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Abstract

Computation of setsof compatibles of incompletely specified finite statemachines (ISFSM's)is akey
stepin sequential synthesis. This paper presents implicitcomputations toobtainsetsofmaximalcompat
ibles, compatibles, primecompatibles, impliedsetsandclass sets. The computations are implemented
by means of BDD's thatrealize the characteristic functions of thesesets. We have demonstrated with
experiments from a variety of benchmarks thatimplicit techniques allow to handle examples exhibiting
a number of compatibles up to 21S00, anachievement outside the scope of programs based on explicit
enumeration [19]. We have shown in practice that ISFMS's with a very large number of compatibles
may be produced as intermediate stepsof logic synthesis algorithms, for instance in the case of asyn
chronous synthesis [10]. This shows that the proposed approach has not only a theoretical interest,but
also practical relevance for current logicsynthesis applications, as shown by its application to ISFSM
state minimization [8].

1 Introduction

Finite state machines are a common formalism to describe sequential systems. Incompletely specified
FSM's (ISFSM's) are one of the most useful subclassesof FSM's, because they capture naturally a family
of input-outputbehaviors, any of which is a valid implementation of the original specification. The choice
of which input-output behavior to implement may be dictated by different criteria. A common one is
the minimization of the number of states of the deterministic automaton corresponding to the chosen
behavior. Another criterion may be the implementability of the chosen deterministic FSM within a network
of FSM's [27].

It has been shown [15, 7] that all contained behaviors can be explored by means of collections of
compatibles, called closed sets. To explore closed sets, one must compute maximal compatibles, prime
compatibles, class sets of compatibles and other related sets and subsets of sets of states. The number of
compatiblescan be exponential in the number of states of the original ISFSM. This may be a problem for
computations based on the explicit enumeration of compatibles and their subsets. As an alternative we
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propose analgorithmic frame based ontherepresentation and computationof thecharacteristic functions of
these setsbymeansof binary decision diagrams (BDDs). We show howcompatibles, maximal compatibles,
primecompatibles and class sets can be computed with BDD-based techniques and demonstrate that it is
possible to handle examples exhibiting a number of compatibles upto 21500, an achievement outside the
scope of algorithms based on explicit enumeration [19]. We indicate also where such examples arise in
practice. We refer to [8] for an implicit solution to the binate covering problem arising from ISFSM state
minimization.

The implicittechniques described here can be applied also to other problems of logic synthesis and
combinatorialoptimization. Forinstance it isstraightforward toconvert theimplicitcomputationofmaximal
compatibles given here into an implicit computationof prime dichotomies[23].

The remainder is organized as follows. Section2 gives an introduction to algorithms for exact state
minimization of ISFSM's, while representations and computations based on binary decision diagrams are
described in Section 3. An implicitversion of the exact algorithm is presented in Section 4. Section 5
describes the method to generate the implicit binate table. Alternative implicit algorithms for prime
compatible generation are explored in Section 6. Implementative issues are discussed in Section 7. A
different approach from [6] is surveyed in Section 8. Results on a variety of benchmarks are reported and
discussed in Section 9.

2 Background on ISFSM State Minimization

In this section,we revisethe basicdefinitions andprocedures for compatible setsof statesof ISFSM's, with
special focus on stateminimization as a keyapplication. Thetheory of ISFSM stateminimization hasbeen
developed in classical papers and textbooks to which we refer [18,4,9].

Definition 2.1 An incompletely specified FSM(ISFSM) can bedefinedasa6-tupleM = (5,7,0, A, A,R).
S represents thefinitestatespace, I represents thefinite inputspaceandO represents thefinite outputspace.
Ais the next state relation defined by a characteristicfunction A:IxSxS->B where each combination
of input andpresent state is related toa single next state ortoall states. A is the output relation defined by
a characteristicfunction A:IxSxO->B where each combination of input andpresent state is related
to a single output or to all outputs. R C S represents theset ofresetstates.

In the standard literature, no reset state is specified for an ISFSM, and it is assumed that all states can
potentially be picked as a reset state for implementation. The same is assumed in this chapter, and this
is reflected in covering conditions defined later. In addition, an unspecified next state is traditionally not
represented in the next state relation A. i.e., if thenext state is not specified for present state s and input
i, there is no state s' such that A(i, s, s') = 1. This assumption is made in subsequent definitions and
computations in this chapter.

Definition22 A set of states is an output compatible iffor every input, there is a corresponding output
which can be produced by each state in the set.

Two states are an output incompatible pair if they are not output compatible.

Lemma 2.1 Two states are anoutput incompatible pair ifand only if,onsome input, they cannotproduce
the same output.

Definition 23 A set of states is a compatible iffor each input sequence, there is a corresponding output
sequence which can beproduced by eachstatein the compatible.



The set ofcompatibles can theoretically be computed as follows:

1. Assume that every output compatible is a candidate (to be a compatible).

2. A candidate is not a compatible if, on someinput, its statescannotproduce a common outputand
transit to a candidate compatible set.

3. Repeat2, until no candidate can be deleted from the set of candidate compatibles.

Practically, the number of candidates is too large to be handled by such an explicit algorithm. Two states
are a incompatible pair if they are not compatible.

Lemma 22 Two states are an incompatible pair ifand only if

1. they are output incompatible, or

2. on some input, their nextstates are an incompatible pair.

The set of incompatible state pairs can be computed as follows:

1. Computethe output incompatiblepairs, whichare incompatible pairs.

2. A pair of states is an incompatible pair if, on some input, its pair of next states is a previously
determined incompatible pair.

3. Repeat 2, until no new pairs can be added to the set of incompatiblepairs.

Theorem 2.1 Given an ISFSM, a set of states is a compatible if and only if every pair of states in it are
compatible.

Proof: By Definition 2.3, if a set of states is a compatible, then each pair of states contained in it is a
compatible.

Supposethateachpairof statesin a setC of statesis acompatible. Weshallprovethat C is a compatible
by inductionon the length k of an arbitrary input sequence. On an arbitrary input i (inductionbasis), each
state in C can produceeitherone outputor all outputs, because the machineis an ISFSM. No two states in
C produce twodifferent specified outputs because they arepairwise compatible. As a result, all states in C
can produce a common outputon input i. Assume that for an arbitrary inputsequence <rt of length kt every
states in C can againproduce a common output sequence and reach a set of states C". As statesin C are
pairwise compatible, so mustbe C". By applying onemore arbitrary inputi, each statein C canproduce
either one output or alloutputs. Notwostates in C" produce different specified outputs, so all states in C
can producea commonoutput on input i. This shows that the states in C, on any input sequenceof length
k + 1, can also produce a common output sequence. Thus C is a compatible. •

Corollary 2.1 GivenanISFSM, a set ofstateswhich does notcontain an incompatible pair is a compatible.

Proof: If a set of states does not contain an incompatible pair, each pair of states in it are compatible. By
Theorem 2.1, the set of states is a compatible. •

Definition 2.4 A set of states rf, (or IS(c,i)) is an implied set of a compatible cfor input i if d{ =
{s'|A(i, 5, S*) = 1, Vs € c}, i.e., it is theset of next statesfrom state set c on input i.

Definition 23 A set C of compatibles is a cover of an ISFSM if eachstate in the ISFSM is containedin a
compatible in C.



Definition 2.6 A set C ofcompatibles is closed in an ISFSM iffor each c e C, all its implied sets ct are
contained in some elementofC for each inputs i.

Theorem 22 [15] The state minimization problem of an ISFSM reduces tofinding a closed set C of
compatibles, of minimum cardinality, which covers every state of the original machine, i.e., a minimum
closed cover.

Definition 2.7 Acompatiblesetofstates isamaximalcompatible ifitisnotasubsetofanother compatible.

A set of states is a maximal incompatible if it is not a maximal compatible.
Weshow by an example an elegant procedureto find all maximal compatiblesfoundin [13].

1. Write down the pairs of incompatibles as a product of sums.

2. Multiplythemouttoobtainasumofproducts, andminimize it withrespectto single-cubecontainment.

3. For each resultant product, write down missing states to get maximal compatibles.

This is equivalent to compute all prime implicants of a unate function expressed as a produa of sums (of
pairs of states). For instance:

1. Product of pairs of incompatibles:
(S4 + S5)(S4 + S6)(«4 + S9){S5 + S7)(s6 + S7)(«6 + Ss){s% + S9)

2. Unate function in sum of products: S4S5S6S8 + S4S6S7S9 + S4«7«8 + S5S6S9

3. Maximal compatibles: s\S2S3S7S91 s\S2S3S5s%, s\S2S3SSS6S9, s\S2S3S^ss

The setof all maximalcompatibles of a completely specified FSMis theuniqueminimum closedcover. For
an incompletely specified FSM, a closed cover consisting onlyof maximal compatibles maycontain more
sets than a minimum closed cover, in which some or all of the compatibles are proper subsets of maximal
compatibles.

Definition 2.8 An implied set d ofa compatible c is in itsclass set CS(c) if

1. d has more than one element, and

2. d%c, and

3. d%d' ifd' € CS(c).

Definition 2.9 A compatible c' prime dominates a compatible c if

1. d D c, and

2. C{c') C C{c).

i.e., c' dominates c if c' covers all statescovered by c and the closure conditions of c' are a subsetof the
closure conditions of c.

Definition 2.10 A compatible set of states is a prime compatible if it is not dominated by any other
compatible.



Definition 2.11 Aprime compatible is an essential prime compatible if it contains a state notcontained
in any otherprime compatibles.

The following procedure(which will be used in Section6.3.2)generatesall prime compatiblesfrom the set
of maximal compatibles [4].

1. Initially the set ofprime compatibles is empty.

2. Order the maximal compatibles by decreasing size, say n is the size of the largest.

3. Add to the set of prime compatibles the maximal compatibles of size n.

4. For k = n - 1 down to 1 do:

(a) Compatiblesof size k (and their implied sets) are generated starting from the maximal compat
ibles of size n to k + 1 (only those having non-void class set).

(b) Add to the set of prime compatibles the compatibles of size k not dominated by any prime
compatible already in the set.

(c) Add to the set of prime compatiblesall maximalcompatiblesof size k.

The following facts are true about the above algorithm:

• A compatible already added to the set of primescannotbe excluded by a newly generatedcompatible.

• The same compatible can be generated more than once by different maximal compatibles. The
question arises of rinding the most efficientalgorithm to generate the compatibles.

• Only the compatiblesgeneratedfrommaximalcompatibles withnon-voidclass setneed be considered,
because a maximal compatible with a void class set dominates any compatible that it generates.

