

Copyright © 1995, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SYMBOLIC TWO-LEVEL MINIMIZATION

by

Tiziano Villa, Alex Saldanha, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/109

19 December 1995

SYMBOUC TWO-LEVEL MINIMIZATION

by

Tiziano Villa, Alex Saldanha, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/109

19 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Symbolic two-level minimization

Tiziano Villa Alex Saldanha Robert K. Brayton
Alberto L. Sangiovanni-Vincentelli

Departmentof EECS
University of California at Berkeley

Berkeley, CA 94720

December 19,1995

Abstract

We present a symbolic minimization procedure to obtain optimal two-level implementations of
finite-state machines. Encodingbased on symbolic minimizationconsists of optimizing the symbolic
representation, and then transforming the optimized symbolic description into a compatibletwo-valued
representation, by satisfyingencodingconstraints (bit-wise logicrelations) imposed on the binarycodes
that replace the symbols. Our symbolic minimization procedure captures completely the sharing of
product-terms due to "OR-ing" effects in the outputpart of a two-level implementation of the symbolic
cover. Encoding constraints are generated by the minimizationprocedure. Product-terms areaccepted
in a symbolic minimized cover only when they inducecompatible encodingconstraints. At the end a
set of codes thatsatisfy all constraints is computed. The qualityof this synthesis procedure is shown by
the fact thatthe cardinality of the coverobtained by symbolicminimizationandof the coverobtainedby
replacing thecodes in the initialcoverandthenminimizingwith a two-levelminimizer suchas espresso
are very close. Experimentsexhibit a set of hard examples where our procedure improves on the best
results of state-of-art tools.

1 Introduction

The optimization of logic functions performed on the Boolean representation depends heavily on the
encoding chosen to represent the symbolic variables.

The cost function that estimates the area optimality ofanencoding depends on the targetimplementation:
two-level ormulti-level or field-programmable gatearrays (FPGA's). The cost ofatwo-level implementation
is the number ofproduct-terms or the areaofa programmablelogic array (PLA). A commonly used cost ofa
multi-level implementation is the numberofliteralsofa technology-independent representationofthe logic.
FPGA's come in different architectures with associated costs. Other optimization objectives may be related
to power consumption, speed and testability. It may even be the case that the objective is a correctness
requirement, as is race-freeness in state assignment of asynchronous circuits.

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment of
opcodes for a microprocessor.

(B) Optimal encoding of outputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic function.

1

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic function,
where the encoding of the inputs (or some inputs)is the same as the encodingofthe outputs (or some
outputs). Encoding the states of a finite state machine (FSM) is a problem in class D since the state
variables appear both as input (present state) and output (next state) variables. Another problem in
class D is the encoding of the signalsconnecting two (or more) combinational circuits.

Here we concentrate on problems in class D for optimal two-level implementations. In particular we
will refermostly to the problemofencodingFSM's, sincethereis no loss of generality andthey areof great
practical interest.

We will build on the paradigm started by [7]. It involves optimizing the symbolic representation
(symbolic minimization), and thentransforming theoptimized symbolicdescription into acompatible two-
valued representation, by satisfying encoding constraints (bit-wise logic relations) imposed on the binary
codes that replace the symbols. This approach guarantees an upper bound on the size of the encoded
symbolic function provided allthe encoding constraints are satisfied. Encoding via symbolic minimization
may be considered a three step process. The first phase consists of multiple-valued optimization. The
second step is to extract constraints on the codes of the symbolic variables, which, if satisfied, guarantee
the existence of a compatible Boolean implementation. The third stepis assigning to the symbols codes of
minimum length that satisfy these constraints, if the latter implya setof non-contradictory bit-wise logic
relations.

Whenthetarget implementation istwo-level logic, the first stepmayconsistofoneormorecalls [7,6] toa
multiple-valuedmimmizer [9], afterrepresenting thesymbolicvariables withpositionalcubenotation [13,9].
Then constraints areextracted and a constraints satisfaction problem is set up.

Usingthe paradigm of symbolicminimization followed by constraints satisfaction, the most common
types of constraints that may be generated [7, 6, 3, 11] are four. The first type, generated by the input
variables, areface-embedding constraints. The three typesgenerated by the outputvariables are dominance,
disjunctive and disjunctive-conjunctive constraints. Each face-embedding constraint specifies that a set
of symbols is to be assigned to oneface of a binary n-dimensional cube and no other symbol should be
in that same face. Dominance constraints require that the code of a symbol covers bit-wise the code of
another symbol. Disjunctive constraints specify that thecode of asymbol mustbeexpressed as thebit-wise
disjunction (oring) of thecodes of two ormore other symbols. Disjunctive-conjunctive constraints specify
thatthecode of a symbol mustbe expressed as thebit-wise disjunction (oring) of thebit-wise conjunction
(anding) ofthe codes of two or more other symbols.

Our approach wants to strike abalance between theexact, butcomputationally intractable exact formu
lation provided by generalized prime implicants [3], and solutions that make noattempt of using acomplete
setof operations inlooking for agood code [15,6]. One of theissues that we willclarify isthecompletness
of setsofencoding constraints to find an optimal solution. Then we will propose aheuristic search strategy
to trade-off quality of results vs. computing time.

The presentation is organized as follows. In Section 3 we present the encoding problem for optimal
two-level implementations. In Section 4 the new symbolic minimization algorithm is described, while
procedures for symbolic reduction and symbolic oring are explained, respectively, in Section 5 and in
Section 6. Section 7 analyzes some ordering schemes. In Section 8 mention is madeof the algorithms
used for checking encodeability. An example is demonstrated in Section 9, and experiments are reported in
Section 10, with final conclusions drawn in Section 11.

2 Definitions

2.1 Finite State Machines

Fordefinitions of two-level logicminimization wereferto [1]. Herewe describe the connection between a
FSM tabulardescription and its interpretation as a multiple-valued logic function.

A logic function may have multiple-valued (called also symbolic) input variables and symbolicoutput
variables. A symbolic input or output variable takes on symbolic values. FSM's can be represented by
state transition tables. State transitions tables have as many rows as transitions in the FSM. The rows of
the table are divided into four fields corresponding to the primary inputs, present states, next states and
primaryoutputs of the FSM. Each field is a stringof characters. The primary inputs may be in boolean or
symbolic form. Note that the input and output patterns may contain don't care entries. A state transition
table defines a symbolic cover of the combinational component of a FSM. The rows of the state transition
table are called symbolic implicants of the symbolic cover. The symbolic cover representation may be seen
as a multiple-valued logic representation, where each present state mnemonic is one of the possible values
of a present-state multiple-valued variable. A similar identification holds for the next states (and the proper
inputs and outputs, if they are symbolic).

3 Encoding for Two-level Implementations

3.1 Multi-valued Minimization

Advances in the state assignment problem, reported in [8,1,7], made a key connection to multiple-valued
logic minimization, by representing the states of a FSM as the set of possible values of a single multiple-
valued variable. A multiple-valued minimizer, such as [9], can be invoked on the symbolic representation of
the FSM. This can be done by representing the symbolic variables using the positional cube notation [13,9].
The effect of multiple-valued logic minimization is to group together the states that are mapped by some
input into the same next-state and assert the same output, lb get a compatible boolean representation, one
must assign each of the groups of states obtained by MV minimization, (called face or input constraints) to
subcubes of a boolean fc-cube, for a minimum k, in a way that each subcube contains all and only all the
codes of the states included in the face constraint. This problem is called face embedding problem.

It is worth mentioning that the face constraints obtained through straightforward symbolic minimization
are sufficient, but not necessary to find a two-valued implementation matching the upper bound of the
multi-valued minimized cover. As it was already pointed out in [6], for each implicant of a minimal
(or minimum) multi-valued cover, one can compute an expanded implicant, whose literals have maximal
(maximum) cardinality and a reduced implicant whose literals have minimal (minimum) cardinality. By
bit-wise comparing the corresponding expanded and reduced implicant, one gets don't cares in the input
constraint, namely, in the bit positions where the expanded implicant has a 1 and the reduced implicant has
a 0. The face embedding problem with don't cares becomes one of finding a cube of minimum dimension
k, where, for every face constraint, one can assign the states asserted to vertices of a subcube that does not
include any state not asserted, whereas the don'tcare states can be put inside or outside of that subcube.
One can build examples where the presence of don't cares allows to satisfy the input constraints in a cube
of smaller dimension, than it would be possible otherwise.

3.2 Symbolic Minimization

Any encoding problem, where the symbolic variables only appear in the input part, can be solved by
setting up a multiple-valued minimization problem followed by satisfaction of the induced face constraints.

However, the problem of state assignment of FMS's is only partially solved by this scheme, because the
encoding of the symbolic outputvariables is not takeninto account (e.g. the next state variable). Simple
multiple-valued minimization disjointly minimizes each of the on-sets of the symbolic output functions,
and therefore disregards the sharing amongthe different output functions taking often place when they are
implemented by two-valued logic. We will now see more powerful schemes to deal with both input and
output encoding.

