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1 Introduction

VIS (Verification Interacting with Synthesis) is a tool that integrates the verification, simulation, and synthesis of finite-
state hardware systems. It uses a Verilog front end and supports fair CTL modelchecking, language emptiness checking,
combinational and sequential equivalence checking, cycle-based simulation, and hierarchical synthesis.

Wedesigned VIS to maximize performance by usingstate-of-the-art algorithms, and to providea solidplatformfor future
research in formal verification. VIS improves upon existing verification tools by:

1. providing a better programming environment,

2. providing new capabilities, and

3. improving performance in some cases.
Wehaveincorporated softwareengineeringmethods into thedesign of VIS.In particular, we provideextensivedocumentation
that is automatically extracted from the source files for browsing on the WorldWide Web.

Section2describes themajorcapabilitiesof VISasseenby theuser, andSection3 givesa briefdescriptionof theunderlying
algorithms of thesecapabilities. Section4 discussesthe VIS programming environment, and Section 5 gives conclusionsand
ideas for future work.

2 Capabilities of VIS

We briefly describe the salient features of VIS. VIS has both an interactive command interface and a batch mode. For a
detaileddescription of the full functionalityof VIS, with examplesof usage, refer to the VIS Manual [2].

Verilog front end VISoperateson an intermediate formatcalledBLIF-MV, whichis an extension of BLIF,the intermediate
format forlogicsynthesisacceptedby SIS [7]. VISincludesa stand-alone compilerfrom Verilog to BLIF-MV, calledVL2MV,
whichsupportsa synthesizablesubset of Verilog. vl2mv extractsa set of interactingfinite state machines that preservesthe
behaviorof the source Verilog programdefinedin terms of simulatedresults. Twonew featureshave been added to Verilog:

1. Nondeterminism. A nondeterministicconstruct, $ND, has beenadded to specify nondeterminismon wire variables; this
is the only legal way to introduce nondeterminismin VIS.

2. Symbolic variables. Sometimes it is desirable to specify and examine the value of variables symbolically, rather
than having to explicitly encode them. vl2mv extends Verilog to allow symbolic variables using an enumerated type
mechanism similar to the one available in the C programming language.

Conceptually,it would be easy to provide a translator from another HDL language, like VHDL or Esterel, to BLIF-MV.
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Hierarchy andinitialization When a BLIF-MV description isread into VIS, itisstored hierarchically asatree ofmodules,
which in turn consist of sub-modules. This hierarchy can be traversed in a manner similar to traversing directories in
UNIX. Simulation and verification operations can beperformed at any subtree of the hierarchy. It ispossible toreplace the
subhierarchy rooted atthe current node with anew hierarchy specified by anew BLIF-MV file, which might be asynthesized
module oramanually abstracted module. VIS can also output the hierarchy below the current node toaBLIF-MV file.

Interaction with synthesis VIS can interact with SIS tooptimize theexisting logic by reading and writing the BLIFformat,
which SISrecognizes. Synthesis canbe performed on anynodeof thehierarchy.

Abstraction Manual abstraction can beperformed bygiving a file containing the names ofvariables toabstract For each
variable appearing inthe file, a new primary input node iscreated to drive all the nodes that were previously driven by the
variable. Abstracting a neteffectively allows it to take any value initsrange, at every clock cycle.

Fair CTLmodel checking and language emptiness check VIS performs fair CTL model checking under Buchi fairness
constraints. In addition, VIS can perform language emptiness checking by model checking the formula EG true. The
language ofa design isgiven by sequences over the set ofreachable states that do not violate the fairness constraint. The
language emptiness check can be used to perform language containment by expressing the set ofbad behaviors as another
component ofthe system. Ifmodel checking orlanguage emptiness fail, VIS reports the failure with acounterexample, (i.e.,
behavior seen inthe system that does not satisfy the property - for model checking, orvalid behavior seen inthe system - for
language emptiness). This iscalled the "debug" trace. Debug traces list aset ofstates that are on apath to afair cycle and fail
the CTL formula.

Equivalence checking VIS provides the capability tocheck the combinational equivalence oftwo designs. An important
usage ofcombinational equivalence isto provide asanity check when re-synthesizing portionsofanetwork. VIS also provides
the capability to test the sequential equivalence oftwo designs. Sequential verification isdone by building the product finite
state machine, and checking whether a state where the values oftwo corresponding outputs differ, can bereached from the
set of initial states ofthe product machine. If this happens, a debug trace isprovided. Both combinational and sequential
verification arc implemented usingBDD-based routines.

Simulation VIS also provides traditionaldesign verification inthe form ofacycle-based simulator that uses BDD techniques.
Since VIS performs both formal verification and simulation using the same data structures, consistency between them is
ensured. VIS can generate random input patterns oraccept user-specified input patterns. Any subtree of the specified
hierarchy may be simulated.

3 Algorithms

This section briefly discusses the significant algorithms of VIS. The fundamental data structure for these algorithms isa
multi-level network of latches and combinational gates that iscreated by flattening the hierarchy. It isassumed that there are
no combinational cycles in the network. The primary inputs and latch outputs are referred to as combinational inputs and the
primary outputs and latch inputs are referred toas combinational outputs. The variables ofa network are multi-valued, and
logic functions over these variables are represented by multi-valued decision diagrams (MDDs) which are an extension of
BDDs.

MDD variable ordering The combinational input variables and next state variables must be ordered before MDDs can be
constructed. The combinational input variables are ordered by doing a depth-first traversal of the logic that generates the
combinational outputs. The order in which the output logic cones are visited isdetermined using the algorithm ofAziz et
al. [1]. This algorithm orders the latches todecrease a communication complexity bound (where backward edges are more
expensive than forward edges) on the latch communication graph. The traversal ofan output logic cone isdone insuch a way
that the combinational inputs farthest from the outputs appear earlier in the ordering. We use the merging technique ofFujii
et al. tohandle those variables that appear in multiple cones oflogic [5]. Finally, each next state variable isinserted into the
variable ordering immediately after thecorresponding present state variable.

If the user has some knowledge ofa good ordering, then a partial or total ordering on the variables can be read in. In
addition, dynamic variable ordering is supported. We have found that forcing corresponding present state and next stale



variables to remain adjacent to each other is usually beneficial. Generally, a good initial ordering followed by one or two
forced dynamic reorderings gives good results.

Partitioning the network Once the description of a system has been read in and the orderingof the variablesassigned, an
abstractedview of the system is created in which the functions of the networkare stored as MDDs. This abstracted view,
called a "partition", is the input to model checking and reachability. It can be created in several ways. At one extreme,
combinational output functionsare defineddirectly in termsof combinational inputs. On the other extreme, there is an MDD
corresponding to each node in the networkrepresentingthe functionality of the node in terms of its fanins, i.e., a variableis
introduced foreach node in the network. In general,intermediate variables can be introducedto representthe functionality of
a clusterof nodes in the original network. This flexibility allowsvery largedesignsto be representedand manipulated.

Image/Pre-image computation Our image/pre-image computation technique is based on an early quantification heuris
tic [6]. Theinitializationprocessconsistsof creating a bit-level relation for thenextstatefunction of eachlatchin thenetwork.
These bit-level relations are then ordered to optimally exploitearly quantification. Next, the relations of several bits are
groupedtogether, makinga cluster whenever the MDDsizeof the groupreaches a threshold. Next, each cluster is simplified
by quantifying out the primary inputs local to that cluster. Finally, the orders of the clusters for image and pre-image are
calculated and stored. Also stored is the schedule of variables for early quantification.

Reachability analysis Reachability analysis makes iterative use of imagecomputation. The performance of reachability
analysisis improved by exploitingthree sets of don't cares (in the following Rk{x) represents the set of states reachedfrom
the initial states in k or fewer steps):

1. Selection of the frontier set for computing Rk+\ (x), given Rk (x). The frontier set F(x) can be any set satisfying the
following inequality: J2*(x)J?*_i(x) C F(x) C Rk{x).

2. Simplification of the transition relationT(x, u, y), by taking the generalized cofactor with respect to F(x) (we care
only about the transitions originating from the frontier states).

3. Simplification of the transition relation T(x, u, y), by taking the generalized cofactor withrespect to Rk{y) (wecare
only about the transitions to the set of states not reached thus far).

Model checking and debugging We use the algorithms presented in [3] as the basis for fair CTL model checking and
debugging. In addition,a special algorithm has been implemented to improve the efficiency of checking invariants. Also,a
structural pruningtechniqueis used to eliminatethosepartsof the networkthat cannotaffect the formulabeing checked. This
is particularly usefulin conjunction with the abstraction mechanism mentioned in Section2. Finally,don't cares arisingfrom
the unreachable states, and from the fixed point computations, are used to simplify intermediate MDDs.

4 Programming Environment

One of the key goals of VIS is to serveas a platformfor developing newverification algorithms. Wehave used as our model
theobject-oriented programming styleof SIS. VISis composed of 18packages; eachexportsa setof routinesfor manipulating
a particulardata structure,or for performinga set of related functions (e.g., there are packages for model checking, variable
ordering,and manipulating the networkdata structure). Newpackages canbe addedeasily. This wealthof exportedfunctions
canbe usedbyfutureprogrammers toquicklyassemble newalgorithms. Allfunctions adheretoa common namingconvention
so that it is easy to find functions in the documentation.

Particular attention was paid to the design of the interfaces to packages that are still the subject of ongoing research (e.g.,
MDD variable ordering, image computation, and partitioning). This makes it easy for other researchers to plug in their
algorithmsfor performinga particular task, and then evaluate theiralgorithmwithinthe context of VIS.

Extensive user and programmer documentation exists for VIS.The creationof this documentation was aided by the tool
ext [4], which extracts documentation embedded in the source code. For each function, the programmer provides a synopsis
and a complete description, and ext automatically extracts this information, along with the function name and argument
types, into an HTML file that can be viewedon the World WideWeb. Documentation for user commands is extracted in a
similar fashion.



5 Conclusions and Future Work

We have described the verification and synthesis tool VIS, which offers abetter programming environment, new capabilities,
and improved performance over existing verification tools. We have implemented VIS using the Cprogramming language,
and ithas been ported to many different operating systems and architectures. The capabilities ofVIS have been tested on the
sequential circuits from theISCAS benchmark setand some industrial designs.

Aspartoffuture work, weintendtoexploreand supportexplicitmethods for stateenumeration,verificationofasynchronous
systems, hierarchical synthesis, partitioning schemes, language containment, and incremental techniques for synthesis and
verification. Inparticular, wewant toexplore thesynergy between verification and synthesis.

For moreinformation aboutVIS orto geta copy, visit theVIS homepage [8].
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Chapter 1

Introduction to VIS

This document introduces VIS (Verification Interacting with Synthesis). We describe what VIS is, what
it can do, how to write limited Verilog code for its input, its commands, and an extended example for the
new user. For more details, see the VIS home page http: / /www-cad. eecs. berkeley. edu/
Respep/Research/vis/doc/packages/index, html.

1.1 What is VIS?

VIS is a verification and synthesis system for finite-state hardware systems, which is being developed at
Berkeley and Boulder. It improves upon first generation tools like HSIS and SMV by:

1. providing a better programming environment,

2. providing some new capabilities, and

3. improving performance in some cases.

VIS is divided into three parts: a common front end for readingin a description of a design, verification
(VIS-v), and synthesis (VIS-s).

1.2 History

Many first generation tools for automatic formal verification were based on two theoretical approaches.
The first is temporal logic model checking, where the propertiesto be checked are expressed as formulas
in a temporal logic, and the system is expressed as a finite state system. In particular, ComputationalTree
Logic (CTL) model checking is a technique pioneeredby Clarke and Emerson to verify whether a finite
state system satisfies properties expressed as formulas in a branching-time temporal logic called CTL.
SMV, a system developed at CMU, belongs to this class of tools.

Certain properties are not expressiblein CTL, but they can be expressed as w-automata. The second
approach, language containment, requires the description of the system and properties as w-automata,
and verifies correctness by checking that the languageof the system is contained in the languageof the
property. Note that certaintypes ofCTL properties involving existentialquantification are not expressible
by w-automata. COSPAN, a system developed at Bell Labs, offers language containment.

A combination of both approaches is offered by the HSIS [6] system, which was developed at the
University of California, Berkeley. Our experience with verificationtools (in particular HSIS) led to the
conclusion that sometimes, the simpler and more limited the approach, the more efficient it can be. A
number of design decisions that we made for HSIS made it unacceptably slow for some largeexamples.



With these problems in mind, we set about writing a tool that was more efficient, easily extendible, and
offered a good programming environment, in order that it can be more easily upgraded in the future as
more efficient algorithms are developed.

VIS alsohas the capabilityto interfacewithSIS to optimizelogic modules; hence, VIS is an integrated
system for hierarchical synthesis, as well as verification. Wc plan to pursue research on the interaction
betweenverificationandsynthesis in the future;hencethe nameVIS,verificationinteracting with synthesis.

1.3 Overview of VIS

Fig. 1.1 presents of an overview of VIS. VIS has three main parts: a front-end to read and traverse a

VIS

-iraversa! of hiciimhv

Synthesis

||^^p:?^i:j?;fi H&ggL traji

Figure 1.1: Block diagram of VIS.

hierarchical system described in BLIF-MV, which may have been compiled from a high-level language
likeVerilog; a verification core, VIS-v, toperform model checking ofFairCTL andtestlanguageemptiness;
and a path to SIS, VIS-s, to optimize parts of the logic.

1.3.1 VIS-v Philosophy

We decided to offer limitedbut efficient capabilities. We felt that in the future, it would be easy to add
more features, as they are required, using a well defined programming interface. In line with this keep it
simple philosophy, VIS provides the following verification capabilities.

• Only CTL formulas can be checked. Language containment may be handled in a later release.
However, we do handle language emptiness checks.

• Fairness constraints must be of Biichi type, i.e., sets of states that must be visited infinitely often.
However, the internal VISdatastructures do havethecapability tosupportmorecomplicatedfairness
constraints.

1.3.2 VIS-s Philosophy

VIS can interact with SIS to assist the task of verification by simplifying parts of the system. Another
objective is to support a full-fledged hierarchical synthesis llow, that translates a Verilog description into



an optimizedmulti-level circuit atthegate level. Unlike existing logic optimization systems like SIS,VIS
can support hierarchical synthesis.



Chapter 2

Describing Designs for VIS

Given the special needs of hardware simulation, verification, and synthesis, specialized languages to
describe hardware have been defined. These are called hardware description languages (HDLs) and they
resemble general-purpose programming languages. Modern HDLs enable the designer to mix different
levels of design abstraction.

2.1 Verilog HDL

The two most widely used languages for digital design are Verilog, based on C, and VHDL, based on
ADA. Currently VIS only supports Verilog, but our intermediate format, BLIF-MV, was designed to
support translation from many languages.

Verilogallowsmixed-level descriptions ofhardwarein termsofstaticstructures anddynamicbehaviors.
Dynamicbehavioris described by means ofhigh-level constructs as found in general-purpose programming
languages, like conditional,control of loops, and process fork-join.

A specification in Verilog consists of one or more modules. The top level module specifies a closed
system containing both test data and hardware models. Component modules normally have input and
output pom. Events on the input ports cause changes on the outputs. Events can be either changes in
the values of wire variables (i.e., combinational variables) or in the values of reg variables (i.e., register
variables), or can be explicitly generated abstract events. Modules can represent pieces of hardware
ranging from simple gates to complete systems (e.g., microprocessors), and they can be specified either
behaviorallyorstructurally, orby acombinationofthetwo. A behavioral specification defines thebehavior
of a module using programming language constructs. A structural specificationexpresses a module as
a hierarchical interconnection of submodules. The components at the bottom of the hierarchy areeither
primitives or arespecifiedbehaviorally. Veriloghas a library of predefined primitives. A good reference
for Verilog can be found in [1].

2.2 vl2mv: from Verilog to BLIF-MV

VIS operates on an intermediate format called BLIF-MV, which is an extension of BLIF, the intermediate
format for logic synthesis accepted by SIS and othertools. VIS includes a stand-alone compiler from
Verilog to BLIF-MV, called vl2mv.

See [2] for a description of the synthesizable subsetof Verilog that can be handled by vl2mv andof
the extensions of Verilog that are also supported by vl2mv. In this section we survey the key features of
Verilog for vl2mv. Conceptually, it wouldbe easy to provide a translator from any otherHDL language,
like VHDL or Esterel, to BLIF-MV.



The relationship between a behavioral description language likeVerilog and a machine description
language like BLIF-MV is similar to that between a high-level programming language and anassembly
language. Basic constructs of BLIF-MV are module declarations/instantiations, input-output relational
tables which allow descriptions of nondeterminism, symbolic wires, and latches. In BLBF-MV, symbolic
latches are implicitly controlled by a global clock. This clock does not need to be a real wire in the
hardware sense. All symbolic latches transit instantaneously to the next state indicated by the relevant
transition tables. At each clockcycle, each table continuously updates its outputs according to the inputs
it sees until convergence isreached.1 In the very beginning of the next cycle, all latches simultaneously
update their present state outputs according to their next state inputs. Then again tables update their
outputs accordingly.

vl2mv extracts a set of interacting finite state machines (FSMs) that preserve the behavior of the
source Verilog program defined in terms of simulated results. Allocation of hardware gates to operators
in Verilog (resource binding) is based on the assumptionof unlimited resources, where resources are all
possible gates expressible in one table in BLIF-MV. No scheduling and optimization are performed, so
the extracted FSMs are not guaranteed to be optimal (for area, speed, and so on). In order to optimize the
logic, asynthesis program likeSIS can beinvoked onmodules of thesystem.2

A design in a synthesizable subset ofVerilog consists ofa set ofmodules (either hardwareor software).
The first module encountered is regarded as the root module. All modules run in parallel and communicate
with each other through a set of channels (set of wire variables declared in the modules to which these
channels belong). It is assumed that communication through channels is instantaneous. Within each
module, values on channels can be accessed through a set of ports, that can be either wires or registers.
Through wire ports, a module can input and output from and to channels instantaneously, while through
register ports it takes one time unit. A wire port has no storageelement associated with it, while a register
port has one storage element associated with it.

A Verilog modulecontains declarations,module instantiations,continuous assignments and procedural
blocks. Continuous assignments begin with the keyword assign and are always active; they can be
thought of as combinational blocks. Procedural blocks are referred to as always statements; statements
within a procedural block are executed sequentially.

Module instances, continuous assignments, and procedural blocks within a module run concurrently.
Execution of each continuous assignment, basic block in a procedural block and module instance is
assumed to be atomic within each instant. If there is more than one procedural block in the same module,
andoutputs ofone areinputs to another, the simulated result may depend on how expressions from different
blocks are interleaved by the simulator.

vl2mv can be invoked as a stand-alone tool on a Verilog file to produce a BLIF-MV file. This can be
readin VIS with the command readMifjnv. As an alternative, the command read-verilog can be directly
used to read in a Verilog file. This invokes vl2mv internally.

2.3 Features of Verilog Supported by vl2mv

vl2mv supports a synthesizable subset of Verilog, and also extends it minimally to make it usable for
formal verification. We survey the features that characterizeVerilog as supported by vl2mv.