• A single state s can be a prime compatible if every compatible set C with more than one state and
containing s implies a set with more than one state.

In [12] it is shown that, after generation of prime compatibles, an iterative procedure can expose new non-
prime compatibles by updating closure constraints whereeliminated non-prime compatibles are replaced by
primecompatibles. Othercomplex rulestoeliminatemoreprimecompatiblesare also given. An observation
is also made that no minimal cover 5 can contain a compatiblecontained in another compatible of 5.
The following theorem is proved in [4], and its generalization to PNDFSM has been given in [7].

Theorem 23 For any ISFSM M, there is a reduced ISFSM Mred whose states all correspond to prime
compatibles ofM.

A minimum closed cover can then be found by setting up a table covering problem [4] whose columns are
the prime compatibles and whose rows correspond to the covering and closure conditions.
The following facts are useful in the state minimization of ISFSM's:

• The cardinality of a maximal incompatible is a lower bound on the number of states of the minimized
ISFSM.

• If there is a maximal compatible that contains all states of a given ISFSM, the ISFSM reduces to a
single state.



• The cardinality of the set of maximalcompatibles is an upper bound on the number of states of the
minimized FSM.

• If a maximal compatible has a void class set, it must be a prime compatible. As a result, no compatible
contained in it can be a prime compatible (result used in Section 6.3.1).

• The minimum number of maximal compatiblescovering all states is a lower bound on the number of
states of the minimized ISFSM.

• The minimumnumberof maximalcompatiblescoveringallstatesand satisfyingthe closureconditions
is an upper bound on the number of states of the minimized ISFSM.

3 Implicit Techniques

3.1 Binary Decision Diagrams

Basics on binary decision diagrams are found in [2,1].

Definition 3.1 A binary decision diagram (BDD) is a rooted, directed acyclic graph. Each nonterminal
vertex v is labeled by a Boolean variable var(v). Vertex vhas two outgoing arcs, childo(v) andchild\(v).
Each terminal vertex u is labeled 0 or 1.

Each vertex in a BDD represents a binary input binary output function and all accessible vertices are
roots. The terminal vertices represent the constants (functions) 0 and 1. For each nonterminal vertex v
representing a function F, its child vertex childo(v) represents the function F„ and its other child vertex
child\ (v) represents the function Fv. i.e., F = v • F„ + v • Fv.

For a given assignment to the variables, the value yielded by the function is determined by tracing a
decision path from the root to a terminal vertex, following the branches indicated by the values assigned to
the variables. The function value is then given by the terminal vertex label.

Definition 3.2 A BDD is ordered if there is a total order -< over the set of variables such thatfor every
nonterminal vertex v, var(v) •< var(childo(v)) ifchildo(v) is nonterminal, and var(v) •< var(child\(v))
ifchild\ (v) is nonterminal.

Definition 33 A BDD is reduced if

1. it contains no vertex v suchthatchildo(v) = child\ (v), and

2. it does not contain two distinct vertices v and v such that the subgraphs rooted at v and v are
isomorphic.

Definition 3.4 A reduced ordered binary decision diagram (ROBDD) is a BDD which is both reduced
and ordered.

Definition 3.5 The ITE operator returnsfunction G\ iffunction F evaluates true, else it returnsfunction
G2:

ITE{F,GuGo) ={* 5^i
where range(F)={0,l}.



3.2 Zero-suppressed BDD's

Definition 3.6 A zero-suppressed BDD (ZBDD) is defined identically as a BDD.

The functional interpretation of ZBDD's is the same as that for BDD's.

Definition 3.7 A ZBDD is ordered ifit is orderedwhen viewed as a BDD.

Definition 3.8 A ZBDD is reduced if

1. it contains no vertex v such that child\(v) is a terminal vertex labeled 0, and

2. it does not contain two distinct vertices v and v such that the subgraphs rooted at v and v are
isomorphic.

Definition 3.9 A reduced ordered zero-suppressed binary decision diagram (ROZBDD) is a ZBDD
which is both reduced and ordered.

The difference between ROBDD and ROZBDD is in one reduction rule. A ROBDD eliminates all

vertices whose two outgoing arcs point to the same vertex. A ROZBDD eliminates all vertices whose
1-edgepoints to a terminal vertex0. Once a redundantvertexis removedfrom a ZBDD, the incomingedges
of the vertex is directly connected to the vertex to which the corresponding terminal vertex 0 points.

33 Implicit Set Manipulation

In [7] it is presented a full-fledged theory on how to represent and manipulate sets using a BDD-based
representation. It extends the notation used in [11] An outline is available also in [8]. This theory is
especially useful for applications where sets of sets need to be constructed and manipulated.

Given a ground set G of cardinality less or equal to 2n, any subset 5 can be represented in a Boolean
spaceBn by a unique Boolean function xs : Bn -¥ B, which is called its characteristic function [3],such
that:

Xs(x) = 1 if andonly if x in S.

Inother words, a subset is represented inpositional-setorpositional-cube notation form l, using nBoolean
variables, x = xiX2...xn. The presence of an element sk in the set is denoted by the fact that variable
xk takes the value 1 in the positional-set,whereas xk takes the value 0 if element Sk is not a member of the
set. One Boolean variable is needed for each element because the element can either be present or absent
in the set. As an example, for n = 6, the set with a single element s* is represented by 000100 and the
set S2S3S5 is represented by 011010. The elements s\, S4, se which are not present correspond to 0's in the
positional-set.

A set of subsets of G can be represented by a Boolean function, whose minterms correspond to the
single subsets. In other words, a set of sets is represented as a set 5 of positional-sets, by a characteristic
function xs : Bn -* B as:

Xs{x) = 1 if and only if the set represented by the positional-set x is in the set S of sets.

Any relation U betweena pair of Booleanvariables can alsobe represented by a characteristicfunction
Tl: B2 -» B as:

fc(x, y) = 1 if and only if x is in relation H to y.

TZ can be a one-to-many relation over the two sets in B. These definitions can be extended to any relation
1Z between n Boolean variables, and can be represented by a characteristic function 1Z : Bn -¥ B as:

TZ(x\, X2,..., xn) = 1 if and only if the n-tuple (x\, x2,..., xn) is in relation H.

Called also 1-hot encoding.



3.3.1 Operations on Positional-sets

We propose a unified notational framework for set manipulation which extends the notation used in [11].
In this section, eachoperators Opactson two setsof variables x = x\X2... xn and y = yim ••. yn and
returns a relation (x Opy) (as a characteristic function) of pairs of positional-sets. Alternatively, theycan
also beviewed asconstraints imposed onthepossible pairs outoftwosetsofobjects, x andy. Forexample,
given two sets ofsets X and Y, the setpairs (x,y)where x contains y are given bytheproduct ofX and Y
andthe containmentconstraint, X(x) •Y (y) • (a; D y).

Lemma 3.1 The equalityrelation evaluates totrue ifthe two sets ofobjects represented by positional-sets
x and y are identical, and can be computed as:

n

(x = y) = Y[xk<*yk
/fc=l

where a* <=> y* = s* •y* +-,^/k•->yk designates the Boolean XNOR operation and -> designates the Boolean
not operation.

Proof: n?=i xk <=• Vk requires thatforevery element k, either both positional-sets x and y contain it, or it
is absent from both. Therefore, x and y contain exactly the same set of elements and thus are equal. •

Lemma 3.2 The containment relation evaluates to true if theset ofobjectsrepresented by x contains the
set ofobjects represented by y, and can be computed as:

n

{x2y) = Y[yk=>xk

where Xk^ yk = •"•&* + ykdesignates theBoolean implication operation.

Proof: n*=i yk => Xk requires for all objects that, if an object k is present in y (i.e., yk = 1), it must also
be present in x (xk = 1). Therefore set x containsall the objectsin y. •

Lemma 33 The equal-union relation evaluates to true if the set of objects represented by x is theunion
ofthe twosets ofobjects represented by y and z, andcan be computed as:

n

(x = yUz) = J] xk <# {yk + Zk).
k=\

Proof: For each position k, xk is set to the value of the OR between Xk and yk. Effectively, Uk-\ xk <=>
(yk + zk) performs a bitwise OR on y and z to form a single positional-set z, which represents theunion of
the two individual sets. •

Lemma 3.4 The contain-union relation evaluates totrue if the setofobjects represented by x contains the
unionofthe twosets ofobjects represented by y and z, and can be computed as:

n

(x 2 yUz) = JJ (yk + zk) =^ arjfc.
*=l

Proof: Note the similarity in the computations of (ar D y U z) and (x = y U z). (x D y U z) performs
bitwiseOR on singletons y and z. If eitherof their fc-bits is 1, the corresponding xkbit is constrained to 1.
Otherwise, Xk can take any values(i.e., don't care). The outerproductn?=i requires that the aboveis true
for each k. •
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332 Operations on Sets of Positional-sets

The first three lemmas in this section introduces operators that return a set of positional-sets as the result of
some implicit set operations on one or two sets of positional-sets.

Lemma 3.5 Giventhecharacteristicfunctionsxa andxb representing thesets A and B, set operations on
them suchas theunion, intersection, sharp, andcomplementation canbeperformedas logical operations
on their characteristicfunctions, as follows:

XAoB = XA + XB

XAnB = XA'XB

XA-B = XA'^XB

Xj = iXA

Lemma 3.6 The maximal ofa set x ofsubsets is theset containing subsets in x notstrictly contained by
any othersubset in x, and can be computed as:

Maximalx(x) = x(*)* fly [(y 3 x) •xfe)]-

Proof: The term By [(y D x) •x(y)] is trueif and only if there is a positional-set y in x suchthat x C y.
In such a case, x cannot be in the maximal set by definition, and can be subtracted out. What remains is
exactly themaximal setof subsets in x(x)- *

Lemma3.7 Given a set of positional-sets x(x) and an array of Boolean variables x, the maximal of
positional-sets in x with respect to x can be computed by the recursive BDD operator Maximal(x, 0,x):

Maximal(x,k,x) {
i/(x = 0) return 0

1/(X = 1) return U^k^i
Mq = Maximal(xxz, k + 1)
M\ = Maximal(xXk, k+l)
return ITE(xk, M\, Mo •-«Mi)

}

Proof: The operator starts atthe top of the BDD and recurses down until a terminal node is reached. At
each recursive call, the operator returns the maximal setof positional-sets within x made up of elements
from A; to n. If terminal 0 is reached, there is nopositional-set within x so0 (i.e., nothing) is retumed. If
terminal 1 is reached, x contains all possible positional-sets with elements from k to n, and themaximum
one is11?=* xi- Al any intermediate BDD node, we find the maximal positional-sets Mo on the else branch
of x» the maximal positional-sets M\ on the then branch ofx- The resultant maximal set ofsets contains
(1) positional-sets in M\ each with element Xk added to it as they cannot be contained by any set in M\
which has Xk = 0, and (2) positional-sets that are inMo but not in M\ because ifa setispresent inboth, it
isalready accounted for in (1)- Thus the ITEoperation returns the required maximal set after each call. •
lb guarantee that each node ofthe BDD x isprocessed exactly once, intermediate results should becached
by a computed-table.

