag consumes abitmask, 10,000 component flags only require about

10,000 / 8 = 1.25 Kbytes to store, which is two orders of magnitude less than the 167 Kbytes

that could be used by small grain processhistory tagging.
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CHAPTER 9

CONCLUSIONS

9.1. SUMMARY OF FINDINGS

This thesis explores TCAD system organization for centralizing geometry services.

Issues involved in the development, performance testing, and use of centralized geometry

servers are investigated for 3D IC topography simulation. In many case, the issues have been

identified and quantified through use of a prototype system based on linking SAMPLE-3D,

SIMPL, and the IBM Geometry Engine as geometry servers through a hierarchically organ

ized interface in the Berkeley Topography Utilities (BTU) system. The BTU geometry server

interface consists of41,000 lines ofC++ code, and organizes geometric utilities and geometry

services according to their input data granularity as Primitive, Auxiliary, and Aggregate.

This thesis initiates research in a new field of centralizing geometry services for 3D IC

topography simulation, and makes contributions along several research fronts. First, this

thesis links the performance ofgeometrical operations in 3D IC topography simulation to four

essential geometry server constructs. These constructs can be implemented using conven

tional connectivity and spatial data structures, and special-purpose boolean set operations.

The implementation ofthese constructs constitutes anecessary but not sufficient condition for

efficient 3D IC topography simulation. This fact is demonstrated by comparing the theoretical

performance of geometrical operations implemented with and without the constructs. Since

the constructs are shown to be necessary for efficient 3D simulation, they may be used to

screen potential servers.
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Another contribution of this thesis is the definition of standardized performance tests.

These tests are designed tomimic the stress placed on geometry servers during 3D IC topogra

phy simulation. The tests invoke geometrical operations on IC topographies at typical levels

of physical detail and operation frequency. In other words, standardized performance tests

can beused to evaluate the suitability ofgeometry servers for 3D IC topography simulation.

In implementing standardized performance tests, it is shown that the demand of IC

topography simulation requires considerable augmentation of the standard interfaces to

general-purpose geometry servers. About 10,000 lines of C++ code are likely necessary to

perform relatively basic geometrical operations in 3D IC topography simulation with any

solid modeling package. For example, about 12,000 lines ofC++ code are required to inter

face the IBM Geometry Engine for performance testing. Out of these 12,000 lines, a

significant part performs mundane geometry construction and data mapping tasks, such as

constructing tiled initial topographies, extracting surface faces, triangulating polygonal faces,

andconstructing vertical deformation volumes.

To manage the large number ofgeometric utilities and services introduced by geometry

servers, this thesis recommends ahierarchical server interface based on input data granularity

ofgeometrical operations. The purpose for hierarchically organizing geometric utilities and

services is to share codes that support data mapping, server extensions, and simulation experi

ments and applications. Near the bottom are small grain Primitive Utilities and Services,

which include data mapping utilities, such as polygonal face triangulation, and CPU-intensive

computation services, such as boolean set operations. In the middle are Auxiliary Data Struc

tures that partition surfaces into patches to improve the efficiency in using CPU intensive ser

vices, and tag solids to support IC topography design. Near the top are Aggregate Utilities

and Services, which perform high level geometrical operations, such as boundary deformation
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and source visibility. Using Aggregate operations, performance tests and simulation experi

ments can be written in about250 to 350 lines ofC++ code.

The principal test vehicle for exploring TCAD organizational issues in this thesis is the

Berkeley Topography Utilities (BTU) system. The BTU system uses ahierarchical interface

approach to integrate existing topography simulators and general-purpose geometry servers.

At the bottom, the system integrates SAMPLE-3D, SIMPL, and the IBM Geometry Engine as

Centralized Geometry Servers under ahierarchical server interface. When supplemented with

Simulation Support Utilities for task management and visualization, it is estimated that the

complete BTU system (Centralized Geometry Servers, Hierarchical Server Interface, and

Simulation Support Utilities) can be used to implement rigorous simulation applications in

about 2,000 lines of C++ code. The BTU system software along with SAMPLE-3D and

SIMPL are currently available to the TCAD community. However, BTU performance testing

utilities and auxiliary data structures are currently implemented only on the IBM Geometry

Engine. A section that follows will discuss how these utilities and data structures can be

adapted for usewith other boundary representation solid modelers.

