Copyright © 1995, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYMBOLIC TWO-LEVEL MINIMIZATION

by

Tiziano Villa, Alex Saldanha, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/109
19 December 1995

SYMBOLIC TWO-LEVEL MINIMIZATION

by

Tiziano Villa, Alex Saldanha, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M95/109

19 December 1995

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Symbolic two-level minimization

Tiziano Villa Alex Saldanha Robert K. Brayton
Alberto L. Sangiovanni-Vincentelli
Department of EECS
University of California at Berkeley
Berkeley, CA 94720

December 19, 1995

Abstract

We present a symbolic minimization procedure to obtain optimal two-level implementations of
finite-state machines. Encoding based on symbolic minimization consists of optimizing the symbolic
representation, and then transforming the optimized symbolic description into a compatible two-valued
representation, by satisfying encoding constraints (bit-wise logic relations) imposed on the binary codes
that replace the symbols. Our symbolic minimization procedure captures completely the sharing of
product-terms due to "OR-ing" effects in the output part of a two-level implementation of the symbolic
cover. Encoding constraints are generated by the minimization procedure. Product-terms are accepted
in a symbolic minimized cover only when they induce compatible encoding constraints. At the end a
set of codes that satisfy all constraints is computed. The quality of this synthesis procedure is shown by
the fact that the cardinality of the cover obtained by symbolic minimization and of the cover obtained by
replacing the codes in the initial cover and then minimizing with a two-level minimizer such as ESPRESSO
are very close. Experiments exhibit a set of hard examples where our procedure improves on the best
results of state-of-art tools.

1 Introduction

The optimization of logic functions performed on the Boolean representation depends heavily on the
encoding chosen to represent the symbolic variables.

The cost function that estimates the area optimality of an encoding depends on the target implementation:
two-level or multi-level or field-programmable gate arrays (FPGA’s). The cost of atwo-level implementation
is the number of product-terms or the area of a programmable logic array (PLA). A commonly used cost of a
multi-level implementation is the number of literals of a technology-independent representation of the logic.
FPGA’s come in different architectures with associated costs. Other optimization objectives may be related
to power consumption, speed and testability. It may even be the case that the objective is a comrectness
requirement, as is race-freeness in state assignment of asynchronous circuits.

The following optimal encoding problems may be defined:

(A) Optimal encoding of inputs of a logic function. A problem in class A is the optimal assignment of
opcodes for a microprocessor.

(B) Optimal encoding of outputs of a logic function.

(C) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic function.

(D) Optimal encoding of both inputs and outputs (or some inputs and some outputs) of a logic function,
where the encoding of the inputs (or some inputs) is the same as the encoding of the outputs (or some
outputs). Encoding the states of a finite state machine (FSM) is a problem in class D since the state
variables appear both as input (present state) and output (next state) variables. Another problem in
class D is the encoding of the signals connecting two (or more) combinational circuits.

Here we concentrate on problems in class D for optimal two-level implementations. In particular we
will refer mostly to the problem of encoding FSMs, since there is no loss of generality and they are of great
practical interest.

We will build on the paradigm started by [7]. It involves optimizing the symbolic representation
(symbolic minimization), and then transforming the optimized symbolic description into a compatible two-
valued representation, by satisfying encoding constraints (bit-wise logic relations) imposed on the binary
codes that replace the symbols. This approach guarantees an upper bound on the size of the encoded
symbolic function provided all the encoding constraints are satisfied. Encoding via symbolic minimization
may be considered a three step process. The first phase consists of multiple-valued optimization. The
second step is to extract constraints on the codes of the symbolic variables, which, if satisfied, guarantee
the existence of a compatible Boolean implementation. The third step is assigning to the symbols codes of
minimum length that satisfy these constraints, if the latter imply a set of non-contradictory bit-wise logic
relations.

When the target implementation is two-level logic, the first step may consist of one or more calls[7,6]to a
multiple-valued minimizer [9], after representing the symbolic variables with positional cube notation [13,9].
Then constraints are extracted and a constraints satisfaction problem is set up.

Using the paradigm of symbolic minimization followed by constraints satisfaction, the most common
types of constraints that may be generated (7, 6, 3, 11] are four. The first type, generated by the input
variables, are face-embedding constraints. The three types generated by the output variables are dominance,
disjunctive and disjunctive-conjunctive constraints. Each face-embedding constraint specifies that a set
of symbols is to be assigned to one face of a binary n-dimensional cube and no other symbol should be
in that same face. Dominance constraints require that the code of a symbol covers bit-wise the code of
another symbol. Disjunctive constraints specify that the code of a symbol must be expressed as the bit-wise
disjunction (oring) of the codes of two or more other symbols. Disjunctive-conjunctive constraints specify
that the code of a symbol must be expressed as the bit-wise disjunction (oring) of the bit-wise conjunction
(anding) of the codes of two or more other symbols.

Our approach wants to strike a balance between the exact, but computationally intractable exact formu-
lation provided by generalized prime implicants [3], and solutions that make no attempt of using a complete
set of operations in looking for a good code [15, 6]. One of the issues that we will clarify is the completness
of sets of encoding constraints to find an optimal solution. Then we will propose a heuristic search strategy
to trade-off quality of results vs. computing time.

The presentation is organized as follows. In Section 3 we present the encoding problem for optimal
two-level implementations. In Section 4 the new symbolic minimization algorithm is described, while
procedures for symbolic reduction and symbolic oring are explained, respectively, in Section 5 and in
Section 6. Section 7 analyzes some ordering schemes. In Section 8 mention is made of the algorithms
used for checking encodeability. An example is demonstrated in Section 9, and experiments are reported in
Section 10, with final conclusions drawn in Section 11.

2 Definitions
2.1 Finite State Machines

For definitions of two-level logic minimization we refer to [1]. Here we describe the connection between a
FSM tabular description and its interpretation as a multiple-valued logic function.

A logic function may have multiple-valued (called also symbolic) input variables and symbolic output
variables. A symbolic input or output variable takes on symbolic values. FSM’s can be represented by
state transition tables. State transitions tables have as many rows as transitions in the FSM. The rows of
the table are divided into four fields corresponding to the primary inputs, present states, next states and
primary outputs of the FSM. Each field is a string of characters. The primary inputs may be in boolean or
symbolic form. Note that the input and output patterns may contain don’t care entries. A state transition
table defines a symbolic cover of the combinational component of a FSM. The rows of the state transition
table are called symbolic implicants of the symbolic cover. The symbolic cover representation may be seen
as a multiple-valued logic representation, where each present state mnemonic is one of the possible values
of a present-state multiple-valued variable. A similar identification holds for the next states (and the proper
inputs and outputs, if they are symbolic).

3 Encoding for Two-level Implementations

3.1 Multi-valued Minimization

Advances in the state assignment problem, reported in [8, 1, 7], made a key connection to multiple-valued
logic minimization, by representing the states of a FSM as the set of possible values of a single multiple-
valued variable. A multiple-valued minimizer, such as [9], can be invoked on the symbolic representation of
the FSM. This can be done by representing the symbolic variables using the positional cube notation [13, 9].
The effect of multiple-valued logic minimization is to group together the states that are mapped by some
input into the same next-state and assert the same output. To get a compatible boolean representation, one
must assign each of the groups of states obtained by MV minimization, (called face or input constraints) to
subcubes of a boolean k-cube, for a minimum £, in a way that each subcube contains all and only all the
codes of the states included in the face constraint. This problem is called face embedding problem.

It is worth mentioning that the face constraints obtained through straightforward symbolic minimization
are sufficient, but not necessary to find a two-valued implementation matching the upper bound of the
multi-valued minimized cover. As it was already pointed out in [6], for each implicant of a minimal
(or minimum) multi-valued cover, one can compute an expanded implicant, whose literals have maximal
(maximum) cardinality and a reduced implicant whose literals have minimal (minimum) cardinality. By
bit-wise comparing the corresponding expanded and reduced implicant, one gets don’t cares in the input
constraint, namely, in the bit positions where the expanded implicant has a 1 and the reduced implicant has
a 0. The face embedding problem with don’t cares becomes one of finding a cube of minimum dimension
k, where, for every face constraint, one can assign the states asserted to vertices of a subcube that does not
include any state not asserted, whereas the don’t care states can be put inside or outside of that subcube.
One can build examples where the presence of don’t cares allows to satisfy the input constraints in a cube
of smaller dimension, than it would be possible otherwise.

3.2 Symbolic Minimization

Any encoding problem, where the symbolic variables only appear in the input part, can be solved by
setting up a multiple-valued minimization problem followed by satisfaction of the induced face constraints.

However, the problem of state assignment of FMS’s is only partially solved by this scheme, because the
encoding of the symbolic output variables is not taken into account (e.g. the next state variable). Simple
multiple-valued minimization disjointly minimizes each of the on-sets of the symbolic output functions,
and therefore disregards the sharing among the different output functions taking often place when they are
implemented by two-valued logic. We will now see more powerful schemes to deal with both input and
output encoding.

