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Abstract

Computation of sets of compatibles of incompletely specified finite state machines (ISFSM’s) is akey
step in sequential synthesis. This paper presents implicit computations to obtain sets of maximal compat-
ibles, compatibles, prime compatibles, implied sets and class sets. The computations are implemented
by means of BDD’s that realize the characteristic functions of these sets. We have demonstrated with
experiments from a variety of benchmarks that implicit techniques allow to handle examples exhibiting
a number of compatibles up to 2'°%, an achievement outside the scope of programs based on explicit
enumeration [19]. We have shown in practice that ISFMS’s with a very large number of compatibles
may be produced as intermediate steps of logic synthesis algorithms, for instance in the case of asyn-
chronous synthesis [10). This shows that the proposed approach has not only a theoretical interest, but
also practical relevance for current logic synthesis applications, as shown by its application to ISFSM
state minimization [8].

1 Introduction

Finite state machines are a common formalism to describe sequential systems. Incompletely specified
FSM’s (ISFSM’s) are one of the most useful subclasses of FSM’s, because they capture naturally a family
of input-output behaviors, any of which is a valid implementation of the original specification. The choice
of which input-output behavior to implement may be dictated by different criteria. A common one is
the minimization of the number of states of the deterministic automaton corresponding to the chosen
behavior. Another criterion may be the implementability of the chosen deterministic FSM within a network
of FSM'’s [27).

It has been shown [15, 7] that all contained behaviors can be explored by means of collections of
compatibles, called closed sets. To explore closed sets, one must compute maximal compatibles, prime
compatibles, class sets of compatibles and other related sets and subsets of sets of states. The number of
compatibles can be exponential in the number of states of the original ISFSM. This may be a problem for
computations based on the explicit enumeration of compatibles and their subsets. As an alternative we
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propose an algorithmic frame based on the representation and computation of the characteristic functions of
these sets by means of binary decision diagrams (BDDs). We show how compatibles, maximal compatibles,
prime compatibles and class sets can be computed with BDD-based techniques and demonstrate that it is
possible to handle examples exhibiting a number of compatibles up to 2!°%, an achievement outside the
scope of algorithms based on explicit enumeration [19]). We indicate also where such examples arise in
practice. We refer to [8] for an implicit solution to the binate covering problem arising from ISFSM state
minimization.

The implicit techniques described here can be applied also to other problems of logic synthesis and
combinatorial optimization. For instance it is straightforward to convert the implicit computation of maximal
compatibles given here into an implicit computation of prime dichotomies [23].

The remainder is organized as follows. Section 2 gives an introduction to algorithms for exact state
minimization of ISFSM’s, while representations and computations based on binary decision diagrams are
described in Section 3. An implicit version of the exact algorithm is presented in Section 4. Section 5
describes the method to generate the implicit binate table. Alternative implicit algorithms for prime
compatible generation are explored in Section 6. Implementative issues are discussed in Section 7. A
different approach from [6] is surveyed in Section 8. Results on a variety of benchmarks are reported and
discussed in Section 9.

2 Background on ISFSM State Minimization

In this section, we revise the basic definitions and procedures for compatible sets of states of ISFSM’s, with
special focus on state minimization as a key application. The theory of ISFSM state minimization has been
developed in classical papers and textbooks to which we refer [18, 4, 9].

Definition 2.1 Anincompletely specified FSM (ISFSM) canbedefined as a6-tuple M = (S, 1,0,A,A, R).
S represents the finite state space, I represents the finite input space and O represents the finite output space.
A is the next state relation defined by a characteristic functionA : I x S X S — B where each combination
of input and present state is related to a single next state or to all states. A is the output relation defined by
a characteristic function A : I x S x O — B where each combination of input and present state is related
to a single output or to all outputs. R C S represents the set of reset states.

In the standard literature, no reset state is specified for an ISFSM, and it is assumed that all states can
potentially be picked as a reset state for implementation. The same is assumed in this chapter, and this
is reflected in covering conditions defined later. In addition, an unspecified next state is traditionally not
represented in the next state relation A. i.e., if the next state is not specified for present state s and input
i, there is no state s’ such that A(,s,s’) = 1. This assumption is made in subsequent definitions and
computations in this chapter.

Definition 2.2 A set of states is an output compatible if for every input, there is a corresponding output
which can be produced by each state in the set.

Two states are an output incompatible pair if they are not output compatible.

Lemma 2.1 Two states are an output incompatible pair if and only if, on some input, they cannot produce
the same output.

Definition 2.3 A set of states is a compatible if for each input sequence, there is a corresponding output
sequence which can be produced by each state in the compatible.



The set of compatibles can theoretically be computed as follows:
1. Assume that every output compatible is a candidate (to be a compatible).

2. A candidate is not a compatible if, on some input, its states cannot produce a common output and
transit to a candidate compatible set.

3. Repeat 2, until no candidate can be deleted from the set of candidate compatibles.

Practically, the number of candidates is too large to be handled by such an explicit algorithm. Two states
are a incompatible pair if they are not compatible.

Lemma 2.2 Two states are an incompatible pair if and only if
1. they are output incompatible, or
2. on some input, their next states are an incompatible pair.
The set of incompatible state pairs can be computed as follows:
1. Compute the output incompatible pairs, which are incompatible pairs.

2. A pair of states is an incompatible pair if, on some input, its pair of next states is a previously
determined incompatible pair.

3. Repeat 2, until no new pairs can be added to the set of incompatible pairs.

Theorem 2.1 Given an ISFSM, a set of states is a compatible if and only if every pair of states in it are
compatible.

Proof: By Definition 2.3, if a set of states is a compatible, then each pair of states contained in it is a
compatible. ~

Suppose that each pair of states in a set C of states is a compatible. We shall prove that C is a compatible
by induction on the length & of an arbitrary input sequence. On an arbitrary input ¢ (induction basis), each
state in C can produce either one output or all outputs, because the machine is an ISFSM. No two states in
C produce two different specified outputs because they are pairwise compatible. As a result, all states in C
can produce a common output on input i. Assume that for an arbitrary input sequence o; of length k, every
states in C can again produce a common output sequence and reach a set of states C’. As states in C are
pairwise compatible, so must be C’. By applying one more arbitrary input 7, each state in C’ can produce
either one output or all outputs. No two states in C’ produce different specified outputs, so all states in C’
can produce a common output on input . This shows that the states in C, on any input sequence of length
k + 1, can also produce a common output sequence. Thus C is a compatible. |

Corollary 2.1 Given an ISFSM, a set of states which does not contain an incompatible pair is a compatible.

Proof: If a set of states does not contain an incompatible pair, each pair of states in it are compatible. By
Theorem 2.1, the set of states is a compatible. |

Definition 2.4 A set of states d; (or 15(c,1)) is an implied set of a compatible c for input i if d; =
{s'|A(z,8,8") = 1, Vs € ¢}, i.e, it is the set of next states from state set c on input i.

Definition 2.5 A set C of compatibles is a cover of an ISFSM if each state in the ISFSM is contained in a
compatible in C.



Definition 2.6 A set C of compatibles is closed in an ISFSM if for each ¢ € C, all its implied sets c; are
contained in some element of C for each inputs i.

Theorem 2.2 [15] The state minimization problem of an ISFSM reduces to finding a closed set C of
compatibles, of minimum cardinality, which covers every state of the original machine, i.e., a minimum
closed cover.

Definition 2.7 A compatible set of states is a maximal compatible if it is not a subset of another compatible.

A set of states is a maximal incompatible if it is not a maximal compatible.
We show by an example an elegant procedure to find all maximal compatibles found in [13].

1. Write down the pairs of incompatibles as a product of sums.
2. Multiply them out to obtain a sum of products, and minimize it with respect to single-cube containment.
3. For each resultant product, write down missing states to get maximal compatibles.

This is equivalent to compute all prime implicants of a unate function expressed as a product of sums (of
pairs of states). For instance:

1. Product of pairs of incompatibles:
(84 + 85)(sa + 56) (54 + 59) (55 + 57) (6 + 57) (56 + 58) (S8 + 59)

2. Unate function in sum of products: s4Ss5565g + 54565759 -+ 545758 + 555659
3. Maximal compatibles: s}s2535759, 5152535558, 515253555659, 515253545758

The set of all maximal compatibles of a completely specified FSM is the unique minimum closed cover. For
an incompletely specified FSM, a closed cover consisting only of maximal compatibles may contain more
sets than a minimum closed cover, in which some or all of the compatibles are proper subsets of maximal
compatibles.

Definition 2.8 An implied set d of a compatible c is in its class set CS(c) if
1. d has more than one element, and
2. d¢ c,and
3.dg difd € CS(c).
Definition 2.9 A compatible ¢’ prime dominates a compatible c if
1. ¢ Decand
2. C(d) € C(o).

i.e., ¢’ dominates c if ¢’ covers all states covered by ¢ and the closure conditions of ¢’ are a subset of the
closure conditions of c.

Definition 2.10 A compatible set of states is a prime compatible if it is not dominated by any other
compatible.



Definition 2.11 A prime compatible is an essential prime compatible if it contains a state not contained
in any other prime compatibles.

The following procedure (which will be used in Section 6.3.2) generates all prime compatibles from the set
of maximal compatibles [4].

1. Initially the set of prime compatibles is empty.

2. Order the maximal compatibles by decreasing size, say = is the size of the largest.
3. Add to the set of prime compatibles the maximal compatibles of size n.

4, Fork =n - 1downto 1do:

(a) Compatibles of size k (and their implied sets) are generated starting from the maximal compat-
ibles of size n to k£ + 1 (only those having non-void class set).

(b) Add to the set of prime compatibles the compatibles of size k£ not dominated by any prime
compatible already in the set.

(c) Add to the set of prime compatibles all maximal compatibles of size k.
The following facts are true about the above algorithm:
e A compatible already added to the set of primes cannot be excluded by a newly generated compatible.

e The same compatible can be generated more than once by different maximal compatibles. The
question arises of finding the most efficient algorithm to generate the compatibles.

¢ Only the compatibles generated from maximal compatibles with non-void class set need be considered,
because a maximal compatible with a void class set dominates any compatible that it generates.

e A single state s can be a prime compatible if every compatible set C' with more than one state and
containing s implies a set with more than one state.

In [12] it is shown that, after generation of prime compatibles, an iterative procedure can expose new non-
prime compatibles by updating closure constraints where eliminated non-prime compatibles are replaced by
prime compatibles. Other complex rules to eliminate more prime compatibles are also given. Anobservation
is also made that no minimal cover S can contain a compatible contained in another compatible of S.