Since standardized performance tests take into account the nature of geometrical opera

tions, they are an indispensable system tool for characterizing the run time consequences of

theoretical performance bounds. Standardized performance tests can screen out false perfor

mance botdenecks often predicted from simpler asymtotic performance estimates. For exam

ple, in the IBM Geometry Engine, computing solid intersection curves between a planar

topography and its vertical deposition volume results in a bucket with 0(N) triangles, and

0(N2) face bounding box intersection checks. At first glance, for the special case ofupdating

planar topographies, computing solid intersection curves appears to require 0(N2) time.

However, performance test results show the run time of solid intersection curve computation
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still grows as 0(N) for planar topographies with 100 to 1,000 surface triangles. In tact, the

0(N2) face bounding box intersection checks incurred in the planar case cause only 30% run

time performance degradation compared to the non-planar case.

Standardized performance tests can also reveal areas where geometry server design

tradeoffs interact poorly with IC topography simulation needs. For robusmess, most general-

purpose boolean set operations create output solids by duplicating geometry components and

connectivity links in the input solids. By means ofasimple assembly ofblocks into astair

case, it is possible to show that, for 1,600 cubes, an IBM Geometry Engine merge operation

requires on the average about 10 seconds, regardless ofwhether the merge is asingle block or

a set of40 cubes.

Monotone decomposition is introduced in this thesis as an auxiliary data organization

scheme for large grain surface decomposition. In IC topography simulation, large numbers of

locally connected facets often have similar orientations. By bin sorting locally connected

facets with similar orientations, monotone decomposition can easily partition asimulated sur

face into large grain monotone patches. Using monotone decomposition, asurface advance

with global intra-surface collisions can be broken into a few well-behaved monotone patch

advances. Void formations are transformed into overlaps between monotone deformation

volumes. In other words, monotone decomposition efficiently focuses the power of merge

operations where it is most needed. For example, using monotone decomposition, it is

estimated that IBM Geometry Engine merge operations can efficiently resolve void formation

ina 1,000 triangle keyhole trench surface inabout 1minute.

Finally, this thesis introduces IC topography propagation trace-back as anew TCAD

functionality. This functionality allows users to start with afaulty topographical feature, and
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trace back the process steps and layout masks that might have caused it Due to the presence

oftemporary masking layers, such as resist layers, auxiliary data structures are needed to force

the propagation of process flow and layout dependencies down to topographical features.

These auxiliary data structures can be implemented by semantically extending solid model

attribution services.

The key issue indesigning semantic extensions is to maintain accurate process flow and

layout dependencies, and minimize storage cost of dependencies. This thesis shows that pro

cess history tagging, or tagging solid models directly with process step and layout mask id's,

is not storage efficient, and limits tagging to only material volumes. As an alternative, this

thesis proposes process interaction tracking. For each geometiy component, this auxiliary

data structure uses a single attribute (e.g. an integer flag), to record the combination of

boolean set operations which created the component. Using process interaction tracking, pro

cess flow and layout dependencies are compactly represented by asingle flag that is automati

callyupdated by each boolean set operation.
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9.2. STATUS AND FUTURE DIRECTIONS FOR THE BTU SYSTEM

The BTU system is currently implemented as a BTU directory tree with two major sets

of sub-directories. One set of sub-directories are the Server directories thatcontain Berkeley

simulators and wrappers (about 60,000 lines of C code), and IBM servers and simulators

(about 50,000 lines ofC++ code). The other set ofsub-directories are the Interface directories

mat include standardized performance tests (about 12,000 lines ofC++ code), and hierarchical

interface utilities (about 41,000 lines ofC++ code, including 10,000 lines that duplicate code

in standardized performance tests).

Research opportunities exist in proving out the BTU system organization on rigorous

physical models. This would require implementing a complete Simulation Support Utilities

layer. The easiest way to accomplish this is to wrap SAMPLE-3D's input deck parser and

simulation task manager. At present, the SAMPLE-3D wrapper and hierarchical interface

utilities already wrap SAMPLE-3D's visualization utilities, such as pdraw plot generation,

and geometric computation services, such as surface advancement, deloop, and line-of-sight

visibility.