In [6, 15] a new scheme was proposed, called symbolic minimization. Symbolic minimization was
introduced to exploit bit-wise dominance relationsbetween the binary codes assigned to different values
of a symbolic output variable. The core of the approach is a procedure to find useful bit-wise dominance
(called also covering) constraints between the codes ofnext states, based on the fact that the input cubes of
the onset of a dominating code can be used as don't cares for minimizing the input cubes of the onset of a
dominated code. For instance, consider a fragment of a symbolic cover:

10 stl st2 11

00 st2 st2 11

01 st2 st2 00

00 st3 st2 00

10 st2 stl 11

00 stl stl —

01 st3 stO 00

If enc(stl) > enc(st2), and enc(st0) > enc(stl) (i.e. stl asserted implies stl asserted and stO asserted
implies stl asserted), then the transitions with next states stl and stO can be used as don't cares when
minimizing the transitions with next state stl:

10 stl st2 11

00 st2 st2 11

01 st2 st2 00

00 st3 st2 00

10 st2 - 11

00 stl - —

01 st3 - 00

An equivalent minimized symbolic cover is:

-0 stl,st2 st2 11

0- st2,st3 st2 00

10 st2 stl 11

00 stl stl —

01 st3 stO 00

Notice that also face constraints (stl, stl) and (stl, st3) must be satisfied. The translation of a cover
obtained by symbolic minimization into a compatible boolean representation defines simultaneouslya face
embedding problem and a dominance constraints satisfaction problem. Notice that any output encoding
problemcan be solved by symbolic minimization. Symbolic minimization was appliedalso in [10], where
a particular form of PLA partitioning is examined, by which the outputs are encoded to create a reduced
PLA that is cascaded with a decoder.

(1) 10 stl st2 11 d') -0 stl,st2 st2 11

(2) 00 st2 st2 11 (2') 0- st2,st3 st2 00

(3) 01 st2 st2 00 (3') 10 st2,st3 stl 11

(4) 00 st3 st2 00 (4') 00 stl stl --

(5) 10 st2 stl 11 (5') 01 st3 stO 00

(6) 10 st3 stl 11 (6') 11 stl,stO stl 10

(7) 00 stl stl -- (7') 11 stO,st3 st3 01

(8) 01 st3 stO 00

(9) 11 stl stl 10

(10) 11 st3 st3 01

(11) 11 stO stO 11

Figure 1: Covers of FSM before and aftersymbolicminimization

However, to mimic the full powerof two-valued logic minimization, another fact must be taken into
account. When the code of a symbolic output is the bit-wisedisjunction of the codes of two or more other
symbolicoutputs, the on-setof the former canbe minimizedby using the on-setsof the latteroutputs, by
"redistributing" the task of implementingsome cubes. An extended schemeof symbolic minimization can
therefore be defined to find useful dominance anddisjunctive relations between the codes of the symbolic
outputs. The translation of acoverobtained by extended symbolicminimizationinto a compatible boolean
representation induces a face embedding, outputdominance and outputdisjunction satisfaction problem.

In Figure 1, we show the initialdescription of a FSM and anequivalent symbolic cover returned by an
extended symbolic minimization procedure.

The reducedcover is equivalent to the original one if we impose the following constraintson the codes
of the states.

Productterms (1'), (3') and (4') areconsistent with the original product terms (5) and (7) if we impose
code(stl) > code(stl). Inasimilarway, product terms (2') and (5') are consistentwithme original product
term (8)if we imposecode(stO) > code(stl). The product terms (1') and (2') yieldalso the face constraints
face(stl,stl) and face(stl, st3), meaning that the codes of stl and stl (stl and st3) span a face of a
cube, to which the code of no other state can be assigned. The previous face and dominance constraints
together allow to represent the four original transitions (1), (2), (3), (4)by two product terms (1') and (2').

Product term (3') is equivalent to the original transitions (5) and (6) and yields the face constraint
face(stl, st3). This saving is due to a pureinput encoding join effect.

Finally the product terms (6'), (7') represent the original transitions (9), (10) and (11). The next
state of (11) is stO, that does not appear in (6') and (7'). But, if we impose the disjunctive constraint
code(st0) —code(stl) V code(st3), i.e., we force the codeof stO to be the bit-wise or of the codesof stl
and st3t we can redistribute the transition (11) between the product terms (6*) and (7'). The product terms
(6') and (7') yield also the face constraints face(stl,st0) and face(st0, st3); togetherwith the previous
disjunctive constraint they allow the redistributionof transition (11).

We point out that ifwe perform a simple MV minimization on the original description we save only one
product term, by the join effect taking place in transition (3').

An encoding satisfying all constraints can be found andthe minimum code length is two. A solution is
given by sto = 11, st\ = 01, st2 = 00, st$ = 10. If we replace the states by the codes in the minimized
symbolic cover, we obtain an equivalent Boolean representation that can be implemented with a PLA, as
shown in Figure 2. Note that we replace the groups of states in the present state field with the unique face

(1") -0 0- 00 11

(2") 0- -0 00 00

(3") 10 -0 01 11

(4") 00 01 01

(5") 01 10 11 00

(6") 11 -1 01 10

(7") 11 1- 10 01

Figure 2: Encoded cover of FSM

assigned to them and that product term (2") is not needed, because it asserts only zero outputs. Therefore
the final cover has only six product terms.

3.3 Completness of Encoding Constraints

An important question is whether the constraints describedearlier are sufficientto explore the space of all
encodings. More precisely, the question is: find the class of encoding constraints such that by exploring
all of them one is guaranteed to produce a minimum encoded implementation. Of course exploring all
the encoding constraints of a given class may be impractical, but if the answer to the previous question is
affirmative, one has characterized a complete class that can lead in line-of-principleto an optimal solution.
This would make more attractive an heuristic that explores the codes satisfying the constraints of such a
class. We now draw a distinction between a symbolic state and an hardware state. The former is a state
of the original FSM. The latter is a state of the encoded FSM. If the number of encoding bits is k and
thenumber of symbolic states is n, there are lk - n hardware states thatdo not correspond to an original
symbolic state. If lk = n, there are asmany hardware states as there are symbolic states.

Theorem 3.1 Face anddisjunctive constraints aresufficient toobtain a minimum two-level implementation
ofa state-minimizedFSMiftheminimum implementation hasas many hardware statesas there aresymbolic
states.

Proof. Consider an FSM F. Let the codes that produce a minimumimplementationof the FSM be given,
together with the best implementation C (here minimum or best refers to the smallest cardinality of a
two-level cover). Suppose that the product-terms of the minimum encoded implementation C are all prime
implicants. Considereachcubeof C. Its presentstatepartwillcontainthecodesofoneor morestatesandit
will translate into a face constraint. Its next state part will correspond to the code of a symbolic state (using
the hypothesis that there are as many hardware states as symbolic states). Considernow each minterm of
the original FSM F. It will be covered in the input part (proper input and present state) by one or more
cubes of C; this will translate into a disjunctive constraint whose parent is the next state of the minterm and
whose children are the next states of the covering cubes of C.

The face constraints and disjunctive constraints so obtained are necessary for a set of codes to produce
such a minimum implementation, when they are replaced in the original cover and then the cover is min
imized. But are they sufficient ? There may be many sets of codes that satisfy these constraints. Is any
such set sufficient to obtain a minimum cover ? The answer if yes, if after that the set of codes is replaced
in the original FSM, an exact logic minimizeris used. Indeed, if this set of codes satisfies the encoding
constraints, by construction theymake possibleto represent the minterms of the original FSM coverby the

cubes of the minimum cover C. Therefore an exact logic minimizer will produce either C or a different
cover of thesame cardinality as Cl. •

Theorem 32 Face and disjunctive-conjunctive constraints are sufficient to obtain a minimum two-level
implementation ofa state-minimizedFSM.

Proof. If there are as many hardware states as there are symbolicstates the previous result applies. Ifthe best
implementation has more hardware states than symbolic states, one must introduce disjunctive-conjunctive
constraints. The reason is that it is not anymore always true that the next state of a cube ceC corresponds
to the code of a symbolic state. Suppose that the next state of a cube c is not the code of a symbolic state, c
cannot be a minterm in the input part, otherwise, since we suppose that C contains only prime implicants,
the next state ofc must be exactly the code ofthe state ofthe symbolic minterm in F to which c corresponds.
So c must contain more than one minterm in the input part, say w.l.o.g. that c contains exactly two minterms
m\ and mi, each corresponding to a symbolic minterm of the care set of F. If the symbolic minterms
corresponding in F to c\ and 01 assert next states s\ and S2, the next state of c must be the intersection of
the codes of s\ and 52 (for sure the next state of c must be dominated by the intersection of the codes of s\
and S2, but we suppose that c is a prime implicant and that it contains exactly minterms mi and ma of the
care set, so we can say that the next state of c is exactly the intersection of the codes of s\ and 52).

