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Abstract
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Professor Edward A. Lee, Chair

We present a scheduling policy for complete, bounded execution of Kahn process network programs. A pro

gram is a set of processes that communicate through a network of first-in first-out queues. In a complete ex

ecution, the program terminates if and only if all processes block attempting to consume data from empty

communication channels. We are primarily interested in programs that operate on infinite streams of data and

never terminate. In a bounded execution, the number of data elements buffered in each of the communication

channels remains bounded.

The Kahn process network model of computation is powerful enough that the questions of termi

nation and bounded buffering are undecidable. No finite-time algorithm can decide these questions for all

Kahn process networkprograms. Fortunately, because we are interested in programs that never terminate,

our scheduler has infinitetime and can guarantee that programs execute forever with bounded buffering when

everpossible. Ourscheduling policy hasbeenimplemented usingPtolemy, an object-oriented simulation and

prototyping environment.
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Chapter 1

Process Networks

In the process network [24, 25] model of computation, concurrent processes communicate through

unidirectional first-in, first-out (FIFO) channels. This is a natural model for describing signal processing sys

tems where infinite streams of data samples are incrementally transformed by a collection of processes exe

cuting in sequence or in parallel. Embedded signal processing systems are typically designed to operate in

definitely with limited resources. Thus our goal is to execute process network programs forever with bounded

buffering on the communication channels whenever possible.

A process network can be thought of as a set of Turing machines connected by one-way tapes, where

each machine has its own working tape [24]. Many of the undecidable issues of the process network model

of computation are related to the halting problem for Turing machines. It is well known that it is impossible

to decide (in finite time) whether or not an arbitrary Turing machine program will halt. We wish to execute

process network programs forever, but because the halting problem is undecidable we cannot determine (in

finite time) whether this is even possible. We also wish to execute process network programs with bounded

buffering on the communication channels. Because this question can be transformed into the halting question,

as we will show later, it is also undecidable.

Thus there are two properties we might use to classify a process network program: termination and

boundedness. But first we must determine if these are actually properties of programs. Are termination and

boundedness determined by the definition ofthe process network, or could they depend on the execution order?

We want to execute programs indefinitely, but could we make a bad scheduling decision that turns a non-

terminating program into a terminating one? For an important class of programs, which we call Kahn process

networks, termination is a property of the program and does not depend on the execution order. However, the

number of data elements that must be buffered on the communication channels during execution does depend

on the execution order and is not completely determined by the program's definition. We show later how

to transform an arbitrary Kahn process network so that it is strictly bounded: the number of data elements

buffered on the communication channels remains bounded for all possible execution orders.

Because the questions of termination and boundedness are undecidable it is not possible to classify
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every program in finite time. Analgorithm can bedevised that will find a "yes" or"no"answer formany sys

tems, but there willalways be some systems for which no answer can be obtained in finite time. It has been

shown forrestricted forms of process networks thatbothof these questions aredecidable andcanbeanswered

forarbitrary systems thatconform to therestricted model ofcomputation. Thus, for these restricted models it

is possible toclassify anyprogram before beginning execution. We willdiscuss some ofthese restricted com

putation models, but in thisthesis we address themore difficult problem of scheduling general Kahn process

networks.

Inscientific computing, programs aredesigned toterminate. In fact, greateffort isexpended toopti

mize programs andensure thattheyterminate assoon aspossible. It would beunacceptable to have a program

thatproduced its results onlyafterinfinite time. It would beeven worse to have a scheduling algorithm that

could require infinitetime beforeeven beginning execution of the program. However, many signal process

ing applications are designed to neverterminate. They havean infinite data set as inputand mustproduce an

infinite data set as output. In this context it is not strictly necessary to classify a programbefore beginning

execution. We can let the scheduler work as the program executes. Because the program is designed to run

forever without terminating, the schedulerhas an infinite amountof time to arrive at an answer. We will de

velopa general policy that describes a classof schedulers thatsatisfy our goalsof non-terminating, bounded

execution for arbitrary Kahn process networks when this is possible.

1.1 Kahn Process Networks

Kahn [24, 25] describes a model of computationwhere processes are connected by communication

channelsto forma network. Processes producedataelementsor tokens and send them alonga communication

channelwhere they are consumed by the waiting destination process. Communication channels are the only

method processes may use to exchange information. Kahn requires thatexecution of a process be suspended

whenit attempts to getdata fromanemptyinputchannel. Aprocess maynot,forexample, examinean inputto

test forthepresence orabsence ofdata. Atanygiven point, a process iseitherenabled or it is blocked waiting

for data on onlyone of its inputchannels: it cannotwait for data fromone channelor another. Systems that

obey Kahn's model are determinate: the history of tokens produced on thecommunication channels do not

depend on the execution order [24].

Figures 1.1,1.2 and 1.3show the definitions of threeprocesses. Weuse pseudocode witha syntax

similar to C. All of these processesoperate on integersor streamsof integers. In our examples, the put and

get operations areusedtoproduce andconsume singletokens, although theycouldbegeneralized toconsume

and produce multiple tokens simultaneously.

Individual processes can be defined in a hostlanguage, such as C or C++ withthe semantics of the

networkserving as a coordination language. Care must be taken when writingcode in the host language.

It may be temptingto use shared variables to circumvent the communication channels, but this may violate

Kahn's model and result in a nondeterminate system. With a little discipline it is not difficult to write deter-
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int stream W = process f(int stream U, int stream V)

{

do

{

put(get(U),W);

put(get(V),W);

} forever;

}

Figure 1.1: A process that interleaves two streams into one.

(int stream V, int stream W) = process g(int stream U)

{

do

{

put(get(U),V);

put(get(U),W);

} forever;

}

Figure 1.2: A process that distributes even and odd elements of one stream to two streams.

int stream V = process h(int stream U, int x)

{

put(x,V);

do

{

put(get(U),V);

} forever;

}

Figure 1.3: A process that inserts an element at the head of a stream.
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Figure1.4: Graphicalrepresentation of a processnetworkconstructed withtheprocessesdefinedin figures 1.1,
1.2 and 1.3.

minateprograms. This use of host and coordination languages is the approach taken in our implementation

of process networks, described later in chapter 5.

Figure 1.4showsa graphicaldefinitionof a networkbuilt with instancesof the processesdefined in

figures 1.1,1.2 and 1.3. The twoinstances of process h produce the initialtokensthatallowtheprogramgraph

to execute. In this example, every process is part of a directedcycle, so output tokens must propagate around

thegraphtoprovidethe nextset of input tokensfora process. Thisprocessnetworkis strictlyboundedbecause

the directedcycles ensure that there are never more thantwo tokens bufferedon any communication channel,

and it is non-terminating becausethe programcan executeforeverwithoutstopping. We will later prove that

thisprogram produces an infinite sequence of O's and l's: X = [0,1,0,1,...]. Because of the determinate

nature of the computation model, this result is independent of the execution order: Kahn process networks

can be executed sequentially or in parallel with the same outcome.

This model of computation supportsboth recurrence relations and recursion. In a recurrence rela

tion,a stream is defined in termsof itself. Recurrencerelationsappearas directed cycles in the program graph,

as in theexampleof figure 1.4. It is also possibletohaverecursion, where a processis defined in termsof itself.

A simple example of this is shown in figure 1.5. A more complicated example in figure 1.6shows a recursive

definition of process / from figure 1.1. The cons, first and rest operationsare defined later in section 1.2.2.

As the processexecutes, it replaces itself by a subgraph. This is a recursive definition because the process

appears in thedefinition of thissubgraph. Non-recursive reconfigurations, where a process doesnotappearin

the definition of the subgraph that replaces it, are also allowed.
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Figure 1.5: Recursive definition of a process.

1.2 Mathematical Representation

We now review Kahn's formal, mathematical representation of process networks [24]. Communi

cation channelsare represented by streams and processes are functions that map streams into streams. This

allowsus to describea processnetworkby a set of equations.The least fixed pointof theseequations is unique

andcorresponds to thehistories of thestreams in the network. Thusthesehistories aredetermined bythedef

initionsof theprocesses and the network describing thecommunication between them. The numberof tokens

produced, and theirvalues, aredetermined by thedefinition of the system and notby thescheduling of oper

ations. This is a key result that supports further results later in this thesis.

1.2.1 Streams

A stream is a finite or infinite sequence of dataelements: X = [x\,X2,x$,...]. The empty stream is

represented by the symbol J_. Consider a prefix ordering of sequences, where the sequence X precedes the

sequence Y(written XC Y) ifX isa prefix of (or isequal to) Y. Forexample, thesequence X = [0] is a prefix

of the sequence Y= [0,1], which is in turn a prefix of Z = [0,1,2,...]. The empty sequence J_ is a prefix of

all sequences: VX, 1C X. Any increasing chainX = (X|,X2,...) withX\ C X2 C ••• hasa least upperbound

UX which can be interpreted as a limit:

limX, = UX (1.1)
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Xh

X,

Figure 1.7: Graphical representationof a functional process with multiple inputs and outputs.

The set of all streams is a complete partial order with C defining the ordering. The order is complete

because every increasing chain of streams has a least upper bound that is itself a stream. Tuples of streams,

suchas (Xi ,X2), also form acomplete partial order. In this case (Xi ,X2) Q (Y\, Y2) if and only if Xj Q Y\ and

X2QY2.

1.2.2 Processes

A process is a functional mapping from input streams to output streams. Foreach process, we can

write an equation that describes this functional mapping. Forexample, the following equation describes the

process shown in figure 1.7:

(YltY2) = f(XltX2tXi) (1.2)

A functional mapping is continuousif and only if for any increasing chain X\QX2Q

f(limXI) = limf(XJ) (1.3)

The limit on the right hand sided of equation 1.3exists if the function f maps an increasingchain into another

increasing chain. Such functions are monotonic:

XCY f(X) C f{Y) (1.4)

The following functions, are examples of continuous mappings:

first(C/) Returnsthe first element of the stream U. By definition, first( JL) = JL

rest(t/) Returnsthe stream U with the first elementremoved. By definition,rest(J_) = ±.

cons(.r, U) Inserts a new element x at the beginning of the stream U. By definition, cons(J_, U) = JL, and

cons(;c, _L) = [jc].
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The processes described in figures 1.1, 1.2 and 1.3can be defined by composing these three basic functions

and thus are also continuous mappings:

f(£/,V) = cons(first(t/),cons(first(V),f(rest(t/),rest(V)))) (1.5)

g(tf) = (gi(tf).fe(tf)) (1-6)

g,(i/) =cons(first((/),g1(rest(rest(f/)))) (1.7)

g2(£/) = cons(first(rest((/)),^2(rest(rest(t/)))) (1.8)

h{U,x)=cons{x,U) (1.9)

The definition of process / in figure 1.6 is a graphical representation of the definition in equation 1.5

1.2.3 Fixed Point Equations

Using the mathematical representationof communicationchannels and processes, we can describe

a process network as a set of equations. The example from figure 1.4can be described by the following equa

tions:

(71,72) =g(X) (1.10)

X = f(K,Z) (1.11)

K= h(7i,0) (1.12)

Z = h(72,l) (1.13)

This collection can be reduced to a single equation:

(ri,r2) = g(f(h(7l,o),h(r2,i))) <i.i4)

If the functions are continuous mappings over a complete partial order, then there is a unique least

fixed point for this set of equations, and that solution corresponds to the histories of tokens produced on the

communication channels [24]. For example, the least fixed point for the equationX = f(X) is the least upper

boundof the increasing chain [J_ C f(_L) (Z f(f(-L)) Q ...]. Thisgivesus an iterative procedure to solve for

the least fixedpoint. In the initial step, set all streams to be empty. In this example, there is just one stream, so

X° = J_. Then for each stream compute X-/+1 = f(X7) and repeat. For a terminating program, this procedure

will stop atsome j where Xj+1 = X>. For anon-terminating program, some orall ofthe streams will beinfinite

in length, so this procedure will not terminate. Instead, induction can be used to find the solution.

Returning to our previous example, the solution of the fixed point equation proceeds as follows:

(7i,r2)° = (.!-, .L) (1.15)

(r,,r2)1=g(f(h(j.fo)Ih(±li))) =([o],[i]) (i.i6)

(T{,T2)2 = g(f(h([0],0),h([l],l))) =([0,0],[1,1]) (1.17)

(7i,72)3 = g(f(h([0,0],0),h([l,l],l))) = ([0,0,0], [1,1,1]) (1.18)

(7i,r2)>+l = g(f(h(r/,o),h(r>,i))) =([o,o,o...],[i,i,i...]) (i.i9)
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Using induction, we can prove that T\ = [0,0,0...] and 7*2 = [1,1,1...]. From this we conclude that Y-

h(7i,0) = [0,0,0...] and Z= h(r2,1) = [1,1,1...]. This gives us X = f{Y,Z) = [0,1,0,1...] as claimed

earlier.

Fixed pointequations canalsobeused todescribe recursive process networks. Continuous functions

onstreams are themselves a complete partial orderwhere f C g if andonlyif VX, f(X) C g(X) [24]. If weuse

the recursive definition of f given in figure 1.6and equation 1.5, then the equations for our example become:

(7-1,72) = g(f(r,Z)) (1.20)

f{Y,Z) =cons(first(y),cons(first(Z),f(rest(y),rest(Z)))) (1.21)

Y= h{Ti,0) (1.22)

Z = /2(72,0) (1.23)

Now the function f appears on the left-hand side along with the other unknowns.

1.3 Determinism

We say that a process network program is determinate if the results of the computation (the tokens

produced on the communication channels) do not depend on the execution order. Every execution order that

obeys the semantics of the process network will produce the same result. Kahn uses the fact that the equations

for a process network have a unique least fixed point to prove that programs are determinate[24]. Karp and

Miller[26] prove that computation graphs, a restricted model of computation similar to process networks, are

also determinate.

1.3.1 Execution Order

We define the execution orderof a process network to be the order of the get and put operations.