The following theorem is proved in [4], and its generalization to PNDFSM has been given in [7].

Theorem 2.3 For any ISFSM M, there is a reduced ISFSM M,.q whose states all correspond to prime
compatibles of M.

A minimum closed cover can then be found by setting up a table covering problem [4] whose columns are
the prime compatibles and whose rows correspond to the covering and closure conditions.
The following facts are useful in the state minimization of ISFSM’s:

e The cardinality of a maximal incompatible is a lower bound on the number of states of the minimized
ISFSM.

o If there is a maximal compatible that contains all states of a given ISFSM, the ISFSM reduces to a
single state.



¢ The cardinality of the set of maximal compatibles is an upper bound on the number of states of the
minimized FSM.

¢ If amaximal compatible has a void class set, it must be a prime compatible. As a result, no compatible
contained in it can be a prime compatible (result used in Section 6.3.1).

¢ The minimum number of maximal compatibles covering all states is a lower bound on the number of
states of the minimized ISFSM.

¢ The minimum number of maximal compatibles covering all states and satisfying the closure conditions
is an upper bound on the number of states of the minimized ISFSM.

3 Implicit Techniques

3.1 Binary Decision Diagrams

Basics on binary decision diagrams are found in (2, 1].

Definition 3.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex v has two outgoing arcs, childy(v) and child; (v).
Each terminal vertex u is labeled 0 or 1.

Each ventex in a BDD represents a binary input binary output function and all accessible vertices are
roots. The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v
representing a function F, its child vertex childp(v) represents the function F3 and its other child vertex
childy(v) represents the function F,. ie., F=7-F;+v- F,.

For a given assignment to the variables, the value yielded by the function is determined by tracing a
decision path from the root to a terminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Definition 3.2 A BDD is ordered if there is a total order < over the set of variables such that for every
nonterminal vertex v, var(v) < var(childg(v)) if childy(v) is nonterminal, and var(v) < var(child)(v))
if child(v) is nonterminal.

Definition 3.3 A BDD is reduced if
1. it contains no vertex v such that childy(v) = child)(v), and

. . - . . '
2. it does not contain two distinct vertices v and v’ such that the subgraphs rooted at v and v’ are
isomorphic.

Definition 3.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

Definition 3.5 The ITE operator returns function G if function F evaluates true, else it returns function
Ga:

Gy ifF=1

ITE(F,G1,Gyp) = { Go otherwise

where range(F)={0,1}.



3.2 Zero-suppressed BDD’s

Definition 3.6 A zero-suppressed BDD (ZBDD) is defined identically as a BDD.
The functional interpretation of ZBDD's is the same as that for BDD'’s.
Definition 3.7 A ZBDD is ordered if it is ordered when viewed as a BDD.
Definition 3.8 A ZBDD is reduced if

1. it contains no vertex v such that child)(v) is a terminal vertex labeled 0, and

2. it does not contain two distinct vertices v and v' such that the subgraphs rooted at v and v are
isomorphic.

Definition 3.9 A reduced ordered zero-suppressed binary decision diagram (ROZBDD) is a ZBDD
which is both reduced and ordered.

The difference between ROBDD and ROZBDD is in one reduction rule. A ROBDD eliminates all
vertices whose two outgoing arcs point to the same vertex. A ROZBDD eliminates all vertices whose
1-edge points to a terminal vertex 0. Once a redundant vertex is removed from a ZBDD, the incoming edges
of the vertex is directly connected to the vertex to which the corresponding terminal vertex O points.

3.3 Implicit Set Manipulation

In [7] it is presented a full-fledged theory on how to represent and manipulate sets using a BDD-based
representation. It extends the notation used in [11] An outline is available also in [8]. This theory is
especially useful for applications where sets of sets need to be constructed and manipulated.

Given a ground set G of cardinality less or equal to 2", any subset S can be represented in a Boolean
space B™ by a unique Boolean function xs : B® — B, which is called its characteristic function [3], such
that:

xs(z) =1 ifandonlyif z in S.

In other words, a subset is represented in positional-set or positional-cube notation form !, using n Boolean
variables, z = 2173...z,. The presence of an element s in the set is denoted by the fact that variable
z takes the value 1 in the positional-set, whereas z. takes the value 0 if element s is not a member of the
set. One Boolean variable is needed for each element because the element can either be present or absent
in the set. As an example, for n = 6, the set with a single element s4 is represented by 000100 and the
set 578385 is represented by 011010. The elements sy, s4, S¢ Which are not present correspond to 0’s in the
positional-set.

A set of subsets of G can be represented by a Boolean function, whose minterms correspond to the
single subsets. In other words, a set of sets is represented as a set S of positional-sets, by a characteristic
function xs : B® — B as:

xs(z) =1 if and only if the set represented by the positional-set z is in the set S of sets.

Any relation R between a pair of Boolean variables can also be represented by a characteristic function
R:B? - Bas:
R(z,y) =1 if and only if z is in relation R to y.
R can be a one-to-many relation over the two sets in B. These definitions can be extended to any relation
R between n Boolean variables, and can be represented by a characteristic function R : B® — B as:
R(z1,x2,...,2,) = 1 if and only if the n-tuple (z1, 22, ..., 2,) is in relation R.
!Called also I-hot encoding.




3.3.1 Operations on Positional-sets

We propose a unified notational framework for set manipulation which extends the notation used in [11].
In this section, each operators Op acts on two sets of variables z = z1z2...2, and ¥y = y1%2...yn and
returns a relation (z Op y) (as a characteristic function) of pairs of positional-sets. Alternatively, they can
also be viewed as constraints imposed on the possible pairs out of two sets of objects, = and y. For example,
given two sets of sets X and Y, the set pairs (z, y) where z contains y are given by the productof X and Y
and the containment constraint, X (z) - Y (y) - (z 2 y).

Lemma 3.1 The equality relation evaluates to true if the two sets of objects represented by positional-sets
z and y are identical, and can be computed as:

n
E=y)=][]2x o wn
k=1

where Tx < yr = T - Yr + Tk - Y designates the Boolean XNOR operation and — designates the Boolean
NOT operation.

Proof: [1i=; =k < yx requires that for every element £, either both positional-sets z and y contain it, or it
is absent from both. Therefore, z and y contain exactly the same set of elements and thus are equal. |

Lemma 3.2 The containment relation evaluates to true if the set of objects represented by z contains the
set of objects represented by y, and can be computed as:

n
(z2y) =] o=
k=1

where z}. = yr = -}, + Yx designates the Boolean implication operation.

Proof: [1k=1 yx = z requires for all objects that, if an object & is present in y (i.e., yx = 1), it must also
be present in z (z; = 1). Therefore set = contains all the objects in y. [ |

Lemma 3.3 The equal-union relation evaluates to true if the set of objects represented by z is the union
of the two sets of objects represented by y and z, and can be computed as:

n
(x=yuUz) =[] zx & (u + 2)-
k=1
Proof: For each position k, z. is set to the value of the OR between z and yx. Effectively, [Tx=; zx <

(yx + 2;) performs a bitwise OR on y and = to form a single positional-set z, which represents the union of
the two individual sets. |

Lemma 3.4 The contain-union relation evaluates to true if the set of objects represented by x contains the
union of the two sets of objects represented by y and z, and can be computed as:

n

(z 2yUz) = H(yk+zk) = Tk,
k=1

Proof: Note the similarity in the computations of (z 2 yU z) and (z = yU z). (z 2 y U 2) performs
bitwise OR on singletons y and 2. If either of their k-bits is 1, the corresponding x. bit is constrained to 1.

Otherwise, z; can take any values (i.e., don’t care). The outer product [}, requires that the above is true
for each k. |



332 Operations on Sets of Positional-sets

The first three lemmas in this section introduces operators that retumn a set of positional-sets as the result of
some implicit set operations on one or two sets of positional-sets.

Lemma 3.5 Given the characteristic functions x 4 and x g representing the sets A and B, set operations on
them such as the union, intersection, sharp, and complementation can be performed as logical operations
on their characteristic functions, as follows:

XAuB = Xa+XB

XAnB = XA'XB
XA-B = XA'TXB
Xz = X4

Lemma 3.6 The maximal of a set x of subsets is the set containing subsets in x not strictly contained by
any other subset in x, and can be computed as:

Mazimal,(x) = x(z)- By [(y D z) - x(¥)].

Proof: The term 3y [(y D =) - x(v)] is true if and only if there is a positional-set y in x such that z C y.
In such a case, z cannot be in the maximal set by definition, and can be subtracted out. What remains is
exactly the maximal set of subsets in x(z). [ ]

Lemma 3.7 Given a set of positional-sets x(z) and an array of Boolean variables x, the maximal of
positional-sets in x with respect to T can be computed by the recursive BDD operator Mazimal(x,0, z):

Mazimal(x, k,z) {
if (x=0) return0
if (x =1) return [I7-; z;
My = Mazimal(xz, k +1)
M, = Mazimal(xz,,k + 1)
return ITE (zy, My, Mo - ~M))

Proof: The operator starts at the top of the BDD and recurses down until a terminal node is reached. At
each recursive call, the operator returns the maximal set of positional-sets within x made up of elements
from k to n. If terminal 0 is reached, there is no positional-set within x so 0 (i.e., nothing) is retuned. If
terminal 1 is reached, x contains all possible positional-sets with elements from & to 7, and the maximum
one is [%; z;. At any intermediate BDD node, we find the maximal positional-sets My on the else branch
of x, the maximal positional-sets M; on the then branch of x. The resultant maximal set of sets contains
(1) positional-sets in M, each with element z; added to it as they cannot be contained by any set in My
which has z; = 0, and (2) positional-sets that are in My but not in M) because if a set is present in both, it
is already accounted for in (1). Thus the IT E operation returns the required maximal set after each call. B
To guarantee that each node of the BDD Y is processed exactly once, intermediate results should be cached
by a computed-table.

The next operators check set equality and containment between two sets of sets, whereas Lemmas 3.1
and 3.2 check it on a pair of sets only. They return tautology if the test is passed.
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Lemma 3.8 Given the characteristic functions x(z) and xp(z) representing two sets A and B (of
positional-sets), the set equality test is true if and only if sets A and B are identical, and can be computed
by:

Equal;(xa,x8) = Yz [xa(z) & x8(z)]-

Alternatively, Equal can befound by checking if their corresponding ROBDD' s are the same by bdd equal (x 4, XB).