Therefore for each symbolic minterm ma in F one defines a disjunctive-conjunctive constraint enforcing
that the code of the next state of ms is a disjunction of conjunctions, where each disjunct is contributed by
one of the cubes ofC that contain the input part of the minterm corresponding to ms, and for each such cube
cm> the conjuncts are the codes of the next states asserted by all the care set minterms that cma contains.
The rest of the reasoning goes as in the previous theorem. D

Disjunctive-conjunctive constraints were introduced for the first time in [3], as the constraints induced
by generalized prime implicants. Our derivation shows that they arise naturally when one wants to find
a complete class of encoding constraints. In our symbolic minimization algorithm we used as the class
of encoding constraints face constraints, dominance constraints and disjunctive constraints. Dominance
constraints are not necessary, but they have been considered useful in developing an heuristic search
strategy. We did not use disjunctive-conjunctive constraints in the heuristic procedure presented here.

4 A New Symbolic Minimization Algorithm

4.1 Structure of the Algorithm

In this section a new more powerful paradigm of symbolic minimization is presented. An intuitive explana
tion of symbolic minimization as proposed in [6] and enhanced in [IS] has been given in Section 3. To help
in highlighting the differences of the two schemes, the one in [15] is summarized in Figure 3.

The new scheme of symbolic minimization features the following novelties.

• Symbolic oring. Disjunctive constraints are generated corresponding to the case of transitions of the
initial cover implicitly expressed by other transitions in the encoded two-level representation, because
of the oring effects in the output part.

1The hypothesis that the FSM is state-minimized guarantees that the minimum implementation does nothave fewer hardware
states than there are symbolic states.

1. Input datacover C with q symbolic outputs,
optional binary outputs,
empty acyclic graphG,
and empty cover FinalP
Output is the graph G and the minimal cover FinalP

1. Orik = on-set implicants of fc-th output symbol
with the corresponding binary outputs unchanged

3. Repeat Steps 4 through 9 q times
4. i = select a symbol
5. Dei = uOnj,

for all j for which there is no path from vertex i
to vertex j in G

6. Off = UOnj,
for all j for which there is a path from vertex i
to vertex.; in G

7. MB{ = minimize(07it, Dc,-,Offi)
8. M{ = implicants of MB{

that are in the on-set of symbol i
9. G = Gu{ (j, i) suchthat M,- intersects Onj }

P = PuMBi
10. FinalP = minimize(F)

Figure 3: Old Symbolic Minimization Scheme

• Implementability. Product-terms are accepted inthe symbolic cover, only when they yield satisfiable
encoding constraints.

• Symbolic reduction. Symfjohc minimization is iterated until an implementable cover is produced. A
symbolic reduction procedure guarantees thatthis always happens.

At last, codes satisfying the given encoding constraints are generated. The accuracy of the synthesis
procedure can bemeasured by the fact that thecardinality of the symbolic minimizedcover is very close to
the cardinality of the original encoded FSMminimized by espresso [1]. This will be shownin the section
of results.

We introduce the following abbreviationsuseful in the descriptionof the algorithm:

• IniCov = (Fc, Dc, Re) is the initial cover of a 1-hot encoded FSM, where Fc, Dc and Re are,
respectively, the on-set, dc-set and off-set of the 1-hotencoded FSM.

• Ns is the set ofnext states of a FSM. Fcna, Dcn8 and Rcna arethe set of product-terms asserting ns,
respectively, in Fc, Dc and Re, Vns € Ns.

• Onn$, Dcarens and Offns are,respectively, the on-set, dc-set and off-set ofnext state ns, Vns £ Ns,
Onns.

• Onbot Dcbo and Offbo are, respectively, the on-set, dc-set and off-set of the binary output functions.

• PartCov = (OnCov, DcCov, OffCov) is the coverof a fragment of a 1-hotencoded FSM, where
OnCov, DcCov and OffCov are, respectively, the on-set, dc-set and off-set of the given fragment.

• Consn3 is the set of input and output constraints yielded by symbolic minimization of Fcna, Vns e
Ns. The sets Consns are cumulated in Cons.

• ExpCovna and RedCovna are, respectively, a maximally expanded and a maximally reduced mini
mized cover of Fcna, Vns € Ns. The sets ExpCovna and RedCovna are cumulated, respectively, in
ExpCov and RedCov.

At the each step of the symbolic minimization loop a new next state ns is chosen by the procedure
SelectState, described in Section 7. The goal is to determine a small set of multiple-valued product-terms
that represent the transitions of Fcns. The procedure SymbOring, described in Section 6, determines Orns,
the transitions of Fcns that can be realized by expanding some product-terms in the current RedCov and
choosing the expansions in the interval (RedCov, ExpCov). This expansion operation yields updated
encoding constraints (here also disjunctive constraints are generated) that must be imposed to derive an
equivalent two-level implementation. The rest of Fcn3 is minimized, putting in its off-set the on-sets of all
states selected previously 2. The minimization isdone calling espresso, without the final makesparse step.
This produces ExpCovns, a maximally expanded minimized cover. Calling the espresso procedure
mvjreduce on ExpCovns produces RedCovns, a maximally reduced minimized cover. The reduced
minimized cover RedCovns yields new encoding constraints Consna.

If it turns out that the constraints in Consns arenot compatible with the constraints already in Cons, a
SymbReduce procedure is invoked to redo the minimizationsof Fcna and produce covers that yield encoding
constraintscompatible with those currentlyacceptedin Cons. In Section 5, where symb.reduce is described,
it is shown that this always happens, i.e. this symbolic reduction step always produces an implementable
symbolic minimized cover of Fcna. The compatible constraints Consna are added to Cons and the new

2This isnotrequired: oneshould putonlythose states that ns covers.

accepted covers ExpCovns and RedCovnaare added, respectively, to ExpCov andRedCov. Finally, codes
satisfyingthe encoding constraints in Cons arefoundandreplaced in the reducedsymbolic minimizedcover
RedCov. The resulting encoded minimized cover EncRedCov is usually of the same cardinality as the
cover obtained by replacingthe codes in the originalsymbolic cover andthen minimizing it with espresso.
EncRedCov canbe minimized again usingespresso to produce acover MinEncRedCov, that rarely has
fewer product-terms than EncRedCov. These statementswill be supported by results in the experimental
section, lb check the correctness of this complex procedure a verification is made of MinEncRedCov
againstEncIniCov. A non-equivalenceof them signalsan error in the implementation.

The outlinedprocedure is shownin Figure 4. The routines with initialletterin the lowercaseare directly
available in espresso (not necessarily with the same nameand syntactical usage), while the routines with
initialletterin the uppercase are new andwill be described in the following sections.

Proposition4.1 The algorithm ofFigure 4 generates animplementable symbolic cover.

Proof. By construction a product term is added to the symbolic cover only if it carries constraints on the
codes that are compatible withtheconstraints of all the symbolic cubes accumulated upto then. Therefore
oneguarantees that the symbolic cover is always implementable atany stage of its construction. •

4.2 Slice Minimization and Induced Face and Dominance Constraints

The procedure Constraints computes the face and dominance constraints induced by a pair of mini
mized covers (RedCovns, ExpCovns) with respect to the original cover Fc. For each product-term
pexp e ExpCovna there is a companion product-term pred € RedCovns obtained from pexp by apply
ingto it the multiple-valued reduce routine of espresso. For each pair of product-terms (pred, pexp) €
(RedCovns, ExpCovna) onegets theimplied face constraint by considering the 1-hot representation of the
input part. For each position fc in the inputpart of the 1-hot representation of pred and pexp, opposite bits
yield adon't care in the face constraint and equal bitsyield thecommon care bit in the face constraint. Face
constraints are generated for all symbolicinputvariables, including proper symbolicinputs,if any.

Dominance constraints are computed by determining, for each product-term pred e RedCov, the
transitions of the original cover Fc that pred intersects in the input part. The next states that these
transitions assert must cover the next state of pred, for the functionality of the FSM to be maintained.
Notice that currently wecompute onlythedominance constraints implied by theproduct-terms in RedCov.
Computing them both for RedCov and ExpCov (as we do in the case of input face constraints withthe
notion of don'tcare input constraints), would allow toexplore alarger part of thesolution space. This isnot
currently done, because it wouldmakethe constraint satisfaction problem morecomplex.

Oring constraints are generated only in theSymbOring procedure described in Section 6. In Figure 5
the pseudo-code of Constraints is shown.