If X = [jti,*2,Jt3..-] is a stream, then put(jci) represents the writing or production of the element x\ and

get(*i) represents the reading or consumption of the element x\. A data element must be written before it

can be read, so put(x,) < get(jc,) for every element of every stream in a process network. The first-in, first-out

(FIFO) nature of thecommunication channels also imposes the restriction that get(;t,) < get(jry) if andonly

if put(jc,-) < put(jcy). We allowthe possibility of some operations occurring simultaneously. For example, if

a processproduces two elements jc,- and jc,+i simultaneously, then put(jt,) = put(x,-+i). Processes introduce

additional restrictions. For example, if W= f(U, V), where f is the process defined in figure 1.1, then we have

the following restrictions. The process reads alternately from the two input streams U and V,

get(ttf) < get(v/) < get(«/+i) < get(v/+,) < ••• (1.24)

The process writes to stream Wafter reading from each input stream U and V,

get(«f) < put(w2i) < get(v,) < put(w2l+1) < ••• (1.25)
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Figure 1.8: A terminating process network.

A sequential execution is a totalordering of get and put operations. Wecan compare any pair of

operations and know ifget(jc,) < put(yy) or put(yy) < get(jt,), for example. Aparallel execution isapartial
ordering of get and putoperations. We may be able to compare some operations, such as put(xi) < put(.*2)

and get(jcj) < get(*2). Butwe will notbe able tocompare other operations, such as get(xj) and put(x2).

Any executionordermust satisfy the restrictions imposed by the communication channelsand the

processes. Unlike the restrictions imposed by thesemantics of thecomputation model, suchas write-before-

readand FIFOchannels, wemaynotalwaysknowthe restrictions imposed by a particularprocess, depending

on the information available to us and the complexityof its definition. In some restricted process network

models, the processes are fully characterized. Generally, there willbe many possible execution orders that

satisfy these restrictions.

1.3.2 Termination

We proved earlier thatall of the streams for theprocess network shown in figure 1.4are infinite in

length. Thus thereare an infinite number of put operations. Consider the modified version of this program

shown in figure 1.8. The equation describing this process network is:

(r1?r2) = g(f(h(rI,o),r2))

The least fixed point for this equation is computed as follows:

(tut2)° = (l,a.)

{Ti,T2)l=g{m±,0),l.)) =([0],X)

(r,,r2)2 = g(f(h([o],o),±)) = ([o],j_)

(1.26)

(1.27)

(1.28)

(1.29)
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We can see that (7*i, 7*2)2 = (7"i ,T2)1 = ([0], 1), sothese streams (and all the others inthe network) have finite

length. Thus there are only a finite number of put operations.

We see that termination is closely related to determinism. Kahn process networks are determinate

because a systemof continuousfunctions over a complete partial order has a unique least fixed point. This

solutiondetermines thevalue,andconsequently thelength, ofeverystreamin theprogram. Ifall of thestreams

arefinite in length,thentheprogrammustterminate. Otherwise, theprogramneverterminates andproduces at

leastone infinitestreamof data. Terminationisdeterminedcompletely by the definitionof the processnetwork

and is not affected by the particular choice of execution order [44].

The least fixed point solution determines the length of every stream, but it does not determine the

order in which the stream elements are produced. Consequentlythere are many possible execution orders that

can lead to the least fixed point. A complete execution of a Kahn process network corresponds to the least

fixed point— none of the streams can be extended. Apartial execution does notcorrespond to a fixed point

— one or more of the streams can still be extended.

We define a terminating Kahn process network program to be one where all complete executions

have a finite number of operations. We define a non-terminating program to be one where all complete exe

cutions have an infinite number of operations.

1.3.3 Boundedness

Even though the lengths of all streams are determined by the definition of a process network, the

number of unconsumed tokens that can accumulate on communication channels depends on the choice of ex

ecution order.

A communication channel is defined to be strictlyboundedby b if the number of unconsumed tokens

buffered on the channel cannot exceed b foranycompleteexecution of the process network. A strictlybounded

communication channel is one for which there exists a finite constant b such that the channel is strictly bounded

by b. A communication channel is defined to be bounded by b if the number of unconsumed tokens cannot

exceed b for at least one complete execution of the process network. A bounded communication channel is

one for which there exists a finite constant b such that the channel is bounded by b.

A process network is defined to be strictly bounded by b if every channel in the network is strictly

boundedby b. A strictly bounded process networkis one for which there exists a finite constant b such that

it is strictly bounded by b. A process network is defined to be boundedby b if every channel in the network

is bounded by b. A boundedprocess network is one for which there exists a finite constant b such that it is

bounded by b. This is actually a weaker condition than insisting that the total number of unconsumed tokens

in the network be less than b. This allows us to include recursive networks, where there can be an unbounded

number ofchannels, in our definition ofbounded systems. A Kahn process network is defined to be unbounded

if it is not bounded. That is, at least one channel is not bounded for all complete executions of the process

network.

Our example from figure 1.4 is a strictlyboundedprogram. Each process consumes tokens at the
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0—-0
Figure 1.9: A bounded process network.

Figure 1.10: A strictly bounded process network.

same rate that it produces them, and the directed cycles in the graph prevent the production of new tokens

untilthe previously produced tokensare consumed. For all execution orders, there can never be more than 1

unconsumed token buffered on channels K,Z, T\ and T2, and no more than 2 unconsumed tokens on channel

X. Thus we saythatchannels Y,Z, T\ and T2 are strictly bounded by b = 1,and channel X is strictly bounded

byb= 2. The program is therefore strictly bounded byb= 2. However, thesimple system shown in figure 1.9

is only bounded. While it is possible to execute thissystem withbounded buffering, someexecution orders

lead to unbounded token accumulation. If we activate process 1but neveractivate process 2, which is one of

many possible execution orders, then an infinite number of tokens accumulate onthecommunication channel.

An arbitrary Kahn process network can betransformed sothat it is strictly bounded. This isdone by

adding a feedback channel for each data channel and modifying the processes so that they mustread from a

feedback channel beforewritingto a data channel. We place b initial tokenson the feedback channels so that

all pairs of channels have b initial tokens. Thenumber of tokens inadata channel cannot increase without a

corresponding decrease in the number of tokens inthe feedback channel. Because thenumber of tokens for a

feedback channel (oranychannel) can never fall belowzero, thedata channels are strictly bounded. However,

these restrictions could introduce deadlock, transforminga non-terminating program into a terminating one.

Figure 1.10 shows howoursimple bounded system of figure 1.9 istransformed intoastrictly bounded system.

Details of this graph transformation are presented in chapter 4.

1.4 Open and Closed Systems

Inan open systemthere are asetof inputchannels that provide data to the process network and aset

of output channels that receive theresults. Consequently, each process has at least oneinput and oneoutput.
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Figure 1.11: A data source (1) constructed with external feedback connections.

In this case, the process network is not a complete system in and of itself, but is a sub-system that is part of a

larger, external system.

In a closed system, there are no external input or output channels. Processes that have no input

channels are always enabled and act as sources of data. Processes that have no outputs act as data sinks. Input

and output operations for this system are managed by individual processes. For example, a process may read

data samples from a sensor and produce them on a stream. Or a process may consume data from a stream and

write it to a file. In this case, the process network describes a complete system.

In Kahn's process network model, attempting to get data from an input channel is the only operation

that may cause the execution of a process to suspend. In closed systems, processes that have no inputs are

always enabled; they never attempt to get data from an empty channel. There may never be an opportunity to

activate other processes, which can be problematic. In an open system each process has at least one input, so

it will be suspended whenever it attempts to get data from an empty channel. At this point, other processes

that are enabled can be activated.

Even if every process must have an input, it is possible to build constructs that are data sources, sub

systems that require no input from the rest of the system. If feedback connections are allowed in the external

system, it is possible to construct a source by connecting an external output to an external input, as shown

in figure 1.11. Process 1 is self-enabling, it provides its own input and requires no input from the rest of the

system. A strongly connected subgraph, where there is a directed path from any process to any other process

(including itself), can also act as a data source, as shown in figure 1.12. Figures 1.13 and 1.14 show simi

lar constructs for data sinks, subsystems that consume their own output and provide no data to the rest of the
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Figure 1.12: A connected subgraph (1,2,3,4) that is a data source.

Figure 1.13: A data sink (2) constructed with external feedback connections.
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Figure 1.14: A connected subgraph (1,2,3,4) that is a data sink.

system.

Kahn and MacQueen consider both open and closed systems: a program is described as a graph

with a set of input and output channels [24], or processes are used for input and output [25]. Pingali and

Arvind [37,39,38] consider open systems. In demand driven execution, there is the problem of synchronizing

with the external system so that inputs are provided only when demanded. Pingali puts gates on the inputs

to solve this problem[38]. This makes an open system resemble a closed system where processes (gates in

this case) act as data sources and there are effectively no external inputs. We will see an example of this in

chapter 3.

Data driven execution of sources and demand driven execution of sinks can be problematic, as we

will demonstrate in chapter 3. Sources and sinks, either in the form of individual processes or subnetworks of

processes, are present in both open and closed systems. Thus, without loss of generality, we choose to restrict

our discussion to closed systems.
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Chapter 2

Dataflow Process Networks

Dataflow is a model of computation that is closely related to process networks. Dataflow programs

can be described by graphs, just as process networks can be. The arcs of the graph represent FIFO queues

for communication, just as in process networks. The nodes of the graph represent actors. Instead of using

the blocking read semantics of Kahn process networks, dataflow actors have firing rules. These firing rules

specify what tokens must be available at the inputs for the actor to fire. When an actor fires, it consumes some

finite number of input tokens and produces some finite number of output tokens. A process can be formed

from repeated firings of a dataflow actor so that infinite streams of data may be operated on. We call these

dataflow processes[33].

Breaking a process down into smaller units of execution, such as dataflow actor firings, makes effi

cient implementations of process networks possible. Restricting the type of dataflow actors to those that have

predictable token consumption and production patterns makes it possible to perform static, off-line schedul

ing and to bound the memory required to implement the communication channel buffers. Thus, for some re

stricted forms of process networks, it is possible to satisfy our requirements for non-terminating execution

with bounded buffer sizes.

2.1 Mathematical Representation

Streams represent the sequences of tokens that flow along the arcs in a dataflow graph, just as in

processnetworks. Dataflow actors are represented by functionsthat map input tokens to output tokens. This

is in contrast to the representationof processes as functions that map streams to streams.

Dataflow actors have firing rules that determine when enough tokens are available to enable the

actor. When the firing rules are satisfied and sufficient input tokens are available, the actor fires. It consumes

a finite number of input tokens and produces a finite number of outputtokens. For example, whenappliedto

an infinite input stream a firing function f may consumejust one token and produce one output token:

H[xux2,x3...]) = f{Xl) (2.1)
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To produce an infiniteoutput stream, the actor must be fired repeatedly. A processes formed from repeated

firings of a dataflow actor is called a dataflow process [33]. The higher-order function map converts an actor

firing function f into a process F. A higher-order function takes a functionas an argument and returns another

function. For simple dataflowactors that consume and producea single token, the higher-order function map

behaves as follows [27]:

map{f)[xl,x2tx3...] = [fM,f{x2),f{x})...] (2.2)

When thefunction returned bymap(f) is applied to thestream [x\,x2,X3...], theresultis a stream in which the

firing function f is applied point-wise to theelements of thatstream, [f(*i),f(*2), f(*3) •••]• The map function

can also be described recursively:

map(f)(X) = con5(f(first(X)),map(f)(rest(X))) (2.3)

The useof mapcan be generalized for firingfunctionsf thatconsumeandproducemultiple tokenson multiple

streams [33]. We will see this in more detail in the next section.

2.1.1 Firing Rules

Firing rules specify the pattern of tokens that must be available at each input to enable an actor.

Actors with no input streams are always enabled. Once enabled, an actor can fire. Actors with one or more

input streams can have several firing rules.

R = {Rl,R2,...,RN) (2.4)

An actor can fire if and only if one or more of the firing rules are satisfied. For an actor with p input streams,

each firing rule /?,• is a p-tuple of patterns, one pattern for each input.

Ri = [Ri,i. fl;,2. •••iRi,p) (2.5)

Each pattern Rij is a finite sequence. For a firing rule /?, to be satisfied, each pattern R[j must be a prefix of
the sequence of tokensavailableon the correspondinginput,Rij C X.

For an actor firing that consumes no tokens from an input, the pattern for that input is Rij = -L.

Because JL C X for any sequence X, any sequenceof available tokensis acceptable, VX, Rij C X. Note that

an empty pattern Rij = _L does notmean that the input must beempty. Foran actor firing that consumes a

finite number of tokens from an input, thepattern isof the form Rij = [*,*,•••,*]. The symbol * is a token

wildcard. The sequence [*] isa prefix ofany sequence with one ormore tokens. The sequence [*, *] isaprefix

ofanysequence with twoormore tokens. Only J_ isaprefix of [*]. Foranactor firing thatrequires input tokens

to haveparticular values, the pattern Rij includes thisdata value.

For example, the switch actor in figure 2.1(a) has a single firing ruleR = ([*], [*]). It consumes

a single token from each of its inputs. The first token is copied to either the 'TRUE" or "FALSE" output
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Figure 2.1: The dataflow actors switch and select.
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depending on the value of the control token. The select actor in figure 2.1(b) has two firing rules:

Rl=([*],L,[F]) (2.6)

R2 = (±,[*],[T\) (2.7)

When the control token has the value "FALSE," rule R\ applies and one token is copied from the "FALSE"

input to the output. When the control token has the value "TRUE," rule R2 applies and one token is copied

from the 'TRUE" input to the output. Notice that the firing rules do not capture any information about the

number or values of tokens produced when an actor fires.

IfX = (Xi ,X2,... ,XP) arethesequences of tokens available onanactor's inputs, then thefiring rule

Ri is satisfied if

Vtfueft, RijQXj (2.8)

Firing rules that can be implemented as a sequence of blocking read operations is defined to be se

quentialfiring rules [33]. The firing rules of the select actor are sequential: a blocking read of the control

input is followed by a blocking read of the appropriatedata input.

An example of an actor with firing rules that are not sequential is the non-determinate merge in

figure 2.2. Its firing rules are

*i = ([*L -L)

fc = (-L,M)

(2.9)

(2.10)

As soon as a token is available on either input, it is copied to the output. If tokens are available on both inputs,

then both firing rules are satisfied. There is ambiguity about which rule should be used. For actors with se

quential firing rules, there is no such ambiguity. For any set of available tokens, no more than one firing rule
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v_y

Figure 2.2: The non-determinate merge actor.

is satisfied. The merge actor is non-determinate because the order in which tokens are produceddepends on

the order in which the inputs become available. The firing rules are not sequential because a blocking read

of eitherinputfails to produce thedesired behavior. A blocking read on one inputcauses tokens on the other

input to be ignored.