In [6, 15] a new scheme was proposed, called symbolic minimization. Symbolic minimization was
introduced to exploit bit-wise dominance relations between the binary codes assigned to different values
of a symbolic output variable. The core of the approach is a procedure to find useful bit-wise dominance
(called also covering) constraints between the codes of next states, based on the fact that the input cubes of
the onset of a dominating code can be used as don’t cares for minimizing the input cubes of the onset of a
dominated code. For instance, consider a fragment of a symbolic cover:

10 stl st2 11
00 st2 st2 11
01 st2 st2 00
c0 st3 st2 00
10 st2 stl 11
00 stl st1 -

01 st3 st0 00

If enc(stl) > enc(st2), and enc(st0) > enc(st2) (i.e. st asserted implies st2 asserted and st0 asserted
implies st2 asserted), then the transitions with next states st1 and stQ can be used as don’t cares when
minimizing the transitions with next state st2:

10 stl st2 11
00 st2 st2 11

01 st2 st2 00
00 st3 st2 00
10 st2 - 11
00 stl - -

01 st3 - 00

An equivalent minimized symbolic cover is:

-0 stl,st2 st2 11
0- st2,st3 st2 00
10 st2 stl 11
00 stl stl -

01 st3 st0 00

Notice that also face constraints (st1, st2) and (st2, st3) must be satisfied. The translation of a cover
obtained by symbolic minimization into a compatible boolean representation defines simultaneously a face
embedding problem and a dominance constraints satisfaction problem. Notice that any output encoding
problem can be solved by symbolic minimization. Symbolic minimization was applied also in [10], where
a particular form of PLA partitioning is examined, by which the outputs are encoded to create a reduced
PLA that is cascaded with a decoder.

a 10 stl st2 11 1) -0 stlst2 s2 11

Q) 00 st2 st2 11 2) 0- st2,5t3 st2 00
3) 01 st2 st2 00 (3) 10 st2,st3 st1 11
@ 00 st3 st2 00 @) 00 st stl --
) 10 st2 stl 11) 01 st3 st0 00
©6) 10 st3 st1 11 6) 11 stlst0 st1 10
@) 00 stl stl -- (7) 11 stO,st3 st3 01

€)) 01 st3 st0 00
()] 11 stl stl 10
(1o 11 st3 st3 01
an u st0 st0 11

Figure 1: Covers of FSM before and after symbolic minimization

However, to mimic the full power of two-valued logic minimization, another fact must be taken into
account. When the code of a symbolic output is the bit-wise disjunction of the codes of two or more other
symbolic outputs, the on-set of the former can be minimized by using the on-sets of the latter outputs, by
"redistributing” the task of implementing some cubes. An extended scheme of symbolic minimization can
therefore be defined to find useful dominance and disjunctive relations between the codes of the symbolic
outputs. The translation of a cover obtained by extended symbolic minimization into a compatible boolean
representation induces a face embedding, output dominance and output disjunction satisfaction problem.

In Figure 1, we show the initial description of a FSM and an equivalent symbolic cover retumned by an
extended symbolic minimization procedure.

The reduced cover is equivalent to the original one if we impose the following constraints on the codes
of the states.

Product terms (1°), (3°) and (4°) are consistent with the original product terms (5) and (7) if we impose
code(stl) > code(st2). In a similar way, product terms (2°) and (5°) are consistent with the original product
term (8) if we impose code(st0) > code(st2). The product terms (1°) and (2') yield also the face constraints
face(stl,st2) and face(st2, st3), meaning that the codes of st1 and st2 (st2 and st3) span a face of a
cube, to which the code of no other state can be assigned. The previous face and dominance constraints
together allow to represent the four original transitions (1), (2), (3), (4) by two product terms (1°) and (2°).

Product term (3°) is equivalent to the original transitions (5) and (6) and yields the face constraint
face(st2, st3). This saving is due to a pure input encoding join effect.

Finally the product terms (6’), (7°) represent the original transitions (9), (10) and (11). The next
state of (11) is st0, that does not appear in (6’) and (7°). But, if we impose the disjunctive constraint
code(st0) = code(stl) V code(st3), i.e., we force the code of st0 to be the bit-wise or of the codes of st1
and st3, we can redistribute the transition (11) between the product terms (6°) and (7°). The product terms
(6") and (7’) yield also the face constraints face(stl, st0) and face(st0, st3); together with the previous
disjunctive constraint they allow the redistribution of transition (11).

We point out that if we perform a simple MV minimization on the original description we save only one
product term, by the join effect taking place in transition (3’).

An encoding satisfying all constraints can be found and the minimum code length is two. A solution is
given by stg = 11, st; = 01, st = 00, st3 = 10. If we replace the states by the codes in the minimized
symbolic cover, we obtain an equivalent Boolean representation that can be implemented with a PLA, as
shown in Figure 2. Note that we replace the groups of states in the present state field with the unique face

a”» 0 0 00 11
@) 0 0 00 00
3) 10 -0 01 11
@) 0 0 01 --
(5% 01 10 11 00
6> 11 -1 01 10
7 11 1- 10 01

Figure 2: Encoded cover of FSM

assigned to them and that product term (2”) is not needed, because it asserts only zero outputs. Therefore
the final cover has only six product terms.

3.3 Completness of Encoding Constraints

An important question is whether the constraints described earlier are sufficient to explore the space of all
encodings. More precisely, the question is: find the class of encoding constraints such that by exploring
all of them one is guaranteed to produce a minimum encoded implementation. Of course exploring all
the encoding constraints of a given class may be impractical, but if the answer to the previous question is
affirative, one has characterized a complete class that can lead in line-of-principle to an optimal solution.
This would make more attractive an heuristic that explores the codes satisfying the constraints of such a
class. We now draw a distinction between a symbolic state and an hardware state. The former is a state
of the original FSM. The latter is a state of the encoded FSM. If the number of encoding bits is k& and
the number of symbolic states is n, there are 2* — n hardware states that do not correspond to an original
symbolic state. If 2% = n, there are as many hardware states as there are symbolic states.

Theorem 3.1 Face and disjunctive constraints are sufficient to obtain a minimum two-level implementation
of a state-minimized FSM if the minimum implementation has as many hardware states as there are symbolic
states.

Proof. Consider an FSM F. Let the codes that produce a minimum implementation of the FSM be given,
together with the best implementation C' (here minimum or best refers to the smallest cardinality of a
two-level cover). Suppose that the product-terms of the minimum encoded implementation C are all prime
implicants. Consider each cube of C. Its present state part will contain the codes of one or more states and it
will translate into a face constraint. Its next state part will correspond to the code of a symbolic state (using
the hypothesis that there are as many hardware states as symbolic states). Consider now each minterm of
the original FSM F. It will be covered in the input part (proper input and present state) by one or more
cubes of C; this will translate into a disjunctive constraint whose parent is the next state of the minterm and
whose children are the next states of the covering cubes of C.

The face constraints and disjunctive constraints so obtained are necessary for a set of codes to produce
such a minimum implementation, when they are replaced in the original cover and then the cover is min-
imized. But are they sufficient ? There may be many sets of codes that satisfy these constraints. Is any
such set sufficient to obtain a minimum cover ? The answer if yes, if after that the set of codes is replaced
in the original FSM, an exact logic minimizer is used. Indeed, if this set of codes satisfies the encoding
constraints, by construction they make possible to represent the minterms of the original FSM cover by the

cubes of the minimum cover C. Therefore an exact logic minimizer will produce either C or a different
cover of the same cardinality as C 1. O

Theorem 3.2 Face and disjunctive-conjunctive constraints are sufficient to obtain a minimum two-level
implementation of a state-minimized FSM.

Proof. If there are as many hardware states as there are symbolic states the previous result applies. If the best
implementation has more hardware states than symbolic states, one must introduce disjunctive-conjunctive
constraints. The reason is that it is not anymore always true that the next state of a cube ¢ € C corresponds
to the code of a symbolic state. Suppose that the next state of a cube c is not the code of a symbolic state. ¢
cannot be a minterm in the input part, otherwise, since we suppose that C contains only prime implicants,
the next state of ¢ must be exactly the code of the state of the symbolic minterm in F' to which ¢ corresponds.
So cmust contain more than one minterm in the input part, say w.1.0.g. that ¢ contains exactly two minterms
m; and m3, each corresponding to a symbolic minterm of the care set of F. If the symbolic minterms
corresponding in F to ¢; and c; assert next states s; and s;, the next state of ¢ must be the intersection of
the codes of s; and s; (for sure the next state of ¢ must be dominated by the intersection of the codes of s;
and sz, but we suppose that c is a prime implicant and that it contains exactly minterms m; and m; of the
care set, SO we can say that the next state of c is exactly the intersection of the codes of s; and s3).

