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Abstract

The main difficulty in implementingcellular automata on the Cellular Neural Network Uni
versal Machine (CNNUM) [1, 2] is the need to perform arbitrary logic functions of the input
neighborhood. Since the architecture computes weighted sums of the input neighborhood (B-
template), it is limited to threshold logic, i.e. a logical operation to be computed by a single
transient must be in the class of linearly separable boolean functions. It wasshown previously[3]
how a general logic function can be implemented by cascading component functions from this
class - namely by the direct implementation of the minterm or maxterm formulation of the
desired function. However, for functions of a 3 x 3 input neighborhood this may require up to
256 stages.

Wepropose a moreefficient method ofperforminggenerallogicfunctions on the CNNUM and
other hardwares capable of performing a threshold logicfunction. The class of considered com
ponent functions is larger than the minterms and maxterms but, for purposes of searchability,
easeof implementation, and robustness, smaller than the general linearly separable boolean func
tions. We have formulated an algorithm that will find a sequence of weight-restricted threshold
logic functions (B-templates with {-1,0,-1-1} weights and I bias) that, when cascaded together
using two-input logical operations, will result in the desired boolean function. Two examples
are given to exhibit the algorithm.

1 Introduction

Cellular automata are an important class of array dynamical systems which are discrete in space,
state, and time. They have shown to be useful in modeling physical systems [4], morphological
imageprocessing [5], and random number generation [6].

The main task in evolving a particular cellular automaton rule is, in a space-invariant and
synchronous manner, to evaluate a given boolean function of the state of a cell and its immediate
neighbors. The result of this boolean function is then stored as the next state of the cell and
the whole procedure is iterated. When a different cellular automaton state transition rule is to
be implemented, a different boolean function must be specified. The cellular automaton evolution
is inherently a highly parallel operation, and many specialized hardwares have been developed
exploiting this fact [7, for instance].
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When implementing an arbitrary cellular automaton in circuitry, there is a tradeoff between the
space required and processing time. At one extreme is the bit-serial processor approach, by which
the whole array is updated serially. At the other extreme is the array approach, by which simple
processors are assigned one per cell and consult a local look-up table in order to update the states.

We propose a method for implementing an arbitrary cellular automaton rule on an architecture
which rests somewhere between these extremes. The processing units are placed one-per-cell,
but, due to implementation concerns, the computational capability is not enough to implement
an arbitrary logic function in a single time step. Instead, the processors are time multiplexed to
perform a single cellular automaton iteration by means of a short sequence of simple operations.

Architectures capable of implementing the proposed method in a massively parallel fashion are
the Cellular Neural Network Universal Machine and the Discrete-time CNN. Both of these proces
sors are more general than necessitatedby our approach and allow for many other image processing
computations. However, the robust implementation of cellular automata and neighborhood logic
on such machines is an important question since these operations are often used as stages of more
complicated algorithms. Alternatively, larger arrays could be built by tailoring the hardware to
specialize in the proposed method.

It has long been known that threshold logic can be used to implement the class of linearly
separable boolean functions. By cascading the outputs of threshold logic units, arbitrary boolean
functions can be built [8].

Our approach follows the threshold logic methodology, but further restricts the class to those
with {-1,0,-1-1} weights. Under this restriction, only N thresholds need to be implemented for
boolean functions of TV-inputs - all others are redundant. To minimize the chance of errors due to
noise it is wise to choose threshold values which are furthest from the possible sums formed by the
unit, which in this case can be easily done by using 2N - 1 thresholds. The advantage of such an
approach is threefold: The architecture needs not to implement an arbitrary analog multiplication
and threshold, the weight space can be exhaustively searched by present-day computers, and the
hardware is more robust to noise. The disadvantage is an algorithm with greater time complexity,
and some additional control circuitry. In order to reduce the increase in time, we are allowing
arbitrary boolean combination of binary-weighted threshold logic function, which requires only a
simple two-input universal logic unit at each cell.