Now we can define map in terms of firing rules:

map(f)(cons(£,X)) = cons(f(K),map(f)(X)) (2.11)

where R is a firing rule of f, and cons has been generalized to operate on p-tuples of streams.

Because sequential firing rules can be implemented as a sequence of blocking read operations,

dataflow processes are continuous when the firing rules are sequential [33]. Because networks of continu

ousprocesses aredeterminate [24], dataflow process networks aredeterminate when eachactor's firing rules

are sequential.

2.1.2 Execution Order

We define the executionorder of a process network to be the order of the get and put operations.

When an actorfires, it consumes inputtokens and produces outputtokens. Because an actor firing is atomic,

anorderonthefirings imposes anorder on thegetandputoperations. Thus, wedefine theexecution orderof

a dataflow programto be the order of actor firings.

When all the firing rule patterns are of the form [*,*,...,*], wecandefine the state of a dataflow

graph to be thenumber of tokens oneach arc. When some of the firing rule patterns aredata-dependent, as

they are fortheselect actor, then thestate of thegraph must also include the values of tokens on thecontrol

arcs. As actors fire, the graphproceeds from one stateto the next. The current statedetermines which actors

areenabled, andthusthesetof possible nextstates. Thisassumes thatactors aredefined functionally andhave

no internal state thataffects the firing rules. Actorstatemustbe represented explicitly withan arc connected

as a self loop so that its effects on the firing rules become apparent.
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2.2 Computation Graphs

Computation graphs [26] are a model of parallel computation similar to process networks. A parallel

computation is represented by a finite graph. There is a set of nodes /ti,...,«/, each associated with a function

0\,..., 0{. There is a set of arcs d\,...,dt, where a branch dp is a queue of data directed fromone node /?,•

to another nj. Fournon-negative integer constants AP,UP, Wp and Tp are associated witheacharcdp. These

parameters have the following interpretation:

Ap The numberof data tokens initiallypresenton the arc dp.

Up The numberof data tokens producedby the function 0, associated with node «,-.

Wp The numberof data tokensconsumed by the function Oj associatedwith nodenj.

Tp A threshold thatspecifies theminimum number of tokens thatmustbe present ondp beforeOjcanbefired.

Clearly, Tp > Wp must be true.

AnoperationOj isenabledwhen thenumber of tokenspresentondp isgreaterthanor equalto Tp for

every arc leading intonj. When it is fired, theoperation Ojconsumes Wp tokens from each inputarc dp, and

produces Uq tokens on each output arc dq. These rules determine which execution sequences are possible.

Thus the firing rule patterns are all of the form [*,*,...,*] and any input sequence of length Tp or greater

satisfies the firing rules.

The execution of a computation graph is described by a sequence of non-empty sets of operations,

Si, 52,..., Sn,•••• Initially, S\ is a subsetof the enabled operations withAP>TP for each inputarc dp. When

the operations in Si are fired, the data they consume may prevent them from being enabled, Ap —Wp < Tp,

and thedata theyproducemayenableotheroperations, Aq + Uq > Tq. Each set Ss is a subsetof theoperations

enabled after all of the operations in Ss-\ have fired.

Due to the restrictions placed on the computation model, Karp and Miller [26] are able to give nec

essary and sufficient conditions for computation graphs to terminate. They also give necessary and sufficient

conditions for the queue lengths to be bounded. Thus the questions of termination and boundedness are de-

cidable for computation graphs, a restricted form of process network.

2.3 Synchronous Dataflow

Synchronous dataflow [31, 32] is a special caseof computation graphs where TP = WP for all arcs

in the graph. Because the number of tokens consumed and produced by an actor is constant for each firing,

we can staticallyconstruct a finite schedule that is then periodically repeated to implement a dataflow process

network that operates on infinite streams of data tokens.

A synchronous dataflow graph can be described by a topology matrix T with one row for each arc

and one column for each node. This is only a partialdescription because there is no information regarding the

numberof initial tokens on each arc. The element I"/; is defined as the number of tokens producedon the tth
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0^0
Figure 2.3: A bounded synchronous dataflow program.
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Figure 2.4: A sequence of actor firings that brings the program of figure 2.3 back to its original state.

arc by the jlh actor. A negative value indicates that the actor consumes tokens on that arc. Each row of the

matrix has one positive element for the actor that produces tokens on the correspondingarc and one negative

element for the actor that consumes tokens from the arc. If the same actor consumes and produces tokens on

thearc, thenentry r,-7- is thedifference between thenumberof tokensproduced andthe numberconsumed. All

the other elements in the row are zero. For the system to be balanced, a non-trivial, positive repetition vector

r must be found that satisfies the balance equations:

rr = 0 (2.12)

where eachelementr} of therepetition vectorspecifies a number of firings for theythSDFactor, and0 is the

zero vector.

For example, consider the synchronous dataflow graph in figure 2.3. Actor 1 produces 2 tokens each
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time it fires, and actor 2 consumes 3 tokenseach time it fires. For the system to be balanced, actor 2 must fire2

timesforevery3 firings of actor 1. Actor 1fires first, producing 2 tokens,shownin figure 2.4(a). Actor2 is not

enabled yet, so we fire actor I again. Now there are 4 unconsumed tokens on the arc, shown in figure 2.4(b),

and actor 2 can fire. It consumes 3 tokens leaving 1 on the arc, shown in figure 2.4(c). Actor 2 is no longer

enabled, so we fire actor 1 a third time. It produces 2 more tokens so that there are 3 on the arc, shown in

figure 2.4(d). Now actor 2 fires for a second time and consumes all 3 of the tokens on the arc. At this point

the graph has returned to its original state with no tokens on the arc, shown in figure 2.4(e).

The topology matrix for this simple example is

T= [2 -3 ] (2.13)
Our intuition tells us that the repetition vector that solves the balance equations should be

r=[ 3 2 ]r (2.14)

This would fire actor 1 three times and actor 2 twiceso that the total numberof tokens producedis equal to

the total numberconsumed. It is easy to verify that this repetitionvector does indeed solve equation 2.12.

The state of a synchronous dataflow graph is the number of tokens on each arc. A complete cycle

is a sequence of actor firings that returns the graph to its original state. Because the total number of tokens

produced in a complete cycle is equal to the total numberof tokensconsumed, there is no net change in the

number of tokens. Because the number ofactorfirings in thecycleis finite and the number of tokens produced

by each firing is finite, the number of unconsumed tokens that can accumulate before an arc returns to its

original state is bounded. This finite sequence of firings can be repeated indefinitely so that the program can

execute forever with only a boundednumberof unconsumed tokens accumulatingon the arcs.

Therecan be many possible firing sequences for a givendataflow graph. In this example we have

chosen to fire theactors byrepeating thesequence 1,1,2,1,2 butwecouldjust as well have chosen thefiring se

quence 1,1,1,2,2. If werepeat a complete cycle, a firing sequence thatis consistent withthebalance equations,

thenonlya bounded number of unconsumed tokens canaccumulate beforethegraphreturns to its initialstate.

The precise value of thebound depends on the firing sequence chosen. For the firing sequence 1,1,2,1,2 the

bound is4 tokens. Forthefiring sequence 1,1,1,2,2 thebound is6 tokens. There arealsofiring sequences that,

when repeated, resultin unbounded tokenaccumulation. These sequences do not correspond to a solution of

thebalance equations andthusdo notform a complete cycle. Thefiring sequence 1,1,2 is anexample of such

a sequence. At thecompletion of thisfiring sequence there isa netincrease of 1token on thearc. If thisfiring

sequence is repeated indefinitely, then the number of unconsumed tokens grows without bound. As long as

werestrict ourselves to firing sequences thatrepresent finite complete cycles, we know that the program will

execute in bounded memory.

Consider thesynchronous dataflow graph in figure 2.5. The topology matrix for thisexample is:

2-3 0 "

T= 1 0-1 (2.15)

0 -1 1
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Figure 2.5: An unbalanced synchronous dataflow program.

Figure 2.6: A deadlocked synchronousdataflowprogram.

We cansee thatthisgraph is unbalanced because theonlysolution tothebalance equations is thezero vector.

Thisprogram canstillexecute forever, but tokens accumulate without bound.

We have seen how thebalance equations help usidentify systems thatcan beexecuted with bounded

buffering of tokens on thearcs. However, the balance equations do not completely describe a synchronous

dataflow graph. We must also know the initial state of the graph, the number of initial tokens oneach arc.
Even when thebalance equations have a non-trivial positive integer solution, itmay notbepossible toexecute

a program indefinitely, ortokens may accumulate without bound if the program isexecuted indefinitely.

Considerthe example in figure 2.6. The topology matrixfor this graph is:

r=

2-3 0

-10 3

0 1 -2

The smallest integersolutionto the balanceequations is

r=[3 2 1 ]r

(2.16)

(2.17)

This system is balanced, butit is also deadlocked because there are not enough initial tokens onthe arcs in

the directed cycle. Initially onlyactor 2 is enabled. It can fire once, consuming all of the tokens thatwere

initially on its input and producing 1token on its output. Actor 3 requires 2 tokens inorder tofire, but only
1 is available. Thereare no tokens on any of theotherarcs, so we havereached deadlock: noneof the actors
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Figure 2.7: A balanced synchronous dataflow program that requires unbounded memory.

can fire. Having a solution to the balance equations is not enough to guarantee the existence of a complete

cycle. There must also be enough initial tokens on the directed cycles so that the program does not deadlock.

One simple way to test for the existence of a complete cycle is through simulated execution [31,32],

simply keeping track of the number of tokens on each arc without actually performing any computation. If a

complete cycle is found, then the program will not deadlock when executed. However, as we shall see, the

existence of a complete cycle is only a sufficient condition for ruling out deadlock. Even if a complete cycle

does not exist, the program may not deadlock when executed. Even so, this is not an insurmountable problem.

Karp and Miller[26] give necessary and sufficientconditions to detect deadlock in computation graphs.

Consider the example in figure 2.7. Notice that actors 1 and 2 can fire infinitely often, actor 3 can

fire only twice, and actor 4 can never fire. This program can run without terminating (actors 1 and 2 can fire

indefinitely)but suffers from unbounded accumulation of unconsumed tokens (actor 3 can consume only 2 of

the tokens produced by actor 2). The topology matrix for this program is:

r=

0 0-13

The smallest, positive integer solution to the balance equations is

r=[ 3 3 3 1 ]r

1 -1 0 0

1 1 0 0

0 1 -1 0

0 0 1 3

(2.18)

(2.19)

The balance equations have a non-trivial solution, but a complete cycle does not exist because there are not

enough initial tokens to allow actor 4 to fire. If the program is executed indefinitely, it settles into a cycle,

1,2,3,1,2,3,1,2,... ,1,2,..., that does not return the system to its initial state. Thus the system is unbalanced
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despite the fact that the balance equations havea solution. A betterdefinition of a balanced system is one for

which the balanceequationshave a solutionanda complete cycle exists. An alternate view is to define this

as a deadlocked system because a complete cycle does not exist. However this is counter-intuitive because

actors 1 and 2 can fire indefinitely.

We have seen that the balance equations help us identify complete cycles. When each actor is fired

the number of times specified by r, the total number of tokens produced on each arc is equal to the total number

of tokens consumed. In a complete cycle, there is no net change in the total number of tokens on any arc, so the

system returns to its initial state with the same number of tokens on each arc. The total memory required for

the buffers associated with the arcs is bounded because there are a finite number of actor firings in a complete

cycle (as specified by the repetition vector), and each actor firing produces a finite number of tokens.

The existence of a complete cycle allows us to execute a program forever with bounded buffer sizes.

The balanceequations specify the numberof actor firings in a completecycle. Finding a non-trivialsolution

to the balance equations is necessary but not sufficient for a complete cycle to exist. The initial state of the

graph is also required to determine whether a complete cycle exists.

2.4 Boolean Dataflow

Synchronous dataflow programs can be completely analyzed because of the restricted natureof the

computation model. Balanced synchronous dataflow process networks can be executed forever in bounded

memory, which is our ultimategoal. But can we generalize synchronousdataflowto allow conditional,data-

dependent execution and still be able to analyzeprograms withtechniques like the balance equations?

Boolean dataflow[9] is an extension of synchronous dataflow that allows conditional token con

sumptionand production. By adding two simplecontrolactorscalled switchand select, shown in figure 2.1

on page 19,wecan buildconditionalconstructssuchas if-then-else and do-whileloops. The switchactorgets

a control token and then copies a token from the input to the appropriate output, which is determined by the

Boolean value of the control token. The select actor gets a control token and then copies a token from the

appropriate input, which is determined by the Boolean value of the control token, to the output.

Consider the example in figure 2.8, where switch (actor 3) and select (actor 6) are used to build

an if-then-else construct. We can write balance equations for this program, but now the topology matrix has
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Figure 2.8: A balanced Boolean dataflow program.

symbolic entries:

r =

1 0 -1 0 0 0 0

0 I -1 0 0 0 0

0 1 0 0 0 -1 0

0 0 (l-fl) -1 0 0 0

0 0 Pi 0 -1 0 0

0 0 0 1 0 -(l-p2) 0

0 0 0 0 1 -p2 0

0 0 0 0 0 1 -1

27

(2.20)

The variables Pi and P2 are unknowns, and we can solve the balance equations in terms of these unknowns.

For this example, the balance equations 17 = 0 have a solution only if Pi = P2. This restriction is trivially

satisfied in this case because the control tokens are derived from the same source (actor 2). Thus the solution

isr=[ 1 1 1 (1-P) P 1 1 ]r where P = P,=P2.

Assume for the moment that this program has a finitecomplete cycle, just as synchronous dataflow

programs have complete cycles. If we let N be the number of control tokens produced by actor 2 in the com

plete cycle and letTbe thenumber of those tokens that have value 'TRUE," then we have P=jj- Now the

integer solution tothe balance equations has the form r=[ N N N {N—T) T N N ]T. The small
est integer solution occurs for N = 1, and the system returns to its initial state, with no tokens on any arcs,

following a complete cycle.