The next operators check set equality and containment between two sets ofsets, whereas Lemmas 3.1
and 3.2check it on a pairof sets only. They return tautology if thetestis passed.



Lemma 3.8 Given the characteristic functions xa(x) and xb(x) representing two sets A and B (of
positional-sets), the set equality test istrue ifand only ifsets Aand B are identical, and can be computed
by:

Equalx(xA,XB) = Vx \xa(x) <* Xb(x)]-

Alternatively, Equal can befound by checking iftheir corresponding ROBDD's are the same by bddjsqual(xa,XB)•

Proof: xa(x) and xb(x) represent the same setif and only if for every x% either x G A and x e B, or
x i A and x g B. Since thecharacteristic function representing a setin positional-set notation is unique,
twocharacteristic functions will represent the sameset if andonlyif theirROBDD's are the same. •

Lemma 3.9 Given the characteristic functions xa(x) and xb(x) representing two sets A and B (of
positional-sets), the set containment test is true ifand only ifset A contains set B, and can be computed
by:

Containx(xA,XB) = Vz [xb(x) => Xa(x)]-

Besideoperatingon sets of sets, the above operators can alsobe usedon relations of sets. The effect is
bestillustrated byanexample. Suppose AandB arebinary relations onsets. Containx (xa (xiy)>Xb (xi z))
will return another relation on pairs (y, z) of sets. Positional-sets y and z are in the resultant relation if
and only if the set of positional-sets x associated with y in relation A contains the set of positional-sets x
associated with z in relation B.

The following operator takes a set of sets and a set of variables as parameters, and returns a singleton
positional-set on those variables.

Lemma 3.10 Given a characteristicfunction xa (x) representing a set A ofpositional-sets, the set union
relation tests ifpositional-set y represents theunion ofall sets in A, and can be computed by:

n

Unionx-+y(xA) = ]\yk<* 3x [Xa(x) •xk]-

Proof: For each position k, the right hand expression sets yk to 1 if and only if there exists an z in xa
such that its A:-th bit is a 1 (3x [xa(x) •xk])- This implies that the positional-set y will contain the k-th
element if and only if there exists a positional-set x in A such that A; is a member of x. Effectively, the right
hand expression performs a multiple bitwise OR on all positional-sets of xa to form a single positional-set
y which represents the union of all such positional-sets. •

333 fc-out-of-n Positional-sets

Let the number of objects be n. In subsequent computations, we will use extensively a suite of sets of sets
of objects,Tuplen,k(x), whichcontainsall positional-sets x withexactly kelements in them(i.e., \x\ = k).
In particular, the set of singletonelementsTuplen,\ (x), theset of pairsTuplen^(x)t the universal set of all
objects Tuplen,n(x), and the setofthe empty setTuplen,o(x)2 are common ones.

An efficient way of constructing and storing such collections of &-tuple sets using BDD will be given
next. Figure 1 represents a reducedordered BDD of Tuples^x).

The root of the BDD represents the set Tuplesj,(x)t while the internal nodes represent the sets
TupUij(x) (i < 5, j < 2). For ease of illustration, the variable ordering is chosen such that the top
variablecorrespondingto Tuple^x) is X{. At that node, if we chooseelement i to be in the positional-set,
Xi takes the value 1 and we follow the right outgoing arc. In doing so, we still have i - 1 elements/variables

2Tup/en,o(x) will bedenoted by 0(x).
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Figure 1: BDDrepresenting Tuples^)-

left to be processed. As we have put already element t in the positional-set, we still have to add exactly
j-1 elements intothepositional-set. Thatiswhy theright child ofTuple^j(x) shouldbeTw/)/et_ij_i(a;).
Similarly, the left child is Tuples j(x) because element i has not been put in the positional-set and we
have j - 1 elements/variables left. Thus, the BDDfor Tuples can be constructed by the algorithm shown
in Figure 2.

The total number of nonterminal vertices in the BDD of Tuplen>k is (n - k + 1) • (k + 1) - 1 =
nk - k2 + n = 0(nk). With the use of the computed table [1], the time complexity of theabove algorithm
is alsoO(nk) as the BDDis built from bottomup andeachvertex is built once and then re-used. Givenany
n, the BDDfor Tuplentk is largestwhen k = n/2.

3.4 FSM Implicit Representation

A state transition graph (STG) is commonly used as the internal representation of FSM's in sequential
synthesis systems, such as sis [24]. A limitation of STG's is the fact that they are a two-level form of
representation where state transitions are stored explicitly, one by one. This may degrade the performance
ofconventional optimization algorithms on large FSM's.

Assume that the given FSM has n states. To perform state minimization, one must represent and manip
ulate efficiently sets of states (such as compatibles) and sets of sets of states (such as sets of compatibles).
Therefore 1-hot encoding is used forthestates oftheFSM3. If inputs (outputs, respectively) of theFSM are
specified symbolically, they can be represented as a multi-valued symbolic variable i (o, respectively) where
each value of i (o, respectively) represents an input (output, respectively) combination. For compacmess of
representation, we used for these variables a logarithmic encoding, i.e. an m-valued variable is represented

3An alternative explained in [7] is torepresent any setof sets of states (i.e., setof state sets) implicitly asasingle 1-hotencoded
MDD, and manipulate the state sets symbolically all at once. Different sets of sets of states can be stored as multiple roots with a
single shared 1-hot encoded MDD.
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Tuple(iJ){
if (j < 0) or (i < j) return 0
if (i = j) and (i = 0) return1
if Tuple(i, j) in computed-table return result
T = Tuple(i-l,j- 1)
E = Tuple(i-lyj)
F = ITE(xi,T,E)
insert F in computed-table for Tuple(i, j)
return F

}

Figure 2: Pseudo-code for the Tuple operator.

with log2m Boolean variables. The fact that differentmulti-valued variablesuse different encodings is not
a problem as long as they are used consistently. However if inputs (outputs, respectively) of the FSM are
already given in encoded form, each encoded bit of inputs (outputs, respectively) is represented by a single
Boolean variable.

4 Implicit Generation of Compatibles

An exaa algorithm for state minimization consists oftwo steps: the generation ofvarious sets ofcompatibles,
and the solution of a binate covering problem. The generation step involves identification of sets of states
called compatibles which can potentially be merged into a single state in the minimized machine. Unlike
the case of CSFSM's, where state equivalence partitionsthe states, compatibles for ISFSM's may overlap.
As a result, the number of compatibles can be exponential in the number of states [22], and the generation
of the whole set of compatibles can be a challenging task.

The covering step is to choose a minimum subset of compatibles satisfying covering and closure
conditions, i.e., to find a minimum closed cover. The covering conditions require that every state is
contained in at least one chosen compatible. The closure conditions guarantee that the states in a chosen
compatible are mapped by any input sequence to states contained in a chosen compatible.

In this section, we describe implicit computations to find sets of compatibles required for exact state
minimizationof ISFSM's. In each of the following subsections, we shall first restate the definitionof some
combinatorial object, give a logic formula to compute it, and then argue the correctness of the formula.

4.1 Output Incompatible Pairs

To generate compatibles, incompatibility relations between pairs of states are derived first from the given
output and transition relations of an ISFSM.

Definition 4.1 Two states are an output incompatible pair if,for some input, they cannot generate the
same output.

Lemma 4.1 Theset ofoutput incompatible pairs, 01CV(y, z), can be computed as:

OXCV(y,z) = Tuplex(y)-Tuplei(z)'3i flo[A(i,y,o) -A(i,z,o)]

12
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Proof: Although y and z can represent any positional-sets, the conditions Tuple\(y) •Tuple\(z) restrict
them to represent only pairs ofsingleton states. The last term istrue ifand only iffor some input i,there is
no output pattern that both state yand zcan produce (i.e., output incompatible). •

In the above and subsequent formulas, we will mix notations between relations and their corresponding
characteristic functions. Strictly speaking if we would have used the characteristic function notation, the
above formula would have been more clumsy:

OXCV(y, z) = \ if and only if (Tuplex (y) = 1) •(Tuplex (z) = 1)
•3i^o[(A(ilylo) = l).(A(t121o) = l)]

4.2 Incompatible Pairs

Definition 42 Two states are an incompatible pair if

1. theyare output incompatible, or

2. on some input, their next states are an incompatiblepair.

Lemma 42 Theset ofincompatible pairs is the leastfixedpoint ofXCV:

1CV(y, z) = QlCV(y, z) + 3t, u, v [A(i, y, u) •A(t, 2, v) •lCV(u, v)]

and can be computedby thefollowing iteration:

lCVo(y,z) = OXCV(y,z)

XCVk+i(y,z) = lCVk(y,z)+3i,u,v[b(i,y,u)>A(i,z,v)'lCVk(u,v)] (2)

The iteration can terminate when XCVk+i = TCVk and the set of incompatible pairs is lCV(y,z) =
ICVk{y,z).

Proof: The fixed point computation starts with the set of output incompatible pairs. After the (k + l)-th

T(i,y,u)

Figure 3: Finding incompatible pairs.

iterationof Equation 2, ZCVk+\ (y, z) contains all the incompatiblestate pairs (y, z) that lead to an output
incompatible pair in k + 1 or less transitions. This set is obtained by adding state pairs (y, z) to the set
XCVk (y, 2), if an input takes states (y, 2) into an alreadyknownincompatiblepair («, v). •
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4.3 Incompatibles

So far we established incompatibility relationships between pairs of states. The following definition
introduces sets of states of arbitrary cardinalities.

Definition 43 A set ofstates is an incompatible if it contains at leastone incompatiblepair.