'Circuits with combinational cycles are legal inBLIF-MV, butcurrently they are notprocessed byVIS.
2vl2mv canalso extract quantitative timing information from atimedVerilog program, producing BLJF-MVT, basedontimed

automata, that is anextensionof BLIF-MV with timingconstructs [3]. Since verification with quantitative timing is not handled
in the current version ofVIS, this feature is of no further interest here.



2.3.1 Assignments

Continuous assignments arealways active, i.e., whenever any inputchanges, theoutput is updated instan
taneously. Only wire variables canbe used at thelefthand sideof continuous assignments. Continuous
assignments describe the combinational behavior of a circuit.

Procedural assignments (= within a procedural block), also referred to as blocking assignments,
execute sequentially withina procedural block,changing thecontentof state variables, until the execution
is blocked by a pause. vl2mv compilesprocedural blocks basedon the assumption that each basic block
will be executedatomicallyif the delay/event controlof the block is satisfied. vl2mv assumes also that
execution of procedural assignments takes zero hardware time. All procedural blocks with active event
controls get executed concurrently. Notice that a Verilogsimulator does not treat simple blocks as atomic.
If there is more than one procedural block sharing the same reg variables, caution should be taken to
make sure that the desired behavior does not depend on a specific interleaving among processes.

Procedural assignments update variables instantaneously, meaning that they change the left-hand side
variable so that the statement following the assignment (in the same process, or always statement) can
observe the value change. On the other hand, other processes (for instance, other always statements or
continuous assignments) cannot see the change until the next clock cycle. Because of this, race conditions
might arise among multiple procedural assignments. Non-blocking procedural assignments (<=) provide
a mechanism that defers the assignment without blocking the execution of statements in a block. On
encountering a non-blocking assignment, the right hand-side of the assignment is evaluated according
to the most recent values of the referred variables. However, without changing the variable on the left
hand-side, programexecution continues. Thenvariables areupdatedsimultaneously at the verybeginning
of the next time slot. For vl2mv, non-blocking procedural assignments shouldneverbe used, since they
might introduce unwanted nondeterminism.

2.3.2 Nondeterminism

Non-blocking assignments also provide a way to introduce nondeterminism on reg variables. If there is
more than one non-blocking assignment in the current time slot assigning to the same register variable,
then the value of that register variable in the next clock cycle will be nondeterministically chosen from
those assignedvalues. Even though vl2mv accepts this way ofspecifying nondeterminism, in VIS, unlike
inHSIS, multiple assignments arenotconsidered legal nondeterminism.

Instead, a nondeterministic construct, $ND, has been added to Verilog to specify nondeterminism on
wirevariables andis the onlylegalwayto introduce nondeterminism in VIS. Forexample, to requirethat
the output at a particular state is nondeterministically GO or NOGO,one can introduce a new variable, r,
and write the following Verilog fragment.

assign r=$ND{GO,NOGO};

always®(posedge elk) begin

state = r;

end

2.3.3 Symbolic Variables

Sometimes it is desirable to specify and examine the value of somevariables symbolically, rather than
having to explicitlyencode them. vl2mv extends Verilog to allow users to declare symbolic variables



using an enumerated type mechanism similar tothe one available inthe C programming language. As an
example, we introduce a symbolic type named door:

typedef enum {OPEN,OPENING,CLOSED,CLOSING} door;

2.4 Implicit vs. Explicit Clocking

Theclocking discipline isdetermined by thedefinition of theVerilog simulator, and it can beeither implicit
or explicit. Implicit is the default. Explicit may be required in some cases.

A Verilogsimulatoris anevent-drivenpassivescheduler. A simulator schedules events generated from
Verilog modules and then sends them to modules which are sensitive to these events. Statements with
sensitized events (active statements) are executed and in turn more events are generated, which are then
scheduledby the simulator. The simulatoritself does not generate any event, but it coordinates between
the producers and consumers ofevents. Hence, to write a synchronous system, a designer needs to write a
small clock generator, i.e., an event generator which creates events in time. The produced events provoke
a chain of reactions among modules. The system reaches a stable state when there are no more events
other than the clocking event. The next clocking event is then chosen by the simulator, and simulation
time is advanced according to the time stamp of the newly scheduled clocking event. We call the system
implicitly clocked when all transitions are synchronized by an implicit time. For an implicitly clocked
system hardware resources will not be allocated for a synchronizing variable. Also, for implicitly clocked
designs, one symbolic latch (or state variable) is allocated for each reg variable, and synchronization
variables are dropped. By default, implicit clocking semantics is assumed.

On the other hand, for some designs, the operation of a system depends explicitly on several phases
(rising edge, falling edge, 1-level, 0-level) of one or more synchronizing signals (generally referred to as
clocks). In such a case the clock signals should be interpreted literally and hardware resources should be
allocated. A design is called explicitly clocked if synchronizing signals are to be compiled literally into
hardware. For explicitly clocked systems, each reg variableis modeled by a symbolic latch along with
some extra logic to emulate the clocking mechanism. An example of explicit clocking declared by the
user is the following. Suppose that a system is composed of parallel components that progress differently
according to synchronization signals exchanged among them by means of wait statements. Then it is
necessary to declare an explicit clocking signal:

module env;

reg elk;

initial clk=0;

always #1 elk = !clk;

endmodule

This code generates a clocking signal elk with a cycle of two time units used to drive the whole
system and make it simulatable. In this case vl2mv must be invoked with the options -c -F, meaning
explicit clocking (-c), and ignore all timing (-F).

2.5 Verilog for vl2mv: Hints and Traps

In this section a list of hints to follow, and traps to avoid, is provided for writing Verilog for VIS.

1. Inside an always block, only blocking assignments to reg variables are allowed. Therefore do
not write to an intermediate variable (that is a wire by definition) inside an always block and do
not use non-blocking assignments (<=) ever.



2. If variables that must be assigned depend on each other, assign them in separate always blocks,
otherwise the behavior may depend on the order of execution.

3. Inside an always block, blocking assignments = are sensitive to the order of the statements. Thus
the following two fragments evaluate differently:

state = 1;

out = state;

out = state;

state = 1;

Since we do not allow non-blocking assignments (<=) inside an always block, we have to analyze
the order of evaluation to be certain that we have the desired behavior.

4. It is not legal to have a block of assignments, as in:

assign begin
x = 1;

y = 2;
end

However, it is legal to have a block of assignments for an initial statement:

initial begin

x = 1;

Y = 2;
end

5. In always blocks, at the next clock, reg variables keep their previous values if they are not
explicitly assigned to.

6. Introduce nondeterminism using only $ND assignments to wires. Unlike in HSIS, multiple assign
ments such as:

always©(posedge elk) begin

state <= GO;

state <= NOGO ;

end

are not considered legal nondeterminism in VIS.

7. vl2mv will reject a Verilog description containing an unspecified initial state. If the user wants a
nondeterministic initial state, it should be specified explicitly using a $ND construct, for example:
initial x = $ND(a,b,c); in this case, a nondeterministic constant will be created with a name as

x$initial_n23.

8. for statements are supported by vl2mv. Here is an example:

always®(posedge elk) begin

// randomly push floor buttons

for (i=0;i<='floor-l;i=i+l) begin
i f {random_up[i]) up_floor_buttons[i]=ON;
i f (randoittjdown [ i ]) down_f loor_buttons [ i ] =ON;

end
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Note that (unfortunately) a for loop can only be used inside an always block. vl2mv by default
macro-expands (unrolls) the Verilog code before processingit. Use option -u to suppress unrolling.

9. A wire can be a vector but not an array. However, a reg can be an array: wire [1:10] a ;
is correct but wire a [1:10 ]; is not. As an example of how things differ for wire and reg
variables consider:

typedef enum {UP,DOWN} dir;

wire[l:'elev] stop_next;
dir reg direction[1:'elev];

typedef enum {on, off, interm} onoff;

onoff reg a[l:10] is Correct, DUt onoff wire a[l:10] andonoff wlre[l:10] a are not Correct.

AlSO reg [1:'width] locations[1: 'elev] is COlTeCt, DUt onoff reg [1:'width] locations[1:'elev]

is not correct, since the latter are a two dimensional array of symbolic type.

10. vl2mv puts an extra buffer for $ND constructs when the -Z option is used , while by default
it does not. In other words, by default vl2mv connects the left-hand side variable directly to
the nondeterministic table for $ND. Notice that the only legal usage of $ND when -Z is not used
is: assign <var> = $nd(...); where the assign statement is a continuous assignment. The
generated nondeterministic table will use <var> as the output variable. Instead if the -Z option
is turned on, one can use $ND definitions in expressions , as in: assign a = $nd(o,d + t>, or
assign a = (sei) ? $nd{o,i) : b. In this case intermediate variables arc generated for the $ND
construct. We recommend only using the default value and explicitly naming the nondeterministic
value, since this will become a pseudo-input to VIS and will in this case have a name given by the
user.

11. In VIS we insist on having nondeterminism only for single output constants. A BLIF-MV table like

.table -> x

is allowed and leads to a pseudo-input. However a table like

.table -> x<0> x<l>

0 0

0 1

1 0

is not allowed. The reason is that this table represents a relation and cannot be split into two
independent, nondeterministic, single output tables, since replacing it with

.table -> x<0>

.table -> x<l>

would lead to the possibility of x = 1 1.

Such a situation comes up naturally when we want a variable to have any of the integers 0,1,2. But
we have to assign 2 bits to hold the variable, and we want to be able to increment or decrement the
variable later on (soit must be an integer, rather than a symbolic variable):

11



wire[0:1] x;

assign x = $ND(0,1,2);

vl2mv generates BLIF-MV for this code that is not accepted by VIS. An awkward way around this
is:

assign temp=$ND(0,l,2,3);
assign location = (temp==3)?2:temp;

2.6 BLIF-MV

BLLF-MV is a low-level language designed for describing hierarchical symbolic sequential systems with
nondeterminism. A system can be composed of interacting sequential subsystems, each of which can
be again described as a collection of communicating sequential subsystems. This makes it possible to
describe systems in a hierarchical fashion. The internal data structure ofSIS docs not support hierarchical
representations. Hence, even though BLIF can describe hierarchy, BLTF descriptions are flattened into a
single-level representation within SIS. In VIS, however, the original hierarchy specified in BLIF-MV is
preserved in internal data structures so that true hierarchical synthesis and verification is possible.

BLIF-MV also allows nondeterministic gates 3and hence makes it possible to model nondeterministic
systems. For instance, a design in its early stages may contain nondeterminism, as many aspects may not
be yet decided. Lastly, BLDF-MV supports multi-valued variables, which can be used to simplify system
descriptions.

The semantics of BLIF-MV is defined over flattened networks, using a combinational/sequential
concurrency model. There are four basic primitives: variables, tables (intuitively nondeterministic gates),
wires and latches. A variable takes values from some finite domain. A relation defined over a set of

variables is represented using a table. The variables of a table are divided into inputs and outputs. A
particular variable can be designated as an output in at most one table. Tables are inter-connected using
wires. If a table is deterministic and Boolean, it may also be thought of as a logic gate. Wires may only
take values in the domain ofthe corresponding variable. A latch is a specialized element that can be placed
on a wire. The latch divides the wire into two parts; the input to the latch, and the output of the latch. A
set of initial values is associated to every latch; they must be a subset of the set of values of its wire. A
state is an assignment of values to the latches of a model, where a value assigned to a latch must be in its
domain. An initial state is a state where every latch takes a value from its set of initial values. Note that
the system can have more than one initial state in general.

At every time point, the system is in some state, where each latch has a value. At every clock tick,
all the latches update their values. These values then propagate through tables until all the wires have a
consistent set ofvalues. If a latch is encountered during the propagation, i.e., an output of a table is an input
of an latch, the propagation process through that latch is stopped. Note that because of nondeterminism,
given a single state, there may be several consistent sets of values. This semantics can be seen as a simple
extension of the standard semantics of synchronous single-clocked digital circuits. In fact, if every table
is deterministic and every latch has a single initial state, the two semantics are exactly equal. The only
differences are in the interpretation of nondeterministic tables and latches with multiple initial states.

In VIS the command readJblifjnv reads a BLIF-MV description created by vl2mv, or some other
means, and then sets up a corresponding internal data structure. The writeJblifjnv command writes a
BLIF-MV description to a file. The BLIF-MV format is not meant to be read or written directly by
the user, even though simple examples in BLIF-MV may exhibit some degree of clarity. In the VIS
documentation, the syntax of BLIF-MV is described in the document entitled "BLIF-MV".

3These gates generate some output from the setofpre-specified outputs.
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2.7 BLIF

BLIF (Berkeley Logic Interchange Format) is an intermediate format to describe sequential circuits. It
has been defined as an entry point to logic optimizers such as SIS, the synthesis system developed at UC
Berkeley. A BLIF file represents a sequential circuit either as an interconnection of logic gates and latches
or as the state transition table ofa finite state machine (FSM) or in both ways (an FSM and a corresponding
gate-levelimplementation). It is possible to have VIS andSIS interact,by sending to SIS abinary encoded
and deterministic sequential circuit and receiving back an optimized version of the same. Notice that even
though SIS can also handle KISS files (i.e., partiallyencoded and partiallydeterministic FSMs), currently
VIS outputs hardware FSM descriptions (i.e., a netlist describing completely encoded and completely
deterministic FSMs), for SIS input. For a descriptionof BLIF and SIS we refer to the tutorialpaper [4].
A BLIF description can be read directly into VIS by the command readMif, while writeJblifconverts the
internalVIS data structureinto a BLIF file readableby SIS. The synthesis path from VIS to SIS and back
and related commands are described in Chapter 5.

2.8 Nondeterminism and Incomplete Specification

The only form ofnondeterminism supported in VIS is the construct $ND in Verilog. A system so described
is considered internally as deterministic, because pseudo-input variables are introduced to "control" this
form of nondeterminism. Pseudo-input variables are, by definition, those variables introduced by a $ND
construct. A Verilog nondeterministic assignment, like assign rand_choice = $ND(0,1); is
translated by vl2mv into the table:

# assign rancL_choice = $NDset ( 0,1 )
.names -> rancL_choice

0

1

There are other ways of introducing nondeterminism in Verilog that are supported by vl2mv and
HSIS, but are not supported by VIS.

vl2mv always produces completely specified BLLF-MV tables. However, a BLIF-MV file not pro
duced by vl2mv (but by another tool or manually) may contain incomplete specification. When the
internal data structure is built, each table is checked for determinism and complete specification (with
the exception of the pseudo-inputs). This is a conservative test, in the sense that one or more tables
may be nondeterministic while the entire network is deterministic. Similarly, one or more tables may be
incompletely specified while the network is completely specified.

2.9 Example: a Traffic Light Controller

In this tutorial, we will use the example of a traffic light controller (TLC), first introducedby Mead and
Conway [5], to illustrate several concepts.

A little used farm road intersects a multi-lane highway; a traffic light controls the traffic at the
intersection. The light controller is implemented to maximize the time the highway light remains green.
The mainmodule ties together a timer, a sensor,a farmlight controland a highway control submodules.

The timer submodule implements a timer, that outputs "short" and "long" timeouts. The highway
tight stays green for at least "long" time. Any time after "long" time, if there is a car waiting on the
farm road, then the farm light turns green. The farm light remains green until there are no more cars
on the farm road, or until the long timer expires. The yellow light for both directions stays yellow for
"short" time. Note that only a single timer is used for both the farm road and highway controllers. In
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theory, this could lead to conflicts; as implemented, such conflicts are avoided. From the START state,
thetimer produces the signal "short" after a nondeterministic amount of time. The signal "short" remains
asserted until the timer is reset (via the signal "start"). From the SHORT state, the timer produces the
signal "long" after a nondeterministic amountof time. The signal"long" remains asserteduntil the timer
is reset. Notice that the use of nondeterminismin the description of the timer models an infinite number
of actual implementations, each with a different set-up for the "short" and "long" periods.

The farm light stays RED until it is enabled by the highway control. At this point, it resets the timer,
and moves to GREEN. It stays in GREEN until there are no cars, or the long timer expires. At this point, it
moves to YELLOW and resets the timer. It stays in YELLOW until the short timer expires. At this point,
it moves to RED and enables the highway controller.

The highway light stays RED until it is enabled by the farm control. At this point, it resets the timer,
and moves to GREEN. It stays in GREEN until there are cars on the farm road and the long timer expires.
At this point, it moves to YELLOW and resets the timer. It stays in YELLOW until the short timer expires.
At this point, it moves to RED and enables the farm controller.

There is a single sensor Uiatdetects the presence of a car in either direction of the farm road. At each
clock tick, it nondeterministically reports that a car is present or not.

The fact that the timer is a Moore machine (while the highway and farm controllers are Mealy
machines) ensures that the component FSMs can be combined to form a well-defined product FSM
(without combinational cycles).

••••
(••••I

control leil

-a>

farm
liyjhl

highwa^
.light

Figure 2.1: Block diagram of traffic light controller.

Fig. 2.1 is a block diagram for theentirecontroller, andFig. 2.2describes the fourFSMs that make up
the system.