5 Symbolic Reduction

Theprocedure SymbReduce isinvokedto setupaseries ofnewminimizationsthatproduce an implementable
minimized coverof OnCov. This is required when a set of constraints Consns incompatible with those
in Cons are obtained at a certain iteration in the loop of symbolic. When this happens, it means that we
cannot minimize the current OnCov (with the current DcCov), because the minimization process would
merge multiple-valued product-terms in such a way that incompatible constraints are generated. Instead
we can minimize OnCov by blocks and control the allowed companion dc-sets so that only compatible

10

procedure symbolic(Fc, Dc, Re) {
do { /* repeatuntil all next states are selected */

/* Sel is a set of currently selected states */
ns = SelectState(ATs - Sel); Sel = Sel U ns
I* Orna are the transitions of Fcna expressed by oring */
(Orna, ExpCov, RedCov, Cons)

= SymbOnng(IniCov,ExpCov,RedCov,Cons)
/* OnCov are the transitions to be covered */
OnCov = Fcns —Orna
I* add the on-sets of states previously selected to the off-set */
0//Cou = U,€se/-n,Orc,
/* add binary output off-set */
OffCov = OffCov U Offh0
I* everything else (including Orns) is in dc-set */
DcCov = complement(OnCou,0//Coi;)
/* invoke espresso with no makesparse */
ExpCovna = esptesso(OnCov,DcCov,OffCov)
RedCovna = mvjRduce(ExpCovna,DcCov)
Consna = CoT\str2dnts(IniCov,ExpCovns,RedCovnS)
if (ConstraintsCompatible(Cons,Consn5) fails)

(ExpCovna,RedCovna,Consna) =
SymbRe6\xc£(IniCov,PartCov,ExpCovna,RedCovna,Cons,Consna)

ExpCov = ExpCov U ExpCovns
RedCov = RedCov U RedCovns
Cons = Cons U Consns

} while (at least one state in Ns - Sel)
Codes = EncodeConstraints(Cons)
EncRedCov = Encode(RedCov, Codes) /* encode symbolic min. cover */
MinEncRedCov = mimmizz(EncRedCov)
EncIniCov = Encode(/mCov, Codes) /* encode initial FSM */
MinEndniCov = minimize^nc/mCou)
if (\Qrify(MinEncRedCov, EncIniCov) fails) ERROR

}

Figure 4: New Symbolic Minimization Scheme

11

/* face and dominance constraints induced by (RedCovna, ExpCovna) */
Cons\x?oms(IniCov,ExpCovna,RedCovna) {

foreach (pair of product-terms (pred,pexp) € (RedCovna,ExpCovna)) {
foreach (positionk in the 1-hotrepresentation) {

if (I (pred) [k] and I(pexp)[k] are opposite bits) face[k] = dc
else face[k] = I(pred)[k]

}
foreach (transition t e Fc) {

/* don't intersect if t and pred assert same next state */
if (t and pred assert differentnext states) {

if (distance(/(prerf),/(0) = 0) {
create covering constraint (nxst(t) > nxst(pred))

}

}
}

Figure 5: Derivation of face anddominance constraints

constraints are generated. It is evident that intheworst-case, if onlyonetransition of OnCov is minimized
at a time, with an empty dc-set, we always obtain implementable product-terms. This is equivalent to
perform no minimization at all. In SymbReduce, the transitions of OnCov are partitioned intomaximal
setsof transitions that canbe minimized together. Maximal companion dc-sets are found foreach previous
on-set of transitions.

The routine SymbReduce is divided in two steps. In the first step, a maximal subset of Consns is
sought that is compatible withCons. The rationale is that thecompanion product-terms of ExpCovns and
RedCovns are an acceptable cover for asubset of OnCov. Thisisdone in agreedy fashion. The constraints
of Consns compatible with Cons are saved into AConsTmp. A new constraint of Consna is checked
for compatibility with Cons U AConsTmp. If it is compatible, it is added to AConsTmp, otherwise the
product-term companion to the constraint is deleted from both ExpCovna and RedCovna. The transitions
of OnCov not covered by the resulting RedCovns are thenewcover thatmustbe minimizedin suchaway
that only implementable multiple-valued product-terms are found. The transitions of OnCov covered by
the resulting RedCovn3 are instead added to the dc-set.

Inthe second part, the current OnCov (i.e. the part of theinitial OnCov left uncovered by the previous
step) isminimized. The transitions of OnCov that can beminimized together are saved into OnCovTmp.
A new transition t of OnCov is minimized together with OnCovTmp to return both ExpCovTMp and
RedCovTmp. The implied constraints are computed in AConsTmp. If they are compatible withCons,
t is added to OnCovTmp. In this way one determines sets of transitions that can be minimized together.
The dc-set of each such set of transitions is enlarged in a similargreedy fashion. The rationale is that one
mayobtain more expanded resulting product-terms useful inlater stages ofthealgorithm. ThenExpCovna,
RedCovna and Consna are updated, respectively, withthesaved accepted sets ExpCovTmp, RedCovTmp
and AConsTmp. This is iterateduntil all transitionsof OnCov are minimized.

The outlined procedure is shown in Figures 6 and 7. The routines with initial letter in the lowercase are
directly available in espresso (notnecessarily withthesame name and syntactic usage), whilethe routines
with initial letter in the upper case are new.

12

/* PartCov is the triple (OnCov,DcCov,OffCov) */
procedure SyrabReducePdJtl(IniCov,PartCov,ExpCovna,RedCovn8,Cons,Consna) {

I* choose greedily a maximal subset of compatible constraints */
/* pt(c) is a product-term companionto constraint c */
AConsTmp is empty
foreach (constraint c € Consns) {

if (ConstraintsCompatible(Cori5,>lConsTm/>,c) succeeds) {
AConsTmp = AconsTmp U c

} else {
ExpC0Vna = ExpC0Vna - pt(c) /* pt(c) G ExpCoVna */
RedCovns = RedCovna - pt(c) /* pt(c) € RedCovna */

}
}
Consna = Consna U AconsTmp
foreach (transition *in OnCov) {

/* if the product-terms in RedCovns cover £*/
if (sharp(£, RedCovna) returns empty) {

OnCov = OnCov - t

DcCov = jDcCou +1

}

}
}

Figure 6: Symbolic reduction - Parti

13

procedure SymbReducePart2(/ntCov,Par/Cou,^xpCoun, ,RedCovna ,Cons,Consn9) {
do { /* piece-wise minimizations of whatleft in OnCov*/

OnCovTmp = 0; DcCovTmp = $
/* choose greedily a maximal on-set */
foreach (transitiont in OnCov) {

OffCovTmp = complement(OnCovTmp U t, DcCovTmp)
I* invoke espresso with no makesparse */
ExpCovTmp = espresso(OnCovTmp U i,DcCovTmp,0ffCovTmp)
RedCovTmp = mv_reduce(ExpCovTmp,DcCovTmp)
AConsTmp = Constraints(/niCot;, ExpCovTmp, RedCovTmp)
if (ConstraintsCompatible(Cons,v4Con5rmp) succeeds) {

OnCovTmp = OnCovTmp U *
OnCov = OnCov — t
SaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmp
SaveAConsTmp = AConsTmp

}
}
/* choose greedily a maximal dc-set of previous on-set */
foreach (transition *in DcCov) {

OffCovTmp = complemen^OnCovrmp, DcCovTmp U <)
/* invoke espresso with no makesparse */
ExpCovTmp = espressotOnCovTmp.DcCovTmp U t,OffCovTmp)
RedCovTmp = mv_reduce(ExpCovTmp,DcCovTmp)
AConsTmp = Constraints(imCov, ExpCovTmp, RedCovTmp)
if (ConstraintsCompatible(Cons,>lConsTmp) succeeds) {

DcCovTmp = DcCovTmp U <
SaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmp
SaveAConsTmp = AConsTmp

}
}
Consns = ConSm U SaveAConsTmp
ExpCovn3 = ExpCovns U SaveExpCovTmp;
RedCovns = RedCovns U SaveRedCovTmp

} while (at leastone transitionin OnCov)
}

Figure 7: Symbolic reduction - Part2

14

6 Symbolic Oring

hi two-level logic minimizationof multi-output functions the fact of sharing cubes among singleoutputs
reduces the cardinality of the cover. When minimizingsymbolic logic to obtainminimal encodable two-
level implementations, one shoulddetectthe most profitable disjunctive constraints so that- afterencoding-
sharing ofcubesismaximized. InSection4 anexample wasgivenwhere oringin theoutputpart accounts for
mostsavings in theminimumcover. Inthe symbolicminimizationlooppresented in Section 4, SymbOring
is invoked to that purpose.

The goal ofthe procedure SymbOring is to determine asubset (if it exists)ofthe transitions of Fcna that
canberealized usingthe product-terms of the partial minimized symboliccover (ExpCov, RedCov). If so,
that subset is moved from the on-set to the dc-set ofthe cover to minimize in the current step. The procedure
is heuristic because it handles a transition of Fcna at a time and it introduces some approximations with
respect to an exactcomputation. For each transition t of Fcna the following algorithm decides whether t
canbe realized using or modifying product-terms in RedCov. Here we presentthe main features, leaving
out minor design choices.