Lemma 43 Theset ofincompatibles can be computed as:

XC(c) = 3y, 2 [XCV(y, z)-(cDyU z)] (3)

Proof: ByLemma 3.4, (c D y Uz) = n*=i Vk + zk =*• c* performs bitwise OR on singletons y and z. If
eitherof their fc-th bits is 1, thecorresponding Ck bit is constrained to 1. Otherwise, ck can takeanyvalues.
The outer product n?=i requires that the above is true for each k. Thus, it generates allpositional-sets c
which contain theunion of thepositional-sets y and z. Thewhole computation defines all state setsc each
of which contains at least an incompatible pairof singleton states (y, z) e XCV. •

4.4 Compatibles

Definition 4.4 A set ofstates is a compatible if it is notan incompatible.

Lemma 4.4 The set ofcompatibles, C(c), can be computed as:

C(c) = -^Tuple0(c) --iXC(c)

Proof: C(c) simply contains all non-empty subsets c of states which are not incompatibles XC(c). The
empty set in positional-set notation is Tupleo(c) and all subsets which are not incompatible are given by
-aC(c). •

4.5 Implied Classes of a Compatible

To set upthe covering problem, we also need tocompute the closure conditions for each compatible. This
is done byfinding theclass setof a compatible, i.e., the setofnext states implied bya compatible.

Definition 4.5 Asetofstates d, isan impliedset ofa compatible cfor input i ifdi is the setof next states
from the states in c on input i.

Lemma 4.5 The implied set (in singletonform) ofa compatible cforinput i can be defined by the relation
,F(c, i, n) which evaluates to 1 ifand only ifon input i, n isa next statefrom state pin compatible c:

T(c, i, n) = 3p[C(c) • (c Dp) •A(t\p, n)} (4)

Proof: T(c, i, n) associates a compatible c e Cand an input i with a singleton next state n. Given c and i,
n is inrelation T(c, i, n)(i.e., state n is inthe implied setofcompatible cunder input i) if and only if there
isa present state pec such that n is the next state ofponinput i. •

Note that the implied next states are represented here as singleton states in T(c, i, n). All singletons
n in relation with a compatible c and an input i can be combined into a single positional-set, for later
convenience. This positional-set representation of implied sets associates each compatible c with a set of
implied sets d.

14



Lemma 4.6 The implied sets d (in positional-setform) ofa compatible cforallinputs are computed bythe
relation CX(c, d) as:

CX(c, d) = 3i [3n(T(c, z, n)) •Unionn^d(T(c, i, n))]

Proof: Considering the rightmost term, T(c, i, n) relates implied next states as singleton positional-sets n
tocompatible cand input %and Unionn^d (?(c, i, n))forms theunion of these singleton setsbybitwise OR
and produces a positional-set d. The term 3n(F(c, i, n)) is needed, to exclude invalid (compatible, input)
combinations. Finallythe inputs i are existentially quantified from the impliedsets of c for differentinputs.

4.6 Class Set of a Compatible

Definition 4.6 An implied set d ofa compatible c is in its class set if

1. d has more than one element, and

2. d%c, and

3. dgd' ifd! e class set ofc.

We can ignore any implied set which contains only a single state, because its closure condition is satisfied
if the state is covered by some chosen compatible. Also if d C c, the closure condition is satisfied by the
choice of c. Finally, if the closure condition corresponding to d' is stronger than that of d, the implied set d
is not necessary.

Lemma 4.7 Theclass set ofa compatiblec is defined by the relation CCS(c}d) which evaluatesto 1 if and
only if the implied set d is in the class set ofcompatible c:

CCS(c, d) = ->Tuplex(d) • (c 2 d) •Maximald(CX(c,d))

Proof: The singleton implied sets Tuplex(d) are excluded according to condition 1 in Definition4.6. By
condition 2, we prune away implied sets d which are contained in their compatibles c. Finally given a
compatiblec, Maximald(CX(c, d)) gives all its impliedsets d which are not strictly contained by any other
implied sets in Cl(c, d). •

4.7 Prime Compatibles

To solve exactly the covering problem, it is sufficient to consider a subset of compatibles called prime
compatibles. As proved in [4], at least one minimumclosed cover consists entirely of prime compatibles.

Definition 4.7 . A compatible d dominates a compatible c if

1. d D c,and

2. class set ofc' C class set ofc.

i.e., d dominates c if d covers all states covered by c, and the closure conditions of d are a subset of the
closure conditions of c Asa result, compatible d expresses strictly lessstringent conditions thancompatible
c. Therefore d is always a better choice for a closed cover than c, thus c can be excluded from further
consideration.
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Lemma 4.8 The prime dominance relation is given by:

Dominate(d,c) = (d Dc) -Containd(CCS(c,d),CCS(c\d))

Proof: Thetwoterms on the rightexpress thetwodominance conditions by which d dominates c according
to Definition 4.7. Since compatibles c and d are represented as positional-sets, (d D c) is computed
according to a variant of Lemma 3.2. On the other hand, class sets are sets of sets of states and are
represented by their characteristic functions. Containment between such sets of sets of states is computed
by W [CCS(d, d) =» CCS(c, d)]t as described byLemma 3.9. •

Definition 4.8 A prime compatible is a compatible notdominated byanother compatible.

Lemma 4.9 Theset ofprime compatibles is givenby:

VC(c) = C(c)- pd [C(d) •Dominate^', c)]

Proof: Compatibles c thataredominated bysome compatible d are computed bytheexpression 3d [C(d) •
Dominate(d',c)]. By Definition 4.8, the set of primecompatibles is simplygivenby the set of compatibles
C(c) excluding those that are dominated. •

4.8 Essential and Non-essential Prime Compatibles

Definition 4.9 Aprimecompatible is an essential prime compatible if it contains a state notcontained in
any otherprime compatibles.

Because any solution must correspond to a closed cover, each state must be contained in a selected
compatible, and thus every essential prime compatible must be selected.

Lemma 4.10 Theset ofessential prime compatibles can be computed as:

€VC(c) =VC(c) •£{c*. fld [c'k .VC(d) •(c ±c')]}
k=\

Proof: For a set c of states to be an essential prime compatible SVC(c), it must be a prime compatible
VC(c). In addition, there mustbe a state Sk such thatSk € c and there is no d € VC different from c such
that sk € d. The positive literal ck denotesthe fact Sk € c, andsimilarly for dk. •

Definition 4.10 A prime compatible is a non-essential prime compatible if it is not an essential prime
compatible.

Lemma 4.11 The set ofnon-essentialprimecompatibles can be computed as:

M£VC(c) = VC(c) • ->EVC(c)

Proof: By Definition 4.10. •
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5 Implicit Generation of the Binate Covering Table

Once the set of (non-essential) prime compatibles isgenerated, the problem of exact state minimization can
besolved as abinate table covering problem. In this section, weshall describe how such abinate table can
be generated. To keep with our stated objective, the binate table isalso represented implicitly. We describe
an implicit representation ofthe covering table, that adroitly exploits how row and columns were implicitly
computed. A description of how thebinate table is then solved implicitly can be found in [8].

We do not represent (even implicitly) the elements of the table, butwe make useonlyof a setof row
labels and asetofcolumnlabels, each represented implicitly as aBDD. They are chosen sothattheexistence
and value of anytable entrycanbe readily inferred by examining its corresponding rowand columnlabels.
This choice allows us to define all table manipulations needed by the reduction algorithms in tenns of
operations on row and columnlabels and to exploitallthe special features of the binatecovering problem
induced by state minimization (for instance, each row has at most one 0, etc).

Definition 5.1 A column is labeledbya positional-setp. The set ofcolumn labels C is obtained byprime
generation asC(p) = VC(p).

Besides distinguishing one row from another, each row label must also contain information regarding
the positions of 0 and 1's in the row. Each row label r consists of a pairof positional-sets (c, d). Since
there is at most one 0 in the row, the label of the column p intersecting it in a 0 is recorded in the row
label by setting its c partto p. If there is no 0 in the row, c is set to the empty set, Tupleo(c). Because of
Definition 5.3 for row labels, the columns intersecting a row labeled r = (c, d) in a 1 are labeled by the
prime compatibles p that contain d.

Definition52 The table entry at theintersection ofa row labeled byr— (c, d) € R anda column labeled
byp€C can be inferredby:

defthetableentry is a 0 iffrelation 0(r, p) = (p = c) is true,
defthe table entry is a 1 iffrelation l(r, p) = (pD d) is true.

Definition S3 Theset of row labels R is given by:

R(r) = VC(c) •CCS(c, d) + Tuple0(c) •Tuplex (d)

The closure conditions associated with a prime compatible p are that if p is included in a solution, each
implied set d in its class set must be contained in at least one chosen prime compatible. A binate clause of
the form (p+px + pi H hpk) has to be satisfied for each implied set of p, where p, is a prime compatible
containing the implied set d. The labels for binate rows are given succinctly by VC(c) •CCS(c, d). There
is a row label foreach (c, d) pairsuch that c € VC is a prime compatible and d is one of its implied sets in
CC«S(c, d). This row label consistently represents the binate clause because the 0 entry in the row is given
by the column labeled by the prime compatible p = c, and the row has Ts in the columns labeled by p,
wherever (p,- D d).

The covering conditions require that each state be contained by some prime compatible in the solution.
For each state d e S, a unate clause has to be satisfied which is of the form (px + pi H \-pj) where
the pfs are the prime compatibles that contain the state d. By specifying the unate row labels to be
Tupleo(c) •Tuplex (d), we definea rowlabel foreach state in Tuplex (d). Since the rowhasno 0, its c part
must be set to Tupleo(c). The 1 entries arecorrectly positioned at the intersection with all columns labeled
by prime compatibles p, which contain the singleton state d 4. Since no minimal cover S can contain a

4Every closed cover of an ISFSM whose states are all reachable must cover all the states. Wecan say that thecovering clauses
express a property of the solution that speeds up the search. Alternativelyone could impose that only the reset state is covered and
let the searchprocedure find that a solution covers all states.
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compatible containedin another compatibleof S [12],one could introducea new collectionofclauses, one
for each pair of compatibles px and pi such that px D pi, each stating that at most oneof the two can be
chosen (^T +^).

6 Improvements to the Implicit Algorithm

The experiments reported in Section 9 identify two bottlenecks in the implicit computations described in
Section 4:

1. the fixed point computation of incompatible pairs;

2. the handling of closure information, i.e., implied sets and class sets.

Sections 6.1 and 6.2 describe alternative methods to perform those computations. Section 6.3 shows how
maximal compatiblescan be used with advantagein the computationof prime compatibles.