As in synchronous dataflow, findinga solution to the balanceequations is necessary but not sufficient

to guarantee the existence of a complete cycle. Consider the example in figure 2.9[16] with the following
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Figure 2.9: A balanced, unbounded Boolean dataflow program.

topology matrix:

• i 0 -1 0 0 0 0

0 1 -1 0 0 0 0

0 1 0 0 0 -1 0

r=
0

0

0

0

(1-P)

p

-2

0

0

-2

0

0

0

0

0 0 0 2 0 -(1-P) 0

0 0 0 0 2 -P 0

0 0 0 0 0 1 -2

(2.21)

This is the same systemwe just studied except that actors 4 and 5 now consume and produce 2 tokens at a

time. The solution to the balance equations isr= [ 2 2 2 (1-P) P 2 2]T. Again the existence of
asolution does notdepend onthe value of P,sowemight think that this system can bescheduled inbounded

memory justas theearlier example. Butobserve what happens when we attempt to find theminimal integer

solution. Using the same definitions ofNand 7\ we find that ?=[ N N N ^f1 \ N N ]T. In order
for this to have an integer solution we require that N and T beeven numbers. But we cannot guarantee this

without additional knowledge about thestream of control tokens produced by actor 2. Consider whathappens

if it produces a"FALSE" token followed by a long stream of "TRUE" tokens. Actor 4 has only onetoken

available, so it is notenabled. Actor5 fires repeatedly, butallof the tokenson the 'TRUE" inputof the select

(actor 6) accumulate, asdothetokenson itscontrol input. Because the first control tokenwas"FALSE", actor

6 is waiting for tokens on the "FALSE" input.

The answer to thequestion of whether thissystem can beexecuted in bounded memorydepends on

thevalues of thetokens produced onthecontrol stream. Itmayturn outthat thesequence of values willallow

the system to run in bounded memory, but without special knowledge about this stream, it is impossible to
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prove this. We could reject this progr,am because we can't prove that it is bounded, or we could just execute

it and hope for the best.
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Our goal is to devise a scheduling policy that will execute an arbitrary process network forever with

bounded buffering on the communication channels whenever possible. We have seen that for restricted process

network models, such as synchronous dataflow, it is possible to construct a finite schedule that can be repeated

indefinitely for infinite execution in bounded memory. It is not necessary for synchronous dataflow programs

to be strictly bounded where buffer sizes remain bounded for all execution orders. It is enough for the program

to be bounded, where at least one execution order yields bounded buffer sizes. Many Boolean dataflow graphs

can be similarly analyzed, but this computation model is rich enough that the questions of termination and

boundedness are undecidable[9]. Some programs will yield to analysis, but there will always be some graphs

that cannot be analyzed in finite time. When static scheduling fails, it becomes necessary to resort to dynamic

scheduling of the program. A dynamic scheduler should satisfy two requirements:

Requirement 1 (Complete Execution) Thescheduler should implementa complete execution ofthe ofthe

Kahn process network program. Inparticular, if theprogram is non-terminating, then it shouldbe executed

forever withoutterminating.

Requirement 2 (Bounded Execution) The schedulershould, ifpossible, execute the Kahnprocess network

program so thatonlya bounded number oftokens everaccumulate on any ofthecommunication channels.

When these requirements conflict, such as for unbounded programs which require unbounded buffering of to

kens for a complete execution, then requirement 1 takes precedence over requirement 2. We prefer a complete,

unbounded execution to a partial, bounded one.

Dynamic scheduling policies can generally be classified as data driven, demand driven, or some

combination of the two. Some work has been done to relate data driven and demand driven scheduling policies.

Pingali and Arvind [37, 39, 38] take the approach of transforming program graphs so that a data driven exe

cution of the transformed program is equivalent to a demand driven execution of the original program. Kahn
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and MacQueen advocate a demand driven policy [25]. Jagannathan and Ashcroft [22,23,2,3,21] present an

execution policy that they call "eazyflow." It combines aspects of eager (data driven) execution with aspects

of lazy (demand driven) execution. We will discuss these policies and some of their shortcomings.

3.1 Decidability

Buck showed that Boolean dataflowgraphs have computationalcapability equivalent to a universal

Turing machine. Using just the switch and select actors together with actors for performing addition, subtrac

tion, and comparison of integers, it is possible to construct a universal Turing machine [9].

3.1.1 Termination

Theorem 1 The problem ofdecidingwhether a BDF graph will terminate is undecidable.

Because a Turing machine can be constructed as a BDF graph, solving the termination decision prob

lem for BDF graphs would allow us to solve the halting problem. But because the halting problem is known

to be undecidable, the termination problem for BDF graphs must also be undecidable. Because BDF graphs

are a special case of Kahn process networks, we have the following corollary.

Corollary 1 The problem ofdeciding whether a Kahn processnetwork will terminate is undecidable.

3.1.2 Boundedness

Theorem 2 ([9]) The problem ofdecidingwhether a BDFgraphcan be scheduledwith bounded memory is

undecidable.

Buck proved this by showing that solving the bounded memory decision problem would allow us to

solve the halting problem, which is knownto be undecidable. Again,becauseBDF graphs are a special case

of Kahn process networks, we have the following corollary.

Corollary 2 The problem ofdeciding whethera Kahn process network canbescheduled with bounded mem

ory is undecidable.

3.1.3 Implications

How does decidability impact our goal of executing arbitrary process networks forever in bounded

memory wheneverpossible? Because terminationand boundednessare both undecidableproblems, we might

wonder if it is even possible to achieve this goal. When a question is undecidable, we cannot devise an algo

rithm that will always arrive at an answer in finite time [17]. But because we want an infinite execution of a

program,wedo not need to arriveat an answerin finite time. Our scheduling algorithmcan operateas the pro

gram executes and need never terminate precisely because we do not want the program to terminate. Because
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termination is undecidable, we cannot always determine ahead of time whether or not a particular program

terminates. We cannot always identify bounded programs for the same reason. However, we will see that it

is simple to devise a scheduling algorithm that will execute process networks forever whenever possible. We

can also devise methods of scheduling programs with bounded memory. Satisfying both requirements simul

taneously is more difficult, but still possible, as we will show.

3.2 Data Driven Scheduling

Datadrivenexecution, where a processis activatedas soon as sufficientdata is available, satisfiesre

quirement 1. This policy always results in a complete execution of the program because execution stops if and

only if all of the processes are blocked reading from empty communication channels. For strictly bounded pro

grams, where all executions lead to bounded buffer sizes for the communication channels, both requirements 1

and 2 are satisfied: complete, bounded execution is guaranteed. But because the question of boundedness is

undecidable, we cannot always classify programs as strictly bounded, bounded or unbounded. For bounded

programs, only some of the execution orders lead to bounded buffer sizes. Unfortunately, data driven sched

ulers do not always find such execution orders when they exist. This can lead to unbounded accumulation of

tokens on the communication channels.

Here is an example of a data driven scheduling policy. Let a Kahn process network be described

by a connected graph G = (V,E) where V is the set of vertices corresponding to processes, and E is the set of

directed edges corresponding to communication channels. Find the set Vg C V of all enabled processes in the

program graph G. By definition, a process can be in one of two states: blocked attempting to get data from

an empty channel, or enabled. If Ve is not empty, Ve ^ 0, activate all of the processes in Ve. If all of these

processes become blocked, repeat by finding a newset V'E of enabled processes.

It is clear that this policy satisfies requirement 1and executes a program indefinitely whenever pos

sible. For a non-terminating program, there is always at least one enabled process, so Ve is never empty and

execution never terminates. Execution terminates only when Ve = 0, which indicates that all processes are

blocked. Thus execution under this policy terminates if and only if the program in question terminates. How

ever, it is not necessary to decide whether or not the program will terminate, so the fact that the termination

decision problem is undecidable does not affect us.

The process network described in figure 1.4on page 4 can be executed forever in bounded memory

with data driven scheduling, as discussed in section 1.3.3. This is the behavior we desire for a non-terminating,

strictly bounded program. However, we cannot classify every program as terminating or non-terminating,

bounded or unbounded before beginning execution. How does data driven scheduling behave for programs

that are not strictly bounded?

For unbounded programs, where all complete executions lead to unbounded accumulation of to

kens, the only way to satisfy requirement 2 is to violate requirement 1 and implement only a partial execution

of the program, stopping before too many tokens accumulate on the channels. Because data driven schedul-
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(int stream V, int stream W)

{

do

= process d(int stream U)

{

int u = get(U);

put(u,V);

put(u,W);

} forever;

}

Figure 3.1: A process that duplicates a stream.

process p(int stream U)

(

do

{

print(get(U));

} forever;

>

Figure 3.2: A process that prints the elements of a stream.

ing always results in a completeexecution, it also results in unbounded token accumulation for unbounded

programs. Consider again the dataflow process network in figure 2.7 on page 25. This unbounded program

executes indefinitely with data driven scheduling, but an unbounded number of tokens accumulate.

For bounded programs, where some (but not all) complete executions lead to unbounded buffer

sizes for the communication channels, data driven scheduling can lead to unnecessaryaccumulation of tokens.

The dataflow processnetworkin figure 2.3 on page22 is not strictlybounded, but can be executedforever in

bounded memory. In our previous discussion in section 2.3, we considered the firingsequences 1,1,2,1,2and

1,1,1,2,2. Both of these sequences can be repeated indefinitely with the dataflow process networkexecuting

forever in bounded memory. However, the firingsequence 1,1,1,... is also a possibleexecution order for this

dataflow process network. Because process 1hasnoinputs, itneverblocks getting datafromanemptychannel

and so it is always enabled. Once activated, this process neversuspends. Withoutparallelexecution, there is

no opportunityto activateprocess2, so every tokenproduced by process 1accumulates on the channel. Even

withthepossibilityof parallelexecution, thereis nothingto preventprocess 1 fromproducing data faster than

it can be consumed by process 2.

The process network in figure 3.5 is another example of a bounded program where data driven

schedulingcan lead to unnecessary accumulation of tokens. Figures 3.3, 1.3, 3.1, 3.4 and 3.2 give the def

initionsof the processes used in this example. In simple data driven execution, all enabled processesare exe

cuted until they block. This results in tokensbeing producedon streamsX and Yat the same rate. But because

processm does not consumedata from each of its inputsat the same rate, tokens will accumulate on one or
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int stream V = process a(int stream U, int x)

{

do

{

put(get(U) + x, V);

} forever;

}

Figure 3.3: A process that adds a constant to each element of a stream.

int stream W = process m(int stream U, int stream V)

{

int u = get(U);

int v = get(V);

do

{

if (u < v)

{

put(u, W);

u = get(U);

}

else if (u > v)

{

put(v, W);

v = get(V);

}

else /* u == v, discard duplicate */

{

put(u, W);

u = get(U);

v = get(V) ;

}

} forever;

}

Figure 3.4: A process that implementsan orderedmerge. Given two monotonically increasingsequencesas
input, the output is also monotonically increasing. Values duplicated on the two inputs are removed.
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Figure3.5: A process network that merges two streams of monotonically increasing integers (multiples of 2
and 3) to producea stream of monotonicallyincreasing integerswith no duplicates. The processesare defined
in figures 1.3, 3.1, 3.2, 3.3 and 3.4.
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the other of the inputs. In this case tokens accumulate without bound on the channel for stream Y.

3.3 Demand Driven Scheduling

For bounded execution, we must ensure that data already produced is consumed before even more

data is produced. We need a means of regulating data sources so that they produce data at the same rate that

it is consumed. Suspending processes only when they attempt to consume data from empty channels is not

enough. We must also consider suspending processes when they produce data so that other processes have

an opportunity to consume that data. This is the approach taken by Kahn and MacQueen for demand driven

execution[25].

Demand driven scheduling policies avoid the unnecessary production of tokens by deferring the

activation of a process until its output is needed as input for another process. In this way, we produce only the

data needed for the final result. However, we will see examples where unbounded token accumulation is still

possible with demand driven scheduling.

3.3.1 Anticipation Coefficients

Kahn and MacQueen describe demand driven execution of process networks[25]. A single process

is selected to drive the whole network. This driving process is specified in the program and is usually the

process that produces the ultimate output for the program. When a process attempts to consume data from

an empty input channel it is suspended, the channel is marked as hungry, and the producer process for that

channel is activated. When this new process is activated, it may attempt to consume from an empty input

which would cause yet another process to be activated in turn. When a process produces data on a hungry

channel, it is suspendedand the waitingconsumer process is activated. Note that there is no transfer of control

when consuming from a channel that is not empty or when producing to a channel that is not hungry.

The example in figure 3.5 cannot be executed in bounded memory with data driven scheduling.

However, this programcan be executed in boundedmemory with demanddriven scheduling. The subgraphs

that act as sources are regulated so that they produce data only when needed. As soon as a process produces

data on a hungry channel, it is suspended so that the destination process has an opportunity to consume that

data.

In this demand driven scheme, there is never more than one active process at any time. Instead of

suspending a process as soon as it produces data on a hungry channel, it could be allowed to continue to run

in parallelwith the waitingconsumerprocess in anticipation of demandsfor its output. However, there is the

danger that the producer process may generate results that are never consumed, just as with data driven exe

cution. Kahn and MacQueen solve this problem by assigning a non-negative integerA, called the anticipation

coefficient, to each channel [25]. Once activated, a producer is not deactivated until there are A unconsumed

tokens on its output. Kahn and MacQueen suggest that the value of A should be set when the channel is passed
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Figure 3.6: The cons operator together with corresponding demand propagation code.

as an input parameter to a new process. As we will show later, it may be necessary to change this value dy

namically while the process network is executing in order to avoid causing an artificial deadlock.

3.3.2 Demand Propagation

Pingali and Arvind present a different approach to demand driven execution [37,39,38]. They give

a method to transform a graph so that a data driven execution of the new graph is equivalent to a demand driven

execution of the original graph. For each arc in the original graph, they add a new arc to carry demand tokens

in the opposite direction. For every node in the original graph, they add new nodes to propagate demands

along the new arcs.

There are only a few operators in the language used by Pingali and Arvind: cons, first, rest, fork,

simplefunctionsthatconsumeand producesingle tokens,select,and theequivalentof switch. The cons, first,

and rest operators are the same ones described earlier in section 1.2.2. The fork operator is equivalent to pro

cess d in figure 3.1 on page 34. The switch and select operators were discussed in section 2.1.1 and section 2.4.

Each operator in the language is transformed into a small program (in a slightly more general language) that

includes demand propagation code.