At a certain stepof the procedure symbolic a pair of partial covers (ExpCov,RedCov) is available. For
each cube pexp € ExpCov there is a companion cube pred e RedCov (and viceversa) suchthat pred is
obtained by pexpby applying to it themultiple-valued reduce routine ofespresso. A cubepred € RedCov
potentially useful to espress implicitly t mustsatisfy theconditions that its input part (denoted I(pred)) has
non-empty intersection with I(t) and the output part of t (denoted 0(t)) covers 0(pred). All such cubes
are collected in the cover Inter(t). It may happen that I(pred) does not intersect I(t), but that I (pexp)
intersects I(t), because in pred the bit of the present state of t is lowered, while in pexp it is raised. If so,
one may raise temptatively also the bit in pred to obtain another potentially useful cube that is added to
Inter(t). The product-term pred raised inthe present state of t isdenoted by raised(pred)t 3.

The set OrNstates(Inter(t)) ofnext states ofcubes in Inter(t) is computed. Define Inter(t)s asthe
set of transitions of Inter(t) with next state included in set S. In orderthat a disjunctive effect occurs it
is necessary that, for at least two next states si and si, I(t)\s coveredboth by the union of the input parts
of allcubes in Inter(t)s\ and by the unionof the input parts of all cubes in Inter(t)S2. Here covering is
meant to be restricted to the next state function assumed as a single output. Suppose that OrNstates has
at least two elements. We determine the states 5 of OrNstates such that the union of the input parts of the
cubesin Inter (t)a covers I(t), anddiscard the others. Moreover, in orderthat a disjunctiveeffect occurs it
is necessary that, for all binary output functions, I(t) is covered by the union of the input partsof all cubes
in Inter(t). If allprevious tests are not satisfied, the attempt of expressing t by symbolicoring fails.

If the previous necessary conditions are satisfied, all subsets of elements in the set OrNstates are
computedin Subset(OrNstates). Eachsuchsubset,denoted by or, is anoringpatternpotentiallyuseful to
espress implicitlythe transition t. For each oring pattern or, the procedure OringCover returns OrCov(t),
a subsetof transitions of /nter (*)orU<£ (it means Inter(t) restricted to next states in or or empty next state)
that cover t, both in the next state output space and in the binary output spaces. Notice that OringCover
may fail to find a cover even if it exists, because while the input spaceof the binary output functions can be
coveredby considering the whole Inter(t), only a subsetof it (Inter(t)or^) is consideredby OringCover.
Notice also that there may be many possible such covers, but only one is found. This may penalize the
quality of the final results, because the computed cover may yield uncompatible constraints, while there is
anothercover that yields compatible constraints. We do not give the details ofOringCover, that is based on

3In thecurrent implementation pisnotadded to Inter(t) if I(p) iscovered bytheinput part of anothercube already in Inter(t).
The rationale is that product-termswhith a more expanded input partare preferred, because they are more likely to cover other
transitions in the future. An exact algorithm should define the notion of don't-care intersecting product-terms, if one knows how to
handle conditional dominance constraints.

15

a greedy strategy.
If a cover OrCov(t) is found, one considers the modified partial minimized cover RedCovTmp,

obtained from RedCov by raising the present state bits according to what done in the generation of
Inter (t). Then the constraints implied by the modified cover are derived and checked for compatibility
with the oring constraint or (since some product-terms of RedCov have been raised in the present state,
there are raised face constraints and by consequence dominance constraints must be recomputed). If the
answer is positive, the transition t is implementable by oring and both RedCov and Cons are updated.
Otherwise anew oringpattern from Subset(OrNstates) isconsidered. Whenthey havebeenallexhausted,
anew transition of Fcna is takenintoconsideration.4.

The outlined procedure is shown in Figures 8. The routines with initial letter in the lower case are
directly available in espresso (not necessarily with the same nameandsyntactic usage), while the routines
with initial letter in the upper case are new.

7 Ordering of Symbolic Minimization

In the procedure symbolicdescribed in Section 4, at eachcycle of the symbolic minimization loop, states
are partitioned in two sets: those selected in previous iterations (Sel) andthose stillunselected (Ns - Sel).
At the startof a new cycle, a new state ns is selectedby the procedure SelectState from Ns - Sel andthe
state partition is updated.

The transitions of the FSM are partitioned, accordingly, in the transitions asserting the states in Sel and
alreadyminimized and the transitions assertingthe states in Ns - Sel and not yet minimized. We observe
the following facts:

1. When a new state ns is selected, the transitions asserting it cannot be used later to minimize the
transitions asserting statesin Ns - Sel - {ns}. Therefore if one measures how much anunselected
state can help in minimizing the other unselected states by dominance (DomGain), the state of
minimum gain should be selected first.

2. When a new state ns is selected, the transitions asserting it cannot be espressed later using the
transitions asserting statesin Ns - Sel -{ns}. Therefore ifonemeasures how much the minimization
ofanunselectedstateis helpedby the otherunselected states by oring(OrGain), the stateofminimum
gain should be selected first.

Summarizing, the problem of the best selectionof a new state can be reduced to one of measuringthe
dominanceandoring gainsandthen choosingthe statethatminimizes their sum (TotGain = DomGain +
OrGain).

As anexample, considerthat Ns = stO, stl, stl, st3, stA,st5, st6. Supposethat currently stO, st5, st6
have been already selected and that a new state must be chosen among stl, stl, st3, stA, by computing
their gain and choosing the minimum. We have devised two slightly different schemes for computing the
gain of a state. In the first scheme, the gain of a state, for instance si 1, can be computed by setting up a
minimization as shown in Figure 9 (in the figure the covers are shown for the next state functions asserted
by the unselected states). After the minimization, the difference in cardinality between the resulting and
original covers gives one component of the gain, DomGain (associated to the dominance constraints:
stl > stl, stl > st3, stl > stA). The second component of the gain, OrGain (associated to the
disjunctiveconstraints: stl = stl V st3 V stA, stl = stl V st3, stl = stl V stA, stl = st3 V stA),is found
by computing, for each transition asserting stl, whether its input part is covered by the input parts of the

4A betteralternative wouldbe to check forconstraints compatibility whilebuilding OrCov(t): do not addanew product-term
to the subsetof OrCov(t) currently accepted, if togetherwith it, it yieldsinfeasible constraints.

16

procedure SymbOiing(IniCov,ExpCov,RedCov,Cons) {
foreach (transitiont € Fcna) {

foreach (pairofproduct-terms (pred, pexp) € (RedCov, ExpCov)) {
if (/(pred) n I(t) non-empty and0{t) D 0(pred)) {

Inter(t) = Inter(t) Upred
}else{

if (I(pexp) n I(t) non-empty and 0{t) D0(pexp)) {
Inter(t) = Inter(t) Uraised(pred)t

}
}

}
compute OrNstates{Inter(t))
if (at least two states in OrNstates) {

foreach (next state s G OrNstates)
if(UP.€/nter(0. ^ 2 '(<)) OrNstates =OrNstates - s

foreach (binary output function)

if(Up6/„tCr(o'(P) 2 /(<)) OrNstates empty
}
if (at least two states in OrNstates) {

generateSubset(OrN states)
foreach (element or of Subset) {

OrCov(t)= OnngCovtt(Inter(t)orU<(),t,ExpCov,RedCov)
if (OrCov(t) is notempty) {

RedCovTmp = Raise(RedCov,Inter(t),t)
ConsTmp - Consttdin\s(IniCov,ExpCov,RedCovTmp)
if (ConstraintsCompauble(ConsTm/?,or) succeeds) {

Orns = OrnsUt
RedCov = RedCovTmp
Cons = ConsTmp U or
goto outer foreach loop

}
}

Figure 8: Symbolic oring

17

OnCov:

on-set of st2 0010000

on-set of st3 0001000

on-set of st4 0000100

OffCov:

on-set ofst2 0001100

on-set of st3 0010100

on-set of st4 0011000

on-set of stO 0011100

on-set of st5 0011100

on-set ofst6 0011100

DcCov:

on-set of stl 0011100

Figure 9: First scheme to compute the gain

transitions asserting at least two other unselected states, for the related next state functions and all binary
output functions.

In the second scheme, the gain of a state can be computed by setting up a minimization as shown
in Figure 10 (referring again to stl in the previous example). After the minimization, the difference in
cardinality between the resulting and originalcovers gives the overall gain TotGain, inclusive of both the
dominance and disjunctive components.

The pseudo-code in Figure 11 shows the first scheme to compute the gain. The second one is simpler,
since it does not include explicitly the covering check to measure the oring contribution (that is implicitly
taken into account by the minimization process) and it is not shown here.