Proof: xa(z) and xp(z) represent the same set if and only if for every z, eitherz € Aand z € B, or
z ¢ Aand z ¢ B. Since the characteristic function representing a set in positional-set notation is unique,
two characteristic functions will represent the same set if and only if their ROBDD'’s are the same. [ ]

Lemma 3.9 Given the characteristic functions xa(z) and xB(z) representing two sets A and B (of
positional-sets), the set containment test is true if and only if set A contains set B, and can be computed
by:

Contain,(xa, xB) = Vz [xB(z) = x4(2)].

Beside operating on sets of sets, the above operators can also be used on relations of sets. The effect is
best illustrated by an example. Suppose A and B are binary relations on sets. Containg (x4(z, y), x8(z, z))
will retun another relation on pairs (y, z) of sets. Positional-sets y and z are in the resultant relation if
and only if the set of positional-sets z associated with y in relation A contains the set of positional-sets =
associated with z in relation B.

The following operator takes a set of sets and a set of variables as parameters, and returns a singleton
positional-set on those variables.

Lemma 3.10 Given a characteristic function x 4 (z) representing a set A of positional-sets, the set union
relation rests if positional-set y represents the union of all sets in A, and can be computed by:

n
Uniongoy(xa) = H yr < 3z [xa(z) - zk).
k=1
Proof: For each position &, the right hand expression sets y; to 1 if and only if there exists an z in x4
such that its k-th bitis a 1 (3z [x4(z) - zx]). This implies that the positional-set y will contain the k-th
element if and only if there exists a positional-set z in A such that k is a member of . Effectively, the right

hand expression performs a multiple bitwise OR on all positional-sets of x 4 to form a single positional-set
y which represents the union of all such positional-sets. [

3.3.3 k-out-of-n Positional-sets

Let the number of objects be n. In subsequent computations, we will use extensively a suite of sets of sets
of objects, Tuplen x(z), which contains all positional-sets = with exactly k elements in them (i.e., |z| = k).
In particular, the set of singleton elements T'uple, ) (z), the set of pairs Tuple, 2(z), the universal set of all
objects Tuple, »(z), and the set of the empty set Tuple, o(z) 2 are common ones.

An efficient way of constructing and storing such collections of k-tuple sets using BDD will be given
next. Figure 1 represents a reduced ordered BDD of T'uples2(z).

The root of the BDD represents the set Tuples(z), while the intemal nodes represent the sets
Tuple; j(z) (¢ < 5,7 < 2). For ease of illustration, the variable ordering is chosen such that the top
variable corresponding to T'uple; ;(z) is x;. At that node, if we choose element ¢ to be in the positional-set,
z; takes the value 1 and we follow the right outgoing arc. In doing so, we still have ¢ — 1 elements/variables

2Tuplen o(x) will be denoted by @(z).
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Figure 1: BDD representing T'uples 2(z).

left to be processed. As we have put already element ¢ in the positional-set, we still have to add exactly
Jj — 1 elements into the positional-set. That is why the right child of T'uple; j(z) should be Tuple;_1 ;-1(z).
Similarly, the left child is T'uple;_; ;(z) because element ¢ has not been put in the positional-set and we
have j — 1 elements/variables left. Thus, the BDD for T'uple; ; can be constructed by the algorithm shown
in Figure 2.

The total number of nonterminal vertices in the BDD of Tuple, s is (n — k+1)-(k+1) -1 =
nk — k2 + n = O(nk). With the use of the computed table [1], the time complexity of the above algorithm
is also O(nk) as the BDD is built from bottom up and each vertex is built once and then re-used. Given any
n, the BDD for T'uple,, i is largest when k = n/2.

3.4 FSM Implicit Representation

A state transition graph (STG) is commonly used as the internal representation of FSM’s in sequential
synthesis systems, such as SIS [24]. A limitation of STG’s is the fact that they are a two-level form of
representation where state transitions are stored explicitly, one by one. This may degrade the performance
of conventional optimization algorithms on large FSM’s.

Assume that the given FSM has n states. To perform state minimization, one must represent and manip-
ulate efficiently sets of states (such as compatibles) and sets of sets of states (such as sets of compatibles).
Therefore I-hot encoding is used for the states of the FSM 3. If inputs (outputs, respectively) of the FSM are
specified symbolically, they can be represented as a multi-valued symbolic variable : (o, respectively) where
each value of ¢ (o, respectively) represents an input (output, respectively) combination. For compactness of
representation, we used for these variables a logarithmic encoding, i.e. an m-valued variable is represented

3 An alternative explained in [7] is to represent any set of sets of states (i.e., set of state sets) implicitly as a single 1-hot encoded
MDD, and manipulate the state sets symbolically all at once. Different sets of sets of states can be stored as multiple roots with a
single shared 1-hot encoded MDD.
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Tuple(i, §) {
if (j <0)or (i < j) reurn 0
if ({=j)and (:=0) retum 1
if Tuple(, ) in computed-table return result
T =Tuple(:—1,j-1)
E = Tuple(i - 1,7)
F=ITE(z;,T,F)
insert F in computed-table for Tuple(z, )
return F

Figure 2: Pseudo-code for the T'uple operator.

with log, m Boolean variables. The fact that different multi-valued variables use different encodings is not
a problem as long as they are used consistently. However if inputs (outputs, respectively) of the FSM are
already given in encoded form, each encoded bit of inputs (outputs, respectively) is represented by a single
Boolean variable.

4 Implicit Generation of Compatibles

An exact algorithm for state minimization consists of two steps: the generation of various sets of compatibles,
and the solution of a binate covering problem. The generation step involves identification of sets of states
called compatibles which can potentially be merged into a single state in the minimized machine. Unlike
the case of CSFSM’s, where state equivalence partitions the states, compatibles for ISFSM’s may overlap.
As a result, the number of compatibles can be exponential in the number of states [22], and the generation
of the whole set of compatibles can be a challenging task.

The covering step is to choose a minimum subset of compatibles satisfying covering and closure
conditions, i.e., to find a minimum closed cover. The covering conditions require that every state is
contained in at least one chosen compatible. The closure conditions guarantee that the states in a chosen
compatible are mapped by any input sequence to states contained in a chosen compatible.

In this section, we describe implicit computations to find sets of compatibles required for exact state
minimization of ISFSM’s. In each of the following subsections, we shall first restate the definition of some
combinatorial object, give a logic formula to compute it, and then argue the correctness of the formula.

4.1 Output Incompatible Pairs

To generate compatibles, incompatibility relations between pairs of states are derived first from the given
output and transition relations of an ISFSM.

Definition 4.1 Two states are an output incompatible pair if, for some input, they cannot generate the
same output.

Lemma 4.1 The set of output incompatible pairs, OICP(y, z), can be computed as:
OICP(y,z) = Tupley(y) - Tuplei(z) - I Bo[A(i,y,0)  A(é, z,0)] ¢y

12



Proof: Although y and z can represent any positional-sets, the conditions T'uple; (y) - Tuplei(2) restrict
them to represent only pairs of singleton states. The last term is true if and only if for some input i, there is
no output pattem that both state y and z can produce (i.e., output incompatible). [ ]

In the above and subsequent formulas, we will mix notations between relations and their corresponding
characteristic functions. Strictly speaking if we would have used the characteristic function notation, the
above formula would have been more clumsy:

OICP(y,z) =1 ifandonlyif (Tuplei(y) =1) (Tuplei(z)=1)
3i Bo[(A(i,y,0)=1) - (A4, 2,0) = 1)]

4.2 Incompatible Pairs
Definition 4.2 Two states are an incompatible pair if
1. they are output incompatible, or
2. on some input, their next states are an incompatible pair.
Lemma 4.2 The set of incompatible pairs is the least fixed point of ICP:
ICP(y,z) = OICP(y,2) + i, u,v [A(i, y, u) - A(3, 2, v) - ZCP(u, v)]
and can be computed by the following iteration:

ICPo(y,2) = OICP(y,=)
ICPr1(y,2) = ZICPi(y,z)+ 3, u,v[A(4,y,u) A% z,v) - ICPx(u, v)] ()

The iteration can terminate when ICPy = ICP;. and the set of incompatible pairs is ICP(y,z) =
ICPi(y, 2).

Proof: The fixed point computation starts with the set of output incompatible pairs. After the (k + 1)-th

T(i,y,u)

Figure 3: Finding incompatible pairs.

iteration of Equation 2, ZCP4 (y, 2) contains all the incompatible state pairs (y, z) that lead to an output
incompatible pair in k£ + 1 or less transitions. This set is obtained by adding state pairs (y, 2) to the set
ICP(y, z), if an input takes states (y, z) into an already known incompatible pair (u, v). [ ]
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4.3 Incompatibles

So far we established incompatibility relationships between pairs of states. The following definition
introduces sets of states of arbitrary cardinalities.

Definition 4.3 A set of states is an incompatible if it contains at least one incompatible pair.
Lemma 4.3 The set of incompatibles can be computed as:
IC(c) =3y, 2 [ICP(y,z) - (c 2 y U 2)] 3)

Proof: By Lemma 3.4, (¢ D yU z) = [[k<; Y + zx = c performs bitwise OR on singletons y and z. If
either of their k-th bits is 1, the corresponding cy bit is constrained to 1. Otherwise, cj can take any values.
The outer product []}_,; requires that the above is true for each k. Thus, it generates all positional-sets ¢
which contain the union of the positional-sets y and z. The whole computation defines all state sets c each
of which contains at least an incompatible pair of singleton states (y, z) € ICP. ]

44 Compatibles

Definition 4.4 A set of states is a compatible if it is not an incompatible.
Lemma 4.4 The set of compatibles, C(c), can be computed as:
C(c) = ~Tupleg(c) - ~IC(c)

Proof: C(c) simply contains all non-empty subsets c of states which are not incompatibles ZC(c). The
empty set in positional-set notation is T'upleo(c) and all subsets which are not incompatible are given by
-ZC(c). u

4.5 Implied Classes of a Compatible

To set up the covering problem, we also need to compute the closure conditions for each compatible. This
is done by finding the class set of a compatible, i.e., the set of next states implied by a compatible.

Definition 4.5 A set of states d; is an implied set of a compatible c for input 1 if d; is the set of next states
from the states in c on input i.