For example, figure 3.6 shows how the cons operator is transformed. The cons operator consumes

only one token from its first input, and then consumes tokens from the other input. This is equivalent to a

select operator where the control stream is a single "FALSE" token, followed by all 'TRUE" tokens. Any

tokens after the first will never be consumed from the first input. If data driven execution were used, tokens

could be produced despite the fact that they will never be consumed. Thus we need to send a signal to the
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Figure 3.7: The fork operator together with corresponding demand propagation code.

sourceindicatingwhen tokensare needed. Foreach inputof the consoperatorthere is a corresponding output

that producesthesedemands. For the outputof the cons operator, there is a corresponding input that accepts

demands. The firstdemand token is sent to first demand output. This allows the source to producethe token

consumed on the first input of the cons operator. Remaining demand tokens are sent to the other demand

output. Thus, no more tokens will be requested for the first input. All remaining requests are for the other

input.

Data driven execution of this small program is equivalent to demand driven execution of the cons

operator. Demand tokenspropagate in a data driven manner, beingsent along the appropriate path as soonas

they arrive. Once the demands have propagated to the source, tokens will propagate forward in a data driven

manner. The cons operator can execute as soon as these tokens arrive.

Figure 3.7 shows how the fork operator is transformed. The fork operator consumes a token from

its input and copies it to each output branch. If data driven execution were used, tokenscould be produced

before they have beendemanded. The gate operators on each output of the fork prevent tokens from flowing

through until demand tokens have arrived. As demands arrive, they enable the corresponding gate and then

are merged into a single output demandstream. Demandtokens can arrive on either input in any order and

must be passed on as soon as they arrive. Thus we must use the non-determinate merge operator described

earlier in section 2.1.1. Fortunately this use of the merge operatordoes not introduce nondeterminism. Any

reordering that may occur on the merge output stream will not be apparent because the demand tokens do not

have values and they are indistinguishable from one another.

Figures 3.8 and 3.9 show how a small program is transformed. Demands for the program output
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Figure 3.8: A processnetworkprogram thatcomputes Fibonacci numbers.
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><h

Figure 3.9: The Fibonacci program with demand-propagation code added.
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(int stream V, int stream W) = process x(int stream U,

{

do

{

int u = get(U);

int y)

if (u mod y == 0) put(u, V);

else put(u, W);

} forever;

}

Figure 3.10: A process that separates a stream in to those values that are and are not evenly divisible by a
constant.

Figure 3.11: A process network that requires unboundedbufferingwith demanddriven execution. The pro
cesses are defined in figures 1.3, 3.3, 3.1, 3.2 and 3.10.

flow through the graph to the gate operators at the program inputs where they allow the necessary data to

flow forward throughthe programgraphand producethe results that weredemanded. One drawback of this

approach is the significantoverhead required to propagate demands.

3.33 Unbounded Execution

Pingali and Arvind prove that a data driven execution of a transformed program is equivalent to

demand driven execution and will produceexactly the values required tocompute the finaloutput and no more.

But this does not preclude unbounded bufferingof tokens. For example, if an unequal number of demands

arrive for the branches of a fork, then tokens will accumulate at the input of one of the gate operators.

Just as the presence of multiple data sources is a problem in data driven scheduling, the presence

of multipledata sinks is a problemin demanddriven scheduling. The programshown in figure 3.11 requires

unbounded buffering with simple demand driven scheduling. If processes po and p\ generate demands at the

same rate, then tokens will accumulate on one or the other of the outputs of process x because it does not

produce tokens on each of its outputs at the same rate. In this case tokens accumulate without bound on the
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input to process pi. If we could switch from demand driven scheduling to data driven scheduling at the point

where process jc produces undemanded data, then process p\ would be able to consume that data.

3.4 Combined Data/Demand Driven Scheduling

We have seen examples where data driven scheduling or demand driven scheduling can lead to an

unbounded accumulation of tokens. Eazyflow is a hybrid dataflow model that combines aspects ofdata driven

(eager) and demand driven (lazy) scheduling [22, 23, 2, 3, 21]. In eazyflow, execution alternates between

demand driven and data driven. Data driven execution is begun when there is a token deficit and continues

until there is a token surplus, at which point demand driven execution resumes. Combined approaches, like

eazyflow, are more promising than data driven or demand driven scheduling alone, but still fall short of our

goal.

In eazyflow, streams are classified as eager or lazy, which determines whether data driven or demand

driven execution is used to produce stream values. Streams defined with functions that consume unpredictable

amounts of data (such as process m in figure 3.4) or produce unpredictable amounts of data (such as process

x in figure 3.10) are classified as lazy. Streams defined with functions that consume and produce predictable

amounts of data (such as synchronous dataflow processes) are classified as eager, unless one or more of the

input streams to the function are lazy. If some of the input streams are lazy, then the output stream is also lazy.

For example, stream Z in figure 3.5 on page 36 is lazy because process mconsumes an unpredictable

(data dependent) number of tokens from each of its inputs. The streams X and Yare eager. If there is a token

deficit and too few tokens are available when process m demands the next value of stream X, then data driven

execution of the subgraph that produces X is triggered. Execution of the subgraph is suspended once enough

tokens have been produced to overcome the deficit and to create a surplus.

Fixed thresholds that are parameters of the system define deficit and surplus [23]. The surplus

threshold serves the same purpose as Kahn and MacQueen's anticipation coefficient [24]. As we will show, a

fixed threshold is inadequate because it may be necessary to adjust the threshold dynamically in order to avoid

causing an artificial deadlock.
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We now present a scheduling policy that simultaneously satisfies requirement 1 (compete execu

tion) and requirement 2 (bounded execution): arbitrary Kahn process networks execute forever with bounded

buffering when possible. We give priority to requirement 1 and prefer a complete, unbounded execution to

a partial, bounded execution. As we showed earlier in section 3.2, data driven scheduling satisfies require

ment 1 and always yields a complete execution of a Kahn process network. In particular, non-terminating

programs execute forever. For a strictly bounded program, which has bounded buffering for any execution,

any scheduling policy satisfies requirement 2. Thus data driven scheduling satisfies both requirements 1and

2 when applied to strictly bounded programs.

Not every program is strictly bounded. Some programs are bounded — they can be executed with

bounded buffer sizes for each of the communication channels, but some execution orders lead to unbounded

buffer sizes. Other programs are unbounded — all complete executions lead to unbounded buffer sizes. We

present a scheduling policy that always executes non-terminating, bounded programs forever with bounded

buffer sizes. If the program is unbounded, then our policy will still execute it forever (we do not introduce

deadlock) but in this case it is not possible to bound the buffer sizes. And of course execution under our policy

will terminate given a terminating program.

4.1 Program Graph Transformation

We transform a program graph G to produce a semantically equivalent graph G° that is strictly

bounded by b . This transformation may introduce artificial deadlock so that a complete execution of the

transformed graph G°represents only a partial execution of the original graph G. We execute thetransformed

program G° with data driven scheduling, orany other policy that satisfies requirement 1. until execution stops.

If execution of C° never stops, then we have succeeded in implementing a complete, bounded execution. If
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execution of G°stops and we discover that this complete execution ofG° represents a complete execution of

the original program G, then we have also succeeded in implementinga complete, bounded execution. How

ever, ifexecution ofG°stops and we discover that this complete execution represents only a partial execution

of the original program G, then we have chosen a bound b° that is too small. One or more of the channels

must buffer more than b° tokens inorder to implement acomplete execution of the program G. Thus we must

choose a new larger bound bl > b° and tryagain.

By definition,a Kahnprocessnetworkthat is boundedby bhas at leastonecompleteexecutionsuch

that every channel is bounded by b. Even if we do not know its value, this bound b exists and is finite. Thus,

as we choose successively larger bounds b° < bl < b2 < • •,we will eventually discover a bound bP that is
greaterthanor equal to b. If theprogramgraphG is bounded by bandweapplyour transformation to produce

a graph GN that it isstrictly bounded by bN with bN > b, then a complete execution ofGN corresponds to a
complete execution of G. Thus we can achieve our goal of complete, bounded execution for any bounded

Kahn process network.

We begin with a processnetworkdescribedby a connectedgraph G= (V,E) with a set of vertices

Vcorresponding to the processesand a set of directed edges E correspondingto the communicationchannels.

Foreach edge ex = (vm, v„), add a new edge e| = (v„, vm) in thereverse direction. We call thechannels corre

spondingto these new edgesfeedback channels because they introducedirectedcycles, or feedback loops, in

theprogramgraph. Let |e,-| be the size of anedge el% the numberof tokensstoredin the bufferfor the commu

nication channel. Place hi —|e,-| tokens ontheedge cjso thatthetotal number oftokens forthepairofedges is

bj = \ei\ + |ej-|. Frequently there are notokens initially buffered onthe communication channels, with |e,| = 0

and |ej-j = bt.
Modify each process so that it must consume onetoken from a feedback channel cj foreach token

that it produces on the corresponding datachannel et. Also,a process mustproduce one tokenon a feedback

channel e{ for each token that it consumes from the corresponding data channel et. This requires modified

semantics for the get and put operations, with no other modifications to the processes. Thus the numberof

tokens on thepairof edges remains constant, bt = |e,| + |ej|. In particular, the number of tokens on the data

channel is strictlybounded|e,| < bt. The program as a wholeis strictlybounded byb = maxfc,, the maximum

of the bounds for all channels.

As with data channels,processesblock whenattemptingto get tokens from empty feedbackchan

nels. The tokens flowing along these feedback channels need not have values. They simply restrict the order

ofexecution and do not affect the values of the tokens on the data channels. This transformation preserves the

process networkmodel: a process blocksonly whenreading from an emptychannel and channelsare poten

tially unbounded in size. Insteadof adding feedback channels, we could modifythe processnetworkmodel

by directlylimitingthe capacityof thechannelsand requiringthat processes blockwhenwritingto a full chan

nel. For the rest of our discussion, we will dispense with the notion of blocking reads from empty feedback

channels in favor of blocking writes to full channels.

The feedback channels are similar to the demand arcs in Pingali and Arvind's graph transforma

tion [37,39,38] or the acknowledgment arcs of Dennis' static dataflow model [13,14,1,18]. Directly bound-
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ing the capacity of a channel is similar to Kahn and MacQueen's anticipation coefficients [25].

Limiting the capacity of the channels (either directly or indirectly with feedback channels) places

additional restrictions on the order in which get and put operations can take place. The transformed graph com

putes the same result as the original graph with the possible exception that we may have introduced deadlock.

A complete execution of the transformed graph may be only a partial execution of the original graph.

This graph transformation is one way to divide the set of all possible executions into a hierarchy of

subsets. Let O be the set of execution orders for the original program graph, and let O1 be the set ofexecution

orders for the transformed graph that it is strictly bounded by bl. The set of execution orders for the trans

formed program is a subset of the execution orders for the original graph, Ol C O. Also, if we transform the

graph fortwodifferent values bl andbj, then O' C 0} \ibl < bK If wechoose a bound b' such that there are

no infinite executions in O' even though there are infinite executions in O, then we have introduced artificial

deadlock.

4.2 Bounded Scheduling

If a program is bounded, then there exists a finite least upper bound b and an execution order such

thatthesizeofeach buffer never exceeds b. We choose aninitial estimate b°ofbandtransform theprogram so

that it isstrictly bounded byb°. If we happen tochoose b° > b, then a complete execution of the transformed

program corresponds to a complete execution of the original program. Execution of the transformed program

terminates if and only if execution of the original program would also terminate. We call this situation, where

allprocesses are blocked reading from empty channels, true deadlock. If we choose b° < b, then execution

could also stop if one or more processes are blocked writing to full channels. We call this situation artificial

deadlock.

We choose an initial bound b° and transform the original graph sothat it isstrictly bounded by limit

ing the capacity ofeach communication channel tob°. We then execute this transformed program graph with

an execution policy, such as data driven execution, that satisfies requirement 1. If execution stops due to arti

ficial deadlock, with one or more processes blocked writing to full channels, then we increase the capacities

ofall channels in thenetwork tobl > b°so that now theprogram is strictly bounded by bl. After increasing

the channel capacities, we continue execution from the point where we left off. Each time that execution stops

due to artificial deadlock, we increase the capacities of all the channels and continue.

If the program is bounded with a finite least upper bound b, then eventually our estimate will in

crease tomeet orexceed that bound bP >b, and we will beable toexecute theprogram forever with bounded

buffering, simultaneously satisfying both requirements 1 and 2. If the program is unbounded, execution re

peatedly stops due to artificial deadlock, and we increase the channel capacities repeatedly and without limit.

There is no bound on the buffer requirements for the communication channels, but the execution will con

tinue indefinitely (or until system resources are exhausted). So we see that requirement 1 is given priority

over requirement 2: we continue to execute unbounded programs as long as possible, preferring a complete,
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Figure 4.1: A bounded process network in whichdifferentchannelscan have different bounds. The processes
are defined in figures 3.3, 1.3, 3.1, 3.10, 3.4 and 3.2.

unbounded execution to a partial, bounded execution. If the original program would terminate, then execu

tionof the transformed programmaystopseveral timesdue toartificial deadlock,buteventuallyexecutionwill

stop due to a true deadlock where all processesare blockedreadingfromempty channels and no processesare

blocked writing to full channels.

So we see that this bounded scheduling policy has the desired behavior for terminating and non-

terminating programs, strictly bounded, bounded and unbounded programs. This is important because ter

mination and boundedness are undecidable. There will always be programs that we cannot classify, so our

scheduling policy must have a reasonable behavior for all types of programs.

Part of the elegance of this approach is that any scheduling policy that satisfies requirement 1 can

be used for the transformed graph: data driven, demand driven or some combination of the two. We have

modified the graph is such a way that any scheduler works — any execution leads to boundedbuffering on

the communication channels.

4.3 Reducing Buffer Bounds

So far we have set all the channelcapacities to the same value. Data driven execution could make

use of all available capacity, requiring large amounts of storage for unconsumed tokens. Some form of de

manddriven or hybridexecutionpolicycould be employedto avoidusing all availablecapacity. Wecan also

set differentcapacity limits for differentchannels. However, we must be careful when doing this so that we

preserve bounded buffer sizes.