This entire example is written in Verilog as:

/* Written by Tom Shiple, 25 October 1995 */

/* Symbolic variables */

typedef enum {YES, NO} boolean;

typedef enum {START, SHORT, LONG} timer_state;
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Figure 2.2: State transition graphsofFSMs ofTLC.

typedef enum {GREEN, YELLOW, RED} color;

module main(elk);

input elk;

color wire farm_light, hwy_light;
wire start_timer, short_timer, long_timer;

boolean wire car_present;
wire enable_farm, farm_start_timer, enable_hwy, hwy_start_timer;

assign start_timer = farm_start_timer || hwy_start_timer;

timer timer(elk, start_timer, short_timer, long_timer) ;

sensor sensor(elk, car_present);
farm_control farm_control(elk, car_present, enable_farm, short_timer, long_timer,

farm_light, farm_start_timer, enable_hwy);

hwy_control hwy_control (elk, car_present, enable_hwy, short_timer, long_timer,
hwy_light, hwy_start_timer, enable_farm);

endmodule

module sensor(elk, car_present);

input elk;

output car_present;

wire rand_choice;

boolean reg car_present;

initial car_present = NO;
assign rand_choice = $ND(0,1);

always 9(posedge elk) begin
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if (rand_choice == 0)

car_present = NO;

else

car_present = YES;

end

endmodule

module timer(elk, start, short, long);

input elk;
input start;

output short;

output long;

wire rand_choice;

wire start, short, long;

timer_state reg state;

initial state = START;

assign rand_choice = $ND(0,1);

/* short could as well be assigned to be just (state == SHORT) */

assign short = ({state == SHORT) || (state == LONG));
assign long = (state == LONG);

always @{posedge elk) begin

if (start) state = START;

else

begin

case (state)

START:

if (rand_choice == 1) state = SHORT;
SHORT:

if (rand_choice == 1) state = LONG;
/* if LONG, remains LONG until start signal received */

endcase

end

end

endmodule

module farm_control(clk, car_present, enable_farm, short_timer, long_timer,
farm_light, farm_start_timer, enable_hwy);

input elk;

input car_present;
input enable_farm;
input short_timer;

input long_tinter;
output farm_light;

output farm_start_timer;

output enable_hwy;

boolean wire car_present;

wire short_timer, long_timer;
wire farm_start_timer;

wire enable_hwy;
wire enable_farm;

color reg farm_light;

initial farm_light = RED;

assign farm_start_timer = (((farm_light == GREEN) && {(car_present == NO) || long_timer))
|| (farm_light == RED) && enable_farm) ;

assign enable_hwy = {(farm_light == YELLOW) && short_timer);

always ©(posedge elk) begin

case (farm_light)
GREEN:

if ((car_present == NO) || long_tiraer) farm_light = YELLOW;
YELLOW:

if (short_tinter) farm_light = RED;
RED:
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if (enable_farm) farm_light = GREEN;
endcase

end

endmodule

module hwy_control(clk, car_present, enablejiwy, short_timer, long_timer,
hwy_light, hwy_start_timer, enable_farm);

input elk;

input car_present;
input enablejiwy;
input short_tinter;
input long_tiraer;

output hwy_light;

output hwy_start_tinter;
output enable_farm;

boolean wire car_present;
wire short_timer, long_timer;
wire hwy_start_timer;

wire enable_farm; v
wire enablejiwy;
color reg hwy_light;

initial hwy_light = GREEN;
assign hwy_start_tinter = ({(hwy_light == GREEN) && {(car_present == YES) && long_timer))

|| (hwy_light == RED) && enablejiwy);
assign enable_farm = {(hwy_light == YELLOW) && short_timer);

always 9(posedge elk) begin
case (hwy_light)

GREEN:

if {(car_present == YES) && long_timer) hwy_light = YELLOW;
YELLOW:

if (short_timer) hwy_light = RED;
RED:

if (enablejiwy) hwy_light = GREEN;
endcase

end

endmodule
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Chapter 3

Introduction to Formal Verification

Formal verification is the process of checking whether a design satisfies some requirements (properties).
We are concerned with the formal verification ofdesigns that may be specified hierarchically (as illustrated
in the previous section); this is also consistent with how a human designer operates. In order to formally
verify a design, it must first be converted into a simpler "verifiable" format. The design is specified as a
set of interacting systems; each has a finite number of configurations, called states. States and transition
between states constitute FSMs. The entire system is an FSM, which can be obtained by composing
the FSMs associated with each component. Hence the first step in verification consists of obtaining a
complete FSM description ofthe system. Given a present state (or current configuration), the next state (or
successive configuration) of an FSM can be written as a function of its present state and inputs (transition
function or transition relation).

We note that this entire framework is one of discrete functions. Discrete functions can be represented
conveniently by BDDs (binary decision diagram; a data structure that represents boolean (2-valued)
functions) and its extension MDDs (multi-valued decision diagram; a data structure that represents finite
valued discrete functions). We use BDDs and MDDs to represent all quantities required in this discrete
space (more specifically the transition functions, the inputs, the outputs and the states of the FSMs). For
BDDs and MDDs to be efficient representations of discrete functions, a good ordering of input variables
(actual inputs, outputs, state) of the functions must be computed. In general, BDDs operate on sets of
points rather than individual points; this is called symbolic manipulation.

The two most popular methods for automatic formal verification are language containment and model
checking. The current version of VIS emphasizes model checking, but it also offers to the user a limited
form of language containment (language emptiness).

3.1 Model Checking of Temporal Logic

A finite state system can be represented by a labeled state transition graph, where labels of a state are
the values of atomic propositions in that state (for example the values of the latches). Properties about
the system are expressed as formulas in temporal logic of which the state transition system is to be a "a
model". Model checking consists of traversing the graph of the transition system and of verifying that it
satisfies the formula representing the property, i.e., the system is a model of the property.

3.1.1 Computation Tree Logic

Temporal logic expresses the ordering ofevents in time by means of operators that specify properties such
as "p will eventuallyhold". There are variousversionsof temporal logic. One is computationaltree logic
(CTL). Computation trees are derived from state transition graphs. The graph structure is unwound into
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aninfinite tree rootedat the initial state. Fig.3.1 showsanexampleofunwinding a graph into a tree. Paths
in this tree represent all possible computations of the system being modeled. Formulae in CTL refer to
the computation tree derived from the model. CTL is classified as a branching time logic because it has
operators that describe the branching structure of this tree.

unwind
==>

Figure 3.1: Unwinding of state transition graph.

Formulaein CTL arebuilt from atomic propositions(where each propositioncorrespondsto a variable
in the model), standard boolean connectives of propositional logic (e.g., AND, OR, XOR, NOT), and
temporal operators. Each temporal operator consists of twopartsl: apath quantifier (A orE) followed by
a temporal modality (F, G, X, U). All temporaloperators areinterpretedrelative to an implicit "current
state". There arein general many execution paths(sequences of statetransitions)of the system startingat
the current state. The path quantifier indicates whether the modality defines a property that should be true
ofall those possible paths (denoted by universal path quantifier A) or whether the property needs only hold
on some path (denoted by existential path quantifier E). The temporal modalities describe the ordering of
events in time along an execution path and have the following intuitive meaning:

1. F 4> (reads "<£ holds sometime in the future") is true of a pathif there exists a state in the path where
formula <f> is true.

2. G <j> (reads'(<j> holds globally") is true of a pathif <j> is true at every statein the path.

3. X <f> (reads "<f> holds in the next state") is true of a pathif <f> is true in the state reachedimmediately
after the current state in the path.

4. cj>U tj) (reads "<f> holds until ip holds", called "strong until" 2) is true of a path if if) is true in some
state in the path, and <f> holds in all preceding states.

In the VIS documentation there is a description of the syntax of CTL in the document entitled "CTL
Syntax". In this chapter CTL formulas will be written in a simplified syntax.

The state of a system consists of the values stored in all latches. Each formula of the logic is either
true or false in a given state; its truth is evaluated from the truth of its subformulas in a recursive fashion,
until one reaches atomic propositions that are either true or false in a given state. A formula is satisfied by
a system if it is true for all the initial states of the system. If the property does not hold, the model checker
will produce a counterexample, that is an execution path that witnesses the failure. An efficient algorithm

1Aformula that contains any temporal modality (F, G, X, U)without an associated path quantifier (A, E) isnotalegal CTL
formula.

2"Weak until" iswhen <f> holds forever, i.e., 0 isnotrequired tohold atsome state in the future.
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for automatic model checking used also in VIS has been described by Clarke et al. [7J. The following
table shows examples ofevaluations of formulas on the computation tree ofFig. 3.1:

formula

EG (RED)
E (RED U GREEN)
AF (GREEN)

T/F

true

true

false

3.1.2 Specification of Properties in CTL

Temporal logic formulas can be difficult to interpret, so that a designer may fail to understand what property
has been actually verified. Therefore it is important to be familiar with the most common constructs of
CTL used in hardware verification.

1. AG(req -*• AF ack)
For all reachable states (AG), if req is asserted in the state, then always at some later point (AF)
we must reach a state where ack is asserted. AG is interpreted relative to the initial states of the
system. AF is interpreted relative to the state where req is asserted. In other words, it is always the
case that if the signal req is high, then eventually ack will also be high. A common mistake would
be to write req -)• AF ack, instead of AG(req -> AF ack). The meaning of the former is that if
req is asserted in the initial state, then it is always the case that eventually we reach a state where
ack is asserted, while the latter requires that the condition is true for any reachable state where req
holds. If req is identicallytrue, AG(req -4 AF ack) reduces to AG AF ack.

2. AG AF enabled

From every reachable state, for all paths starting at that state we must reach another state where
enabled is asserted. In other words, enabled must be asserted infinitely often.

3. AG EF restart

From any reachable state, there must exist a path starting at that state that reaches a state where
restart is asserted. In other words, it must always be possible to reach the restart state.

4. EF(startedA -*ready)
It is possible to get to a state where started holds, but ready does not hold.

5. AG(send —y A(send U receive))
It is always the case that if send occurs, then eventually receive is true, and until that time, send
must continue to be true.

6. AG(inp -> AX AX out)
Whenever inp goes high, out will go high within two clock cycles.

7. EF(a A EX (aA EX a)) -» EF(b A EX EX c)
If it is possible for a to be asserted in three consecutive states, then it is also possible to reach a state
where 6 is asserted and from there to reach in two more steps a state where c is asserted.

We summarize the most common CTL templates with the corresponding English language meaning:

1. AGp is "nothing bad ever happens" (->p is bad). Used to specify an invariant, i.e., a condition
that must be true in all states. Helpful for partial correctness (no wrong answers are produced),
mutual exclusion (no two processors arein a critical section simultaneously), deadlock freedom (no
deadlock state is reached).
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2. AF AGp is "eventually the systemis confined to stateswhere p is always true" or "thesystemstays
out of states where p is true only a finite number of times". It can be used to specify the property of
finite number of failures in the system.

3. AG(p ->• AF q) is "from all reachable states where p is true, something good, q, eventually
happens". Helpful to express total correctness (terminationeventuallyoccurs with correct answers),
accessibility (eventually a requesting process will enter its critical section), starvation freedom
(eventually service will be granted to a waiting processor). If p is always true, it reduces to
AG AF q.

4. AG AF q is "infinitelyoften q", i.e., from any reachable state one must reach a state where q is
asserted. It can be used, for instance, to enforce a reset condition from any state.

5. AF q is "somethinggood, q,eventually (or finally) happens"(less restrictivethan AG AF q).

6. AG EF p is "alwaysp possible". It can detect, for instance, the absenceof deadlocks,by requiring
that is it always possible to reach deadlock-free states. This is an example of a CTL property that
cannot berepresented by anw-automaton3.

7. AG true forces a complete traversal of the states of the system.

8. EF p is "pis possible". This is another example of a CTL property that cannot be represented by
an w-automaton.

Caveats

1. The variables appearing in a CTL formula must be a function of register variables (e.g., states or
outputs attached to states). Variables that depend on inputs or pseudo-inputs are not allowed, since
this could lead to a state where both p and ->p are true, depending on the input.

2. The propositional logic operator ->, as in a -• bis equivalent to -*a+ 6, and is satisfied by ->a. Do
not use it in place of a • 6, which is true if and only if a and 6 are both true.

3. The syntax of CTL and of Verilog are different. For instance, we have:

Verilog CTL meaning

&& * AND

II + OR

== = equal

a!=NO !{a==NO) not equal
-> implies

xor

3.1.3 Fairness Constraints

It is often necessary to introduce some notion of fairness. For example, if the system allocates a shared
resource among several users, only those paths along which no user keeps the resource forever should be
considered. CTL by itselfcannot express assertions about correctness along fair paths.

Fair CTL is a modification ofCTL to handle fairness. Fair CTL is characterized by the introduction of
fairness constraints, which are sets of states expressed by means of CTL formulas, each giving a fairness
condition; afairpath is a path along which each fairness condition is satisfied infinitely often. These types

3It is possible to show two transition systems that recognize the same language, of which one satisfies AG EF p, and the
other does not
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of fairness constraints are called Biichi type. More general fairness constraints, such as Street type, are
not allowed currently. Fair CTL has the same syntax as CTL, but the semantics is modified so that all path
quantifiers only range over fair paths. VIS supports FairCTL; in the documentation we may sometimes
refer to CTL, where we really mean Fair CTL.

An example of a fairness condition is p, that restricts the system to only those paths where p is asserted
infinitely often.

3.2 Properties and Fairness Conditions of TVaffic Light Controller in CTL

Not all behavior exhibited by the description of the Traffic Light Controller is valid. In order to restrict
the behavior we impose the following two fairness constraints. The first is:

!(timer.state=START);

The timer must eventually leave the START state. This constraint prevents it from staying in START
forever. The second fairness constraint:

!(timer.state=SHORT);

ensures that the timer must eventually leave the SHORT state. Liveness properties (e.g, cars on farm road
and highway will eventually cross) would not pass if these fairness constraints are not placed on the timer.

One obvious property to check is that the light is not greenin both directions at the same time, ensuring
that collisions do not occur between traffic on the farm road and highway. This property is written as the
CTL formula:

AG ( ! ((farm_light = GREEN) * (hwy_light = GREEN)) );

lb ensure that a car on the farm road eventually crosses the intersection, we require that if a car is
present on the farm road, and the timer is long, then eventually the farm light will turn green. In CTL this
is written as:

AG(((car_present = YES) * (timer, state = LONG)) -> AF(farm_light = GREEN));

In addition, regardless of what happens on the farm road, the highway should always be green in the
future:

AG(AF(hwy_light = GREEN));

The presence ofa caron the farm road does not guarantee that eventually the farm light will turn green.
A car may approach, and then back away, all before the timer goes long. This property is not necessary
for safety, it just maximizes the time that the highway light is green. Thus, it is desirable that the system
satisfies the following property:

!(AG((car_present = YES) -> AF(farm_light = GREEN)));

3.3 Language Containment

There are properties of practical interest that cannot be described in CTL. An example is the "almost
always" property: a condition, q, always holds after a finite number of transitions (note that formulas
FG q and AF G q would express this, but these arenot legal CTL formulas). This property looks a lot
like AF AG q, but it is not the same. One can exhibit a transition system where AF G q is true, while
AF AG q is false.

22



A solutionwould be to use amoreexpressivetype oftemporal logic(forinstance,the previousproperty
could be expressed in PLTL or CTL*). But there would be drawbacks, such as the higher complexity of
algorithms for model checking. An alternative is to use another verification paradigm, called language
containment, based on the theory of ^-automata. For example, it is easy to express the previous "almost
always" property using an automaton.

Currently VIS supports a restricted form of language containment. We review briefly the idea of
language containment: for a system to satisfy a property it must be that L(S) C L(T), where S is an
^-automaton representing the system, T is anw-automaton representingthe property and L is the language
accepted by the automaton. It is a fact that L(S) C L(T) is equivalent to L(S) f\L(T) = 0.

lb achieve language containment checking we representthe composition of the given system with a
model representing the negation ofthe property and check it for languageemptiness. The languageof the
composed system is empty if and only if the system satisfiesthe property T.

Language emptiness is used not only to verify properties that cannot be expressed in Fair CTL, but
also to check whether the abstractionof a system still contains the original system. In both cases one
must complement an ^-automaton (T), and this is hard to do if the automaton is nondeterministic (as is
usually the case for anabstraction). The factthatcomplementationofadeterministic propertyis easy, while
complementationofa nondeterministic property may be hard,is a key problem with language containment.
This has prompted a lot of research on different classes of w-automata with different expressiveness and
difficulty of complementation. Currently VIS supports language emptiness of nondeterministic Biichi
automata; only it is the responsibility of the user to derive the complement of a given nondeterministic
property. Biichi automata acceptance conditions are states that must be reached infinitely often and they
are specified by means of fairness constraints. Thus to use languagecontainment, the user must insert in
the Verilog hierarchy a monitor, which represents the complement automaton structure, and impose a set
of fairness conditions to specify the complement automaton acceptance conditions, i.e., the acceptance
conditions are specified in terms of fair paths.

As a finalnote, insideVIS, language emptiness Qanguage containment) is reduced to CTL, by checking
the CTL formula E G true on the system (system composed with complemented property), i.e., whether
there is an infinite path (notice that true is always satisfied), satisfying appropriate fairness constraints.
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Chapter 4

Formal Verification in VIS

In this chapter we describe the usage and the relation between the VIS commands that perform formal
verification. The main sections are:

1. building an internal representation of the finite-state system,

2. FSM traversal,

3. specification of fairness constraints,

4. language emptiness,

5. model checking,

6. equivalence checking, and

7. simulation.

4.1 Representing the System for Verification

In this section, we describe the steps involvedin convertinga BLIF-MV description into an internal FSM
representation.

4.1.1 Building the Flattened Network

The compound init-verify command executes the entire set of required initialization commands. When a
BLIF-MVdescriptionis read into VIS, it is stored as a "hierarchy"tree, which is a hierarchicaldescription
of the design; it consists of modules (also called hnodes)that in turn consist of sub-modules (also Imodes)
that are related in some fashion. Tliis relation is represented as a table, which implements the output
function in terms of the sub-module inputs. The printJiierarchyMats command in VIS prints hierarchy
information, and theprintjnodelscommandlistsstatisticson all the modelsin the hierarchy. Oilieruseful
print commands areprintJo and printJiatches.

The hierarchy can be described by a tree. The root of the tree is the main module, and the leaves
are lower level instantiations of modules. The hierarchy in VIS can be traversed in a manner similar to
traversing directories in UNIX. It is possible to reach a desired node in the tree by walking up and down
with the cd command. At any node simulation, verification and synthesis operations can be performed.
The commandpwd prints the name of the current node. The command Islists all the nodes (submodules)
in the current node; Is -R lists all the nodes in the current subtree.
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The first step towards verification consists of "flattening" this hierarchical description into a single
network (netlist of multi-valued logic gates). The output is computed from the inputs of the design by the
network circuit, which consists of logic gates, interconnections between them, and latches to represent the
sequential elements. TheflattenJiierarchy command creates this network, and theprintJietworkcommand
can be used to print it. Other related commands are printJietworkstats command that prints statistics
about the network, and testJietwork-aeyclic command that checks the network for combinational cycles.
On the Traffic Light Controller example these commands work as follows:

UC Berkeley, VIS Release 1.0 (compiled ll-Dec-95 at 10:36 AM)
VIS> read_blif_mv tlc.mv

Warning: Some variables are unused in model main.

vis> print_hierarchy_stats
Model name = main, Instance name = main

inputs = 0, outputs = 0, variables = 12, tables = 3, latches = 0, children = 4
vis> print_models

Model name = hwy_control

inputs = 4, outputs = 3, variables = 49, tables = 44, latches = 1
subckts = 0

Model name = sensor

inputs = 0, outputs = 1, variables = 12, tables = 11, latches = 1
subckts = 0

Model name = main

inputs = 0, outputs = 0, variables = 12, tables = 3, latches = 0
subckts = 4

Model name = timer

inputs = 1, outputs = 2, variables = 40, tables = 38, latches = 1
subckts = 0

Model name = farm_control

inputs = 4, outputs = 3, variables = 49, tables = 44, latches = 1
subckts = 0

vis> flatten_hierarchy
vis> print_network_stats

main combinatlonal=142 pi=0 po=0 latches=4 pseudo=2 const=40 edges=206
vis> test_network_acyclic
Network has no combinational cycles
vis> Is

farm_control

hwy_control

sensor

timer

vis> cd hwy_control

vis> print_io

inputs: car_present enable_hwy long_timer short_timer
outputs: enable_farm hwy_light hwy_start_timer

vis> print_latches

hwy_light

vis> flatten_hierarchy
vis> print_network_stats

hwy_control combinational=45 pi=4 po=3 latches=l pseudo=0 const=12 edges=68

Note that when a node is arrived at for the first time, there is no network for that node until flat
tenJiierarchy is called for that node.

Also flattenJiierarchy automatically checks each table in the network for being deterministic (except
for pseudo-inputs) and completely specified. Since this checking takes some time, it can be turned off
safely using the optionflatten-hierarchy-b, after a BLIF-MV file has been checked once.