Therefore for each symbolic minterm m; in F one defines a disjunctive-conjunctive constraint enforcing
that the code of the next state of m; is a disjunction of conjunctions, where each disjunct is contributed by
one of the cubes of C that contain the input part of the minterm corresponding to m,, and for each such cube
cm, the conjuncts are the codes of the next states asserted by all the care set minterms that c,,,, contains.
The rest of the reasoning goes as in the previous theorem. O

Disjunctive-conjunctive constraints were introduced for the first time in (3], as the constraints induced
by generalized prime implicants. Our derivation shows that they arise naturally when one wants to find
a complete class of encoding constraints. In our symbolic minimization algorithm we used as the class
of encoding constraints face constraints, dominance constraints and disjunctive constraints. Dominance
constraints are not necessary, but they have been considered useful in developing an heuristic search
strategy. We did not use disjunctive-conjunctive constraints in the heuristic procedure presented here.

4 A New Symbolic Minimization Algorithm

4.1 Structure of the Algorithm

In this section a new more powerful paradigm of symbolic minimization is presented. An intuitive explana-
tion of symbolic minimization as proposed in [6] and enhanced in [15] has been given in Section 3. To help
in highlighting the differences of the two schemes, the one in [15] is summarized in Figure 3.

The new scheme of symbolic minimization features the following novelties.

e Symbolic oring. Disjunctive constraints are generated corresponding to the case of transitions of the
initial cover implicitly expressed by other transitions in the encoded two-level representation, because
of the oring effects in the output part.

The hypothesis that the FSM is state-minimized guarantees that the minimum implementation does not have fewer hardware
states than there are symbolic states.

1. Input data cover C with g symbolic outputs,
optional binary outputs,
empty acyclic graph G,
and empty cover FinalP
Output is the graph G and the minimal cover FinalP
2. Ony =on-set implicants of k-th output symbol
with the corresponding binary outputs unchanged
Repeat Steps 4 through 9 ¢ times
i = select a symbol
Dc; = UOn;,
for all 5 for which there is no path from vertex ¢
to vertex jin G
6. Offi=UOn;,
for all j for which there is a path from vertex :
tovertex jin G
7. M B; =minimize(On;, Dc;,Of f3)
8. M, =implicants of M B;
that are in the on-set of symbol i
9. G = GU{(j,1) such that M; intersects On;}
P = PUMB;
10. FinalP = minimize(P)

“naw

Figure 3: Old Symbolic Minimization Scheme

o Implementability. Product-terms are accepted in the symbolic cover, only when they yield satisfiable
encoding constraints.

o Symbolic reduction. Symbolic minimization is iterated until an implementable cover is produced. A
symbolic reduction procedure guarantees that this always happens.

At last, codes satisfying the given encoding constraints are generated. The accuracy of the synthesis
procedure can be measured by the fact that the cardinality of the symbolic minimized cover is very close to
the cardinality of the original encoded FSM minimized by ESPRESSO [1]. This will be shown in the section
of results.

We introduce the following abbreviations useful in the description of the algorithm:

e IniCov = (Fec, De, Rc) is the initial cover of a 1-hot encoded FSM, where Fe¢, Dc and Rc are,
respectively, the on-set, dc-set and off-set of the 1-hot encoded FSM.

e Nsis the set of next states of a FSM. Fcp,, Dcy,, and Rey; are the set of product-terms asserting ns,
respectively, in F'c, Dc and Rc, Vns € Ns.

o Ony,, Dcare,s and O f f,,, are, respectively, the on-set, dc-set and off-set of next state ns, Vrns € N's,
Ong,.

e Ony,, Dcy, and O f f3, are, respectively, the on-set, dc-set and off-set of the binary output functions.

e PartCov = (OnCov, DcCov, O f fCov) is the cover of a fragment of a 1-hot encoded FSM, where
OnCov, DcCov and O f fCov are, respectively, the on-set, dc-set and off-set of the given fragment.

e Consy, is the set of input and output constraints yielded by symbolic minimization of F'c,,, Vns €
N s. The sets Cons, are cumulated in Cons.

e Ex2pCov,, and RedCov,, are, respectively, a maximally expanded and a maximally reduced mini-
mized cover of Fep,, Vns € Ns. The sets ExpCov,, and RedCov,, are cumulated, respectively, in
EzpCov and RedCov.

At the each step of the symbolic minimization loop a new next state ns is chosen by the procedure
SelectState, described in Section 7. The goal is to determine a small set of multiple-valued product-terms
that represent the transitions of F'c,,;. The procedure SymbOring, described in Section 6, determines Ory,,
the transitions of Fc,, that can be realized by expanding some product-terms in the current RedCov and
choosing the expansions in the interval (RedCov, ExzpCov). This expansion operation yields updated
encoding constraints (here also disjunctive constraints are generated) that must be imposed to derive an
equivalent two-level implementation. The rest of Fe,, is minimized, putting in its off-set the on-sets of all
states selected previously 2. The minimization is done calling ESPRESSO, without the final make_sparse step.
This produces EzpCov,,, a maximally expanded minimized cover. Calling the ESPRESSO procedure
mv_reduce on ExpCov,, produces RedCov,,, a maximally reduced minimized cover. The reduced
minimized cover RedCov,,, yields new encoding constraints Consy;.

If it tumns out that the constraints in Cons,,; are not compatible with the constraints already in Cons, a
SymbReduce procedure is invoked to redo the minimizations of F'c,,; and produce covers that yield encoding
constraints compatible with those currently accepted in Cons. In Section 5, where symb_reduce is described,
it is shown that this always happens, i.e. this symbolic reduction step always produces an implementable
symbolic minimized cover of Fc,,. The compatible constraints Cons, are added to Cons and the new

This is not required: one should put only those states that ns covers.

accepted covers EzpCovys and RedCov,,, are added, respectively, to EzpCov and RedCov. Finally, codes
satisfying the encoding constraints in C'ons are found and replaced in the reduced symbolic minimized cover
RedCov. The resulting encoded minimized cover EncRedCov is usually of the same cardinality as the
cover obtained by replacing the codes in the original symbolic cover and then minimizing it with ESPRESSO.
EncRedCov can be minimized again using ESPRESSO to produce a cover MinEncRedCov, that rarely has
fewer product-terms than EncRedCov. These statements will be supported by results in the experimental
section. To check the correctness of this complex procedure a verification is made of MinEncRedCov
against EncIniCov. A non-equivalence of them signals an error in the implementation.

The outlined procedure is shown in Figure 4. The routines with initial letter in the lower case are directly
available in ESPRESSO (not necessarily with the same name and syntactical usage), while the routines with
initial letter in the upper case are new and will be described in the following sections.

Proposition 4.1 The algorithm of Figure 4 generates an implementable symbolic cover.

Proof. By construction a product term is added to the symbolic cover only if it carries constraints on the
codes that are compatible with the constraints of all the symbolic cubes accumulated up to then. Therefore
one guarantees that the symbolic cover is always implementable at any stage of its construction. O

4.2 Slice Minimization and Induced Face and Dominance Constraints

The procedure Constraints computes the face and dominance constraints induced by a pair of mini-
mized covers (RedCovys, EzpCovy,,) with respect to the original cover Fec. For each product-term
pexp € ExzpCouy,, there is a companion product-term pred € RedCovy, obtained from pezp by apply-
ing to it the multiple-valued reduce routine of ESPRESSO. For each pair of product-terms (pred, pezp) €
(RedCovys, ExzpCouy,) one gets the implied face constraint by considering the 1-hot representation of the
input part. For each position k in the input part of the 1-hot representation of pred and pexp, opposite bits
yield a don’t care in the face constraint and equal bits yield the common care bit in the face constraint. Face
constraints are generated for all symbolic input variables, including proper symbolic inputs, if any.

Dominance constraints are computed by determining, for each product-term pred € RedCov, the
transitions of the original cover Fc that pred intersects in the input part. The next states that these
transitions assert must cover the next state of pred, for the functionality of the FSM to be maintained.
Notice that currently we compute only the dominance constraints implied by the product-terms in RedCov.
Computing them both for RedCov and EzpCov (as we do in the case of input face constraints with the
notion of don’t care input constraints), would allow to explore a larger part of the solution space. This is not
currently done, because it would make the constraint satisfaction problem more complex.

Oring constraints are generated only in the SymbOring procedure described in Section 6. In Figure 5
the pseudo-code of Constraints is shown.