Consider the process network in figure 4.1. An increasing sequence of integers is split into two

streams: a stream of values that are evenly divisible by 5, and a stream of values that are not evenly divisible

by5. Thesestreams are thenmerged to again form a stream of increasing integers. Initially, values 0 and 1are

consumed by process m. The value0 is sent to the output, thenprocess m waits for the nextmultiple of 5 to

be available. In the meantime,the values2,3 and4 queueup on the other channel. Once the value5 becomes
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available and is consumed by process m, the values 2, 3 and 4 are copied from the input to the output. We see

that the channel for the stream of values that are not multiplesof 5 must have a capacity of at least 3. All other

streams can have a capacity as small as 1.

If we begin by setting the initial capacities of all channels to 1, and increase all channel capacities

by 1 each time the program deadlocks, then every channel ends up with a capacity of 3. There are 7 channels

in this example, so the total capacity of the system is 21. This is higher than the minimum of 9 if we allow

different channels to have different capacities. If we generalize this example so that the divisor in process x is

N instead of 5, then we see that storage requirements are IN if we make the capacity limits the same for each

channel. The minimum storage required in this example is N + 4. If N is a large number, then the difference

between IN and N + 4 can be quite large.

It is not strictly necessary to increase the capacity of every buffer. When execution stops due to

artificial deadlock, one or more processes are blocked writing to full channels. Increasing the capacity limits

of channels that are not full does not allow execution to continue. It is necessary to increase the capacity of

one or more of the full channels. It is important not to increase the largest buffer (unless all full buffers are

the same size) because this could lead to unbounded growth of that buffer. We will show that it is sufficient

to increase the full channel with the smallest capacity.

Instead of increasing the capacity of all the channels, we can increase the capacity of only the full

channel with the smallest capacity. One possible sequence of deadlocks that occur with this policy and data

driven execution is shown in figure 4.2. Initially all channel capacities are 1 in figure 4.2(a). At several points

there is a tie that must be broken, as in figure 4.2(c). Our arbitrary choices led to the distribution of channel

capacities shown in figure 4.2(e).

Increasing the smallest full channel guarantees that every full channel will eventually be increased if

necessary to unlock the program. If the same channel is increased repeatedly, then eventually it will no longer

be smallest. If some full channel other than the smallest is increased, then some buffers could grow without

bound. Consider what would happen if only the largest full channel were increased, for example. Choosing

the smallest channel prevents this from happening. The advantage of this policy is that some channels have

smaller capacities than if all channel capacities were increased.

4.4 Dataflow Scheduling

These results for bounded scheduling of process networks can be applied to dataflow. But because

the firing of a dataflow actor is atomic, we cannot directly use the technique of limiting the capacities of chan

nels. When an actor fires, it consumes input tokens and produces output tokens. Once initiated, the firing

cannot be suspended. In particular, it cannot be suspended when it produces output tokens. In general we

do not know how many tokens a firing will produce, if any. Thus we cannot determine if firing an actor will

produce enough tokens to exceed the capacity limit of a channel.

Instead we classify dataflow actors as deferrable or non-deferrable. We define an actor to be de-
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(a) (b)

(c) (d)

(e)

Figure 4.2: The sequence of deadlocks that occur when only the smallest full buffer is increased. At each step,
the indicated processes are blocked writing to the indicated full channels. The capacities of the channels are
indicated at each step.
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ferrable when it is enabled (enough tokens are available at the inputs to satisfy its firing rules), but one or

more of its output channels has sufficient tokens to satisfy the demand of the destination actor. In order to

preserve boundedbufferingwhen possible, a dataflow actor should not add tokens to an edge when there are

already enough tokens to satisfy the demandof the destination actor on that edge (enough tokens are available

to match the applicable firing rule pattern for the destination).

If a dataflow program is bounded, then there exists a finite bound b such that no actor consumes or

producesmore thanb tokensin a firing. Therecouldbe as manyas ft—1tokensona channelwiththe demand

still unsatisfied. An actor could produce as many as ft tokens when fired, so there could be as many as 2ft—1

tokens on a channel. If deferrable actors are never fired, then there will never be more than 2ft —1 tokens on

any channel.

For a dataflow program described by a graph G = {V,E), data driven execution would find the set

VE of enabled actors and fire all of them. Instead, we find the subset VD C VE of deferrable actors. Only the

non-deferrable actors inVf—Vq are fired. Then thenew set V'E ofenabled actors andthe new set ofdeferrable

actors are computed, and the actors in V'E —V'D are fired. This repeats as long as V'E —V'D is not empty. If

execution stops, then VE —V'D must be empty. All enabled actors are deferrable, so V'E = V'D.
At this point, we must fire a deferrable actor to satisfy requirement 1. For each deferrable actor vy,

let Cj be themaximum of the buffer sizes for that actor'soutput channels that have satisfied demands. If we

chooseto fire the actor with the minimum valuefor Cj, then we can also satisfy requirement 2.

The motivation for this is similar to our motivation for increasing the capacity of the smallest full

channel. Each deferrable actor has at least one output channel with a satisfied demand. In some sense, such

channels are full. In general we do not know which channel(s) an actor firing will produce tokens on, so we

mustconsiderthe largest suchchannel buffer foreachactor. Thisdetermines the value Cj for each deferrable

actor, and we choose to fire the actor with thesmallestvaluefor c}. If this actor firing could produceas many

as ft tokens ona channel thatalready has a buffer sizeofc}. Thusthemaximum buffer size fortheentiregraph

would be max(max(c/), min(cj) + ft). If this actor firing produces notokens, or produces tokens ona channel

other than the one thatdetermined c}, then themaximum buffersize couldbe smaller.

If the sameactor is fired repeatedly, theneventually it willno longerhave the smallestvalue for c},

or it will no longer be enabled. If some other actor were fired, then some buffers could grow without bound.

Consider whatwould happen if only theactor withthelargest value forc} were fired. Choosing theactorwith

the smallest valueof Cj prevents this fromhappening.
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Chapter 5

Implementation in Ptolemy

Ptolemy [10] is an object oriented simulation and prototyping environment. A basic abstraction in

Ptolemy is the domain, which realizes a computational model. Examples of domains include synchronous

dataflow (SDF), Boolean dataflow (BDF), dynamic dataflow (DDF) and discrete-event (DE). Subsystems can

be described with an appropriate domain and domains can be mixed to realize an overall system simulation. In

addition to mixed-domain simulation, Ptolemy also supports code generation for the dataflow domains [40].

The theory presented in this thesis has been implemented in Ptolemy as the Process Network (PN) domain.

The PN domain includes all the dataflow domains (SDF, BDF and DDF) as subdomains. This hierarchical

relationship among the domains is shown in figure 5.1. The model of computation for each domain is a strict

subset of the model for the domain that contains it.

The nodes of a program graph, which correspond to processes or dataflow actors, are implemented

in Ptolemy by objects derived from the class Star. The firing function of a dataflow actor is implemented by

the run method of Star. The edges of the program graph, which correspond to communication channels,

are implemented by the class Geodesic. A Geodesic is a first-in first-out (FIFO) queue that is accessed

by the put and get methods. The connections between stars and geodesies are implemented by the class

PortHole. Each PortHole has an internal buffer. The methods sendData and receiveData transfer

data between this buffer and a Geodesic using the put and get methods.

Several existing domains in Ptolemy, such as Synchronous Dataflow (SDF) and Boolean Dataflow

(BDF), implement dataflow process networks by scheduling the firings of dataflow actors. The firing of a

dataflow actor is implemented as a function call to the run method of a Star object. A scheduler executes

the system as a sequence of function calls. Thus, the repeated actor firings that make up a dataflow process are

interleaved with the actor firings of other dataflow processes. Before invoking the run method of a Star,

the scheduler must ensure that enough data is available to satisfy the actor's firing rules. This makes it neces

sary for a Star object to inform the scheduler of the number of tokens it requires from its inputs. With this

information, a scheduler can can guarantee that an actor will not attempt to read from an empty channel.

By contrast, the PN domain creates a separate thread of execution for each node in the program
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Figure 5.1: The hierarchy of dataflow domains in Ptolemy.

graph. Threads are sometimes called lightweight processes. Modern operating systems, such as Unix, support

the simultaneous execution of multiple processes. There need not be any actual parallelism. The operating

system can interleave the execution of the processes. Within a single process, there can be multiple lightweight

processes or threads, so there are two levels of multi-threading. Threads share a single address space, that

of the parent process, allowing them to communicate through simple variables. There is no need for more

complex, heavyweight inter-process communication mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive access to shared

data and cannot interfere with one another to corrupt shared data structures. Monitors and condition variables

are available to synchronize the execution of threads. A monitor is an object that can be locked and unlocked.

Only one thread may hold the lock on a monitor. If a thread attempts to lock a monitor that is already locked by

another thread, it is suspended until the monitor is unlocked. At that point it wakes up and tries again to lock

the monitor. Condition variables allow threads to send signals to each other. Condition variables must be used

in conjunction with a monitor; a thread must lock the associated monitor before using a condition variable.

The scheduler in the PN domain creates a thread for each node in the program graph. Each thread

implements a dataflowprocess by repeatedly invoking the run methodof a Star object. The scheduler itself

does very little work, leaving the operating system to interleave the execution of threads. The put and get

methods of the class Geodesic have been re-implemented using monitors and condition variables so that a

thread attempting to read from an empty channel is automatically suspended, and threads automatically wake

up when data becomes available.

The classes PtThread, PtGate, and PtCondition define the interfaces for threads, monitors,

and condition variables in Ptolemy. Different implementations can be used as long as they conform to the

interfaces defined in these base classes. At different points in the development of the PN domain, we experi

mented with implementations based on Sun's Lightweight Process library. AWESIME (A Widely Extensible

Simulation Environment) by DirkGrunwald [20], and Solaris threads[41, 15, 28, 30,29,42,43]. The current
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Figure5.2: The class derivationhierarchy for threads. PtThread is an abstract base class with several pos
sible implementations. Each DataFlowProcess refers to a DataFlowStar.

implementation is basedon a POSIX threadlibraryby FrankMuller[34, 35, 19,36]. This library, whichruns

on several platforms, is basedon Draft 6 of the standard. Partsof our implementation willneedto be updated

to be compliant with the final POSIX thread standard.

Bychoosingthe POSIXstandard, we improve theportabilityof our code. Sun andHewlettPackard

already include an implementation of POSIX threads in their operating systems, Solaris 2.5 and HPUX 10.

Havingthreadsbuiltintothekernel of theoperating system, asopposedtoa userlibraryimplementation, offers

the opportunity for automatic parallelization on multiprocessor workstations. Thus, the same program runs

properlyon uniprocessor workstations and multiprocessor workstations without needing to be recompiled.

This is importantbecause it wouldbe impractical to maintain differentbinaryexecutables of Ptolemy foreach

workstation configuration.

5.1 Processes

Figure 5.2 shows the class derivation hierarchy for the classes that implement the processes of Kahn

process networks. The abstract base class PtThread defines the interface for threads in Ptolemy. The class

PosixThread provides an implementation based on the POSIX thread standard. Other implementations
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using AWESIME [20] or Solaris [41] are possible. The class PNThread is a typedef that determines which

implementation is used in the PN domain. Changing the underlying implementation simply requires changing

this typedef. The class DataFlowProcess, which is derived from PNThread, implements a dataflow

process. The Star object associated with an instance of DataFlowProcess is activated repeatedly, just

as a dataflow actor is fired repeatedly to form a process.

5.1.1 PtThread

PtThread is an abstract base class that defines the interface for all thread objects in Ptolemy. Be

cause it has pure virtual methods, it is not possible to create an instance of PtThread. All of the methods are

virtual so that objects can be referred to as a generic PtThread, but with the correct implementation-specific

functionality.

The class PtThread has two public methods.

virtual void initialize() = 0;

This method initializes the thread and causes it to begin execution.

virtual void terminate() = 0 ;

This method causes execution of the thread to terminate.

The class PtThread has one protected method.

virtual void run() = 0;

This method defines the functionality of the thread. It is invoked when the thread begins execution.

5.1.2 PosixThread

The class PosixThread provides an implementation for the interface defined by PtThread. It

does not implement the pure virtual method run, so it is not possible to create an instance of Pos ixThread.

This class adds one protected method, and one protected data member to those already defined in PtThread.

static void* runThis(PosixThread*);

This static method invokes the run method of the referenced thread. This provides a C interface that

can be used by the POSIX thread library.

pthread_t thread;

A handle for the POSIX thread associated with the PosixThread object.

pthread_attr_t attributes;

A handle for the attributes associated with the POSIX thread.

int detach;

A flag to set the detached state of the POSIX thread.
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void PosixThread::initialize()

{

// Initialize attributes.

pthread_attr_init(&attributes) ;

// Detached threads free up their resources as soon as they exit.

// Non-detached threads can be joined,

detach = 0;

pthread_attr_setdetachstate(&attributes, &detach);

// New threads inherit their priority and scheduling policy

// from the current thread.

pthread_attr_setinheritsched(&attributes, PTHREAD_INHERIT_SCHED) ;

// Set the stack size to something reasonably large. (32K)

pthread_attr_setstacksize(&attributes, 0x8000);

// Create a thread.

pthread_create(&thread, &attributes, (pthread_func_t)runThis, this);

// Discard temporary attribute object.

pthread_attr_destroy(&attributes);

Figure 5.3: The initialize method of PosixThread.
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void PosixThread::terminate{)

{

// Force the thread to terminate if it has not already done so.

// Is it safe to do this to a thread that has already terminated?
pthread_cancel(thread);

// Now wait.

pthread_join(thread, NULL);
pthread_detach(&thread);

}

Figure 5.4: The terminate method of PosixThread.

DataFlowProcess(DataFlowStarfc s)

: star(s) {}

Figure 5.5: The constructor for DataFlowProcess.

The initialize method, shown in figure 5.3, initializes attributes, then creates a thread. The

thread is created in a non-detached state, which makes it possible to later synchronize with the thread as it

terminates. The controlling thread (usually the main thread) invokes the terminate method of a thread

and waits for it to terminate. The priority and scheduling policy for the thread are inherited from the thread

that creates it, usually the main thread. A function pointer to the runThis method and the this pointer,

which points to the current PosixThread object, are passed as arguments to the pthread_create func

tion. This creates a thread that executes runThis, and passes this as an argument to runThis. Thus, the

run method of the PosixThread object is the main function of the thread that is created. The runThis

method is required because it would not be good practice to pass a function pointer to the run method as

an argument to pthreacLcreate. Although the run method has an implicit this pointer argument by

virtue of the fact that it is a class method, this is really an implementation detail of the C++ compiler. By us

ing the runThis method, we make the pointer argument explicit and avoid any dependencies on a particular

compiler implementation.