4.1.2 Ordering

The next step towards verification consists of converting this network representation into a functional
description that represents the output and next state variables as a function of the inputs and current state
variables. We use the BDD (binary decision diagram) and its extension the MDD (multivalued decision
diagram) to represent boolean and discrete functions. Before creating the MDDs, it is necessary to order
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the variables in the support of the MDD. This is accomplished by the staticjorder command, which
gives an initial ordering. Networks with combinational cycles cannot be ordered. If the MDD variables
have already been ordered, then staticjorder does nothing. To undo the current ordering, reinvoke the
commandflattenJiierarchy. At any stage the current variable ordering can be written out to a file using
the write.order command.

4.1.3 Computing FSM Information

The buildjjartitionjndds command computes the transition function MDDs. Depending on the parti
tioning method selected, the MDDs for the combinational outputs (COs) are built in terms of either the
combinational inputs (CIs) or some subset of intermediate nodes of the network. The MDDs built are
stored in a DAG called a "partition". The vertices of a partition correspond to the CIs, COs, and any
intermediate nodes used. Each vertex has a multi-valued function (represented by an MDD) expressing the
function of the corresponding network node in terms of the partition vertices in its transitive fanin. Hence,
the MDDs of the partition represent a partial collapsing of the network. The inout method represents one
extreme where no intermediate nodes are used, and total represents the other extreme where every node
in the network has a corresponding vertex in the partition. If no method is specified on the command
line, then the value of the flag partitionjnethod is used as default (this flag is set by the command set
partitionjnethod), unless it does not have a value, in which case the inout method is used. The parti
tion graph can be printed to a file with the printJjartition command. Another related command is the
printjfartitionstats command that prints statistics on the partition graph.

The complete set of commands included by init-verifyare:

1. flattenJiierarchy,

2. staticj>rder, and

3. buildjyartitionjndds.

UC Berkeley, VIS Release 1.0 (compiled ll-Dec-95 at 10:36 AM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> flatten__hierarchy
vis> static_order
vis> build_partltion_mdds
vis> print_partition_stats
Method Inputs-Outputs, 8 sinks, 10 sources, 14 total vertices, 78 mdd nodes

4.1.4 Advanced Ordering

Dynamic ordering of variables may be enabled and disabled using the dynamic-varjordering command.
Dynamic ordering is a technique to reorder the MDD variables to reduce thesizeoftheexisting MDDs. The
commandsflattenJiierarchy and staticjyrdermust be invoked before this command. Available methods
for dynamic reordering are window and sift. Dynamic ordering may be time consuming, but can often
reduce the size of the MDDs dramatically.

Dynamic ordering is best invoked explicitly (using the dynamic.varjordering -f <method> option)
after the build-partitionjndds and printJmgJnfocommands. If dynamic ordering finds a good ordering,
then you may wish to save this ordering (using writejorder <file>) and reuse it (using staticjorder -s
<method> <file>). With option dynamic.varjordering -e <method> dynamic ordering is automatically
enabled whenever a certain threshold on the overall MDD size is reached. Enabling dynamic ordering
may slow down the verification, but it can make the difference between completing and not completing a
verification task.
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UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
vis> read_blif_flrv tlc.mv

Warning: Some variables are unused in model main.
vis> init_verify
vis> print_partition_stats
Method Inputs-Outputs, 8 sinks, 10 sources, 14 total vertices, 78 mdd nodes
vis> write_order

# UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
# network name: main

# generated: Wed Dec 13 14:13:57 1995

# name type mddld vals levs

sensor.rand_choice pseudo-input 0 2 (0)

timer.state latch 1 3 (1, 2)
hwy_light latch 2 3 (3, 4)

car_present latch 3 2 (5)

car_present$NS shadow 4 2 (6)

farm_light latch 5 3 (7, 8)

timer.rand_choice pseudo-input 6 2 (9)

timer.state$NS shadow 7 3 (10, 11)

farm_light$NS shadow 8 3 (12, 13)
hwy_light$NS shadow 9 3 (14, 15)

vis> dynamic_var_ordering -f sift
Dynamic variable ordering forced with method sift
vis> print_partition_stats
Method Inputs-Outputs, 8 sinks, 10 sources, 14 total vertices, 70 mdd nodes
vis> write_order

# UC Berkeley, VTS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
# network name: main

# generated: Wed Dec 13 14:14:20 1995

#

# name

sensor.rand_choice

timer.state

hwy_light

farm_light

car_present$NS
car_present

timer.rand_choice
timer.state$NS
farm_light$NS

hwy_light$NS
vis> write_order tic.
vis> quit

type

pseudo-input

latch

latch

latch

shadow

latch

pseudo-input

shadow

shadow

shadow

sift

mddld vals levs

0 2 (0)

1 3 (1, 2)

2 3 (3, 6)

5 3 (4, 5)

4 2 (7)

3 2 (8)

6 2 (9)

7 3 (10, 11)

8 3 (12, 13)

9 3 (14, 15)

/projects/vis/vis/mips/bin/vis
UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
vis> read_Jslif_mv tlc.mv

Warning: Some variables are unused in model main.
vis> flatten_hierarchy -b
vis> static_order -s input_and_latch tic.sift
vis> write_order

# UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)
ft network name: main

# generated: Wed Dec 13 14:34:08 1995

#

tt name type

sensor.rand_choice pseudo-input

timer.state latch

hwy_light latch

farm_light latch

car_present$NS shadow
car_present latch

timer.rand_choice pseudo-input
timer.state$NS shadow

farm_light$NS shadow
hwy_light$NS shadow

mddld vals levs

0 2 (0)

1 3 (1, 2)

2 3 (3, 4)

3 3 (5, 6)

4 2 (7)

5 2 (8)

6 2 (9)

7 3 (10, 11)

8 3 (12, 13)

9 3 (14, 15)
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Dynamic ordering moves around binary valued variables, possibly separating a group of variables
which encode a single multi-valued variable. Note, however, that the resolution of reading and writing
variable ordering files is at the multi-valued variable level, not the bit-level. Therefore when the ordering
found by dynamic ordering is read back, the BDD variables which encode the MDD variables do not
necessarily occupy the same levels as reported in the file tlc.sift. See for example variable hwy.light
in the example above. The only information that is used from the file tlc.sift is the order of the MDD
variables in the first column. By editing the file tlcsift any order can be imposed. Given an ordering of
MDD variables, BDD variables which encode them are assigned to the first adjacent available levels.

4.2 FSM Traversal and Image Computation

FSM traversal is the core computation in design verification. Efficient traversal requires grouping the
MDDs, in a manner optimal for traversal. To traverse the FSM, the present state, input, and next state
variables are organized for easy manipulation. All this information is included in an FSM data structure
created in the computejreach command. This also invokes traversal of the entire reachable state set of
the FSM representing the design, and may be invoked with different verbosity options to get varying
amounts of traversal information. On subsequent calls to computejreach, the reachability computation is
not reperformed, but statistics can be printed using -v.

The reachability computation makes extensive use of image computation. There are several user-
settableoptions that affect the performance ofimagecomputation. The documentationfor the set command
lists these options. Use the command set imagejnethod to change the image computationmethod, and then
re-initialize verification (starting at theflattenJiierarchy command *). TheprintJmgJnfo prints current
image information. Notice that while printjjartitionMats prints information on the next state functions,
printJmgJnfo prints information on the next state transition relations. The command printJmgJnfo
creates transition relations from transition functions by clustering several functions together. The result is
a partitioned transition relation. It is often a good idea to force dynamic variable reordering (for instance,
dynamic.varjordering -fsift) at this point to reorder these relation MDDs. The reachability computation
is an optional step of the model checking algorithm; unreachable states may be used as don't cares to
minimize the BDD representation.

The following illustrates the command computejreach on the Traffic Light Controller:

UC Berkeley, VIS Release 1.0 (compiled ll-Dec-95 at 10:36 AM)

vis> read_blif_mv tlc.mv

Warning: Some variables are unused in model main.

vis> init_verify

vis> compute_reach -v 1

Computing reachable states using the iwls95 image computation method.
Printing Information about Image method: IWLS95

Threshold Value of Bdd Size For Creating Clusters = 1000
(Use "set image_cluster_size value • to set this to desired value)

Verbosity = 0

(Use "set image__vorbosity value " to set this to desired value)
Wl = 6 W2 = 1 W3 = 1 W4 = 2

(Use "set image.W? value " to set these to desired values)

Shared Bdd Size of 1 components is 97
********************************

Reachability analysis results:
FSM depth = 8

reachable states = 20

MDD size = 8

analysis time = 0

'Whenever a hierarchy isreinitialized, the optionflattenJiierarchy -b can beused safely for efficiency.
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4.3 Specifying Fairness Constraints

Fairness constraints are used to restrict the behavior of the design. Each fairness condition specifies a
set of states in the machine, and requires that in any acceptable behavior these states must be traversed
infinitely often (i.e., these states must be on a cycle). Such constraints are called "Biichi fairness"
constraints. Fairness constraints are stored in fairness files (with extension .fair by convention);
the syntax for fairness files can be found in http: //www-cad. eecs .berkeley. edu/Respep
/Research/vis/doc/packages/read_fairnessCmd. html. A fairness file is read in by the
read-fairness command. Active fairness conditions can be displayed by means of printjairness. The
resetfairness command is used to reset the fairness constraint to "true"; by default, there is one fairness
condition that contains all states.

Fairness constraints remove unwanted behavior from a system. They are a powerful, but dangerous
tool, because it is easy to make a faulty system pass wanted properties by a careless use of fairness
constraints.

4.4 Language Emptiness

The language of a design is given by sequences over the set of reachable states that do not violate the
fairness constraint. If the language is empty, we know thatthe system does not exhibit anybehavior. VIS
supports the command langjempty as an alias for model checking the formula EG true. This is relevant
in the context of languagecontainment, where the properties to be verified arealso specified as automata
and a modified system, consisting of the behaviorof the system that does not satisfy the property,is tested
for emptiness. Before invoking model checking, langjemptycan also be used to ensure that the system is
non-trivial. This is pertinent because the fairness constraintspecifiedmay make the entire system "unfair",
and an empty system passes all universal properties.

VIS produces adebug traceto help the designerunderstandthe causeofthe failure. Common corrective
actions are the correction of an errorin the original system description or addition of fairness constraints.

The language emptiness trace for the Traffic Light Controller example with a fairness constraint is:

UC Berkeley, VIS Release 1.0 (compiled 14-Dec-95 at 1:04 AM)
vis> readJalif_mv tlc.mv

Warning: Some variables are unused in model main.

vis> init__verify
vis> read_fairness tic.fair

vis> print_fairness

Fairness constraints:

!(timer.state=START);

!(timer.state=SHORT);

vis> lang_empty -i
tt LE: language is not empty

# LE: generating path to fair cycle
# LE: path to fair cycle:

--State 0:

car_present:NO

farm_light:RED

hwy_light:GREEN
timer.state:START

This indicates that there is valid behavior in the system, and an example of this is given; a closed
path that begins at the initial state, where no car is present car .present : NO, the farm light is red
farmJight: RED, the highway light is green hwyJight: GREEN, and the timer is in its startstate
timer.state : START. From the initial state the machine loops through a fair cycle, which has 8 states,
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and is described below. Note that this trace is differential for both states and inputs; only variables that
have changed in the last step are printed.

# LE: fair cycle;

—State 0:

car_present:NO

farm_light:RED
hwy_light:GREEN

timer.state:START

—Goes to state 1:

car_present:YES

timer.state:SHORT

—On input:

sensor.rand_choice:1

timer.rand_choice:1

—Goes to state 2:

timer.state:LONG

—On input:

<Unchanged>

—Goes to state 3:

hwy_light:YELLOW

timer.state:START

—On input:

timer.rand_choice:0

—Goes to state 4:

timer.state:SHORT

—On input:

timer.rand_choice:1

—Goes to state 5:

car_present:NO

farm_light:GREEN

hwy_light:RED

timer.state:START

—On input:

sensor.rand_choice:0

timer.rand_choice:0

—Goes to state 6:

car_present:YES

farm_light:YELLOW

—On input:

sensor.rand_choice:1

--Goes to state 7:

timer.state:SHORT

—On input:
timer.rand_choice:1

—Goes to state 8:

car_present:NO

farm_light:RED

hwy_light:GREEN
timer.state:START

—On input:
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sensor.rand_choice:0

timer.rand_choice:0

4.5 Model Checking Operations

4.5.1 Performing Model Checking

Themodelxheckcommandcalls modelcheckingin VIS.A descriptionofthesyntaxof CTLfor VISis pre-
sentedin http://www-cad.eecs.berkeley.edu/Respep/Research/vis/doc/ctl/ctl
ctl. html. By convention CTL properties are in a file with extension .ctl. The following illustrates the
functioning of modelxheck on the Traffic Light Controller example. Note that in this session the fairness
constraints are not read in. Debugging error traces is explained in the next section.

UC Berkeley, VIS Release 1.0 (compiled 14-Dec-95 at 1:04 AM)
vis> read_blif_mv tlc.mv

Warning: Some variables are unused in model main.
vis> init_verify
vis> model_check -i tic.ctl

MC: formula passed AG(! ({farm_light=GREEN * hwy_light=GREEN)})

This indicates that the property passed (i.e. the system satisfies the property).

MC: formula failed AG( ((car_present=YES * timer. state=LONG) -> AF{farm_light=GREEN)))
MC: Calling debugger

This indicates that the property failed, and gives the following error trace that shows behavior seen in
the system that does not satisfy the property.

—State

car_present:NO

farm_light:RED
hwy_light:GREEN

timer.state:START

fails AG(((car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN)))
—Counter example is a path to a state where

((car_present=YES * timer.state=LONG) -> AP(farm_light=GREEN)) is false

—State 0:

car_present:NO

farm_light:RED

hwy_light:GREEN

timer.state:START

—Goes to state 1:

car_present:YES

timer.state:SHORT

—On input:

sensor.rand_cholce:1

timer.rand_choice:1

—Goes to state 2:

timer.state:LONG

—On input:

<Unchanged>

—State

car_present:YES
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farm_light:RKD

hwy_light:GREEN

timer.state:LONG

fails ((car_present=YES * timer.state=LONG) -> AF{farm_light=GREEN)

—State

car_present:YES

farm_light:RED
hwy_light:GREEN

timer.state:LONG

passes (car_present=YES * timer.state=LONG)

—State

car_present:YES

farm_light:RED

hwy_light:GREEN

timer.state:LONG

passes car_present=YES

—State

car_present:YES

farm_light:RED

hwy_light:GREEN

timer.state:LONG

passes timer.state=LONG

—State

car_present:YES

farm_light:RED
hwy_light:GREEN
timer.state:LONG

fails AF{farm_light=GREEN)

—A fair path on which farm_light=GREEN is always false:

--Fair path stem:

—State 0:

car_present:YES

farm_light:RED
hwy_light:GREEN

timer.state:LONG

—Goes to state 1:

hwy_light:YELLOW
timer.state:START

—On input:

sensor.rand_choice:1

timer.rand_cholce:0

—Fair path cycle:

—State 0:

car_present:YES

farm_light:RED
hwy_light:YELLOW

timer.state:START

—Goes to state 1:

<Unchanged>
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—On input:
sensor.rand_choice:1

timer.rand_choice:0

This is the end of the debug trace for this CTL formula. The command modelxheck continues with
the next formula.

MC: formula failed AG{AF(hwy_light=GREEN))
MC: Calling debugger

This indicates that the property failed, and it is followed by an error trace that shows behavior seen in
the system that does not satisfy the property, lb save space, we omit the error trace.

MC: formula passed !(AG( (car_present=YES -> AF(farm_light=GREEN))))

This indicates that the property passed (i.e. the system satisfies the property).

4.5.2 Debugging for Model Checking

If model checking or language emptiness checks fail, VIS reports the failure with a counterexample, i.e.,
an error trace ofsample "bad" behavior (i.e., behavior seen in the system that does not satisfy the property
- for model checking, or valid behavior seen in the system - for language emptiness). This is called the
"debug" trace. Debug traces list a set of states that are on a path to a fair cycle and fail the CTL formula.

In the previous section, the second and third properties fail during model checking. This may
be rectified by reading in the fairness constraints previously described for the Traffic Light Controller
example. If the fairness constraints are read in, the valid behavior is restricted and these properties pass.
In particular, the fairness constraint ! (timer. state=START) disallows behavior, where the system
stays forever in the state:

car_present:YES

farm_light:RED

hwy_light:YELLOW

timer.state:START

—On input:

sensor.rand_choice:1

timer.rand_choice:0

More precisely, the fairness constraint disallows behavior, where there is a car in the farm road, but
the timer is stuck in its initial state, by forcing the timer to progress in finite time to the next state.

UC Berkeley, VIS Release 1.0 (compiled ll-Dec-95 at 10:36 AM)

vis> read_fairness tic.fair

vis> model_check tic.ctl

MC: formula passed AG{! {(farm_light=GREEN * hwy_light=GREEN)))

MC: formula passed AG( {(car_present=YES * timer.state=LONG) -> AF(farm_light=GREEN)))

MC: formula passed AG(AF(hwy_light=GREEN))

MC: formula passed !(AG{ (car_present=YES -> AF{farm_light=GREEN))))

33



4.5.3 Checking Invariants

An important class of CTL formulas is invariants. These are formulas of the form AG f, where / is a
quantifier-free formula. The semantics of AG f is that / is true in all reachable states. The command
checkJnvariantimplements an algorithm that is specialized for these formulas. In the following example,
/ is the formula

! ((farm_light = GREEN) * <hwy_light = GREEN));

contained in the file tlc.invar.

UC Berkeley, VIS Release 1.0 (compiled 13-Dec-95 at 8:36 AM)

vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.
vis> inlt_verify

vis> check_invariant tlc.invar

INV: formula passed —- !((farm_light=GREEN * hwy_light=GREEN))

4.5.4 Advanced Model Checking: Abstraction and Reduction

When performing model checking and checking invariant properties, one can use the reduce option -r, to
perform model checking on a "pruned" FSM, i.e., one where parts that do not affect the formula (directly
or indirectly) have been removed.

This mechanism can be combined with the abstraction mechanism available through the command
flattenJiierarchy <file>. <file> contains the namesof variables to abstract. For each variable x appearing
in <file>, a new primary input node named x$ABS is created to drive all the nodes that were previously
driven by x. Hence, the node x will not have any fanouts; however, x and its transitive fanins will remain
in the network. Abstracting a net effectively allows it to take any value in its range, at every clock cycle.
This mechanism can be used to perform manual abstractions.

We show an example, where the file tic. abstract contains the variable timer. start. By
abstracting timer. start, the timer module is disconnectedfrom the rest ofthe TrafficLight Controller.

Then we perform model checking of the CTL property read from the file tic. reduce .ctl:

AG((timer.state = START) -> AF (timer.state = LONG));

This property refers only to the timer module. Since the timer has been disconnected, the rest of the
system can be pruned away when testing this property. As expected this property fails, since no fairness
constraint has been read in.

UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 2:18 PM)
Sourcing .visre of Tiziano

vis> read_blif_mv tlc.mv

Warning: Some variables are unused in model main.
vis> flattenJiierarchy tic.abstract
vis> static_order
vis> build_partition_mdds

vis> model_check -i -r tic.reduce.ctl

MC: formula failed AG{(timer. state=START -> AF (timer.state=LONG)))

MC: Calling debugger

—State

car_present:NO

farm_light:RED

hwy_light:GREEN

timer.state:START
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fails AG((timer.state=START -> AF(timer.state=LONG)))
since (timer.state=START -> AF (timer,state=LONG)) is false at this state

—State

car_present:NO

farm_JLight:RED

hwy_light:GREEN
timer.state:START

fails (timer.state=START -> AF(timer.state=LONG))

—State

car_present:NO

farm_light:RED
hwy_light:GREEN
timer.state:START

passes timer.state=START

—State

car_present:NO

farm_light:RED
hwy_light:GREEN
timer.state:START

fails AF(timer.state=LONG)

—A fair path on which timer.state=LONG is always false:

—Fair path stem:

—State 0:

car_present:NO

farm_light:RED

hwy_light:GREEN
timer.state:START

—Fair path cycle:

—State 0:

car_present:NO

farm_light:RED

hwy_light:GREEN

timer.state:START

—Goes to state 1:

<Unchanged>

—On input:
sensor.rand_choice:0

timer.rand_choice:0

In this particular example, the same effect of"restricted" model checking can be obtained by changing
(using the cd command) to the timer node and performing model checking. When at the timer node, the
inputs to timer from the rest of the system are considered free inputs. Notice that the names of variables
in the CTL property in the file tic. reduce. ctl must be revised as follows:

AG((state = START) -> AF (state = LONG));

since the convention for names is to drop the current node and all nodes above from the namepath.

UC Berkeley, VIS Release 1.0 (compiled 14-Dec-95 at 1:04 AM)
Sourcing .visrc of Tiziano

vis> read_blif_mv tlc.mv

Warning: Some variables are unused in model main.
vis> cd timer
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vis> init_verify

vis> model_check tic.reduce.ctl

MC: formula failed AG((state=START -> AF(state=LONG)))

However, there are more complex situations that cannot be emulated so simply.

4.6 Combinational and Sequential Equivalence

In VIS it is also possible to check the equivalence oftwo networks. The command comb.verify verifies the
combinational equivalenceoftwo flattened networks. In particular, any set of functions (the roots), defined
over any set of intermediate variables (the leaves), can be checked for equivalence between two networks.
Roots and leaves are subsets of the nodes of a network, with the restriction that the leaves should form a

complete support tor the roots. The correspondence between the roots and the leaves in the two networks
is specified in a file. The default option assumes that the roots arethe combinational outputs and the leaves
are the combinational inputs. Two networks are declared combinationally equivalent iff they have the
same outputs for all combinations of inputs and pseudo-inputs. An important usage of combverify is to
provide a sanity check when using SIS to re-synthesize portions of a network, as explained in Chapter 5.

The command seq.verify tests the sequential equivalence of two networks. In this case the set of
leaves has to be the set of all primary inputs. This produces the constraint that both networks should have
the same number of primary inputs. The set of roots can be an arbitrary subset of nodes. Moreover, no
pseudo-inputs should be present in the two networks being compared. Sequential verification is done by
building the product finite state machine. The command verifies whether any state, where the values of
two corresponding roots differ, can be reached from the set of initial states of the product machine. If this
happens, a debug trace is provided.

4.7 Simulation

Simulation, although not "formal verification", is an alternate method for design verification. After the
commandbuild-partitionjndds is invoked, the network can alsobe simulated. In VIS we provide internal
simulation of the BLIF-MV description generated by vl2mv, via the simulate command. Thus, VIS
encompasses both formal verification and simulation capabilities, simulate can generate random input
patterns or accept user-specified input patterns.

UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 10:24 PM)
vis> read_blif_mv tlc.mv
Warning: Some variables are unused in model main.

vis> init_verify
vis> simulate -n 10

# UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 10:24 PM)
# Network: main

# Simulation vectors have been randomly generated

.inputs sensor.rand_choice timer.rand_choice

.latches car_present farm_light hwy_light timer.state

.outputs

.initial NO RED GREEN START

.start_vectors

# sensor.rand_choice timer.rand_choice ; car_present farm_light hwy_light timer.state ;

0 0 ; NO RED GREEN START ;

1 1 ; NO RED GREEN START ;

0 0 ; YES RED GREEN SHORT ;
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1 0 • NO RED GREEN SHORT

1 1 • YES RED GREEN SHORT

0 1 • YES RED GREEN LONG

0 1 • NO RED YELLOW START

0 0 • NO RED YELLOW SHORT

0 0 • NO GREEN RED START

1 0 • NO YELLOW RED START

# Final State : NO YELLOW RED START

vis> cd farm_control
vis> simulate -n 10

There is no network. Use flatten_hierarchy.
vis> init_verify

vis> simulate -n 10

# UC Berkeley, VIS Release 1.0 (compiled 15-Dec-95 at 10:24 PM)
# Network: farm_control

# Simulation vectors have been randomly generated

.inputs car_present enable_farm long_timer short_timer

.latches farm_light *.

.outputs enablejiwy farm_light farm_start_timer

.initial RED

.startvectors

# car_present enable_farm long_timer short_timer ; farm_light ; enable_hwy farm_light farm_start_timer

NO 1 0 0 , RED 0 RED 1

YES 1 1 1 , GREEN 0 GREEN 1

NO 1 0 1 . YELLOW 1 YELLOW 0

YES 0 0 0 . RED 0 RED 0

NO 1 1 0 , RED 0 RED 1

NO 1 1 1 , GREEN 0 GREEN 1

YES 1 1 1 YELLOW 1 YELLOW 0

NO 0 1 0 RED 0 RED 0

NO 0 0 0 RED 0" RED 0

YES 0 1 0 RED • 0 RED 0

# Final State : RED

Any level of the specified hierarchy may be simulated. The user may traverse the hierarchy to reach
the relevant level via the cd command. The init-verify command must be called to set up the appropriate
internal data structures before simulation.
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Chapter 5

Synthesis in VIS

VIS can interact with SIS in order to optimize the existing logic. There are two possible goals/scenarios:

1. Synthesis for verification.
Synthesis can be used to optimize the logic that representsthe system, for simpler verification.

2. Front-end to synthesis.
Files described in Verilog andcompiled into blifjnv (using vl2mvor another tool) canbe synthesized
by using VIS and SIS together.

A key fact is that only the current level of the hierarchy is sent to SIS, and not the subtree rooted at the
current node.* Modules atalower level are treated as external and theboundary variables are carefully
preserved, by reintegrating their multi-valued status after the optimization step in SIS (SIS requires that
boundary variables are completely encoded, i.e., are binary variables).
Caveat lb prevent that a signal (possibly referred to in a CTL property) is optimized away during
synthesis, declare it as an output of a module.

In the current version, only combinational logic is sent to SIS: latches are cut away from the module
sent to SIS and they are reincorporated when the design is read back into VIS. Therefore we cannot
take advantage of sequential optimizations in SIS, either at the level of a completely encoded sequential
network or of a symbolic state table. The boundaries between modules are established when the initial
hierarchy is described, and they are rigid in the sense that optimizations can never bridge them, but only
operate within them. Notice that there is a way to replace a subtree of the hierarchy with another one by
using readMifjnv -r, this feature could be used to changeboundaries in the originalspecification.

5.1 Writing and Reading from SIS

VIS communicates with SIS via the writeMifand readMifcommand.
Operations performed by writeMif arc.

1. All variables areencoded, i.e., values of multi-valuedvariables arereplaced by binary vectors. For
variables at the boundary with modules at different levels of the hierarchy the encoding assignments
are stored into a file with extension . enc, so that it is possible to reintegrate the multi-valued
boundaries between modules when coming back to VIS.

2. All unspecified input combinations in the tables are specified by assigning zero code vectors as
outputs. Default constructs in the specificationof tables arehandled appropriately.

'One would need aflattening routine different from the one which starts the verification flow already inVIS, and such aroutine
to flatten for synthesis is not yet available.
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3. Nondeterministic tables are determinizedby adding pseudo-inputs. As aresulta filewith extension
.blif is created that can be read and optimized by SIS. SIS must be invoked outside of VIS by
means of a different shell. All SIS operations to optimize combinational logic can be applied.

In summary, writeMif scans all the tables of a given node in the hierarchy and encodes all symbolic
variables, determinizes the tables by adding pseudo-inputs, and resolves incomplete specification by
associatingunspecified input combinations to outputs encodedby zero binary vectors.

Operations performed by readMifarc:

1. Restore the symbolic values of multi-valued I/O variables of the node being read in. This is done
using the information in the file with extension . enc (e.g., reodMif-e modelenc s-simMif), which
was written out during the write-Mfprocess.

2. Replace in the hierarchy the old node with the new node.

5.2 Flow of Operations for Synthesis

The typical flow ofoperations of synthesis for verification is:

• readMifjnv

• writeMif

• optimizationby SIS

• readMif

• init-verify

• suite of verification operations

The typical flow ofoperations for direct synthesis is:

• readMifjnv

• writeMif

• optimization by SIS

• readMif

It is possibleto verify that after optimization with SIS the new global network (where the node returned
from SIS is plugged back in the original network) is equivalent to the old global network, by using the
command comb.verify that checks combinational equivalence of networks. Combinational equivalence
can be checked at each level of the network hierarchy, from root to leaves. Before applying comb.verify,
the command init-verify must be invoked.

5.3 Example of Synthesis of Traffic Light Controller

The following script demonstrates the path from VIS to SIS and back. We have chosen to optimize the
network of the leaf f arm_coritrol. We verify that the initial global network and the new network, after
replacement ofthe network in the leaf f arm_contro 1 by the one optimizedby SIS, arecombinationally
equivalent. The script used to run SIS (in a different shell) is shown too. Experiments report big savings in
literals for the optimized modules, since the BLIF-MV files generated by vl2mv have a lot ofredundancy.
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UC Berkeley, VIS Release 1.0 (compiled ll-Dec-95 at 10:36 AM)
vis> read_blif_mv tlc.mv

Warning: Some variables are unused in model main.
vis> init_verify
vis> Is

hwy_control

sensor

timer

farm_control

vis> print_network_stats
main combinational=142 pi=0 po=0 latches=4 pseudo=2 const=40 edges=206

vis> cd farm_control

vis> write_blif farm_control.blif

Writing encoding information to farm_control.enc
vis> read_blif -e fanr_control.enc farm_control.opt.blif
Warning: Some variables are unused in model farm_control[0].

vis> cd ..

vis> init_verify

vis> comb_verify tlc.mv
Networks are combinationally equivalent.
vis> print_network_stats
main combinational=132 pi=0 po=0 latches=4 pseudo=2 const=34 edges=186

sis> read_blif farm_control.blif

Warning: network 'farm_control'
Warning: network 'farm_control'

Warning: network 'farm_control'
sis> print_stats
farm_control pi=18 po= 6
lits(sop)= 709 lits(fac)= 419
sis> source script.rugged
sis> print_stats
farm_control pi=18 po= 6

lits(sop)= 34 lits(fac)= 34

sis> write_blif farm_control.opt.blif

In the previousexample, the command init.verifyhas been given only in orderto doprintJietworkMats
before logic synthesis, to compare the networks before and after optimization by SIS.

node a[l]0" does not fanout

node *[5]0" does not fanout

node "[H]0* does not fanout

nodes= 62 latches= 0

nodes= 24 latches= 0
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Appendix A

Commands in VIS

A.l List of Commands in VIS

The following list contains aone line summaryofall the commands availablewithinVIS. The listcan alsobe
foundin http: //www-cad. eecs .berkeley. edu/Respep/Research/vis/doc/packages
/cmdlndex.html. Fig. A.1 graphically illustrates the suite of commands available within VIS, and
their dependencies. A command cannot be executed before its predecessors(unless the predecessor is also
a successor). Default aliases are defined, type alias to list them.

visv
Is
pwd
write_blif( _mv)
read_bllf(_mv)-l

print_network_8tats
print_network
t©9t_network_acyclic

writeorder

simulate
compute.reach
comb.verify
8eq_verify
prlntjmgjnfo

read_faimes8
printjairness

reset fairness

Figure A. 1: A Flow Chart ofCommands in VIS.

1. alias: provide an alias for a command

2. build4)artition_mdds: build a partition of MDDs for the current network

3. cd: change the current node

41



4. check Jnvariant: checks all slates reachablein flattened network satisfy specified invariants

5. comb-verify: verifies the combinational equivalence of two networks

6. compute-reach: compute the set of reachable states of the FSM

7. dynamic-var_ordering: control the application of dynamic variable ordering

8. echo: merely echoes the arguments

9. flattenJiierarchy: create a flattened network

10. help: provide on-line information on commands

11. history: a UNIX-like history mechanism inside the VIS shell

12. init-verify: create and initialize a flattened network for verification

13. langjempty: performs BDD based check of languageemptiness under Buchi fairness

14. Is: list all the child nodes at the current node

15. modelxheck: performs BDD based fair CTL model checking on a network

16. printJbdd_stats: print the BDD statistics for the flattened network

17. print-fairness: print the fairness constraints of the flattened network

18. printJ_erarchy_stats: print the statistics of the currentnode

19. printJmgJnfo: print information about the image method currently in use

20. printJo: print the names of inputs/outputs in the current node

21. printJatches: print the names of latches in the current node

22. print-models: list all the models and their statistics

23. print-network: print the flattened network

24. printJietworkjjtats: print statistics about the flattened network

25. print4>artition: write a file in the "dot" format describing the partition graph

26. print-partition_stats: printstatistics aboutthe partition graph

27. pwd: printout the full path of the current node from the root node

28. quit: exit VIS

29. read_blif: readablif file

30. readJ>lif_mv: read a blif-mv file

31. read-fairness: read a set of fairness constraints

32. read-verilog: read a verilog file

33. resetJairness: reset the fairness constraints
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34. seq.veriry: verifies the sequential equivalence of nodesin two networks

35. set: set an environment variable

36. simulate: simulate the flattened network

37. source: execute commands from a file

38. static-order: order the MDD variables of the flattened network

39. testjdet-and-comp-spec: test if the outputsare completelyspecifiedanddetenninistic

40. test_network_acyclic: determine whether the networkis acyclic

41. time: provide a simple elapsed time value

42. unalias: removes the definition of an alias

43. unset: unset an environment variable

44. usage: provide a dump of process statistics

45. which: look for a file called name

46. write_blif: determinize, encode and write an hnode to a blif file

47. write_blif_mv: write a blif-mv file

48. write-order: write the current order of the MDD variables of the flattened network
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CTL Syntax

VIS Development Group
University of California, Berkeley

vis@ic.eecs.berkeley.edu

December 16, 1995

CTL (Computation Tree Logic) is a language used to describe properties
of systems. This document describes the CTL syntax used in VIS. For the
semantics of CTL, the reader should refer to the following paper.

E. M. Clarke, E. A. Emerson and A. P. Sistla, Automatic Verification
of Finite-State Concurrent Systems Using Temporal Logic Specifica
tions, ACM Transactions on Programming Languages and Systems,
vol 8-2, pages 244-263, April, 1986

This syntax should be followed when VIS users create CTL files and fairness
constraint files for the commands model-check and read-fairness, respec
tively.

The syntax for CTL is:

TRUE, FALSE, and var-name=value are CTL formulas, where var-
name is the full path name of a variable, and value is a legal value
in the domain of the variable. The following character set may be
used for var-names and values:

A-Z a-z 0-9 - ? I / C ]+*$<>" C _#•/.: M ' .

If f and g are CTL formulas, then so are the following:

(f), f * g, f + g, f - g, !f, f -> g, f <-> g,
AG f, AF f, AX f, EG f, EF f, EX f, A(f U g) and E(f U g)

Binary operators must be surrounded by spaces, i.e. f + g is a
CTL formula while f+g is not. The same is true for U in until
formulas. Once parentheses are inserted, the spaces can be omitted,
i.e. (f )+(g) is a valid formula. Unary temporal operators and their
arguments must be separated by spaces unless parentheses are used.

The symbols have the following meanings.
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* — AND, + — OR, ~ — XOR, ! — NOT, -> — IMPLY, <-> ~ EQUIV

Operator Precedence:

High

AG, AF, AX, EG, EF, EX

<->

->

Low

An entire formula should be followed by a semicolon. All text from # to the
end of a line is treated as a comment. The model checker (mc) package is used
to decide whether or not a given FSM satisfies a given CTL formula. See the
help file for the model-check command for more details.



BLIF-MV

VIS Development Group
University of California, Berkeley

vis@ic.eecs.berkeley.edu

December 16, 1995

BLIF-MV is a language designed for describing hierarchical sequential sys
tems with non-determinism. A system can be composed of interacting sequential
systems, each of which can be again described as a collection of communicating
sequential systems. This makes it possible to describe systems in a hierarchical
fashion. Although BLIF, the input language for the logic optimization system
SIS, also has constructs for describing hierarchies, they are automatically flat
tened into a single-level circuit once they are read in because the internal data
structure of SIS does not support hierarchical representations. In VIS, how
ever, the original hierarchy is preserved in internal data structures so that true
hierarchical synthesis/verification is possible. Another important extension to
BLIF is that BLIF-MV can describe non-deterministic behaviors. This is done
by allowing non-deterministic gates in descriptions. Non-deterministic gates
generate an output arbitrarily from the set of pre-specified outputs. These al
low us to model non-deterministic systems in the VIS environment, which is
crucial in formal verification since designs in early stages are likely to contain
non-determinism. Lastly BLIF-MV supports multi-valued variables, which can
be used to simplify system descriptions.

1 Syntax

1.1 Models

A model is a system that can be used in defining a hierarchical system. Any
BLIF-MV file contains one or more model definitions. If there is more than one
model definition, one model is specified as the root model by putting the .root
construct in the model definition. An entire hierarchy is created from this model
recursively. If no model is declared as the root model, the first model serves as
the root mode. A model is declared as follows:

.model <model-name>



.inputs <input-list>

.outputs <output-list>
<command>

<command>

.end

• model-name is a string giving the name of the model. A string should
be composed of lower-case/upper-case alphabetic characters, numbers, or
symbols $, <, >, _, ?, —, +, *, @. Any string used in BLIF-MV has to
satisfy this constraint.

• input-list is a white-space separated list of strings (terminated by the end
of the line) giving the formal input terminals for the modelbeingdeclared.
If this is the root model, then signals can be identified as the primary
inputs of this system. Multiple .inputs lines are allowed, and the lists of
inputs are concatenated.

• output-list is a white-space separated list of strings (terminated by the
end of the line) giving the formal output terminals for the model being
declared. If this is the root model, then signals can be identified as the
primary output of this system. Multiple .outputs lines are allowed, and
the lists of inputs are concatenated.

Input variables and output variables have to be disjoint, i.e. a variable
cannot be both an input and an output in a model.

•

• command is one of .mv, .table, .latch, .reset and .subckt, which
defines the detailed functionality of the model. All the .mv declarations
must precede the others in a model declaration.

1.2 Multi-valued Variables

A multi-valued variable is a variable that can take a finite number of values.
There are two classes of multi-valued variables. The class of enumerattve vari
ables are variables whose domain is the n integers {0,. ..,n —1}. Note that
Boolean variables are enumerative variables where n = 2. Enumerative vari

ables are declared as follows.