Lemma 4.5 The implied set (in singleton form) of a compatible c for input i can be defined by the relation
F (e, ,n) which evaluates to 1 if and only if on input i, n is a next state from state p in compatible c:

.7:(0, 21”) = ap [C(C) ) (C 2 p) : A(z,p, 1?)] )

Proof: F(c,i,n) associates a compatible ¢ € C and an input ¢ with a singleton next state n. Given ¢ and 1,
n is in relation F(c, , n) (i.e., state n is in the implied set of compatible c under input i) if and only if there
is a present state p € c such that n is the next state of p on input . [ |

Note that the implied next states are represented here as singleton states in F(c, ¢, n). All singletons
n in relation with a compatible ¢ and an input i can be combined into a single positional-set, for later
convenience. This positional-set representation of implied sets associates each compatible ¢ with a set of
implied sets d.

14



Lemma 4.6 The implied sets d (in positional-set form) of a compatible c for all inputs are computed by the
relation CI(c, d) as:
CZ(c,d) = 3i [3n(F (c, i, n)) - Unionga(F(c, i, n))]

Proof: Considering the rightmost term, F (c, 7, ) relates implied next states as singleton positional-sets n

to compatible ¢ and input i and Union,,4(F (c, ¢, n)) forms the union of these singleton sets by bitwise OR

and produces a positional-set d. The term 3n(F(c, ¢, n)) is needed, to exclude invalid (compatible, input)

combinations. Finally the inputs : are existentially quantified from the implied sets of c for different inputs.
a

4.6 Class Set of a Compatible

Definition 4.6 An implied set d of a compatible c is in its class set if

1. d has more than one element, and

2. d¢ c and
3. d g d'ifd € class set of c.

We can ignore any implied set which contains only a single state, because its closure condition is satisfied
if the state is covered by some chosen compatible. Also if d C c, the closure condition is satisfied by the
choice of c. Finally, if the closure condition corresponding to d’ is stronger than that of d, the implied set d
is not necessary.

Lemma 4.7 The class set of a compatible c is defined by the relation CCS(c, d) which evaluates to 1 if and
only if the implied set d is in the class set of compatible c:

CCS(c,d) = ~Tupley(d) - (¢ 2 d) - Mazimaly(CI(c,d))

Proof: The singleton implied sets T'uple; (d) are excluded according to condition 1 in Definition 4.6. By
condition 2, we prune away implied sets d which are contained in their compatibles ¢. Finally given a
compatible ¢, Mazimaly(CZ(c, d)) gives all its implied sets d which are not strictly contained by any other
implied sets in CZ(c, d). [ ]
4.7 Prime Compatibles

To solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. As proved in [4], at least one minimum closed cover consists entirely of prime compatibles.

Definition 4.7 . A compatible ¢ dominates a compatible c if
1. d Dc,and

2. class set of ¢ C class set of c.

i.e., ¢ dominates c if ¢’ covers all states covered by c, and the closure conditions of ¢’ are a subset of the
closure conditions of ¢. As aresult, compatible ¢’ expresses strictly less stringent conditions than compatible
c. Therefore ¢’ is always a better choice for a closed cover than ¢, thus ¢ can be excluded from further
consideration.
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Lemma 4.8 The prime dominance relation is given by:
Dominate(c,c) = (¢' D c) - Containg(CCS(c,d),CCS(c’, d))

Proof: The two terms on the right express the two dominance conditions by which ¢’ dominates ¢ according
to Definition 4.7. Since compatibles ¢ and ¢’ are represented as positional-sets, (¢’ D ¢) is computed
according to a variant of Lemma 3.2. On the other hand, class sets are sets of sets of states and are
represented by their characteristic functions. Containment between such sets of sets of states is computed
by Vd [CCS(c', d) = CCS(c, d)}, as described by Lemma 3.9. ]

Definition 4.8 A prime compatible is a compatible not dominated by another compatible.
Lemma 4.9 The set of prime compatibles is given by:
PC(c) = C(c)- Ac' [C(c') - Dominate(c', )]

Proof: Compatibles c that are dominated by some compatible ¢’ are computed by the expression 3¢’ [C(¢') -
Dominate(c’, c)]. By Definition 4.8, the set of prime compatibles is simply given by the set of compatibles
C(c) excluding those that are dominated. n

4.8 Essential and Non-essential Prime Compatibles

Definition 4.9 A prime compatible is an essential prime compatible if it contains a state not contained in
any other prime compatibles.

Because any solution must correspond to a closed cover, each state must be contained in a selected
compatible, and thus every essential prime compatible must be selected.

Lemma 4.10 The set of essential prime compatibles can be computed as:

EPC(c) = PC(e) - Y fex A’ [ch - PC(E) - (¢ # )]}

k=1

Proof: For a set c of states to be an essential prime compatible £PC(c), it must be a prime compatible
PC(c). In addition, there must be a state s, such that s;, € ¢ and there is no ¢’ € PC different from c such
that s, € ¢’. The positive literal c; denotes the fact s, € c, and similarly for c;. ]

Definition 4.10 A prime compatible is a non-essential prime compatible if it is not an essential prime
compatible.

Lemma 4.11 The set of non-essential prime compatibles can be computed as:
NEPC(c) = PC(c) - ~EPC(c)

Proof: By Definition 4.10. u
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5 Implicit Generation of the Binate Covering Table

Once the set of (non-essential) prime compatibles is generated, the problem of exact state minimization can
be solved as a binate table covering problem. In this section, we shall describe how such a binate table can
be generated. To keep with our stated objective, the binate table is also represented implicitly. We describe
an implicit representation of the covering table, that adroitly exploits how row and columns were implicitly
computed. A description of how the binate table is then solved implicitly can be found in [8].

We do not represent (even implicitly) the elements of the table, but we make use only of a set of row
labels and a set of column labels, each represented implicitly as a BDD. They are chosen so that the existence
and value of any table entry can be readily inferred by examining its corresponding row and column labels.
This choice allows us to define all table manipulations needed by the reduction algorithms in terms of
operations on row and column labels and to exploit all the special features of the binate covering problem
induced by state minimization (for instance, each row has at most one 0, etc).

Definition 5.1 A column is labeled by a positional-set p. The set of column labels C is obtained by prime
generation as C(p) = PC(p).

Besides distinguishing one row from another, each row label must also contain information regarding
the positions of 0 and 1’s in the row. Each row label r consists of a pair of positional-sets (¢, d). Since
there is at most one 0 in the row, the label of the column p intersecting it in a O is recorded in the row
label by setting its ¢ part to p. If there is no 0 in the row, c is set to the empty set, T'uplep(c). Because of
Definition 5.3 for row labels, the columns intersecting a row labeled r = (¢, d) in a 1 are labeled by the
prime compatibles p that contain d.

Definition 5.2 The table entry at the intersection of a row labeled by r = (c,d) € R and a column labeled
by p € C can be inferred by:

the table entry is a 0 iff relation O(r, p) % (p=c)istrue,
the table entry is a 1 iff relation 1(r, p) oef (p 2 d) is true.

Definition 5.3 The set of row labels R is given by:
R(r) =PC(c) -CCS(c,d) + Tupleg(c) - Tuple; (d)

The closure conditions associated with a prime compatible p are that if p is included in a solution, each
implied set d in its class set must be contained in at least one chosen prime compatible. A binate clause of
the form (p+p1 +p2 + - - - + pi) has to be satisfied for each implied set of p, where p; is a prime compatible
containing the implied set d. The labels for binate rows are given succinctly by PC(c) - CCS(c, d). There
is a row label for each (¢, d) pair such that ¢ € PC is a prime compatible and d is one of its implied sets in
CCS(c, d). This row label consistently represents the binate clause because the 0 entry in the row is given
by the column labeled by the prime compatible p = ¢, and the row has 1’s in the columns labeled by p;
wherever (p; 2 d).

The covering conditions require that each state be contained by some prime compatible in the solution.
For each state d € S, a unate clause has to be satisfied which is of the form (p1 + p2 + - - + p;) where
the p;’s are the prime compatibles that contain the state d. By specifying the unate row labels to be
Tupleo(c) - Tupley(d), we define a row label for each state in T'uple; (d). Since the row has no 0, its ¢ part
must be set to Tupleg(c). The 1 entries are correctly positioned at the intersection with all columns labeled
by prime compatibles p; which contain the singleton state d 4. Since no minimal cover S can contain a

“Every closed cover of an ISFSM whose states are all reachable must cover all the states. We can say that the covering clauses
express a property of the solution that speeds up the search. Alternatively one could impose that only the reset state is covered and
let the search procedure find that a solution covers all states.
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compatible contained in another compatible of .S [12], one could introduce a new collection of clauses, one
for each pair of compatibles p; and p, such that p; D p,, each stating that at most one of the two can be
chosen (p1 + 73).

6 Improvements to the Implicit Algorithm

The experiments reported in Section 9 identify two bottlenecks in the implicit computations described in
Section 4:

1. the fixed point computation of incompatible pairs;
2. the handling of closure information, i.e., implied sets and class sets.

Sections 6.1 and 6.2 describe alternative methods to perform those computations. Section 6.3 shows how
maximal compatibles can be used with advantage in the computation of prime compatibles.

6.1 Incompatible Pairs Generation using Generalized Cofactor

This subsection describes a variation on the fixed point computation of incompatible pairs ZCP(y, 2),
presented in Section 4.2. Each iteration of the computation of Equation 2 can be viewed as an inverse image
projection from a set of state pairs in ZCPj(u, v) to a set of states pairs in ZCPr41(y, 2) via the product
transition relation A(%, y, u) - A(4, z, v). In the original method, all state pairs in ZC P41 (u, v) are projected
during the (k + 2)-th iteration. Some are not necessary because if the projected pair (y', z’) of ZCPg4y
is actually in ZCP;, as shown in Figure 4 5, its projection (y”, 2"') must have already been calculated in
a previous iteration. Thus at the (k + 2)-th iteration, we need to project only the new incompatible state
pairs discovered at the (k + 1)-th iteration. This is done in the following modification of the fixed point
computation of Section 4.2:

iy xThzy) A2},
0 NEW

ICP k k+1th iteration ICP k+1

Figure 4. An alternative way of finding incompatible pairs.

ICPo(y,z) = OICP(y,z2)
(= NEW(y,z))
TMP(y,z) = 3i,u{A(,y,u)-[IvA(,zv)- NEW(u,v)]}
NEW(y,z) = TMP(y,z)--ICPi(y,2)
ICPi(y,2) = ZICPi(y,z)+ NEW(y,z2)

5In Figure 4, the direction of the arrows shows the inverse projections.
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Instead of finding a minimum cardinality set of state pairs for projection, a set of state pairs with a small
BDD representation is more desirable for our implicit BDD formulation. A small BDD for NEW (y, z)
can be obtained by means of the generalized cofactor operator [25] using ZCPx(y, z) as the don’t care set:

NEW(y, 2) = NEW(y, 2)|-1cP.(y.2)

As a result of this modification, the geometric mean 6 of the ratio of CPU run time for computing ZCP with
this generalized cofactor method versus the original method is 0.68.