2 Background

2.1 Cellular Automata Rules

The states of a cellular automaton (CA) evolve according to a state transition rule. The state
transition rule is a boolean function which determines the next state of each cell as a function of
the current state of the cell and its neighbors.

In this paper we will discuss two-dimensional first-order cellular automata. The states of a
first-order CA can take on one of two values which we will designate as {0,1} where 0 can be
thought of as logical FALSE and 1 as logical TRUE; and the state transition rule is a function of
the current states of the cell and its 8-nearest neighbors. The state evolution of the automaton to
the next time step can be written as

si,j(n+ l) = f[stfi>j(n)]

where Mitj are the indices for the neighborhood of cell (i,j) and /, in our case a boolean function
of 9 variables, is the state transition rule. A total of 29 = 512 neighborhood configurations are
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Figure 1: Minimal architecture for one cell of a restricted threshold logic machine. Only twoof the
lines from the eight neighboring state buffers are shown.

possible. The boolean function which defines the transition rulemust specify a next state foreach of
these neighborhoods. Since each can have two possible next states there are therefore 2512 « 10154
possible cellular automata rules in the considered class.

2.2 Restricted Threshold Logic Machine

We are proposing a technique for implementing any of these cellular automata in array hardware.
The minimal architecture necessary for the proposed method is shown in Figure 1. The machine
has a massively parallel cellular structure, of which one cell is shown.

Each cell has a binary buffer which can be accessed by neighboring cells. For our purposes it
is convenient to let -1 denote logical FALSE and +1 denote logical TRUE. These buffers must be
able to be supplied to the input of a restricted-parameter threshold logic unit. Mathematically, the
unit accomplishes the function

sgn I 2 w{k,l)si+ktj+i(n) - Iq
,*,i=-i

where the weights w(kj) can be chosen from {-1,0,1}. Note that since the weighted sums formed
by the unit must be integral and will jump in steps of two (although they will be either even or
odd depending on the number of weights which are zero), choosing Iq € {-8, -7,..., +7, +8} is a



well-spaced choice for thresholds. The restricted parameter set is one of the unique aspects of this
hardware which allows for ease of implementability as well as robustness.

The output of the threshold unit must be able to be combined with the contents of a temporary
storage binary buffer through a general selectable two-input logic function. Finally, the contents of
the temporary buffer must be able to be transferred back to the state buffer.

These requirements are minimal and can be satisfied by some more complex architectures, such
as the CNN Universal Machine and some implementations of the Discrete-time CNN. For instance,
the evolution of states in the CNN is controlled by three parameters: an A-template, a B-template,
and a threshold value I0. To use the CNN to perform linear thresholding [9], we set all values of
the A-template to zero except the center element which is set to one. The B-template defines the
linearly separable boolean function. Thus for an 8-neighborhood configuration we have

A =

0 0 0

0 1 0

0 0 0

B =

<-l,-l)
w(0,-l)
to(l,-l)

to(-M)
w(0,0)
to(l,0)

w(-l,l)
w(0,l)
"(1,1)

I=-/o

3 Weight Generation Algorithm

Figure 1 hints at how we intend to use the architecture to implement a cellular automaton. The
current states s;,j(rc) are storedin the state registers. The restricted threshold logic unit is used to
perform a series of logic functions b^ on the current state. Each of these is sequentially combined
with the previous result through a two-input logic function ©^. After M iterations, the desired
logic function will have been performed and the result is fed-back to the state register as the next
state. Namely,

Sij(n+ 1)= fMlsATijin)] where

/o[^>)] = &(°W>)1
MwA*)] = AkWl 0(1) &(1W,»]
/2K>)1 = /iK»] ©(2) %«W1

WVyW] = fM-i[s«itj(n)) ©<"> &<MW,»]

Given an arbitrary state transition rule /, we want to be able to implement by such a decom
position. Thus our problem is, for an arbitrary given state transition rule (which is a boolean
function), to find a sequence of&(*) in this restricted-weight threshold logic class and corresponding
two-input logic operations such that the resulting function /m is the given transition rule.