8 Satisfaction of Encoding Constraints

The described procedures require algorithms to check satisfiabilityofasetof face, dominanceanddisjunctive
constraints, and to find minimum codes that satisfy them. We used the algorithms reported in [11], to which
we refer for a complete description. They are based on the notion of encoding dichotomies that are
candidate encoding columns. The notion of encoding dichotomy was pioneered in [14] andthe connection
with satisfaction of face constraints was establishedin [16]. Other contributions on the subject can be found
in [12,2] and more recently in [4,5].

9 Symbolic Minimization by Example

In this section we clarify with an example the mechanics by which the oring effects plays an important role
in the minimization of two-level logic. Then we demonstrateour algorithm for symbolic minimization on a
simple example.

18

OnCov:

on-set of st2 0010000

on-set of st3 0001000

on-set of st4 0000100

on-set of stl 0011100

OffCov:

on-set of st2 0001100

on-set of st3 0010100

on-set of st4 0011000

on-set of stO 0011100

on-set of st5 0011100

on-set of st6 0011100

Figure 10: Second scheme to compute the gain

9.1 The Oring Effect in Two-level Logic

In two-level logic minimization of multi-output functions the fact of sharing cubes among single outputs
reduces the cardinalityof the cover. As an example,considerthe followingcover of a logic functionof four
input and four output variables:

1000 0100

0100 0001

1100 0101

0001 1000

1001 1100

0101 1001

1101 1101

0010 0010

1010 0110

0110 0011

1110 0111

0011 1010

1011 1110

0111 1011

1111 1111

and an equivalent minimum cover, as found by espresso:

1 1000

1 0100

—1- 0010

-1— 0001.

Consider the product term 1001 1100 that appears in theoriginal cover. In the minimum cover, when
the input cube 1001 is true, the first two product terms ofthe minimum cover are excited and the output

19

procedure SelectState(C/n5e/) {
foreach (state st € UnSel) {

gain(st) = ComputeGain(s£,£/nSe/)
}
sel = st € UnSel with minimum gain(st)

}
procedure ComputeGain(/mCot;,s*,£/7iSe/) {

/* measure potential gains by dominance */

OnCov = [Jie(UnSel-st) Fci
OldCard = #(OnCov)
foreach (state j € UnSel - st)

OffCoVj = \JieUnSel-j-at 0ni UUieNs-UnSel 0ni
OffCov = (\JjeUnSei-st OffCovj) UOffh0
DcCov = complement(OnCou,0//Cou)
/* invokeespresso with no makesparse */
OnCov = espKSSO(OnCov„DcCov,OffCov)
DomGain = OldCard - #(OnCov)
I* measure potential gains by oring */
foreach (transition t e Fcst) {

foreach (state i e UnSel - st) {
OnCovi = product-terms of OnCov asserting next state i
if(I(t) C I(OnCovi) for next state and binary output functions) {

increment OrCount

if (OrCount > 1) { /* t canbe expressed by oring */
increment OrGain

goto outer foreach loop

}
}

}
}
TotGain = DomGain + OrGain

Figure 11: Ordering of symbolic mimmization

20

part 1100is asserted. Therefore the product term 10011100is implemented by means of the productterms
11000 and 1 0100. Noticethat twoproducttermsmustbe in anycoverto realizethe following

product terms of the original cover 10000100and0001 1000. Therefore a net saving of one product term
(the one needed to realize 1001 1100) has been achieved in the minimum cover. We say that the product
term 10011100 has been realizedby oringor disjunctive effect(dueto the semantics of the outputpart of a
two-level implementation) or thatit hasbeenredistributed through thetwoproduct terms 11000 and
1 0100. The oring effectaccounts for most savings in the minimum coverof this example.

9.2 A Worked-out Example of Symbolic Minimization

This subsection contains an example of symbolic minimization. The example is shiftreg from the MCNC
suite. The symboliccover of shiftreg, using the syntaxof espresso, is:

.mv 4 1 -£1 -8

.type fr

.kiss

0 stO stO 0

1 stO st4 0

0 stl stO 1

1 stl st4 1

0 st2 stl 0

1 st2 st5 0

0 st3 stl 1

1 st3 st5 1

0 st4 st2 0

1 st4 st6 0

0 st5 st2 1

1 st5 st6 1

0 st6 st3 0

1 st6 st7 0

0 st7 st3 1

1 st7 st7 1

Suppose that the ordering routine returned stO, stA, stl, stl, st5, st3,st6,stl as the order inwhich the slices
of next statesmustbe minimized. Let each position in the 1-hotencoded notation correspond respectively
to the states stO,stA, stl, stl, st5, st3, st6, stl. For instance 10000000 represents stO, while 01000000
represents stA. Slices including all the transitions that have the same next state are minimized inthegiven
order. Theresultofeachminimizationis asetofsymboliccubes whichrealizetheslice. Adc-setas specified
bythetheory is provided in each minimization. If terms of thedc-set having a different next state are used
in a minimization, thencovering constraints areintroduced, together withcompanion face constraints (face
constraints not related to outputconstraints can be introduced also, whentransitions havingthe samenext
state are merged). Before each mimmization, the algorithm figures out whether some transitions of the
given slice can be realized by symbolic cubes already in the partial minimized symbolic cover, when a
satisfiable oring constraint is imposed. Only the remaining transitions are kept in the onset of the slice
underminimization. Whenever symbolic cubesthat impose constraints on thecodesare addedto the cover,
their consistency with respect to tiie constraints cumulated upto then is verified. Aslongastheconsistency
verification fails, different symbolic cubes aretried; eventually anencodeable symboliccoveris constructed.
At the end codesof minimum code-length that satisfythe constraints are found and the codes are replaced

21

inthesymbolic cover and intheoriginal FSM (itis notnecessary, butconvenient to do both, because don't
cares can be used differently, producing covers not of the same cardinality). A final stepof two-valued
minimization produces a minimal encoded FSM.

• Minimization of the slice of next state stO.

The onset is:

0 10000000 100000000

0 00100000 100000001

The dcset is:

1 11000000 100000000

- 01010010 100000000

1 00100000 111111111

- 00001101 111111111

- 11111111 011111110

The minimized expanded cover is:

- 11111111 111111110

- 00101101 111111111

The minimized reduced cover is:

- 11111111 100000000

- 00100000 000000001

Theconstraints code(stA) > code (stO), code(stl) > code(st0),code(stl) > code(st0),code(st5) >
code(stO), code(st3) > code(stO), code(st6) > code(stO) and code(stl) > code(stO) are intro
duced. The companion face constraints are trivial.

• Minimization of the slice of next state stA.

The onset is:

1 10000000 010000000

1 00100000 010000001

The dcset is:

- 01010010 010000000

0 00100000 000000001

- 00001101 111111111

- 11111111 101111110

The minimized expanded cover is:

- 00101101 101111111

1 11111111 111111110

22

The minimized reduced cover is:

- 00100000 000000001

1 11111111 010000000

The constraints code(stS) > code(stA), code(st6) > code(stA) and code(stl) > code(stA) are
introduced. The companion face constraints are trivial.

• Minimization of the slice of next state st1.

The onset is:

0 00010000 001000000

0 00000100 001000001

The dcset is:

- 01000010 001000000

- 00100000 000000001

1 00010110 001000000

1 00000100 111111111

- 00001001 111111111

- 11111111 110111110

The minimized expanded cover is:

- 00101101 110111111

- 01011111 111111110

The minimized reduced cover is:

- 00000100 000000001

- 00010100 001000000

The constraints code(st5) > code(stl) and face(stl, st3) are introduced.

• Minimization of the slice of next state stl.

The onset is:

onset

0 01000000 000100000

0 00001000 000100001

The dcset is:

1 01011110 000100000

- 00100100 000000001

1 00001100 111111111

- 00000010 000100000

- 00000001 111111111

- 11111111 111011110

23

The minimized expanded cover is:

- 00101101 111011111

- 01001011 111111110

The minimized reduced cover is:

- 00001000 000000001

- 01001000 000100000

The constraints code(st6) > code(stl) and face(stA, st5) are introduced.

• Minimization of the slice of next state st5.

The transitionsofthis slice arerealizedby oring symbolic cubes previously addedto the cover, ifone
introduces the constraint code(stS) = code(stA) Vcode(stl).

• Minimization of the slice of next state st3.

One of the two transitions of this slice is realized by oring symbolic cubes previously added to the
cover, if one introduces the constraint code(st3) = code(stl) V code(stl). Considerthe remaining
transition.

The onset is:

0 00000001 000001001

The dcset is:

1 01000011 000001000

- 00101100 000000001

1 00001001 111111111

- 00000010 000001000

- 11111111 111110110

The minimized expanded cover is:

- 00000001 111111111

The minimized reduced cover is:

- 00000001 000001001

The constraint code(stl) > code(st3) is introduced.

• Minimization of the slice of next state st6.

The transitions ofthis slice are realized by oring symbolic cubes previously added to the cover, if one
introduces the constraint code(st6) = code(stA) Vcode(stl).

• Minimization of the slice of next state stl.