6.1 Incompatible Pairs Generation using Generalized Cofactor

This subsection describes a variation on the fixed point computation of incompatible pairs XCV(y, z),
presented inSection 4.2. Eachiteration of thecomputationofEquation 2 canbe viewed asaninverse image
projection from a set of state pairs in XCVk(u, v) to a setof states pairs in XCVk+i (y,z) via the product
transition relation A(i, y,u) •A(i, z, u). Intheoriginal method, allstate pairs inXCVk+\ (u, v)are projected
during the (k + 2)-th iteration. Some are not necessary because if the projected pair (y\ z') of XCVk+\
is actually in XCVk as shown in Figure 4 5, its projection (y", z") must have already been calculated in
a previous iteration. Thus at the (k + 2)-th iteration, we need to project only the new incompatible state
pairs discovered at the (k + l)-th iteration. This is done in the following modification of the fixed point
computation of Section 4.2:

T(i,y,u)xT(i,z,v) $$,
NEW

ICPk ICP k+1

Figure 4: An alternative way of finding incompatible pairs.

XCVo(y,z) = OXCV(y,z)
(= NEW(y,z))

TMP(y, z) = 3t\ u { A(t, y,u) •[3vA(i, 2,v) •NEW(u,v) ] }
NEW(y,z) = TMP(y,z).-<XCVk(y,z)

XCVk+X(y,z) = XCVk(y,z) + NEW(y,z)

5In Figure 4, thedirection of thearrows shows theinverse projections.
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Instead of finding a minimum cardinality set of state pairs for projection, a set of state pairs with a small
BDD representation is more desirable for our implicit BDD formulation. A small BDD for NEW(y} z)
canbe obtained by meansof the generalized cofactor operator [25] usingXCVk(y, z) as the don't care set:

NEW(y, z) = NEW(y, z)\-4evk{„)

As aresult ofthis modification, the geometric mean 6ofthe ratio ofCPU run time for computing XCV with
this generalized cofactor method versus the original method is 0.68.

6.2 Handling of Closure Information

ForFSM's withmanycompatibles,themosttimeconsumingpartof theimplicitalgorithmis the computation
of implied sets and class sets of the compatibles. The reasonis that these implicitcomputations deal with
twosetsof variables (c, d) in each relation, c representing a compatible and d representing its impliedset or
class set. Since each compatiblemay have a differentclass set, the size of the correspondingBDD's may
blow up during the computation.

A way to cope with this problemis to represent the class sets by means of singletons n (by Lemma 4.5)
instead of sets d of arbitrary cardinalities (by Lemma 4.6). This avoids the computation of the BDD's of
CX(c, d)andCCS(c, d)which areusually big. Thecomputations in Sections 4.5,4.6 and4.7 canbe replaced
by the following ones:

Theorem6.1 The classsetsof compatibles can beobtained by pruning the implied set relation 7"(c,i, n)
in singletonform, by thefollowing computations:

= 3p[A(f,p,n).C(c).(cDp)]
= 3n ri [?(c, i, ri) •T(c, i, ri) • (n ^ ri)] (5)
= 7"(c, i, ri) - I(c, i)

= 3n [T(c, i, n) • (c 2 ri)]
= T(c, i, n)- J(c, i)
= 3i' { [Containn(T(c}«, n),F(c, i',n)) + -i</(c, i')]

-\Containn(T(c, i\ n),T(c,z, ri)) + -J(c, i')] } (6)
= T(c, t, n) •->K(c,i)

Proof: Foreach input i andeach compatiblec, we must compute a unique implied set denoted by ct. Each
implied set c,- is represented as a set of singleton-states n, i.e., c, = {n\J"(c, i, n)}. The relations /, J and
K guarantee the satisfaction of the first, secondand thirdconditions, respectively, of Definition 4.6 of an
impliedset. The relation J(c, i) finds all impliedsets c, whichcontain atleasttwo distinctnext states n and
n', i.e., it computes all implied sets with more than one element. Equation5 prunesthe set T accordingly.
Relation J(c, i) contains allremaining impliedsetsnotcontained in c, thus satisfying the second condition.

To compute the third condition implicitly, its form needs to be transformed. From the set of implied
sets, we delete an set class c, if c,- c c,-». We know that, c,- c c,-» if and only if c; C c,-# and c,-» £ c,. The
operation Containn (?(c, i, n), T(c, i', n)) is usedto test if ct- c c,-», but sinceits resultmay includeinvalid
(c, i1) pairs (i.e., implied sets)the term ->J(c, i') is needed in the equation. In the lastequation, the implied
sets in A'(c, t) are subtracted away from T because they violate the third condition. •

T(cy i,n)

/(ct t)

F(c, i, n)
J(c, i)

7"(c, t, n)

K(c,i)

J"(c, i, n)

^e geometric mean of k numbers is thethe fc-th root of theproduct of the A; numbers.
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Theorem 6.2 The condition that compatible d dominates compatible c can becomputed as:

Dominate(d,c) - (d Dc) •W 3i Containn(T(c} i,ri),F(d, i',ri))

Proof: ByDefinition 4.7, d dominates c if d covers allstates covered by candtheconditions on theclosure
of d are a subset of the conditions on the closure of c. •

Aftercomputingthedominance relation Dominate(d, c),theprime compatibles canbegenerated using
Lemma 4.9.

6.3 Prime Compatible Generation using Maximals

Theprime compatible generation algorithm given inSection 4 does notrely onthecomputation ofmaximal
compatibles, whereas the method in [4] does. We are going to present an alternative implicit generation
algorithm thatdoes make useof maximal compatibles. Themotivation is to expedite theprime generation
step, that is usually the most time consuming step.

Theorem 63 Theset ofmaximalcompatiblescan be computed as:

MC(c) = Maximalc(C(c))

Proof: ByDefinition 2.7,thesetofmaximal compatibles MC(c) issimply themaximal setofpositional-sets
in C(c) with respect to c (Lemma 3.6). •

Corollary 6.1 The setofsingleton next states implied by a maximal compatible c under input i, T(c, i, y),
can be computed by:

F(c, i,n) = 3p[MC(c) -(cDp) •A(i,p, ri)]

The classset informationfor the maximal compatibles canthen beobtained using theclassset computation
procedureas described in Theorem 6.1.

6.3.1 Compatible Pruning by Maximal Compatibles with Void Class Set

When generating prime compatibles from compatibles, only the compatibles generated from maximal
compatibles with a non-void class set need to be considered, because a maximal compatible with a void
class set dominates any compatible that it generates.

Corollary 62 The maximal compatibles with a void classset, MCV(c), can be obtained by:

MCV(c) = MC(c)> jBiK(c,i)

where A'(c, i) isgiven by Equation 6. The setofcompatibles can then be pruned by MCV(c):

C(c) = C(cy fid [MCV(c) • (d D c)]

632 Slicing Procedure for Prime Compatible Generation

The following slicing procedure is an implicitversionof the procedure outlinedin Section 2.
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VC(c) = 0
for k = n downto 1 do{

MCk(c) = MC(c) -Tuplek(c)
Ck(c) = C(c) •Tuplek(c) • iMCk(c)
Fck(c,i,n) = Prune(Ck(c)yA(i,p,ri))
Fvc(c-,i, ri) = Prune(VC(c),A(i,p,ri))
Dominate(d1 c) = (d D c) •Vz' 3t Containn(TT>c(c, *\ ^)»«^rcfc(c/, z', w))
Kjt(c) = C(c)- ,3c' [Dominate^, c) •£(</)]
7>C(c) = VC(c) + PCjk(c) + MCfc(c)

}

VC(c) is a setofprimecompatibles accumulated during each iteration, andisoriginally empty. MCk(c)
contains maximal compatibles with cardinality k. Ck(c) containscompatibles c of cardinality k, excluding
those in MCk(c). Prune(Ck(c),A(i, p, n)) is the procedure to prune class sets described in Theorem 6.1,
by substituting Ck(c) for C(c), and Tc(c, z, ri) for T(c, z", ri) in the equations. Prune(VC(c),A(i,p,n)) is
similarly defined. So Fck(c, z, ri) and Tvc(c, h n) contain the class setsof Ck(c) and VC(c) respectively.
To test for Dominate(c\ c), we only need to know if a compatible d € Ck is dominated by an already
discovered prime compatible c e VC, because(1) for anyother d eCk,c<£ d, and (2) c can be dominated
only by primecompatibles with cardinalities greaterthan k. VCk(c) containsthe newlydiscovered prime
compatibles with cardinality k, and this set is added to MCk and VC to update the set ofprime compatibles
found so far.

Experimentally during construction of the BDD's of prime compatibles, this slicing method uses on
average half the memory as compared to the method in Section 6.2. This method is particularly efficient if
the sizes of the compatibles are localized to a few cardinalities.

7 Implementation Details

7.1 BDD Variable Assignment

Simple accounting shows that:

1. 10 state variable vectors (p, n, y, z, w, u, c, c;, rf, d*) are used in all previous equations,

2. in positional-set notation, each state variable vector corresponds to n Boolean variables where n is
the number of states.

Looking into each equation carefully reveals that we never operate on more than four sets of variables
simultaneously in a single BDD operation. For example, 4 sets of variables y,z,u and v are used in
Equation 2, and 3 sets p, n and c in Equation 4. The idea of BDD variableassignmentis to use a set of BDD
variables for more than one purpose, by binding at different times more than one set of variables from the
equations to a single set of BDD variables. The assignments should be made in such a way that no two sets
ofvariables appearing in an equation will be assigned to the same set of BDD variables. Such an assignment
for our previous implicit algorithm is shown in Figure 5.

There is a conflict with the above BDD variable assignment in Equation 3, because variable c is assigned
to the same BDD variables as variable y. To get around it, an extra variable e is used instead:

XC(c) = [e-> c]3yfz [XCV(y, z)-(yDz[J e)].
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Figure 5: Assignments of equation variables to BDD variables.

Note that two functions containing different variables being assigned to the same BDD variable, e.g.,
A(z,p, ri) and CCS(c\ a"), can co-exist within a multi-rooted BDD at the same time, without interfering
with one another. Conflict will occur only when they become operands to a BDD operation. Actually as
a result of overlapping in variable supports, such unrelatedfunctions can be constructed and manipulated
more efficiently due to sharing of BDD subgraphs.

7.2 BDD Variable Ordering

Relations as equality,containment,maximaldescribedin Section3.3.1 and variantsof them have BDD's of
exponential size if the different sets of BDD variables are not interleaved with each other.

Also the ordering between individual state variables within a set of BDD variables (i.e., a positional-set)
is important, especially when handling the closure information. An heuristics that we used is to put at the
top of the BDD the Boolean variables corresponding to states that occur most frequently in the compatibles.
This should leave the BDD sparse in the lower part where most state variables take a value of 0. As the
set of compatibles is usually very large, we approximate the count by counting the occurrences of states in
maximal compatibles.