6.2 Handling of Closure Information

For FSM’s with many compatibles, the most time consuming part of the implicit algorithm is the computation
of implied sets and class sets of the compatibles. The reason is that these implicit computations deal with
two sets of variables (¢, d) in each relation, c representing a compatible and d representing its implied set or
class set. Since each compatible may have a different class set, the size of the corresponding BDD’s may
blow up during the computation.

A way to cope with this problem is to represent the class sets by means of singletons n (by Lemma 4.5)
instead of sets d of arbitrary cardinalities (by Lemma 4.6). This avoids the computation of the BDD’s of

CZ(c,d)and CCS(c, d) which are usually big. The computationsin Sections 4.5,4.6 and 4.7 can be replaced
by the following ones:

Theorem 6.1 The class sets of compatibles can be obtained by pruning the implied set relation F (c, %, n)
in singleton form, by the following computations:

F(e,iyn) = 3p [A(iap’ n) -C(c) - (C 2 P)]
I(c,i) = 3nn'[F(c,i,n)- F(e,i,n') - (n# n')) )
Fl(e,i,n) = F(e i,n)-I(c,1)
J(c, ) In [F(e,i,n)- (c 2 n))
F(c,i,n) F(eyiym)-J(c, 1)
K(c,i) = 3¢ {[Contain,(F(c,i,n),F(c,i',n))+J(c,7)]
—=[Contain, (F(c,i,n), F(c,i,n))+ ~J(c,1)] } (©)
F(e,i,n) = F(ei,n):-K(c,1)

Proof: For each input ¢ and each compatible ¢, we must compute a unique implied set denoted by c;. Each
implied set c; is represented as a set of singleton-states n, i.e., ¢; = {n|F(c, ,n)}. The relations I, J and
K guarantee the satisfaction of the first, second and third conditions, respectively, of Definition 4.6 of an
implied set. The relation I (c, ¢) finds all implied sets ¢; which contain at least two distinct next states » and
n', i.e., it computes all implied sets with more than one element. Equation 5 prunes the set 7 accordingly.
Relation J (¢, ¢) contains all remaining implied sets not contained in c, thus satisfying the second condition.

To compute the third condition implicitly, its form needs to be transformed. From the set of implied
sets, we delete an set class c; if ¢; C ¢;;. We know that, ¢; C ¢ if and only if ¢; C ¢y and ¢i» € ¢;. The
operation Contain, (F(c, i,n), F(c,#,n)) is used to test if ¢; C ¢+, but since its result may include invalid
(c, ') pairs (i.e., implied sets) the term ~J (¢, ') is needed in the equation. In the last equation, the implied
sets in K (c, ¢) are subtracted away from F because they violate the third condition. [ |

The geometric mean of k numbers is the the k-th root of the product of the k numbers.
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Theorem 6.2 The condition that compatible ¢’ dominates compatible c can be computed as:
Dominate(c', ¢) = (¢ D c) - Vi’ 3i Contain, (F(c,i,n), F(c, ', n))

Proof: By Definition 4.7, ¢/ dominates ¢ if ¢’ covers all states covered by ¢ and the conditions on the closure
of ¢’ are a subset of the conditions on the closure of c. a
After computing the dominance relation Dominate(c’, c), the prime compatibles can be generated using

Lemma 4.9.
6.3 Prime Compatible Generation using Maximals

The prime compatible generation algorithm given in Section 4 does not rely on the computation of maximal
compatibles, whereas the method in [4] does. We are going to present an altemative implicit generation
algorithm that does make use of maximal compatibles. The motivation is to expedite the prime generation
step, that is usually the most time consuming step.

Theorem 6.3 The set of maximal compatibles can be computed as:
MC(c) = Mazimal(C(c))

Proof: By Definition 2.7, the set of maximal compatibles MC (c) is simply the maximal set of positional-sets
in C(c) with respect to ¢ (Lemma 3.6). L

Corollary 6.1 The set of singleton next states implied by a maximal compatible c under input i, F (c,1,y),
can be computed by:

F(e,i,n) = 3p[MC(c) - (¢ 2 p) - A3, p, n)]

The class set information for the maximal compatibles can then be obtained using the class set computation
procedure as described in Theorem 6.1.

6.3.1 Compatible Pruning by Maximal Compatibles with Void Class Set

When generating prime compatibles from compatibles, only the compatibles generated from maximal
compatibles with a non-void class set need to be considered, because a maximal compatible with a void
class set dominates any compatible that it generates.

Corollary 6.2 The maximal compatibles with a void class set, MCV(c), can be obtained by:
MCV(c) = MC(c)- Ai K(c,?)
where K (c, i) is given by Equation 6. The set of compatibles can then be pruned by MCV(c):
C(c) = C(c)- B’ [MCV(c)- (¢ 2 €)]

6.3.2 Slicing Procedure for Prime Compatible Generation

The following slicing procedure is an implicit version of the procedure outlined in Section 2.

20



PC(c)=10
for £ = n down to 1 do{
MCi(c) = MC(c) - Tupleg(c)
Cik(c) =C(c) - Tupler(c) - ~MCk(c)
Fey(eyiyn) = Prune(Ck(c),A(é, p, n))
Fpe(c, i, n) = Prune(PC(c),A(:, p, n))
Dominate(c, c) = (¢ D ¢) - Vi’ 3i Contain, (Fpc(c, i, n), Fe, (¢, ¥, 1))
PCr(c) = C(c): A [Dominate(,c) - C()]
PC(c) = PC(c) + PCi(c) + MCx(c)

PC(c) is a set of prime compatibles accumulated during each iteration, and is originally empty. MCy(c)
contains maximal compatibles with cardinality k. Cx(c) contains compatibles c of cardinality k, excluding
those in MCg(c). Prune(Ci(c),A(, p, n)) is the procedure to prune class sets described in Theorem 6.1,
by substituting C(c) for C(c), and F¢(c, i, n) for F(c,,n) in the equations. Prune(PC(c),A(%, p,n))is
similarly defined. So F¢, (c, 7, n) and Fpc(c, ¢, n) contain the class sets of Cr(c) and PC(c) respectively.
To test for Dominate(c’, c), we only need to know if a compatible ¢’ € C. is dominated by an already
discovered prime compatible ¢ € PC, because (1) for any other ¢’ € C, ¢ ¢ ¢, and (2) ¢ can be dominated
only by prime compatibles with cardinalities greater than k. PCy(c) contains the newly discovered prime
compatibles with cardinality &, and this set is added to MC; and PC to update the set of prime compatibles
found so far.

Experimentally during construction of the BDD’s of prime compatibles, this slicing method uses on
average half the memory as compared to the method in Section 6.2. This method is particularly efficient if
the sizes of the compatibles are localized to a few cardinalities.

7 Implementation Details

7.1 BDD Variable Assignment

Simple accounting shows that:
1. 10 state variable vectors (p, n, y, 2, %, v, ¢, ¢/, d, d’) are used in all previous equations,

2. in positional-set notation, each state variable vector corresponds to n Boolean variables where n is
the number of states.

Looking into each equation carefully reveals that we never operate on more than four sets of variables
simultaneously in a single BDD operation. For example, 4 sets of variables y, z,u and v are used in
Equation 2, and 3 sets p, n and c in Equation 4. The idea of BDD variable assignment is to use a set of BDD
variables for more than one purpose, by binding at different times more than one set of variables from the
equations to a single set of BDD variables. The assignments should be made in such a way that no two sets
of variables appearing in an equation will be assigned to the same set of BDD variables. Such an assignment
for our previous implicit algorithm is shown in Figure 5.

There is a conflict with the above BDD variable assignment in Equation 3, because variable c s assigned
to the same BDD variables as variable y. To get around it, an extra variable e is used instead:

IC(c) =[e— ¢y, 2z [ICP(y,2) - (y 2 2V €)].
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BDD variable sets

0 1 2 3
p | n

y|lul| z]| v
cl|ld}|cd | d
e

Figure 5: Assignments of equation variables to BDD variables.

Note that two functions containing different variables being assigned to the same BDD variable, e.g.,
A(¢, p,n) and CCS(c', d’), can co-exist within a multi-rooted BDD at the same time, without interfering
with one another. Conflict will occur only when they become operands to a BDD operation. Actually as
a result of overlapping in variable supports, such unrelated functions can be constructed and manipulated
more efficiently due to sharing of BDD subgraphs.

7.2 BDD Variable Ordering

Relations as equality, containment, maximal described in Section 3.3.1 and variants of them have BDD’s of
exponential size if the different sets of BDD variables are not interleaved with each other.

Also the ordering between individual state variables within a set of BDD variables (i.e., a positional-set)
is important, especially when handling the closure information. An heuristics that we used is to put at the
top of the BDD the Boolean variables corresponding to states that cccur most frequently in the compatibles.
This should leave the BDD sparse in the lower part where most state variables take a value of 0. As the
set of compatibles is usually very large, we approximate the count by counting the occurrences of states in
maximal compatibles.

7.3 Don’t Cares in the Positional-set Space

The main advantage of a positional-set representation of FSM’s is that sets of sets of states can be represented
by a single multi-rooted BDD. As a result, sets of compatibles (C), prime compatibles (PC), and the likes
can be represented and manipulated compactly. However during the computationof OCP, OZCP and ZCP,
we are manipulating only sets of singleton states and so we only care about a small portion of the encoding
space. Since no positional-set of cardinality greater than 1 will appear there, we can make use of these don’t
care code points in the positional-set space.

For example, the computations involved in Equations 1 to 2 manipulate a product of two singleton states
(y, z). The don’t care condition with respect to this pair of singletons is captured by:

DC(y, z) = ~Tuplep(y) - ~Tupley (y) + ~Tupleg(z) - =T uple; (z)

and can be used to simplify the BDD computation of these sets using the generalized cofactor operator [25].