One of the two transitions of this slice is realized by oring symbolic cubes previously added to the
cover, if one introducesthe constraint code(stl) = code(stA) V code(stl) V code(stl). Considerthe
remaining transition.
The onset is:

24

onset

1 00000010 000000010

The dcset is:

- 00101101 000000001

1 00000001 111111111

- 11111111 111111100

The minimized expanded cover is:

1 00000011 111111110

The minimized reduced cover is:

1 00000010 000000010

No other constraint is introduced.

• Minimization of the slice of the proper binary outputs.
The onset is:

- 00101101 000000001

- 00100000 000000001

- 00000100 000000001

- 00001000 000000001

The dcset is:

- 11111111 111111110

The minimized expanded cover is:

- 00101101 111111111

The minimized reduced cover is:

- 00101101 000000001

The constraint face(stl,st5, st3, stl) is introduced.

• The final symbolic cover is:

- 11111111 100000000

1 11111111 010000000

- 00010111 001000000

- 01001011 000100000

- 00000001 000001001

1 00000010 000000010

- 00101101 000000001

25

Codes of the states that satisfy the previous constraints are: code(stXf) = 000, code(stA) = 010,
code(stl) = 100, code(stl) = 001, code(st5) = 110, code(st3) = 101, code(st6) = Oil,
code(stl) = 111. The minimizedencoded symboliccoveris:

1 1000

1 0100

—1- 0010

-1— 0001

The minimized encoded FSM is:

1 1000

1 0100

—1- 0010

-1— 0001

10 Experimental Results

The algorithms described have been implemented in a program, called ESP.SA, that is built on top of
espresso. We report one set of experiments that compare the results of performing state assignments
of FSM's with ESP.SA and nova, a state-of-art tool. The FSM's come from the MCNC suite and other

benchmarks. The experiments were run on a DEC 3100 work-station. Our program esp_sa uses a library
of routines described in [11] to check encodeability of constraintsand produce minimum-length codes that
satisfy them. Table 1 shows the statistics of the FSM's used. The statistics include the number of states,
proper inputs and proper outputs, together with the number of symbolic produc-terms ("#eubes") of the
originalFSM description, the cardinality of a minimized 1-hot encoded cover of the FSM ("#l-hot") and
the number of bits for an encoding of minimum length ("#bits").

In Table 2, data are reported for runs of esp.sa with three different ordering options ("ordl", "ord2",
"ord2n"). Foreach run, "#scubes" indicates the number ofcubes of the cover of symbolic cubes obtained by
esp_sa, afterencoding with the codes foundby esp_sa andminimization with espresso; "#cubes"indicates
the number of cubes after encoding the original cover with the codes found by esp_sa and minimization
with espresso; "#bits" indicates the length of the codes found by esp_sa.

InTable3, some datarelated to the best ofthe threeprevious runsare reported. Under"cover", "#incomp"
gives the number of pairwise incompatibilities in the final stepof computingcodes the satisfy the encoding
constraints, and "size" gives the number of prime dichotomies. Under "calls", "#esp" gives the number
of calls to espresso and "#check" gives the number of encodeability checks. Under "CPU times(sec)",
"order" gives the time in seconds forthe ordering routine, "symb"givesthe time forsymbolicminimization,
not including the time spent by the encodeability routines that is reported under "check(codes)" ("codes"
is the time spent for finding the codes satisfying the constraints at the end), while "total" sums up all the
contributions.

Table 4 compares the results of esp_sa with those of nova, providing the number of cubes of the
minimized encoded FSM ("#cubes") and the code-length ("#bits"). Of the results by nova, it is reported
the one the minimizes the final cover cardinality (underthe heading"NOVA(min.#cubes)") andthe one that
minimizes the final covercardinality, if the code-length is kept to the minimum one, i e. to the logarithm of
the number of states (under the heading "NOVA(min.#bits)").

A conclusion from the experiments is that esp_sa improves on average at least 10% the number of
product-terms of the best resultof nova. The gainis morenoticeable on hard examples like s], sia, sand,

26

styr,tbkjn. Since esp_sa isheuristic itdoes notbeat nova onall benchmarks, anoticeable poor performance
being dkl6. The ordering scheme is amain factor influencing thequality of the final results. Experiments
show that the program isvery sensitive to it. Our ordering scheme is static (i.e., decided at the beginning of
the run) and it uses alimited amount of information onthe affinity between theonsets of thenextstates of
theoriginal FSM. Adhoc orders for various examples may improve strongly thequality of final results. For
instance in the case ofsia we found a solution with 9 bits and 52 cubes, vs. 9 bits and 60 cubes produced by
thestandard optionsof esp.sa. Itisnotsimple todesign an ordering algorithm that is fast and produces good
orders across all examples. The strategy ofesp_sa to explore thespace of all possible encodings can be seen
as atwo-layered mechanism: an ordering scheme and, once an ordering is found, thedetection of profitable
encoding constraints that yield good codes. Thelatter part ishandled robustly bytheprogram, as witnessed
by the fart that thecardinality of theminimized encoded cover obtained by symbolic minimization is very
close to the one of the minimized encodedoriginal FSM. The ordering partinsteadis not so robust.

Notice also that the best result of nova and similar well-tuned existing tools is usually obtained by
exercising a large number of different options. For instance, for nova all rotations of a given computed
set of codes are tried and the best one is kept. Another problem is the size of the final unate table to
compute codes of minimum length that satisfy theencoding constraints. An example likeplanet could not
becompleted because thenumberof columns of thetable exceeded 50,000and sowas beyond thepractical
capability of the table solver available in espresso. As a last observation the length of the final codes is
usually larger than the one obtained by nova. This is dueto the fact that the search algorithm targets as a
cost function the number of cubes and does not control directly the code length and to the fact that we stop
the final unate coveringstep to the first solution(to savecomputingtime).

11 Conclusions

We have presented asymbolic minimization procedure that advances theory and practice withrespect to the
seminal contribution in [6]. The algorithm described hereis capable of exploringminimal symbolic covers
by using face, dominance and disjunctive constraints to guarantee that they canbe mapped into encoded
covers. The treatment of disjunctive constraints is anoveltyof this work. Conditions on the complemessof
sets ofencoding constraints and a bridge to disjunctive-conjunctive constraints (presented in [3]) are given.

A key feature of the algorithm is that it keeps as invariant the property that the minimal symbolic cover
underconstruction is encodeable, by meansofefficient procedures that check encodeabilityof the encoding
constraints induced by a candidate cover. Therefore this synthesis procedure has predictive power that
precedent tools lacked, i.e. the cardinality of the coverobtained by symbolicmimmization andof the cover
obtained by replacing the codes in the initial cover and then minimizing with espresso are very close.
Experiments show a set of hard exampleswhere this procedure improveson the best results of state-of-art
tools.

A direction of future investigation is to explore more at large the solution space of symbolic covers by
escaping from localminimausingsomeiterated expansion andreduction scheme,asit is donein espresso.
Currentlythe algorithmbuilds aminimal symbolic cover,exploringbasicallyaneighborhoodofthe original
FSM cover. Another issue requiring more investigation is how to predict somehow the final code-length
while building a minimal symbolic cover, to trade-off product-terms vs. encoding length. Finally it would
be of interest to add the capability to detect disjunctive-conjunctive constraints. This requires extending
the mechanism for symbolic oring and updating the library of routines used to check encodeability of
constraints.