3.1 Characterization of Restricted-Weight Threshold Logic Class

We will express an input, w, to the boolean function, /, as the N-tuple u = (^o>«i,.. .,14at_i) €
U= {0,1}N. (For our examples, N = 9.) Then, the boolean function can be expressed as a 2N -
tuple listed in the natural order when interpreting the input N-tuple as the binary representation
of an integer. That is, we can write the boolean function f(u) = (/o,/i,.« •5/2^-1) sucn that
f(u) e f = {o,i}2" .



Some special boolean functions should be noted. Minterms are boolean expressions that are
true for only one input. Specifically, there are 2N such minterms defined by

otherwise.

. , fl, if it

The maxterms are the dual to minterms in that they evaluate to 0 if a given input occurs and 1
otherwise. Then similarly the maxterms can be defined as

\/t i \ f 0, if i* = I

otherwise.

It is an elementary observation that any boolean function can be expressed as a sum (OR) of
minterms or a product (AND) of maxterms. To express a boolean function in minterms, simply
add all minterms corresponding to inputs that make the function evaluate to 1. For maxterms, the
boolean function is equivalent to multiplying all maxterms that correspond to inputs that make
the function evaluate to 0.

Having made these observations we can address the first question: does a solution of the form
of Equation 3 exist? The answer is yes, and a constructive argument can be found in [3]. The
important point of the argument is: by using weights in {-1,+1} and a threshold of —(N —1)
one can implement any minterm with the restricted threshold logic unit. Similarly, with weights
in {-1,+1} and a threshold of +(N - 1) any maxterm can be implemented. Thus we only need
the local logical operations OR and AND and the min/maxterm class of templates to construct a
solution to our problem. A solution of this form would require at most 2N"1 templates.

In general, wewould expect to be able to find solutions which use fewer templates than required
in a purely minterm or maxterm formulation because weare considering a larger classof templates.
We have an additional weight value, 0, which allows a template to ignore the value of some inputs.
A template with some zero weights and a threshold of -(N - z - 1) where z is the number of
zero weights in the template is equivalent to an ORing of minterm templates in the same way that
a circled implicant on a Karnaugh map is equivalent to the sum of the minterms circled. (Since
any sum of minterms can be written as a product of maxterms, what is true for minterms has
a dual realization using maxterms.) For example, a set of weights w = (itfo,u>i,. ..,^N-i) with
w0 = 0 and tw;e{-l,+l}forz = l...JV-l acts the same as the fo] lowing two minterm template
expression:

(-1, wi,..., tzw-i) OR (+1, toi,..., wn-i).

The ability to assign threshold values other than ±(N - z - 1) used for the min/maxterms allows
even more flexibility.

We will now attempt to quantify the behavior of the restricted-weight threshold logic unit. Let
us define the distance between input N-tuples as

N-i

dist(u, v) = ^ U{ ©Vi for tt, v€ V
t=0 I

where © denotes the XOR operation that returns 1 if U{ ^ ut- and 0 if U{ = V{. Consider a template
with weights w and threshold Jo = -(JV - z - 1 - 2k) for k = 0... N\- z. For the moment, assume
that z = 0. Then, as described above, when k = 0 the unit will implement the particular minterm
mw. When A: ^ 0, the unit will return TRUE for the set of inputs {u : u € Uydist(u,w) < k}. A
boolean function of this form will be called a ballterm and can be written

bWtk = ORmw for v € U s.t. dist(v^w) < k



Intuitively, this function can be visualized as detecting all inputs within a ball of radius k centered
at the input w.