.mv <variable-name-list> <number-of-values>

• variable-name-list is a comma separated list of strings (terminated by the
end of the line) giving the names of variables being declared.

• number-of-values is a natural number,which specifies the number of values



• Example: .mv x,y 3.

The second class, symbolic variables, is more general than the first one. A
symbolic variable can take a set of arbitrary values. For example, a variable
that takes three values red, green, and blue is a symbolic variable. Symbolic
variables are declared as follows.

.mv <variable-name-list> <number-of-values> <value-list>

• variable-name-list and number-of-values are the same as for the declaration
of enumerative variables.

• value-list is a white-space separated list of strings (terminated by the end
of the line) giving the list of values the variable can take. The number of
values declared and the range size should match.

• Example: .mv x,y 3 red green blue.

If a variable is not defined using .mvin a model, then the variable is assumed
to be a Boolean variable.

Two variables are said to have the same type if

1. the variables are enumerative variables with the same domain size, or

2. the variables are symbolic variables with the same domain size and the
same symbolic values defined in the same order in the .mv construct.

Consider the following example.

.mv x 2

.mv y 2 red blue

x and y are not of the same type because x is an enumerative variable and y is
a symbolic variable although both are two-valued variables.

.mv x 2 red blue

.mv y 2 blue red

x and y in the above example are not of the same type because symbolic values
are defined in different orders.

1.3 Tables

A table is an abstract representation of a physical gate. A table is driven by
inputs and generates outputs following its functionality. Although a real gate
generates an output deterministically depending on what inputs are supplied,
tables in BLIF-MV can represent non-deterministic behaviors as well. The
functionality of the table is described as a symbolic relation, i.e. the table



enumerates symbolically all the valid combination of values among the inputs
and the outputs. Note that BLIF-MV can handle multi-output tables, unlike
BLIF, where every table is single-output. A table without input represents a
constant generator. If the table allows more than one value for its output, then
the table is a nondeterministic constant generator, which we call pseudo input.
Tables are declared in the following way.

.table <in-l> <in-2> ... <in-n> -> <out-l> <out-2>... <out-m>

<relation>

<relation>

• in-1,... ,in-n are strings giving the names of the inputs to the table being
defined. The variables have to be defined using the .mv construct before
the table. Otherwise, they are assumed to be Boolean variables.

• out-1,... ,out-m are strings giving the names of the outputs to the table
being defined. The variables have to be defined using the .mv construct
before the table. Otherwise, they are assumed to be Boolean variables.
Any table must have at least one output.

• If a table has a single output, -> is optional.

A relation is a white-space separated list of n + m strings, giving a valid
combination of values among inputs and outputs. The i-th string in a relation
specifies a set of values for the i-th variable in the input/output declaration of
.table. Each relation denotes the Cartesian product of all the sets of values.
The input-output relation of a table is defined as the union of all the relations.
A set of values can be declared recursively in the following form.

1. a value v, or

2. —, which is the universe, or

3. a range {vi —t/2}, or

4. a list (Si, 52,..., Si), where 5,- (i = 1,...,/) is a set of values, or

5. \S, which is a complement of a set of values S.

Let x be an enumerative variable which takes 4 values. The following are
examples of a set of values for x.

• 1

{2-3}



• (0,{2-3»

• !{2-3}

If a variable is a symbolic variable, the range construct in the above cannot
be used since {red-green}, for example, does not make sense.

Let us consider the following example.

.mv x,y 4

.table x -> y

!2 {1-3}

- 0

2 (0,3)

The relationspecified in this table is: [(0,1,3) x (1,2,3)]U[(0,1,2,3) x (0)]U
[(2)x(0,3)].

1.3.1 = Construct

One can also use the =• construct in table specifications. Assume that in the
column corresponding to variable y, we have = x as in the following example.

.table x -> y
- =x

The interpretation of this construct is that the value of y should be equal
to x. This enables us to describe a multi-valued multiplexor compactly (see
below).

.mv select 2

.mv dataO,datal,output 256

.table select dataO datal -> output

0 =data0

1 =datal

Note that two variables related with = construct should be of the same type.

1.3.2 Default Output

It is sometimes convenient to define a default output for the input patterns not
specified in a given relation. The .default construct is used for this purpose.
In the following example, no relation is specified for the case where either xl
or x2 is 0. Since we have a default statement in the table, output 00 is related
for those unspecified input patterns. Therefore, the relation of this table is:
[(l)x(l)x(l)x(l)]u[(0)x(0)x(0)x(0)]U[(0)x(l)x(0)x(0)]U((l)x(0)x(0)x(0)].
Each table can have at most one .default declaration.



.mv xl,x2,yl,y2 2

.table xl x2 -> yl y2

.default 0 0

1111

The .default construct can be used even for tables without inputs. How
ever, one has to be careful about the semantics. There are two possible cases.
One case is that a table has a default declaration, but has no relation specified,
where the interpretation of the table is that it always takes the default. The
other case is that a table has both a default declaration and a non-null relation
specified, where the default can be simply ignored.

1.4 Latches and Reset Tables

A latch is a storage element which updates its stored value at every clock tick.
A latch has an input and an output. At each clock tick the latch output is
set to the latch input value before the tick, and keep the value till the next
clock tick. Every latch has to be initialized although the latch is allowed to
have more than one initial value, in which case the latch takes an initial value
nondeterministically from the specified values. A latch can be seen as a multi
valued flip-flop with possibly multiple initial states. In BLIF-MV, there is an
implicit assumption that the whole system is clocked by a single global clock
although the clock is never declared in BLIF-MV declarations.

A latch is declared as follows.

.latch <latch-input> <latch-output>

latch input and latch output are strings, giving the name of the latch input
and the latch output. The two variables should be of the same type. A latch
must have one reset table, which is used to initialize the latch output at the
beginning. A reset table is a single output table whose only output is the
output of a latch. Notice that we use .reset instead of .table for reset tables.
If a latch is reset to a constant value, then the latch table has no input. The
following example is for the latch latch.output whose reset state is 0.

.reset latch.output

0

One can specify multiple initial states by specifying more than one value in
the latch output. Adding one more line to the above example, the latch has
now two initial states.

.reset latch_output

0

1



This is one way to introduce non-determinism in system descriptions. Also,
one could create complex reset circuitry sensitive to other variables by intro
ducinginputs to the latch table. The following .reset statement initializes the
latch to 1 if x is 0 and to 0 if x is 1.

.reset x latch.output
0 1

1 0

1.5 Subcircuits

In a model, another model can be instantiated as a subcircuit using the . subckt
construct.

.subckt <model-name> <instance-name> <formal-actual-list>

This construct instantiates a reference model model-name as an instance

instance-name in the current model, formal-actual-list specifies the association
between formal variables in model-name and actual variables in the current
model. Formal variables are declared in the reference model, while actual vari
ables are variables declared in the current model, formal-actual-list is a list of
assignments separated by a white space. The declaration of formal-actual-list
is of form:

formal-1 = actual-1 formal-2 = actual-2 ... formal-n = actual-n

The order of formal variables is unimportant.

1.6 Miscellaneous Features

1.6.1 Comments

Any line starting from # is a comment. It is ignored by the parser.

1.6.2 Including Files

The . include construct can be used to include another file from a file being
read. The syntax is .include fileName.

2 Semantics

In this section we describe the semantics of BLIF-MV. The semantics is de
fined over flattened networks where all the . subckt constructs are substituted

recursively until leaf models. Leaf models are models without any . subckt
declarations. In the following, a flattened network is called a system.



At every time point, the system is in some state, where each latch has a value.
An initial state of the system is a state where every latch is set to an initial state
declared using the .reset constructs. Notice that the system can have more
than one initial state in general. At every clock tick, all the latches update their
values. These values then propagate through tables until all the wires have a
consistent set of values. If a latch is encountered during the propagation, i.e.
an output of a table is an input of an latch, the propagation process is stopped.
Note that because of nondeterminism, given a single state, there may be several
consistent sets of values.

The semantics can be seen as a simple extension of the standard semantics of
synchronous single-clocked digital circuits. In fact, if every table is deterministic
and every latch has a single initial state, the two semantics are exactly equal.
The only differences are in the interpretation of nondeterministic tables and
latches with multiple initial states as described in the above.

3 The VIS-v Subset of BLIF-MV

VIS-v can only work on a strict subset of BLIF-MV although any synthesis-
related commands like read_blif and write_blif, are applicable to the full-set
of BLIF-MV. If the user generates BLIF-MV files using VL2MV following a cer
tain restriction (See the VIS users' manual for details), the files are guaranteed
to be in the subset. However, if BLIF-MV files are generated manually, the user
must make sure that the files are in the VIS-v subset. Otherwise, init.verify
simply fails, thereby making it impossible to perform the verification.

The restriction we pose is as follows.

• The only allowable nondeterministic tables are pseudo-input tables, which
are no-input, single-output tables which generate more than one output
nondeterministically.

Note that one can always transform any BLIF-MV file to its equivalent BLIF-
MV file in the VIS-v subset by determinizing all intermediate nondeterministic
tables by adding pseudo-inputs.



1 Introduction

This manual provides a brief overview of the architecture of VIS. The first
section looks at VIS as a whole, and subsequent sections cover the major com
ponents of VIS.

VIS was designed to be modular and lightweight. By understanding the
architecture of the system, future VIS developers can work to maintain these
attributes.

2 vis

VIS is partitioned into three main components:

1. VIS-F—The front end. It provides the ability to read and write BLIF-MV
files, and supports a hierarchical data structure mimicking the constructs
of BLIF-MV.

2. VIS-V — The verification system. This provides facilities for combina
tional and sequential equivalence checking, fair CTL model checking, and
cycle-based simulation.

3. VIS-S — The synthesissystem. This provides state minimization, variable
encoding, and hierarchical restructuring capabilities.

Figure 1 is a block diagramshowing how the three componentsinteract. The
packages that constitute each component are listed along with edges denoting
dependencies among the packages, gul is the Generic Utilities Library, which
contains utility packages such as array, list, and bdd. Note that

• VIS-F does not depend on VIS-V or VIS-S, and

• VIS-V and VIS-S are independent.

The first point allows VIS to be easily compiled leaving out VIS-V, VIS-S,
or both, to produce an executable containing a subset of the capabilities. The
second point forces communication between verification and synthesis to occur
via the front end, rather than directly.

The division of VIS into the three components is not reflected in the directory
structure of the source code. Instead, all packages are kept within a single
directory named src.

3 VIS-F: Front End

VIS-F is the front end. It provides an in-memory representation of BLIF-MV.
This hierarchical representation can be traversed and manipulated. VIS-F con
sists of the following packages:

• vm — Contains the mainO function, and provides the compilation date,
version number, and the location of the VIS library.1

• cmd — The interactive command interface. Provides a global tabic to
store values for user-settable variables (e.g., the value autoexec). Also
provides the system level commands like help, alias, and set.**

'Largely borrowed from the sain package of SIS.
2Largely borrowed from the cooaand package from SIS.
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Figure 1: Components and packages of VIS. An edge from package A to B
denotes that A depends on B (edges implied by transitivity are not shown).



• mvf — A data structure to represent multi-valued input, multi-valued
output functions, based on BDDs.

• tbl — A data structure to represent multi-valued relations, in particular
the .table construct in BLIF-MV.

• var — A data structure to represent multi-valued variables, in particular
the .mv construct in BLIF-MV.

• hrc — Data structures to represent ahierarchical design, in particular the
.model, .subckt, and .latch constructs in BLIF-MV.

• io — Routines to read and write BLIF-MV and BLIF files.

• tst — A package template that can beused as the starting point for the
creation of new packages.

When aBLIF-MV file is parsed, adirected acyclic graph ofmodels iscreated
by the io package, corresponding to the hierarchy given inthe file. The DAG is
then transformed by io into a tree by creating separate nodes for each instan
tiation of a model. TVaversal and manipulation of the hierarchy takes place on
the tree, and not the DAG, using routines provided by hrc.

The HrcJIode.t data structure provides a lookup table for applications (i.e.,
VIS-V and VIS-S) to store data associated with anode inthe hierarchy. In this
manner,VIS-F can remain independent of VIS-V and VIS-S.

4 VIS-V: Verification

VIS-V provides analysis capabilities for designs. From any node in the hierar
chy (the current node), executing the command flattenJiierarchy causes a
flattened network to be creatpd, representing everything from the current node
down to the leaves of the hierarchy. Having a flattened representation in which
all combinational "gates" and latches exist in a single network allows for the
global analysis of that part of the design encompassed by the current node of
the hierarchy. The packages of VIS are:

• ntk — A directed graph representation, where the vertices are "gates,"
inputs and latches. Combinational cycles are not precluded by the net
work data structure, but many of the packages assume the absence of
combinational cycles.

• ord — Routines to order the MDD variables of a network, based on the
structure of the network. Also provides an interface to dynamic ordering
of variables.

• ntm — A routine to build the Mvf_Function_ts of the roots of an arbitrary
region of a network, in terms of the leaves of the region. The leaves can
be treated as variables or as specific constants.

• part — Provides routines to build an MVF representation of a network.
The MVFs arestored at the vertices of a DAG, where the sinks correspond
to the combinational outputs of the network, and the sources to the com
binational inputs. In general, intermediate vertices can be introduced to
control the size of the MVFs.

• sim— A cycle-based network simulator. Simulation is performed by eval
uating the MVFs provided by the part package. Simulation vectors can
be provided by the application, or random simulation can be performed.



• img — Generic routines for performing forward and backward image com
putation. The routines work offthe graph of MVFs provided by the part
package, and have nodirect knowledge of the ntk or tsm packages. Since
this is an active area of research, a generic interface has been designed to
easily allow the additionof new computation methods.

• f 8m — An abstraction of a network. The FSM does not actually store the
next state functions of the FSM — these are provided by part. It does
store the vectors of present state and next state variables, reachability
information, fairness constraints-related information, and image compu
tation information.

• mc — A fair CTL model checker and debugger for FSMs.

• eqv— Routines for performing combinational equivalence between regions
of two networks, and for performing sequential equivalence between two
FSMs.

• ctlp — A CTL parser.

The nodes ofanetwork have asingle output. The function of acombinational
node of a network is represented by a Tbl.Table_t. A k-output table in the
hierarchy is represented by k combinational nodes in the corresponding network,
where each of the k nodes points to the same table, but are distinguished by
which output column they represent. This splitting is done by the flattening
routine in the ntk package.

Throughout VIS-V, it is assumed that the combinational outputs are com
pletely specified and deterministic. Non-determinism is introduced via pseudo-
inputs. A pseudo-input is like a non-deterministic constant that can update its
value on each clock cycle. See the documentation for the ntk package for more
information on pseudo-inputs.

Because the emphasis of VIS-V is on analysis, the ability to modify the
network data structures is not provided. It is assumed that once a network is
created from the hierarchy, the network will be unchanged until it is destroyed.

Notice that the ntk package is independent of all other packages in VIS-V.
This independence is maintained by allowing applications (e.g., 1em, part) to
store information associated with a network in a lookup table. It is important
to maintain this independence so that the ntk data structures do not become
cluttered.

5 VIS-S: Synthesis

No packages have been written yet for this component. It is anticipated that
packages will be added to support state minimization, variable encoding, hier
archical restructuring, and other operations. However, note that VIS-F already
allows a BLIF file to be written, which can be massaged by the sequential syn
thesis system SIS and read back into the hierarchy.

6 Possible Improvements

1. The mvf package could be located in the Generic Utilities Library.

2. One existingcomplication in removing the restriction that networks can't
be modified is that the Tbl.Table.t and Var.Variable.t data within a
network are owned by (and hence freed by) the hierarchy manager (hrc
package). This could be resolved by creating a global manager for tables
and a global manager for variables.
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Chapter 1

Introduction

Thisdocument describes a setof conventions1 for organizing and writing C code
in the ucb cad Group's vis system2. The conventions concern the naming of
functions, macros, and variables; the style of documentation within the code; and
the organization and naming of source files.

The reasons for adopting these conventions are

• Workability: Design decisions are simplified.

• Maintainability: Consistency makes the code comprehensible to other pro
grammers.

• Predictability: Conventions aboutnames andcomments make it easy to write
scripts that automatically extract information (documentation and prototype
extraction).

In this document, we will discuss how code within vis is organized, how
identifiers (functions, macros, structures, etc.) within vis are named, and finally
how code within vis is maintained.

Chapter 2 describes how C code within vis is divided into packages, a group
of files centered around either a data structure or a function. It also introduces the

structured comment, a C comment formatted to allow the automatic extraction of

documentation.

Chapter 3 discusses naming conventions for functions, macros, structures, and
variables. These conventions make the type, scope, and function of identifiers
evident from their names. Chapter 4 illustrates these conventions with a simple
package.

Chapter 5 describes maintenance programs for this environment, and Chapter 6
describes how to compile and how to createa new package under vis.

'Many ofthese conventions come from John Ousterhout's Tcl/Tk Engineering Manual, available
with theTcl/Tk distribution from ftp. cs. berkeley. edu. The functionnaming conventionsand
the automatic prototype extractor were also inspired by the ideas of Herve Touati, Jean Christophe
Madre, and Olivier Coudert. The documentationextractor for Sun's Java language is similar to ours
(http://Java, sun.com).

Verification Interactive System



Chapter 2

Packages and File Structure

2.1 Packages

Code in vis is divided into packages. A package is a group of source (. c) and
header files (. h) in a subdirectory centered around eithera function(e.g., the BDD
variable ordering package "ord"), or a data structure (e.g., the network package
"ntk"). Each packagehas ashorttwo- to five-letter name, calledthe shortpackage
name,placed in front ofall filenames and external identifiers related to the package.
This name may appear in all lowercase, or with its first lettercapitalized, written
as package and Package respectively.

Each package should contain two header files. The external header file, named
package.h, defines features visible from outside the package. The internal header
file, namedpackage I nt. h, defines features used in multiple files insidethe pack
age,but not outside. If necessary, a thirdheader file, namedpackage?out. h, can
be included. This should contain definitions for the package that hide differences
between systems. No additional header files shouldbe used—everything should
go into the two main headers.

The names of C source files begin with the short package name followed by
a seriesof English words (or abbreviations) with their first letters capitalized. No
filename can be longer than fifteen characters. (This is a limitationimposed by the
library archive program ar.)

Listed below are the names of files in an example package called rng. It has
an external header file, an internalheader file, a header file for portability,and two
. c files. Other packages may have more . c files, but shouldnot have more .h
files.

Name Contains

rng.h Externally-visible functions, etc.
rngint.h Functions, etc., intemal to the package

rngPort.h #de fines, etc., that hide system differences
rngUtil.c Utility functions
rnglntUtil.c Internal utility functions



2.2 C Header Files

Both the intemal and external headers follow the same structure:

1. A CHeaderFile structured comment describing the contents of the file,
described in Section 2.4.1. The external header file's comment should be

directed toward programmer who will use the package; the internalheader
file's comment should be directed toward maintainers. Both should be self-

contained.

2. #ifdef and#definestatementsthatpreventthisfrombeing#included
twice. In the external header file, the name should be an underscore followed
by the shortnameofthe package in allcaps, e.g., _NTK. In the internal header
file, the name should be an underscore followed by the short name of the
package followed by "INT", e.g., .NTKINT.