8 Approximations of Prime Compatibles

In this section, we review a related research reported in [6] where a subset (pw-primes) and a superset
(ipw-primes) of prime compatibles are defined. The contribution rests on the key notion of signature set of
a prime compatible, that plays a similar role to the notion of signature cubes in two-level minimization [14).
To decide if compatible ¢ dominates compatible ¢’ (for ¢’ C c¢), it is sufficient to know that ¢’ contains a
compatible in the signature set of ¢. This allows to compute primes with a quantifier-free recursive BDD
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operator. Of course the difficulty of computating primes has simply been shifted to the computation of
signatures sets, but a superset of primes has been defined whose signature sets can be computed implicitly
in an efficient manner. In the sequel we will introduce two new definitions of dominance: ipw-dominance
and pw-dominance, while we will reserve the word "dominance” without qualifications for the classical
definition2.9 .

Definition 8.1 A signature s of compatible c is @ minimal subset of ¢ such that CS(c) C CS(s). A
signature of a compatible is a minimal compatible dominated by c. The set of all signatures of cis Si gn(c).

Theorem 8.1 Compatible ¢ dominates compatible ¢’ if and only if
1. ¢ Cec,and
2. 3d € Sign(c), ¢ 2 d.

Proof: Only If Part. If c dominates ¢’ then CS(c) C CS(¢), so either ¢’ € Sign(c)orId € Sign(c) such
that d C ¢, by definition of signature, and this is the thesis.
If Part. Suppose that

1. ¢ Cecand
2. 3d € Sign(c),d 2 d.

Then, from the definition of signature, C'S(c) C CS(d). We must show that CS(c) C CS(c’) to have that
c dominates ¢’. Suppose by contradiction that CS(c) € CS(¢'), then there exists an implied set s such that
s€CS(c)and s ¢ CS(c'). If s € CS(c)-andso s € CS(d) - and s ¢ CS(c') there must exist an input ¢
such that s = IS(d, ) C 15(c/,i) C IS(c,i) = ' € CS(c),but then s C &' and this goes against part 3 of
the definition of class set that requires that no implied set is contained in another implied set of a class set.

|
8.1 An Overapproximation of Prime Compatibles

Definition 8.2 An input-labeled pairwise class set ] PWCS(c) of compatible c is the set of all the input-
labeled implied pairs (s,, sp): under input i of any state pairs in c such that:

1. s, # sp,and
2. {sa,sp} € c.

Definition 8.3 Compatible c ipw-dominates compatible ¢’ if and only if
1. d Cec,and

2. IPWCS(c) 2 IPWCS(c).
Definition 8.4 An ipw-signature s of compatible c is a minimal subset of ¢ such that IPWCS(c) C
IPWCS(s). A signature of a compatible is a minimal compatible ipw-dominated by c. The set of all
ipw-signatures of c is Signip,(c).

Definition 8.5 An ipw-prime compatible is one that is not ipw-dominated by any other compatible.

Theorem 8.2 If c is a prime compatible, then it is also an ipw-prime compatible.
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Proof: Suppose by contradiction that ¢ is not an ipw-prime, i.e., that there is another compatible ¢’ that
ipw-dominates c. Then ¢ C ¢/ and TPWCS(c) 2 IPWCS(c'). The second inclusion implies that for
every input i 1S(c,4) 2 15(c/, i) and so it follows that CS(c) 2 CS(c"), therefore c is dominated by ¢’ and
it is not a prime. |

The theorem shows that ipw-primes are a superset of primes. It turns out that the inclusion is strict, i.e.,
there are ipw-primes that are not primes .

Theorem 8.3 Compatible c ipw-dominates compatible ¢’ if and only if
1. d Cc,and
2. 3d € Signipy(c),c’ 2 d.

8.2 An Underapproximation of Prime Compatibles

Definition 8.6 A pairwise class set PWCS(c) of compatible c is the set of all the implied pairs (s, sb) of
any state pairs in c such that:

1. s, # sy, and
2. {sq,85} € c.
Definition 8.7 Compatible ¢ pw-dominates compatible ¢’ if and only of
1. ¢ Ccand
2. PWCS(c) 2 PWCS(c).

Definition 8.8 A pw-signature s of compatible c is a minimal subset of ¢ such that PWCS(c) C
PWCS(s). A signature of a compatible is a minimal compatible pw-dominated by c. The set of all
pw-signatures of ¢ is Signyu(c).

Definition 8.9 A pw-prime compatible is one that is not pw-dominated by any other compatible.
Theorem 8.4 If c is a pw-prime compatible, then it is also a prime compatible.

The theorem shows that pw-primes are a subset of primes. It tumns out that the inclusion is strict, i.., there
are primes that are not pw-primes. Therefore using pw-primes does not guarantee an exact solution, but
only an approximation 8.

Theorem 8.5 Compatible c pw-dominates compatible ¢’ if and only if
1. ¢ Cecand
2. 3d € Signpyu(c),c’ 2 d.

In [6] it is shown how it is possible to generate the ipw-primes by an implicit computation. It is of
particular interest that pw-primes are obtained by a recursive quantifier-free computation that operates on
pairs (c, s) where c is a compatible and s is a subset in Sign;p(c). Experimental results show faster run
times, but a smaller set of completed benchmarks, than reported in Section 9.

7In [5] it is stated that if no implied set of compatible ¢ contains any other implied set then the set of primes is equal to the set
of ipw-primes.

8[n [5] it is proved that if any two implied sets in the class set of compatible c are disjoint then the set of primes is equal to the
set of pw-primes.
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9 Experimental Results

We implemented the algorithms described in previous sections in a program called ISM, an acronym .for
Implicit State Minimizer. We ran IsM on different suites of FSM’s. We report results on the following suites
of FSM’s. They are:

1. the MCNC benchmark and other examples,
. FSM'’s generated by a synthesis procedure for asynchronous logic [10],
. FSM’s from leaming I/O sequences [17],

2

3

4. FSM'’s from synthesis of interacting FSM’s [26],

5. FSM'’s with exponentially many prime compatibles,
6

. FSM’s with many maximal compatibles, and
7. randomly generated FSM’s.

Each suite has different features with respect to state minimization. We discuss features of the experiments
and results in different subsections. Comparisons are made with STAMINA [20], a program that represents
the state-of-art for state minimization based on explicit techniques. The program STAMINA was run with the
option -P to compute all prime compatibles.

For each example, we report the number of states in the original ISFSM, the number of maximal
compatibles if applicable, the number compatibles, the number of prime compatibles, the number of non-
essential prime compatibles if applicable, and the run time for our implicit algorithm 1SM and that for the
explicit algorithm STAMINA. All run times are reported in CPU seconds on a DECstation 5000/260 with 440
Mb of memory. The CPU run time refers to the computation of the prime compatibles only.

9.1 FSM'’s from MCNC Benchmark and Others

Table 1 reports the results from the MCNC benchmark and from other academic and industrial benchmarks
available to us. Most examples have a small number of prime compatibles, with the exception of ex2 and
green. The running times of ISM are worse than those of STAMINA, especially in those cases where there
are very few compatibles in the number of states (squares is the most striking example). In those cases an
explicit algorithm is sufficient to get a quick answer and it may be faster than an implicit one. The reason
is that ISM manipulates relations having a number of variables linearly proportional to the number of states.
When there are many states and few compatibles, the purpose of ISM is defeated and its representation
becomes inefficient. But when the number of primes is not negligible as in ex2 and green, 1SM ran as fast or
faster than STAMINA.

The question now arises of how it is realistic to expect such examples in logic design applications. One
could object that the examples of Table 1 show that hand-designed FSM’s can be handled very well by an
existing state-of-art program like STAMINA. If this can be true for usual hand-designed FSM’s, we argue that
there are FSM’s produced in the process of logic synthesis of real design applications that generate large
sets of compatibles exceeding the capabilities of programs based on an explicit enumeration. The examples
of Table 2 are such a case. They are FSM'’s produced as intermediate stages of an asynchronous logic design
procedure and their minimization requires computing very large sets of compatibles. Another case is the
one reported in Table 3, referring to the synthesis of finite state machines consistent with a collection of 1/O
leaming examples.
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# max # prime CPU time (sec)

machine | #states | compat. | # compat. | compat. | #NVEPC | ISM | STAMINA
arbseq 94 2 96 9 3| 12 0
bbsse 16 11 97 13 0 0 0
beecount 7 4 11 7 S 0 0
ex1 20 2 22 19 1 1 0
ex2 19 36 2925 1366 1366 7 13
ex3 10 10 195 91 91 0 0
exs 9 6 81 38 38 0 0
ex7 10 6 135 57 57 0 0
fsm1 256 47 302 208 0| 83 0.6
green 54 524 1234 524 524 | 90 125
lion9 9 5 20 5 2 0 0
mark1 15 12 41 18 11 0 0
scf 121 12 1201 175 87| 22 0
squares 371 45 473 307 01731 1
tbk 32 16 48 48 48 3 1
tma 20 15 35 20 4 1 0
trainl1 11 5 85 17 15 0 0
viterbi 68 5 329 57 3 6 0

Table 1; The MCNC benchmark and others.

9.2 FSM'’s from Asynchronous Synthesis

Table 2 reports the results of a benchmark of FSM's generated as intermediate steps of an asynchronous
synthesis procedure [10]. STAMINA ran out of memory on the examples vmebus.master.m, isend, pe-rcv-
ifc fc, pe-send-ifc fc, while 1SM was able to complete them. These examples (with the exception of vbe4a)
have a number of primes below a thousand. To explain this data reported in Table 2, we notice that in order
to compute the prime compatibles, every compatible has to be generated by STAMINA too. The compatibles
of the FSM’s of this benchmark are usually of large cardinality and therefore their enumeration causes a
combinatorial explosion. So the huge size of the set of compatibles accounts for the large running times
and/or out-of-memory failures. About the behavior of 1SM, we underline that the running times track well
with the size of the set of compatibles and when both programs complete, they are usually well below
those of STAMINA (pe-rcv-ifc.fc.m, pe-send-ifc.fc.m, vbeda). For asynchronous synthesis, a more appropriate
formulation of exact state minimization requires the computation of all compatibles or at least of prime
compatibles and a different formulation of the covering problem [10].

9.3 FSM'’s from Learning I/O Sequences

Table 3 and Figure 6 show the results of running a parametrized set of FSM’s constructed to be compatible
with a given collection of examples of input/output traces [17]. These machines exhibit very large number
of compatibles.

Here I1sM shows all its power compared to STAMINA, both in terms of number of computed prime
compatibles and running time. STAMINA runs out of memory on the examples from threer.35 and fourr.30
onwards and, when it completes, it takes close to two order of magnitude more time than ISM.
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Table 3: FSM’s from leaming I/O sequences.