Similarly, for k = 0,z ^ 0, the template will detect a particular implicant, and for k ^ 0 the
template will detect all mintermsthat are a distance less than or equal to k from the impUcant. For
example, suppose N = 4 and our set ofweights is (+1,0, -1, +1). A threshold of-2 where k = 0, z =
1 will be equivalent to the minterm template combination (+1,+1,-1,-1-1) OR (+1,-1,—1,+1)
with threshold -3. Now if we consider a threshold of-4, the resulting template will be equivalent to
the combination (+1, +1, -1, +1) OR (+1, -1, -1, +1) OR (-1, +1, -1, +1) OR (-1, -1, -1, +1)
OR (+1, +1, +1, +1) OR (+1, -1, +1, +1) OR (+1, +1, -1, -1) OR (+1, -1, -1, -1) with each set
of weights thresholded at -(N - 1) = -3. The last six sets of weights describe templates that
detect minterms a distance 1 away from the implicant detected with threshold -2.

3.2 Description of Decomposition Algorithm

Since we know a solution always exists to decompose the desired boolean appropriately, we would
like to create an algorithm to automatically find a solution for us. There are many possible algo
rithms because, in general, more than one solution exists. For example, we could simply generate
all the minterms of the given boolean function and OR them together. Such a solution, however,
ignores the benefits of our larger class of templates and logical operators.

We take advantage of these additional options by implementing a greedy algorithm. The algo
rithm generates the set B of all the boolean functions that can be implemented with weights in
{-1,0,+1}. Let L designate the set of two-input boolean functions for combining elements in B.
Figure 2 gives a flowchart of the algorithm. First, the function &(°) € B of minimum distance to
the desired function is found. Our notion of distance is similar to the one defined above except
that we apply it to boolean functions rather than inputs:

2"-l

distF(f,g) = ]T f(u) ©g(u) for f,g € F.
«=o

While this distance is greater than zero, the algorithm iteratively searches B and L for a function
&(fc) and logic operation ©^ that will modify the previous functions to result in one of minimal
distance to the desired function.

The algorithm is guaranteed to converge to a solution since in every iteration prior to conver
gence the error can decrease by at least one. This can be seen by observing that even in the worst
case the current function /(*) can be brought closer to the desired one by either ORing with a
minterm or ANDing with a maxterm.

3.3 Examples

In this section we will show some examples of algorithm results. For readability, we are going to
display the 2N-digit boolean functions pictorially as a rectangular array of2^ squares colored either
black or white. Starting at the top left with /(0), we will fill in each square row by row, coloring it
black if f(i) = 0 or white if /(i) = 1. So the XOR function, fxoR = (0,1,1,0), could be depicted
as shown in Figure 3. In the following examples N = 9. Each boolean function will be depicted
with /(0) - /(31) displayed in the first row; the last entry, /(511), is in the bottom right corner.

With nine inputs, there are 118,098 boolean functions in the set B . However, since each each
ballterm also has its complement in this set, only half of them need to be generated for searching
since the complements are easily generated during the search. Each truth table requires 512 bits,
requiring a total of less than 4MB of storage.
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Figure 2: Flowchart for the template-finding algorithm. The input is the desired boolean function.
The algorithm finds a sequence of functions from the restricted-weight threshold logic class and
associated two-input combining logic to implement the desired function.
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Figure 3: A demonstration of the pictorial boolean function notation used in this paper. The
truth table of a boolean function (in this case the exclusive-OR (XOR)) is mapped to a graph by
converting successive regions of the truth table to rows of the graph, as shown, giving a compact
representation.

Example 1 - Game of Life

Figure 4 shows the algorithm results for implementing the game of life, which is a famous two-
dimensional cellular automata rule with many interesting properties [10].

The resulting ballterms and logic operations are:

6(°) =6(-i,-i1-i,-i,o,-i,-i,-i,-i),-i
fcO) = 6(+1>+1(+1)+1)+1(+1)+1)+1)+1)i+4

©W =AND

To implement these results on the CNN, we would create a Bo template to implement the b^
ballterm and a B\ template for the 6^) ballterm as shown below:

A =

A =

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

Bn =

B,=

-1 -1 -1

-1 0 -1

-1 -1 -1

+1

+1

+1

+1

+1

+1

+1

+1

+1

Ii =-1

Ii = +4

Each set of templates is applied to the input, and the results are ANDed together to get the
final answer. These results are identical to those designed informally in [11].