3. In the intemal header file, #include "vm.h", which will include the
headers for all other packages. In the external header file, #include
system header files only (i.e., those defined by ANSI C, e.g., #include
<stdio.h>).

4. Declarationsofnon-functions, each type in a separate section with a leading
comment

5. An automatically-generated section surrounded by AutomaticStart and
Automat i cEnd comments. Anything between these comments is removed
by the automatic prototype extractor, so the programmershould put nothing
here.

6. The #endif directive for the leading #ifdef.

A template C header file that includes all the required sections and comments
is shown below.

/**CHeaderFile*****************************************************************

Filename [ required ]
PackageName [ required ]
Synopsis [ required ]
Description [ optional ]
SeeAlso [ optional ]

Author [ optional ]

Copyright [ required ]
Revision [ $Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gins Exp $ ]

*******************************************************

iifndef _
#define _

/* */

/* Constant declarations */
/* */

/* */

/* Type declarations */
/* */

/* */

/* Stucture declarations */
/* */



/* */

/* Variable declarations */
/* */

/* */

/* Macro declarations */
/* */

/**AutomaticStart*************************************************************/

/* */

/* Function prototypes */
/* */

/**AutomaticEnd***************************************************************/

#endif /* */

2.3 C Source Files

A C source file contains the following:

1. A CFile structured comment describing the contents of the file, described
in Section 2.4.2.

2. #include "packagelnt .h".

3. An RCS string, used by the revision control system described in Chapter 5.

4. Declarations and definitions ofnon-functions, each type in a separate section
with a leading comment.

5. An automatically-generated sectionsurrounded by AutomaticStart and
Automat i cE nd comments. Anything between these comments is removed
by the automatic prototype extractor, so the programmershould put nothing
here.

6. Three sections, each with a leading comment, separated into definitions for

(a) Functions visible outside the package

(b) Functions visible to all files within the package only

(c) Functions visible to the file only

A template C source file that includes all the required sections and comments
is shown below.

/**CFile***********************************************************************
FileName [ required ]
PackageName [ required ]
Synopsis [ required ]
Description [ optional ]
SeeAlso [ optional ]
Author [ optional ]
Copyright I required ]

******************************************************************************/

#include "Int.h"

5



static char rcsid[] = "$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $";
USE(resid);

/* */

/* Stucture declarations */
/* */

/* */

/* Type declarations */
/* */

/* */

/* Variable declarations */
/* */

/* */

/* Macro declarations */
/* */

/**AutomaticStart*************************************************************/

/**AutomaticEnd***************************************************************/

/* */

/* Definition of exported functions */
/* */

/* */

/* Definition of internal functions */
/* */

/* */

/* Definition of static functions */
/* */

2.4 Structured Comments

Documentation for packages, functions, macros etc. is embedded within C source
and header files in "structured comments," which can be understood by programs.
Forexample, the extdoc program described in Section 5.2 can extract this doc
umentation and format it for a text file or in HTML format suitable for the World

Wide Web. The extproto program described in Section 5.1 also uses these
comments to extract function declarations.

Any definition (e.g., functions, macros, structures) must be preceded by a
structured comment that indicates information about its functionality, use, etc. We
suggest you write this documentation for your package before you write its code.
This ensures the documentation gets written and allows you to see the package's
complete interface.

A structured comment begins with a line beginning with "/**" (i.e., with
no leading whitespace). The type of the comment (e.g., CFile, Function)
is an alphanumeric string on the first line that may be embedded in asterisks or
whitespace. A structured comment ends with a line containing "* /".

Between the start and end lines are field-value pairs separated by whitespace.
A field is an alphanumeric string and a value is a square bracket-enclosed string
that may include newlines. A value may not include a close-bracket unless it is
escaped with a backslash, i.e., \ ]. The order of field-value pairs in a structured
comment is irrelevant, but they must appear in pairs. A field-value pair named



Comment is ignoredby all automatic extraction tools, allowing comments within
structured comments.

Certainvalues, such asthe Synopsis andDescription fields, may include
HTML1 directives. These include <pre> and </pre>, which begin and end a
section of preformatted text, i.e., that will be displayed with spaces and newlines
intact, and <p>, which indicates a paragraph break.

2.4.1 CHeaderFile

The CHeaderFile structured comment at the beginning of aheader filecontains
the following fields, some of which areoptional:

FileName

Package

Synopsis

Description

SeeAlso

Author

Copyright

Revision

required The name of the header file
required The short name ofthe package, all lowercase
required A one-line summary of the package
optional A more detailed description of the package, pos

sibly multiple paragraphs. In the external header
file, this should be directed toward users of the
package. In the internal header file, this should
be for maintainersof the package. This should be
self-contained in both cases,

optional A space-separated list ofnames ofthings that may
be of interest (e.g., packages, files, etc.)

optional The author or authorsof the package
required A copyright notice for the file
required The string

$ Id: vis\_eng.tex,v 1.11
1995/07/08 20:32:28 sedwards Exp gms $

, used by the revision control system.

An example CHeaderFile comment is shown below.

/♦♦CHeaderFile***************************************************************

FileName [ rng.h ]

PackageName [ rng ]

Synopsis [ Manipulation of integer ranges, e.g., 5-7. ]
Description [ Routines for creating, adding to, querying, and

deleting ranges. ]
SeeAlso [ rngint.h ]
Author [ Gitanjali Swamy ]
Copyright [ Copyright (c) 1994-1996 The Regents of the Univ. of California.

All rights reserved. ]
Revision [$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $J

******************************************************************************/

2.4.2 CFile

The CFile structured comment at the beginning of a source file contains the
following fields, some of which are optional:

1HTML: Hyper Text Markup Language, usedon theWorld-Wide Web. A complete description
of these directives may be found at
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html.



FileName

Package

Synopsis

Description

SeeAlso

Author

Copyright

required
required
required
optional

The name of the source file

The short name of the package, all lowercase
A one-line summary of the file's contents
A more detailed description of the file, possibly
multiple paragraphs. It should be self-contained,

optional A space-separated listofnamesofthingsthatmay
be of interest (e.g., packages, files, etc.)
The author or authors of the file

A copyrightnotice for the file
optional
required

An example CFile comment is shown below.

/**CFile*********************************************************************
FileName [ rngUtil.c ]

PackageName [ rng ]
Synopsis [ Memory and read/write utilities for the Range package ]
Description [ Contains routines for creating and deleting ranges,

and asking questions of them ]
SeeAlso [ rngOtillnt.c ]

Author [ Gitanjali Swamy ]
Copyright [ Copyright (c) 1994-1996 The Regents of the Dniv. of California.

All rights reserved. ]
******************************************************************************/

2.4.3 Function

The fields in the Function structured comment are

Synopsis required
Description optional

SideEffects required

SeeAlso optional

CommandName optional

CommandSynopsis optional
CommandArgument s optional

CommandDescription optional

A one-line synopsis of the function
A longer description of the function: its parame
ters, its return type, and how it is computed. This
should be self-contained.

A description of any side effects (e.g., modifica
tion ofglobal variables). If there are none, include
an empty string: " [ ]".
A space-separated list of the names of related
functions, files, packages, etc.
The name of the command that invokes this func

tion. Omit when the function is not a command.

A one-sentence synopsis of the command.
The command-line arguments recognized or re
quired by the command.
A full description of the command.

To document a function's parameters and return type, insert standard /* */-
enclosed C comments after each parameter and after the return type. Param
eter comments should follow the parameter name, before the comma or close-
parenthesis. A return type comment should be between the return type and the
function name. All of these comments are optional.

If the function can be invoked directly from the command line, it should include
the Command fields. The sentence in the CommandSynopsis field should be an
imperative command, e.g., "read a network" instead of "reads a network." Omit
a trailing period. The CommandArgument s field should have symbolic names
enclosed in angle brackets (e.g., <list>), and optional arguments enclosed in



escaped squarebrackets (e.g., \ [ -v \ ]). The CommandDescript ion field
should fully document the command, and may use arbitrary html constructs.

An example Function comment with partial definition is shown below.

/**Function*******************************************************************
Synopsis [ Check if two ranges overlap ]
Description [ If any integer is common to both of the given ranges,

return TRUE, otherwise return FALSE. ]
SideEffects []

SeeAlso [ Rng_RangeOrWithRange ]
******************************************************************************/

static boolean /* TRUE if the ranges overlap */
RangeOverlap(

Rng_Range__t * rangel /* first range */,
Rng_Range_t * range2 /* second range */)

{/*...*/}

2.4.4 Macro

The Macro fields in a structured comment are identical to those for Function.

It is intended that macros are indistinguishable from functions.
To document the arguments in a macro, insert standard C comments after

each argument name, before a commaor close-parenthesis. These comments are
optional.

An example Macro comment withapartial definition is shown below.

/**Macro**********************************************************************
Synopsis [ Return the lower number in a range ]
SideEffects []

SeeAlso [ Rng_RangeSetEnd ]
******************************************************************************/

#define Rng_RangeReadEnd(range)\
(((range->begin) =< RNG_MAX)? (range->begin): RNG_MAX)

2.4.5 Struct and Variable

Struct and Variable structured comments have identical fields:

Synopsis required A one-line synopsis
Description optional A longer description. This should be self-

contained.

SeeAlso optional A space-separated list of the names of related
functions, files, packages, etc.

To comment the fields in a structure definition, place a C comment aftereach
field definition, after the semicolon. These comments areoptional.

Example Struct and Variable comments are shown below.

/♦•Struct*************************************************************
Synopsis t Represents an integer range ]
Description [ Uses two integers to represent the range.

Under normal circumstances, begin <= end. ]
SeeAlso [ Rng_RangeAlloc Rng_RangeFree ]

**********************************************************************/

typedef struct RngRangeStruct {
int begin; /* The lower limit */
int end; /* The upper limit */

} Rng_Range_t;



/♦♦Variable***********************************************************
Synopsis [ The number of ranges current in existence ]
Description [ Whenever RngJRangeAlloc is called, this is incremented.

Whenever Rng_RangeFree is called, this is
decremented. This should always be positive

SeeAlso [ Rng_RangeAlloc RngJRangeFree ]
**********************************************************************/

int Rng numRanges;

2.5 Low-Level Coding Conventions

To make code in the vis environment look consistent, we have the following

conventions about its appearance:

• Lines are eighty characters wide. Anything wider is difficult to read and
print. Insert line breaks as necessary to ensure this.

• Indents are two spaces. This is smallerthan other systems,but reduces the
chance of nested instructions marching off the right side of the page.

• Comments within code occupy full lines. Comments tacked on to the
right of statements can be hard to see and make it difficult to modify the
code. Comments to the right of variable declarations, structure members,
and arguments in function definitions are fine.

• Open-braces go at the end of lines. Gose-braces should come at the
beginningof a followingline. The bracesenclosing a function definition are
the one exception to this rule.

Alwaysuse curly braces in compound statements, even if they enclose only
one statement. This makes it easier to correctly add statements to the block,
and simplifies setting breakpoints in a debugger.

The following fragment illustrates these conventions.

void

Ntk_NodeDeclareAsCombinational(
Ntk_Node_t * node,
Tbl_Table_t * table,
array_t * inputNames /* array of char */,
int outputlndex)

{

/*
* If the output column of a table can take only
* a single value, set the constant flag.

*/

if ( Tbl_TableTestIsConstant(table, outputlndex) ) {
node->constant =1;

}

/*

* Print the node's name, MDD id, type, and attributes,

*/

(void)

fprintf(fp, "%s: mdd-%d, %s;%s%s%s%3%s%s\n",
Ntk NodeReadName(node),
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Ntk_NodeReadMddId(node),
typeString,
(Ntk_NodeTe3tIsPrimaryOutput(node) ? " output" : ""),
(Ntk_NodeTestIsConstant(node) ? " constant" : ""),
(Ntk_NodeTestIsLatchDataInput (node) ?
" data-input" : ""),
(Ntk_NodeTestIsLatchInitialInput (node) ?
" initial-input" : ""), ,
(Ntk_NodeTestIsCombInput(node) ? " comb-input" : ""),
(Ntk_NodeTestIsCombOutput(node) ? " comb-output" : "")
);
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Chapter 3

Naming Conventions

This chapter discusses the conventions for naming functions, macros, structures,
and variables within the vis environment. The objective of these conventions is
for a name to be canonical and to completely identify its type and scope. Adher
ing to these conventions is necessary for the automatic prototype generation and
documentation tools to work, described in Chapter 5.

When names are longer than one English word, the words are catenated and
their first letters capitalized, e.g., ThisisALongExample. This is shorter than
other styles, and is at least as readable.

The environment defines three scopes, each of which has its own naming
convention:

• External: features visible outside the package. Names are prefixed with
"package-".

• Intemal: features not visible outside, but visible throughout the package.
Names are prefixed with "package".

• Local: features visible only within a single file or function. Names have no
package prefix.

Functions and macros, variables, and structures each have their own naming
convention:

• Functions/Macros: The package name and the first word of the rest of the
name are both capitalized.

The words in a function name are arranged in an English sentence-like order:

1. First word: Name of the object being operated on: the subject of the
sentence (e.g., Range, Network).

2. Second word: The action being performed on the object: the verb of
the sentence (e.g., Read, Obtain, Alloc). Obtain is used for
functions that return a pointer to a copy of a data structure that must
later be freed be the caller. Read is used for all other cases. Get

should not be used.

3. Third and successive words: Modifiers: the object ofthe sentence (e.g.,
States, RightChild, BddldArrayFromMddld)

12



• Variables: The package name is lowercase. The first word of the rest of
name is lowercase except for intemal variables.

• Structures: Type definitions for these have the package name and the first
word is capitalized, and the name has a _t suffix.

• Constants: All letters are capitalized; all words are separated by underlines

• Enumerations: Type definitions for these have the package name and the
first word capitalized, and the name as a _c suffix.

The table below gives examples of names.

External Internal Local

Functions,

Macros

RngJRangeReadLowe r RngRangeReadLowe r ReadLower

Variables r ng-numRanges rngNumRanges numRanges

Structures Rng.IntRange.t RnglntRange.t IntRange.t

Enumerated

types

Rng_FastMethocLc RngFastMethod-c FastMethod-c

Constants RNG-MAX.INT RNGMAX-INT MAX.INT

13



Chapter 4

An Example Package

This chaptercontains anexample packageintended to clarify the conventions. This
is a package called "rng" that manipulates a data structure describing an integer
range, i.e., sets of the form {x : L < x < U} for integers L and U.

This small, contrived example contains 4 files: two header files, rng. h and
rngint. h; and two source files, rngUtil. c, and rnglntUtil. c.

4.1 The External Header File rng. h

/**CHeaderFile*********************************************************

FileName [rng.h]
PackageName [rng]
Synopsis [This package deals with functions that are used to manipulate
the range (Rng_Range_t) data structure.]

Description [ The basic data structure in the range package is an
integer range. The range is designated as (L,U), where L is the lower limit of
the range, and u is the upper limit of the range, and
includes all integers x, L =< x =< D).]
SeeAlso [tbl]

Author [Gitanjali Swamy]

Copyright [Copyright (c) 1994-1996 The Regents of the Univ. of California.
All rights reserved.]
Revision [$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $]

********************************************************

#ifndef _RNG
#define _RNG

/* */

/* Constant declarations */
/* */

int RNG_MIN = 0;
int RNG_MAX - 5000;

/* */

/* Type declarations */
/* */

typedef struct RngRangeStruct Rng_Range_t;

/* */

/* Variable declarations */
/* */

int Rng_NumRanges;

/* */

/* Macro declarations */
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/♦♦Macro***********************************************************

Synopsis [Return the beginning of the range.]
Description [Given a range {L,U>, this returns the beginning value

L of the range.]
SideEffects []

SeeAlso [Rng_RangeReadEnd]
******************************************************************************/

♦define Rng_RangeReadBegin(range)\
(((range->begin) >= RNGJMIN)? (range->begin): RNG_MIN)

/♦♦Macro**********************************************************************

Synopsis [return the end of the range.]
Description [Given a range {L,U>, this returns the ending value

D of the range.]
SideEffects []

SeeAlso [Rng_RangeReadBegin]
♦*♦*♦♦♦**************************♦♦♦♦♦**********♦♦♦♦♦♦♦♦♦♦♦*******♦♦♦♦♦♦♦♦♦♦♦*/

♦define Rng_RangeReadEnd(range)\
(((range->begin) =< RNG_MAX)? (range->begin): RNG_MAX)

/**Macro**********************************************************************
Synopsis [Set the beginning of the range.]
Description [Given a range and a value L, this sets the beginning value

L of the range.]

SideEffects [There original beginning value of the range is lost.]
SeeAlso [Rng_RangeSetEnd]

************************************************♦*********♦♦♦*****************/

tdefine Rng_RangeSetBegin(range,val)\
((val >= RNG_MIN)? ((range->begin)=val): (range->begin =RNG_MIN))

/**Macro**********************************************************************
Synopsis [Set the end of the range]
Description [Given a range and a value L, this sets the end value
L of the range.]
SideEffects [There original ending value of the range is lost.]
SeeAlso [Rng_RangeSetBegin]

**********************************♦*************♦♦♦♦♦♦♦***********************/

♦define Rng_RangeSetEnd(range,val)\
((val <= RNG_MAX)? ((range->end)=val): (range->end =RNG_MAX))

/**Macro***********************************************************************
Synopsis [Get the maximum of two number]
Description [Given two integers ul and u2, this will return the
maximum of the two]

SideEffects []

SeeAlso [RngRangesMin]
*******************************************♦**********************************/

♦define RngRangesMax(ul, u2)\
(ul > u2) ? ul:u2

/**Macro***********************************************************************
Synopsis [Get the minimum of two number]
Description [Given two integers ul and u2, this will return the
minimum of the two]

SideEffects []

SeeAlso [RngRangesMax]
*********************************♦♦♦♦♦♦♦♦********♦♦**♦♦♦**********************/

♦define RngRangesMin(ul, u2)\
(ul < u2) ? ul:u2

/♦♦AutomaticStart*************************************************************/

/**AutomaticEnd***************************************************************/
♦endif /* RNG */
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4.2 The Internal Header File rngint. h

/♦•CHeaderFile*****************************************************************

FileName [rngint.h]
PackageName [rng]
Synopsis [This package deals with functions that are used to manipulate
the range (Rng_Range_t) data structure.]

Description [ The basic data structure in the range package
is an integer range (range= {L,U}, where L is the lower limit of
the range, and U is the upper limit of the range. The range [L,D]
includes all integers x, L =< x «=< U) .]
SeeAlso [tbl.h rng.h]

Author [Gitanjali Swamy]
Copyright [Copyright (c) 1994-1996 The Regents of the Univ. of California.
All rights reserved.]
Revision [$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $]

***********♦♦♦♦♦♦♦**************************♦♦♦♦******************************/

♦ifndef _RNGINT
♦define _RNGINT

♦include "vm.h"

/* */

/* Stucture declarations */
/* */

/**Struct*************************************************************
Synopsis [ This struct represents a range.]
Description [ This struct represents a range and has 2 fields;

the beginning and the end.]
SeeAlso [ Rng_RangeAlloc Rng_RangeFree ]

*********************************************♦************************/

struct RngRangeStruct {
int begin; /* The beginning of the range */
int end; /* The end of the range */

);

/* */

/* Variable declarations */
/* */

extern int Rng_NumRanges;

/**AutomaticStart*************************************************************/
/**AutomaticEnd***************************************************************/
♦endif /* RNGINT */

4.3 rngUtil.c

/**CFile***********************************************************************
FileName [rngRangeUti1.c]
PackageName [rng]
Synopsis [This file deals with utilities that are exported to
handle the range Rng_Range_t data structure.]