27

# max # prime CPU time (sec)
machine # states | compat. | # compat. | compat. | #VEPC | ISM | STAMINA
alex1 42 787 55928 787 787 | 24 16
future 36 49 | 7.9298 49 49 3 0
future.m 28 16 | 2.621e7 16 16 2 0
intel_edge.dummy 28 120 9432 396 396 | 37 3
isend 40 128 22207 480 480 | 13 | spaceout
isend.m 20 15 22207 19 19 1 0
mp-forward-pkt 20 1| 1.048¢6 1 0 0 0
nak-pa 56 8 | 4.741el5 8 8 9 0
nak-pa.m 18 8 44799 8 8 1 0
pe-rev-ifc.fc 46 28 | 1.528ell 148 148 | 18 | spaceout
pe-rev-ifc.fc.m 27 18 | 1.793e6 38 38 3 147
pe-send-ifc.fc 70 39 | 5.071e17 506 506 | 571 | spaceout
pe-send-ifc.fc.m 26 6| 8.978e6 23 22 3 312
ram-read-sbuf 36 2 | 3.006e10 2 0 2 0
sbuf-ram-write 58 24 1.433e6 24 24| 14 0
sbuf-ram-write.m 24 12 1.433¢6 12 12 2 0
sbuf-send-ctl 20 10 81407 10 10 0 0
sbuf-send-pkt2 21 2 622591 2 0 0 0
vbeda 58 2072 | 1.756e12 2072 2072 | 109 167
vbe4a.m 22 13 73471 13 13 2 0
vbe6a.m 16 8 527 8 4 1 0
vmebus.master.m 32 10| 5.049¢7 28 28 | 16 | spaceout
Table 2: Asynchronous FSM benchmark.
# # | #prime CPU time (sec)

machine | state [ compat. | compat. ISM | STAMINA

threer.10 11 671 112 0 0

threer20 | 21 16829 3936 1 159

threer30 | 31 97849 33064 21 1344

threer.40 41 | 1.456e6 | 529420 75 | spaceout

threer.55 55| 3.622¢7 | 1.555¢7 1273 | spaceout

fourr.10 11 2047 1 0 0

fourr.20 21 42193 12762 2 217

fourr.30 31| 1.346e6 | 542608 20 | spaceout

fourr.40 41 | 5.266e9 | 2.388e9 105 | spaceout

fourr.50 51| 3.643¢7 | 1.696e7 198 | spaceout

fourr.60 61 | 1.052e10 | 5.021e9 | *18181 | spaceout

fourr.70 71 | 9.621e10 | 4.524e10 | *22940 | spaceout
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Figure 6: Comparison between ISM and STAMINA on learning I/O sequences benchmark.
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9.4 FSM’s from Synthesis of Interacting FSM’s

It has been reported by Rho and Somenzi in [21] that the exact state minimization of the driven machine of
a pair of cascaded FSM's is equivalent to the state minimization of an ISFSM that requires the computation

of prime compatibles.

The examples ifsm0, ifsml, ifsm2 come from a set of FSM’s produced by FSM optimization, using
the input don’t care sequences induced by a surrounding network of FSM’s [26]. They exhibit often large
number of compatibles and prime compatibles, as shown in Table 4. For such cases, the run times of the

implicit algorithm ISM are shorter than those by STAMINA.

le+06

# # | #prime | CPU time (sec)

machine | state | compat. | compat. | ISM | STAMINA
ifsm0 38 | 1064973 | 18686 | 43 4253
ifsm1 74 43006 8925 | 25 466
ifsm2 150 | 497399 774 | 267 356

Table 4: Examples from synthesis of interacting FSM’s.
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9.5 FSM’s with Exponentially Many Prime Compatibles

In the previous examples, the number of prime compatibles is not large compared to the number of states.
A natural question to ask is whether there are FSM’s that generate a large number of prime compatibles
with respect to the number of states. We were able to construct a suite of FSM’s where the number of prime
compatibles is exponential in the number of states.

Rubin gave in [22] a sharp upper bound for the number of maximal compatibles of an ISFSM. He
showed that M (n), the maximum number of maximal compatibles over all ISFSM’s with n > 1 states, is
given by M (n) = i.3™, if n = 3.m + i. The proof of this counting statement is based on the construction
of a family of incompatibility graphs I () parametrized in the number of states °. Each I(n) is composed
canonically of a number of connected components. Each maximal compatible contains exactly one state
from each connected component of the graph. The number of such choices is shown to be M (n).

The proof of the theorem does not exhibit an FSM that has a canonical incompatibility graph. Based on
the construction of the incompatibility graphs given in the paper, we have built a family F'(») of ISFSM’s
10 (parametrized in the number of states n) that have a number of maximal compatibles in the order of
3("/3) and a number of prime compatibles in the order of 22*/3), F(n) has 1 input and n/3 outputs.
Each machine F is derived from a non-connected state transition graph whose component subgraphs F;
are defined on the same input and outputs. Each subgraph F; has 3 states {sio, si1, si2} and 3 specified
transitions {ejp = (sio, si1), es1 = (si1, 8i2), ez = (Si2, si0) }. Each transition under the input set to 1 asserts
all outputs to —, with the exception that e;p and e;; assert the -th output to 0 and e;; asserts the :-th output
to 1. Under the input set to 0, the transitions are left unspecified.

Table S and Figure 7 show the results of running increasingly larger FSM’s of the family. While ISM is
able to generate sets of prime compatibles of cardinality up to 2!°® with reasonable running times, STAMINA,
based on an explicit enumeration runs out of memory soon (and where it completes, it takes much longer).

# max # prime CPU time (sec)
machine | # states | compat. | #compat. | compat. | #NEPC ISM | STAMINA
rubin12 12 3¢ 2° -1 2% —1 28 -1 0 4
rubin18 18 36 221 | 2121 | 212 1 751
rubin24 24 38 2161 | 2161 | 2161 1 | spaceout

rubin300 | 300 3100 | 200 _ 1 | 2200 _j [ 2200 _ 1 256 | spaceout
rubin600 | 600 3200 | 2400 _q | 2400 _ | 2400 _ 1995 | spaceout
rubin900 | 900 3300 | 2600 _q | 2600 _q | 2600 _ 6373 | spaceout
rubin1200 | 1200 3400 | 2800 _ g [ 2800 _ | 2800 _ 1 | 17711 | spaceout
rubin1500 | 1500 3500 | 21000 _ 3 | 21000 _ 1 | 21000 _ 1 | 42674 | spaceout
rubin1800 | 1800 3600 | 91200 _ 3 | 21200 _q | 21200 _ 1 | 78553 | spaceout
rubin2250 | 2250 3750 | 21500 _q | 21500 _ 7 | 21500 _ 1 [ 271134 | spaceout

Table 5: Constructed FSM’s.

The incompatibility graph of an ISFSM F is a graph whose nodes are the states of F, with an undirected arc between two
nodes s and ¢t iff s and ¢ are incompatible.

19Called rubin followed by n in the table of results.
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Figure 7: Comparison between ISM and STAMINA on constructed FSM’s.

9.6 FSM'’s with Many Maximal Compatibles

Table 6 shows the results of running some examples from a set of FSM’s constructed to have a large number
of maximal compatibles. The examples jacd, jc43, jc44, jc45, jc46, je47 are due to R. Jacoby and have
been kindly provided by J.-K. Rho of University of Colorado, Boulder. The example lavagno is from
asynchronous synthesis as those reported in Section 9.2. For these examples the program STAMINA was run
with the option -M to compute all maximal compatibles. While IsM could complete on them in reasonable
running times, STAMINA could not complete on jac4 and completed the other ones with running times
exceeding those of 1SM by one or two order of magnitudes. Notice that ISM could also compute the set of all
compatibles even though the computation of prime compatibles cannot be carried to the end while STAMINA
failed on both. The prime compatibles for these examples could not be computed by either program.

9.7 Randomly Generated FSM’s

We investigated also whether randomly generated FSM’s have a large number of prime compatibles. A
program was written to generate random FSM’s 11 A small percentage of the randomly generated FSM’s
were found to exhibit this behavior. Table 4 shows the results of running ISM and STAMINA on some interesting
examples with a large number of primes. Again only ISM could complete the examples exhibiting a large
number of primes.

Yparameters: number of states, number of inputs, number of outputs, don't care output percentage, don’t care target state
percentage.
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# max #prime | CPU time (sec)

machine | # states | compat. | # compat. | compat. [ ISM | STAMINA

jac4 65 3.859e6 | 4.159e7 ? 34 | spaceout

jcA3 45 82431 1.556e6 ? 13 7739

jead 55 4785 7.584¢9 ? 20 662

jeAs 40 17323 | 480028 ? 10 1211

jcA6 42 26086 | 1.153e6 ? 11 2076

jeAT 51 397514 | 1.120e7 ? 19 41297

lavagno 65 47971 | 9.163e6 ? 163 40472

Table 6. FSM’s with many maximals.

# max # prime CPU time (sec)
machine | # states | compat. | # compat. | compat. | #NEPC | ISM | STAMINA
fsm15.232 14 4 7679 360 360 2 23
fsm15.304 14 2 12287 954 954 1 85
fsm15.468 13 2 4607 772 772 1 16
fsm15.897 15 2 20479 617 616 0 50
ex2.271 19 2 393215 | 96383 96382 | 21 | spaceout
ex2.285 19 2 393215 | 121501 | 121500 | 13 | spaceout
ex2.304 19 2 393215 | 264079 | 264079 | 93 | spaceout
ex2.423 19 4 204799 | 160494 | 160494 | 102 | spaceout
€x2.680 19 2 327679 | 192803 | 192803 | 151 | spaceout

Table 7: Random FSM'’s.
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9.8 Experiments Comparing BDD and ZBDD Sizes

As mentioned before, the objects we manipulate in ourimplicit algorithms are sets and relations of positional-
sets. In our application positional-sets (e.g., compatibles) are usually sparse sets. Minato showed in [16]
that Zero-suppressed BDD’s are a good representation of sets of sparse sets. As a preliminary investigation
of the effectiveness of a ZBDD-based algorithm for exact state minimization of ISFSM’s, we converted
some key BDD objects into ZBDD's and observed the change in the number of used nodes.