7.3 Don't Cares in the Positional-set Space

The main advantageofa positional-set representationofFSM's is that sets ofsets of statescan be represented
by a single multi-rooted BDD. As a result, sets of compatibles (C), prime compatibles (VC), and the likes
canbe represented andmanipulated compactly. However duringthecomputationof OCVy OXCV andXCV,
we are manipulatingonly sets of singletonstates and so we only care about a smallportionof the encoding
space. Since no positional-setof cardinalitygreaterthan 1will appear there, we can make use of these don't
care code points in the positional-set space.

For example, the computationsinvolved in Equations 1to 2 manipulatea productof two singletonstates
(y, z). The don't care condition with respect to this pair of singletons is captured by:

DC(y, z) = -<rupleo(y) •-<Tuplex (y) + ->Tuple0(z) •-yTuplex (z)

and can be used to simplify the BDD computationof these sets using the generalized cofactoroperator [25].

8 Approximations of Prime Compatibles

In this section, we review a related research reported in [6] where a subset (pw-primes) and a superset
(ipw-primes) of primecompatibles are defined. The contribution restson the key notionof signatureset of
a prime compatible,that plays a similar role to the notionof signature cubesin two-level minimization[14].
To decide if compatible c dominates compatible d (for d c c), it is sufficient to know that d contains a
compatible in the signature set of c. This allows to compute primes with a quantifier-free recursive BDD
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operator. Of course the difficulty ofcomputating primes has simply been shifted to the computation of
signatures sets, but asuperset ofprimes has been defined whose signature sets can be computed implicitly
inan efficient manner. Inthe sequel we will introduce two new definitions ofdominance: ipw-dominance
and pw-dominance, while we will reserve the word "dominance" without qualifications for the classical
definition 2.9.

Definition 8.1 A signature s of compatible c is a minimal subset of c such that CS(c) C CS(s). A
signature ofa compatible isaminimal compatible dominated by c. The set ofallsignatures ofcisSign(c).

Theorem 8.1 Compatible c dominates compatible d ifand only if

1. d C c,and

2. 3de Sign(c), d D d.

Proof: Only If Part. If c dominates d then CS(c) C CS(d), soeither d e Sign(c) or 3d € Sign(c) such
that d c d, by definition of signature, and this is the thesis.

If Part. Suppose that

1. d c c, and

2. 3d € Sign(c),d D d.

Then, from thedefinition of signature, CS(c) C CS(d). We mustshow that CS(c) C CS(d) to havethat
c dominates d. Supposeby contradiction that CS(c) %CS(d), thenthere existsan impliedset s such that
s e CS(c) and s £ CS(d). If s € CS(c) - andso s € CS(d) - and s $ CS(d) theremust exist an input i
suchthat s = IS(d, i) c IS(d, i) C IS(c, i) = s' € CS(c), but then s C s' and thisgoes againstpart 3 of
the definition of class set that requires that no implied set is contained in another implied set of a class set.

8.1 An Overapproximation of Prime Compatibles

Definition 8.2 An input-labeled pairwise class set IPWCS(c) ofcompatible c is theset ofall theinput-
labeledimpliedpairs (sa, s&)t underinputi ofanystatepairs in c such that:

1. sa # 56.and

2. {sa,Sb} g C

Definition 83 Compatible c ipw-dominates compatible d if andonly if

1. d C c,and

2. IPWCS(d) D IPWCS(c).

Definition 8.4 An ipw-signature s of compatible c is a minimal subset of c such that IPWCS(c) C
IPWCS(s). A signature of a compatible is a minimal compatible ipw-dominated by c. The set of all
ipw-signatures ofc is Sigriipw(c).

Definition 8.5 An ipw-prime compatible is one thatis not ipw-dominated by anyother compatible.

Theorem S2Ifc is a prime compatible, thenit is also an ipw-prime compatible.
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Proof: Suppose by contradiction that c is not an ipw-prime, i.e., that there is another compatible d that
ipw-dominates c. Then c c d and IPWCS(c) D IPWCS(d). The second inclusion implies that for
every input i IS(c, i) D IS(dt i) andsoit follows thatCS(c) D CS(d), therefore c isdominated by d and
it is not a prime. •
The theorem shows that ipw-primes are a superset of primes. It turns out that the inclusion is strict, i.e.,
there are ipw-primes that are notprimes 7.

Theorem 83 Compatible c ipw-dominates compatible d ifandonlyif

1. d c c, and

2. 3d € Sigriipw(c), d D d.

8.2 An Underapproximation of Prime Compatibles

Definition 8.6 Apairwise class set PWCS(c) ofcompatible c is the setofallthe impliedpairs (sa, sb) of
any statepairs in c such that:

1. sa^ s^ and

2. {sa,sb} %c.

Definition8.7 Compatible c pw-dominates compatible d ifandonly of

1. d C c, and

2. PWCS(d) D PWCS(c).

Definition 8.8 A pw-signature s of compatible c is a minimal subset of c such that PWCS(c) C
PWCS(s). A signature of a compatible is a minimal compatible pw-dominated by c. The set of all
pw-signatures ofc is Signpw(c).

Definition 8.9 A pw-prime compatible isone that isnotpw-dominated by any other compatible.

Theorem 8.4 Ifc is apw-prime compatible, then it isalsoa prime compatible.

The theorem shows that pw-primes are a subset ofprimes. It turns out that the inclusion is strict, i.e., there
are primes that are not pw-primes. Therefore using pw-primes does not guarantee an exact solution, but
only anapproximation8.

Theorem 8.5 Compatible cpw-dominates compatible d ifand only if

1. d C c,and

2. 3d € Signpw(c),d 3 d.

In [6] it is shown how it is possible to generate the ipw-primes by an implicit computation. It is of
particular interest that pw-primes are obtained by a recursive quantifier-free computation that operates on
pairs (c, s) where c is a compatible and s is a subset in Signipw(c). Experimental results show faster run
times, but a smallerset of completed benchmarks, thanreported in Section 9.

7In [5] it isstated that ifnoimplied setofcompatible c contains any other implied setthen the setofprimes isequal to the set
of ipw-primes.

8In [5] itisproved that ifany two implied sets in the class set ofcompatible c are disjoint then the set ofprimes isequal to the
set of pw-primes.
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9 Experimental Results

We implemented the algorithms described in previous sections ina program called ISM, an acronym for
Implicit State Minimizer. We ran ism on different suites ofFSM's. We report results on the following suites
of FSM's. They are:

1. the MCNC benchmark and other examples,

2. FSM's generated by a synthesis procedure for asynchronous logic [10],

3. FSM's from learning I/O sequences [17],

4. FSM's from synthesis of interacting FSM's [26],

5. FSM's with exponentially many prime compatibles,

6. FSM's with many maximal compatibles, and

7. randomly generated FSM's.

Each suite has different features with respect to state minimization. Wediscuss features of the experiments
and results in different subsections. Comparisons are made with stamina [20], a program that represents
the state-of-art for state minimization based on explicit techniques. The program stamina was run with the
option -P to compute all prime compatibles.

For each example, we report the number of states in the original ISFSM, the number of maximal
compatibles if applicable, the number compatibles, the number of prime compatibles, the number of non
essential prime compatibles if applicable, and the run time for our implicit algorithm ISM and that for the
explicit algorithm stamina. All run times are reported in CPU seconds on a DECstation 5000/260 with 440
Mb of memory. The CPU run time refers to the computation of the prime compatibles only.

9.1 FSM's from MCNC Benchmark and Others

Table 1 reports the results from the MCNC benchmark and from other academic and industrial benchmarks
available to us. Most examples have a small number of prime compatibles, with the exception of ex2 and
green. The running times of ism are worse than those of stamina, especially in those cases where there
are very few compatibles in the number of states (squares is the most striking example). In those cases an
explicit algorithm is sufficient to get a quick answer and it may be faster than an implicit one. The reason
is that ism manipulates relations having a number of variables linearly proportional to the number of states.
When there are many states and few compatibles, the purpose of ism is defeated and its representation
becomes inefficient. But when the number ofprimes is not negligible as in ex2 and green, ism ran as fast or
faster than stamina.

The question now arises of how it is realistic to expect such examples in logic design applications. One
could object that the examples of Table 1 show that hand-designed FSM's can be handled very well by an
existing state-of-art program like stamina. If this can be true for usual hand-designed FSM's, we argue that
there are FSM's produced in the process of logic synthesis of real design applications that generate large
sets ofcompatibles exceeding the capabilities of programs based on an explicit enumeration. The examples
ofTable 2 are such a case. They are FSM's produced as intermediate stages of an asynchronous logic design
procedure and their minimization requires computing very large sets of compatibles. Another case is the
one reported in Table 3, referring to the synthesis of finite state machines consistent with a collection of I/O
learning examples.
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#max # prime CPU time (sec)
machine # states compat. # compat. compat. MSVC ISM STAMINA

arbseq 94 2 96 9 3 12 0

bbsse 16 11 97 13 0 0 0

beecount 7 4 11 7 5 0 0

exl 20 2 22 19 1 1 0

ex2 19 36 2925 1366 1366 7 13

ex3 10 10 195 91 91 0 0

ex5 9 6 81 38 38 0 0

ex7 10 6 135 57 57 0 0

fsml 256 47 302 208 0 83 0.6

green 54 524 1234 524 524 90 125

lion9 9 5 20 5 2 0 0

markl 15 12 41 18 11 0 0

scf 121 12 1201 175 87 22 0

squares 371 45 473 307 0 731 1

tbk 32 16 48 48 48 3 1

tma 20 15 35 20 4 1 0

trainll 11 5 85 17 15 0 0

viterbi 68 5 329 57 3 6 0

Table 1: The MCNC benchmark and others.

9.2 FSM's from Asynchronous Synthesis

Table 2 reports the results of a benchmark of FSM's generated as intermediate steps of an asynchronous
synthesis procedure [10]. stamina ran outof memory on the examples vmebus.master.m, isend, pe-rcv-
ifcfc, pe-send-ifcfc, while ism was able tocomplete them. These examples (with the exception of vbe4a)
have a number ofprimes below a thousand. To explain this data reported inTable 2, we notice that inorder
tocompute the prime compatibles, every compatible has tobegenerated bystamina too. The compatibles
of the FSM's of this benchmark are usually of large cardinality and therefore theirenumeration causes a
combinatorial explosion. So the huge size of the setof compatibles accounts for the large running times
and/or out-of-memory failures. About the behavior of ism, we underline that the running times track well
with the size of the set of compatibles and when both programs complete, they are usually well below
those ofstamina (pe-rcv-ifcfcm, pe-send-ifcfcm, vbe4a). Forasynchronous synthesis, amore appropriate
formulation of exact state minimization requires the computation of all compatibles or at least of prime
compatibles and a different formulation of the covering problem [10].