5 Symbolic Reduction

The procedure SymbReduce is invoked to set up a series of new minimizations that produce an implementable
minimized cover of OnCov. This is required when a set of constraints C'ons,, incompatible with those
in Cons are obtained at a certain iteration in the loop of symbolic. When this happens, it means that we
cannot minimize the current OnC'ov (with the current DcC'ov), because the minimization process would
merge multiple-valued product-terms in such a way that incompatible constraints are generated. Instead
we can minimize OnCov by blocks and control the allowed companion dc-sets so that only compatible

10

procedure symbolic(F¢, Dc, Re) {
do { /* repeat until all next states are selected */
/* Sel is a set of currently selected states */
ns = SelectState(Ns — Sel); Sel = SelU ns
/* Or,, are the transitions of F'c,,; expressed by oring */
(Orys, ExpCov, RedCov, Cons)
= SymbOring(IniCov,EzpCov,RedCov,Cons)
/* OnCov are the transitions to be covered */
OnCov= Fecpg — Orpg
/* add the on-sets of states previously selected to the off-set */
Offcov = UieSel—-ns On;
/* add binary output off-set */
OffCov=0ffCovUOS fpo
/* everything else (including Ory;) is in dc-set */
DcCov = complement(OnCov,0 f fCov)
/* invoke espresso with no makesparse */
EzpCovy,, = espresso(OnCov,DcCov,0 f fCov)
RedCovy,, = mv_reduce(EzpCovys,DcCov)
Cons,, = Constraints(/niCov, ExpCovy,, RedCovy,)
if (ConstraintsCompatible(Cons,Cons,,;) fails)
(EzpCov,s,RedCovys,Consy,s) =
SymbReduce(/niCov,PartCov,ExpCovy,s,RedCovy,,Cons,Consys)
EzpCov= FEzpCovU EzpCoup,
RedCov = RedCovU RedCovy,,
Cons=ConsU Consy,,
} while (at least one state in Ns — Sel)
Codes = EncodeConstraints(Cons)
EncRedCov = Encode(RedCov, Codes) /* encode symbolic min. cover */
MinEncRedCov = minimize(EncRedCov)
EncIniCov=Encode(IniCov, Codes) /* encode initial FSM */
MinEncIniCov = minimize(E'ncIniCov)
if (verify(MinEncRedCov, EncIniCov) fails) ERROR

Figure 4: New Symbolic Minimization Scheme

11

/* face and dominance constraints induced by (RedCovys, EzpCovys) */
Constraints(/niCov, ExzpCovps,RedCovy;) {
foreach (pair of product-terms (pred, pezp) € (RedCovy,s, EzpCovp;s)) {
foreach (position & in the 1-hot representation) {
if (I (pred)[k] and I (pezp)[k] are opposite bits) face[k] = dc
else face[k] = I(pred)[k]
}
foreach (transition t € Fc) {
/* don’t intersect if ¢ and pred assert same next state */
if (¢ and pred assert different next states) {
if (distance((pred),I(t)) = 0) {
create covering constraint (nzst(t) > nzst(pred))
}
}
}
}

Figure 5: Derivation of face and dominance constraints

constraints are generated. It is evident that in the worst-case, if only one transition of OnCov is minimized
at a time, with an empty dc-set, we always obtain implementable product-terms. This is equivalent to
perform no minimization at all. In SymbReduce, the transitions of OnCov are partitioned into maximal
sets of transitions that can be minimized together. Maximal companion dc-sets are found for each previous
on-set of transitions.

The routine SymbReduce is divided in two steps. In the first step, a maximal subset of Cons,; is
sought that is compatible with Cons. The rationale is that the companion product-terms of EzpCovys and
RedC ovy, are an acceptable cover for a subset of OnCov. This is done in a greedy fashion. The constraints
of Consy, compatible with Cons are saved into AConsTmp. A new constraint of Consy, is checked
for compatibility with Cons U AConsTmp. If it is compatible, it is added to AConsT'mp, otherwise the
product-term companion to the constraint is deleted from both EzpCovy,, and RedCovy,. The transitions
of OnCov not covered by the resulting RedCovy,; are the new cover that must be minimized in such a way
that only implementable multiple-valued product-terms are found. The transitions of OnCov covered by
the resulting RedCovy; are instead added to the dc-set.

In the second part, the current OnCov (i.e. the part of the initial OnCov left uncovered by the previous
step) is minimized. The transitions of OnCov that can be minimized together are saved into OnCovT'mp.
A new transition ¢ of OnCov is minimized together with OnCovT'mp to return both ExzpCovT Mp and
RedCovTmp. The implied constraints are computed in AConsTmp. If they are compatible with Cons,
t is added to OnCovTmp. In this way one determines sets of transitions that can be minimized together.
The dc-set of each such set of transitions is enlarged in a similar greedy fashion. The rationale is that one
may obtain more expanded resulting product-terms useful in later stages of the algorithm. Then EzpCouns,
RedCov,, and Cons,,, are updated, respectively, with the saved accepted sets EzpCovT'mp, RedCovT'mp
and AConsTmp. This is iterated until all transitions of OnCov are minimized.

The outlined procedure is shown in Figures 6 and 7. The routines with initial letter in the lower case are
directly available in ESPRESSO (not necessarily with the same name and syntactic usage), while the routines
with initial letter in the upper case are new.

12

/* PartCov is the triple (OnCov,DcCov,0 f fCov) */
procedure SymbReducePart1(IniCov,PartCov,EzpCov,s,RedCovys,Cons,Consys) {
/* choose greedily a maximal subset of compatible constraints */
/* pt(c) is a product-term companion to constraint ¢ */
AConsTmp is empty
foreach (constraint ¢ € Consy;) {
if (ConstraintsCompatible(Cons,AConsT'mp,c) succeeds) {
AConsTmp= AconsTmpU c
} else {
EzpCovps = ExpCovuys — pt(c) /* pt(c) € ExpCovps */
RedCovy,; = RedCovys — pt(c) /* pt(c) € RedCovps */
}
}
Cons,s = Cons,s U AconsTmp
foreach (transition ¢ in OnCov) {
/* if the product-terms in RedCov,s cover t */
if (sharp(t, RedCovy;) retums empty) {
OnCov=0nCov -t
DcCov= DcCov+t

Figure 6: Symbolic reduction - Part1

13

procedure SymbReducePart2(/niCov,PartCov,EzpCouy,,RedCovy,s,Cons,Consy,) {
do { /* piece-wise minimizations of what left in OnCov */
OnCovTmp =@; DcCovTmp =0
/* choose greedily a maximal on-set */
foreach (transition ¢ in OnCov) {
Of fCovTmp = complement(OnCovTmp Ut, DcCovTmp)
/* invoke espresso with no makesparse */
EzpCovTmp = espresso(OnCovTmp U t,DcCovTmp,0 f fCovTmp)
RedCovTmp = mv.reduce(EzpCovTmp,DcCovTmp)
AConsTmp = Constraints(/niCov, EzpCovTmp, RedCovT'mp)
if (ConstraintsCompatible(Cons,AConsT mp) succeeds) {
OnCovTmp=0OnCovTmpUt
OnCov=0nCov —1
SaveEzpCovTmp = ExpCovTmp; SaveRedCovT'mp = RedCovI'mp
SaveAConsTmp = AConsTmp
}
}
/* choose greedily a maximal dc-set of previous on-set */
foreach (transition ¢ in DeCov) {
Of fCovTmp = complement(OnCovT'mp, DeCovTmp Ut)
/* invoke espresso with no makesparse */
EzpCovTmp = espresso(OnCovTmp,DcCovTmp Ut,0 f fCovTmp)
RedCovTmp = mvrxeduce(EzpCovTmp,DcCovTmp)
AConsTmp = Constraints(IniCov, EzpCovTmp, RedCovTmp)
if (ConstraintsCompatible(Cons,AConsTmp) succeeds) {
DcCovT'mp = DcCovTmp Ut
SaveExpCovTmp = ExpCovTmp; SaveRedCovTmp = RedCovTmp
Save AConsT'mp = AConsTmp
}
}
Cons,s = Consps U SaveAConsTmp
EzpCovps = EzpCovps U Save ExpCovTmp;
RedCovy, = RedCovpy U Save RedCovT'mp
} while (at least one transition in OnCov)

}

Figure 7: Symbolic reduction - Part2

14

6 Symbolic Oring

In two-level logic minimization of multi-output functions the fact of sharing cubes among single outputs
reduces the cardinality of the cover. When minimizing symbolic logic to obtain minimal encodable two-
level implementations, one should detect the most profitable disjunctive constraints so that - after encoding -
sharing of cubes is maximized. In Section 4 an example was given where oring in the output part accounts for
most savings in the minimum cover. In the symbolic minimization loop presented in Section 4, SymbOring
is invoked to that purpose.

The goal of the procedure SymbOring is to determine a subset (if it exists) of the transitions of Fc that
can be realized using the product-terms of the partial minimized symbolic cover (EzpCov, RedCov). If so,
that subset is moved from the on-set to the dc-set of the cover to minimize in the current step. The procedure
is heuristic because it handles a transition of Fe,, at a time and it introduces some approximations with
respect to an exact computation. For each transition ¢ of Fc,, the following algorithm decides whether ¢
can be realized using or modifying product-terms in RedCov. Here we present the main features, leaving
out minor design choices.