The terminate method, shown in figure 5.4, causes the thread to terminate before deleting the

PosixThread object. First it requests that the thread associated with the PosixThread object terminate,

using the pthread_cancel function. Then the current thread is suspended by pthreacLj oin to give the

cancelled thread an opportunity to terminate. Once termination of that thread is complete, the current thread

resumes and deallocates resources used by the terminated thread by calling pthread-detach. Thus one

thread can cause another to terminate by invoking the terminate method of that thread.
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void DataFlowProcess::run()

{

// Configure the star for dynamic execution,
star.setDynamicExecution(TRUE);

// Fire the Star ad infinitum,

do

{
if (star.waitPort()) star.waitPort()->receiveData()

} while(star.run());

Figure 5.6: The run method of DataFlowProcess.

5.1.3 DataFlowProcess

The class DataFlowProcess is derived from PosixThread. It implements the map higher

order function described in section 2.1. A DataFlowStar is associated with each DataFlowProcess

object.

DataFlowStarfc star;

Thisprotected datamember refers to thedataflow starassociated withtheDataFlowProcess object.

The constructor, shown in figure 5.5, initializes the star member to establish the association between the

thread and the star.

The run method, shown in figure 5.6, is defined to repeatedly invoke the run method of the star

associated with the thread,just as the map function formsa process from repeated firingsof a dataflowactor.

Somedataflow stars in the BDF domain can operate withstatic schedulingor dynamic, run-time scheduling.

Understatic scheduling, a BDF star assumes that tokensare availableon control inputs and appropriatedata

inputs. Thisrequires thatthescheduler beaware of thevalues ofcontrol tokens andthedataports thatdepend

on thesevalues. Becauseour scheduler has nosuch specialknowledge, thesestars must be properly configured

fordynamic, multi-threaded execution in thePNdomain. Starsin theBDFdomain thathavebeenconfigured

fordynamic execution, andstars in theDDF domain dynamically inform thescheduler ofdata-dependent fir

ingrules by designating a particular input PortHole with thewaitPort method. Datamust be retrieved

fromthe designated inputbefore invoking the star's run method. The star's run method is invokedrepeat

edly, until it indicates an error by returning "FALSE."

5.2 Communication Channels

Figure 5.7 shows the class derivation hierarchy for the classes that implement the communication

channels of Kahn process networks. The classes that implement the communication channels provide the

synchronization necessary to enforce the blocking read semantics of Kahn process networks. The classes
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Figure5.7: The class derivation hierarchy for monitors and condition variables. PtGateand PtCondition
are abstract base classes, each with several possible implementations. Each CriticalSection and
PtCondition refers to a PtGate.

PtGate, PosixMonitor and CriticalSection provide a mutual exclusion mechanism. The classes

PtCondition and PosixCondition provide a synchronization mechanism. The class PNGeodesic

uses these classes to implement a communication channel that enforces the blocking read operations of Kahn

process networks and the blocking write operations required for bounded scheduling.

The abstract base class PtGate defines the interface for mutual exclusion objects in Ptolemy. The

class PosixMonitor provides an implementation of PtGate based on the POSDC thread standard. Other

implementations are possible. The class PNMonitor is a typedef that determines which implementation

is used in the PN domain. Changing the underlying implementation simply requires changing this typedef.

The abstract base class PtCondition defines the interface for condition variables in Ptolemy.

The class PosixCondition provides an implementation based on the POSIX thread standard. Other im

plementationsare possible. The class PNCondition is a typedef that determines which implementation

is used in the PN domain. Changing the underlying implementation simply requires changing this typedef.

The class CriticalSection provides a convenient method for manipulating PtGate objects,

preventing some common programming errors. The class PNGeodsesic uses all of these classes to imple

ment a communication channel.

5.2.1 PtGate

A PtGate can be locked and unlocked, but only one thread can hold the lock. Thus if a thread

attempts to lock a PtGate that is already locked by another thread, it is suspended until the lock is released.

virtual void lockO = 0;

This protected method locks the PtGate object for exclusive use by one thread.
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void PosixMonitor::lock()

{

pthread_mutex_lock(&mutex);

// Guarantee that the mutex will not remain locked

// by a cancelled thread.

pthread_cleanup_push((void(*)(void *))pthread_mutex_unlock, &mutex);

}

Figure 5.8: Thelock method of PosixMonitor.

void PosixMonitor::unlock()

{

// Remove cleanup handler and unlock.

pthread_cleanup_pop(TRUE);

}

Figure 5.9: Theunlock method of PosixMonitor.

virtual void unlock() = 0;

This protected method releases the lock on the PtGate object.

5.2.2 PosixMonitor

The class PosixMonitor provides an implementation for the interface defined by PtGate. It

has a single protected data member.

pthread_mutex_t thread;

A handle for the POSIX monitor associated with the PosixMonitor object.

The implementations of the lock and unlock methods are shown in figures 5.8 and 5.9.

5.2.3 CriticalSection

The class CriticalSection provides a convenient mechanism for locking and unlocking

PtGate objects. Its constructor, shown in figure 5.10 locks the gate. Its destructor, shown in figure 5.11

CriticalSection(PtGate* g) : mutex(g)

{

if (mutex) mutex->lock();

}

Figure 5.10: The constructor of CriticalSection.
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"CriticalSection()

{

if (mutex) mutex->unlock();

}

Figure 5.11: The destructor of CriticalSection.

unlocks the gate. To protect a section of code, simply create a new scope and declare an instance of

CriticalSection. The PtGate is locked as soon as the CriticalSection is constructed. When

execution of the code exits scope, the CriticalSection destructor is automatically invoked, unlocking

the PtGate and preventingerrors caused by forgetting to unlockit. Examples of this usageare shown in fig

ures 5.16 and 5.15. Becauseonly one thread can hold the lockon a PtGate, only one section of code guarded

in this way can be active at a given time.

5.2.4 PtCondition

The class PtCondition defines the interface for condition variables in Ptolemy. A

PtCondition provides synchronization through the wait and notify methods. A condition vari

able can be used only when executing code within a critical section (i.e. when a PtGate is locked).

PtGate& mon;

This data member refers to the gate associated with the PtCondition object.

virtual void waitO = 0;

This method suspends execution of the current thread until notification is received. The associated

gate is unlocked before execution is suspended. Once notification is received, the lock on the gate is

automatically reacquired before execution resumes.

virtual void notify() = 0;

This method sends notification to one waiting thread. If multiple threads are waiting for notification,

only one is activated.

virtual void notifyAHO = 0;

This method sends notification to all waiting threads. If multiple threads are waiting for notification,

all of them are activated. Once activated, all of the threads attempt to reacquire the lock on the gate,

but only one of them succeeds. The others are suspended again until they can acquire the lock on the

gate.

5.2.5 PosixCondition

The class PosixCondition provides an implementation for the interface defined by

PtCondition. The implementations of the wait, notify and notifyAll methods are shown
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void PosixCondition::wait()

{

pthread_cond_wait(&condition, &mutex);

}

Figure 5.12: The wait method of PosixCondition.

void PosixCondition::notify()

{

pthread_cond_signal(&condition);

}

Figure 5.13: The notify method of PosixCondition.

in figures 5.12, 5.13 and 5.14.

5.2.6 PNGeodesic

The class PNGeodesic, which is derived from the class Geodesic defined in the Ptolemy kernel,

implements the communication channels for the PN domain. In conjunction with the PtGate member pro

vided in the base class Geodesic, two condition variables provide the necessary synchronization for block

ing read and blocking write operations.

PtCondition* notEmpty;

This data member points to a condition variable used for blocking read operations when the channel is

empty.

PtCondition* notFull;

This data member points to a condition variable used for blocking write operations when the channel

is full.

int cap;

This data member represents the capacity of the communication channel and determines when it is full.

The slowGet method, shown in figure 5.15, implements the get operation for communication

channels. The entire method executes within a critical section to ensure consistency of the object's data mem-

void PosixCondition::notifyAll()

{

pthread_cond_broadcast(&condition);

}

Figure 5.14: ThenotifyAll method of PosixCondition.
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Particle* PNGeodesic::slowGet()

{

// Avoid entering the gate more than once.

CriticalSection region(gate);

while (sz < 1 && notEmpty) notEmpty->wait();

sz—; Particle* p = pstack.get();

if (sz < cap && notFull) notFull->notifyAll();
return p;

}

Figure 5.15: TheslowGet method of PNGeodesic.

void PNGeodesic::slowPut(Particle* p)

{

// Avoid entering the gate more than once.

CriticalSection region(gate);

while (sz >= cap && notFull) notFull->wait();

pstack.putTail(p); sz++;

if (notEmpty) notEmpty->notifyAll();

}

Figure 5.16: The slowPut method of PNGeodesic.

bers. If the buffer is empty, then the thread that invoked slowGet is suspended until notification is received

on notEmpty. Data is retrieved from the buffer, and if it is not full notification is sent on notFull to any

other thread that may have been waiting.

The slowPut method, shown in figure 5.16, implements the put operation for communication

channels. The entire method executes within a critical section to ensure consistency of the object's data mem

bers. If the buffer is full, then the thread that invoked slowPut is suspended until notification is received on

notFull. Data is placed in the buffer, and notification is sent on notEmpty to any other thread that may

have been waiting.

The setCapacitymethod, shown in figure 5.17, is used to adjust the capacity limit of communi

cation channels. If the capacity is increasedso that a channel is no longerfull, notificationis sent on notFull

to any thread that may have been waiting.

void PNGeodesic::setCapacity(int c)

{

cap = c;

if (sz < cap && notFull) notFull->notifyAll();

}

Figure 5.17: The setCapacity method of PNGeodesic.
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Figure 5.18: The class derivation hierarchy for schedulers. ThreadScheduler is an abstract base class
with several possible implementations. Each PNScheduler refers to a PNThreadScheduler.

5.3 Scheduling

Figure 5.18 shows the class derivation hierarchy for the classes that implement the dynamic schedul

ing of Kahn process networks. The classes ThreadScheduler and PosixScheduler provide mecha

nisms for initiating and terminating groups of threads. These classes are used by PNScheduler to create

threads for each node in the program graph. The class SyncDataFlowProcess implements the threads

for the nodes.

5.3.1 ThreadScheduler

The abstract base class ThreadScheduler defines the interface of a container class for manipu

lating groups of threads. It has three public methods.

virtual void add(PtThread*) = 0;

This method adds a PtThread object to the container.

virtual void run() = 0;

This method causes all threads in the container to begin execution. It is intended that only the threads

belonging to a particular ThreadScheduler object be affected by this method. This would

permit multiple ThreadScheduler objects to exist and operate without interfering with each

other. However, in practice this may not be possible. Often this causes all threads belonging to all

ThreadScheduler objects to be activated.

virtual ^ThreadScheduler() ;

This method terminates and deletes all threads in the container.
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II Start or continue the running of all threads,

void PosixScheduler::run()

{

// Initialize attributes.

pthread_attr_t attributes;

pthread_attr_init(fcattributes);

// Lower the priority to let other threads run.

pthread_getschedattr(mainThread, &attributes);

pthread_attr_setprio(&attributes, minPriority);

pthread_setschedattr(mainThread, attributes);

// When control returns, restore the priority of this thread

//to prevent others from running.

pthread_getschedattr(mainThread, &attributes);

pthread_attr_setprio(&attributes, maxPriority);

pthread_setschedattr(mainThread, attributes);

// Discard temporary attribute object.

pthread_attr_destroy(&attributes);

}

Figure 5.19: The run method of PosixScheduler.

5.3.2 PosixScheduler

The class PosixScheduler provides an implementation of ThreadScheduler based on

the POSIX thread standard. Other implementations are possible. The class PNThreadScheduler is a

typedef that determines which implementation is used in the PN domain. Changing the underlying im

plementation simply requires changing this typedef.

The add method of Pos ixScheduler simply a thread to an internal list implemented by the class

ThreadList. The run method, which is shown in figure 5.19, allows all threads (not just those in the list)

to run by lowering the priority of the main thread. If execution of the threadsever stops, control returns to the

main thread and its priority is raised again to preventother threadsfromcontinuing. The Pos ixScheduler

destructor invokes the ThreadList destructor, which is shown in figure5.20. It causes all threads in the list

to terminate.

5.33 PNScheduler

The class PNScheduler controls the execution ofa process network. Three data members support

synchronization between the scheduler and the processes.

PNThreadScheduler* threads;

A container for the threads managed by the scheduler.
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// Destructor. Delete all threads.

// This assumes that the threads have been dynamically allocated,

ThreadList: :""ThreadList ()

{

// Delete all the threads in the list.

for ( int i = size(); i > 0; i--)

{

PosixThread* t = (PosixThread*)getAndRemove();

t->terminate();

LOG_DEL; delete t;

}

Figure 5.20: The destructor of ThreadList.

PNMonitor* monitor;

A monitor to guard the scheduler's condition variable.

PNCondition* start;

A condition variable for synchronizing with threads.

int iteration;

A counter for regulating the execution of the processes.

The createThreads method, shown in figure 5.21, creates one process for each node in the

program graph. A SyncDataFlowProcess is created for each DataFlowStar and added to the

PNThreadScheduler container.

It is often desirable to have a partial execution of a process network. The class

SyncDataFlowProcess, which is derived from DataFlowProcess, supports this by synchro

nizing the execution of a thread with the iteration counter that belongs to the PNScheduler. The

run methods of PNScheduler and SyncDataFlowProcess implement this synchronization. The

PNScheduler run method, shown in figure 5.22, increments the iteration count to give every process

an opportunity to run. The SyncDataFlowProcess run method, shown in figure 5.23, ensures that the

number of invocations of the star's run method does not exceed the iteration count.

The increaseBuf f ers method is used during the course of execution to adjust the channel ca

pacities according to the theory presented previously in chapter 4. Each time execution stops, the program

graph is examined for full channels. If there are any full channels, then the capacity of the smallest one is

increased.
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II Create threads (dataflow processes).

void PNScheduler::createThreads()

{

GalStarlter nextStar(*galaxy());

DataFlowStar* star;

LOG_NEW; threads = new PNThreadScheduler;

// Create Threads for all the Stars.

while((star = (DataFlowStar*)nextStar++) != NULL)

{

LOG_NEW; SyncDataFlowProcess* p

= new SyncDataFlowProcess(*star,*start,iteration);

threads->add(p);

p->initialize();

}

Figure 5.21: The createThreads method of PNScheduler.