Compatibles | Prime Compat. table—R

# nodes in # nodes in # nodes in CPU Time (sec)
machine | BDD | ZBDD | BDD | ZBDD | BDD | ZBDD | bdd2zbdd | zbdd2bdd
alex1 2562 | 1203 | 1243 415 167 43 0.00 0.00
ex2.271 21 51| 236 286 | 5646 | 4307 0.44 0.27
ex2.285 22 38 | 461 471 39 2 0.00 0.00
ex2.304 22 38 787 826 | 56928 | 34263 5.66 3.19
ex2.423 29 66 | 675 782 | 40857 | 27060 4.66 332
€x2.680 23 41 | 1819 1953 | 57446 | 40277 8.06 425
ex2 161 108 | 222 148 | 4421 1521 0.18 0.16
ex3 28 33 45 41 584 290 0.02 0.01
ex5s 34 31 33 26 269 111 0.01 0.00
ex7 26 30 41 39 322 159 0.01 0.01
green 197 78 | 194 62 211 54 0.01 0.01
keybex2 | 581 173 | 1260 324 | 14539 | 2053 0.77 0.58
s386keyb | 320 188 | 404 175 | 6386 | 1270 0.25 0.22
room4.16 75 791 201 159 | 1213 501 0.05 0.04
room4.20 | 122 134 | 458 407 | 2863 | 1431 0.16 0.11
room3.20 | 113 110 | 265 228 | 1717 790 0.07 0.05
rcom3.25 | 220 185 | 544 402 | 3922 | 1567 0.18 0.12
room3.30 | 637 473 | 1205 785 | 9391 | 3389 0.59 0.38

Table 8: Comparison between BDD and ZBDD sizes.

Experiments have been performed on FSM’s which require non-trivial covering steps for state mini-
mization. During state minimization of each machine, ZBDD’s are generated from BDD’s representing
the set of compatibles C, the set of prime compatibles PC (which is usually also the set of column labels),
and the set of row labels R. From the rightmost two columns of the above table, the conversion routines
between ZBDD's and BDD’s seem to execute fast enough to make feasible switching between BDD and
ZBDD representations.

Out of the 18 examples, 9 of them have smaller ZBDD’s than BDD'’s for representing C, 13 of them have
smaller ZBDD’s than BDD’s for representing PC (the remaining 5 examples are all randomly generated
machines), and 18 of them have smaller ZBDD representations of R. Disregarding the second set of
examples, ex2.x * *, which are randomly generated machines, the comparison shows that ZBDD’s are
usually smaller than BDD’s and are always comparably close for the exceptional cases.

When converting BDD’s to ZBDD's, the most reduction in sizes occurs for the representation of R, and
less for PC, and the least for C. A possible explanation is that PC is a more sparse set than C, because
all state sets that are in PC are in C but not vice versa. A similar explanation also applies between R and
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PC. Each row label in R consist of two parts: a positional-set representing a prime compatible, and another
positional-set representing an implied set. As we don’t expect much sharing between different implied sets,
the set of row labels (whose support has twice as many variables as the the one of PC and C) should be a
more sparse set.

10 Results of State Minimization of ISFSM’s

Once a binate table has been generated, IsM calls an implicit binate table solver to find a contained behavior
with a minimum number of states. In this section we summarize the final results. We refer to [8] for a
detailed exposition.

The following explanations refer to the tables of results:

o Under table size we provide the dimensions of the binate table before and after the table reduction
step (that replaces the original table with an equivalent one).

e # mincov is the number of recursive calls of the binate cover routine.

e o and B mean, respectively, o and 8 column dominance, two ways of reducing the columns of a
covering table.

e Data are reported with a * in front, when only the first solution was computed.
o Data are reported with a t in front, when only the first table reduction was performed.

e # cover is the cardinality of a minimum cost solution (when only the first solution has been computed,
it is the cardinality of the first solution).

e CPU time refers only to the binate covering algorithm. It does not include the time to find the prime
compatibles.

10.1 Minimizing Small and Medium Examples

With the exception of ex2, ex3, ex5, ex7, the examples from the MCNC and asynchronous benchmarks do
not require prime compatibles for exact state minimization and yield simple covering problems. Table 9
reports those few non-trivial examples. They were all run to full completion, with the exception of ex2. In
the case of ex2, we stopped both programs at the first solution.

table size (rows x columns) # mincov # cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a B| a B8 a B al B a B a B
ex2 | 4418x 1366 | 3425x1352 | *6 | *14 | *6 | *4 | *10 [ *12 | *10 | *9 | *58 | *293 | *116 | *91
ex2 | 4418x 1366 | 3425x1352 | *6 | *14 | *6 | 286 | *10 | *12 | *10 | 5 | *58 | *293 | *116 | 2100
ex3 243 x91 151x 84 201} 371911} 39 4 4 4| 4| 78 33 0 0
exs 81x38 47 x 31 16 6§10 6 3 3 31 3 4 3 0 0
ex7 137x 57 62 x44 38| 31137 6 3 3 31 3 8 12 0 0

Table 9: Examples from the MCNC benchmark.

These experiments suggest that
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o the number of recursive calls of the binate cover routine (# mincov) of ISM and STAMINA is roughly
comparable,

e the running times are better for STAMINA except in the largest example, ex2, where ISM is slightly
faster than STAMINA. This is to be expected because when the size of the table is small the implicit
approach has no special advantage, but it starts to pay off scaling up the instances. Moreover, some
implicit reduction computations have not yet been fully optimized.

10.2 Minimizing Constructed Examples

Table 10 presents a few randomly generated FSM’s. They generate giant binate tables. The experiments
show that ISM is capable of reducing those table and of producing a minimum solution or at least a solution.
This is beyond reach of an explicit technique and substantiates the claim that implicit techniques advance
decisively the size of instances that can be solved exactly.

table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first 1ISM STAMINA isM STAMINA ISM STAMINA

reduction a reduction al|lBla Bl al|B]| « B a B8 o B
ex2.271 95323 x 96382 0x0 111 - -1 212 - - 1 55 | fails | fails
ex2.285 1x 121500 0x0 111} - - 212 - - 0 0 | fails | fails
ex2.304 | 1053189 x 264079 | 1052007x264079 | 2| - | - -1 21 -1t - - | 463 | fails | fails | fails
ex2.423 | 637916x 160494 | 636777x160494 | *2 | -1 - - %31 -] - - | *341 | fails | fails | fails
ex2.680 | 757755x 192803 | 756940 x 192803 21 -1 - -1 2] - - | 833 | fails | fails | fails

Table 10: Random FSM's.
10.3 Minimizing FSM’s from Learning I/O Sequences

Examples in Table 10 demonstrate dramatically the capability of implicit techniques to build and solve
huge binate covering problems on suites of contrived examples. Do similar cases arise in real synthesis
applications ? The examples reported in Table 11 answer in the affirmative the question. They are the from
the suite of FSM's described in [17]. It is not possible to build and solve these binate tables with explicit
techniques. Instead we can manipulate them with our implicit binate solver and find a solution. In the
example fourr40, only the first table reduction was performed.

10.4 Minimizing FSM’s from Synthesis of Interacting FSM’s

Prime compatibles are required only for the state minimization of i fsm1 and ¢ fsm2. For i fsm1, ISM can
find a first solution faster than STAMINA using a-dominance. But as the table sizes are not very big, the run
times ISM take are usually longer than those for STAMINA.

11 Conclusions

We have presented an algorithm to generate implicitly sets of compatibles of ISFSM’s. An application
is the exact solution of state minimization. Compatibles, maximal compatibles, prime compatibles and
implied sets are all represented by the characteristic functions of relations implemented with BDD’s. The
only explicit dependence is on the number of states of the initial problem. We have demonstrated with
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table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA . ISM STAMINA
reduction a reduction o B| a B a Bl al| B a 4] a B
threer.20 6977 x 3936 6974 x 3936 *4 | %6 | *5 ]| *3 | *5 | *5|*6 | *6 *13 *26 | *1996 | *677
threer.25 35690x 17372 34707 x 17016 3| *6 - - *S| *6 - - *69 | *192 fails | fails
threer.30 68007 x 33064 64311 x 32614 ¥4 | *9 - -] *8| *8 - -| *526 | *770 fails | fails
threer.35 | 177124 x 82776 165967 x82038 | *8 | *9 - -1 *12|*s10| - - | *2296 | *2908 fails | fails
threer.40 | 1209783 x 529420 | 1148715 x 526753 | *8 - - -] *12 - - - | *6787 fails fails | fails
fourr.16 6060 x 3266 5235x 3162 ] #3 [ *3| *3 | *3 | *3[|*4 | %4 *6 *23 | *1641 | *513
fourr.16 6060 x 3266 5235x 3162 21623 | *3 377 | *3 31%4 3 *6 | 9194 | *1641 | 1459
fourr.20 26905 x 12762 26904 x 12762 2] 4| - -] *4| *4 - - *31 *68 fails | fails
fourr30 | 1396435 x 542608 | 1385809x 542132 | *2 | *5 - -1 *4| *5 - - | *1230 | *1279 fails | fails
fourr40 | 6.783e9x 2.388¢9 | 6.783e9x 2.388¢9 | 11 -1 - - t- - - - 723 fails fails | fails
Table 11: Leaming I/O sequences benchmark.
table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA
reduction a reduction al|pB al B8 al| B8 al B a B o B
ifsml | 17663x8925 | 16764x8829 [ *4 | 2 | *10 | 3 [ *14 | 14 | *15 | 14 | *388 | 864 | *17582 | 805
ifsml | 17663 x8925 | 16764 x8829 | *4 | 2 24 3(*14} 14 14 | 14 | *388 | 864 40817 | 805
ifsm2 | 1505x774 1368 x 672 4|13 | 41|44 91 9 91 9| 136 | 230 49 3

Table 12: Examples from synthesis of interactive FSM’s.

experiments from a variety of benchmarks that implicit techniques allow to handle examples exhibiting
a number of compatibles up to 2!3%, an achievement outside the scope of programs based on explicit
enumeration [19]. We have shown, when discussing the experiments, that ISFMS’s with a very large
number of compatibles may be produced as intermediate steps of logic synthesis algorithms, for instance in
the cases of asynchronous synthesis [10], and of learning I/O sequences [17]. A similar situation is expected
to occur also in the synthesis of interacting FSM’s [21]. This shows that the proposed approach has not only
a theoretical interest, but also practical relevance for current logic synthesis applications. The final step of
an implicit exact state minimization procedure, i.e., solving implicitly a binate covering problem [19], has
been described in [8].

The techniques described here can be easily applied to similar problems in sequential synthesis. For
instance the implicit computation of maximal compatibles given here can be converted in a straighforward
manner into an implicit computation of prime dichotomies [23]. Therefore this algorithmic frame has wide
applicability in logic synthesis and combinatorial optimzation.
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