9.3 FSM's from Learning I/O Sequences

Table 3 and Figure 6 show the results of running a parametrized setofFSM's constmaed to becompatible
with a given collection of examples of input/output traces [17]. These machines exhibit very large number
of compatibles.

Here ism shows all its power compared to stamina, both in terms of number of computed prime
compatibles and running time, stamina runs outof memory onthe examples from threer.35 and fourr.30
onwardsand, when it completes, it takesclose to two orderof magnitude moretimethan ism.
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#max # prime CPU time (sec)

machine # states compat. # compat. compat. #Af£VC ISM STAMINA

alexl 42 787 55928 787 787 24 16

future 36 49 7.929e8 49 49 3 0

future.m 28 16 2.621e7 16 16 2 0

inteljedge.dummy 28 120 9432 396 396 37 3

isend 40 128 22207 480 480 13 spaceout

isend.m 20 15 22207 19 19 1 0

mp-forward-pkt 20 1 1.048e6 1 0 0 0

nak-pa 56 8 4.741el5 8 8 9 0

nak-pa.m 18 8 44799 8 8 1 0

pe-rcv-ifcfc 46 28 1.528ell 148 148 18 spaceout

pe-rcv-ifc.fc.m 27 18 1.793e6 38 38 3 147

pe-send-ifc.fc 70 39 5.071el7 506 506 571 spaceout
pe-send-ifc.fcm 26 6 8.978e6 23 22 3 312

ram-read-sbuf 36 2 3.006el0 2 0 2 0

sbuf-ram-write 58 24 1.433e6 24 24 14 0

sbuf-ram-write.m 24 12 1.433e6 12 12 2 0

sbuf-send-ctl 20 10 81407 10 10 0 0

sbuf-send-pkt2 21 2 622591 2 0 0 0

vbe4a 58 2072 1.756el2 2072 2072 109 167

vbe4a.m 22 13 73471 13 13 2 0
vbe6a.m 16 8 527 8 4 1 0

vmebus.master.m 32 10 5.049e7 28 28 16 spaceout

Table 2: Asynchronous FSM benchmark.

# # # prime CPU time (sec)
machine state compat. compat. ISM STAMINA

threer.10 11 671 112 0 0

threer.20 21 16829 3936 1 159

threer.30 31 97849 33064 21 1344

threer.40 41 1.456e6 529420 75 spaceout
threer.55 55 3.622e7 1.555e7 1273 spaceout
fourr.10 11 2047 1 0 0
fourr.20 21 42193 12762 2 217
fourr.30 31 1.346e6 542608 20 spaceout
fourr.40 41 5.266e9 2.388e9 105 spaceout
fourr.50 51 3.643e7 1.696e7 198 spaceout
fourr.60 61 1.052el0 5.021e9 *18181 spaceout
fourr.70 71 9.621el0 4.524el0 *22940 spaceout

Table 3: FSM's from learning I/O sequences.
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CPU sec
CPU Time Vs. # Prime Compatibles

le+02 le+04 le+06
#primes

Figure 6: Comparison between ism and stamina onlearning I/Osequences benchmark.

9.4 FSM's from Synthesis of Interacting FSM's

Ithas been reported by Rho and Somenzi in[21] that the exact state minimization ofthe driven machine of
apair ofcascaded FSM's isequivalent to the state minimization ofan ISFSM that requires the computation
of prime compatibles.

The examples ifsmO, ifsml, ifsm2 come from a set ofFSM's produced by FSM optimization, using
the input don't care sequences induced by asurrounding network ofFSM's [26]. They exhibit often large
number ofcompatibles and prime compatibles, as shown in Table 4. For such cases, the run times ofthe
implicitalgorithm ISM are shorterthan thoseby stamina.

# # # prime CPU time (sec)

machine state compat. compat. ISM STAMINA

ifsmO 38 1064973 18686 43 4253

ifsml 74 43006 8925 25 466

ifsm2 150 497399 774 267 356

Table 4: Examples from synthesis of interacting FSM's.
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9.5 FSM's with Exponentially Many Prime Compatibles

Inthe previous examples, the number ofprime compatibles isnot large compared tothe number of states.
Anatural question to ask is whether there are FSM's that generate a large number of prime compatibles
with respect tothe number ofstates. We were able toconstruct asuite ofFSM's where the number ofprime
compatibles is exponential in the number of states.

Rubin gave in [22] a sharp upper bound for the number of maximal compatibles of an ISFSM. He
showed that M(ri), the maximum number ofmaximal compatibles over all ISFSM's with n > 1 states, is
given by M(ri) = i.3m, if n = 3.m+ i. The proofof this counting statement is based ontheconstruction
ofa family ofincompatibility graphs I(ri) parametrized inthe number ofstates 9. Each I(ri) iscomposed
canonically of a number of connected components. Each maximal compatible containsexactly one state
from each connected component of thegraph. Thenumber of such choices is shown to be M(ri).

The proof of the theoremdoes not exhibitan FSM that has a canonical incompatibilitygraph. Based on
the construction of the incompatibility graphs given in the paper, we have builta family F(ri) of ISFSM's
10 (parametrized in the number of states ri) that have a number of maximal compatibles in the orderof
3(n/3) and a number of prime compatibles in the order of 2<2n/3). F(n) has 1 input and n/3 outputs.
Each machine F is derived from a non-connected state transition graph whose component subgraphs F,
are defined on the same input and outputs. Each subgraph F, has 3 states {s,o, s.i, s^} and 3 specified
transitions {eto = (sio,5ii),eti = (s,i,s,-2),et-2 = («t2,Sio)}. Eachtransitionunderthe inputset to 1asserts
all outputs to -, with the exception that eto and e,i assert the i-th output to 0 and ea asserts the i-th output
to 1. Under the input set to 0, the transitions are left unspecified.

Table 5 and Figure 7 show the results of running increasingly larger FSM's of the family. While ism is
able togenerate sets ofprime compatibles ofcardinality upto21500 with reasonable running times, stamina,
based on an explicit enumeration runs out of memory soon (and where it completes, it takes much longer).

#max # prime CPU time (sec)
machine # states compat. # compat. compat. MSVC ISM STAMINA

rubinl2 12 34 2»_i 2*-l 2*-l 0 4

rubinl8 18 36 212-1 212-1 212-1 1 751

rubin24 24 38 216-1 216-1 216-1 1 spaceout

rubin300 300 3100 2200_1 2200_! 2200-l 256 spaceout

rubin600 600 3200 2400-l 2400_1 2400.! 1995 spaceout

rubin900 900 3300 2600-1 2*00 _i 2600-l 6373 spaceout

rubinl200 1200 3400 2800- 1 2800-l 2800-l 17711 spaceout

rubinl500 1500 3500 21000- 1 21000-1 21000-1 42674 spaceout

rubinl800 1800 3600 21200 _ j 21200 _ j 2i200_ j 78553 spaceout

rubin2250 2250 3750 21500 _ j 21500 _, 21500 _ j 271134 spaceout

Table 5: Constructed FSM's.

9The incompatibility graph of an ISFSM F is a graph whose nodes are the states of F, with an undirected arc between two
nodes s and t iff 3 and t are incompatible.

10Called rubin followed by n inthe table of results.
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CPU Time Vs. # Prime Compatibles

le+54 le+121 le+188 le+255

Figure 7: Comparison between ism and stamina onconstructed FSM's.

#primes

9.6 FSM's with Many Maximal Compatibles

Table 6shows theresults ofrunning some examples from a setofFSM's constructed tohave a large number
of maximal compatibles. The examples jac4, jc43, jc44, jc45, jc46, jc47 are due to R. Jacoby and have
been kindly provided by J.-K. Rho of University of Colorado, Boulder. The example lavagno is from
asynchronous synthesis as those reported inSection 9.2. Forthese examples theprogram stamina was run
with the option -M tocompute all maximal compatibles. While ism could complete on them inreasonable
running times, stamina could not complete on jac4 and completed the other ones with running times
exceeding those ofism by one ortwo order ofmagnitudes. Notice that ism could also compute the set ofall
compatibles even though the computation ofprime compatibles cannot becarried tothe end while stamina
failed on both. The prime compatibles forthese examples could notbe computed byeither program.

9.7 Randomly Generated FSM's

We investigated also whether randomly generated FSM's have a large number of prime compatibles. A
program was written togenerate random FSM's n. Asmall percentage ofthe randomly generated FSM's
werefoundtoexhibitthisbehavior. Table4 showstheresultsof runningismandstamina onsomeinteresting
examples with a large number of primes. Again only ism could complete the examples exhibiting a large
number of primes.

"Parameters: number of states, number of inputs, number of outputs, don't care output percentage, don't care target state
percentage.
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#max # prime CPU time (sec)

machine # states compat. # compat. compat. ISM STAMINA

jac4 65 3.859e6 4.159e7 ? 34 spaceout

jc43 45 82431 1.556e6 ? 13 7739

jc44 55 4785 7.584e9 ? 20 662

jc45 40 17323 480028 ? 10 1211

jc46 42 26086 1.153e6 ? 11 2076

jc47 51 397514 1.120e7 ? 19 41297

lavagno 65 47971 9.163e6 ? 163 40472

Table 6: FSM's with many maximals.

#max # prime CPU time (sec)

machine # states compat. # compat. compat. #NSVC ISM STAMINA

fsml5.232 14 4 7679 360 360 2 23

fsml5.304 14 2 12287 954 954 1 85

fsml5.468 13 2 4607 772 772 1 16

fsml5.897 15 2 20479 617 616 0 50

ex2.271 19 2 393215 96383 96382 21 spaceout

ex2.285 19 2 393215 121501 121500 13 spaceout

ex2.304 19 2 393215 264079 264079 93 spaceout

ex2.423 19 4 204799 160494 160494 102 spaceout

ex2.680 19 2 327679 192803 192803 151 spaceout

Table 7: Random FSM's.
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9.8 Experiments Comparing BDD and ZBDD Sizes

Asmentionedbefore, theobjectswemanipulate inourimplicitalgorithms aresetsandrelations ofpositional-
sets. In our application positional-sets (e.g., compatibles)are usually sparse sets. Minato showed in [16]
that Zero-suppressedBDD's are a good representation of sets of sparse sets. As a preliminaryinvestigation
of the effectiveness of a ZBDD-based algorithm for exact state minimization of ISFSM's, we converted
some key BDD objects into ZBDD's and observed the change in the number of used nodes.