At a certain step of the procedure symbolic a pair of partial covers (ExpCov,RedCov) is available. For
each cube pezp € EzpCov there is a companion cube pred € RedCov (and viceversa) such that pred is
obtained by pezp by applying to it the multiple-valued reduce routine of ESPRESSO. A cube pred € RedCov
potentially useful to espress implicitly ¢ must satisfy the conditions that its input part (denoted I (pred)) has
non-empty intersection with I(¢) and the output part of ¢ (denoted O(t)) covers O(pred). All such cubes
are collected in the cover Inter(t). It may happen that I (pred) does not intersect I(t), but that I (pezp)
intersects 7 (t), because in pred the bit of the present state of ¢ is lowered, while in pezp it is raised. If so,
one may raise temptatively also the bit in pred to obtain another potentially useful cube that is added to
Inter(t). The product-term pred raised in the present state of ¢ is denoted by raised(pred); 3,

The set Or N states(Inter(t)) of next states of cubes in Inter(t) is computed. Define I'nter(t)s as the
set of transitions of Inter(t) with next state included in set S. In order that a disjunctive effect occurs it
is necessary that, for at least two next states s1 and s2, /(t) is covered both by the union of the input parts
of all cubes in Inter(t)s; and by the union of the input parts of all cubes in Inter(t),2. Here covering is
meant to be restricted to the next state function assumed as a single output. Suppose that Or N states has
at least two elements. We determine the states s of Or N states such that the union of the input parts of the
cubes in Inter(t), covers I(t), and discard the others. Moreover, in order that a disjunctive effect occurs it
is necessary that, for all binary output functions, I(t) is covered by the union of the input parts of all cubes
in Inter(t). If all previous tests are not satisfied, the attempt of expressing ¢ by symbolic oring fails.

If the previous necessary conditions are satisfied, all subsets of elements in the set Or N states are
computed in Subset(Or N states). Each such subset, denoted by or, is an oring pattern potentially useful to
espress implicitly the transition ¢. For each oring pattem or, the procedure OringCover retumns OrCov(t),
a subset of transitions of Inter(t),rue (it means I'nter(t) restricted to next states in or or empty next state)
that cover ¢, both in the next state output space and in the binary output spaces. Notice that OringCover
may fail to find a cover even if it exists, because while the input space of the binary output functions can be
covered by considering the whole Inter(t), only a subset of it (/ nter(t),,rue) is considered by OringCover.
Notice also that there may be many possible such covers, but only one is found. This may penalize the
quality of the final results, because the computed cover may yield uncompatible constraints, while there is
another cover that yields compatible constraints. We do not give the details of OringCover, that is based on

3In the current implementation p is not added to I'nter(t) if I(p) is covered by the input part of another cube already in Inter(t).
The rationale is that product-terms whith a more expanded input part are preferred, because they are more likely to cover other
transitions in the future. An exact algorithm should define the notion of don’t-care intersecting product-terms, if one knows how to
handle conditional dominance constraints.

15

a greedy strategy.

If a cover OrCou(t) is found, one considers the modified partial minimized cover RedCovTmp,
obtained from RedCov by raising the present state bits according to what done in the generation of
Inter(t). Then the constraints implied by the modified cover are derived and checked for compatibility
with the oring constraint or (since some product-terms of RedCov have been raised in the present state,
there are raised face constraints and by consequence dominance constraints must be recomputed). If the
answer is positive, the transition ¢ is implementable by oring and both RedCov and Cons are updated.
Otherwise a new oring pattern from Subset(Or N states) is considered. When they have been all exhausted,
a new transition of Fc,, is taken into consideration. 4.

The outlined procedure is shown in Figures 8. The routines with initial letter in the lower case are
directly available in ESPRESSO (not necessarily with the same name and syntactic usage), while the routines
with initial letter in the upper case are new.

7 Ordering of Symbolic Minimization

In the procedure symbolic described in Section 4, at each cycle of the symbolic minimization loop, states
are partitioned in two sets: those selected in previous iterations (Sel) and those still unselected (N's — Sel).
At the start of a new cycle, a new state ns is selected by the procedure SelectState from Ns — Sel and the
state partition is updated.

The transitions of the FSM are partitioned, accordingly, in the transitions asserting the states in Sel and
already minimized and the transitions asserting the states in N's — Sel and not yet minimized. We observe
the following facts:

1. When a new state ns is selected, the transitions asserting it cannot be used later to minimize the
transitions asserting states in Ns — Sel — {ns}. Therefore if one measures how much an unselected
state can help in minimizing the other unselected states by dominance (DomGain), the state of
minimum gain should be selected first.

2. When a new state ns is selected, the transitions asserting it cannot be espressed later using the
transitions asserting states in Ns— Sel — {ns}. Therefore if one measures how much the minimization
of an unselected state is helped by the other unselected states by oring (OrGain), the state of minimum
gain should be selected first.

Summarizing, the problem of the best selection of a new state can be reduced to one of measuring the
dominance and oring gains and then choosing the state that minimizes their sum (T'otGain = DomGain +
OrGain).

As an example, consider that N's = st0, st1, st2, st3, st4, st5, st6. Suppose that currently st0, st5, st6
have been already selected and that a new state must be chosen among st1, st2, st3, st4, by computing
their gain and choosing the minimum. We have devised two slightly different schemes for computing the
gain of a state. In the first scheme, the gain of a state, for instance st1, can be computed by setting up a
minimization as shown in Figure 9 (in the figure the covers are shown for the next state functions asserted
by the unselected states). After the minimization, the difference in cardinality between the resulting and
original covers gives one component of the gain, DomGain (associated to the dominance constraints:
stl > st2, st1 > st3, stl > st4). The second component of the gain, OrGain (associated to the
disjunctive constraints: st1 = st2 V st3 V st4, st = st2 V st3, stl = st2 V st4, st1 = st3 V std), is found
by computing, for each transition asserting st1, whether its input part is covered by the input parts of the

4 A better alternative would be to check for constraints compatibility while building OrCou(t): do not add a new product-term
1o the subset of OrCou(t) currenily accepted, if together with it, it yields infeasible constraints .

16

procedure SymbOring(/niCov,EzpCov,RedCov,Cons) {
foreach (transitiont € Fen,) {
foreach (pair of product-terms (pred, pezp) € (RedCov, EzpCov)) {
if (I(pred) N I(t) non-empty and O(t) 2 O(pred)) {
Inter(t) = Inter(t) U pred
} else {
if (I(pezp) N I(t) non-empty and O(t) 2 O(pexp)) {
Inter(t) = Inter(t) U raised(pred),
}

}

compute Or N states(Inter(t))
if (at least two states in Or N states) {
foreach (next state s € OrNstates)
if (Upernter(r), 1(p) 2 I(t)) OrNstates=OrNstates —s
foreach (binary output function)
if (Upelntcr(t) I(p) 2 I(t)) OrNstates empty

if (at least two states in Or N states) {
generate Subset(OrN states)
foreach (element or of Subset) {
OrCov(t) = OringCover(Inter(t)orugt, EzpCov,RedCov)
if (OrCov(t) is not empty) {
RedCovT'mp = Raise(RedCov,Inter(t),t)
ConsTmp = Constraints(/niCov,EzpCov,RedCovT'mp)
if (ConstraintsCompatible(ConsTmp,or) succeeds) {
Orps =0rps Ut
RedCov = RedCovT'mp
Cons=ConsTmpUor
goto outer foreach loop

Figure 8: Symbolic oring

17

OnCov:

on-set of st2 0010000
on-set of st3 0001000
on-set of st4 0000100
OffCov:

on-set of st2 0001100
on-set of st3 0010100
on-set of st4 0011000
on-set of st0 0011100
on-set of st5 0011100
on-set of st6 0011100
DcCov:

on-set of st1 0011100

Figure 9: First scheme to compute the gain

transitions asserting at least two other unselected states, for the related next state functions and all binary
output functions.

In the second scheme, the gain of a state can be computed by setting up a minimization as shown
in Figure 10 (referring again to st in the previous example). After the minimization, the difference in
cardinality between the resulting and original covers gives the overall gain T'otGain, inclusive of both the
dominance and disjunctive components.

The pseudo-code in Figure 11 shows the first scheme to compute the gain. The second one is simpler,
since it does not include explicitly the covering check to measure the oring contribution (that is implicitly
taken into account by the minimization process) and it is not shown here.

8 Satisfaction of Encoding Constraints

The described procedures require algorithms to check satisfiability of a set of face, dominance and disjunctive
constraints, and to find minimum codes that satisfy them. We used the algorithms reported in [11], to which
we refer for a complete description. They are based on the notion of encoding dichotomies that are
candidate encoding columns. The notion of encoding dichotomy was pioneered in [14] and the connection
with satisfaction of face constraints was established in [16]. Other contributions on the subject can be found
in [12, 2] and more recently in {4, 5].

9 Symbolic Minimization by Example
In this section we clarify with an example the mechanics by which the oring effects plays an important role

in the minimization of two-level logic. Then we demonstrate our algorithm for symbolic minimizationon a
simple example.