Example 2

Figure 5 shows the algorithm's results for another sample function.
The resulting ballterms and logic operations are:
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Figure 4: Template-finding algorithm output for the game of life CA. The 512-entry truth tables
for the desired and output boolean function are shown pictoriaUy.

6(0) = 6(_! ,_ifo,+l,0,-l,-l,0I-l),-3
6(1) = &(_i,_lt+l,-l,0,+l,-l1+l,-l),-5
&(2) = 6(_lt+1,0,o,+l,0.+l,0,-l).-2
fc(3) = &(_i|o,-l,-l1_l,0,+l,-l,0),-5

©W =XOR
©W =AND
©<3) =0R

Therefore, this chosen neighborhood logic function could be implemented using a sequence of
four CNN templates. j

4 Performance Considerations

The above algorithm does not guarantee asolution with theminimal jnumber oftemplates possible.
For instance, the caseoften occurs that more than one function in the table will result in the same
minimal distance. For convenience, the algorithm simply picks the first such function it encounters.
This choice of function, however, can make a difference in the final number of templates needed.

The choice ofdistance measure also affects the outcome. The distance measure described above
looks for the best fit by weighting both TRUE (1) and FALSE (0) equally so that the best fit
function may have errors which output 1 when it should output 0 and vice versa. The operation
OR can only modify a function by changing O's to l's its truth table while the operation AND can
only change l's to O's; only XOR can add both l's and O's. Thus this distance measure shows no
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Figure 5: Template-finding algorithm output for a sample input function. The desired function
was found to be implementable in four restricted-weight threshold logic stages. The 512-entry
truth tables for the desired logic function, the restricted-weight threshold logic functions, and the
intermediate results after each stage are shown here pictoriaUy.
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preference between OR and AND since both could be used to decrease the distance.
Suppose instead we defined a distance measure that considers only functions that must output

TRUE every time the desired function outputs TRUE but may output TRUE or FALSE when the
given function outputs FALSE. The best fit function would then be the onethat outputs TRUE the
fewest times when the desired output is FALSE. Such a distance measure would favor the logical
operation AND since in subsequent steps, O's need to be added.

In certain situations, such favoritism would be desirable. For example, for N = 9 consider the
boolean function that outputs 1 every time exactly 4 input variables are 1. Using this new distance
measure, the algorithmfinds a solution usingonly two templates whilethe original distancemeasure
results in a solution with over 70 templates.

In the same manner, we could also define a distance measure that favors OR. Actually, if we
restricted our choice of logical operations to include only OR or AND, then we could implement
a possibly moretime-efficient algorithm that solves for a minimal set of prime implicants plus has
some additional procedures to take the ballterm templates into account.

Even if an optimal algorithm could be designed to choose template sequences from this class
along with the combining two-input logic, we do not know how many steps might be needed in the
worst-case to implement a desired function. A simple counting argument gives 26 steps as a lower
upper-bound on the number. That is, there is some logic function that requires at least this many
steps even when optimally implemented. If the upper bound is in fact much greater than this, it
may be necessary to explore techniques which drop the weight restriction.

4.1 Conclusion

Choosing from among the enormous number of threshold logic functions of 9 variables makes
composing general boolean functions with them a daunting task. We have shown how by restricting
the threshold logic functions to those with {-1,0,+1} weights, the component functions can be
reduced to a manageable number. The concept of ballterm was introduced to characterize such
boolean functions. An algorithm was presented for finding a sequence of templates and two-input
logical operators that will implement any desired neighborhood boolean function on the CNNUM
by using this weight-restricted class. The algorithm does not necessarily choose the optimal set
from the ballterm class and sometimes produces long sequences. In fact, even if it was optimal
it is not known whether the ballterm class is rich enough to implement any boolean function in
a reasonable number of iterations. However, the proposed technique represents a significant step
towards the efficient automation of template design for the implementation of cellular automata
and general neighborhood logic.
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