// Run (or continue) the simulation,

int PNScheduler::run()

{

if (SimControl::haltRequested() )

{

Error::abortRun(*galaxy(), " cannot continue.");

return FALSE;

}

while((currentTime < stopTime) && ISimControl::haltRequested())

{

// Notify all threads to continue.

{

CriticalSection region(start->monitor());

iteration++;

start->notifyAll();

}

threads->run();

while (increaseBuffers() && ISimControl::haltRequested())

{
threads->run();

}

currentTime += schedulePeriod;

}

return ISimControl::haltRequested();

Figure 5.22: The run method of PNScheduler.
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void SyncDataFlowProcess::run()

{

int i = 0;

// Configure the star for dynamic execution,

star.setDynamicExecution(TRUE) ;

// Fire the star ad infinitum.

do

{

// Wait for notification to start.

{

CriticalSection region(start.monitor());

while (iteration <= i) start.wait();

i = iteration;

}

if (star.waitPort()) star.waitPort()->receiveData()

} while (star.run());

Figure 5.23: Therun method of SyncDataFlowProcess.
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II Increase buffer capacities.

// Return number of full buffers encountered.

int PNScheduler::increaseBuffers()

{

int fullBuffers = 0;

PNGeodesic* smallest = NULL;

// Increase the capacity of the smallest full geodesic.
GalStarlter nextStar(*galaxy());

Star* star;

while ((star = nextStar++) != NULL)

{

BlockPortlter nextPort(*star);

PortHole* port;

while ((port = nextPort++) != NULL)

{

PNGeodesic* geo = NULL;

if (port->isItOutput()

&& (geo = (PNGeodesic*)port->geo()) != NULL)

{

if (geo->size() >= geo->capacity())

{

fullBuffers++;

if (smallest == NULL

|| geo->capacity() < smallest->capacity())
smallest = geo;

}

}

}

}

if (smallest != NULL)

smallest->setCapacity(smallest->capacity() + 1);

return fullBuffers;

Figure 5.24: The increaseBuffers method of PNScheduler.
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Chapter 6

Conclusion

We have presented a scheduling policy for Kahn process networks that simultaneously satisfies our

two requirements ofnon-termination and bounded buffering when possible. We do this by limiting the capac

ities of all communication channels and then increasing these capacities as needed to avoid deadlock.

We rely on the fact that Kahn process networks are determinate. The results produced by executing

a program are unaffected by the order in which operations are carried out. In particular,deadlock is a property

of the program itself and does not depend on the details of scheduling. Buffer sizes for the communication

channels, on the other hand, do depend on the order in which get and put operations are carried out. By lim

iting the channel capacities, we place additional restrictions on the order of get and put operations. We have

reduced the set of possible execution orders to those where the buffer sizes never exceed the capacity limits.

If our model ofcomputation were nondeterminate, the channel histories could be affected by scheduling deci

sions. In particular, one wrong scheduling decision could cause the system to deadlock or require unbounded

buffering on one or more channels.

Our approach has some drawbacks. Execution of the entire program comes to a stop each time we

encounter artificialdeadlock, which can severely limit parallelism. Artificial deadlock occurs when the capac

ity limits are set too low, causing some processes to block writing to a full channel. All scheduling decisions

are made dynamically during execution. We now discuss some topics for future research that may improve

upon our policy.

6.1 Static Capacity Assignments

For simple process network models, such as synchronous dataflow process networks [31, 32] we

can completely analyze a programand determine exactly what buffer sizes arerequired for the communication

channels. By solving the balance equations, as described in section 2.3, we determine how many times each

dataflow actor is fired in a complete cycle. We also know how many tokens are consumed and produced by

each actor firing, so we immediately have a bound on the buffer sizes for the communication channels. Similar
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analysis can sometimes (but not always) be done for Booleandataflow process networks [9], as discussed in

section 2.4. Wecould apply these analysis techniques to entire process networks, or to subsystems that obey

the restricted synchronous or Boolean dataflow models. This would allow us to assign static capacity limits

for some or all of the communicationchannels. There wouldbe no need to adjust thesecapacities dynamically

during execution, and we can also pre-allocatememory so that there is no run-time overhead associated with

memory allocation.

6.2 Simple Directed Cycles

Limiting the channel capacities is equivalent to adding feedback channels, converting every connec

tion into a directed cycle. It is the presence of the directed cycles that limits token production to give us strictly

bounded buffer sizes. Some systems, such as the one in figure 1.4on page 4 are already strictly bounded be

cause every process is part of a directed cycle. There is no need to create additional directed cycles by adding

feedback channels to every connection. This suggests that we could add fewer feedback channels and still

have strictly bounded programs. This could give us more parallelism because there would be fewer directed

cycles in the program graph.

Also, just because there is a directed cycle in the program graph, there is no guarantee that token

production depends on token consumption. When we added feedback channels to every connection, we set

up rules about how reads and puts proceed. Before writing to a data channel, a process must read from the cor

responding feedback channel. By design there is a dependency between a given output and the corresponding

feedback input. There is a similar dependency between inputs and their corresponding feedback outputs. Thus

we know that this directed cycle does actually limit token production. For less general process models, such

as synchronous dataflow and Boolean dataflow, the dependencies between inputs and outputs are known. In

these cases, directed cycles can be analyzed to determine if they limit token production (and thus bound token

accumulation) or if they introduce deadlock.

In our implementation we directly limit channel capacities and have blocking write and blocking

read operations that simply increment or decrement a counter to keep track of the number of tokens buffered

on a channel. If we reduce the number of feedback connections, then we cannot use this optimization. Instead

we must make actual connections and send tokens across these feedback channels. This adds overhead that

could exceed any savings realized by reducing the number of directed cycles. Future research could examine

the effectiveness of the "optimizations" we are about to discuss.

6.2.1 K-Bounded Loops

In Culler's work on K-bounded loops [11, 12], he forms a directed cycle around the body of a loop

in order to limit the number of unconsumed tokens that can accumulate in a dataflow program. Thus, instead

of forming a directed cycle for every connection, he forms a directed cycle from the outputs of a group of

dataflow actors to their inputs. Figure 6.1 shows the original loop structure, and figure 6.2 shows Culler's K-
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( loop prelude )

f predj
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Figure 6.1: Loop graph schema.
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( loop prelude )

Figure 6.2: Culler's K-bounded loop graph schema.
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bounded loop structure. A sync actor is inserted to to collect the outputsof the loop body and providetrigger

tokensto a gate that is insertedto regulatethe flow of tokensto the inputs. The numberof initial trigger tokens

on the gate's input, k, bounds the numberof loop invocationsthat can proceed in parallel. His technique is

only applied in cases where the program subgraphof the loop body is simple enough that the bound could be

as low as k = 1 without introducingdeadlock. But setting the bound so low limits buffering requirements on

the communication channels, but it also severely limits parallelism. He examines strategies for setting k that

balance parallelism and resource requirements for token storage.

One interesting difference with our approach is that no processes (or dataflow actors) need to be

modified. We modified the semantics of the get and put operations. Culler's approach is to splice a few new

actors into the graph, requiring no modification of the semantics of the model of computation.

6.2.2 Macroscopic Demand Propagation

Pingali's microscopic demand propagation algorithm (Micro-Prop [37]), described in section 3.3.2,

is very similar to our approach in that feedback channels are added for every connection. He describes a macro

scopic demand propagation algorithm (Macro-Prop[39]) which adds fewer feedback channels. Pingali iden

tifies so called "steady state" sections of program loops. These sections are acyclic graphs that produce one

set of output tokens for each set of input tokens. Thus there is no data-dependent consumption or production

of tokens. Demand propagation code is added for the program sections as a whole instead of for individual

operations as in the Micro-Prop algorithm. The Micro-Prop algorithm is used for demand-propagation code

between the program sections identifiedby Macro-Prop. Pingali proves that programs produced by the Macro-

Propalgorithmhave thesame input/outputbehavioras programsproducedby the Micro-Propalgorithm.Thus

we get equivalent programs with less overhead for demand propagation.

We could use some of these graph transformation techniques to identify sections ofprocess networks

which will remain strictly bounded if surrounded by a feedback connection.

6.3 Hybrid Static/Dynamic Scheduling

Whether we set some channel capacities statically, or introduce simple directed cycles, we are still

scheduling all processes dynamically. Instead, we could analyze program graphs (or sections of graphs) that

conform the the synchronous dataflow model or Boolean dataflow model. By solving the balance equations

we determine how many times each dataflow actor is fired in a complete cycle. We can then construct a static

schedule for a complete cycle and define the firing function of a large-grain dataflow actor to be one cycle

of this schedule. We can now construct a single dataflow process from this large-grain actor. This gives us a

hybrid scheduling framework where a fine-grain program graph is converted into a large-grain graph where

scheduling of the large-grain graph is done dynamically, but the schedule within each large-grain process has

been constructed statically.

This ensures that communication channels connecting statically scheduled actors remain bounded,
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and the overheadof dynamicscheduling and synchronization is reduced. Similar clustering techniques are

already used in Ptolemy for synchronous and Boolean dataflow [4,5,9]. However, these techniques require

that the resulting large-graindataflow actor still obey the samedataflow model as its fine-grain components:

SDF actors combine to producea large-grain SDF actor and BDF actors combine to produce a large-grain

BDF actor. This restriction makes it possibleto derive firing rules for the large-grain actors so that theycan

be treatedthe sameas fine-grain actorsbyschedulers. Wemake nosuchrestriction because wearescheduling

the large-grain actoras a processand haveno need to define firing rulesfor it. Wesimplyrelyon the blocking

read semantics of Kahn process networks.

6.4 Code Generation

The PN domain implementation described in chapter5 is a simulationdomain in Ptolemy. An exe

cution of a process network runs as partof Ptolemy. Instead, wecould generate a C program that implements

the process network. This requires onlythata C compiler andsuitable multi-threading mechanism be avail

able forthetargetplatform; thereis noneed to support allof Ptolemy. Thismakes it feasible to usetheprocess

network model to program embedded systems with limited resources.

Ptolemy already supportsthe generation of programs fromdataflow graphs [40]. For synchronous

dataflow processnetworks and someboolean dataflow process networks, a static interleaving of process exe

cutioncanbe compiled into theC program itselfso thattruemulti-threading is notnecessary. Separate C pro

grams are generated for each processor of a multiprocessor system. Thiscodegeneration mechanism could

be extended to create programs with multiple threads that are dynamically scheduled.

6.4.1 Reactive C

One advantage of a multi-threaded programming style is that when control returns to a suspended

process, it resumes execution at thepointwhere it leftoff. It does not have to begin from a procedure entry

point. When implemented inC++, thefiring function fora dataflow actor is complicated by theneed to test

and maintain state,as shownin figure 6.3. This is requiredso that the actorperformsa differentfunction each

time it is fired. Reactive C [6, 8] is a C pre-processor that automatically generates the switch statement

to achieve this functionality. Figure 6.4 shows how the same function mightbe implemented if Reactive C

wereextendedto the C++ language. If get and put operations were written in Reactive C++, as in figures 6.5

and 6.6, then this function could be implemented in a multi-threaded style as in figure 6.7. Reactive C [6, 8]

has been used as the basis of a process network language [7] that is very similar to Kahn and MacQueen's

language [25]. Theimplementation of theGET operation is similar to theexample in figures 6.5. Figure 6.8

shows how a select process would be implemented in this language.

Reactive C is simplya pre-processor that generates C programs. These programs interleave the ex

ecutions of multipleprocesses to simulateparallelism. There very little overhead for contextswitching, and

there is no need to maintain a separate stack for each thread, as in POSIX threads. It would be interesting to
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void go()

{

switch(state)

{

case 0:

control.receiveData();

if (control%0) input = truelnput;

else input = falselnput;

waitFor(input);

state = 1;

break;

case 1:

input.receiveData();

output%0 = input%0;

output.sendData() ;

waitFor(control);

state = 0;

}

Figure 6.3: The C++ code for the select dataflow actor.

void go()

{

control.receiveData();

if (control%0) input = truelnput,

else input = falselnput;

waitFor(input);

stop;

input.receiveData();
output%0 = input%0;
output.sendData();

waitFor(control);

Figure 6.4: The Reactive C++ code for the select dataflowactor.

Particle* PNGeodesic::slowGet()

{

while (sz < 1) stop;

sz—; Particle* p = pstack.get();

return p;

}

Figure 6.5: The Reactive C++ code for the get operation.
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void PNGeodesic::slowPut(Particle* p)

{
while (sz >= cap) stop;
pstack.putTail(p); sz++;

>

go

{

Figure 6.6: The Reactive C++ code for the put operation.

control.receiveData();

if (control%0) input = truelnput;

else input = falselnput;

input.receiveData();

output%0 = input%0;

output.sendData();

Figure 6.7: The multi-threaded code for the select dataflow actor.

PROCESS select(Channel control,Channel t,Channel f, Channel out)

{

VAR int val;

for(;;)

{

GET(control,val);

if (val) PUT(out,GET(t));

else PUT(out,GET(f));

}

Figure 6.8: A reactive select process.
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extend this to the C++ language (Reactive C++) and to implement the PUToperation as in figure 6.6 to sup

port the bounded scheduling theorydeveloped in this thesis. Reactive C++ could be used to implement the

PN domain in Ptolemy, and Reactive C could be used as a target language for code generation.

6.4.2 POSIX Threads

One advantage of using POSIX threads is the opportunity for parallel execution. When threads are

built into the operating system, programs can be automatically parallelized. The same program can execute

on uniprocessor workstations and multiprocessor workstations without the need to recompile. When multiple

processors are available, multiple threads can execute in parallel. Even on uniprocessor workstations there is

an advantage to multi-threaded execution: the possibility to overlap communication with computation. While

one thread is blocked waiting for a file access to complete, another thread can continue to do useful work.

We could generate C programs that use POSIX threads to implement process networks. If we gen

erate C++ programs instead of C, then we can used exactly the same classes as Ptolemy uses to implement

threads.
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