18

OnCov:

on-set of st2 0010000
on-set of st3 0001000
on-set of st4 0000100
on-set of st1 0011100
OffCov:

on-set of st2 0001100
on-set of st3 0010100
on-set of st4 0011000
on-set of st0 0011100
on-set of st5 0011100
on-set of st6 0011100

Figure 10: Second scheme to compute the gain

9.1 The Oring Effect in Two-level Logic

In two-level logic minimization of multi-output functions the fact of sharing cubes among single outputs
reduces the cardinality of the cover. As an example, consider the following cover of a logic function of four
input and four output variables:

1000 0100
0100 0001
1100 0101
0001 1000
1001 1100
0101 1001
1101 1101
0010 0010
1010 0110
0110 0011
1110 0111
0011 1010
1011 1110
0111 1011
1111 1111

and an equivalent minimum cover, as found by ESPRESSO:

--=1 1000
1--- 0100
-=1- 0010
-1-- 0001.

Consider the product term 1001 1100 that appears in the original cover. In the minimum cover, when
the input cube 1001 is true, the first two product terms of the minimum cover are excited and the output

19

procedure SelectState(UnSel) {
foreach (state st € UnSel) {
gain(st) = ComputeGain(st,UnSel)

} sel = st € UnSel with minimum gain(st)
procedure ComputeGain(/niCov,st,UnSel) {

/* measure potential gains by dominance */

OnCov = Uigwnsel-st) Fei

OldCard=#(OnCov)

foreach (state j € UnSel — st)

Of fCov; = Uicunsel—j—st OTi UUieNs-Unse O

OffCov= (UjeUnSel—st OffCO'Uj) UOS fro

DcCov = complement(OnCov,0 f fCov)

/* invoke espresso with no makesparse */

OnCov = espresso(OnCov,,DcCov,0 f fCov)

DomGain = OldCard — #(OnCov)

/* measure potential gains by oring */

foreach (transitiont € Feg) {

foreach (state ¢ € UnSel — st) {
OnCov; = product-terms of OnCov asserting next state ¢
if (I(t) C 1(OnCou;) for next state and binary output functions) {
increment OrCount
if (OrCount > 1) { /* t can be expressed by oring */
increment OrGain
goto outer foreach loop

}
}
}
}
TotGain = DomGain 4+ OrGain

Figure 11: Ordering of symbolic minimization

20

part 1100 is asserted. Therefore the product term 1001 1100 is implemented by means of the product terms
———11000and 1 — — — 0100. Notice that two product terms must be in any cover to realize the following
product terms of the original cover 1000 0100 and 0001 1000. Therefore a net saving of one product term
(the one needed to realize 1001 1100) has been achieved in the minimum cover. We say that the product
term 1001 1100 has been realized by oring or disjunctive effect (due to the semantics of the output part of a
two-level implementation) or that it has been redistributed through the two product terms — — —1 1000 and
1 — — — 0100. The oring effect accounts for most savings in the minimum cover of this example.

9.2 A Worked-out Example of Symbolic Minimization

This subsection contains an example of symbolic minimization. The example is shiftreg from the MCNC
suite. The symbolic cover of shiftreg, using the syntax of ESPRESSO, is:

.mv 41 -8-81
.type fr

.kiss

st0 st0
st0 st4
stl st0
stl st4
st2 stl
st2 stb
st3 stl
st3 st5
st4 st2
st4 sté6
st5 st2
st5 sté6
st6 st3
st6 st?
st7 st3
st7 st7

HF ORPOHFFOKFRPROFORFPOR OKF O
M HEPFOOKHMEPFOOKFRFKHEHEHOOHRPEP OO

Suppose that the ordering routine returned st0, st4, st1, st2, st5, st3, st6, st7 as the order in which the slices
of next states must be minimized. Let each position in the 1-hot encoded notation correspond respectively
to the states st0, st4, st1, st2, st5, st3, st6, st7. For instance 10000000 represents st0, while 01000000
represents st4. Slices including all the transitions that have the same next state are minimized in the given
order. The result of each minimization s a set of symbolic cubes which realize the slice. A dc-set as specified
by the theory is provided in each minimization. If terms of the dc-set having a different next state are used
in a minimization, then covering constraints are introduced, together with companion face constraints (face
constraints not related to output constraints can be introduced also, when transitions having the same next
state are merged). Before each minimization, the algorithm figures out whether some transitions of the
given slice can be realized by symbolic cubes already in the partial minimized symbolic cover, when a
satisfiable oring constraint is imposed. Only the remaining transitions are kept in the onset of the slice
under minimization. Whenever symbolic cubes that impose constraints on the codes are added to the cover,
their consistency with respect to the constraints cumulated up to then is verified. As long as the consistency
verification fails, different symbolic cubes are tried; eventually an encodeable symbolic cover is constructed.
At the end codes of minimum code-length that satisfy the constraints are found and the codes are replaced

21

in the symbolic cover and in the original FSM (it is not necessary, but convenient to do both, because don’t
cares can be used differently, producing covers not of the same cardinality). A final step of two-valued
minimization produces a minimal encoded FSM.

¢ Minimization of the slice of next state st0.
The onset is:

0 10000000 100000000
0 00100000 100000001

The dcset is:

1 11000000 100000000
- 01010010 100000000
1 00100000 111111111
- 00001101 111111111
11111111 011111110

The minimized expanded cover is:

- 11111111 111111110
- 00101101 111111111

The minimized reduced cover is:

- 11111111 100000000
- 00100000 000000001

The constraints code(st4) > code(st0), code(stl) > code(st0), code(st2) > code(st0), code(stS) >
code(st0), code(st3) > code(st0), code(st6) > code(st0) and code(st7) > code(st0) are intro-
duced. The companion face constraints are trivial.

o Minimization of the slice of next state st4.
The onset is:

1 10000000 010000000
1 00100000 010000001

The dcset is:

01010010 010000000
00100000 000000001
00001101 111111111
11111111 101111110

o

The minimized expanded cover is:

- 00101101 101111111
1 11111111 111111110

22

The minimized reduced cover is:

- 00100000 000000001
1 11111111 010000000

The constraints code(st5) > code(st4), code(st6) > code(st4) and code(st7) > code(std) are

introduced. The companion face constraints are trivial.

Minimization of the slice of next state st1.

The onset is:

0 00010000
0 00000100

The dcset is:

- 01000010
00100000
00010110
00000100
00001001
- 11111111

[I o e |

The minimized expanded cover is:

- 00101101
- 01011111

The minimized reduced cover is:

- 00000100
- 00010100

001000000
001000001

001000000
000000001
001000000
111111111
111111111
110111110

110111111
111111110

000000001
001000000

The constraints code(st5) > code(st1) and face(st2, st3) are introduced.

Minimization of the slice of next state st2.

The onset is:

onset
0 01000000
0 00001000

The dcset is:

01011110
00100100
00001100
00000010
00000001
- 11111111

LI e B o

000100000
000100001

000100000
000000001
111111111
000100000
111111111
111011110

23

The minimized expanded cover is:

- 00101101 111011111
- 01001011 111111110

The minimized reduced cover is:

- 00001000 000000001
- 01001000 000100000

The constraints code(st6) > code(st2) and face(st4, st5) are introduced.

Minimization of the slice of next state st5.
The transitions of this slice are realized by oring symbolic cubes previously added to the cover, if one
introduces the constraint code(st5) = code(st4) V code(st1).

Minimization of the slice of next state st3.

One of the two transitions of this slice is realized by oring symbolic cubes previously added to the
cover, if one introduces the constraint code(st3) = code(stl) V code(st2). Consider the remaining
transition.

The onset is:

0 00000001 000001001
The dcset is:

01000011 000001000
00101100 000000001
00001001 111111111
00000010 000001000
11111111 11113110110

LI B R ot

The minimized expanded cover is:
- 00000001 111111111
The minimized reduced cover is:
- 00000001 000001001

The constraint code(st7) > code(st3) is introduced.

Minimization of the slice of next state st6.
The transitions of this slice are realized by oring symbolic cubes previously added to the cover, if one
introduces the constraint code(st6) = code(st4) V code(st2).

Minimization of the slice of next state st7.

One of the two transitions of this slice is realized by oring symbolic cubes previously added to the
cover, if one introduces the constraint code(st7) = code(st4) V code(st1) V code(st2). Consider the
remaining transition.

The onset is:

24

onset
1 00000010 000000010

The dcset is:

- 00101101 000000001
1 00000001 111111111
- 11111111 111111100

The minimized expanded cover is:
1 00000011 111111110
The minimized reduced cover is:
1 00000010 000000010

No other constraint is introduced.