27

example #states #inputs #outputs #cubes #l-hot #bits

bbara 10 4 2 60 34 4

bbsse 16 7 7 56 30 4

bbtas 6 2 2 24 16 3

beecount 7 3 4 28 12 3

cse 16 7 7 91 55 4

dkl4 7 3 5 56 25 3

dkl5 4 3 5 32 17 2

dkl6 27 2 3 108 55 5

dkl7 8 2 3 32 20 3

dk27 7 1 2 14 10 3

dk512 15 1 3 30 21 4

donfile 24 2 1 96 24 5

exl 20 9 19 138 44 5

ex2 19 2 2 72 38 5

ex3 10 2 2 36 21 4

ex4 14 6 9 21 21 4

ex5 9 2 2 32 19 4

ex6 8 5 8 34 23 3

ex7 10 2 2 36 20 4

keyb 19 7 2 179 77 5

kirkman 16 12 6 370 61 4

lion9 9 2 1 25 10 4

maincont 16 11 4 40 27 4

markl 15 5 16 22 19 4

master 15 23 31 86 79 4

opus 10 5 6 22 19 4

pma 24 8 8 73 43 5

ricks 13 10 23 51 33 4

si 20 8 6 107 92 5

sla 20 8 6 107 92 5

s8 5 4 1 20 14 3

sand 32 9 11 184 114 5

saucier 20 9 9 32 30 5

shiftreg 8 1 1 16 9 3

styr 30 9 10 166 114 5

tbk_m 16 6 3 1024 92 4

tma 20 7 6 44 32 5

trainll 11 2 1 1 25 11 4

Table 1: Statistics of FSM's

28

example ordl ord2 ord2n

#scubes #cubes #bits #scubes #cubes #bits #scubes #cubes #bits

bbara 27 27 5 31 28 6 24 23 5

bbsse 31 31 6 26 26 7 24 24 8

bbtas 10 9 3 10 10 4 11 11 4

beecount 10 10 4 12 12 6 10 10 4

cse 58 55 7 42 42 5 42 42 5

dkl4 26 27 4 27 27 4 26 26 4

dkl5 17 17 4 17 17 4 17 17 4

dkl6 64 61 12 59 59 13 60 57 12

dkl7 19 17 5 19 17 5 19 19 6

dk27 7 7 5 9 8 5 7 7 5

dk512 19 18 7 18 16 9 15 15 8

donfile 26 25 12 25 25 13 26 25 12

exl 37 36 9 42 40 9 42 40 9

ex2 34 35 10 36 32 12 30 31 9

ex3 20 18 6 21 18 7 17 17 6

ex4 14 14 5 15 15 5 14 14 5

ex5 17 16 9 18 18 6 14 13 4

ex6 25 25 4 26 25 4 26 25 4

ex7 20 20 8 20 18 4 15 15 5

keyb 75 65 9 45 46 6 47 47 5

kirkman 102 74 11 54 53 10 55 54 9

lion9 8 7 6 9 8 5 9 8 6

maincont 12 12 8 14 14 7 13 13 9

markl 17 18 6 17 17 6 17 17 6

master 69 68 5 70 68 5 70 69 5

opus 15 15 4 15 15 4 15 15 4

pma 40 37 9 42 42 7 42 42 7

ricks 29 29 4 30 30 4 30 30 4

si 62 59 6 49 44 7 49 44 7

sla 62 61 11 61 61 13 60 60 9

s8 11 9 4 11 10 4 11 10 4

sand 96 95 9 86 86 12 91 93 9

saucier 24 23 6 25 24 8 22 22 6

shiftreg 4 4 3 4 4 3 4 4 3

styr 87 89 10 na na na na na na

tbkjn 102 83 15 59 58 8 52 51 7

tma 32 31 6 29 29 6 29 29 6

trainll 10 9 5 13 12 6 10 9 5

Table 2: Results of esp_sa with different ordering heuristics

29

example cover calls CPU times (sec.)

#incomp size #esp #check order symb check(codes) total

bbara 38 8 96 173 7.4 12.9 0(0) 20

bbsse 458 168 155 46 41.6 10 4(0) 56

bbtas 9 4 30 80 1 0 0(0) 2

beecount 104 15 66 55 2 1 0(0) 4

cse 1170 629 155 80 99 45 19(7) 145

dkl4 316 186 38 29 7 2 1(0) 11

dkl5 256 238 17 19 1 0 1(0) 3

dkl6 14578 4710 799 2841 284 5166 1574(203) 7026

dkl7 30 14 47 24 5 1 0(0) 7

dk27 1 2 38 30 0 0 0(0) 1

dk512 1 2 138 140 11 32 2(0) 46

donfile 17929 2701 432 1254 98 2044 143(117) 2286

exl 2282 815 410 542 794 759 39(10) 1592

ex2 3934 826 212 1161 37 1493 28(21) 1559

ex3 148 14 68 52 3 3 0(0) 7

ex4 1048 359 122 22 15 5 3(2) 24

ex5 285 27 57 46 3 2 0(0) 6

ex6 219 16 47 29 8 1 0(0) 11

ex7 352 34 68 43 6 3 0(0) 10

keyb 967 1094 212 71 129 76 32(27) 239

kirkman 716 84 155 1164 1385 1187 172(3) 2746

lion9 26 7 86 75 5 2 0(0) 8

maincont 363 55 194 196 34 48 2(0) 85

markl 443 112 247 155 44 42 2(0) 89

master 281 300 327 315 271 240 18(3) 530

opus 312 151 68 18 6 1 0(0) 9

pma 11381 7455 683 958 411 1174 580(558) 2166

ricks 353 408 107 60 53 19 7(3) 80

si 969 288 233 92 253 126 10(4) 390

sla 225 67 317 639 151 661 13(2) 826

s8 6 4 46 103 1 1 0(0) 3

sand 1545 860 799 1219 412 3374 74(9) 3861

saucier 1401 3340 256 124 45 99 157(156) 301

shiftreg 3 3 47 54 1 1 0(0) 2

styr 6581 17890 1145 1416 2136 4599 1503(1468) 8420

tbk_m 95 20 155 588 294 102 4(0) 401

tma 2221 1221 233 103 68 19 14(13) 103

trainll 156 1 23 105 86 9 5 0(0) 15

Table 3: Measured parametersof esp_sa

30

example ESP.SA NOVA(min.#cubes) NOVA(min.#bits)

#cubes #bits tabes #bits #cubes #bits

bbara 23 5 24 4 24 4

bbsse 24 8 27 5 29 4

bbtas 9 3 8 3 8 3

beecount 10 4 10 3 10 3

cse 42 5 44 5 45 4

dkl4 26 4 22 4 25 3

dkl5 17 4 16 3 17 2

dkl6 57 12 50 8 52 5

dkl7 17 5 17 4 17 3

dk27 7 5 7 3 7 3

dk512 15 8 17 4 17 4

donfile 25 12 24 14 28 5

exl 36 9 37 6 44 5

ex2 31 9 26 6 27 5

ex3 17 6 17 4 17 4

ex4 14 5 14 4 14 4

ex5 13 4 14 4 14 4

ex6 25 4 23 4 25 3

ex7 15 5 15 4 15 4

keyb 46 6 47 6 48 5

kirkman 53 10 52 6 77 4

lion9 7 6 8 4 8 4

maincont 12 8 16 4 16 4

markl 17 6 17 4 17 4

master 68 5 71 4 71 4

opus 15 4 15 4 15 4

pma 37 9 41 5 41 5

ricks 29 4 39 4 30 4

si 44 7 63 5 63 5

sla 60 9 65 5 65 5

s8 9 4 9 3 9 3

sand 86 12 96 5 96 5

saucier 22 6 25 5 25 5

shiftreg 4 3 4 3 4 3

styr 87 10 94 5 93 6

tbkjn 51 7 53 4 53 4

una 29 6 33 5 33 5

trainll 9 5 9 4 9 4

Table 4: Comparison of FSM's encodings for two-level implementation

31

References

[1] R. Brayton,G. Hachtel, C. McMullen, andA. Sangiovanni-Vincentelli. LogicMinimizationAlgorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[2] M. Gesielski, J-J. Shen, and M. Davio. A unified approach to input-output encoding for FSM state
assignment. The Proceedings of theDesignAutomation Conference, pages 176-181, June 1991.

[3] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Booleanminimization. IEEE Transactions onComputer-Aided Design, pages 13-27, January 1991.

[4] E.I.Goldberg. Matrix formulationofconstrainedencoding problems in optimal PLA synthesis. Preprint
No. 19, Institute ofEngineering Cybernetics, Academy ofSciences ofBelarus, 1993.

[5] EJ.Goldberg. Face embedding by componentwiseconstructionof intersectingcubes. PreprintNo. 1,
InstituteofEngineering Cybernetics,AcademyofSciencesofBelarus, 1995.

[6] G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented by
two-level logic macros. IEEE Transactions on Computer-AidedDesign, October 1986.

[7] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite state
machines. IEEETransactions on Computer-Aided Design, July 1985.

[8] G. De Micheli, T. Villa, and A. Sangiovanni-Vincentelli. Computer-aided synthesis of PLA-based
finite state machines. In TheProceedingsoftheInternational Conference on Computer-Aided Design,
September 1983.

[9] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization forPLA optimization. IEEE
Transactions on Computer-AidedDesign, CAD-6:727-750, September 1987.

[10] A. Saldanha and R. Katz. PLA optimization using output encoding. In The Proceedings of the
InternationalConference on Computer-AidedDesign, November 1988.

[11] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Satisfaction of input and output
encoding constraints. IEEE Transactions on Computer-Aided Design, 13:589-602, May 1994.

[12] G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method based on an
intersectingcube theory. In The Proceedings of the DesignAutomation Conference, 1989.

[13] Y. Su andP. Cheung. Computermimmization ofmulti-valuedswitching functions. IEEE Transactions
on Computers, September 1972.

[14] J. TYacey. Internal state assignment for asynchronous sequential machines. IRE Transactions on
Electronic Computers, August 1966.

[15] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment foroptimal two-level logic imple
mentations. In IEEE Transactions on Computer-Aided Design,pages905-924, September 1990.

[16] S.YangandM. Ciesielski. Optimum and suboptimumalgorithms forinputencodingandits relationship
to logic minimization. IEEE Transactions on Computer-Aided Design, January 1991.

32

	Copyright notice 1995
	ERL-95-109