Compatibles Prime Compat. table-^R

# nodes in # nodes in # nodes in CPU Time (sec)
machine BDD ZBDD BDD ZBDD BDD ZBDD bdd2zbdd zbdd2bdd

alexl 2562 1203 1243 415 167 43 0.00 0.00

ex2.271 21 51 236 286 5646 4307 0.44 0.27

ex2.285 22 38 461 471 39 2 0.00 0.00

ex2.304 22 38 787 826 56928 34263 5.66 3.19

ex2.423 29 66 675 782 40857 27060 4.66 3.32

ex2.680 23 41 1819 1953 57446 40277 8.06 4.25

ex2 161 108 222 148 4421 1521 0.18 0.16

ex3 28 33 45 41 584 290 0.02 0.01

ex5 34 31 33 26 269 111 0.01 0.00

ex7 26 30 41 39 322 159 0.01 0.01

green 197 78 194 62 211 54 0.01 0.01

keyb_ex2 581 173 1260 324 14539 2053 0.77 0.58

s386_keyb 320 188 404 175 6386 1270 0.25 0.22

room4.16 75 79 201 159 1213 501 0.05 0.04

room4.20 122 134 458 407 2863 1431 0.16 0.11

room3.20 113 110 265 228 1717 790 0.07 0.05

room3.25 220 185 544 402 3922 1567 0.18 0.12

room3.30 637 473 1205 785 9391 3389 0.59 0.38

Table 8: Comparison between BDD and ZBDD sizes.

Experiments have been performed on FSM's which require non-trivial covering steps for state mini
mization. During state minimization of each machine, ZBDD's are generated from BDD's representing
the set of compatibles C, the set of prime compatibles VC (which is usually also the set of column labels),
and the set of row labels R. From the rightmosttwo columnsof the above table, the conversion routines
between ZBDD's and BDD's seem to execute fast enough to make feasible switching between BDD and
ZBDD representations.

Outof the 18examples, 9 of themhave smaller ZBDD's thanBDD'sforrepresenting C, 13of themhave
smaller ZBDD's than BDD's for representing VC (the remaining 5 examples are all randomly generated
machines), and 18 of them have smaller ZBDD representations of R. Disregarding the second set of
examples, ex2.* * *, which are randomly generated machines, the comparison shows that ZBDD's are
usually smaller than BDD's and are alwayscomparablyclose for the exceptionalcases.

Whenconverting BDD's to ZBDD's,the mostreduction in sizesoccurs for the representation of R, and
less for VC, and the least for C. A possible explanation is that VC is a more sparse set than C, because
all state sets that are in VC are in C but not vice versa. A similar explanation also applies between R and
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VC. Eachrow labelin R consist of twoparts: a positional-set representing a prime compatible, andanother
positional-set representing animplied set. As we don't expect much sharing between different implied sets,
the set of row labels (whose support has twice as many variables as the theoneof VC and C) should be a
more sparse set.

10 Results of State Minimization of ISFSM's

Once a binate table has been generated, ism calls animplicitbinate table solver to find a contained behavior
with a minimum number of states. In this section we summarize the final results. We refer to [8] for a
detailed exposition.
The following explanations refer to the tables of results:

• Under table size we provide thedimensions of the binate table before and after the table reduction
step (that replaces the original table with an equivalent one).

• # mincov is the number of recursive calls of the binate cover routine.

• a and /? mean, respectively, a and (3 column dominance, two ways of reducing the columns of a
covering table.

• Data are reportedwith a * in front, when only the first solutionwas computed.

• Dataare reported with a f in front, whenonlythe first table reduction was performed.

• # coveris the cardinality of a minimum costsolution (whenonlythe firstsolutionhasbeencomputed,
it is the cardinality of the first solution).

• CPUtime refersonly to the binatecovering algorithm. It does not includethe time to find the prime
compatibles.

10.1 Minimizing Small and Medium Examples

With the exception of ex2, ex3, ex5, ex7, the examples from the MCNC and asynchronous benchmarks do
not require prime compatibles for exact state minimization and yield simple covering problems. Table 9
reports those few non-trivial examples. They were all ran to full completion, withtheexception of ex2. In
the case of ex2, we stopped both programs at the first solution.

table size (rows x columns) # mincov # cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
ex2 4418 x 1366 3425 x1352 *6 *14 *6 *4 *10 ♦12 ♦10 *9 *58 *293 *116 *91

ex2 4418x1366 3425 x1352 *6 *14 *6 286 *10 ♦12 *10 5 ♦58 ♦293 *116 2100

ex3 243x91 151x84 201 37 91 39 4 4 4 4 78 33 0 0

ex5 81x38 47x31 16 6 10 6 3 3 3 3 4 3 0 0

ex7 137 x 57 62x44 38 31 37 6 3 3 3 3 8 12 0 0

Table 9: Examples from the MCNC benchmark.

These experiments suggest that
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• the number of recursive calls of the binate cover routine (# mincov) of ism and stamina is roughly
comparable,

• the running times are better for stamina except in the largest example, ex2, where ism is slightly
faster than stamina. This is to be expected because when the size of the table is small the implicit
approach has no special advantage, but it starts to pay off scaling up the instances. Moreover, some
implicit reduction computations have not yet been fully optimized.

10.2 Minimizing Constructed Examples

Table 10 presents a few randomly generated FSM's. They generate giant binate tables. The experiments
showthat ismis capableof reducing thosetableandof producing a minimum solutionor at least a solution.
This is beyondreach of an explicit technique and substantiates the claim that implicittechniques advance
decisively the size of instances that can be solved exactly.

table size (rows x columns) # mincov # cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
ex2.271 95323x96382 0x0 1 1 - - 2 2 - - 1 55 fails fails

ex2.285 1x121500 0x0 1 1 - - 2 2 - • 0 0 fails fails

ex2.304 1053189x264079 1052007x264079 2 - - - 2 - - - 463 fails fails fails

ex2.423 637916x160494 636777x160494 *2 - - - *3 - - - *341 fails fails fails

ex2.680 757755x192803 756940x192803 2
- - -

2 - - - 833 fails fails fails

Table 10: Random FSM's.

10.3 Minimizing FSM's from Learning I/O Sequences

Examples in Table 10 demonstrate dramatically the capability of implicit techniques to build and solve
huge binate covering problems on suites of contrived examples. Do similarcases arise in real synthesis
applications ? Theexamples reported inTable 11 answer intheaffirmative thequestion. They arethefrom
the suite of FSM's described in [17]. It is not possible to buildand solve these binate tables with explicit
techniques. Instead we can manipulate them with our implicit binate solver and find a solution. In the
examplefourr.40, only the first table reduction was performed.

10.4 Minimizing FSM's from Synthesis of Interacting FSM's

Prime compatibles are required onlyfor the stateminimization of ifsml and ifsml. For ifsml, ISM can
find a first solutionfasterthan stamina using a-dominance. But as the table sizes arenot very big, the run
times ism take are usually longer than those for stamina.

11 Conclusions

We have presented an algorithm to generate implicitly sets of compatibles of ISFSM's. An application
is the exact solution of state minimization. Compatibles, maximal compatibles, prime compatibles and
implied sets are all represented by the characteristic functions of relations implemented withBDD's. The
only explicit dependence is on the number of states of the initial problem. We have demonstrated with
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table size (rows x columns) # mincov #cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
threer.20 6977x3936 6974x3936 *4 *6 *5 *3 *5 ♦5 ♦6 *6 ♦13 *26 ♦1996 ♦677

threer.25 35690x17372 34707x17016 *3 *6 - - *5 ♦6 . - *69 ♦192 fails fails

threer.30 68007x33064 64311x32614 *4 *9 - - *8 *8 - . ♦526 ♦770 fails fails

threer35 177124x82776 165967x82038 *8 *9 - - ♦12 *10 - - ♦2296 ♦2908 fails fails

threer.40 1209783x529420 1148715x526753 *8 - - - ♦12 - - - *6787 fails fails fails

fourr.16 6060x3266 5235x3162 *2 *3 *3 ♦3 *3 *3 *4 *4 ♦6 *23 ♦1641 *513

fomr.16 6060x3266 5235x3162 *2 623 *3 377 *3 3 *4 3 *6 9194 ♦1641 1459

fourr.20 26905x12762 26904x12762 *2 *4 - - *4 *4 - - *31 *68 fails fails

fourr.30 1396435x542608 1385809x542132 *2 ♦5 - - *4 *5 - - ♦1230 ♦1279 fails fails

fourr.40 6.783e9x2.388e9 6.783e9x2.388e9 tl t- f723 fails fails fails

Table 11: Learning I/O sequences benchmark.

table size (rows x columns) # mincov #cover CPU time (sec)

FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA

reduction a reduction a 0 a 0 a 0 a 0 a 0 a 0
ifsml 17663x8925 16764x8829 *4 2 no 3 ♦14 14 *15 14 ♦388 864 ♦17582 805

ifsml 17663x8925 16764x8829 *4 2 24 3 •14 14 14 14 ♦388 864 40817 805

ifsm2 1505x774 1368 x 672 4 3 41 44 9 9 9 9 136 230 49 3

Table 12: Examples from synthesis of interactiveFSM's.

experiments from a variety of benchmarks that implicit techniques allow to handle examples exhibiting
a number of compatibles up to 21500, an achievement outside the scope of programs based on explicit
enumeration [19]. We have shown, when discussing the experiments, that ISFMS's with a very large
number of compatibles maybe produced as intermediate steps of logic synthesis algorithms, for instance in
thecases of asynchronous synthesis [10], and of learning I/O sequences [17]. A similar situation isexpected
to occur also in thesynthesis ofinteracting FSM's [21]. This shows thatthe proposed approach hasnotonly
a theoretical interest, but also practical relevance for current logicsynthesis applications. The final stepof
an implicit exact state minimization procedure, i.e., solving implicitly abinate covering problem [19], has
been described in [8].

The techniques described here can be easily applied to similar problems in sequential synthesis. For
instance the implicit computation of maximal compatibles given here can be converted in a straighforward
manner into animplicitcomputation of prime dichotomies [23]. Therefore this algorithmic frame haswide
applicability in logic synthesis and combinatorial optimzation.
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