Minimization of the slice of the proper binary outputs.
The onset is:

00101101 000000001
00100000 000000001
00000100 000000001
00001000 000000001

The dcset is:

- 11111111 111111110

The minimized expanded cover is:

- 00101101 111111111

The minimized reduced cover is:

- 00101101 000000001

The constraint face(st1, st5, st3, st7) is introduced.
The final symbolic cover is:

- 11111111 100000000
11111111 010000000
- 00010111 001000000
- 01001011 000100000
- 00000001 000001001
1 00000010 000000010
- 00101101 000000001

| ot

25

Codes of the states that satisfy the previous constraints are: code(st0) = 000, code(st4) = 010,
code(stl) = 100, code(st2) = 001, code(st5) = 110, code(st3) = 101, code(st6) = 011,
code(st7) = 111. The minimized encoded symbolic cover is:

-=-=1 1000
l1--- 0100
-=1- 0010
-1-- 0001
The minimized encoded FSM is:
-==1 1000
1--- 0100
--1- 0010
-1-- 0001

10 Experimental Results

The algorithms described have been implemented in a program, called ESP_SA, that is built on top of
ESPRESSO. We report one set of experiments that compare the results of performing state assignments
of FSM’s with ESP_SA and NOVA, a state-of-art tool. The FSM’s come from the MCNC suite and other
benchmarks. The experiments were run on a DEC 3100 work-station. Our program ESP_SA uses a library
of routines described in [11] to check encodeability of constraints and produce minimum-length codes that
satisfy them. Table 1 shows the statistics of the FSM’s used. The statistics include the number of states,
proper inputs and proper outputs, together with the number of symbolic produc-terms ("#cubes") of the
original FSM description, the cardinality of a minimized 1-hot encoded cover of the FSM ("#1-hot") and
the number of bits for an encoding of minimum length ("#bits").

In Table 2, data are reported for runs of ESP_SA with three different ordering options ("ord1", "ord2",
"ord2n"). For each run, "#scubes" indicates the number of cubes of the cover of symbolic cubes obtained by
ESP_SA, after encoding with the codes found by ESP_SA and minimization with ESPRESSO; "#cubes" indicates
the number of cubes after encoding the original cover with the codes found by ESP_SA and minimization
with ESPRESSO; "#bits" indicates the length of the codes found by ESP_SA.

InTable 3, some data related to the best of the three previous runs are reported. Under "cover”, "#incomp"
gives the number of pairwise incompatibilities in the final step of computing codes the satisfy the encoding
constraints, and "size" gives the number of prime dichotomies. Under "calls", "#esp” gives the number
of calls to ESPRESSO and "#check" gives the number of encodeability checks. Under "CPU times(sec.)",
"order" gives the time in seconds for the ordering routine, "symb" gives the time for symbolic minimization,
not including the time spent by the encodeability routines that is reported under "check(codes)" ("codes"
is the time spent for finding the codes satisfying the constraints at the end), while "total" sums up all the
contributions.

Table 4 compares the results of ESP_SA with those of NOVA, providing the number of cubes of the
minimized encoded FSM ("#cubes") and the code-length ("#bits"). Of the results by NOVA, it is reported
the one the minimizes the final cover cardinality (under the heading "NOVA(min.#cubes)") and the one that
minimizes the final cover cardinality, if the code-length is kept to the minimum one, i e. to the logarithm of
the number of states (under the heading "NOVA(min.#bits)").

A conclusion from the experiments is that ESP_SA improves on average at least 10% the number of
product-terms of the best result of NOVA. The gain is more noticeable on hard examples like s/, sla, sand,

26

styr, tbk_m. Since ESP_SA is heuristic it does not beat NOVA on all benchmarks, a noticeable poor performance
being dk16. The ordering scheme is a main factor influencing the quality of the final results. Experiments
show that the program is very sensitive to it. Our ordering scheme is static (i.e., decided at the beginning of
the run) and it uses a limited amount of information on the affinity between the onsets of the next states of
the original FSM. Ad hoc orders for various examples may improve strongly the quality of final results. For
instance in the case of s/a we found a solution with 9 bits and 52 cubes, vs. 9 bits and 60 cubes produced by
the standard options of ESP_SA. It is not simple to design an ordering algorithm that is fast and produces good
orders across all examples. The strategy of ESP_SA to explore the space of all possible encodings can be seen
as a two-layered mechanism: an ordering scheme and, once an ordering is found, the detection of profitable
encoding constraints that yield good codes. The latter part is handled robustly by the program, as witnessed
by the fact that the cardinality of the minimized encoded cover obtained by symbolic minimization is very
close to the one of the minimized encoded original FSM. The ordering part instead is not so robust.

Notice also that the best result of NOVA and similar well-tuned existing tools is usually obtained by
exercising a large number of different options. For instance, for NOVA all rotations of a given computed
set of codes are tried and the best one is kept. Another problem is the size of the final unate table to
compute codes of minimum length that satisfy the encoding constraints. An example like planet could not
be completed because the number of columns of the table exceeded 50, 000 and so was beyond the practical
capability of the table solver available in ESPRESSO. As a last observation the length of the final codes is
usually larger than the one obtained by NOVA. This is due to the fact that the search algorithm targets as a
cost function the number of cubes and does not control directly the code length and to the fact that we stop
the final unate covering step to the first solution (to save computing time).

11 Conclusions

We have presented a symbolic minimization procedure that advances theory and practice with respect to the
seminal contribution in [6]. The algorithm described here is capable of exploring minimal symbolic covers
by using face, dominance and disjunctive constraints to guarantee that they can be mapped into encoded
covers. The treatment of disjunctive constraints is a novelty of this work. Conditions on the completness of
sets of encoding constraints and a bridge to disjunctive-conjunctive constraints (presented in [3]) are given.

A key feature of the algorithm is that it keeps as invariant the property that the minimal symbolic cover
under construction is encodeable, by means of efficient procedures that check encodeability of the encoding
constraints induced by a candidate cover. Therefore this synthesis procedure has predictive power that
precedent tools lacked, i.e. the cardinality of the cover obtained by symbolic minimization and of the cover
obtained by replacing the codes in the initial cover and then minimizing with ESPRESSO are very close.
Experiments show a set of hard examples where this procedure improves on the best results of state-of-art
tools.

A direction of future investigation is to explore more at large the solution space of symbolic covers by
escaping from local minima using some iterated expansion and reduction scheme, as it is done in ESPRESSO.
Currently the algorithm builds a minimal symbolic cover, exploring basically a neighborhood of the original
FSM cover. Another issue requiring more investigation is how to predict somehow the final code-length
while building a minimal symbolic cover, to trade-off product-terms vs. encoding length. Finally it would
be of interest to add the capability to detect disjunctive-conjunctive constraints. This requires extending

the mechanism for symbolic oring and updating the library of routines used to check encodeability of
constraints.

27

example [#states || #inputs || #outputs || #cubes][#1-hot [#bits
bbara 10 4 2 60 34 4
bbsse 16 7 7 56 0| 4
bbtas 6 2 2 | 24 6] 3
beecount 7 3 4 28 12 3
cse 16 7 7 91 55 4
dk14 7 3 5 56 25 3
dk15 4 3 ' 5 2| 17l 2
dk16 r' 27 2 3 108 55 5
dk17 8 2 3 32 20 3
dk27 7 1 2 14 10 3
dk512 15 1 3 30 21 4
donfile 24 2 1 | 96) 24 5
exl 20| 9 19 138 44 5
ex2 19 2 2 7) 38 5 “
ex3 10 2 J 2 36 21 4
exd 14 6 ' 9 21 21 4
ex5s 9 2 2 32 19 4

” ex6 8 5 8 (l 34 23 3
ex7 10 2 2 36 20 4
keyb 19 7 2 179 77 5
kirkman 16 12 6| 30| e1f 4 |’
lion9 9 “ 2 1 25 10 4
maincont 16 11 ' 4 40 27 “ 4
mark1 15 5 16 22 19 4
master 15 23 31 86 79 4
opus 10 5 6 { 22 é 9| 4
pma 24 8 8 73 43 S
ricks 13 10 23 51 33 4
s1 20 8 6| 107 92 5
sla 20 8 e‘ 6 107 92 “ 5
s8 5 4 1 20 14 3
sand 32 9 11 " 184 N 114 5