The Berkeley part of the Server directories, and the Interface directories are currently

available for inspection and use by other TCAD developers. Due to difficulties in obtaining

the IBM Geometry Engine, this thesis recommends adapting BTU standardized performance

tests and auxiliary data structures to work with commercially available solid modelers, such as

ACIS and Echidna. To facilitate this adaptation, the following paragraphs summarize IBM

Geometry Engine services andutilities used by theBTU system.

The IBM Geometry Engine provides BTU with a handful ofsolid modeling services that
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are commonly found in commercial solid modelers. The IBM Geometry Engine provides

BTUwith solid geometry primitives, such as spheres and tetrahedra. It also has a piecemeal

solid construction interface for adding geometry components one at a time, and invoking the

server to establish connectivity links. Forstandardized performance tests andboundary defor

mation, BTU uses three IBM Geometry Engine operations: 1) Solid boundary connectivity

queries, 2) Point location tests, and 3) Boolean set operations. For topography propagation

trace-back, BTU uses IBM Geometry Engine's attribution mechanism to tag geometry com

ponents with name-value pairs. For example, ageometry component that depends on the Poly

1 mask may betagged with the ("LayoutDepend", "Poly 1") attribute.

To facilitate application development, the IBM Geometry Engine provides three sets of

C++ object classes which are used throughout the BTU system: 1) Memory manager classes,

2) Linked list template classes, and 3) SWR Geometry Server Procedural Interace classes.

The first two class sets can be easily re-implemented and re-deployed inthe BTU system by a

capable C++ programmer in about one person month. The SWR Geometry Server PI classes

would require a knowledgeable C++ programmer to replace SWR Geometry Server calls with

equivalent operations in the new server.

For use with other solid modelers, the most useful BTU software are the standardized

performance tests, the auxiliary data structures, and the simulation experiments. The stand

ardized performance tests can be conducted stand-alone by replacing SWR Geometry Server

calls with equivalent new server operations. The auxiliary data structures and simulation

experiments require integrating the new server with SAMPLE-3D and SIMPL. This can be

accomplished by replacing SWR Geometry Server calls used in hierarchical interface utilities.



230

93. FUTURE RESEARCH INCENTRALIZING GEOMETRY SERVICES

This thesis explored many fronts in centralizing geometry services. However, there are

still many interesting issues and research directions that can be pursued. One interesting

research direction is to implement an efficient moving surface geometry server based on the

four essential geometry server constructs described in this thesis. This server would be useful

both in terms of academic and industrial research. From an academic viewpoint, an efficient

3D moving surface geometry server could be used to uncover other essential constructs. From

an industry viewpoint an efficient 3D moving surface geometry server could immediately

become a testbed for deploying physical models for 3D etching and deposition.

It is hoped that the standardized performance tests and auxiliary data structures will be

applied to guide the development of other geometry servers, such as ACIS, Echidna, and

AT&T's BSP tree solid modeler. The methodology for geometry server performance testing

and auxiliary data structure design forwarded by this thesis is generally applicable to boundary

representation solid modelers. In spirit, this methodology should perhaps also be applied to

the evaluation of 3D field servers, such as PROPHET.

Another research direction is to further study the role of monotone decomposition in

computing source and intra-surface visibility. In this thesis, monotone decomposition is

shown to be an enabling auxiliary data structure for the real time use of IBM Geometry

Engine merge operations in 3D boundary deformation. On the other hand, since visibility is a

physical phenomenon that simultaneously depends on spatial locality and facet orientation, it

seems logical that monotone decomposition may lead to even greater performance improve

ment in using line-of-sight visibility tests to compute source and intra-surface visibility.
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Finally, itwould be of interest to implement process interaction tracking for IC topogra

phy propagation trace-back, and compare this data structure with small grain process history

tagging. Implementing process interaction tracking requires extensive modifications in the

geometry server to keep track ofdifferent combinations ofboolean set operations present in

the solid model. As computer memories become cheaper, the improved storage efficiency

gained through process interaction tracking may be offset by the complexity in its implemen

tation. Therefore, it would be an interesting experiment to implement process interaction

tracking in ageometry server, and compare its accuracy and storage cost to process history

taggingon small grain components.
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