Description [ This file contains memory management utilities, and
functions for oring together two ranges. The range data structure or
Rng_Range_t has two fields; range->begin (the beginning of the
range) and range->end (the end of the range). These are accessed using
macros define in rng.h.]

SeeAlso [rng.h rngint.h rngUtillnt.c]
Author [Gitanjali Swamy]
Copyright [Copyright (c) 1994-1996 The Regents of the Univ. of California.
All rights reserved.]

*****************♦************************************************************/
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♦include "rngint.h"

static char rcsid[] = "$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $";
USE(resid);

/**AutomaticStart*************************************************************/

/♦♦AutomaticEnd***************************************************************/

/* */

/* Definition of exported functions */
/* */

/♦♦Function********************************************************************

Synopsis [Allocates memory for a Rng_Range_t.]
Description [This functions takes no inputs, and when called
allocates space for and returns a new Rng_Range_t.]
SideEffects []

SeeAlso [Rng_RangeFree]
****************************************************♦♦♦************♦♦♦♦♦♦♦♦♦♦♦/

Rng_Range_t*
Rng_RangeAlloc()

{

Rng_Range_t *range;

range = ALLOC(Rng_Range_t,1);
return range;

}

/**punction********************************************************************

Synopsis [Free memory associated with a Rng_Range_t.]
Description [This function takes a Rng_Range_t* as input, and free
the memory used by it.]
SideEffects [Rng_Range_t is no longer valid.]
SeeAlso [Rng_RangeAlloc]

**************************************************************♦♦♦♦♦***********/

void

Rng_RangeFree(Rng_Range_t *range)
{

FREE(range);

}

/**punction********************************************************************

Synopsis [OR two ranges.]
Description [Given two ranges, this function OR's together the two,
and returns the result. If the two ranges do not overlap it returns

with an error flag.]

SideEffects []
•a****************************************************************************/

Rng_Range_t *
Rng_RangeOrWithRange(Rng_Range_t* rangel, Rng_Range_t* range2)
{

Rng_Range_t* newrange;

if ( !(RangeOverlap(rangel,range2)) || !(RngRangeIsOK(rangel)) II
!(RngRangeIsOK(range2)) ) (

error_flag();
return NIL(Rng_Range_t);

} else (

newrange = Rng_RangeAlloc();
Rng_RangeSetBegin( newrange, RngRangesMin(Rng_RangeReadBegln(rangel),

Rng_RangeReadBegin(range2)) );
Rng_RangeSetEnd( newrange, RngRangesMax(Rng_RangeReadEnd(rangel),

Rng_RangeReadEnd(range2)));

}
return newrange;

)

/* */

/* Definition of static functions */
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/* */

/♦♦Function********************************************************************

Synopsis (Check if ranges overlap.]
Description [Given two ranges of the type Rng_Range_t*, this
function returns TRUE if they overlap, and FALSE if they do not.]
SideEffects []

SeeAlso [Rng_RangeOrWithRange]
********************************************♦♦***************♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦/

static boolean

RangeOverlap(Rng_Range_t *rangel, Rng_Range_t *range2)
{
if ( (Rng_RangeReadBegin(rangel) > (Rng_RangeReadEnd(range2) -1)) II

(Rng_RangeReadBegin(range2) > (Rng_RangeReadEnd(rangel) -1)) ) {
return 0;

} else {

return 1;

}

}

4.4 rnglntUtil.c

/**CFiie**************************A^****^**************************************

FileName [rngRangelntUtil.c]

PackageName [rng]

Synopsis [Internal package utilities in the range package.]
Description [ This has just one internal function called RngRangelsOk.]
SeeAlso [rng.h rngint.h rngUtil.c]
Author [Gitanjali Swamy]

Copyright [Copyright (c) 1994-1996 The Regents of the Univ. of California.
All rights reserved.]

***************************************************************♦♦♦♦♦♦♦♦♦♦***♦*/

♦include "rngint.h"

static char rcsid[] = "$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $";
USE(resid);

/**AutomaticStart****************************♦♦♦♦♦♦♦***♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦***/

/**AutomaticEnd***************************************************************/

/* */

/* Definition of internal functions */
/* */

/**Function********************************************************************

Synopsis [Check if a Rng_Range_t is well ordered.]
Description [Given a Rng_Range_t , this function returns TRUE if it
is a valid range, and FALSE if it is not.]

SideEffects []
******************************************************************************/

boolean

RngRangelsOK(Rng_Range_t *range)

{

if (Rng_RangeReadBegin(range) <= Rng_RangeReadEnd(range)) {
if (Rng_RangeReadBegin(range) => RNG_MIN) {

if (Rng_RangeReadEnd(range) <= RNG_MAX) {
return 1;

}

}

}

return 0;

>
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Chapter 5

Maintenance Utilities

The vis environment currently has two maintanance utilities; extdoc, which
extracts documentation from source code, and extproto, which automatically
inserts function declarations within header and source files.

vis uses the Revision Control System, or RCS, for version control.

5.1 extproto

Extproto analyzes source code and inserts automatically-generated function
declarations into the appropriate source andheader files. It requires a package that
follows the conventions in Chapters 2 and 3.

When runon aheader file namedpackage. h (the external header file), it looks
for externally-visible functions (i.e., those with the prefix Package.) and places
them between the /**AutomaticStart*** and /**AutomaticEnd***

comments within the header file described in Chapter 2.
When run on a header file named packagelnt. h (the internal header file),

it looks for internally-visible functions (i.e., those with the prefix Package) and
placesthem between the automatic comments within the file.

When run on a C source file, it looks for static functions and places them
between the /**AutomaticStart** and /**AutomaticEnd comments.

Forexample, ifextproto is runonthe rng exampledescribed inthe previous
section, then it will add lines to the files in the package as shown.

• To extract the static functions in rngUtil. c,

% extproto rngUtil.c
processing rngUtil.c
%

which adds the following lines to rngUtil. c:

/♦♦AutomaticStart♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*******************************************/

/* ♦/

/* Static function prototypes */
/* */

static boolean RangeOverlap(Rng_Range_t *rangel, Rng_Range_t ♦range2);

/**AutomaticEnd***************************^^^#AAW**************************/
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• To extract the intemal and external function prototypes into the appropriate
headers,

% extproto *.h

processing rng.h
processing rnglntutil.c
processing rngUtil.c
Writing rng.h, the external header
processing rngint.h
processing rngintuti1.c

processing rngUtil.c
Writing rngint.h, the internal header
%

which adds the following lines to rng. h, the external header

/♦♦AutomaticStart*************************************************************/

/* */

/* Function prototypes */
/* */

EXTERN Rng_Range_t* Rng_RangeAlloc();
EXTERN void Rng_RangeFree(Rng_Range_t *range);
EXTERN Rng_Range_t* Rng_RangeOrWithRange(Rng_Range_t* rangel,

Rng_Range_t* range2);

/**AutomaticEnd**##^#**♦♦♦******************♦♦♦♦♦♦♦♦♦♦♦♦♦*********************/

and the the following lines to rngint. h, the intemal header

/♦♦AutomaticStart*************************************************♦♦♦♦*♦♦♦♦♦**/

/* */

/* Function prototypes */
/* */

EXTERN boolean RngRangeIsOK(Rng_Range_t ♦range);

/♦♦AutomaticEnd^w*^^^###A#*****************♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦********♦♦♦♦♦♦♦♦/

5.2 extdoc

Extdoc extracts documentation from packages that follow the conventions in
Chapters2 and 3. It can write both simple text files, or HTML for the World Wide
Web.

For example, running extdoc on the rng package of Chapter 4 in text-
producing mode,

% extdoc —text rng

processing rngRangelntUtil.c

processing rngRangeUtil.c
processing rngint.h

processing rng.h

writing rngDoc.txt

%

creates a file rngDoc. t xt that contains

The rng package

This package deals with functions that are used to manipulate the range
(Rng_Range_t) data structure.
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Gitanjali Swamy

**************♦********************♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Rng_RangeAlloc() Allocates memory for a Rng_Range_t.

Rng_RangeFree() Free memory associated with a Rng_Range_t.

Rng_RangeOrWithRange() OR two ranges.

Rng_RangeReadBegin() Return the beginning of the range.

Rng_RangeReadEnd() return the end of the range.

Rng_RangeSetBegin() Set the beginning of the range.

Rng_RangeSetEnd() Set the end of the range

********♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

The basic data structure in the range package is an integer range. The
range is designated as (L,U), where L is the lower limit of the range, and
U is the upper limit of the range, and includes all integers x, L =< x =<
U).

Rng_Range_t♦

Rng_RangeAlloc(

)
This functions takes no inputs, and when called allocates space for and
returns a new Rng_Range_t.

void

Rng_RangeFree(
Rng_Range_t ♦ range

)
This function takes a Rng_Range_t^ as input, and free the memory used by it.

Side Effects: Rng_Range_t is no longer valid.

Rng_Range_t ♦

Rng_RangeOrWithRange(
Rng_Range_tA rangel,
Rng_Range_tA range2

)
Given two ranges, this function OR's together the two, and returns the
result. If the two ranges do not overlap it returns with an error flag.

Rng_RangeReadBegin(
range

)
Given a range (L,U), this returns the beginning value L of the range.

Rng_RangeReadEnd(
range

)
Given a range {L,U}, this returns the ending value U of the range.

Rng_RangeSetBegin(
range,

val

)
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Given a range and a value L, this sets the beginning value L of the range.

Side Effects: There original beginning value of the range is lost.

Rng_RangeSetEnd(
range,

val

)

Given a range and a value L, this sets the end value L of the range.

Side Effects: There original ending value of the range is lost.

5.3 RCS

RCS is a file-based revision control system used within vis.
To use RCS within vis,

1. Create a directory ~/vis/common/src.

2. Define the environment variables VIS and VIS.USER.DIR:

% setenv VIS /projects/vis/vis
% setenv VIS_USER_DIR "7 vis/common/src

3. lb put a new package pkg residing in $VIS/common/src/pkg under
RCS control,

% mkdir $VIS/common/src/pkg/RCS

% chmod 775 !$

% echo "VIS: Initial version" > /tmp/rcsText

% cd $VIS/common/src/pkg

% gmake RCSFLAGS-'-t/tmp/rcsText' rcs_ci

The files in the packages in $VIS / common/ src arenot writable. All changes
must be made through RCS, using the working area $VIS_USER_DIR.

The Makefile in each package has 5 RCS commands defined. These
commands operate on all the files of the package under RCS control, namely
RCSFILES = $(SRC) $ (HDR) $ (MISC) $ (LFILE) $ (YFILE) as de

fined in the Makefile.

To use the commands on package pkg, first create directory pkg in
$VIS_USER_DIR. Then, you can execute package level RCS commands from ei-
ther the Makefile at $VIS/common/src/pkg, orthe Makefile at $VIS_USER_DIR/pkg
(if you already have a Makefile there). The commands are as follows:

• gmake rcs_co

Check out a copy of RCSFILES and put them at $VIS.USER_DIR/pkg.
This operation will fail if another user has these files checked out. In this
case, negotiate with this user to determine when you can have access, To
keep things simple, we don't want to havemultiple branchesofdevelopment.
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• gmake rcs.ci

Check in the RCSFILES in $VIS.USER_DIR/pkg into
$VIS/common/src/pkg/RCS. This leaves a copy of the new files at
$VIS/common/src/pkg. For any file that has changed, you will be
prompted to supplyalog message (terminated by ctrl-D or a period on a
line by itself). For files thathave not changed, the check-in does nothing.
Thisoperationcauses theprotectionof RCSFILESin $vlS_USER_DlR/pkg
to be changed to read only. You can choose to remove (rm) these files, or
leavethemthere. If youmake r c s.co again, these files willbeoverwritten
and the protection will be changedto allow writing.

• gmake rcs.diff

For each RCSFILE, performs a diff between the corresponding files in
$VIS_USER_DIR/pkg and $VIS/common/src/pkg/RCS. This is use
ful to remind yourself what changes (if any) you have made.

• gmake rcs.ident

For each RCSFILE in $VIS/common/src/pkg, searches the file for
RCS identifiers, like $ Id. This is useful to see who most recently modified
a file, and when this was done.

• gmake rcs.status

For each RCSFILE in $VIS/common/src/pkg currently checked out,
this tells you who has the file checked out. This is useful to determine who
is modifying which files.

The first two commands do all the work. The last three are only for informa
tional purposes; you can't do any harmby using them.

More experienced RCS users can specify options to the RCS commands by
setting the RCSFLAGS in the gmake invocation(e.g., gmake RCSFLAGS-' -b
-i' rcs.diff).

RCS commandscanbe performedfrom theMakefile at $VIS/common/ src:

• gmake rcs.ident: Run make rcs.ident on each package.

• gmake rcs.status: Run make rcs.status on each package.

Forfiles not partofcode packages butunderRCS control(e.g., src/Makefile,
ext / *), you must use RCS commandson individual files; thereis no Makefile
support for them.
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Chapter 6

Compiling VIS and Creating a
New Package

6.1 Compiling VIS

Standard Makefiles are provided with each packagewithin vis. lb compile

1. a personal version of vis using your modifed sources:

To build a vis executable that includes a package in your private area (e.g.,
one you checked out and modified), run gmake CC=gcc vis-g there.
This will create an executable called vis-g by compiling your source files
and linking them with the public libvis-g. a.

2. a new public version of vis in the central area:

Check in any modified packages and rebuildthe executable and librariesby
running gmake CC=gcc vis-g in the
/pro -jects/vis/vis/machine/sxc directory, (machine is mips, alpha,
etc.) The executable will be placedin /pro jects/vis/vis/witfc/ime/bin;
the libraries in

/pro jects/vis/vis//wflc/u>ie/lib.

For portability and uniformity, please use the suggested compiler gcc.

6.2 Adding Code to VIS

To add code to the vis system (that may or may not become part of the public
system), use the tst package. This dummy package is known to the vis system,
yet is easily adapted to your purposes. If later your package is included in the
public system, it can easily be adapted to become permanent.

The vis system knows about two functions in the tst package:

• Tst.lnit. This is called when the vis system starts, and should register
your new commands by calling Cmd_CommandAdd.

• Tst -End. This is called when the vis system terminates, and should free
any global memory allocated by your package.
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Forexample, to add a command -testRng to vis, use the following function

/**Function********************************************************************
Synopsis [Implements the _testRng command.]
SideEffects []

******************************************************

static int

CommandRng(

Hrc_Manager_t ** hmgr,
int argc,

char ** argv)

{
int c;

int verbose =0; /* default value */

/*
* Parse command line options.

*/

util_getopt_reset();
while ((c - util_getopt(argc, argv, "v")) != EOF) {

switch(c) {

case 'v':

verbose = 1;

break;

default:

goto usage;

}

>

if (verbose) {

(void) fprintf(vis_stdout, "The _rngtest command does nothing\n");
)

/*

* Normal exit

*/

return 0;

usage:

(void) fprintf(vis_stderr, "usage: _testRng [-v]\n");
(void) fprintf(vis_stderr, " -v\t\tverbose\n");

/*

* Error exit

*/

return 1;

>

and change Tst.Init and Tst-End (in tst. c) as follows

/**—Pile***********************************************************************
FileName [tst.c]

PackageName [tst]
Synopsis [Test package initialization, ending, and the command _test.]
Author [Originated from SIS.]
Copyright [Copyright (c) 1994-1996 The Regents of the Dniv. of California.
All rights reserved.

******************************************************************************/

Hnclude "tstInt.h"

static char rcsid[] - "$Id: vis_eng.tex,v 1.23 1995/12/17 05:54:26 gms Exp $";
DSE(rcsid);
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/* */

/* Definition of exported functions */
/* */

/•♦Function********************************************************************

Synopsis (Initializes the test package.]
SideEffects []

SeeAlso [Tst_End]
******************************************************************************/

void

Tst_lnit()

{

/*
* Add a command to the global command table. By using the leading
* underscore, the command will be listed under "help -a" but not "help".
*/

Cmd_CommandAdd("_testRng", CommandRng, /* doesn't changes_network */ 0);
)

/•♦Function********************************************************************

Synopsis [Ends the test package.]
SideEffects []

SeeAlso [Tst_Init]
•a****************************************************************************/

void

Tst_End()
{

/*
* For example, free any global memory (if any) which the test package is
* responsible for.

*/

}

6.3 Adding a New Package to VIS

To add a new package to vis,

1. Make sure your code compiles and runs within vis, and that it conforms to
the conventions in this document.

2. Createadirectory in /pro jects/vis/vis/common/srcnamed package
(e.g., rng).

3. Add your package to the list of packages (PKGS =) in
/projects/vis/vis/common/src/Makefile.

4. Make a symbolic link in the /projects/vis/vis/common/include
directory that points to your package's external header file (e.g., In -s
. ./src/rng/rng.h).

5. Adda#include in/projects/vis/vis/common/src/vm/vm.h
for your package's external header file (e.g., #include "rng. h").

6. Add calls to your package's I nit and End functions in
/projects/vis/vis/common/src/vmVinit.c.

7. Make symbolic links in /pro jects/vis/vis /machine/STC to the source
files in your package. Copy the Makefile to these directories, since it will
be regenerated to reflect architecture-specific dependencies.
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VIS Engineering Manual
Quick Reference

Package Filenames
Name Contains

pkg.h

pkgint.h

pkgPort.h

pkgUtil.c

pkglntUtil.c

Externally-visible functions, etc. Includes system headers only
Functions, etc., intemal to the package. Includes vm.h,
pkgPort .h if present.
#defines, etc., that hide system differences
E.g., utility functions. #include "pkgint. h"
E.g., intemal utility functions. #include "pkgint. h"

Identifier Names

External Internal Local

Functions,

Macros

Pkg.SubjectVerbModifier PkgSubjectVerbModifier SubjectVerbModifier

Variables pkg_numThings pkgNumThings numThings

Structures Pkg_Thing_t PkgThing.t Thing.t

Enumerated

types

PkgJThingList.c PkgThingList_c ThingList.c

Constants PKG-SOME.THING PKGSOME.THING SOME-THING

Name

rcs.co

rcs.ci

rcs.diff

rcs.ident

rcs.status

RCS-VIS Commands

Function

Check out a copy of RCSFILES into $VIS_USER_DIR/pkg
Check in RCSFILES in $VIS.USER.DIR/pkg into
$VIS/common/src/pkg/RCS

Find difference between RCSFILES in $VIS/common/src/pkg/RCS and
$VIS.USER_DIR/pkg
Prints out RCS identifiers Qike $Id) of RCSFILES in

$VIS/common/src/pkg/RCS
Print out last user who modified the RCSFILES in $VIS/common/src/pkg
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