‘ saucier 20 9 9 32 30 5
shiftreg 8 1 1 16 9 3 “
styr 30 9 0] 166f 114 ‘ 5
tbk_m 16 { 6 € 3l 1024 92 ‘ 4
tma 20 7 6 44 32 5

| train11 1 | 2 1 ‘ 25” nj 4

Table 1: Statistics of FSM'’s

28

[example ~ ordl ord2 ord2n
“#scubes #icubes | #bits || #scubes | #cubes | #bits || #scubes | #cubes | #bits
bbara 27 27| 5 31 28 6 24 23 5
bbsse 31 31 6 26 26| 7 24 24 s'
bbtas 10 9| 3 10 0| 4 11 11 4
beecount 10 10 4 12 12| 6 10 0] 4
cse 58 55| 7 “ 42 2| 5 42 Q2 5
dk14 26 27 4 27 27 4 26 26 4 ‘
dk15 17 17| 4 17 17| 4 17 17 4!
dk16 F(64 61| 12 59 50! 13 60 5711 12
dk17 19 17 5 19 17 5 H 19 19 6
dk27 7 71 5 9 8 5 7 7 5
dk512 19 18| 7 18 16 9 15 15 8
donfile 26 25| 12 ‘ 25 25| 13 26 25| 12
exl 37 6| 9 42 40| 9 42 40| 9 ﬁ
ex2 34 35| 10 36 2| 12 30 31 9
ex3 20 18| 6 21 18| 7 ‘ 17 17| 6
exd 14 14{ 5 15 15 5! 14 4| 5
ex5 17 16| 9 18 18 6 14 13| 4
ex6 25 25| 4 26 25| 4 26 25| 4
ex7 20 20| 8 20 18| 4 15 15 5 “
keyb 75 65| 9 ” 45 46 6 47 47| s
kirkman 102 74| 11 54 53| 10 ‘ 55 54| 9
lion9 8 71 6 9 8 5 | 9 8 6
maincont 12 12 8 14 14 7 13 13 9
mark1 17 18] 6 17 17 6 17 17 6
master 69 68| 5 0| 6| 5 70 | 5 “
opus 15 15| 4 15 15| 4 15 15| 4
pma 40 37| 9 2 42 7 42 2| 7
ricks 29 29| 4 30 30| 4 30 30| 4
s1 62 59| 6 49 44| 7 ‘ 49 4| 17
sla I 62 61| 11 61 61| 13 ! 60 60 9
s8 11 9| 4 11 0] 4 11 10| 4
sand 96 95| 9 86 86| 12 91 93 9 “
saucier 24 23 6 25 24 8 22 22 6
shiftreg 4 al 3 4 4 3 4 4 3
styr 87 89 10 na na na na na na
mkm | w02 8| 15| 59| s8] 8| s2f 1) 7
tma 32 31 6 29 29 6% 29 29 6
train11 10 9| s 13 12 6 10 9 5

Table 2: Results of ESP_SA with different ordering heuristics

29

example cover calls CPU times (seC.) 1

#incomp size || #esp | #check || order | symb | check(codes) | total
bbara 38 8 96| 173| 74| 129 000) | 20
bbsse 458 | 168 | 155 46 ” 416 | 10 40) | 56
bbtas 9 4 ‘ 30 80 1 0 00| 2
beecount 104 15| 66 55 2 1 00| 4
cse 1170 | 629 | 155 80| 99| 45 197) | 145
dk14 316 | 186 38 29 7 2 10| 11
dk15 256 | 238(17 19 1 0 10) 3
dk16 14578 | 4710 | 799 | 2841 | 284 | 5166 | 1574(203) | 7026
dk17 { 30 14| 47 24 5 1 00) | 7
dk27 1 2 38 30! 0 0 0(0) 1
dk512 1 2 138 10| 1| 32 20) | 46
donfile 17929 | 2701 H 432 | 1254 | 98| 2044 143(117) | 2286 “
exl 2282 | 815 410| 542 794 | 759 39(10) | 1592
ex2 3934 | 826 212| 1161 37| 1493 28(21) | 1559
l ex3 J 148 14 68 52 3 3 00) | 7
exd f 1048 | 359 122 2| 15 5 32) | 24
exs 25| 27| 57 46 ' 3 2 00)| 6
ex6 219 16| 47 29 8 1 00| 11 |
ex7 352 34| 68 43 6 3 00| 10
keyb 967 | 1094 || 212 7|l 129 76 32027) | 239
kirkman 716 | 84| 155| 1164 || 1385 | 1187 17203) | 2746
lion9 26 71 86 75 5 2 0(0) 8
maincont | 363| 55| 194 196 34| 48 20)| 85 “
mark] 443 | 112 247| 155 44| 42 2000 | 89
master 281| 300 327| 315 271| 240 183) | 530
opus 312| 151 68 18 6 1 00| 9
pma 11381 | 7455 | 683 | 958 | 411 1174 580(558) | 2166
ricks 353 | 408 | 107 60| 53| 19 73)| 80
’| sl 969 | 288 | 233 92| 253| 126 10(4) | 390
sla 225 67| 317| 639 151 661 132) | 826
s8 6 4| 46 103(1| 1 00| 3 ﬂ
sand 1545 | 860 799 | 1219 412 3374 74(9) | 3861
saucier 1401 3340# 256 | 124 45| 99 157(156) | 301
shiftreg 3 3| 47 54 1 1 00)| 2
‘styr 6581 | 17890 || 1145 | 1416 || 2136 | 4599 | 1503(1468) 8420'
tkam | 95| 20| 155 588‘ 204 | 102 40) | 401
tma 2221 1221 | 233| 103(68| 19 14(13) | 103
train11 156 | 23| 105 86 9 5 00 | 15

Table 3: Measured parameters of ESP_SA

30

example ESPSA || NOVA(min.#cubes) || NOVA(min.#bits) H
#cubes | #bits || #cubes #bits || #cubes | #Dits
bbara 23| 5 24 4 24 4
bbsse 24| 8 27 5 29 4
bbtas 9| 3 8 3 8 3
beecount 0] 4 10 3 10 3
cse 0| s J‘ 44 5 45 4
dk14 26| 4 22 4 25 3 H
dk15 17| 4 16 3 17 2
dk16 5711 12 50 8 52 5
a7 | 7| 5| 1 4 “ 17| 3
dk27 71 5 7 3 7 3
dks12 15 8 17 4 17 4
donfile 25 12 24 14 28 5
“ ex1 36 9 J 37 6 44 5 ”
ex2 31| of 26 6 27 5
ex3 17| 6 17 4 17 4
exd 4| 5 14 all 14 4
ex5 I 13| 4 14 4 f 14 4
ex6 25| 4 23 4 25 3
ex7 15] 5 15 4 15 4 N
keyb 46 6 (47 6 48 5
| kirkman sl 0| 5 6| 77| 4
lion9 7 6 8 4 8 4
maincont 12 8 16 4 " 16 4
mark1 17| 6 17 4 17 4
master 68 5 71 4 71 4
opus 15 4 15 4 15 4
pma 37| of a4 5 41 5 I(
ricks 29| 4 39 4 30 4
sl 4| 17 63 5 63 5
sla 60| 9 65 5 65 5
E 101 - I R
sand 86| 12 96 5 96 5
saucier 22 6 25 5 25 5
shiftreg 41 3 4 3 4 3
styr 87 10 94 5 93 6
tbk_m 51 7 53 4 53 4
tma 29| 6 33 5 33 5
train1 1 9] 5 9 4 9 4

Table 4: Comparison of FSM'’s encodings for two-level implementation

31

References

[1] R.Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
Jor VLSI Synthesis. Kluwer Academic Publishers, 1984.

[2] M. Ciesielski, J-J. Shen, and M. Davio. A unified approach to input-output encoding for FSM state
assignment. The Proceedings of the Design Automation Conference, pages 176-181, June 1991.

[3] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Boolean minimization. JEEE Transactions on Computer-Aided Design, pages 13-27, January 1991.

[4] E.I.Goldberg. Matrix formulation of constrained encoding problems in optimal PLA synthesis. Preprint
No. 19, Institute of Engineering Cybernetics, Academy of Sciences of Belarus, 1993.

[5) E.LGoldberg. Face embedding by componentwise construction of intersecting cubes. Preprint No. 1,
Institute of Engineering Cybernetics, Academy of Sciences of Belarus, 1995.

[6) G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented by
two-level logic macros. IEEE Transactions on Computer-Aided Design, October 1986.

[7] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite state
machines. JEEE Transactions on Computer-Aided Design, July 1985.

[8] G. De Micheli, T. Villa, and A. Sangiovanni-Vincentelli. Computer-aided synthesis of PLA-based
finite state machines. In The Proceedings of the International Conference on Computer-Aided Design,
September 1983.

(9] R.Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimization. /JEEE
Transactions on Computer-Aided Design, CAD-6:727-750, September 1987.

[10] A. Saldanha and R. Katz. PLA optimization using output encoding. In The Proceedings of the
International Conference on Computer-Aided Design, November 1988.

[11] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Satisfaction of input and output
encoding constraints. /EEE Transactions on Computer-Aided Design, 13:589-602, May 1994.

[12] G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method based on an
intersecting cube theory. In The Proceedings of the Design Automation Conference, 1989.

[13] Y. Su and P. Cheung. Computer minimization of multi-valued switching functions. JEEE Transactions
on Computers, September 1972.

[14] J. Tracey. Internal state assignment for asynchronous sequential machines. /RE Transactions on
Electronic Computers, August 1966.

[15] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level logic imple-
mentations. In IEEE Transactions on Computer-Aided Design, pages 905-924, September 1950.

[16] S.Yangand M. Ciesielski. Optimum and suboptimum algorithms forinput encoding and its relationship
to logic minimization. /JEEE Transactions on Computer-Aided Design, January 1991.

32

	Copyright notice 1995
	ERL-95-109

